Solutions Manual

Engineering Fundamentals of the Internal Combustion Engine Second Edition

Willard W. Pulkrabek University of Wisconsin-Platteville

Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

Acquisitions Editor: Laura Fischer Supplement Editor: Andrea Messineo Executive Managing Editor: Vince O'Brien

Managing Editor: David A. George Production Editor: Barbara A. Till

Supplement Cover Manager: Daniel Sandin

Manufacturing Buyer: Ilene Kahn

© 2004 by Pearson Education, Inc. Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Prentice Hall[®] is a trademark of Pearson Education, Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-141035-0

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Contents

1	Introduction	1
2	Operating Characteristics	6
3	Engine Cycles	19
4	Thermochemistry and Fuels	36
5	Air and Fuel Induction	51
6	Fluid Motion Within Combustion Chamber	63
7	Combustion	70
8	Exhaust Flow	76
9	Emissions and Air Pollution	82
10	Heat Transfer in Engines	95
11	Friction and Lubrication	103

CHAPTER 1

(1-1)

SI engines use spark plugs.

CI engines use self-ignition.

SI engines intake an air-fuel mixture.

CI engines intake air only.

SI engines have combustion at about constant volume.

CI engines have some combustion at about constant pressure.

SI engines use gasoline fuel.

CI engines use diesel oil fuel.

SI engines use carburetors or fuel injectors in the intake system.

CI engines have fuel injectors in the combustion chamber.

(1-2)

Two stroke cycle engines have no exhaust stroke. Excess exhaust must be pushed out of cylinder (scavenged) by the intake air-fuel mixture (or intake air in CI engines). This requires that the intake mixture be at a higher pressure than the exhaust residual.

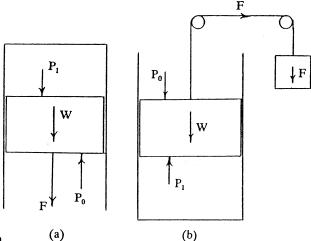
(1-3)

Advantages of two stroke cycle:

Smoother cycle with a power stroke from every cylinder on every revolution. Do not need mechanical valves.

More power from same weight engine.

Advantages of four stroke cycle:


Can operate without an intake pressure boost.

Cleaner operation with less exhaust pollution.

Can use crankcase for oil reservoir.

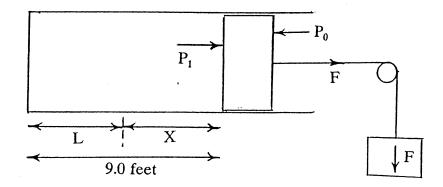
- (a) They do not need mechanical valves. Valve mechanism for a very small engine would need to be high precision and costly. With no valves engines can be made cheaper and lighter which is very desirable for small engines.
- (b) Very large engines operate at a very low RPM. Because of this they need a power stroke from every cylinder during every revolution to have a smooth operating cycle.
- (c) Because of large valve overlap there is too much pollution in the exhaust of a two stroke cycle engine. They cannot pass automobile emission standards required by law.
- (d) More power can be obtained from the same weight engine.

(1-5)

(a) weight of piston

 $W = mg/g_c = [(2700 \text{ kg})(9.81 \text{ m/sec}^2)]/[(1 \text{ kg-m/N-sec}^2)(1000 \text{ N/kN})] = 26.487 \text{ kN}$

forces down = forces up


 P_1 (piston face area) + weight + F = P_0 (piston face area) (22 kPa)[(π /4)(1.2 m)²] + (26.487 kN) + F = (98 kPa)[(π /4)(1.2 m)²]

$$F = 59.5 \text{ kN} = \text{mg/g}_c = \text{m}(9.81)/(1)(1000)$$
 $\underline{m} = 6062 \text{ kg}$

(b) P_0 (piston face area) + weight = F + P_1 (piston face area) (98 kPa)[$(\pi/4)(1.2 \text{ m})^2$] + (26.487 kN) = F + (22 kPa)[$(\pi/4)(1.2 \text{ m})^2$]

$$F = 112.441 \text{ kN} = mg/g_c = m(9.81)/(1)(1000)$$
 $\underline{m} = 11,462 \text{ kg}$

(1-6)

(a) after combustion air in cylinder cools at constant volume pressure in cylinder P_1 when piston is first unlocked

$$P_1 = P_0(T_0/T_{comb}) = (14.7 \text{ psia})(530/1000) = 7.8 \text{ psia}$$

balance of forces on piston P_1 (piston face area) + $F = P_0$ (piston face area)

$$[(7.8)(144) \text{ lbf/ft}^2][(\pi/4)(3.2 \text{ ft})^2] + F = [(14.7)(144) \text{ lbf/ft}^2][(\pi/4)(3.2 \text{ ft})^2]$$

(b) cylinder volume before cooling $V_1 = (\pi/4)B^2S = (\pi/4)(3.2 \text{ ft})^2(9 \text{ ft}) = 72.38 \text{ ft}^3$

F = 7991 lbf

with no load piston will move at constant temperature until cylinder pressure $P_2 = P_0 = 14.7$ psia $V_2 = V_1(P_1/P_2) = (72.38 \text{ ft}^3)(7.8/14.7) = 38.41 \text{ ft}^3$

distance piston moves X = effective power stroke X = 9 - 4.78 = 4.22 ft

(c) cylinder volume at end of power stroke $V_2 = 38.41 \text{ ft}^3$ from above

- (a) Shorter engine length allows for shorter engine compartment.

 Shorter crankshaft will have less bending stress.
- (b) Smaller diameter cylinders will have shorter flame travel distance.

 Smoother engine cycle with more power strokes per revolution.
- (c) Less mechanical friction in engine.

 Larger cylinder volume/surface area ratio giving less heat loss per cycle.
- (d) Lower engine height.

 Shorter engine length.

Shorter engine crankshaft.

(e) Smoother engine cycle with more power strokes per revolution.

Smaller diameter cylinders will have shorter flame travel distance.

(1-8)

(a) as a radial engine rotates every other cylinder fires giving 4.5 ignitions and power strokes per revolution

 $(360^{\circ}/\text{rev})/(4.5 \text{ ignitions/rev}) = 80^{\circ}/\text{ignition}$

- (b) 4.5 power strokes/rev
- (c) (4.5 power strokes/rev)(900/60 rev/sec) = 67.5 power strokes/sec

(1-9)

- (a) standard automobile $m_f = (16,000 \text{ miles})/(31 \text{ miles/gal}) = 516.1 \text{ gal}$ hybrid automobile $m_f = (16,000 \text{ miles})/(82 \text{ miles/gal}) = 195.1 \text{ gal}$
- (b) (516.1) (195.1) = (321.0 gal/year)(\$1.65) = \$529.65/year
- (c) difference in cost (\$32,000) - (\$18,000) = \$14,000 t = (\$14,000)/(\$529.65/year) = 26.4 years = 317 months

CHAPTER 2

(2-1)

- (a) $[(171,000 \text{ miles})(60 \text{ min/hr})(1700 \text{ rev/min})]/(40 \text{ miles/hr}) = 4.36 \times 10^8 \text{ rev}$
- (b) $(4.36 \times 10^8 \text{ rev})(4 \text{ firings/rev}) = 1.744 \times 10^9 \text{ firings}$
- (c) there are same number of intake strokes as spark plug firings

 (1.744 x 10° intake strokes/engine)/(8 cyl/engine) = 2.18 x 10° strokes/cyl

(2-2)

- (a) Eq. (2-9) $V_d = N_c(\pi/4)B^2S = (4 \text{ cyl})(\pi/4)(10.9 \text{ cm})^2(12.6 \text{ cm}) = 4703 \text{ cm}^3 = 4.703 \text{ L}$
- (b) Eq. (2-2) $\overline{U}_p = 2SN = (2 \text{ strokes/rev})(0.126 \text{ m/stroke})(2000/60 \text{ rev/sec}) = 8.40 \text{ m/sec}$

$$A_p = (\pi/4)B^2N_c = (\pi/4)(0.109 \text{ m})^2(4 \text{ cyl}) = 0.0373 \text{ m}^2$$

Eq. (2-46)

$$W_b = (bmep)A_p\overline{U}_p/2$$

88 kW = (bmep)(0.0373 m²)(8.40 m/sec)/2

bmep = 561 kPa

or using Eq.
$$(2-88)$$

bmep = $(1000)(88)(1)/(4.703)(2000/60) = 561 \text{ kPa}$

- (c) Eq. (2-40) $\tau = (bmep)V_d/2\pi = (561 \text{ kPa})(0.004703 \text{ m}^3)/2\pi = 0.420 \text{ kN-m} = 420 \text{ N-m}$ or using Eq. (2-76) $\tau = (159.2)(88)/(2000/60) = 420 \text{ N-m}$
- (d) for one cylinder $V_d = (4703 \text{ cm}^3)/4 = 1176 \text{ cm}^3$

Eq. (2-12)

$$r_c = (V_d + V_c)/V_c = 18 = (1176 + V_c)/V_c$$
 $\underline{V_c = 69.2 \text{ cm}^3}$

(2-3)

(a)
for one cylinder

$$V_d = (2.4 \text{ L})/4 = 0.6 \text{ L} = 600 \text{ cm}^3$$

Eq. (2-12)
 $r_c = (V_d + V_c)/V_c = 9.4 = (600 + V_c)/V_c$
 $V_c = 71.43 \text{ cm}^3 = 0.07143 \text{ L} = 4.36 \text{ in.}^3$

(b)
Eq. (2-8)

$$V_d = 600 \text{ cm}^3 = (\pi/4)B^2S = (\pi/4)B^2(1.06 \text{ B})$$

 $\underline{B} = 8.97 \text{ cm} = 3.53 \text{ in.}$
 $S = 1.06 \text{ B} = (1.06)(8.97 \text{ cm}) = 9.50 \text{ cm} = 3.74 \text{ in.}$

(c)

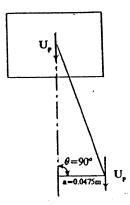
$$Eq. (2-2)$$

 $U_p = 2SN = (2 \text{ strokes/rev})(0.0950 \text{ m/stroke})(3200/60 \text{ rev/sec})$
 $= 10.13 \text{ m/sec} = 33.2 \text{ ft/sec}$

(2-4)

Advantages of over square engine:

For the same cylinder displacement volume an over square engine will have a shorter stroke length. This will result in a lower average piston speed and lower friction losses.


Cylinder lengths will be slightly shorter.

Advantages of under square engine:

An under square engine will have smaller diameter cylinders, resulting in a shorter flame travel distance.

Combustion chamber surface area will be smaller resulting in less heat loss per cycle.

(2-5)

(a) from Problem (2-3)

$$\overline{U}_p = 10.13 \text{ m/sec}$$

(b) approximate piston speed is as shown crankshaft offset equals half of stroke length a = S/2 = (0.095 m)/2 = 0.0475 m

$$U_p = \omega r = [(3200/60)(2\pi) \text{ radians/sec}](0.0475 \text{ m}) = 15.9 \text{ m/sec}$$

- (2-6) $V_d = (3.5 L)/5 = 0.7 L = 0.0007 m^3$ for one cylinder
 - (a) Eq. (2-29)imep = W/V_d = (1000 J)/[(0.0007 m³)(1000 J/kJ)] = 1429 kPa
 - **(b)** Eq. (2-37c)bmep = η_{m} imep = (0.62)(1429 kPa) = 886 kPa
 - (c) Eq. (2-37d)fmep = imep - bmep = (1429 kPa) - (886 kPa) = 543 kPa
 - (d) indicated power using Eq. (2-42)

$$\dot{\mathbf{W}}_{i} = \mathbf{W}\mathbf{N}/\mathbf{n}$$

$$=[(1kJ/cyl-cycle)(2500/60rev/sec)(5cyl)]/(2rev/cycle)=104.2kW$$

Eq. (2-47)
$$\dot{W}_b = \eta_m \dot{W}_i = (0.62)(104.2 \text{ kW}) = 64.6 \text{ kW} = 86.6 \text{ hp}$$

or using Eq. (2-81)
$$\dot{W}_b = [(886)(3.5)(2500/60)]/[(1000)(2)] = 64.6 \text{ kW}$$

(e) Eq. (2-41)

$$\tau = (bmep)V_d/4\pi = (886 \text{ kN/m}^2)(0.0035 \text{ m}^3)/4\pi = 247 \text{ N-m}$$

or using Eq. (2-76)

$$\tau = (159.2)(64.6)/(2500/60) = 247 \text{ N-m}$$

(2-7)

Eq. (2-8) for one cylinder

$$V_d = 0.0007 \text{ m}^3 = (\pi/4)B^2S = (\pi/4)B^3$$

 $B = S = 0.0962 \text{ m} = 9.62 \text{ cm}$

- (a) Eq. (2-51) $SP = \mathring{W}_b/A_p = \mathring{W}_b/[(\pi/4)B^2N_c] = (64.6 \text{ kW})/[(\pi/4)(9.62 \text{ cm})^2(5 \text{ cyl})] = 0.178 \text{ kW/cm}^2$
- (b) Eq. (2-52) OPD = \dot{W}_b/V_d = (64.6 kW)/(3500 cm³) = 0.0185 kW/cm³
- (c) Eq. (2-53) $SV = V_d/\mathring{W}_b = (3500 \text{ cm}^3)/(64.6 \text{ kW}) = 54.1 \text{ cm}^3/\text{kW}$
- (d) Eq. (2-49) $\mathring{W}_f = \mathring{W}_1 \mathring{W}_b = (104.2 \text{ kW}) (64.6 \text{ kW}) = 39.6 \text{ kW} = 53.1 \text{ hp}$

(2-8)

(a) mass flow rate of fuel into engine $\dot{m}_{\rm f} = 0.0060$ kg/sec from Example Problem 2-4 mass flow of fuel not burned

 $(\mathring{\mathbf{m}}_{f})_{nb} = \mathring{\mathbf{m}}_{f}(1 - \eta_{c}) = (0.0060 \text{ kg/sec})(1 - 0.97)(3600 \text{ sec/hr}) = 0.648 \text{ kg/hr}$

- (b) Eq. (2-73) $(SE)_{HC} = \mathring{m}_{HO} \mathring{W}_{b} = (648 \text{ gm/hr})/(77.3 \text{ kW}) = 8.38 \text{ gm/kW-hr}$
- (c) mass flow of unburned fuel emissions $\dot{m}_{HC} = [(0.648 \text{ kg/hr})(1000 \text{ gm/kg})]/(3600 \text{ sec/hr}) = 0.18 \text{ gm/sec}$ $Eq. (2-74) (EI)_{HC} = \dot{m}_{HC}/\dot{m}_f = (0.18 \text{ gm/sec})/(0.0060 \text{ kg/sec}) = 30 \text{ gm/kg}$

(2-9)

(a) Eq. (2-9)
$$V_d = N_c(\pi/4)B^2S = (8 \text{ cyl})(\pi/4)(5.375 \text{ in.})^2(8.0 \text{ in.}) = 1452 \text{ in.}^3$$

$$\begin{array}{l} \text{Eq. (2-15)} \\ A_p = (\pi/4) B^2 N_c = (\pi/4) (5.375 \text{ in.})^2 (8 \text{ cyl}) = 181.5 \text{ in.}^2 = 1.260 \text{ ft}^2 \\ \hline \text{Eq. (2-2)} \\ \overline{U}_p = 2 \text{SN} = (2 \text{ strokes/rev}) (8/12 \text{ ft/stroke}) (1000/60 \text{ rev/sec}) = 22.2 \text{ ft/sec} \\ \hline \text{Eq. (2-45)} \\ \overline{W}_b = (b \text{mep}) A_p \overline{U}_p / 4 \\ (152 \text{ hp}) (550 \text{ ft-lbf/sec/hp}) = (b \text{mep}) (1.260 \text{ ft}^2) (22.2 \text{ ft/sec}) / 4 \\ \hline b \text{mep} = 11,955 \text{ lbf/ft}^2 = 83.0 \text{ psia} \\ \hline \text{or using Eq. (2-90)} \end{array}$$

(c) Eq. (2-41)
$$\tau = (bmep)V_d/4\pi = (11,955 lbf/ft^2)[1452/(12)^3]ft^3/(4\pi) = \underline{799 lbf-ft}$$
 or using Eq. (2-77)
$$\tau = (5252)(152)/1000 = \underline{799 lbf-ft}$$

bmep = [(396,000)(152)(2)]/[(1452)(1000)] = 83.0 psia

(d)
Eq. (2-47)

$$\dot{\mathbf{W}}_{1} = \dot{\mathbf{W}}_{b}/\eta_{m} = (152 \text{ hp})/0.60 = \underline{253 \text{ hp}}$$

(e)
Eq. (2-49)

$$\dot{W}_f = \dot{W}_i - \dot{W}_b = (253 \text{ hp}) - (152 \text{ hp}) = \underline{101 \text{ hp}}$$

(2-10)

(a)
Eq. (2-71)

$$\dot{\mathbf{m}}_{a} = \rho_{a} V_{d} \eta_{v} N/n = (1.181)(0.001500)(0.92)(3000/60)/(2) = \underline{0.0407 \text{ kg/sec}}$$

(b)
rate of fuel into engine using Eq. (2-55)
$$\dot{\mathbf{m}}_f = \dot{\mathbf{m}}_s/(AF) = (0.0407 \text{ kg/sec})/21 = 0.00194 \text{ kg/sec} = 6.985 \text{ kg/hr}$$
Eq. (2-60)
bsfc = $\dot{\mathbf{m}}_s/\dot{\mathbf{W}}_b = (6.985 \text{ kg/hr})/(48 \text{ kW}) = 0.1455 \text{ kg/kW-hr} = 145.5 \text{ gm/kW-hr}$

- (c) mass flow of exhaust equals air plus fuel $\dot{\mathbf{m}}_{ex} = [(0.0407)(22/21) \text{ kg/sec}](3600 \text{ sec/hr}) = 153.5 \text{ kg/hr}$
- (d) Eq. (2-52) OPD = W_b/V_d = (48 kW)/(1.5 L) = 32 kW/L

(2-11)

(a)
Eq. (2-8) for one cylinder

$$V_d = (5 \text{ L})/6 = 0.8333 \text{ L} = 833.3 \text{ cm}^3 = (\pi/4)B^2S = (\pi/4)(0.92)B^3$$

 $B = 10.49 \text{ cm}$ $S = 0.92 \text{ B} = (0.92)(10.49 \text{ cm}) = 9.65 \text{ cm}$

(b) Eq. (2-2)
$$\overline{U}_{p} = 2SN = (2 \text{ strokes/rev})(0.0965 \text{ m/stroke})(2400/60 \text{ rev/sec}) = 7.72 \text{ m/sec}$$

(c)
Eq. (2-12)

$$r_c = (V_d + V_c)/V_c = 10.2 = (833.3 + V_c)/V_c$$

 $\frac{V_c = 90.6 \text{ cm}^3}{}$

(2-12)

- (a) (500 miles)/(18 gal) = 27.78 mpg
- (b) (3.785 L/gal)/[(27.78 miles/gal)(1.609 km/mile)]= 0.0847 L/km = 8.47 L/100 km
- (c) rate of fuel use during trip $\hat{m}_f = [(18gal)(3.785L/gal)(0.692kg/L)]/[(12.5hr)(3600 sec/hr)]$ = 0.001048 kg/sec

mass of CO (0.001048 kg/sec) [(28 gm/kg)] (3600 sec/hr) (12.5 hr) / (1000 gm/kg) = 1.32 kg

(2-13)

- (a) displacement volume of one cylinder $V_d = (0.0056 \text{ m}^3)/(10 \text{ cylinders}) = 0.00056 \text{ m}^3/\text{cylinder}$ eq (2-8) $V_d = (\pi/4)B^2S = (0.00056 \text{ m}^3) = (\pi/4)B^2(1.12 \text{ B})$ B = 0.0860 m S 1.12 B = (1.12)(0.0860 m) = 0.0963 m $\frac{\text{eq}}{\text{U}_p} = 2SN = (2s\text{trokes/rev})(0.0963\text{m/stroke})(3600/60\text{rev/sec})$ = 11.56 m/sec
- (b) eq (2-76) $\tau = [(159.2)(162)]/(3600/60) = 429.8 \text{ N-m}$
- (c) eq (2-87)bmep = [(6.28)(2)(429.8)]/(5.6) = 964 kPa

(2-14)

- (a) displacement volume of one cylinder $V_d = (4800 \text{ cm}^3)/(8) = 600 \text{ cm}^3/\text{cylinder}$ Eq.(2-8) $V_d = (\pi/4)B^2S = 600 \text{ cm}^3 = (\pi/4)(1.06 \text{ S})^2S$ S = 8.79 cm = 0.0879 m
- (b) Eq. (2-2) $\overline{U}_p = 2SN = (2 \text{ strokes/rev})(0.0879 \text{ m/stroke})(2000/60 \text{ rev/sec})$ = 5.86 m/sec
- (c) each spark plug fires once each cycle
 (2000/2 cycles/min)(60 min/hr)(24 hr/day)(5 days)
 = 7.20 x 10⁶ cycles
- (d) Eq.(2-71) $\hat{m}_a = \eta_v \rho_a V_d N/n$ =(0.92)(1,181kg/m³)(0.0048m³/cycle)(2000/60rev/sec)/(2rev/cycle) = 0.0870 kg/sec
 - (e) Eq. (2-55) $\dot{m}_f = \dot{m}_a/AF = (0.0870 \text{ kg/sec})/(14.6) = 0.00595 \text{ kg/sec}$

(2-15)

(a)
Eq. (2-8) with B = S

$$V_d = 6.28 \text{ cm}^3 = (\pi/4)B^2S = (\pi/4)B^3$$

B = 2.00 cm = S

Eq. (2-2)
$$\overline{U}_p = 2SN = (2 \text{ strokes/rev})(0.0200 \text{ m/stroke})(8000/60 \text{ rev/sec}) = 5.33 \text{ m/sec}$$

(c)
Eq. (2-56)

$$\dot{\mathbf{m}}_{f} = (FA)\dot{\mathbf{m}}_{a} = (0.067)(0.00084 \text{ kg/sec}) = \underline{5.63 \times 10^{.5} \text{ kg/sec}}$$

(d)
$$m_f = (5.63 \times 10^{-5} \text{ kg/sec})/[8000/60 \text{ rev/sec})(1 \text{ cycle/rev})] = 4.22 \times 10^{-7} \text{ kg/cycle}$$

(2-16)

```
(a)
        brake power using Eq. (2-43)
        \dot{W}_h = 2\pi N\tau = (2\pi \text{ radians/rev})(800/60 \text{ rev/sec})(76 \text{ N-m})/(1000 \text{ W/kW}) = 6.365 \text{ kW}
       or using Eq. (2-80)
       \dot{W}_{b} = (800/60)(76)/159.2 = 6.365 \text{ kW}
        mass flow rate of fuel
        \dot{\mathbf{m}}_{t} = (0.113/4 \text{ kg/min})(1000 \text{ gm/kg})(60 \text{ min/hr}) = 1695 \text{ gm/hr}
       Eq. (2-60)
       bsfc = m/W_b = (1695 \text{ gm/hr})/(6.365 \text{ kW}) = 266.3 \text{ gm/kW-hr}
 (b)
       displacement volume using Eq. (2-9)
       V_d = N_c(\pi/4)B^2S = (1 \text{ cyl})(\pi/4)(12.9 \text{ cm})^2(18.0 \text{ cm})
= 2353 cm<sup>3</sup> = 2.353 L = 0.002353 m<sup>3</sup>
       Eq. (2-41)
       bmep = 4\pi\tau/V_d = (4\pi)(76 \text{ N-m})/(0.002353 \text{ m}^3) = 405,700 \text{ N/m}^2 = 405.7 \text{ kPa}
      or using Eq. (2-87)
       bmep = (6.28)(2)(76)/(2.353) = 405.7 \text{ kPa}
       or using Eq.(2-88)
       bmep = (1000)(6.365)(2)/[(2.353)(800/60)] = 405.7 \text{ kPa}
(c)
      from above
                         \dot{W}_{h} = 6.365 \text{ kW}
(d)
      piston face area using Eq. (2-15)
      A_n = (\pi/4)B^2 = (\pi/4)(12.9 \text{ cm})^2 = 130.7 \text{ cm}^2
      Eq. (2-51)
      SP = W_b/A_p = (6.365 \text{ kW})/(130.7 \text{ cm}^2) = \underline{0.0487 \text{ kW/cm}^2}
(e)
                                  OPD = \mathring{W}_b/V_d = (6.365 \text{ kW})/(2.353 \text{ L}) = 2.71 \text{ kW/L}
      Eq. (2-52)
(f)
                                  SV = V_d/\dot{W}_b = (2.353 \text{ L})/(6.365 \text{ kW}) = \underline{0.370 \text{ L/kW}}
     Eq. (2-53)
```

(2-17)

(a)
$$\mathring{\mathbf{Q}} = \mathring{\mathbf{m}} c_p \Delta T$$

[(72 hp)(2545 BTU/hr/hp)(0.93)]/(60 min/hr)
= (30 gal/min)(62.4 lbm/ft³)(0.1337 ft³/gal)(1 BTU/lbm-°R) ΔT
 $\Delta T = 11^\circ F$ $T_{\text{evit}} = 46^\circ + 11^\circ = 57^\circ F$

(b) Eq. (2-43) $\dot{W}_b = 2\pi N \tau = (72 \text{ hp})(550 \text{ ft-lbf/sec/hp})(60 \text{ sec/min}) = (2\pi \text{ radians/rev})(4050 \text{ rev/min})\tau$ $\tau = 93.4 \text{ lbf-ft}$

or using Eq. (2-77) $\tau = (5252)(72)/(4050) = 93.4 \text{ lbf-ft}$

(c) brake power $\mathring{W}_b = (72 \text{ hp})(550 \text{ ft-lbf/sec/hp})(60 \text{ sec/min}) = 2.376 \text{ x } 10^6 \text{ ft-lbf/min}$ displacement $V_d = (302 \text{ in.}^3)/(12 \text{ in./ft})^3 = 0.1748 \text{ ft}^3$

Eq. (2-86) bmep = nW_b/V_dN = (2 rev/cycle)(2.376 x 10^6 ft-lbf/min)/(0.1748 ft³)(4050 rev/min) = 6712.4 lbf/ft² = 46.6 psia

or using Eq. (2-90)bmep = [(396,000)(72)(2)]/[(302)(4050)] = 46.6 psia

(2-18)

(a) power out of generator $\hat{W}_{g} = (220 \text{ volts})(54.2 \text{ amps}) = 11,924 \text{ W} = 11.924 \text{ kW}$

brake power from engine using Eq. (2-50) $\mathring{W}_b = \mathring{W}_g/\eta_{gen} = (11.924 \text{ kW})/0.87 = 13.7 \text{ kW} = 18.4 \text{ hp}$

(b) Eq. (2-43) $W_b = 2\pi N\tau = 13.7 \text{ kW} = (2\pi \text{ radians/rev})(1200/60 \text{ rev/sec})\tau$ $\tau = 0.109 \text{ kN-m} = 109 \text{ N-m}$

or using Eq. (2-76) $\tau = (159.2)(13.7)/(1200/60) = 109 \text{ N-m}$

(c) Eq. (2-40) $\tau = (bmep)V_d/2\pi = 109 \text{ N-m} = (bmep)(0.0031 \text{ m}^3/\text{rev})/(2\pi \text{ radians/rev})$ $bmep = 221,000 \text{ N/m}^2 = 221 \text{ kPa}$

or using Eq. (2-87)bmep = (6.28)(1)(109)/(3.1) = 221 kPa