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[0 PREFACE

This Complete Solutions Manual contains solutions to all exercises in the texts Single Variable
Calculus: Concepts and Contexts, Fourth Edition, and Chapters 1-8 of Calculus: Concepts and
Contexts, Fourth Edition, by James Stewart. A student version of this manual is also available; it
contains solutions to the odd-numbered exercises in each chapter section, the review sections, the
True-False Quizzes, and the Focus on Problem Solving sections, as well as solutions to all the
exercises in the Concept Checks. No solutions to the Projects appear in the student version. It is
our hope that by browsing through the solutions, professors will save time in determining appro-
priate assignments for their particular classes.

Some nonstandard notation is used in order to save space. If you see a symbol that you don’t
recognize, refer to the Table of Abbreviations and Symbols on page v.

We appreciate feedback concerning errors, solution correctness or style, and manual style. Any
comments may be sent directly to us at jeff.cole@anokaramsey.edu or tim@andrew.cmu.edu, or
in care of the publisher: Cengage Learning Brooks/Cole, 20 Davis Drive, Belmont, CA 94002.

We would like to thank Jim Stewart, for his guidance; Brian Betsill, Kathi Townes, and
Rebekah Million, of TECH-arts, for their production services; and Richard Stratton and Jeannine
Lawless, of Cengage Learning Brooks/Cole, for entrusting us with this project as well as for their
patience and support.

Jeffery A. Cole
Anoka Ramsey Community College

Timothy J. Flaherty
Carnegie Mellon University
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[0 ABBREVIATIONS AND SYMBOLS

CD
CU

FDT
HA

I/D
IP

VA

CAS

=

concave downward
concave upward

the domain of f

First Derivative Test
horizontal asymptote(s)
interval of convergence
Increasing/Decreasing Test
inflection point(s)

radius of convergence

vertical asymptote(s)

indicates the use of a computer algebra system.

indicates the use of I’Hospital’s Rule.

indicates the use of Formula j in the Table of Integrals in the back endpapers.
indicates the use of the substitution {u = sinx, du = cosx dx}.

indicates the use of the substitution {u = cosx,du = —sinz dz}.
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[] DIAGNOSTIC TESTS

Test A Algebra

1. (@) (=3)" = (=3)(—3)(-3)(-3) = 81 (b) —3* = —(3)(3)(3)(3) = —81
ga_ 1 _ 1 d5—23—523‘21—52—25
©3 7 =31 =31 @ 5 = B
_ _ 1 1 11
(e) (%) ’ = (%)2 = % (f) 16 3/4 = 163/4 = (4 16)3 = § = g

2. (a) Note that v/200 = /100 - 2 = 10 v/2 and /32 = /16 - 2 = 4 /2. Thus v/200 — v/32 = 102 — 42 = 6 /2.
(b) (3a®b)(4ab*)? = 3a®b*16ab* = 48a°b"
2

© <3x3/2y3>_2 <x2y1/2> ($2y71/2)2 T 2 z

22y—1/2 = 303/2y3 = (323/2y3)2 = 935 = 9135y = 9_y7

3. () 3(z+6)+4(2c —5) =3z + 18+ 8z — 20 = 11z — 2

(b) (z +3)(4x — 5) = 42® — 5z + 122 — 15 = 42* + Tz — 15
© (Va+v5) (Va-v8)=(vVa) ~vavb+vavi—(vVB) =a—b
Or: Use the formula for the difference of two squares to see that (\/5 + \/5) (\/_ — \/5) = (\/(;)2 — (\/5)2 =a—b.

(d) (22 +3)? = (2 +3)(2z + 3) = 42® + 62 + 62 + 9 = 42* + 122 + 9.
Note: A quicker way to expand this binomial is to use the formula (a + b)? = a® 4 2ab + b with @ = 2z and b = 3:
(22 +3)® = (22)% +2(22)(3) + 3% = 42® + 122+ 9

(e) See Reference Page 1 for the binomial formula (a + b)® = a® + 3a?b + 3ab® + b>. Using it, we get
(x+2)% =23 + 32%(2) + 32(2%) + 2° = 2% + 62% + 122 + 8.

4. (a) Using the difference of two squares formula, a®> — b*> = (a + b)(a — b), we have

4g? — 25 = (2x)* — 5% = (22 + 5)(2x — 5).

(b) Factoring by trial and error, we get 222 + 5z — 12 = (22 — 3)(x + 4).

(c¢) Using factoring by grouping and the difference of two squares formula, we have
23 —32° —dx+12=2%(x—3) —4(z - 3) = (2® —4)(z — 3) = (z — 2)(x + 2)(z — 3).

(d) 2* + 272 = z(2® + 27) = x(x + 3)(2® — 3z +9)

This last expression was obtained using the sum of two cubes formula, a® + b*> = (a + b)(a® — ab + b*) witha = =

and b = 3. [See Reference Page 1 in the textbook.]
(e) The smallest exponent on  is —3, so we will factor out z~*/2.
323/2 — 9212 4 6272 =327 12(2® — 32 +2) = 3272 (x — 1)(z — 2)

(f) 2*y — 4oy = zy(z* — 4) = zy(z — 2)(x + 2)
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?+3x+2 (2+1)(x+2) x+2
2—z-2 (z+1)(x—-2) x-2

22 —x—1 z+3 (Qe+D(xz—-1) 2+3 x-1

O = 1 @-3@+3 2w+l 7.3
© x4l z? o+l x? 7.’L'+1'.’L‘—2_$2—(.’L‘+1)(.%'—2)
Y4 212 (@-2@+2) 212 @-2@+2) 242 7-2  (@-2)(z+2)
(@ —x-2) T+ 2 1
(x+2)(x—2) (z+2)(xz—2) =x-2
y_z y_z .
vy _x oy zy _y -z (y-z)(ytz) yt+z _
OT 1T 1w~ oy~ —w-o 1 @Y
Yy x Yy x
VIO V10 V542 VB0+2V10 _ 5v2+2V10
@ T R Va2 (VB —22  5-4 =9V2+2vI0

A+h—-2 VA+h—-2 VA+h+2  4+h—4
h h Vit+h+2 h(VEi+h+2)

) h B 1
h(VA+h+2) VA+th+2

L@ trrl=(P e+ 1= (z+ 1) 42

(b) 222 — 120+ 11 =2(2* —62) + 11 =2(2* —62+9—9) + 11 =2(z? — 62 +9) — 18 + 11 =2(x — 3)> - 7

1 1 3 2
c@r+b=4—-35r & zt+zr=14-5 & s5r=9 & =59 & =6

2v 2z —1
x+1 x

(b) = 22°=2z-1)(z+1) & 22°=22"+r-1 & z=1

(©r*—2-12=0 & (z+3)(z—4)=0 & x+3=00rz—4=0 & x=-3orx=4

(d) By the quadratic formula, 22> + 4z +1=0 <

AL/ A2)1)  —4+B  —4+2v2 2(—2+V2) 242 1
- 2(2) T4 4 4 =~ iEv2

@z*—3224+2=0 & @ -1)E*-2)=0 & 2*—-1=00r2>-2=0 & 2*=lor2z’=2 &
x="+lorz=+2
22

M 3z—4=10 & |z2—4|=L & z2-4=-Loz-4=L & z=Z2orz=2

(g) Multiplying through 22:(4 — )~ */2 = 34—z =0by (4 —z)/? gives 2z —3(4 —2) =0 &

20— 1243xr=0 <& Hxr—12=0 & bHr=12 < :c:%.

() 4<5-3x<17T & -9<-3x<12 & 3>zr>—-4or 4<zxr<3.

In interval notation, the answer is [—4, 3).

by z?<22+8 & 22-22-8<0 & (z+2)(x—4)<0.Now, (x + 2)(x — 4) will change sign at the critical
values z = —2 and = = 4. Thus the possible intervals of solution are (—oo, —2), (—2,4), and (4, c0). By choosing a

single test value from each interval, we see that (—2, 4) is the only interval that satisfies the inequality.
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(c) The inequality 2:(x — 1)(x 4+ 2) > 0 has critical values of —2, 0, and 1. The corresponding possible intervals of solution
are (—oo, —2), (—2,0), (0,1) and (1, 00). By choosing a single test value from each interval, we see that both intervals

(—2,0) and (1, 0o) satisfy the inequality. Thus, the solution is the union of these two intervals: (—2,0) U (1, c0).
djx—4]<3 & —-3<zx—4<3 < 1<uz<T7 Ininterval notation, the answer is (1, 7).

2x_:13§1 o 2;c—13_1<0 2 — 3 x+1<0 N 2x—3—x—1<0 x—4<0.
T

- < x+1 r+1 — r+1 - < r+1 —

(e)

Now, the expression ) may change signs at the critical values x = —1 and = = 4, so the possible intervals of solution
T

are (—oo, —1), (—1,4], and [4, o). By choosing a single test value from each interval, we see that (—1, 4] is the only
interval that satisfies the inequality.
10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick
p = 1and g = 2 and observe that (1 + 2)? # 12 + 22, In general, (p + ¢)* = p® + 2pq + ¢*.
(b) True as long as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents:
Vab = (ab)l/z — a/2p1/2 — \/a /b
(c) False. To see this, let p = 1 and ¢ = 2, then /12 4+ 22 # 1 + 2.

+1(2)

(d) False. To see this, let 7' = 1 and C' = 2, then ! #1+1

. 1 1
(e) False. To see this, let z = 2 and y = 3, then 33

2—3#

-%:L,aslongasx;éOanda—b;éO.

(f) True since ks
a a—1b

/x—b/x

Test B Analytic Geometry

1. (a) Using the point (2, —5) and m = —3 in the point-slope equation of a line, y — y1 = m(z — x1), we get

y—(-5)=-3x—-2) = y+5=-3x+6 = y=-3x+1

(b) A line parallel to the z-axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2, —5),
the y-coordinate of every point on the line is —5, so the equation is y = —5.

(c) A line parallel to the y-axis is vertical with undefined slope. So the z-coordinate of every point on the line is 2 and so the
equation is x = 2.

(d) Note that 2z — 4y =3 = —4y=—2x+3 = y= 2z — 3. Thus the slope of the given line is m = 1. Hence, the
slope of the line we’re looking for is also % (since the line we’re looking for is required to be parallel to the given line).

So the equation of the lineisy — (—=5) = 1(z —2) = y+5=1z—-1 = y=1z—6.

2. First we’ll find the distance between the two given points in order to obtain the radius, r, of the circle:

r=+/[3—(-1)]2+ (-2 —4)2 = /42 + (—6)2 = /52. Next use the standard equation of a circle,

(x — h)? + (y — k)® = r?, where (h, k) is the center, to get (x + 1)® + (y — 4)? = 52.
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3. We must rewrite the equation in standard form in order to identify the center and radius. Note that
22+ —6x+10y+9=0 = 2%—6z+9+y?+ 10y = 0. For the left-hand side of the latter equation, we
factor the first three terms and complete the square on the last two terms as follows: 22 — 6z +9+ 3> +10y =0 =
(r—3)2 +9y>+10y+25=25 = (z—3)>+ (y+5)> = 25. Thus, the center of the circle is (3, —5) and the radius is 5.

—-12—-4 —16 4
4. (a) A(—7,4) and B(5,—12) = map = e T -3

B y—4=-3@x—(-7)] = y—-4=-32-2 = 3y—-12=-42-28 = 4r+3y+16=0.Puttingy =0,

we get 4x + 16 = 0, so the z-intercept is —4, and substituting O for = results in a y-intercept of —%.

(c) The midpoint is obtained by averaging the corresponding coordinates of both points: (#, W) = (=1,—4).

(d)d=+/[6—(=7)]2 + (12 — 4)2 = /122 + (—16)? = /144 + 256 = /400 = 20

(e) The perpendicular bisector is the line that intersects the line segment AB at a right angle through its midpoint. Thus the
perpendicular bisector passes through (—1, —4) and has slope % [the slope is obtained by taking the negative reciprocal of
the answer from part (a)]. So the perpendicular bisector is given by y +4 = 2[z — (—1)] or 3z — 4y = 13.

(f) The center of the required circle is the midpoint of AB, and the radius is half the length of AB, which is 10. Thus, the

equation is (z + 1) + (y + 4)* = 100.

5. (a) Graph the corresponding horizontal lines (given by the equations y = —1 and y3
y = 3) as solid lines. The inequality y > —1 describes the points (z, y) that lie
on or above the line y = —1. The inequality y < 3 describes the points (z, y) _(: v
that lie on or below the line y = 3. So the pair of inequalities —1 < y < 3
describes the points that lie on or between the lines y = —1 and y = 3.

(b) Note that the given inequalities can be written as —4 < x < 4and —2 < y < 2, Y
respectively. So the region lies between the vertical lines z = —4 and x = 4 and mmm— 2 \
between the horizontal lines y = —2 and y = 2. As shown in the graph, the —4§ 0 i 4y
region common to both graphs is a rectangle (minus its edges) centered at the B! ’
origin.

(c) We first graph y = 1 — 2 as a dotted line. Since y < 1 — 3z, the points in the y
region lie below this line. P N ;1_ >

0 \2 Sa X
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(d) We first graph the parabola y = x® — 1 using a solid curve. Since y > z? — 1, Y
the points in the region lie on or above the parabola.
0
1 X
B y= -1
(e) We graph the circle 2 + y? = 4 using a dotted curve. Since\/x2 + 2 < 2, the Y
. . . . D . Ttyt=
region consists of points whose distance from the origin is less than 2, that is, 2 _j( / y =4

the points that lie inside the circle.

(f) The equation 92% + 16> = 144 is an ellipse centered at (0, 0). We put it in

VA
3
2y
standard form by dividing by 144 and get I + 9= 1. The z-intercepts are
NG

4 x
located at a distance of v/16 = 4 from the center while the y-intercepts are a

distance of v/9 = 3 from the center (see the graph).

Test C Functions

1. (a) Locate —1 on the x-axis and then go down to the point on the graph with an z-coordinate of —1. The corresponding
y-coordinate is the value of the function at z = —1, which is —2. So, f(—1) = —2.
(b) Using the same technique as in part (a), we get f(2) ~ 2.8.

(c) Locate 2 on the y-axis and then go left and right to find all points on the graph with a y-coordinate of 2. The corresponding

z-coordinates are the x-values we are searching for. Sox = —3 and z = 1.
(d) Using the same technique as in part (c), we get x =~ —2.5 and z ~ 0.3.
(e) The domain is all the z-values for which the graph exists, and the range is all the y-values for which the graph exists.
Thus, the domain is [—3, 3], and the range is [—2, 3].
2. Note that f(2 + h) = (2 + h)? and f(2) = 2 = 8. So the difference quotient becomes
f@G+h)—f@) _ (2+1)° -8 8+12h+6h°+h* -8 12h+6h° +h°  h(12+6h +h?)

_ = =12+ 6h + h>.
h h h h h +6h
3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: z° + 2 —2=0 =
(r—1)(r+2)=0 = x=1orz = —2. Thus, the domain is all real numbers except 1 or —2 or, in interval

notation, (—oo, —2) U (—2,1) U (1, 00).
(b) Note that the denominator is always greater than or equal to 1, and the numerator is defined for all real numbers. Thus, the
domain is (—o0, 00).

(c) Note that the function A is the sum of two root functions. So A is defined on the intersection of the domains of these two

root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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4—2>0 = z<4and2®-1>0 = (z—1)(z+1)>0 = z < —lorz > 1. Thus, the domain of
his (—oo, —1] U [1,4].
4. (a) Reflect the graph of f about the z-axis.
(b) Stretch the graph of f vertically by a factor of 2, then shift 1 unit downward.

(c) Shift the graph of f right 3 units, then up 2 units.

5. (a) Make a table and then connect the points with a smooth curve: A
x| -2 -110]1]2 i
yl -8 -1]0]1]8 ol 1 x
(b) Shift the graph from part (a) left 1 unit. Y /
1<
./
-1 (0 X
(c) Shift the graph from part (a) right 2 units and up 3 units. Y

(2.3)

(d) First plot y = 2%. Next, to get the graph of f(z) = 4 — 22,

reflect f about the x-axis and then shift it upward 4 units.

o\\#%
m/

(e) Make a table and then connect the points with a smooth curve: Y
x| 01419 1+
y|lo]1 3 ol 1 X

(f) Stretch the graph from part (e) vertically by a factor of two.
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(g) First plot y = 2*. Next, get the graph of y = —2% by reflecting the graph of 7

y = 2% about the x-axis.

(h) Note that y = 1 + 2~ ' = 1 + 1/z. So first plot y = 1/ and then shift it Y \\

upward 1 unit. 1
= |
0] 1 X
6. (@) f(—2)=1—(-2)>=-3and f(1) =2(1) +1=3

(b) For 2 < 0 plot f(x) = 1 — 2 and, on the same plane, for 2 > 0 plot the graph )
of f(z) =22+ 1. /1

-1/ 0 X

7. @) (fog)(z) = f(g(x)) = f(2x —3) = (22 —3)* +2(22 —3) — 1 =42* — 120+ 9+4x — 6 — 1 =42® — 8z +2
®) (go @) =g(f(x) =g@*+2r—1) =22 +22x—1)-3=22>+42 -2 -3 =22"+ 42— 5

(© (gogog)(x)=yg(g(y(x))) = g(9(2x — 3)) = g(2(2z — 3) — 3) = g(4o — 9) = 2(4x — 9) — 3
=8z —18 — 3 =8z —21

TestD Trigonometry

7

o anno(_ T ) _ 300m _ 5w 80 — _qgof ™\ _ 87 7
1. (a) 300° = 300 (1800)_—180 =3 (b) —18" = —18 (1800)— 180 10
2. (a)5_”:5_”<@) = 150° (b)2:2<—180 )=—360 ~ 114.6°

6 6 T s s

3. We will use the arc length formula, s = 78, where s is arc length, r is the radius of the circle, and 6 is the measure of the

central angle in radians. First, note that 30° = 30° (1872)0) = % So s = (12) (%) = 2w cm.

4. (a) tan(r/3) = /3 [You can read the value from a right triangle with sides 1, 2, and \/5]

(b) Note that 7 /6 can be thought of as an angle in the third quadrant with reference angle 7 /6. Thus, sin(77/6) = —1,

since the sine function is negative in the third quadrant.

(c) Note that 57 /3 can be thought of as an angle in the fourth quadrant with reference angle 7 /3. Thus,

1 1

sec(b/3) = cos(5/3) = 3 = 2, since the cosine function is positive in the fourth quadrant.

5. sinf=wa/24 = @=24sin60 and: cos® =b/24 = b=24cosb
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. We first graph y = sin 2z (by compressing the graph of sin

U  DIAGNOGSTIC TESTS

T 2V2

. 71 2 2 o o _1_~2v= _é . _ _ 16 __
.sinz = zandsin“x +cosr =1 = coszx=,/1—5= .Also,cosy =z = siny = 5

3

So, using the sum identity for the sine, we have

. : : 1 4 ,2v2 3 4+6vV2 1
_ ——. 4 2¥Y2. 2 - = 4 2
sin(xz 4+ y) = sinx cosy + cosx siny 3 5—|— 3 F 5 15( —|—6\/_)
. sinf sin?@  cos? @
. (a) tanf sinf + cos O = sinf + cos ) = = =secl
cos cos cos cos
2t 2 si i
(b) ana2: = sinz/(cos z) — oM 25 — 2sing cosz = sin 2z
1+ tan?x sec? x cos

.sin2z =sinx < 2sinz cosx =sinz < 2sinz cosx —sinz =0 < sinz(2cosz—1)=0 <

s 5T

sine =0 or cosz =1 = z=0,%,7 %, 2m

by a factor of 2) and then shift it upward 1 unit.




1 [0 FUNCTIONS AND MODELS

1.1 Four Ways To Represent a Function

In exercises requiring estimations or approximations, your answers may vary slightly from the answers given here.
1. (2) The point (1, 3) is on the graph of f, so f(1) = 3.
(b) When z = —1, y is about —0.2, so f(—1) ~ —0.2.
(¢) f(x) = 1isequivalenttoy = 1. When y = 1, we have z = 0 and = = 3.
(d) A reasonable estimate for x when y = 0is x = —0.8.

(e) The domain of f consists of all z-values on the graph of f. For this function, the domain is —2 < x < 4, or [—2,4].

The range of f consists of all y-values on the graph of f. For this function, the range is —1 < y < 3, or [—1, 3].
(f) As x increases from —2 to 1, y increases from —1 to 3. Thus, f is increasing on the interval [—2, 1].
2. (a) The point (—4, —2) is on the graph of f, so f(—4) = —2. The point (3, 4) is on the graph of g, so g(3) = 4.

(b) We are looking for the values of = for which the y-values are equal. The y-values for f and g are equal at the points

(—2,1) and (2, 2), so the desired values of x are —2 and 2.
(c) f(z) = —1lisequivalenttoy = —1. Wheny = —1, we have x = —3 and z = 4.
(d) As x increases from O to 4, y decreases from 3 to —1. Thus, f is decreasing on the interval [0, 4].

(e) The domain of f consists of all z-values on the graph of f. For this function, the domain is —4 < x < 4, or [—4,4].

The range of f consists of all y-values on the graph of f. For this function, the range is —2 < y < 3, or [—2, 3].
(f) The domain of g is [—4, 3] and the range is [0.5, 4].

3. From Figure | in the text, the lowest point occurs at about (¢, a) = (12, —85). The highest point occurs at about (17, 115).

Thus, the range of the vertical ground acceleration is —85 < a < 115. Written in interval notation, we get [—85, 115].

4. Example 1: A car is driven at 60 mi/h for 2 hours. The distance d miles
traveled by the car is a function of the time ¢. The domain of the 120
function is {¢ | 0 < ¢t < 2}, where ¢ is measured in hours. The range
of the function is {d | 0 < d < 120}, where d is measured in miles. 0 > Eg:lel“ Sin
Example 2: At a certain university, the number of students N on
campus at any time on a particular day is a function of the time ¢ after of iﬁiﬁ:
midnight. The domain of the function is {¢t | 0 < ¢ < 24}, where t is
measured in hours. The range of the functionis {N |0 < N < k}, | , , , —
0 6 12 18 24 time
where N is an integer and k£ is the largest number of students on (midnight)

campus at once.
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10.

1.

12,

13.

L CHAPTER1 FUNCTIONS AND MODELS

Example 3: A certain employee is paid $8.00 per hour and works a pay

maximum of 30 hours per week. The number of hours worked is 2407 °
238 1 —o

rounded down to the nearest quarter of an hour. This employee’s 236 + —

gross weekly pay P is a function of the number of hours worked h.

The domain of the function is [0, 30] and the range of the function is ;
{0,2.00,4.00, . . ., 238.00, 240.00}. T 01 035 050 095 29502975 30 hours

. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails

the Vertical Line Test.

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—2, 2] and the range

is [—1,2].

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—3, 2] and the range

is [-3,-2) U[~1,3].

. No, the curve is not the graph of a function since for x = 0, +1, and £2, there are infinitely many points on the curve.

. The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person’s weight

dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30 years saw a gradual

increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet, exercise, health problems.

First, the tub was filled with water to a height of 15 in. Then a person got into the tub, raising the water level to 20 in. At
around 12 minutes, the person stood up in the tub but then immediately sat down. Finally, at around 17 minutes, the person got

out of the tub, and then drained the water.

The water will cool down almost to freezing as the ice melts. Then, when T

the ice has melted, the water will slowly warm up to room temperature.

Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about
19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C, and then A.
C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first. Finally,

B passed C to finish in second place. All three runners completed the race.

(a) The power consumption at 6 AM is 500 MW, which is obtained by reading the value of power P when ¢ = 6 from the

graph. At 6 PM we read the value of P when ¢ = 18, obtaining approximately 730 MW.

(b) The minimum power consumption is determined by finding the time for the lowest point on the graph, ¢ = 4, or 4 AM. The
maximum power consumption corresponds to the highest point on the graph, which occurs just before t = 12, or right
before noon. These times are reasonable, considering the power consumption schedules of most individuals and

businesses.



14.

16.

18.

20.

The summer solstice (the longest day of the year) is

around June 21, and the winter solstice (the shortest day)

is around December 22. (Exchange the dates for the

southern hemisphere.)

Hours of
daylight

| June2l  Dec.22 t

The value of the car decreases fairly rapidly initially, then

somewhat less rapidly.

5 10 15 20 !

(in years)

value

The temperature of the pie would increase rapidly, level

off to oven temperature, decrease rapidly, and then level

off to room temperature.

a

(@) (1)
400

(C) ground
speed

500

miles

per hour

(b)

(d)

SECTION 1.1

15. Of course, this graph depends strongly on the
geographical location!

T

midnight noon 1

17. As the price increases, the amount sold decreases.

amount

0 price

19. Height
of grass

Wed.  Wed. Wed. Wed.

y()

35,000
feet
30 60 1
vertical
velocity
60 1

FOUR WAYS TO REPRESENT AFUNCTION [

11
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21

22,

24,

25.
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(a) N / (b) From the graph, we estimate the number of US cell-phone
200 +——F—F—F—F— 7; subscribers to be about 126 million in 2001 and 207 million
A in 2005.
150 // ;
100 // : :
50 (/ : :
1996 1998 2000I2002 2004I2006 1
(midyear)
(a) T (b) From the graph in part (a), we estimate the temperature at
90+
11:00 AM to be about 81°F.
851
sof T
75
70+
651
S — : ——
0 2 4 6 8 10 12 14 ¢
f(z) =32 —x+2
f(2)=32)°-2+2=12—-2+2=12.
f(=2)=3(-2)* - (-2)+2=12+2+2=16.
fla) =3a*> —a+2
f(—=a) =3(-a)®> — (—a) +2=3a*> + a + 2.
fla+1)=3a+1)?—(a+1)+2=3a*+2a+1)—a—1+2=3a>+6a+3—a+1=3a>+5a+4.

2f(a) =2 f(a) = 2(3a* — a +2) = 6a® — 2a + 4.
f(2a) = 3(2a)* — (2a) + 2 = 3(4a®) — 2a + 2 = 12a® — 2a + 2.
f(a®) =3(a*)? - (a®) +2=3(a*) —a® + 2 = 3a* — a® + 2.
[f(a)]? = [3a” —a—|—2]2 = (3a® —a+2)(3a®> —a+2)
= 9a* — 3a® + 6a® — 3a® + a® — 2a + 6a® — 2a + 4 = 9a* — 64> + 13a® — 4da + 4.

fla+h)=3(a+h)>—(a+h)+2=23(a*+2ah+h?)—a—h+2=23a>+6ah+3h*>—a—h+2.

A spherical balloon with radius 7 + 1 has volume V (r + 1) = 37 (r +1)* = 37(r® + 3r® + 3r + 1). We wish to find the
amount of air needed to inflate the balloon from a radius of » to r + 1. Hence, we need to find the difference

V(ir+1)=V(r)=3rn(r®+3r* +3r+1) — 37r® = 37(3r® + 3r + 1).

f(x)=4+3x—2%,50 f(3+h)=4+3B8+h)—(B+h)? =4+9+3h—(9+6h+h?) =4—3h—h?

fB+h)—f(B) (4—3n—h?)—4 h(-3-—h)
and h = - = " = -3 —h.




26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

SECTION 1.1
f(z) = 2*, 50 f(a+ h) = (a + h)® = a® + 3a®h + 3ah® + h®,
_ 3 2 2 13y _ 3 2 2
andf(a—i—h) f(a):(a +3a*h 4+ 3ah* + h%) —a :h(3a +3ah+h):3a2+3ah+h2.
h h h
11 a-s
f@)—fla) & a _ _xa _ _a4—7% :—1(x—a):_i
T—a x—a z—a zalx—a) za(z—a) azx
r+3 z+3—-2(x+1)
fl@) ) _z4+1 = _ x4+ 1 _z+3-2-2
x—1 z—1 x—1 (r+1)(x—1)
—x+1 —(x—1) 1

T @+)(z—-1) (+D@E-1)  z+1

f(z) = (x +4)/(2® — 9) is defined for all x except when0 =2 -9 < 0= (z+3)(z —3)
domainis {x € R |z # —3,3} = (—o0, —3) U (—3,3) U (3, 0).

f(z) = (22 — 5)/(2* + = — 6) is defined for all z except when 0 = 2> +2 -6 < 0= (z+3)(z —2)

x = —3or2,sothedomainis {zx € R |z # —3,2} = (—o0, —3) U (—3,2) U (2, 00).

=
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x = —3 or 3, so the

-

f(t) = /2t — 1 is defined for all real numbres. In fact {/p(t), where p(t) is a polynomial, is defined for all real numbers.

Thus, the domain is R, or (—o0, 00).

g(t) =v3—t—+/2+tisdefinedwhen3 —¢t>0 < ¢t<3and2+t>0 <

—2<t<3,0r[-2,3].

h(z) =1 /+v/x% — Bz is defined when 2° — 5z > 0 &

t > —2. Thus, the domain is

x(x — 5) > 0. Note that 2% — 5x # 0 since that would result in

division by zero. The expression z(x — 5) is positive if z < 0 or = > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (—oo, 0) U (5, 00).

h(z) = v4 — 22. Now y = /4 — 22
the graph is the top half of a circle of radius 2 with center at the origin. The domain

is{z|4—-2*>>0} ={x|4>2"} ={z|2> |z} = [-2,2]. From the graph,

2

= yP=4-2> & 2*+y*=450

the range is 0 < y < 2, or [0, 2].

f(x) =2 — 0.4z is defined for all real numbers, so the domain is R, 4
2
or (—o00, 00). The graph of f is a line with slope —0.4 and y-intercept 2.
0

F(z) = 2* — 22 + 1 = (x — 1) is defined for all real numbers, so the

domain is R, or (—o0, 00). The graph of F' is a parabola with vertex (1, 0).
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37. f(t) = 2t + ¢? is defined for all real numbers, so the domain is R, or Y
(—00, 00). The graph of f is a parabola opening upward since the
coefficient of t? is positive. To find the t-intercepts, let yy = 0 and solve

fort. 0=2t+t>=t2+t) = t=0ort=—2. Thet-coordinate of

the vertex is halfway between the ¢-intercepts, that is, at £ = —1. Since 5 4 :

f(=1) =2(=1) + (-1)> = =24+ 1 = —1, the vertex is (—1, —1).
38. H(t) = 42__t: _ 0 +2t)_(2t_ 2 ,sofort # 2, H(t) = 2 + t. The domain Y

is {t | t # 2}. So the graph of H is the same as the graph of the function @9

f(t) =t + 2 (aline) except for the hole at (2, 4). /2

/2 0 1

39. g(z) = vz — 5 is defined when = — 5 > 0 or = > 5, so the domain is [5, 00). y

Sincey=+vz -5 = y>=2-5 = x=uy>+5, wesee thatgis the /

top half of a parabola. 0 5 X

2z +1 if 2241>0

40. F(x) =22+ 1| = y
—(2z+1) if2c4+1<1
22 + 1 if z>—-1 |
| —2e-1 ifz<—i
i
2
y
4
2
0

=

The domain is R, or (—o0, 00).

T if x>0
M. G(x):M.SinCCM: ~ ,wehave
T —x ifz<0
. 4 .
33:;_&7 if x>0 ?m if x>0 4 ifz>0
pu— p— pu— x
G(=) 3r—x . 2r . {2 if <0
. if <0 - if <0

Note that G is not defined for © = 0. The domain is (—o0, 0) U (0, 00).

—x—z ifa;<0: 2z ifz<0’

T —x if x>0 0 if >0
42. g(z) = |z| —x =

The domain is R, or (—o0, 00).
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. (o) z+2 ifx<0 ,
. f(x) =
1l—x ifx>0
0,2)
n 1 0,1)
The domain is R. / N
a 1\
4. f(x) {3-%95 sz \y
. f(x) =
20 —5 ifx>2 3
The domain is R. 2.2)
0 J X
2,-1)
. f(2) r+2 ifx< -1 v
. f(x) =
x? if z>—1

Note that for z = —1, both = + 2 and z? are equal to 1. The domain is R.

r+9 if x< -3

46. f(z) =< —2z if |z[<3 Y
. (=3.6)
—6 if >3
Note that for x = —3, both = 4+ 9 and —2x are equal to 6; and for z = 3, both —2x /_9 0 >
and —6 are equal to —6. The domain is R.
(3,-6)

Y2 — Y1

and an equation of the line
Xro — T

47. Recall that the slope m of a line between the two points (x1,y1) and (z2,y2) ism =

connecting those two points is y — y1 = m(z — x1). The slope of the line segment joining the points (1, —3) and (5, 7) is

75_7(_13) = g, s0 an equation is y — (—3) = 2(z — 1). The functionis f(z) = 32 — 5,1 <z <5,
. S . . —10-10 .
48. The slope of the line segment joining the points (—5, 10) and (7, —10) is T—(=5) = —g.soan equation is

y — 10 = —3[z — (—5)]. The function is f(z) = -2z + 3, -5 <z < 7.

49. We need to solve the given equation fory. z+(y—1°=0 & (y—-1)’=-2 & y—-1l=+/—2 &<
y = 1 £ +/—=z. The expression with the positive radical represents the top half of the parabola, and the one with the negative

radical represents the bottom half. Hence, we want f(z) = 1 — /—x. Note that the domain is < 0.
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50.

51.

52.

53.

54

55.

56.

57.
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P4+ y—2°=4 & (y—20=4-2> & y—-2=4+V/4-22 & y=24+/4— 22 The top halfis given by
the function f(z) =2+ v4 — 22, -2 <z < 2.

For 0 < x < 3, the graph is the line with slope —1 and y-intercept 3, that is, y = —x 4 3. For 3 < x < 5, the graph is the line
with slope 2 passing through (3, 0); that is, y — 0 = 2(x — 3), or y = 2z — 6. So the function is

—rx+4+3 if0<z<3
f(@) = .
20 —6 if3<x<5h

For —4 < z < —2, the graph is the line with slope —32 passing through (-2, 0); thatis, y — 0 = —2[z — (—2)], or

y=— %x — 3. For —2 < x < 2, the graph is the top half of the circle with center (0, 0) and radius 2. An equation of the circle
is 22 4+ y? = 4, s0 an equation of the top half is y = /4 — 22. For 2 < z < 4, the graph is the line with slope % passing
through (2,0); that is, y — 0 = £(z — 2), or y = 22 — 3. So the function is

—3z-3 if 4<z<-2

fle)y=<vd—2a? if 2<x<2

3p—-3 if 2<z<4

Let the length and width of the rectangle be L and W. Then the perimeter is 2L + 2W = 20 and the area is A = LW
20 — 2L

Solving the first equation for W in terms of L gives W = =10 — L. Thus, A(L) = L(10 — L) = 10L — L*. Since

lengths are positive, the domain of A is 0 < L < 10. If we further restrict L to be larger than W, then 5 < L < 10 would be

the domain.

Let the length and width of the rectangle be L and W. Then the area is LW = 16, so that W = 16/ L. The perimeter is
P=2L+2W,so P(L) =2L +2(16/L) = 2L + 32/ L, and the domain of P is L > 0, since lengths must be positive

quantities. If we further restrict L to be larger than W, then L > 4 would be the domain.

Let the length of a side of the equilateral triangle be . Then by the Pythagorean Theorem, the height y of the triangle satisfies

2

y2+(%x)2:x2,sothaty2::c— 2=3 V3

12% = 22° and y = L3 x. Using the formula for the area A of a triangle,

A = 1 (base)(height), we obtain A(z) = 1 (z) (ﬁm) = ¥322 with domain z > 0.

1
2 2 4
Let the volume of the cube be V' and the length of an edge be L. Then V = L so L = {/V, and the surface area is

2
S(V) = 6(W) — 6V2/, with domain V > 0.
Let each side of the base of the box have length z, and let the height of the box be h. Since the volume is 2, we know that
2 = ha?, so that h = 2/x?, and the surface area is S = 2® + 4xh. Thus, S(z) = 2* + 42(2/2°) = 2% + (8/x), with

domain z > 0.
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2
58. The area of the window is A = xh + %ﬂ' (%;17) = zh+ % , Where h is the height of the rectangular portion of the window.

The perimeteris P = 2h +z + 372 =30 < 2h=30—xz— 27z < h = 3(60— 2z — mz). Thus,

— 2z — ? 4
A(x):xu—i-ﬂ:15x—1x2—§x2+§x2:15x—éx2—lx2:1533—302(71-;— )

4 8 2 8 8

Since the lengths = and h must be positive quantities, we have z > 0 and h > 0. For h > 0, we have 2h >0 <

3O—x—%7rac>0 & 60>2x+7mxr & :1:<ﬂ.Hence,thedomainofAisO<:1:< 60 .
247 247

59. The height of the box is = and the length and width are L = 20 — 22, W = 12 — 2z. Then V = LWz and so
V(z) = (20 — 22)(12 — 2)(x) = 4(10 — 2)(6 — 2)(z) = 42(60 — 16z + 2°) = 42> — 642 + 240z.
The sides L, W, and x must be positive. Thus, L >0 < 20—2z >0 < z<10;

W>0 & 12—2x>0 < < 6;andz > 0. Combining these restrictions gives us the domain 0 < = < 6.

60. For the first 1200 kWh, E(x) = 10 + 0.06z. Ej Cost ($)
138 +
For usage over 1200 kWh, the cost is
E(x) =10+ 0.06(1200) + 0.07(x — 1200) = 82 + 0.07(z — 1200).
Thus, 827 (1200,82)
10 4 0.06x if 0 <ax <1200
824 0.07(z — 1200) if x> 1200
101
0 1200 2000 x
(kWh)
61. (a) R(%) (b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.
154 —_ On $26,000, tax is assessed on $16,000, and
107 — 10%($10,000) + 15%($6000) = $1000 + $900 = $1900.
0 10,300 20,600 1 (in dollars)
(c) As in part (b), there is $1000 tax assessed on $20,000 of income, so T (in dollars)
the graph of T’ is a line segment from (10,000, 0) to (20,000, 1000). 2500 +
The tax on $30,000 is $2500, so the graph of T" for x > 20,000 is 100!
the ray with initial point (20,000, 1000) that passes through v ' ,
0 10,000 20,000 30,000 / (in dollars)

(30,000, 2500).
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62. One example is the amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour.

Another example is the amount paid by a student in tuition fees, if the fees vary according to the number of credits for which

the student has registered.

63. f is an odd function because its graph is symmetric about the origin. ¢ is an even function because its graph is symmetric with

respect to the y-axis.

64. f is not an even function since it is not symmetric with respect to the y-axis. f is not an odd function since it is not symmetric
about the origin. Hence, f is neither even nor odd. g is an even function because its graph is symmetric with respect to the
9/-axis.

65. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,

the point (—5, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (—5, —3) must also be on its graph.

66. (a) If f is even, we get the rest of the graph by reflecting (b) If f is odd, we get the rest of the graph by rotating
about the y-axis. 180° about the origin.
y
)7
0
X
0 X
6. f(2) = =~ 6. /() = ——
' o241 ' t+ 17
)= = T (=2) @’
(=) (—z)2+1 22+1 2 +1 f(@). fl=z) = (—2)i+1 ai+1 = f(2).
So f is an odd function. So f is an even function.

—2 ‘ ’ 2 -2 ; ; 2
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T —T x

69. f(m):w_’_l,sof(—x):_m_’_l:m_l. 70. f(z) = x |x|.
Since this is neither f(x) nor — f(x), the function f is f(=2) = (=2) |-2| = (-2) |2 = —(z|z])
neither even nor odd. =—f(@)
3 So f is an odd function.

' ™
/ T h

-3 | } } 3 [
T )

M. f(z) =14 32> — z*. 72. f(z) = 1+ 32> — 25, s0

f(=z) = 143(=2)* — ()" = 14+32° —a* = f(2). f(=z) = 1+ 3(~2)% — (—2)° = 1+ 3(—2%) — (—2°)
So f is an even function. — 1343 145
4

Since this is neither f(z) nor — f(x), the function f is

EEER | N

2{\/ o

73. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(x). Now
(f +9)(—z) = f(—z) + g(—=z) = f(z) + g(x) = (f + g)(x), so f + g is an even function.
(ii) If f and g are both odd functions, then f(—z) = — f(z) and g(—z) = —g(z). Now
(f+9)(=2) = f(=2) + 9(—x) = = f(2) + [-9(2)] = —[f(z) + 9(z)] = =(f + 9)(@), s0 f + g is an odd function.
(iii) If f is an even function and g is an odd function, then (f +g)(—z) = f(—x) + g(—z) = f(z) +[—g(z)] = f(z) — g(),
which is not (f + g)(z) nor —(f 4 g)(x), so f + g is neither even nor odd. (Exception: if f is the zero function, then
£+ g will be odd. If g is the zero function, then f + g will be even.)
74. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(x). Now
(f9)(—x) = f(=z)9(—z) = f(x)g(x) = (fg)(x), s0 fg is an even function.
(ii) If f and g are both odd functions, then f(—xz) = —f(x) and g(—z) = —g(z). Now
(f9)(=z) = f(=z)g(—x) = [-f(@)][-9(z)] = f(z)g(z) = (fg)(x), so fg is an even function.
(iii) If f is an even function and ¢ is an odd function, then

(f9) (=) = f(=z)9(—x) = f(2)[-9(z)] = —[f(z)g(z)] = —(fg)(x), 0 fg is an odd function.
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1.2 Mathematical Models: A Catalog of Essential Functions

1. (a) f(x) = log, x is a logarithmic function.

(b) g(z) = ¥z is a root function with n = 4.

3

T,z is2 rational function because it is a ratio of polynomials.
—x

(©) h(z) =
(d) u(t) = 1 — 1.1t + 2.54¢? is a polynomial of degree 2 (also called a quadratic function).
(e) v(t) = 5" is an exponential function.
(f) w(#) = sin @ cos®@ is a trigonometric function.
2. (a) y = 7" is an exponential function (notice that x is the exponent).
(b) y = «™ is a power function (notice that x is the base).
(c) y = 2%(2 — x) = 22% — 2° is a polynomial of degree 5.
(d) y = tant — cost is a trigonometric function.
(e) y = s/(1 + s) is a rational function because it is a ratio of polynomials.
(f) y = Va3 —1/(1 + ¢/x) is an algebraic function because it involves polynomials and roots of polynomials.
3. We notice from the figure that g and h are even functions (symmetric with respect to the y-axis) and that f is an odd function
(symmetric with respect to the origin). So (b) [y = acs] must be f. Since g is flatter than h near the origin, we must have
() [y = xs} matched with g and (a) [y = x2] matched with h.
4. (a) The graph of y = 3x is a line (choice 7).
(b) y = 3% is an exponential function (choice f).
(c) y = «* is an odd polynomial function or power function (choice F).

dy=Jx= z'/? is a root function (choice g).

5. (a) An equation for the family of linear functions with slope 2 7 b=-1

isy = f(x) = 2x 4+ b, where b is the y-intercept.
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(b) f(2) = 1 means that the point (2, 1) is on the graph of f. We can use the
point-slope form of a line to obtain an equation for the family of linear
functions through the point (2,1). y — 1 = m(x — 2), which is equivalent

to y = ma + (1 — 2m) in slope-intercept form.

N

m=1

=

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = max + (1 — 2m),

becomes y = 2z — 3. It is the only function that belongs to both families.

6. All members of the family of linear functions f(z) = 1 4+ m(x + 3) have

graphs that are lines passing through the point (—3, 1).

y

\//

7. All members of the family of linear functions f(z) = ¢ — x have graphs

that are lines with slope —1. The y-intercept is c.

c
c

7

y

N
N

=2

N

8. The vertex of the parabola on the left is (3, 0), so an equation is y = a(x — 3)® + 0. Since the point (4, 2) is on the

parabola, we’ll substitute 4 for z and 2 for y to find a. 2 = a(4 — 3)?

The y-intercept of the parabola on the right is (0, 1), so an equation is y = ax® + bz + 1. Since the points (—2, 2) and

(1, —2.5) are on the parabola, we’ll substitute —2 for x and 2 for y as well as 1 for 2 and —2.5 for y to obtain two equations

with the unknowns a and b.

(-=2,2): 2=4a—2b+1 = 4da—2b=1 1)

(1,-25): —25=a+b+1 = a+b=-35 (2

= a = 2,s0anequation is f(z) = 2(z — 3).

2-2)+ @) givesusba=—-6 = a=-—1.From@2),—-14+b=-35 = b= —2.5,s0an equation

isg(z) = —2? — 2.52 + 1.

9. Since f(—1) = f(0) = f(2) = 0, f has zeros of —1, 0, and 2, so an equation for f is f(z) = a[x — (—1)](z — 0)(z — 2),

or f(z) = ax(x + 1)(x — 2). Because f(1) = 6, we’ll substitute 1 for z and 6 for f(z)
6 = a(1)(2)(~1)

=

—2a4=6 = a= —3,so0anequation for fis f(z) = —3z(z + 1)(z — 2).

21
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10. (a) For T" = 0.02t + 8.50, the slope is 0.02, which means that the average surface temperature of the world is increasing at a

rate of 0.02 °C per year. The T-intercept is 8.50, which represents the average surface temperature in °C in the year 1900.
(b) ¢ = 2100 — 1900 = 200 = T = 0.02(200) + 8.50 = 12.50°C

M. (a) D =200,s0 ¢ =0.0417D(a + 1) = 0.0417(200)(a + 1) = 8.34a + 8.34. The slope is 8.34, which represents the

change in mg of the dosage for a child for each change of 1 year in age.

(b) For a newborn, a = 0, so ¢ = 8.34 mg.

12. (a) y (b) The slope of —4 means that for each increase of 1 dollar for a

2001 rental space, the number of spaces rented decreases by 4. The

y-intercept of 200 is the number of spaces that would be occupied

1001
if there were no charge for each space. The z-intercept of 50 is the

smallest rental fee that results in no spaces rented.

0 10 20 30 40 50 60 *

13. (a) F (b) The slope of % means that F' increases % degrees for each increase
e of 1°C. (Equivalently, F’ increases by 9 when C' increases by 5
F=3C+32 and F’ decreases by 9 when C' decreases by 5.) The F-intercept of
> 32 is the Fahrenheit temperature corresponding to a Celsius
(40,-40) ¢ temperature of 0.
14. (a) Let d = distance traveled (in miles) and ¢t = time elapsed (in hours). At (b) d
=0,d=0and at ¢t = 50 minutes = 50 - &5 = 2 h, d = 40. Thus we %61

40 -0

have two points: (0,0) and (3,40), so m = 7= 48 and so d = 48t.

5 _
6

(c) The slope is 48 and represents the car’s speed in mi/h.

15. (a) Using N in place of  and 7T in place of y, we find the slope to be ]i];z : 7]\;11 = 1?2 : I(1)3 = % = é So a linear

equationis T —80 = (N —173) & T—-80=iN—-12 & T=iN+3 [ =5116].

1 1 307
6 6 6 6 6
(b) The slope of % means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket

chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1°F.

(¢) When N = 150, the temperature is given approximately by 7' = £(150) + 23 = 76.16 °F ~ 76 °F.
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16. (a) Let = denote the number of chairs produced in one day and y the associated y
cost. Using the points (100, 2200) and (300, 4800), we get the slope 0007

4000 T
45552250 = 280 — 13. Soy — 2200 = 13(z — 100) & so00l

Yy = 1315 + 900 2000:

(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars) 1000 1

of producing each additional chair. 5 1 (:)0 + 2(:) 5 : 3(:) T

(c) The y-intercept is 900 and it represents the fixed daily costs of operating

the factory.

change in pressure ~ 4.34
10 feet change in depth 10

17. (a) We are given = 0.434. Using P for pressure and d for depth with the point

(d, P) = (0,15), we have the slope-intercept form of the line, P = 0.434d + 15.

(b) When P = 100, then 100 = 0.434d + 15 < 0.434d =85 < d = 5% ~ 195.85 feet. Thus, the pressure is

0.434
100 1b/in? at a depth of approximately 196 feet.

. . . Cy—Ci 460 — 380 80 1
18. 1 f 1 f find the sl = =— ==
8. (a) Using d in place of = and C' in place of y, we find the slope to be A 800 —480 — 320 — 1

So a linear equation is C' — 460 = % (d —800) <« C —460=1d—200 < C = 1d+ 260.

(b) Letting d = 1500 we get C' = % (1500) + 260 = 635.
The cost of driving 1500 miles is $635.

(©) 1 The slope of the line represents the cost per mile, $0.25.
1000 1
500:/
0 +—t+—+ IS(!)O! +—+ IIO!OO! x

(d) The y-intercept represents the fixed cost, $260.

(e) A linear function gives a suitable model in this situation because you have fixed monthly costs such as insurance and car
payments, as well as costs that increase as you drive, such as gasoline, oil, and tires, and the cost of these for each

additional mile driven is a constant.

19. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

f(x) = acos(bx) + ¢ seems appropriate.
(b) The data appear to be decreasing in a linear fashion. A model of the form f(x) = ma + b seems appropriate.
20. (a) The data appear to be increasing exponentially. A model of the form f(x) = a-b” or f(z) = a - b” + ¢ seems appropriate.

(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of the form f(z) = a/x seems

appropriate.
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Exercises 21 —24: Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is left

to the reader.

21. (a) s (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain
8.2—-14.1
60,000 — 4000
y ~ —0.000105357x + 14.521429.

y—14.1 = (2 — 4000) or, equivalently,

p— 61,000

A linear model does seem appropriate.

61,000

(c) Using a computing device, we obtain the least squares regression line y = —0.0000997855x + 13.950764.

The following commands and screens illustrate how to find the least squares regression line on a TI-84 Plus.

Enter the data into list one (L1) and list two (L2). Press |STAT||1] to enter the editor.

L] Lz L 1 L1 Lz Lz z
yooo | 444 | o izomn | 12.E
goon | 1z igomn | 12
goon | 1%y zooon | 12y
1z000 | 1ZE o000 | 105
Labnn | 5y ghnnn | g3
o000 (10 | || CZIl_. h
L1 ={4AER, ERRA. 5. Lziim =

Find the regession line and store it in Y1. Press [2nd][QUIT][STAT][»][4][VARS][»][1][1] [ENTER].

LinRegdax+bs Y10 Linkeg AFE Plokz Flok

g=gx+h ~HY1E -9, 97E545618
a=-9,973545E -5 TO93E —Sn+13. 9587
b=13%. 95875402 Eaﬁ??EES

W=

M=

sMy=
[ | M=

Note from the last figure that the regression line has been stored in Y; and that Plotl has been turned on (Plotl is

highlighted). You can turn on Plotl from the Y= menu by placing the cursor on Plotl and pressing [ ENTER]| or by

pressing [2nd|[STAT PLOT|[1][ENTER] .

Flatz Flotz

EHEHDEEHH E‘JFF

[ L1 Lz = Jpel B L Jh
ZiPlotz Of f HH: HIH |7

[ L1 Lz = H#listily
JiPlot3 0ff V1istilz

L=Li Lz = Mark: B +
F4LPlots0fF

Now press |ZOOM 9] to produce a graph of the data and the regression

line. Note that choice 9 of the ZOOM menu automatically selects a window

that displays all of the data.

(d) When = = 25,000, y ~ 11.456; or about 11.5 per 100 population.
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(e) When x = 80,000, y ~ 5.968; or about a 6% chance.

(f) When = = 200,000, y is negative, so the model does not apply.

22. (a) 230 (chirps/min) (b) 270 (chirps/min)
45 ) 95 (°F) 45 105 (°F)
Using a computing device, we obtain the least squares
regression line y = 4.856x — 220.96.
(¢) When 2 = 100°F, y = 264.7 ~ 265 chirps/min.
23. (a) A linear model seems appropriate over the time interval (b) Using a computing device, we obtain the least squares
considered. regression line y ~ 0.027t — 47.758.
6.0 height (m) — height (m)
e 6.0 T
5.5 | Il %
5.5 T
5.0 !
5.0 >
4.5 >
SmEA, 45 2o
4.0 > o e
. 4.0 *
3.5 I /
¥ 3.5
1896 1912 1928 1944 1960 1976 1992 1 t / |
2000 1896 1912 1928 1944 1960 1976 1992 fyear
2000
(c) When ¢t = 2004, y = 6.35, which is higher than the actual winning height of 5.95 m.
(d) No, since the times appear to be leveling off and getting further away from the model.
24. By looking at the scatter plot of the data, we rule out 35 (%)
the power and logarithmic models.
We try various models: 1950 2005 (year)
Linear y = —0.430 545 454 52 + 870.183 636 4 Scatter plot
Quadratic: y = 0.004 893939 42® — 19.786 075 76 + 20 006.954 85
Cubic: y = —0.000073193472% + 0.439114 219 12> — 878.429 871 8x + 585 960.983
Quartic: y = 0.000 007 902 097 9z* — 0.062 578 787 9> 4 185.842 283 8% — 245 290.9304x + 121409 472.7
Exponential:  y = 2.6182302 x 10%'(0.976 789 309 4)*

[continued]
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35 (%) 35 (%) 35 (%)

1950 0 2005 (year) 1950 0 2005 (year) 1950 0 2005 (year)

Linear model Quadratic model Cubic model
35 (%) 35 (%)

After examining the graphs of these
models, we see that all the models
are good and the quartic model is

the best.

2005 (year)

2005 (year)

Quartic model Exponential model

Using this model, we obtain estimates 13.6% and 10.2% for the rural percentages in 1988 and 2002 respectively.

25, 6300 (millions) Using a computing device, we obtain the cubic function

y = ax® 4+ bx? 4 cx + d with a = 0.0012937,
b= —7.06142, c = 12,823, and d = —7,743,770. When
x = 1925, y ~ 1914 (million).

1890

2010
0 (year)

26. (a) T = 1.000431 227 *-499528750

(b) The power model in part (a) is approximately 7' = d*-°. Squaring both sides gives us 72 = d*, so the model matches

Kepler’s Third Law, 7% = kd®.

1.3 New Functions from Old Functions

1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f(x) + 3.
(b) If the graph of f is shifted 3 units downward, its equation becomes y = f(x) — 3.
(c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(z — 3).
(d) If the graph of f is shifted 3 units to the left, its equation becomes y = f(x + 3).
(e) If the graph of f is reflected about the x-axis, its equation becomes y = — f(z).
(f) If the graph of f is reflected about the y-axis, its equation becomes y = f(—x).
(g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3 ().

(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = 3 f ().
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2. (a) To obtain the graph of y = f(x) + 8 from the graph of y = f(x), shift the graph 8 units upward.

(b) To obtain the graph of y = f(z + 8) from the graph of y = f(z), shift the graph 8 units to the left.

(¢) To obtain the graph of y = 8 f(x) from the graph of y = f(z), stretch the graph vertically by a factor of 8.

(d) To obtain the graph of y = f(8z) from the graph of y = f(z), shrink the graph horizontally by a factor of 8.

(e) To obtain the graph of y = — f(z) — 1 from the graph of y = f(x), first reflect the graph about the z-axis, and then shift it

1 unit downward.

(f) To obtain the graph of y = 8f (%) from the graph of y = f(x), stretch the graph horizontally and vertically by a factor

of 8.

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y = f(x — 4).

(b) (graph 1) The graph of f is shifted 3 units upward and has equation y = f(x) + 3.

(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = % f(x).

(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the z-axis. Its equation is y = — f(x + 4).

(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

y=2f(x +6).

4. (a) To graph y = f(x) — 2, we shift the graph of f, 2

units downward.The point (1, 2) on the graph of f
corresponds to the point (1,2 — 2) = (1, 0).

¥

1
0 X

(c) To graph y = —2f(x), we reflect the graph about the

x-axis and stretch the graph vertically by a factor of 2.

The point (1, 2) on the graph of f corresponds to the
point (1, —2-2) = (1, —4).
y

1
0 1

N/

=Y

(b) To graph y = f(x — 2), we shift the graph of f,
2 units to the right. The point (1, 2) on the graph of f
corresponds to the point (1 + 2,2) = (3, 2).

y

(d) To graph y = f(3x) + 1, we stretch the graph
horizontally by a factor of 3 and shift it 1 unit upward.
The point (1, 2) on the graph of f corresponds to the
point (1-3,2+1) = (3,3).

y
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5. (a) To graph y = f(2x) we shrink the graph of f
horizontally by a factor of 2.

The point (4, —1) on the graph of f corresponds to the
point (3 -4, —1) = (2, —1).

(c) To graph y = f(—x) we reflect the graph of f about

the y-axis.

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1) = (—4,—1).

(b) To graphy = f (%x) we stretch the graph of f
horizontally by a factor of 2.

0 } 2 X

The point (4, —1) on the graph of f corresponds to the
point (2 -4, —1) = (8, —1).

(d) To graph y = — f(—x) we reflect the graph of f about

the y-axis, then about the x-axis.

\%1){

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1-—1)=(—4,1).

6. The graph of y = f(x) = v/3z — x2 has been shifted 2 units to the right and stretched vertically by a factor of 2.

Thus, a function describing the graph is

y=2f(x—2)=23@x—-2)— (z—2)>=232—6— (22 —4do+4) =2v/—22+ 7z — 10

7. The graph of y = f(x) = v/3x — 22 has been shifted 4 units to the left, reflected about the z-axis, and shifted downward

1 unit. Thus, a function describing the graph is

y= -1
——
reflect

about x-axis

This function can be written as

f (z+4) -1
N—— SN——
shift shift

4 units left 1 unit left

y=—flz+4)—1=—B@+4) —(r+4)2-1=—Br+12— (22 +8x+16) — 1= —/—22 — bz —4 -1

8. (a) The graph of y = 2 sin = can be obtained from the graph

of y = sin x by stretching it vertically by a factor of 2.

y

2_-
_z 37
2 2

(b) The graph of y = 1 + /x can be obtained from
the graph of y = /7 by shifting it upward 1 unit.

y

(1’2)




SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

9. y = —z*: Start with the graph of y = 2® and reflect about the y y
x-axis. Note: Reflecting about the y-axis gives the same result
y=x' y=-x'
since substituting —x for z givesus y = (—xz)* = —2®.
0 X 0 X

10. y = 1 — 2? = —2? + 1: Start with the graph of y = 2%, reflect about the z-axis, and then shift 1 unit upward.

y y y
y=—x? y=1—x*
0 / \
0 X X 0 x
y=x
1. y = (z + 1)?: Start with the graph of y = y 7
and shift 1 unit to the left. /1
0 X ,rl 0 X
y=x Y=+

12. y =2° — 4z +3 = (2% — 4z +4) — 1 = (x — 2)? — 1: Start with the graph of y = 2, shift 2 units to the right,

and then shift 1 unit downward.

\
LGNS

y=x y=(x—2) y=@x=27-1

(=}
=
=}

[°F
=

13. y = 1 + 2 cos x: Start with the graph of y = cos z, stretch vertically by a factor of 2, and then shift 1 unit upward.

y y Y
) 3
y =cos x y=2cosx y=2cosx + 1

29
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14. y = 4 sin 3x: Start with the graph of y = sin x, compress horizontally by a factor of 3, and then stretch vertically by a
factor of 4.

y=sinx 7 y=sin3x 7 y=4sin3x 7

s appginns A
s pargian HIHIHTY

15. y = sin(x/2): Start with the graph of y = sin « and stretch horizontally by a factor of 2.

—_
—_

y y
y=sinx y=sin(x/2)

y y

x=4
_1 _ 1
YT Y=x—a
0 0
x X
y y
17. y = Vo + 3: Start with the graph of y=1x y=Jx+3
y = /7 and shift 3 units to the left. /
0 X -3 0 X

18. y = |z| — 2: Start with the graph of y = |x| and shift 2 units downward.

y y
y=lx|
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19. y = (2” + 8z) = 2(2® + 82 + 16) — 8 = (= + 4)® — 8: Start with the graph of y = z*, compress vertically by a

factor of 2, shift 4 units to the left, and then shift 8 units downward.

y y y/ y
8
0 X 0 X —4 |0 X _Z 0 X
1-8
— 2 _ 12 _ 1 2 _ 1 2_
y=x y=75X y=35x+4) y=75(x+4)7-38

20. y = 1 + /x — 1: Start with the graph of y = ¥/, shift 1 unit to the right, and then shift 1 unit upward.

y y

1+
y:{/; y=3x—1 /
: X

0 X 0/1 X 0 1
I y=1+3Yx—1

21. y = |z — 2|: Start with the graph of y = |z| and shift 2 units to the right.

y
y \
) 2

1
y=tan(x—7) y=7

y=tanx
y

37

=37 37 1 =T 37  _Im
/ 2 4 - 4 - 4

x=-T y=2I ,=1%
4 - 4 7 4

SIE}

x=— x=

Iy

23. y = |/z — 1|: Start with the graph of y = /x, shift it 1 unit downward, and then reflect the portion of the graph below the

x-axis about the z-axis.

y

y=y/x A J
y=+vx—1
e O
0 > \/
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24. y = |cos wx|: Start with the graph of y = cos z, shrink it horizontally by a factor of 7, and reflect all the parts of the graph

below the x-axis about the x-axis.
y y y

y=CO0s X Yy =cos X y=|cos x|

NANNDNL ANV
;T x 01 \1/ 2 x 012 x

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30°N curve in Figure 9 on June 21) is

14 — 12 = 2. So the function is L(t) = 12 4 2sin[ 2 (¢t — 80)]. March 31 is the 90th day of the year, so the model gives

L(90) ~ 12.34 h. The daylight time (5:51 AM to 6:18 PM) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 1245—12:32 ~ 0.009, less than 1%.

26. Using a sine function to model the brightness of Delta Cephei as a function of time, we take its period to be 5.4 days, its
amplitude to be 0.35 (on the scale of magnitude), and its average magnitude to be 4.0. If we take ¢ = 0 at a time of average
brightness, then the magnitude (brightness) as a function of time ¢ in days can be modeled by the formula
M(t) = 4.0 + 0.35sin(£5t).

27. (a) To obtain y = f(]z|), the portion of the graph of y = f(z) to the right of the y-axis is reflected about the y-axis.

(b) y = sin |z| © y=+/lz]

y=sin |x]|
N\ /,

N

y =4l

28. The most important features of the given graph are the z-intercepts and the maximum y

and minimum points. The graph of y = 1/ f(x) has vertical asymptotes at the z-values

where there are z-intercepts on the graph of y = f (). The maximum of 1 on the graph x
of y = f(z) corresponds to a minimum of 1/1 = 1 ony = 1/ f(«). Similarly, the
minimum on the graph of y = f(x) corresponds to a maximum on the graph of y

y = 1/f(x). As the values of y get large (positively or negatively) on the graph of \j k

y = f(x), the values of y get close to zero on the graph of y = 1/ f(x). \ x

29. f(z) = 2® +22% g(z) =32° —1. D =R forboth f and g.
@ (f+g9)(x)=@>+22%) + B2 —1) =245z -1, D=R.
®) (f—9)(zx)=(2*+22%) — (32> —1) =2> 2 +1, D=R.

© (fg)(z) = (2 +22%) (322 — 1) = 32° + 62* —2® —22°, D=R.

(d) (g)(f)— %, D= {x|x#i%}since3x2—1;&0.
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fl@)=v3—u, D= (-00,3]; g(z) =+v2*—1, D= (~o00,~1JU[L,00).
@ (f+9)(x)=v3—x++22 -1, D = (—o0,—1] U[1, 3], which is the intersection of the domains of f and g.
) (f—9)(z) =v3-2z—V22 -1, D= (-o00, -1 U[L,3].
© (fg)(x) =V3—x-va2 -1, D = (—o0, —1JU[L,3].

(d) <§) () == 32_ ml’ D = (—o0,—1) U (1, 3]. We must exclude = = +1 since these values would make g undefined.
2 —

fl@)=2>-1, D=R; g(z)=2z+1, D=R.

@ (fog)(z)=flg(x) = fRr+1) =22+ 1)> — 1= (42® + 4z +1) — 1 = 42® + 4o, D =R.

®) (go f)(@) =g(f(x)) =g(x*-1)=2(z*-1)+1=(22*-2)+1=22° -1, D=R.

© (fof))=f(f(z) = fla®~1) = (- 1)* ~1= (" ~ 22" +1) - 1=2" ~ 22>, D=R

() (gog)(z) =g(g(x) =gz +1) =22z +1)+1=(4x+2)+1 =4z +3, D=R.

f(zx)=z—2; g(x) =22 +3x+4. D =Rforboth f and g, and hence for their composites.

@) (fog)(z)=flg(z)) = f(x* +3z+4) = (2* + 3z +4) —2=2" + 3z + 2.

®) (go @) =g(f(x) =gz —2)=(r—2)°+3(x—-2)+4=2"-4dr+4+32—-6+4=a" -2 +2.

© (fof)(z)=f(fx))=flz-2)=(r-2)-2=2—4

d) (gog)(z)=g(g9(z)) = g(a® + 3z +4) = (z° + 3z +4)> + 3(2® + 3z +4) + 4
= (z* +92° + 16 + 62° + 82° + 24z) + 32® + 9z + 12 + 4
= 2" 4+ 62° + 202° + 33z + 32

f(x) =1—3x; g(z) = cosz. D =R forboth f and g, and hence for their composites.

@ (fog)(z) = f(g(z)) = f(cosz) =1 — 3cos .

(b) (g0 f)(x) = g(f(x)) = g(1 — 3x) = cos(1 — 3z).

© (fof)x)=f(f(x)=f(1—-3z)=1-3(1—-3z)=1—3+9z =9z —2.

(d) (gog)(z) =g(g(x)) = g(cosxz) = cos(cosxz) [Note that this is not cos z - cos .]

f(z) =z, D=10,00); g(x)=V1I-=2 D=R.

@ (fog)(z) = flg9(x)) = f(VT-2z) =V V1 -a= V-

The domain of fogis {z | YT—z >0} ={z|1—2>0}={z |z <1} = (—o0, 1].

) (g0 (@) = g(f(2)) = 9(Vr) = V1= V.

The domain of g o f is {z | z is in the domain of f and f(z) is in the domain of g}. This is the domain of f,

that is, [0, 00).
© (fo f)(@) = f(f(x)) = f(V&) = /Y& = {/z. The domain of f o f is {z | « > 0 and y/z > 0} = [0, 00).
() (gog)(z) =g(g(z)) = g(¥T—2z) = /1 — Y1 — =z, and the domain is (—oco, 00).
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1 ) _r+1 .
8 f(e) vt o D= (e |z 20k o) = Tk D=(r|r#-2)
Tz+1 z+1 1 z+1  x+2
@ (Foa)o) = flate) = £(H03) = T3+ = T+ 28

T+ 2
(z+D)@+D+@+2)(@=+2) (@®+22+1)+ (2°+42+4) 222 +62+5

(x+2)(z+1) N (x+2)(z+1) (24 2)(z+1)

Since g(x) is not defined for x = —2 and f(g(z)) is not defined for x = —2 and z = —1,

the domain of (f o g)(z) is D = {x | * # —2,—1}.

1 241
r4+=)+1 T H+ltz
1 ( :L‘) :cz+;r+1 9:2+x+1
(b)(gof)(m):g(f<m)):g(x+—): =——7 == = 5
v (H%)H e 4142 @2+l (v+])
T

Since f(x) is not defined for x = 0 and g(f(z)) is not defined for x = —1,
the domain of (g o f)(x)is D = {z |z # —1,0}.

1

<c><fof><w>:f<f<x>)=f(x+§):(x+5)+ 1 1,1 1, e

sl CtetEa Tttt e

<41
z

z(z)(z® + 1) + 1 (2° + 1) + () ottt + 1427

x(z?2 4+ 1) x(z?2 4+ 1)
4 2
"+ 3" +1
= D:
e D={ela£0)
x+1+1 r+1+1(zx+2)
z+1 T+ 2 T+ 2 c+14+x2+2 2z +3
d = = = = = =
@) (go9)(x) = g(g(x)) 9<x+2) el T wrl+2wt2) r+lt2ctd Bzts
x+2 x+2

Since g(z) is not defined for z = —2 and g(g(x)) is not defined for z = —2,

the domain of (g o g) () is D = {z | # —2,—-3}.

36. f(z) = ix

1
@ (Fo9)@) = flg(e) = flsin20) = T2

, D={z|z#-1}; g(z)=sin2z, D=R.

Domain: 1 4+sin2z #0 = sin2zx # -1 = 2z # 3% +2mn = x# ??TW + 7n  [n an integer].

® (90 (@) = a0 =9 715 ) =sin( 55 )

Domain: {x | z # —1}

© (fof)z)=f(f(x)) =

€T X
—Z ).(1
f(x)_ Ttz _ (1+w>(”) e
1 - z 1 T2z 41

v 1+
Since f(x) is not defined for x = —1, and f(f(z)) is not defined for z = —%,
the domain of (f o f)(z)is D = {z | x # —1,—3}.

(d) (g0 9)(9) = g(g9(z)) = g(sin2z) = sin(2sin 2z).
Domain: R
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(fogoh)() = fg(h(@))) = flgle — 1)) = f2z—1)) =2 — 1) + 1 =2z — 1
(fogoh)(@) = fg(h(@))) = Flg(1 — ) = F((1 —2)?) =21 —2)> — 1 = 2” — 4o + 1

(fogoh)(z) = f(g(h(z)) = f9(z® +2)) = f[(z® +2)*]
= f(z® +42° +4) = /(28 + 423+ 4) — 3 = Va5 + 423 + 1

(fogoh)(z) = flg(h(x))) = f(9(¥=)) = f(%e/f 1) - ta‘n(e/gf 1)

Let g(x) = 2z + 2 and f(z) = x*. Then (f o g)(z) = f(g9(x)) = f(2z + 2*) = (2z + 2*)* = F(x).

Let g(z) = cosz and f(x) = 2. Then (f o g)(z) = f(g(x)) = f(cosx) = (cosx)* = cos’ x = F(x).
Letg(x) = Y7 and f(2) = T Then (f 0.9)(x) = f(9(a)) = F(VF) = 1o = F(2).
Letg(n) = T and f(a) = 2. Then (f 0.0)(0) = Fla(e) = (T ) = {7 = Gl
Let g(t) = cost and f(t) = v/t. Then (f o g)(t) = f(g(t)) = f(cost) = \/cost = u(t).

Let g(t) = tant and f(t) = 1LH.Then (/0 9)() = F(9(t)) = f(tamt) = - —ti—a:ailt u(t).

Let h(z) = 22, g(x) = 3%, and f(x) = 1 — x. Then

(fogoh)(@) = flg(h(@) = flg(a®) = £(37) =1-3" = H(a).

Let h(z) = ||, g(x) = 2 + 2, and f(z) = {/Z. Then

(fog0h)(@) = flg(h(@))) = Fg(lz) = f 2+ [2]) = ¥/2+Ta] = H(x).

Let h(z) = v/, g(z) = secz, and f(z) = 2*. Then

(fogom)(@) = flg(h(@))) = Flg(VF)) = flsecVT) = (sec /)" = sec* (V&) = H(z).

(@) f(g9(1)) = f(6) =5 () g(f(1)) = 9(3) =2
© f(f(1) =fB) =4 (d) g(g9(1)) = g(6) =3
© (90 f)B) =9(f(3) =9(4) =1 (f) (fog)(6) = f(g9(6)) = f(3) =4

(a) g(2) = b, because the point (2, 5) is on the graph of g. Thus, f(g(2)) = f(5) = 4, because the point (5, 4) is on the
graph of f.

(b) 9(f(0)) = g(0) =3
(© (f09)(0) = f(9(0)) = fF(3) =0

(d) (go f)(6) = g(f(6)) = g(6). This value is not defined, because there is no point on the graph of g that has
x-coordinate 6.

() (g0 g)(—2) = g(9(-2)) = g(1) =4
() (fof)4) = f(f(4) = f(2) = -2

35
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52. To find a particular value of f(g(x)), say for z = 0, we note from the graph that g(0) =~ 2.8 and f(2.8) ~ —0.5. Thus,
f(g(0)) ~ f(2.8) & —0.5. The other values listed in the table were obtained in a similar fashion.

x| g(x) | flg(x)) z | g(z) | flg(z)) ;
-5 | —02 | —4 0| 28] -05 1
—4| 12| -33 1| 22| -17
-3 | 22| -171 2| 12| -33 !
—2| 28| -05 31 -02] -4
1| 3 | -02 4| -19 | —2.2
5 41| 1.9

53. (a) Using the relationship distance = rate - time with the radius r as the distance, we have r(¢) = 60t.

b)) A=mr> = (Aor)(t) = A(r(t)) = 7(60t)* = 36007t>. This formula gives us the extent of the rippled area
(in cm?) at any time ¢.

54. (a) The radius r of the balloon is increasing at a rate of 2 cm/s, so 7(t) = (2 cm/s)(¢ s) = 2¢ (in cm).

(b) Using V = gar®, we get (V or)(t) = V(r(t)) = V(2t) = 37(2t)° = Lnt’.

The result, V = 3—327rt?’, gives the volume of the balloon (in cm?®) as a function of time (in s).

55. (a) From the figure, we have a right triangle with legs 6 and d, and hypotenuse s. ¢ Sgg ______ d o
By the Pythagorean Theorem, d* + 6° = s> = s = f(d) = v/d?2 + 36. 6
! °s
(b) Using d = rt, we get d = (30 kny/h)(¢ hours) = 30¢ (in km). Thus, O
4= g(t) = 30t lighthouse shoreline

(©) (fog)(t) = f(g(t)) = f(30t) = \/(30¢t)2 4 36 = +/900¢2 + 36. This function represents the distance between the

lighthouse and the ship as a function of the time elapsed since noon.
56. (@) d =1t = d(t) =350t
(b) There is a Pythagorean relationship involving the legs with lengths d and 1 and the hypotenuse with length s:
d? +1% = s%. Thus, s(d) = Vd2 + 1.

(© (sod)(t) = s(d(t)) = s(350t) = \/(3500)2 + 1

57. (a) H (b) v
! 120
OT t OT t
; 0 ift<0
=1 Tre0 V(t) = , s0 V(1) = 120H(?).
1 if ¢ Z 0 120 if ¢t 2 0
(©) 14 Starting with the formula in part (b), we replace 120 with 240 to reflect the
240 —_—

different voltage. Also, because we are starting 5 units to the right of ¢ = 0,

we replace ¢ with ¢t — 5. Thus, the formula is V' (t) = 240H (t — 5).
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8. (a) R(t) — tH(1) wve=J Tr<f @OV =1 et
. (a t) =tH(t t) = c t) =
2t if 0 <t <60 4(t—17) if 7<t<32
0 ift<O
"\t ift>o0 so V(t) =2tH(t), t < 60. soV(t) =4t —-7T)H({t—T7),t < 32.
\% \%
R 120
100
11 /
o 1 0 w0 o] 7 2

59. If f(x) = maix + b1 and g(x) = maox + ba, then
(fog)(z) = flg(x)) = f(mex + b2) = mi(max + b2) + b1 = mimax + m1bs + b1.

So f o g is a linear function with slope mimo.

60. If A(z) = 1.04x, then
(Ao A)(z) = A(A(z)) = A(1.04x) = 1.04(1.04z) = (1.04)%z,
(Ao Ao A)(x) = A((Ao A)(x)) = A((1.04)*x) = 1.04(1.04)*z = (1.04)>z, and
(AoAoAoA)(z) =A((Ao Ao A)(x)) = A((1.04)%z) = 1.04(1.04)3z, = (1.04)*z.
These compositions represent the amount of the investment after 2, 3, and 4 years.

Based on this pattern, when we compose n copies of A, we get the formula (Ao Ao --- 0 A)(z) = (1.04)"x.
—_————
n Als

61. (a) By examining the variable terms in g and h, we deduce that we must square g to get the terms 422 and 4z in h. If we let
f(x) =22 + ¢, then (fog)(x) = f(g9(x)) = f2x + 1) = (2z + 1)* + ¢ = 42? + 42 + (1 + ¢). Since
h(z) = 42® + 4z + 7, wemust have 1 + ¢ = 7. Soc = 6 and f(z) = 2* + 6.
(b) We need a function g so that f(g(z)) = 3(g9(x)) + 5 = h(x). But

h(z) =32% + 3z +2 = 3(2® + ) + 2 = 3(2* + x — 1) + 5, so we see that g(x) = 2° + x — 1.

62. We need a function g so that g(f(x)) = g(z +4) = h(x) =4z — 1 = 4(x + 4) — 17. So we see that the function g must be
g(z) = 4o — 17.

63. We need to examine h(—x).

h(=x) = (f 0 g)(=2) = f(9(=2)) = f(9(x)) [because gis even] = h(z)

Because h(—x) = h(x), h is an even function.

64. h(—z) = f(g(—=x)) = f(—g(x)). At this point, we can’t simplify the expression, so we might try to find a counterexample to
show that A is not an odd function. Let g(x) = , an odd function, and f(x) = 2 + 2. Then h(x) = x? 4 x, which is neither
even nor odd.

Now suppose f is an odd function. Then f(—g(z)) = —f(g(x)) = —h(z). Hence, h(—x) = —h(z), and so h is odd if
both f and g are odd.
Now suppose f is an even function. Then f(—g(x)) = f(g(z)) = h(z). Hence, h(—z) = h(z), and so h is even if g is

odd and f is even.
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1.4 Graphing Calculators and Computers

1. f(z) = Va3 — bz?

(a) [=5,5] by [-5,5] (b) [0,10] by [0, 2] (¢) [0,10] by [0, 10]

(There is no graph shown.)
5 2

I
|

The most appropriate graph is produced in viewing rectangle (c).

10
_5 0

2. f(x) = z* — 162% + 20

3 10

SN J

-3 —10
() [~50,50] by [~50, 50] (d) [-5,5] by 50, 50]

50 50

| | N

| |

~50 -50

The most appropriate graph is produced in viewing rectangle (d).

3. Since the graph of f(x) = 2 — 36x + 32 is a parabola opening upward,

V]

an appropriate viewing rectangle should include the minimum point. ~10

Completing the square, we get f(z) = (z — 18)% — 292, and so the

minimum point is (18, —292).

4. An appropriate viewing rectangle for f(z) = 2® + 152% + 65 should

—300

50

include the high and low points. -10

—150

40

10



10.

1.

SECTION 1.4 GRAPHING CALCULATORS AND COMPUTERS U

. f(z) = v/81 — z%isdefined when 81 —z* >0 < 2*<81 <
f(z)

|| < 3, so the domain of f is [—3,3]. Also 0 < /81 — 2% < /81 = 3,

so the range is [0, 3].

. f(z) =+/0.1x + 20 is defined when 0.1z +20 > 0 < x> —200,

so the domain of f is [—200, c0).

. The graph of f(z) = x® — 225z is symmetric with respect to the origin.

Since f(r) = 2 — 2252 = x(z* — 225) = x(x + 15)(z — 15), there

are z-intercepts at 0, —15, and 15. f(20) = 3500.

. The graph of f(x) = x/(z* + 100) is symmetric with respect to the
origin.
. The period of g(z) = sin(1000x) is 13 ~ 0.0063 and its range is

—1,1]. Since f(z) = sin?(1000z) is the square of g, its range is
[ q g g
[0, 1] and a viewing rectangle of [—0.01,0.01] by [0, 1.1] seems

appropriate.

The period of f(z) = cos(0.001z) is 2 A~ 6300 and its range

is [—1, 1], so a viewing rectangle of [—10,000, 10,000] by

[—1.5, 1.5] seems appropriate.

The domain of y = y/x is x > 0, so the domain of f(z) = sin+/z is [0, 00)

and the range is [—1, 1]. With a little trial-and-error experimentation, we find

that an Xmax of 100 illustrates the general shape of f, so an appropriate

viewing rectangle is [0, 100] by [—1.5, 1.5].

4

—250
(

i

—0.01

—3500

0.1

J 50

—0.1

1.1

0.01
0
1.5

—10,000 / \/

\ AL
VA

V4

39
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12. One period of y = sec  occurs on the interval (—%, %) U (5, 2F).

—5 <207z < 37” = —4—10 <z < 4—?;), or equivalently,

—0.025 <z < 0.075.

5

/

—0.025 0.075

-5

13. The first term, 10 sin x, has period 27 and range [—10, 10]. It will be the dominant term in any “large” graph of

y = 10sin x + sin 100z, as shown in the first figure. The second term, sin 100z, has period 120—”0 = £5 and range [—1,1].

It causes the bumps in the first figure and will be the dominant term in any “small” graph, as shown in the view near the

origin in the second figure.

11 2
T 2m 3 W v, 2
11 -2
14. y = 2 + 0.02sin(50x)
4 0.25
2 )2 -05 - S 5 0.5
—0.5 —0.025
15. (a) The first figure shows the "big 2 0.005
0f 120
picture” for f(z) = (z — 10)%27".
The second figure shows a maximum 8 20
near x = 10.
—20 —0.005

(b) You need more than one window because no single window can show what the function looks like globally

and the detail of the function near x = 10.

16. The function f(x) = 2*1/30 — = has domain (—oo, 30]. Its graph is very 1500

steep near x = 30, so part of the graph may appear to be missing.

—20 — 40
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We must solve the given equation for y to obtain equations for the upper and
lower halves of the ellipse.
1 —4a2?

42 + 27 =1 & 29 =1—-42> & ¢*= 5

1— 4z
2

y==

P —922=1 & 3 =1492> & y=+1+922

From the graph of y = 32% — 62 + 1 1.5

and y = 0.23x — 2.25 in the viewing
rectangle [—1, 3] by [—2.5, 1.5], it is -1

difficult to see if the graphs intersect.

If we zoom in on the fourth quadrant,

we see the graphs do not intersect.

From the graph of y = 6 — 4z — 2 and y = 3z + 18 in the viewing
rectangle [—6, 2] by [—5, 20], we see that the graphs intersect twice.

The points of intersection are (—4, 6) and (—3,9).

We see that the graphs of f(z) = z* — 2 and g(x) = 1 intersect twice.
The z-coordinates of these points (which are the solutions of the equations)

are approximately —0.72 and 1.22. Alternatively, we could find these

4

values by finding the zeros of h(z) = 2 — x — 1.

We see that the graphs of f(z) = /= and g(x) = 2 — 1 intersect once.
The z-coordinate of this point (which is the solution of the equation) is

approximately 1.29. Alternatively, we could find this value by finding the
zero of h(x) = /2 — 2® + 1.

N

-2 2
—4
—1.8
0.8 1.2
—2.2
20
-6 2
=5
2
y=x*—x )
y=1
-2 / 2
. J

4
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23. We see that the graphs of f(z) = tanx and g(x) = v/1 — x? intersect p 2 .
once. Using an intersect feature or zooming in, we find this value to be y=J1-2* |

approximately 0.65. Alternatively, we could find this value by finding the

positive zero of h(z) = tanx — /1 — 22.

y=tanx

-2

Note: After producing the graph on a TI-84 Plus, we can find the approximate value 0.65 by using the following keystrokes:

2nd||CALC||5| ENTER||[ENTER|.6 [ENTER]. The “.6” is just a guess for 0.65.

24. (a) 1.5

IV

—-1.5
(b) Using trial and error, we find that m ~ 0.3365

25. g(x) = 23 /10 is larger than f(z) = 102>

whenever z > 100.

The z-coordinates of the three points of intersection are

T~ —3.29, —2.36 and 1.20.

. Note that m could also be negative.

26. f(z) = x* — 1002 is larger than g(z) = x3

whenever x > 101.

300,000 g f 2,000,000 /g
200 0 [ \ J 150
—1,000,000
27 0.15 We see from the graphs of y = [sinx — x| and y = 0.1 that there are
two solutions to the equation |sinz — z| = 0.1: z ~ —0.85 and
2 ~ 0.85. The condition |sinz — 2| < 0.1 holds for any x lying
between these two values, that is, —0.85 < z < 0.85.
-1 1
0

28. P(x) = 32° — 52° + 22, Q(x) = 32°. These graphs are significantly different only in the region close to the origin.

The larger a viewing rectangle one chooses, the more similar the two graphs look.

2 QP

|

|

10,000
—10 [ j 10

—10,000
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29. (a) The root functions y = /=, (b) The root functions y = , (¢) The root functions y = /x, y = /x,
y= Yrandy = Iz y= Yrandy = Iz y= Yrandy = /x
2
— 3“‘X
X /V
) ——===={ Yx
./
-3 7 S

i

(d) e For any n, the nth root of 0 is 0 and the nth root of 1 is 1; that is, all nth root functions pass through the points (0, 0)
and (1,1).
e For odd n, the domain of the nth root function is R, while for even n, itis {z € R | x > 0}.
e Graphs of even root functions look similar to that of 1/, while those of odd root functions resemble that of /.

-1 -2 -1

e As n increases, the graph of {/x becomes steeper near 0 and flatter for z > 1.

30. (a) The functions y = 1/x and (b) The functions y = 1/22 and (c) The functions y = 1/z,y = 1/22,
y:1/x3 y=1/m4 yzl/x3andy:1/x4

S==

-3 -3 -1
(d) e The graphs of all functions of the form y = 1/2™ pass through the point (1, 1).
e If n is even, the graph of the function is entirely above the x-axis. The graphs of 1/z" for n even are similar to
one another.
e If n is odd, the function is positive for positive 2 and negative for negative x. The graphs of 1/2™ for n odd are
similar to one another.

e Asn increases, the graphs of 1/2™ approach 0 faster as x — oo.

1-1.5 2 -1 -2-3

31. f(x) = 2* + ca® + . If ¢ < —1.5, there are three humps: two minimum points
and a maximum point. These humps get flatter as ¢ increases, until at c = —1.5 -2.5 25

two of the humps disappear and there is only one minimum point. This single

hump then moves to the right and approaches the origin as c increases.

32. f(x) =14 ca?. Ifc <0, the function is only defined on

[~1/v/=c,1/y/=c], and its graph is the top half of an ellipse. If ¢ = 0, the
graph is the line y = 1. If ¢ > 0, the graph is the top half of a hyperbola. As ¢

approaches 0, these curves become flatter and approach the line y = 1.
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33. y = 2"27%. As n increases, the maximum of the 4.5 600
function moves further from the origin, and gets
larger. Note, however, that regardless of n, the
function approaches 0 as x — co.
4. y= i =. The “bullet” becomes broader as
c—x
c increases.
35. y* = ca® + 2%, If ¢ < 0, the loop is to the right of the origin, and if ¢ is positive, 1
it is to the left. In both cases, the closer c is to 0, the larger the loop is. (In the 1 N\ ,”__ 1
e . - 22
limiting case, ¢ = 0, the loop is “infinite,” that is, it doesn’t close.) Also, the -1.1 !\ 2 H L1
larger || s, the steeper the slope is on the loopless side of the origin. // N D
-1
36. (a) y = sin(y/x) (b) y = sin(x?)
This function is not periodic; it oscillates less This function oscillates more frequently as |z| increases.
frequently as x increases. Note also that this function is even, whereas sin x is odd.
1.5 1.5
-1.5 -1.5
37. The graphing window is 95 pixels wide and we want to start with z = 0 and end with x = 27. Since there are 94 “gaps”

between pixels, the distance between pixels is 2’;4’0. Thus, the x-values that the calculator actually plots are x = 0 + ?TZ -n,
wheren =0, 1,2, ..., 93, 94. For y = sin 2z, the actual points plotted by the calculator are (25 - n,sin(2 - 25 - n)) for
n=20,1,...,94. For y = sin 96z, the points plotted are (é—z -1, sin(96 . 3—1 . n)) forn=20,1,...,94. But

sin(96-f)—z-n) :sin(94-g—z-n+2-g—z-n) :sin(27m+2-g—z-n)

=sin(2- 23 -n) [by periodicity of sine], n=0,1,...,94

So the y-values, and hence the points, plotted for y = sin 96z are identical to those plotted for y = sin 2.

Note: Try graphing y = sin 94x. Can you see why all the y-values are zero?
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38. As in Exercise 37, we know that the points being plotted for y = sin 45x are (3—1 - n,sin (45 . 3—2 . n)) forn=0,1,...,94.

But

sin(45~§—z-n) :sin(47~3—z-n—2~§—z-n):sin(nﬂ—2~§—’£~n)

27

-n) — cos(nm)sin(2- 2% - n)  [Subtraction formula for the sine]

2

= sin(nm) cos(2 - 2=

=0-cos(2- 2 -n) — (£1)sin(2- 25 - n)

=+sin(2-22-n), n=01,...,94

So the y-values, and hence the points, plotted for y = sin 45z lie on either y = sin 2z or y = — sin 2x.

1.5 Exponential Functions

4=3 928 28 28

1 1
_ _ _ __ 086 _ 92 __ _ —4/3
"OETETEpE T T O wm
2. (a) 873 = (8% =2 =16 (b) z(32?)% = x - 33(2?)® = 27w - 2° = 272"
6y3)4 64(y3)4 1296y12
. (a) BB(20)* = b - 2%t = 16b'2 ( = = = 648y"
3. () 5(2b)* =% - 2% 6b (b) 2 25 5 648y
:I;Qn . $3n—1 x2n+3n—1 x5n—1 An_3
4. (a) 2 = Ttz g2 7

Vavb _ \/5\/\/\{5 _ a1;2b1;4 _ (1/2-1/3)(1/4-1/3) _ ,1/6p-1/12
3/ab \3/6 3 b CLl 3b1 3

5. (a) f(z) =a", a>0 (b) R (¢) (0,00) (d) See Figures 4(c), 4(b), and 4(a), respectively.

(b)

6. (a) The number e is the value of a such that the slope of the tangent line at x = 0 on the graph of y = a” is exactly 1.
(b) e =~ 2.71828 (©) f(z) =¢€"

7. All of these graphs approach 0 as © — —o0, all of them pass through the point

(0,1), and all of them are increasing and approach co as & — oo. The larger the
base, the faster the function increases for = > 0, and the faster it approaches 0 as

r — —OQ.

8. The graph of e~ " is the reflection of the graph of e” about the y-axis, and the

graph of 8% is the reflection of that of 8” about the y-axis. The graph of 8”
increases more quickly than that of e® for x > 0, and approaches 0 faster

as r — —OQ.
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9. The functions with bases greater than 1 (3” and 10%) are increasing, while those

with bases less than 1 [(% ) * and (1—10)7’} are decreasing. The graph of (%)x is the
reflection of that of 3” about the y-axis, and the graph of (1—10) “ is the reflection of

that of 10 about the y-axis. The graph of 10” increases more quickly than that of

3" for x > 0, and approaches 0 faster as x — —oo.

10. Each of the graphs approaches co as © — —o0, and each approaches 0 as

x — oo. The smaller the base, the faster the function grows as x — —oo, and

the faster it approaches 0 as x — oo.

11. We start with the graph of y = 10® (Figure 3) and shift it 2 units to the left to obtain the graph of y = 10”2,

y

) y
1 1+
i X _é _'1 0

-1 0

X

12. We start with the graph of y = (0.5)“ (Figure 3) and shift it 2 units downward to obtain the graph of y = (0.5)® — 2. The
horizontal asymptote of the final graph is y = —2.

y

13. We start with the graph of y = 2% (Figure 3), y y y

reflect it about the y-axis, and then about the

0 X
x-axis (or just rotate 180° to handle both -1 /
x 1 1

reflections) to obtain the graph of y = —277. / \

In each graph, y = 0 is the horizontal

asymptote.
y = 2_I y = —2_$



14.

15.

16.

17.
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We start with the graph of y = e (Figure 13) and Y Y
reflect the portion of the graph in the first quadrant y=et y=ehl
about the y-axis to obtain the graph of y = e/®l. 1 \

0 i X 0 i X

We start with the graph of y = e” (Figure 13) and reflect about the y-axis to get the graph of y = e~*. Then we compress
the graph vertically by a factor of 2 to obtain the graph of y = %e_w and then reflect about the z-axis to get the graph of

y = —ie . Finally, we shift the graph upward one unit to get the graph of y = 1 — e

y y y y

~<

We start with the graph of y = e” (Figure 13) and reflect about the z-axis to get the graph of y = —e”. Then shift the graph
upward one unit to get the graph of y = 1 — e”. Finally, we stretch the graph vertically by a factor of 2 to obtain the graph of
y=2(1-—¢€").

0 x y=2(1-e")

(a) To find the equation of the graph that results from shifting the graph of y = e” 2 units downward, we subtract 2 from the
original function to get y = e* — 2.
(b) To find the equation of the graph that results from shifting the graph of y = e® 2 units to the right, we replace « with x — 2

in the original function to get y = e(*~2).

(¢) To find the equation of the graph that results from reflecting the graph of y = e* about the x-axis, we multiply the original
function by —1 to get y = —e”.

(d) To find the equation of the graph that results from reflecting the graph of y = ¢” about the y-axis, we replace  with —z in

the original function to gety = e~ ~.

(e) To find the equation of the graph that results from reflecting the graph of y = e” about the z-axis and then about the
y-axis, we first multiply the original function by —1 (to get y = —e”) and then replace « with —x in this equation to

—x

gety = —e
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18.

19.

20.

21,

22,

23.

24,

25.

26.

L CHAPTER1 FUNCTIONS AND MODELS

(a) This reflection consists of first reflecting the graph about the x-axis (giving the graph with equation y = —e”)

and then shifting this graph 2 - 4 = 8 units upward. So the equation is y = —e” + 8.

(b) This reflection consists of first reflecting the graph about the y-axis (giving the graph with equation y = e~ %)

and then shifting this graph 2 - 2 = 4 units to the right. So the equation is y = e~ (*~%,

(a) The denominator is zerowhen1 — ¢! ~® =0 < e =1 & 1-22=0 < z=-=+1. Thus,
2
1—-¢€" .
76_12 has domain {z | z # £1} = (—o0, —1) U (—1,1) U (1, 00).

the function f(x) = T ol
— €

. . . 1 .
(b) The denominator is never equal to zero, so the function f(x) = it has domain R, or (—oc0, 00).
eCOS x

(a) The sine and exponential functions have domain R, so g(t) = sin(e™") also has domain R.

(b) The function g(t) = v/1 — 2¢ has domain {¢t | 1 — 2" > 0} = {¢t |2 <1} = {t | t < 0} = (—00,0].

Use y = Ca” with the points (1,6) and (3,24). 6=Ca' [C=2%] and24=Cd® = 24= (g)a?’ =
4=a*> = a=2 [sincea>0] andC = & = 3. The function is f(z) = 3 - 2",

Use y = Ca” with the points (—1,3) and (1, 3). From the point (—1,3), we have 3 = Ca™ ', hence C' = 3a. Using this and

the point (1,3),weget2 =Ca' = $=0Ba)a = $=d> = a=2 [sincea>0] andC =3(2)=2.The

function is f(z) = 2(3)".

fle+h)— f(x) 5*th—5* 5T5h_5*  5°(5" —1) 5" —1
If = 5%, th = = = =5 .
f(x) =57, then 0 h h h 5 h
Suppose the month is February. Your payment on the 28th day would be 22571 = 227 = 134,217,728 cents, or

$1,342,177.28. Clearly, the second method of payment results in a larger amount for any month.
2 ft =24 in, f(24) = 24% in = 576 in = 48 ft. g(24) = 2** in = 22* /(12 - 5280) mi ~ 265 mi

We see from the graphs that for x less than about 1.8, g(z) = 5% > f(x) = z°, and then near the point (1.8, 17.1) the curves
intersect. Then f(z) > g(x) from z ~ 1.8 until x = 5. At (5, 3125) there is another point of intersection, and for x > 5 we

see that g(z) > f(z). In fact, g increases much more rapidly than f beyond that point.

32.5

4375 50,000




27.

28.

29.

30.

31.
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The graph of g finally surpasses that of f at z ~ 35.8.

1x10"

We graph y = e” and y = 1,000,000,000 and determine where 1,100,000,000

e® =1 x 10°. This seems to be true at z ~ 20.723, so e* > 1 x 10°

for x > 20.723.

0 25

a) Fifteen hours represents 5 doubling periods (one doubling period is three hours). 100 - 25 = 3200
(a) p gp gp

(b) In ¢ hours, there will be ¢/3 doubling periods. The initial population is 100,

so the population y at time ¢ is y = 100 - 2¢/3. 60,000 7 \
(©)t=20 = y=100-2%/%~10,159
(d) We graph y; = 100 - 27/3 and y5 = 50,000. The two curves intersect at

T = 26.9, so the population reaches 50,000 in about 26.9 hours. 0 40
(a) Three hours represents 6 doubling periods (one doubling period is 30 minutes). 500 - 2 = 32,000
(b) In ¢ hours, there will be 2t doubling periods. The initial population is 500,

so the population y at time # is y = 500 - 2%, 110,000 7 \

_ 40 _ _ 2(2/3) ~,

@t=2=2 = y=500-2**% 1260
(d) We graph y1 = 500 - 2% and y» = 100,000. The two curves intersect at

t =~ 3.82, so the population reaches 100,000 in about 3.82 hours. 0 >

(a) Fifteen days represents 3 half-life periods (one half-life period is 5 days). 200 (%)3 =25 mg
(b) In ¢ hours, there will be ¢ /5 half-life periods. The initial amount is 200 mg,

so the amount remaining after ¢ days is y = 200 (%)t/ 5, or equivalently,
200

y =200-274/°,

(¢) t =3 weeks = 21 days = y =200-2"2/° ~10.9 mg

(d) We graph y1 = 200 - 27%/5 and y» = 1. The two curves intersect at
t ~ 38.2, so the mass will be reduced to 1 mg in about 38.2 days.

49
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32. (a) Sixty hours represents 4 half-life periods. 2 - (%)4 = % g

(b) In ¢ hours, there will be ¢ /15 half-life periods. The initial mass is 2 g, 0.02

so the mass y attime tisy = 2 - (%)t/w. K }
)96/15

(c)4days=4-24=96hours. t =96 = y=2-(3

~ 0.024 g
(dy=0.01 = ¢~ 114.7 hours { N
100 150

33. An exponential model is y = ab’, where a = 3.154832569 x 10~ 2 8000 (millions)

and b = 1.017764706. This model gives y(1993) ~ 5498 million and

y(2010) ~ 7417 million.

19400 2010
34. An exponential model is y = ab’, where a = 1.9976760197589 x 10~° and 400 (millions)
b = 1.0129334321697. This model gives y(1925) ~ 111 million,
y(2010) =~ 330 million, and y(2020) ~ 375 million.
N 2030
35. 2 From the graph, it appears that f is an odd function (f is undefined for x = 0).
flx)= : ;e:/j To prove this, we must show that f(—x) = —f(x).
oV
1
-3 3 _
Flea) = 1—el/® _ 1—el"1/® _ 1 el/z el/e _ et/T 1
1—|—el/(*$) 1—|—e(*1/$) 1+ 1 el/w 61/9” +1
el/z
—2 _ 1ol f(z)
C 14el/z
so f is an odd function.
. 1
36. We'll start with b = —1 and graph f(z) = ———— fora = 0.1, 1, and 5. 2
1+ aeb® )
From the graph, we see that there is a horizontal asymptote y = 0 as z — —oo a=1
grap ymptote y N 7-:—5——
and a horizontal asymptote y = 1 as z — oo. If a = 1, the y-intercept is (O, %) . “ / a ;
As a gets smaller (close to 0), the graph of f moves left. As a gets larger, the graph { b
of f moves right. -1

As b changes from —1 to 0, the graph of f is stretched horizontally. As b

changes through large negative values, the graph of f is compressed horizontally.

(This takes care of negatives values of b.)




SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS 0O 51
If b is positive, the graph of f is reflected through the y-axis. 2
b=2 / b=0.5
b=0.1
Last, if b = 0, the graph of f is the horizontal line y = 1/(1 + a). . ;
{ N
-1
1.6 Inverse Functions and Logarithms
1. (a) See Definition 1.
(b) It must pass the Horizontal Line Test.
2. (a) f ' (y) =2 < f(x)=yforanyyin B. The domain of f~* is B and the range of f ' is A.
(b) See the steps in (5).
(c) Reflect the graph of f about the line y = .
3. f is not one-to-one because 2 # 6, but f(2) = 2.0 = f(6).
4, f is one-to-one because it never takes on the same value twice.
5. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the
function is not one-to-one.
6. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
7. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
8. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the
function is not one-to-one.
2 . . . b -2 . -
9. The graph of f(x) = 2° — 2x is a parabola with axis of symmetry = = 5 = —m = 1. Pick any x-values equidistant
a
from 1 to find two equal function values. For example, f(0) = 0 and f(2) = 0, so f is not one-to-one.
10. The graph of f(x) = 10 — 3z is a line with slope —3. It passes the Horizontal Line Test, so f is one-to-one.
Algebraic solution: If x1 # 2, then —3x1 # —3x2 = 10—3x1 #10—3z2 = f(x1) # f(x2), so f is one-to-one.
Moglx)=1/z. z1#x2 = 1/x1#1/za = g(x1)# g(x2), s0 g is one-to-one.
Geometric solution: The graph of g is the hyperbola shown in Figure 14 in Section 1.2. It passes the Horizontal Line Test,
S0 g is one-to-one.
12. g(z) = cosz. ¢(0) =1 = g(2m), so g is not one-to-one.
13. A football will attain every height h up to its maximum height twice: once on the way up, and again on the way down.
Thus, even if ¢; does not equal ¢2, f(¢1) may equal f(¢2), so f is not 1-1.
14. f is not 1-1 because eventually we all stop growing and therefore, there are two times at which we have the same height.
15. Since f(2) = 9 and f is 1-1, we know that f~*(9) = 2. Remember, if the point (2, 9) is on the graph of f, then the point

(9, 2).is on the graph.of f= .
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16. First, we must determine « such that f(x) = 3. By inspection, we see that if z = 1, then f(1) = 3. Since f is 1-1 (f is an
increasing function), it has an inverse, and f~'(3) = 1. If f is a 1-1 function, then f(f~'(a)) = a, so f(f~'(2)) = 2.

17. First, we must determine z such that g(z) = 4. By inspection, we see that if x = 0, then g(x) = 4. Since g is 1-1 (g is an
increasing function), it has an inverse, and g~ *(4) = 0.

18. (a) f is 1-1 because it passes the Horizontal Line Test.

(b) Domain of f = [—3,3] = Range of f~'. Range of f = [—1,3] = Domain of f~*.
(c) Since f(0) =2, f~1(2) =0.
(d) Since f(—1.7) = 0, f~(0) = —1.7.

19. We solve C' = 2(F — 32) for F: 2C = F —32 = F = 2C + 32. This gives us a formula for the inverse function, that
is, the Fahrenheit temperature I as a function of the Celsius temperature C. F' > —459.67 = %C + 32 > —459.67 =
%C > —491.67 = C > —273.15, the domain of the inverse function.

2 2 2 2 2 2

20 m = —10 -2 =00 o Lo T a2 (1-20) o =10

V1—v?/c? c? m? c? m2 m2 m2
This formula gives us the speed v of the particle in terms of its mass m, that is, v = f~'(m).

Ny=fz)=1+v2+3z (y>1) = y—-1=v2+3z = (y—-172=2+3r = (y—-1)°-2=3z =
= %(y—1)> — 2. Interchange z and y: y = 2(z —1)> — 2. So f~'(x) = (= — 1)* — 2. Note that the domain of f~*
isx > 1.

4r —1
2. y=f(z) = %513 = yr+3)=4dr—-1 = 22y+3y=42—-1 = 3y+l=4do—2zy =
1 1
Jy+1=4—-2y)z = x= Zy_—;; Interchange x and y: y = Zx——;x So f~1(x) = Zx——;m
B.y=f(z)=e""' = Ilny=22—-1 = 1l4+hy=2zr = z=31(1+Iny).
Interchange z and y: y = (1 +1nz). So f~'(z) = (1 +Inz).

U y=flz)=2a"-2 (>%) = y="-2+i-1 = y=@-1’-%1 =
y+i=@-3? = z-Li=\/y+1 = =z=1+,/y+ i Interchangezandy: y= 3 z+ 1. So
@) =5 +y/z+3

2. y=f(r)=In(z+3) = z+3=¢ = x=-c’—3 Interchangezandy: y=e" —3.So0 f ' (z) =e” — 3.

26. y = f(x) = 1_;32 - = Y42t =" = y=e" -2’ = y=e(1-2) = ' = 1_yQy =

=In J Interchange x and y: y = In < So f'(z) =In < Note that the range of f and the
T Ty ) 8 Y= T ) T ) &

domain of f~1is (0, 1).

72
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y=fx)=2*+1 = y—1=2z* = z=y—1 [not % since
x > 0]. Interchange z and y: y = v/ — 1. So f ' (x) = +/x — 1. The
graph of y = +/z — 1 is just the graph of y = /z shifted right one unit.

From the graph, we see that f and f~* are reflections about the line y = x.

y=f(z)=2—-¢" = e"=2-—y = z=In(2— y). Interchange
randy: y =In(2 — z). So f~*(x) = In(2 — ). From the graph, we see

that f and f~* are reflections about the line y = .

Reflect the graph of f about the line y = x. The points (—1, —2), (1, —1),
(2,2), and (3, 3) on f are reflected to (—2,—1), (—1,1), (2,2), and (3, 3)

on f1.

Reflect the graph of f about the line y = .

@y=f(zx)=+v/1—22 (0<z<landnotethaty >0) =
v=1-2° = 2’=1-9y* = z=+/1-92%0
FHx)=v1—22 0<x<1 Weseethat f~'and f are the same

function.
(b) The graph of f is the portion of the circle 2* + y? = 1 with 0 < = < 1 and

0 <y < 1 (quarter-circle in the first quadrant). The graph of f is symmetric

with respect to the line y = =, so its reflection about y = x is itself, that is,

=7

INVERSE FUNCTIONS AND LOGARITHMS [
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2. @y=g@@)=V1l-23 = yP=1-2° = 2P*=1-—y
see that g and ¢! are the same function.

(b) The graph of g is symmetric with respect to the line y = x, so its reflection

about y = x is itself, that is, g 7! = g. \ 09"

-2
33. (a) Itis defined as the inverse of the exponential function with base a, that is, log, . =y < a¥ ==.
(b) (0, 00) ©R (d) See Figure 11.
34. (a) The natural logarithm is the logarithm with base e, denoted In x.
(b) The common logarithm is the logarithm with base 10, denoted log x.

(¢) See Figure 13.

35. (a) logy 125 = 3 since 5° = 125. (b) log, 2i7 = —3since 3% = 3—13 = 2i7
36. (a)In(l/e) =Inl—lne=0—1=—1 (b) log,o v/10 = log,, 1072 = L by (7).
37. (a) log, 6 — log, 15 + log, 20 = log, (s) + log, 20 [by Law 2]

= log, (< - 20) [by Law 1]

= log, 8, and log, 8 = 3 since 2° = 8.

(b) log; 100 — logs 18 — logs 50 = logs (4%2) — log; 50 = log; (1525 )

= logs(3), and log;(5) = —2since 372 = 1.

38. (a) 67211’15 — (611'15)_2 (2 572 — 5i2 — 2_15

(b) 1n<ln ee“’) O ey 210
39. In5+5In3=1In5+1n3° [by Law 3]

=In(5-3%) [by Law 1]

=1In1215
40. In(a +b) +In(a — b) — 2Inc=1In[(a + b)(a — b)] —Inc? [by Laws 1, 3]

I (a+b)(a—Db)

= [by Law 2]
a® — b
or In
2
#1. In(1+2?) + 2Inz — Insinz = In(1 + 2?) + Inz'/? — Insinz = In[(1 + 2?)y/z] — Insinz = In %E
In10 In8.4
42. (a) log,, 10 = T ~ 0.926628 (b) log, 8.4 = == ~ 3.070389
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43. To graph these functions, we use log, 5 © = Inz and log,, x = Inz y=logsx
L OEEp ’ SLs T T 15 8507 = 1n50° o
y=Inx
These graphs all approach —oco as = — 0, and they all pass through the iLy =log;gx
point (1, 0). Also, they are all increasing, and all approach co as  — oo. RN A;_ logsgx
The functions with larger bases increase extremely slowly, and the ones with
smaller bases do so somewhat more quickly. The functions with large bases
approach the y-axis more closely as z — 0.
44, We see that the graph of In x is the reflection of the graph of ¢ about the p 3 }/zﬁ)x Y fo
line y = x, and that the graph of log;, , « is the reflection of the graph of 10*
about the same line. The graph of 10” increases more quickly than that % = lln .
y=log,,x
of e”. Also note that log,, * — oo as  — oo more slowly than In . -2 3
\{ J
-2
45. 3 ft = 36 in, so we need x such that log, z = 36 < = = 2°0 = 68,719,476,736. In miles, this is
. 1ft 1 mi .
68,719,476,736 o TR0 R 1,084,587.7 mi.
46, 2 . ——
F R— y=Inx
0 * 5
y=Inx
J 110" 7%10"
-4
From the graphs, we see that f(z) = 2°' > g(x) = Inz for approximately 0 < = < 3.06, and then g(x) > f(x) for
3.06 < = < 3.43 x 10'® (approximately). At that point, the graph of f finally surpasses the graph of ¢ for good.
47. (a) Shift the graph of y = log;, « five units to the left to (b) Reflect the graph of y = In = about the z-axis to obtain
obtain the graph of y = log;,(z + 5). Note the vertical the graph of y = —In .
asymptote of z = —5. y Y
y y

of /1 ro s/l o) ¥ 01 /1 xo\x

y =logypx y =logo(z +5) y=Inzx y=—lnx

55
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48.

49.

50.

51.

52.

53.

54,

55.

L CHAPTER1 FUNCTIONS AND MODELS

(a) Reflect the graph of y = In x about the y-axis to obtain (b) Reflect the portion of the graph of y = In « to the right
the graph of y = In (—x). of the y-axis about the y-axis. The graph of y = In ||

is that reflection in addition to the original portion.

0| /1 X 1\ [0 «x / > >
Y=

y=Inzx y=1In(—x)

y =1In|z|

(@e =6 & T-4rx=In6 <& T-In6=4r < z=2(7—1nb)

1
4
(b)In(3z—10)=2 & 3z-10=¢" & 3z=€e"+10 & z=1(c’+10)
@In@*>-1)=3 & 2*-1=¢* & 2°=1+e & z=+V/1+63

b)) e* —3e"+2=0 & (" —1)(e*"—2)=0 & " =lore*=2 & z=Inlorz=In2,s0z =0o0rIn2.

(@2 "% =3 < log,3=x—-5 & x=>5+log,3.

In3 In3
. or—>5 xr—5 _ _ — —
Or:2°°=3 & In(2°°)=In3 & (z—5In2=mn3 & =z 5_1112 & 5—|—1 5

M Inz+In(z—1)=(z(z-1)=1 & =z(z—-1)=e¢' & 2> —z—e=0. The quadratic formula (witha = 1,
b= —1,and c = —¢) gives x = 3 (1 & +/1 + 4e ), but we reject the negative root since the natural logarithm is not

defined for z < 0. Sox = 3 (1 4+ /1 + 4e).

(@In(lnz)=1 & "D =¢l o hz=e¢=e¢ & ""=¢ o z=¢°

(b) e = Ce & Ine™ =In[C(e")] & ar=InC+br+ne"™ & axr=InC+br &

InC
a—>b

ar—br=InC & (a—bx=InC & z=

(@e®* <10 = Ine®*<Inl0 = z<lnl0 = z¢& (—oco0,nl0)

1 1

G nzr>-1 = ">l = z>e! = z€(l/e,00)

9

@2<lhz<9 = << = f<a<e’ = ze ()

B e’ >4 = mhe** >h4d = 2-3z>h4 = -3z>mh4-2 = z<-1i(nd-2) =
z € (—00,3(2—1n4))
(a) For f(z) =3 — >, wemusthave 3 — e’ >0 = €** <3 = 22<In3 = z<1ihs3.

Thus, the domain of f is (—oco, 1 In 3].

b))y = f(z) =v3—e€2® [notethaty >0] = > =3—-€** = e =3-9°> = 22=mh0B-9) =

z = 1In(3 — y?). Interchange z and y: y = % In(3 — 2?). So f~!(z) = % In(3 — z?). For the domain of f~*,
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wemusthave3— 22 >0 = 22<3 = \x|<\/§ = —V3<z<V3 = 0<z<+3sincez > 0. Note

that the domain of f~*, [0,v/3), equals the range of f.

56. (a) For f(z) =In(2 +Inxz), wemusthave2 +Inz >0 = Inxz > -2 = x> e 2. Thus, the domain of f

b y=f(z)=m2+Inz) = e =2+nz = hz=e —2 = z=e¢""2 Interchangezandy: y = e 2,

So f1(z) = " 2. The domain of f~*, as well as the range of f, is R.

57. We see that the graph of y = f(z) = V&3 + 2 + x + 1 is increasing, so f is 1-1. . > .

Enter x = 1/y3 4+ y? + y + 1 and use your CAS to solve the equation for y.

Using Derive, we get two (irrelevant) solutions involving imaginary expressions,

as well as one which can be simplified to the following: /
y=f"Ya)= -2 (YD —272% + 20 — YD T 27a® — 20 + 2) - 4

-1

where D = 3/3v/272% — 4022 + 16.

Maple and Mathematica each give two complex expressions and one real expression, and the real expression is equivalent

. . o 1 M*3 -8 —2M'?
to that given by Derive. For example, Maple’s expression simplifies to = 8

5 WE , where

M = 10822 + 12 /48 — 12022 + 81z* — 80.

58. (a) If we use Derive, then solving = = y% + y* for y gives us six solutions of the form y = :I:? v B — 1, where

Be {—2sin ?, 2sin(§ + g) ,—2 cos(? + %)} and A = sin™? (%) The inverse for y = 2® + z*

(x>0)isy = @N/B — 1with B =2 sin(? + g) , but because the domain of A is [0, 2;47] , this expression is only

valid for z € [0, 55].

Happily, Maple gives us the rest of the solution! We solve = = 5 4 y* for y to get the two real solutions

VB /O (C?F° —2CTFF 14)

5 5175 , where C' = 108z + 12 v/3/2 (27x — 4), and the inverse for y = 2 4+ z* (z > 0)

is the positive solution, whose domain is [+, 00).

Mathematica also gives two real solutions, equivalent to those of Maple. (b)
.. . \/6 3 1/3 3 —-1/3
The positive one is & JADY3 + 232D — 2, where

D = —2 4 27x 4 3v/3,/z+/27z — 4. Although this expression also has domain

[, 00), Mathematica is mysteriously able to plot the solution for all z > 0.
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59. (a) n = 100-2¢/3 = % —9ot/3 log, (%) = % = t=3log, (1100) Using formula (10), we can write
thisast = f~'(n) =3- % This function tells us how long it will take to obtain n bacteria (given the number n).

50,000
n = 50, = ¢t=f" , = 'n( 100):3 In 500 ~ 26.9 hours
(b) 50,000 £1(50,000) = 3
In2 In2

60. (1) Q = Qo(1 —e /") = %:1—6—”“ = e_t/azl—% = —ézln(l—g> =

t =—aln(l — Q/Qo). This gives us the time ¢ necessary to obtain a given charge Q).
b)) @ =09Qoanda =2 = t=-2In(1-0.9(Qo/Qo)) = —21In0.1 ~ 4.6 seconds.

61. (a) To find the equation of the graph that results from shifting the graph of y = In = 3 units upward, we add 3 to the original
function to get y = Inx + 3.

(b) To find the equation of the graph that results from shifting the graph of ¥y = In = 3 units to the left, we replace x with x + 3
in the original function to get y = In (z + 3).

(¢) To find the equation of the graph that results from reflecting the graph of y = In x about the x-axis, we multiply the
original equation by —1 to gety = —Inz.

(d) To find the equation of the graph that results from reflecting the graph of y = In « about the y-axis, we replace x with —z
in the original equation to get y = In(—x).

(e) To find the equation of the graph that results from reflecting the graph of y = In x about the line y = z, we interchange x
and y in the original equationto getz =lny < y =-e".

(f) To find the equation of the graph that results from reflecting the graph of y = In = about the z-axis and then about the line
y = x, we first multiply the original equation by —1 [to get y = — In 2] and then interchange x and y in this equation to
getr=—Ilny & Iny=-2 < y=e °.

(g) To find the equation of the graph that results from reflecting the graph of y = In = about the y-axis and then about the line
y = x, we first replace = with —z in the original equation [to get y = In(—x)] and then interchange = and y to get
z=In(-y) & —-y=¢e° & y=-—€".

(h) To find the equation of the graph that results from shifting the graph of y = In = 3 units to the left and then reflecting it
about the line y = x, we first replace x with = + 3 in the original equation [to get y = In(z + 3)] and then interchange «
and y in this equationto getz =In(y +3) < y+3=¢€e" < y=e"—3.

62. (a) If the point (z, y) is on the graph of y = f(x), then the point (z — ¢, y) is that point shifted ¢ units to the left. Since f is
1-1, the point (y, =) is on the graph of y = f~*(z) and the point corresponding to (z — ¢, y) on the graph of f is
(y,x — c) on the graph of f~*. Thus, the curve’s reflection is shifted down the same number of units as the curve itself is
shifted to the left. So an expression for the inverse function is g~ (z) = f~*(z) — c.

(b) If we compress (or stretch) a curve horizontally, the curve’s reflection in the line y = x is compressed (or stretched)

vertically by the same factor. Using this geometric principle, we see that the inverse of h(x) = f(cx) can be expressed as

h @) = (1/c) 7 ().
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Lao=t2+t y=t>—t —-2<t<2
t | -2 -1 0 1 2
x 2 0 0 2 6
y 6 2 0 0 2

2.x=1t>, y=1t3—

44, -3<t<3

t +3 +2 +1 0
T 9 4 1 0
y | £15 0 F3 0

3. x =cos’t, y=1

—sint, 0<t<m/2

t |0 =/6 /3 w/2
z |1 3/4 1/4 0
y |1 1/2 1-£L=013 0

t -2 -1 0 1 2

x e’ —2 e—1 1 et 41 e 242
5.39 1.72 1.37 2.14

Y e 242 e 41 1 e—1 e’ —2
2.14 1.37 1.72 5.39

5.2=3t—5 y=2t+1

(a)
t | -2 -1 0 1 2 3 4
x| -11 -8 -5 -2 1 4 7
y| -3 -1 1 3 5 7 9

byz=3t-5 =

y:2~%(x—|—5

3t=x+5 = t=3i(z+5) =

)+ 1soy =2z + L.

[\*)
—_ -
L0
S o

0 2 X
y
=3
(9 15)
t=-1
i—o| 1.3
(0.0)
0 4 X
t=1
(1,-3)
t=-3
9 —15)
y
t=0
1t (L1
-7
=%
v
T| =%
=L 3
=5
(0,0)
0 -
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6.z =1+3t, y=2—1> Y

/
t|{-3 -2 -1 0 1 2 3 2D =TT

(@)

x| -8 -5 -2 1 4 7 10 Cs.—a) 7.-2)
y | =7 -2 1 2 1 -2 -7 t=-2 t=2
2
Mz=1+3t = t=21(z-1) = y=2-[i@z-1],
soy=—2(z—1)*+2.
T.z=Vt,y=1-—t o1 =0
(a) )
t 10 1 2 3 4 (1,0) r=1
z|0 1 1414 1732 2 0 ¥
y|1 0 -1 -2 -3
(b)x:\/f = t=22 = y:l—t:l—xQ.SincetZO,:rZO. ( )
2,=3) t=4
So the curve is the right half of the parabolay = 1 — 2.
42 __ 43 y
8.z=t",y=t (4,8)
() .
t| -2 -1 0 1 2
T 4 1 0 1 4 (=0 (l,l)l‘=1
y|l -8 -1 0 1 8 0 x
(1, =1) r=—1
2
by=t2 = t=3y = m:t2:<§/§) =4?3 teRyeR,z>0. @, —8)
t=-2
9. (@) z =sinz0,y=cos30, -7 <0 < . (b) Y
z% 4+ y? = sin® %0 + cos? %0 = 1. For —m < 0 < 0, we have
—1<z<0and0<y<1l.ForO0< @ <mwehave )0 <z <1
and 1 > y > 0. The graph is a semicircle.
-1 0 1
10. (a) 2 = jcosf,y =2sinf,0 <0 <. (b) Y
2
(2x)2+(%y)2:c0529+sin29:1 = 4’ +iP2=1 =
22 y?
W + 57 = 1, which is an equation of an ellipse with

x-intercepts i% and y-intercepts +2. For 0 < 6 < /2, we have
1 >2>0and0 <y <2 Form/2 <6 <m wehave 0>z > —1

and 2 > y > 0. So the graph is the top half of the ellipse.

0.5 x
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1 1 '
M. (@) z =sint,y =csct,0 <t < F.y =csct = — = —. (b) Y
sint x
For0 <t < 7, wehave 0 <z < 1andy > 1. Thus, the curve is the

portion of the hyperbolay = 1/ withy > 1.

\ (1.1)

12. (a) x = tan® 0, y = secl, —/2 < 0 < 7/2. by ”
1+tan?f =sec’d = 1+z=9y> = z=y>—1 For
—7m/2 <60 <0,wehavex > 0andy > 1. For 0 < 6 < 7/2, we have

0 < z and 1 < y. Thus, the curve is the portion of the parabola z = y? — 1

/
—
1+

in the first quadrant. As 6 increases from — /2 to 0, the point (z, y) 0

approaches (0, 1) along the parabola. As € increases from 0 to 7/2, the

point (x, y) retreats from (0, 1) along the parabola.

61

13. QQz=¢e* = 2t=Inz = t:%Inx. (b) ’
y=t+1l=5hz+1 1»/'/
0 i X
18, () z = et — 1,y = e2t. (b) Y
y = (e)? = (x + 1)? and since = > —1, we have the right side of the
parabola y = (x + 1).
/ |
S o
15. (a) = sinf, y = cos 26. (b) Y
y=cos’f —sin’f =1 —sin? 0 — sin® 4 &
=1-2sin’0 =1- 22"
Since —1 <sinf < land —1<cos20 <1, -1 <z <1,and
—1 <y < 1. The point (x, y) moves back and forth infinitely often along 0 .
the parabola iy = 1 — 222 from (1, —1) to (—1, —1). // \\
(—1,-1) (1,-1)
16. (a) z =1Int,y = /1, t > 1. (b) Y
r=Int = t=¢" = y:\/E:ew/Q,xzo.
(0,1)
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17.

18.

19.

20.

21,

22,

23.

24
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x=3+4+2cost,y =1+ 2sint, 7/2 <t < 3r/2. By Example 4 with» = 2, h = 3, and k = 1, the motion of the particle
takes place on a circle centered at (3, 1) with a radius of 2. As ¢ goes from % to 37”, the particle starts at the point (3, 3) and

moves counterclockwise to (3, —1) [one-half of a circle].

2
r =2sint,y =4+ cost = sintz%,cost:y—4. sint+cos’t=1 = (g) + (y — 4)* = 1. The motion

of the particle takes place on an ellipse centered at (0, 4). As ¢ goes from 0 to &, the particle starts at the point (0, 5) and

moves clockwise to (—2, 4) [three-quarters of an ellipse].

2 2
x =5sint,y = 2cost = sint:%,cost:%. sin?t +cos’t=1 = (%) —}—(%) = 1. The motion of the

particle takes place on an ellipse centered at (0, 0). As ¢ goes from —7 to 5, the particle starts at the point (0, —2) and moves

clockwise around the ellipse 3 times.

y=cos’t=1—sin?t = 1 — 2. The motion of the particle takes place on the parabola y = 1 — 2%. As ¢ goes from —27 to
—, the particle starts at the point (0, 1), moves to (1, 0), and goes back to (0,1). As ¢ goes from — to 0, the particle moves
to (—1,0) and goes back to (0, 1). The particle repeats this motion as ¢ goes from 0 to 27.

We must have 1 <z < 4 and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].
(a) From the first graph, we have 1 < x < 2. From the second graph, we have —1 < y < 1. The only choice that satisfies

either of those conditions is III.

(b) From the first graph, the values of = cycle through the values from —2 to 2 four times. From the second graph, the values

of y cycle through the values from —2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of x cycle through the values from —2 to 2 three times. From the second graph, we have

0 < y < 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of x cycle through the values from —2 to 2 two times. From the second graph, the values of

y do the same thing. Choice II satisfies these conditions.

When t = —1, (z,y) = (0, —1). As ¢ increases to 0, = decreases to —1 and y 7

increases to 0. As t increases from 0 to 1, = increases to 0 and y increases to 1. {i o

As t increases beyond 1, both = and y increase. For t < —1, x is positive and /

decreasing and y is negative and increasing. We could achieve greater accuracy i—_l,OO)\ 0—1) 1= 71x

by estimating - and y-values for selected values of ¢ from the given graphs and

plotting the corresponding points.

Fort < —1, x is positive and decreasing, while y is negative and increasing (these

points are in Quadrant IV). When ¢t = —1, (x,y) = (0, 0) and, as ¢ increases from

—1to 0, x becomes negative and y increases from 0to 1. At¢t =0, (x,y) = (0, 1)

and, as t increases from 0 to 1, y decreases from 1 to 0 and x is positive. At

t =1, (x,y) = (0,0) again, so the loop is completed. For ¢ > 1, z and y both
become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x- and

y-values for selected values of ¢ from the given graphs and plotting the corresponding points.
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25. When t = 0 we see that z = 0 and y = 0, so the curve starts at the origin. As ¢ J 1
2
increases from 0 to %, the graphs show that y increases from 0 to 1 while z
increases from 0 to 1, decreases to 0 and to —1, then increases back to 0, so we
arrive at the point (0, 1). Similarly, as ¢ increases from % to 1, y decreases from 1 R

26.

27.

28.

to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x- and

y-values for selected values of ¢ from the given graphs and plotting the corresponding points.

(@x=t*—t4+1=(t*41) —t > 0 [think of the graphs of y = t* + 1 and y = t] and y = t* > 0, so these equations
are matched with graph V.
b))y =+t>0. x=1t>—2t=t(t—2)isnegative for 0 < ¢ < 2, so these equations are matched with graph I.
(c) x = sin 2t has period 27r/2 = 7. Note that
y(t + 2m) = sinft 4+ 27w + sin 2(¢t + 27)] = sin(¢ + 27 + sin 2t) = sin(¢ + sin 2¢) = y(¢), so y has period 2.
These equations match graph II since x cycles through the values —1 to 1 twice as y cycles through those values once.
(d) = = cos 5t has period 27 /5 and y = sin 2t has period 7, so = will take on the values —1 to 1, and then 1 to —1, before y
takes on the values —1 to 1. Note that when ¢t = 0, (x,y) = (1, 0). These equations are matched with graph VL.
(e) x =t +sin4dt, y =t> + cos3t. Astbecomes large, t and t* become the dominant terms in the expressions for z and

y, so the graph will look like the graph of y = 2%, but with oscillations. These equations are matched with graph IV.

in 2 2 . .

®x= ZI_T_ ti , Y= st_ ti . Ast — oo, x and y both approach 0. These equations are matched with graph III.
Use y =t and z = t — 2sin 7t with a ¢-interval of [—, 7]. p m

—4 4

-1

Usex; =t,y1 =t> — 4t and 2 = 3 — 4t, yo = t with a t-interval of 4 y=x'—dx
[—3, 3]. There are 9 points of intersection; (0, 0) is fairly obvious. The point x=yi—dy
in quadrant I is approximately (2.2, 2.2), and by symmetry, the point in
quadrant I1I is approximately (—2.2, —2.2). The other six points are 4 4
approximately (F1.9, £0.5), (1.7, £1.7), and (F0.5, £1.9).




64

L CHAPTER1 FUNCTIONS AND MODELS

2. @)z =x1+4 (x2 —z1)t,y = y1 + (y2 — y1)t, 0 < ¢t < 1. Clearly the curve passes through P;(x1,y1) when ¢ = 0 and

30.

31.

32,

through P> (22, y2) whent = 1. For 0 < ¢ < 1, « is strictly between z1 and x2 and y is strictly between y1 and y2. For

yz—y1(
Xro — I

every value of ¢, x and y satisfy the relation y — y; = x — x1), which is the equation of the line through

P1 (xl,yl) and Pz(xz, yz).

Finally, any point (z, y) on that line satisfies y—hn _T7n ; if we call that common value ¢, then the given
Y2 — 1 T2 — X1

parametric equations yield the point (z, y); and any (z, y) on the line between P;(x1,y1) and Pz (z2, y2) yields a value of

t in [0, 1]. So the given parametric equations exactly specify the line segment from P (21, y1) to Pa(x2, y2).

b)z=-24+3—-(-2)t=-2+5tandy="T+(—1—-7)t =7—-8tfor0 <t <1.

For the side of the triangle from A to B, use (z1,y1) = (1,1) and (z2, y2) = (4, 2). 6

Hence, the equations are

r=z1+ (x2—21)t=1+ 4 —-1)t =1+ 3t,
y=yi+ (2 —y)t=1+2-1)t=1+t

Graphingz =1+ 3tand y = 1 4 ¢ with 0 < ¢ < 1 gives us the side of the 0 6

triangle from A to B. Similarly, for the side BC we use z = 4 — 3t and y = 2 + 3t, and for the side AC weuse z = 1

andy = 1 + 4¢.

The circle 2* + (y — 1)® = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by x = 2 cost,

y =1+ 2sint, 0 < t < 27. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise orientation, we could change the equations to z = 2cost,y = 1 — 2sint, 0 < t < 27.

(b) To get three times around in the counterclockwise direction, we use the original equations x = 2 cost, y = 1 + 2sint with
the domain expanded to 0 < ¢ < 6.

(c) To start at (0, 3) using the original equations, we must have z1 = 0; that is, 2cos ¢ = 0. Hence, ¢ = Z. So we use
x=2cost,y=1+2sint, 5 <t < 37“

Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use

r=—2sint,y =1+ 2cost,0 <t <.

(a) Let 22 /a* = sin? t and y? /b®> = cos® t to obtain = asint and p 8 )
y = bcost with 0 < ¢ < 27 as possible parametric equations for the ellipse b=4
z?/a® +y? /b = 1. £ bb==2

(b) The equations are z = 3sint and y = bcost forb € {1, 2,4, 8}. - s

(c) As b increases, the ellipse stretches vertically.

\ J
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SECTION 1.7 PARAMETRIC CURVES U
Big circle: 1t’s centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are
r =2+ 2cost, y =2+ 2sint, 0<t<2r

Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are
(left) z=1+40.1cost, y=3+0.1sint, 0<t<2r

and (right) xz =34 0.1cost, y =3+ 0.1sint, 0<t<2r

Semicircle: 1t’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

r =2+ lcost, y =2+ 1sint, m<t<2mw

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last ¢-interval to [0, 27] i

65

n

order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to

[T L

get the lower half—one is to change the “+” to a in the y-assignment, giving us

x =2+ 1cos(0.51), y = 2 — 1sin(0.5t), 0<t<2r

If you are using a calculator or computer that can overlay graphs (using multiple ¢-intervals), the following is appropriate.
Left side: © = 1 and y goes from 1.5 to 4, so use

=1, y=t, 1.5<t<4
Right side: x = 10 and y goes from 1.5 to 4, so use

z = 10, y =1, 15<t<4
Bottom: x goes from 1 to 10 and y = 1.5, so use

T =1, y=1.5, 1<t<10
Handle: 1t starts at (10, 4) and ends at (13,7), so use

x =10+1¢, y=4+1, 0<t<3

Left wheel: 1t’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

—_ _ : 5 137
r =3+ lcost, y =1+ 1sint, Flt<=E

Right wheel: Similar to the left wheel with center (8, 1), so use
z = 8+ lcost, y =1+ 1sint, <

If you are using a calculator or computer that cannot overlay graphs (using one ¢-interval), the following is appropriate.
We’ll start by picking the ¢-interval [0, 2.5] since it easily matches the ¢-values for the two sides. We now need to find
parametric equations for all graphs with 0 < ¢ < 2.5.

Left side: © = 1 and y goes from 1.5 to 4, so use

=1 y=15+¢t  0<t<25
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Right side: x = 10 and y goes from 1.5 to 4, so use

=10, y=15+¢t  0<t<25

Bottom: x goes from 1 to 10 and y = 1.5, so use

xz =1+ 3.6¢, y = 1.5, 0<t<25

To get the x-assignment, think of creating a linear function such that when ¢ = 0, z = 1 and when t = 2.5,
2 = 10. We can use the point-slope form of a line with (¢1,z1) = (0, 1) and (¢2, z2) = (2.5, 10).

10—-1
25-0

r—1= (t—0) = x=1+3.6t.

Handle: Tt starts at (10,4) and ends at (13, 7), so use
r=10+12t, y=4+12t, 0<t<25

. 13—-1
(t1,21) = (0,10) and (ts, z3) = (2.5, 13) gives us z — 10 — 235 _ g(t ~0) = a—10+12t

. —4
(tl,yl):(0,4)and(t2,y2):(2.5,7)glvesusy—4:275_0(75—0) = y=4+ 12t

Left wheel: 1t’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

x:3+1cos(§—gt+5%), y:l—l—lsin(?—gt—i—%), 0<t<25

Right wheel: Similar to the left wheel with center (8, 1), so use

r=8+1cos(55t+5), y=1+1sin(55t+5), 0<t<25

3. (@ z=t> = t=a3soy=1>=2a2?° b)yz=t° = t=z%soy=1t*=a"0 =23
We get the entire curve y = 22/ traversed in a left to Since z = t° > 0, we only get the right half of the
right direction. curve y = z2/3,

Y y
x=ty=+ x=15
y=1t* t>0
/
“7<0
0 X 0 X
(©z=e3=("% [soet=2z'?], Y
X 73[3
y=e 2t:(e t)2:(x1/3)2:x2/3. y=6'72’ <0
Ift < 0, then x and y are both larger than 1. If ¢ > 0, then x and y >0 /
. 11
are between 0 and 1. Since > 0 and y > 0, the curve never quite 0 .

reaches the origin.
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36. (a) x =t,s0y =t 2 = 2~ 2. We get the entire curve y = 1/2? traversed in a

left-to-right direction.

cos?t =
parts of the curve y = 1/x2 with iy > 1. We get the first quadrant portion of

the curve when x > 0, that is, cos ¢ > 0, and we get the second quadrant

portion of the curve when x < 0, that is, cost < 0.

(c)r=c',y=e? = (e")"? = 272 Since e’ and e~ *" are both positive, we

only get the first quadrant portion of the curve y = 1/22. y=e ¥

1 1 .
(b) x = cost,y =sec’t = — - Since sect > 1, we only get the X=cos?, \
0 i X

37. The case § < 0 < 7 is illustrated. C' has coordinates (0, 7) as in Example 7,

and @ has coordinates (70,7 + r cos(m — 0)) = (r0,r(1 — cos 9)) P (0
[since cos(m — @) = cos 7 cos a + sin 7 sin a = — cos ], so P has c

coordinates (10 — rsin(m — 0),r(1 — cos0)) = (r(0 — sin @), r(1 — cos 0))

(=)

<7r0*>| X

[since sin(m — o) = sin 7 cos @ — cos 7 sin & = sin «]. Again we have the
parametric equations x = (0 — sin ), y = r(1 — cos6).

38. The first two diagrams depict the case 7 < 6 < 37”, d < r. As in Example 7, C has coordinates (76, r). Now @ (in the second
diagram) has coordinates (10, r 4+ dcos(6 — 7)) = (r0,r — d cos 0), so a typical point P of the trochoid has coordinates

(r0 + dsin(0 — ), r — dcos ). That is, P has coordinates (x,y), where © = 10 — dsinf and y = r — d cos . When

d = r, these equations agree with those of the cycloid.

B
ioa

y

0
39. It is apparent that © = |OQ| and y = |QP| = |ST|. From the diagram, Y
x = |0Q| =acosfandy = |ST| = bsin 0. Thus, the parametric equations are
S
x = acosf and y = bsin . To eliminate § we rearrange: sin = y/b = N b R
0
sin?# = (y/b)* and cos® = x/a = cos? 0 = (z/a)’. Adding the two Qj 0 x

equations: sin” @ +cos” .= 1. = a%/a® + > /b?- Thus, we have an ellipse:
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40. C' = (2acot 0, 2a), so the z-coordinate of P is z = 2a cot 0. Let B = (0, 2a). 7
2

Then ZOAB is aright angle and Z/OBA = 6, so |OA| = 2asin 6 and °

A = ((2asin0) cos 0, (2asin ) sin ). Thus, the y-coordinate of P

is y = 2asin” 6.

41. (a) 4 There are 2 points of intersection:

(—3,0) and approximately (—2.1,1.4).

—4
(b) A collision point occurs when ;1 = 2 and y; = ys for the same ¢. So solve the equations:
3sint = =3 +cost (1)
2cost =1+ sint 2)
From (2), sint = 2 cost — 1. Substituting into (1), we get 3(2cost — 1) = =3+ cost = bcost=0 (x) =
cost=0 = t=7For 37” We check that t = 37” satisfies (1) and (2) but ¢ = 5 does not. So the only collision point

occurs when ¢t = 37”, and this gives the point (—3,0). [We could check our work by graphing x1 and x2 together as

functions of ¢ and, on another plot, y1 and y2 as functions of ¢. If we do so, we see that the only value of ¢ for which both

7]

pairs of graphs intersect is ¢ = <.

(c) The circle is centered at (3, 1) instead of (—3, 1). There are still 2 intersection points: (3,0) and (2.1, 1.4), but there are
no collision points, since (x) in part (b) becomes 5cost =6 = cost = % > 1.
42. (a) If @ = 30° and vy = 500 m/s, then the equations become = = (500 cos 30°)t = 250 v/3t and
y = (500sin 30°)t — (9.8)t> = 250t — 4.9¢>. y = 0 when ¢ = 0 (when the gun is fired) and again when
t =22 ~51s. Thenz = (250 /3 ) (222) ~ 22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for y is quadratic in ¢. To find the maximum y-value, we will complete the square:

y=—49(7 — B81) = ~49[2 - Bo+ (3)7] + 5 = —a9(e - 1) + 25 < 28

125

. . L 2
Zo S so the maximum height attained is % ~ 3189 m.

with equality when t =

14,000

(b) As a (0° < a < 90°) increases up to 45°, the projectile attains a
greater height and a greater range. As « increases past 45°, the

projectile attains a greater height, but its range decreases.

28,000

\
a=15° a=30°
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() x = (vocosa)t = t=—2
Vo COS ¢

2
y = (vosina)t — 39 y = (vosina) vocosa 2 \ vocosa (tan )z 20§ cos? o v

which is the equation of a parabola (quadratic in z).

43. x =ty = t*> — ct. We use a graphing device to produce the graphs for various values of ¢ with —m < ¢ < 7. Note that all
the members of the family are symmetric about the z-axis. For ¢ < 0, the graph does not cross itself, but for ¢ = 0 it has a

cusp at (0, 0) and for ¢ > 0 the graph crosses itself at = ¢, so the loop grows larger as c increases.

3 1

44, © = 2ct — 4t®,y = —ct® + 3t*. We use a graphing device to produce the graphs for various values of ¢ with —7 < t < 7.
Note that all the members of the family are symmetric about the y-axis. When ¢ < 0, the graph resembles that of a polynomial
of even degree, but when ¢ = 0 there is a corner at the origin, and when ¢ > 0, the graph crosses itself at the origin, and has

two cusps below the x-axis. The size of the “swallowtail” increases as ¢ increases.

45. Note that all the Lissajous figures are symmetric about the xz-axis. The parameters a and b simply stretch the graph in the
x- and y-directions respectively. For a = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses
itself at the origin and there are loops above and below the z-axis. In general, the figures have n — 1 points of intersection,

all of which are on the y-axis, and a total of n closed loops.

2.
'd ! ~ <
— @b =32 - (a,b)=(2,3)
— (a,0)=(,2)
T @b =21
2.1 -3.1 31
S~ T J
—2.1

n=2
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46. x = cost,y =sint —sinct. Ifc =1, theny = 0, and the curve is simply the line segment from (—1,0) to (1,0). The

graphs are shown for ¢ = 2, 3,4 and 5.

2
c=4 2 c=5
_1 %41 1%% |
-2 -2

It is easy to see that all the curves lie in the rectangle [—1, 1] by [—2, 2]. When c is an integer, (¢ + 27) = z(t) and
y(t + 2m) = y(t), so the curve is closed. When c is a positive integer greater than 1, the curve intersects the x-axis ¢ + 1 times
and has ¢ loops (one of which degenerates to a tangency at the origin when c is an odd integer of the form 4k + 1).
As c increases, the curve’s loops become thinner, but stay in the region bounded by the semicircles y = + (1 +v1—22 )
and the line segments from (—1, —1) to (—1,1) and from (1, —1) to (1, 1). This is true because

ly| = |sint — sinct| < [sint| + [sinct| < +/1 — 22 4 1. This curve appears to fill the entire region when c is very large, as
shown in the figure for ¢ = 1000.

2.5 ¢=1000

-2.5
When c is a fraction, we get a variety of shapes with multiple loops, but always within the same region. For some fractional
values, such as ¢ = 2.359, the curve again appears to fill the region.

c=1 c== =1
2 2 2 ]

-1 1 -1 1
= )
2 c=4.7 2.5 c=2.359
S v’v"““
i
SR

SONEX
S




LABORATORY PROJECT  RUNNING CIRCLES AROUND CIRCLES U

LABORATORY PROJECT Running Circles Around Circles

4

1. The center () of the smaller circle has coordinates ((a — b)cos 8, (a — b)sin 0).

Arc PS on circle C has length af since it is equal in length to arc AS /o
(the smaller circle rolls without slipping against the larger.)

Thus, ZPQS = %0 and ZPQT = %9 — 6, so P has coordinates

2= (a—b)cos O + beos(£PQT) = (a — b)cos § + bc"S(a g b9>

)

. With b = 1 and a a positive integer greater than 2, we obtain a hypocycloid of a
cusps. Shown in the figure is the graph for a = 4. Let a = 4 and b = 1. Using the
sum identities to expand cos 36 and sin 36, we obtain

m:3cos€—|—c0339:3c039—|—(4cos3973c089):4c0339 0 a ¥

and  y= (a—b)sinf — bsin(/PQT) = (a — b)sin — bsm(“

y
\O A
y

and y=3sinf —sin30 = 3sinf — (3sin9 —4sin39) = 4sin® 6.

. The graphs at the right are obtained with b = 1 and

_ 111 Lo
a =3, 3 Z,andl—o with —27 S 0 S 2m. We
conclude that as the denominator d increases, the graph o
gets smaller, but maintains the basic shape shown.

Letting d = 2 and n = 3, 5, and 7 with —27 < 6 < 27 gives us the following:

-5

So if d is held constant and n varies, we get a graph with n cusps (assuming n/d is in lowest form). When n = d + 1, we

obtain a hypocycloid of n cusps. As n increases, we must expand the range of 6 in order to get a closed curve. The following

=
[

, and

IS

graphs have @ = 3, i

o

-5
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4. If b = 1, the equations for the hypocycloid
= (a—1)cosf + cos((a—1)0)

arc

close to a point on the curve.

a=+2, —-10mr<60<107

5. The center ) of the smaller circle has coordinates ((a + b) cos 6, (a
Arc PS has length af (as in Problem 1), so that ZPQ.S = %0, ZP

(a Z b) 0 since Z/ROT = 0.

LA S

and ZPQT =m — 5
Thus, the coordinates of P are

x= (a—i—b)cos@—}—bcos(

T ——10

and y—(a+b)sin0—bsin<7r—aT+b9

6. Let b = 1 and the equations become
= (a+1)cosf — cos((a+ 1)0)

If a = 1, we have a cardioid. If a is a positive

ath ) = (a—l—b)cos@—bcos(a

) = (a—|—b)sin0—bsin(

N\
N

NN
TN

SR
R
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=
23

s

Q
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% 0’0

&

2%

>
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Z
LY

77
277
77

7

=

77
A7
17

a=e—2,
+ b) sinf).
ab
QRiﬂ-_ ?3

a+b
).

y=(a—1)sinf —sin ((a — 1) 0)

which is a hypocycloid of a cusps (from Problem 2). In general, if ¢ > 1, we get a figure with cusps on the “outside ring” and
if a < 1, the cusps are on the “inside ring”. In any case, as the values of 6 get larger, we get a figure that looks more and more

like a washer. If we were to graph the hypocycloid for all values of 6, every point on the washer would eventually be arbitrarily

0 <0< 446

v
N

y=(a+1)sinf —sin((a + 1)0)

integer greater than 1, we get the graph of an
“a-leafed clover”, with cusps that are a units
from the origin. (Some of the pairs of figures are

not to scale.)

If a = n/d with n = 1, we obtain a figure that

does not increase in size and requires
—dm < 0 < dm to be a closed curve traced

exactly once.

all
—

a=3,—27<60<2r

0

3
IN
IN

>

=)
|
NI

=
5

a=10, 27 <60 <27

=1
47 a=z
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Next, we keep d constant and let n vary. Asn
increases, so does the size of the figure. There is

an n-pointed star in the middle.

Now if n = d + 1 we obtain figures similar to the
previous ones, but the size of the figure does not

increase.

If @ is irrational, we get washers that increase in

size as g increases.

a=+2,0<0<200 a=e—2,0<0 <446

Review
CONCEPT CHECK

73

. (a) A function f is a rule that assigns to each element x in a set A exactly one element, called f(z), in a set B. The set A is
called the domain of the function. The range of f is the set of all possible values of f(z) as x varies throughout the
domain.

(b) If f is a function with domain A, then its graph is the set of ordered pairs {(x, f(z)) | x € A}.

(c) Use the Vertical Line Test on page 17.

. The four ways to represent a function are: verbally, numerically, visually, and algebraically. An example of each is given
below.

Verbally: An assignment of students to chairs in a classroom (a description in words)
Numerically: A tax table that assigns an amount of tax to an income (a table of values)
Visually: A graphical history of the Dow Jones average (a graph)

Algebraically: A relationship between distance, rate, and time: d = rt (an explicit formula)

. (a) An even function f satisfies f(—z) = f(z) for every number x in its domain. It is symmetric with respect to the y-axis.

(b) An odd function g satisfies g(—z) = —g(x) for every number z in its domain. It is symmetric with respect to the origin.
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4. A function f is called increasing on an interval [ if f(z1) < f(x2) whenever 1 < x2 in I.

5. A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world
phenomenon.

6. (a) Linear function: f(z) =2z + 1, f(x) =ax +b 7.
(b) Power function: f(z) = 22, f(z) = 2

(c) Exponential function: f(x) = 2%, f(z) = a”

(d) Quadratic function: f(z) = 2®> + 2 + 1, f(z) = az® + bz + ¢
(e) Polynomial of degree 5: f(x) = z° + 2

(f) Rational function: f(z) = . j_ 5> flx)= % where P(z) and
Q(x) are polynomials
8. (a) V ® ooy o
o~ i)
N YaRV(RTARE
(c) y (d) y (e) ’

/ y=1/x
y=e¢* y=lInx
/ T

(f)
Y (2 ’

Y=

y = x|

9. (a) The domain of f + g is the intersection of the domain of f and the domain of g; that is, A N B.
(b) The domain of fgis also AN B.
(c) The domain of f/g must exclude values of x that make g equal to 0; thatis, {x € AN B | g(x) # 0}.

10. Given two functions f and g, the composite function f o g is defined by (f o g) (z) = f(g (z)). The domain of f o g is the
set of all  in the domain of g such that g(«) is in the domain of f.

1. (a) If the graph of f is shifted 2 units upward, its equation becomes y = f(z) + 2.
(b) If the graph of f is shifted 2 units downward, its equation becomesy = f(x) = 2
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13.
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(c) If the graph of f is shifted 2 units to the right, its equation becomes y = f(x — 2).

(d) If the graph of f is shifted 2 units to the left, its equation becomes y = f(x + 2).

(e) If the graph of f is reflected about the z-axis, its equation becomes y = — f ().

(f) If the graph of f is reflected about the y-axis, its equation becomes y = f(—x).

(g) If the graph of f is stretched vertically by a factor of 2, its equation becomes y = 2 ().
(h) If the graph of f is shrunk vertically by a factor of 2, its equation becomes y = 3 f ().

(i) If the graph of f is stretched horizontally by a factor of 2, its equation becomes y = f(3).
(j) If the graph of f is shrunk horizontally by a factor of 2, its equation becomes y = f(2x).

(a) A function f is called a one-to-one function if it never takes on the same value twice; that is, if f(z1) # f(x2) whenever
x1 # xa. (Or, f is 1-1 if each output corresponds to only one input.)
Use the Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more
than once.
(b) If f is a one-to-one function with domain A and range B, then its inverse function f~' has domain B and range A and is

defined by
Fly) =2 & fl@)=y

for any y in B. The graph of f~' is obtained by reflecting the graph of f about the line y = .

(a) A parametric curve is a set of points of the form (z,y) = (f(¢), g(¢)), where f and g are continuous functions of a
variable t.

(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the
curve by finding f(¢) and g(t) for various values of ¢, either by hand or with a calculator or computer. Sometimes, when
f and g are given by formulas, we can eliminate ¢ from the equations = = f(¢) and y = g(¢) to get a Cartesian equation

relating x and y. It may be easier to graph that equation than to work with the original formulas for « and y in terms of ¢.

(c) See the margin note on page 72.

TRUE-FALSE QUIZ

. False.  Let f(z) =2 s=—1,andt = 1. Then f(s +t) = (=1 +1)*> = 0> = 0, but
&+ f)=(-1)?+12=2#0= f(s+1).

. False.  Let f(x) = 2°. Then f(—2) = 4 = f(2), but —2 # 2.
. False.  Let f(x) = 2°. Then f(3z) = (32)* = 92% and 3f(z) = 32°. So f(3x) # 3f(z).
True. If x1 < x2 and f is a decreasing function, then the y-values get smaller as we move from left to right.
Thus, f(z1) > f(x2).
True. See the Vertical Line Test.

. False.  Let f(x) = 2% and g(z) = 2. Then (f o g)(z) = f(g(x)) = f(22) = (22)* = 42* and
(g.0.f) (@)= g(f(z)) = g(2?) = 22”. S0 fog # go [.
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7. False.  Let f(x) = 2®. Then f is one-to-one and f~'(z) = ¥/x. But 1/f(x) = 1/2>, which is not equal to f~*(z).
8. True. We can divide by e” since e” # 0 for every x.
9. True. The function In  is an increasing function on (0, 00).

10. False. Letx =e. Then (Inz)® = (Ine)® =1° = 1,but6lnz =6lne=6-1=6 # 1 = (Inx)°.

2

1 Ine? 21 .
nr ne _zhe 2 and In r_ In £ Ine = 1, so in general the statement
a e

11. False. Letz = ¢ and a = e. Then — = =
Ina Ine Ine

is false. What is true, however, is thatIn — = Inx — In a.
a

12. False.  The first pair of equations gives the portion of the parabola y = 2 with 2 > 0, whereas the second pair of equations

traces out the whole parabola y = 2.

EXERCISES
1. (a) When = = 2, y ~ 2.7. Thus, f(2) ~ 2.7. (b) f(z) =3 = z~23,56
(c) The domain of f is —6 < z < 6, or [—6, 6]. (d) The range of fis —4 <y < 4, or [—4,4].

(e) f is increasing on [—4, 4], thatis, on —4 < z < 4.
(f) f is not one-to-one since it fails the Horizontal Line Test.

(g) f is odd since its graph is symmetric about the origin.

2. (a) When z = 2, y = 3. Thus, ¢g(2) = 3.

(b) g is one-to-one because it passes the Horizontal Line Test. -1

(c) Wheny = 2,z ~ 0.2. So g~ *(2) ~ 0.2.

(d) The range of g is [—1, 3.5], which is the same as the domain of g . / 1 .

(e) We reflect the graph of g through the line iy = x to obtain the graph of g *.

3. f(x) =2* —2x+ 3,50 f(a+h) = (a+h)*> —2(a+h) +3=a’®+2ah + h* — 2a — 2h + 3, and

fla+h)—fla) (a®+2ah+h*—2a—2h+3)—(a*—2a+3) h(2a+h—2)

4. There will be some yield with no fertilizer, increasing yields with increasing yield
fertilizer use, a leveling-off of yields at some point, and disaster with too

much fertilizer use.

0 | fertilizer

5. f(z) =2/(3z — 1). Domain: 3z —1#0 = 3x#1 = z#3:. D= (—00,3)U(3,00)

)3 3
Range: all reals except O (y = 0 is the horizontal asymptote for f.) R = (—o00,0) U (0, 00)

6. g(x) = V16 — z%. Domain: 16 —2* >0 = 2*<16 = |2|< V16 = |z[/<2. D=[-2,2]
Range: y>0andy <+v16 = 0<y<4 R=]0,4]



7. h(z) = In(x + 6).
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Domain: x4+6>0 = z>—-6. D= (—6,00)

Range: x + 6 > 0, so In(x + 6) takes on all real numbers and, hence, the range is R.

R = (—00,00)

8. y=F(t) =3+ cos2t. Domain: R. D = (—o00,00)

Range: —1<cos2t<1 = 2<34cos2t<4 = 2<y<4 R=[2/4

9. (a) To obtain the graph of y = f(x) + 8, we shift the graph of y = f(x) up 8 units.

(b) To obtain the graph of y = f(z + 8), we shift the graph of y = f(z) left 8 units.

(c) To obtain the graph of y = 1 + 2f(x), we stretch the graph of y = f(z) vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of y = f(x — 2) — 2, we shift the graph of y = f(z) right 2 units (for the “—2” inside the

parentheses), and then shift the resulting graph 2 units downward.

(e) To obtain the graph of y = — f(x), we reflect the graph of y = f(x) about the x-axis.

(f) To obtain the graph of y = f~*(x), we reflect the graph of y = f(x) about the line y = z (assuming f is one-to-one).

10. (a) To obtain the graph of y = f(x — 8), we shift the

graph of y = f(x) right 8 units.

(c) To obtain the graph of y = 2 — f(z), we reflect the

graph of y = f(z) about the z-axis, and then shift the

resulting graph 2 units upward.

¥
\..
0

S

X

(e) To obtain the graph of y = f~'(z), we reflect the
graph of y = f(z) about the line y = .

y

L
4

(b) To obtain the graph of y = — f(x), we reflect the graph

of y = f(z) about the z-axis.

(d) To obtain the graph of y = % f(x) — 1, we shrink the
graph of y = f(z) by a factor of 2, and then shift the

resulting graph 1 unit downward.

() To obtain the graph of y = f~*(x + 3), we reflect the
graph of y = f(x) about the line y = x [see part (e)],

and then shift the resulting graph left 3 units.

y
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1.

12.

13.

14.

15.

16.

17.
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y = —sin 2z: Start with the graph of y = sin x, compress horizontally by a factor of 2, and reflect about the z-axis.

y
= SIH.X

=sin2x

/N /\ /\/\/\/\

y
y=—sin2x

VANVAN

/\/‘\/x\/\/\/‘\ﬁf x

y = 3In(x — 2):
Start with the graph of y = In z,
shift 2 units to the right, and

stretch vertically by a factor of 3.

y=3z(1+e"):
Start with the graph of y = e”,
shift 1 unit upward, and compress

vertically by a factor of 2.

y=2—/x:
Start with the graph of y = /z,
reflect about the z-axis, and shift

2 units upward.

fl@) = m—1|—2:

Start with the graph of f(z) = 1/x

and shift 2 units to the left.

fa) —x ifx <0
) =
e*—1 ifz>0

\/\/OF/M\A

On (—00,0), graph y = — (the line with slope —1 and y-intercept 0)

with open endpoint (0, 0).

y y x=2 y
=Ilnx y=Inx—2)
0(1 x of i3 x 0
y y y
_ x 2
y= 1
v 1 =1
_y ] Y2
0 x 0 x 0 x
2
y=vx y=2-yx
X
0 0 0 4
——
TR 1
1 x=-2i =
= | YT x+2
Y L
1 \2
ﬁo W 0 x
y
y=e'—1
0 X
y=—x

On [0, 00), graph y = e” — 1 (the graph of y = e” shifted 1 unit downward)

with closed endpoint (0, 0).

(a) The terms of f are a mixture of odd and even powers of , so f is neither even nor odd.

(b) The terms of f are all odd powers of x, so f is odd.

(©) f(—z) = L A f(x), so f is even.

(d)f (=2)1= L +sin(=z) =1 = sin z: Now f(

—x) % f(z)and f(=x) #= f(x),so f isneither even nor odd.
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18. For the line segment from (—2, 2) to (—1, 0), the slope is 0

1z —2, and an equationis y — 0 = —2(z + 1) or,

equivalently, y = —2z — 2. The circle has equation 22 4+ y? = 1; the top half has equation y = v/1 — 2 (we have solved for
). Thus, f(2) —2x—2 if 2<x< -1
positive y). Thus, f(x) =
Vi—22 if -1<z<1
19. f(z) =lnz, D= (0,00); g(z)=2>-9, D=R.
@) (f o g)(z) = f(g(x)) = f(z* = 9) = In(a* - 9).
Domain: 2> —9>0 = 2°>9 = |z[/>3 = z¢& (—00,—3)U(3,00)
®) (9o f)(z) = g(f(x)) = g(lnz) = (Inz)®> — 9. Domain: x > 0, or (0, cc)
©) (fo f)(x) = f(f(z)) = f(lnz) =In(lnz). Domain:lnz >0 = =z >e=1,o0r(1,00)

(d) (gog)(x) =g(g(x)) = g(z® —9) = (z* —9)*> —9. Domain: z € R, or (—00, 0)

20. Let h(z) = z + /7, g(x) = /x,and f(z) = 1/z. Then (f o go h)(z) = _ F(z).
T+ T
21, 80 Many models appear to be plausible. Your choice depends on whether you

think medical advances will keep increasing life expectancy, or if there is
bound to be a natural leveling-off of life expectancy. A linear model,

y = 0.2493x — 423.4818, gives us an estimate of 77.6 years for the

189045 X 2010 year 2010.
22, (a) Let = denote the number of toaster ovens produced in one week and ¥4 (cost)
y the associated cost. Using the points (1000, 9000) and 12,0007
(1500, 12,000), we get an equation of a line: zzzz i y = 6x +3000
y — 9000 = % (x —1000) = 30001
y =6 (x —1000) + 9000 = y = 6z + 3000. 500 1000 1500 2000

(toaster ovens)
(b) The slope of 6 means that each additional toaster oven produced adds $6 to the weekly production cost.

(¢) The y-intercept of 3000 represents the overhead cost—the cost incurred without producing anything.

23. We need to know the value of z such that f(z) = 2z + Inz = 2. Since x = 1 givesusy = 2, f~1(2) = 1.

1 . . 1
4. y= Tt . Interchanging x and y gives us z = vt = 2zyt+arx=y+1 = 2zxy—-y=1—-2z =
2z +1 2y +1
1—x
2z —1)=1- = = f ().
y(2z — 1) v = y=g— =1

25. (a) 621113 — (eln3)2 _ 32 =9

(b) log,, 25 + log,, 4 = log,,(25 - 4) = log,, 100 = log;, 10* = 2
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26. )" =5 = x=Inb
b)ylnz=2 = z=2¢
(e =2 = *=h2 = x =1n(In2)

27. (a) After 4 days, % gram remains; after 8 days, % g; after 12 days, % g; after 16 days, % g.

1 1 1 1 1 —t/4
(b) m(4) = 5 m(8) = 5 m(12) = 55 m(16) = 5 From the pattern, we see that m(t) = 57> OF 2745,
(cym=2""* = log, m = —t/4 = t= —4log,m; this is the time elapsed when there are m grams of '°°Pd.
(d)m =001 = t=—4log,0.01= —4(11112'31) ~ 26.6 days
28. (@A) 900 The population would reach 900 in about 4.4 years.
0 10

(b) P = __100,000 = 100P + 900Pe™ " = 100,000 = 900Pe~* = 100,000 — 100P =

100 + 900e—* B ’ N ’

900P 9P

required for the population to reach a given number P.

9P

. _ 100,000 —100P _ ., (1000—P\ _ . | (1000—P) [ OP
B B B ’ 1000 — P

) ; this is the time

9-900
P = =In| ————— | =In81 ~ 4.4 i .
(c) 900 = t=1In < 1000 — 900) n8 years, as in part (a)

29. f(x) = In(z® — ¢). If ¢ < 0, the domain of f is R. If ¢ = 0, the

domain of f is (—00,0) U (0, 00). If ¢ > 0, the domain of f is

(—00, —/¢) U (1/¢, ). As c increases, the dip at z = 0 becomes

deeper. For ¢ > 0, the graph has asymptotes at z = ++/c.

30. 50 100 500

f

-10 —10

-50
For large values of z, y = a” has the largest y-values and y = log,, « has the smallest y-values. This makes sense because
they are inverses of each other.



31. (a)

32 () (z—272+y2=4 = =L 1Y 1 Let

CHAPTER 1

(e, 1)

1 X

0<t<1l = 0<y<landl<z<e.

(33_2)2 ° (37_2)2_~2 ZJ2_ 2
1 1 = sin“ t and 1 = cos“t (b)

(since sin? ¢t 4+ cos? t = 1). Solving for = and y gives * = 2 + 2sint and y = +2 cos .
We want to move from (2, 2) to (2, —2) and pass through (0, 0). When ¢ = 0, we want
y = 2,50 choose y = 2cost. Whent = 7, we want = 0, so choose z = 2 — 2sinf.
Thus, parametric equations are x = 2 — 2sint, y = 2cost, 0 < ¢t < 7. Another

possibility is x = 2 + 2cost, y = 2sint, 5§ <t < 33”

33. We sketch z = ¢, y = 2t + Int (the function) and x = 2¢ + In ¢, y = ¢ (its inverse) for ¢ > 0.

34. (a) Let 6 be the angle of inclination of segment O P. Then |OB| =

2a

(b)

cosf’
Let C' = (2a,0). Then by use of right triangle O AC' we see that |OA| = 2a cos 0.
Now
|OP| = |AB| = |OB| — |OA]
1 —cos?6 _ sin? 4

= 2a ! —cosf | =2a = 2a = 2asinf tan
cosf cos 6 cosf

So P has coordinates z = 2a sinf tan - cos @ = 2a sin? 6 and

y = 2asin@ tanf - sin @ = 2a sin? 0 tan 6.

b)yz=e" = t=lnz;y=+tsoy=+VInz.

REVIEW O
Y
B m

3a
2a-

81

—2a-
—3a

x=2a
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[] PRINCIPLES OF PROBLEM SOLVING

By using the area formula for a triangle, 1 (base) (height), in two ways, we see that
1(4)(y) =3 (h)(a),s0a= 4%/ Since 4% + y* = h?, y = v/h? — 16, and

. _ WA 16
- =

2 p—
2. Refer to Example 1, where we obtained h = % The 100 came from

4 times the area of the triangle. In this case, the area of the triangle is

12 P? — 4(6h)

2(h)(12) = 6h. Thus, h = 5P 2Ph = P* —24h =

P?
_ p2 _ p2 —
2Ph+24h=P* = h(2P+24)=P° = h_2P 21

20 —1 if x> r+5 if x> -5
3|22 —1]| =

and |z + 5| =
1-22 if z<

Nl= =

—x—5 if x <=5
Therefore, we consider the three cases z < —5, =5 < z < 1,andz > 1.

Ifx < —5,wemusthave 1 —2x — (—x —5) =3 < x = 3, which is false, since we are considering x < —5.

If -5 <z < %,wemusthavel -2z — (z+5)=3 & z=-1.
Ifz > 1 wemusthave2z —1— (z+5)=3 < z=09.

So the two solutions of the equation are x = —% andz = 9.

s z—1 ifx>1 q | 3) r—3 if >3
e —1| = an r—3] =
| | 11—z ifz<l1 3—x ifz<3

Therefore, we consider the three cases x < 1,1 < z < 3, and = > 3.

Ifxr < 1,wemusthavel —z — (3—x)>5 < 0> 7, whichis false.
Ifl<z<3 wemusthavex —1—(3—2)>5 & x> %,which is false because z < 3.
Ifz >3, wemusthavex — 1 — (x —3) > 5 < 2> 5, which is false.
All three cases lead to falsehoods, so the inequality has no solution.
5. f(z) = |2® —4|x| + 3|. Ifz > 0, then f(z) = |2° — 4z + 3| = |(z — 1)(z — 3)|.
Case (i): Tf0 < x < 1,then f(x) = 2* —4a + 3.
Case (ii): 1f1 <z < 3,then f(z) = —(2® — 42+ 3) = —2® + 4z — 3.
Case (iii): 1f x > 3, then f(x) = 2® — 42 + 3.

This enables us to sketch the graph for z > 0. Then we use the fact that f is an even

function to reflect this part of the graph about the y-axis to obtain the entire graph. Or, we
could consider also the cases z < —3, —3 < x < —l,and —1 <z < 0.

83
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6. g(z) = | — 1| — |2* — 4]. y
4_.
) 2?2 —1 if |z| > 1 ) 2? — 4 if |z > 2 T
|o* — 1] = . and |2® — 4] = . +
1—2% if 2| <1 4—2% if |z[ <2 1
Sofor0 < |z| < 1,g(x) =1 — 2% — (4 — 2%) = -3, for -4 \0 / Rk

1< |z <2,9(x) =2* —1— (4 —2%) =22 — 5, and for

|z] > 2,g(z) = 2% — 1 — (2> —4) = 3.

7. Remember that |a| = a if @ > 0 and that |a| = —a if a < 0. Thus,

] 2¢ if x>0 q Wl 2y ify>0
T+ x| = an + =
0 ifz<O v 0 ify<O

We will consider the equation x 4 |x| = y + |y| in four cases.

Hz>0y>20 @ 2x20y<0 @) z<0,y>0 “#Hz<0,y<0
2¢ =2y 22 =0 0=2y 0=0

Case 1 gives us the line y = x with nonnegative x and y. o
Case 2 gives us the portion of the y-axis with y negative.

Case 3 gives us the portion of the z-axis with x negative.

Case 4 gives us the entire third quadrant.
8. 2" —42® — 2% + 4> =0 & 2*(2®—4) -y (2?-4) =0 & y y=x

(@ )@ 1) =0 & (z+y)(r—y)(a+2)(@—2)=0. /

So the graph of the equation consists of the graphs of the four lines y = —x, x=-2 x=2

y==xz,r=—2,and x = 2.

9. |z| 4 |y| < 1. The boundary of the region has equation |z| + |y| = 1. In quadrants y
I, I, 111, and IV, this becomes the linesz +y =1, —x +y =1, —x —y = 1, and /l

x — y = 1 respectively.

10. [z —y| + |z] — [y| <2

Case (i): z>y>0 & rz—y+rx—y<2 & zrz—y<l & y>zr—1
Case (ii):  y>xz >0 &S y—z+r—y<2 & 0L 2 (true)

Case (iii);: x>0andy<0 & zxz—y+ox+y<2 & 22<2 & <1
Case (iv): xz<0andy>0 <& y—zr—z—y<2 & 22 & > -1
Case (v): y<z<0 & rz—y—z4+y<2 & 0<2 (true)

Case (vi): x<y<0 & y—zrz—zx4+y<2 & y—z<1 & y<Lz+1
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Note: Instead of considering cases (iv), (v), and (vi), we could have noted that J
the region is unchanged if « and y are replaced by —x and —y, so the region is

symmetric about the origin. Therefore, we need only draw cases (i), (ii), and

_=4 : 0 : :; X
(iii), and rotate through 180° about the origin. / T
_4 4

In3 In4 In5 In 32 In 32 In 2° 5In2
(log, 3)(log; 4)(log, 5) -~ (log, 32) = (m) (m) (m)“'<1n31> "2 2 2

<a>f<—w>=ln(—x+ (—m>2+1):1n(_x+\/m.—w——m)

—z—vzZ+1

z® — (z* +1) ( -1 ) ( 1 )
—x—vVx2+1 —r—Vx2+1 r+vVr2+1
=Inl-In(z+v2Z+1)=—In(z+V22—1) = —f()
(b)y:ln(x—i—\/x?—i—l).Interchanginga:andy,wegetx:ln(y+\/y2+1) = e"=y+yy*+1l =
2x

2e*

Coy=VET1l = Pyt i =y? = 1= = y=° =f"(-2)

In(z>—22-2)<0 = 2°-22-2<e’=1 = 2°-22-3<0 = (z—-3)(z+1)<0 = z€[-1,3].
Sincetheargumentmustbepositive,ac2—21’—2>0 = [1’—(1—\/5)][:5—(1+\/§)]>0 =

z € (—00,1—+/3) U (1++/3,00). The intersection of these intervals is [—1,1 — v/3) U (1 +v/3,3].

Assume that log,, 5 is rational. Then log, 5 = m/n for natural numbers m and n. Changing to exponential form gives us

2™/™ — 5 and then raising both sides to the nth power gives 2™ = 5". But 2™ is even and 5" is odd. We have arrived at a

contradiction, so we conclude that our hypothesis, that log, 5 is rational, is false. Thus, log, 5 is irrational.

Let d be the distance traveled on each half of the trip. Let ¢; and t2 be the times taken for the first and second halves of the trip.
For the first half of the trip we have t1 = d/30 and for the second half we have t2 = d/60. Thus, the average speed for the

total distance ~~ 2d  2d 60 _ 120d _ 120d
total time _t1+t2_i+i 60 2d+d  3d
30 60

entire trip is

= 40. The average speed for the entire trip

is 40 mi/h.

Let f = sin, g = x, and h = z. Then the left-hand side of the equation is f o (g + h) = sin(x + x) = sin 2z = 2sinx cos x;

and the right-hand side is f o g 4+ f o h = sinx + sinx = 2sin . The two sides are not equal, so the given statement is false.

Let S, be the statement that 7" — 1 is divisible by 6.
e S is true because 7' — 1 = 6 is divisible by 6.

e Assume S is true, that is, 7% — 1 is divisible by 6. In other words, 7¥ — 1 = 6m for some positive integer m. Then
TP 1=7"7-1=(6m+1)-7—1=42m+ 6 = 6(7m + 1), which is divisible by 6, so Si+1 is true.

e Therefore, by mathematical induction, 7" — 1 is divisible by 6 for every positive integer n.
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18. Let S, be the statement that 1 +3 +5+--- + (2n — 1) = n”.
e Sy is true because [2(1) — 1] =1 = 1°.
e Assume S is true, thatis, 1 +3 + 5+ --- + (2k — 1) = k. Then

19.

20.

(b) From the graph, we can make several observations: x=3 x=1

U CHAPTER1 PRINCIPLES OF PROBLEM SOLVING

2

14345+ 4+Rk—1)+[2k+1)—1=1+4+3+5+-+2k—1)+2k+1)=k"+ 2k +1) = (k+ 1)

which shows that Sk is true.

e Therefore, by mathematical induction, 1 +3 4+ 5 + - - - + (2n — 1) = n? for every positive integer 7.

fo(z) = 22 and fri1(x) = fo(fu(x)) forn =0,1,2,....

fi(@) = fo(fo(2)) = fo(2?) = (2%) =2, fo(2) = fo(fi(2)) = fo(z*) = (a*)? = 2¥,
f3(z) = fo(f2(2)) = fo(a®) = (2%)? = z'°,. ... Thus, a general formula is f,(z) = =
@) fo(z) =1/(2—2z)and fon41 = foo fnforn=0,1,2,....

2n+1

1 1 _ 2—=x _2—x
2 — I " 22-2)—-1 3-22°
22—z
o) = 2— B 1 B 3— 2z 32
? —237 T, 2-x  2B8-22)—-(2-x) 4-3z
3— 2z
3—2z 1 43z 43z
fS(x)_f°<4—3x>_2_3—2x_2(4—393)—(3—29@)_5—49;""
4 — 3x
n+1—nx

Thus, we conjecture that the general formula is f,, (z) = gy
n —(n x

To prove this, we use the Principle of Mathematical Induction. We have already verified that f;, is true for n = 1.

. ) .  k+1-kx
Assume that the formula is true for n = k; that is, fx(z) = A Then
B B B k+1l—kr ) 1
frnle) = (oo 0@ = 1) = b330 ) = T
E+2—(k+ 1)z

k+2—(k+1)z _k+2—(k+ D)z
2k+2—(k+1z] —(k+1—kz) k+3—(k+2)z

This shows that the formula for f, is true for n = k + 1. Therefore, by mathematical induction, the formula is true for all

positive integers n.

e The values at each fixed x = a keep increasing as n increases.

e The vertical asymptote gets closer to x = 1 as n increases.

4
e The horizontal asymptote gets closerto y = 1 f N n /y 3
. ‘ y=2
as m 1ncreases. ;Z/———///% /'( ( o f
L , y=3

fo 1 X

e The z-intercept for f,,1 is the value of the

vertical asymptote for f,,.

e The y-intercept for f,, is the value of the
horizontal asymptote for fy, 1.
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21 The Tangent and Velocity Problems

1. (a) Using P(15, 250), we construct the following table: (b) Using the values of ¢ that correspond to the points
closest to P (t = 10 and ¢ = 20), we have
t Q slope = mpqg
_ —38.8 + (—27.8)
694250 444 _
444-250 _ _ 194 _
10 (10,444) Hge = — &5 = —38.8
111-250 _ 139 _
20 | (20,111) 1-250 — 139 — 2738
28250 222
25 | (25,28) B200 22 — 999
0—250 250 =
30 (30,0) 3035 — — 55 = —16.6
(c) From the graph, we can estimate the slope of the 00l
_ 650+ _—approximate
tangent line at P to be =3¢ = —33.3. 600+ graph of function
5507 approximate
- 500 tangent line
g 4501
T, 400
= 3507
3001
0t 300 N\
2001
1501 L
100
501 f—9—
0 S 10 15 20 25 30
t (minutes)
2. (a) Slope = 2233=2530 — 418 ~ 69.67 (b) Slope = 228=2061 — 287 — 71.75
_ 30802948 _ 132 _
(c) Slope = 2235=2800 — 122 — 7] (d) Slope = 5=~ = 5~ =66

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeats /minute after 42 minutes.
After being stable for a while, the patient’s heart rate is dropping.

. (ay= T2 P(1, %) (b) The slope appears to be %.
1_ 1 _1 1
- 5 p— ©y—5=z@&—-1)ory=z2+7.

1| 05 (0.5,0.333333) 0.333333

(i) | 0.9 (0.9,0.473684) 0.263158

(iii) | 0.99 | (0.99,0.497487) 0.251256

(iv) | 0.999 | (0.999,0.499750) | 0.250125
™ | 15 | (1.5,06) 0.2

(vi) | 1.1 | (1.1,0.523810) | 0.238095

(vii) | 1.01 (1.01,0.502488) 0.248756

(vii) | 1.001 | (1.001,0.500250) | 0.249875
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4. (a) y = cosmz, P(0.5,0)

(b) The slope appears to be —.

T Q mpo (©)y—0=—m(z—0.5) or y = —mz + 3.
®H1]0 (0,1) —2 (d) f\ \,— tangent line
Gi) | 0.4 | (0.4,0.309017) —3.090170
Gii) | 0.49 | (0.49,0.031411) | —3.141076
(iv) | 0.499 | (0.499,0.003142) | —3.141587 . —
™ |1 (1,-1) 2 |
i) | 0.6 | (0.6,-0.300017) | —3.090170 secantlineat N
(vi) | 0.51 | (0.51,-0.031411) | —3.141076
(viii) | 0.501 | (0.501,-0.003142) | —3.141587

5 (a) y = y(t) = 40t — 16t>. Att = 2,y = 40(2) — 16(2)? = 16. The average velocity between times 2 and 2 + h is

y(24+h)—y(2)  [40(2+h)—16(2+h)’] —16  —24h — 16h>

Ve =0 TR — 2 h - h

= 24— 16h, if h # 0.

(i) [2,2.5): h = 0.5, vaye = —32 ft/s (i) [2,2.1]: b = 0.1, Vave = —25.6 ft/s

(iii) [2,2.05]: h = 0.05, vaye = —24.8 ft/s (iv) [2,2.01]: ko = 0.01, vaye = —24.16 ft/s

(b) The instantaneous velocity when ¢ = 2 (h approaches 0) is —24 ft/s.

6. (a) y = y(t) = 10t — 1.86t>. Att =1,y = 10(1) — 1.86(1)* = 8.14. The average velocity between times 1 and 1 + h is

— 10(1 4+ h) — 1.86(1 + h)*| —8.14  6.28h — 1.86h>
Uave:y(zlih})w _yl(l) _ [0 +n) h( +h)?] _ 6.28h h1 865 _ 6 28 — 1.86h, ifh 0.

() [1,2]: h = 1, Vave = 4.42m/s (ii) [1,1.5]: b = 0.5, vave = 5.35m/s

(iii) [1,1.1): h = 0.1, Vave = 6.094 m/s (iv) [1,1.01]: & = 0.01, vave = 6.2614 m/s

(v) [1,1.001): ko = 0.001, vaye = 6.27814 m/s

(b) The instantaneous velocity when ¢ = 1 (h approaches 0) is 6.28 m/s.

7. (2) (i) On the interval [1, 3], Vave = @) —s() _ 10714 93 _ o m/s.
3-1 2 2
(ii) On the interval [2, 3], Vave = 3(3?)) - ;(2) = 10‘71_ 5l 5 6mys
(iii) On the interval [3, 5], vave — S0 —5B) _ 2582107 _ 151 _ 700
5-3 2 2
(iv) On the interval [3, 4], Vave = S(4i : §<3) = 17'7; 107 =Tm/s.



(b) s
251
201
151

10T

Using the points (2,

SECTION 2.1

THE TANGENT AND VELOCITY PROBLEMS U

4) and (5, 23) from the approximate tangent

line, the instantaneous velocity at ¢ = 3 is about 253__24 ~ 6.3m/s.
> 3 4 5 1
8. (a) (i) s = s(t) = 2sin7t + 3 coswt. On the interval [1, 2], vave = 8(2; : i(l) _ 3= §—3) =6cm/s
(ii) On the interval [1,1.1], vave = s(L.1) — s(1) ~ —3471 — (-3) = —4.71 cm/s.
1.1-1 0.1
. _ s(1.01) —s(1) _ —3.0613— (=3) _
(iii) On the interval [1, 1.01], vaye = ToL—1 ~ 0.01 = —6.13 cm/s.
(iv) On the interval [1, 1.001], Vave = 8(110881 : i(l) ~ _3303517: 1(_3) = —6.27 cm/s.
(b) The instantaneous velocity of the particle when ¢ = 1 appears to be about —6.3 cm/s.
9. (a) For the curve y = sin(107/x) and the point P(1,0):
z Q mpQ T Q mpQ
2 (2,0) 0 0.5 | (0.5,0) 0
1.5 | (1.5,0.8660) 1.7321 0.6 | (0.6,0.8660) —2.1651
1.4 | (1.4,—-0.4339) | —1.0847 0.7 | (0.7,0.7818) —2.6061
1.3 | (1.3,—0.8230) | —2.7433 0.8 | (0.8,1) =5
1.2 | (1.2,0.8660) 4.3301 0.9 | (0.9,—0.3420) 3.4202
1.1 | (1.1,-0.2817) | —2.8173

As x approaches 1, the slopes do not appear to be approaching any particular value.

(b) ‘

0.5

M

\J

-1

We see that problems with estimation are caused by the frequent

oscillations of the graph. The tangent is so steep at P that we need to

take x-values much closer to 1 in order to get accurate estimates of

its slope.

(c) If we choose = 1.001, then the point @ is (1.001, —0.0314) and mpg =~ —31.3794. If z = 0.999, then Q) is

(0.999,0.0314) and mpg = —31.4422. The average of these slopes is —31.4108. So we estimate that the slope of the

tangent line at P is about —31.4.
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2.2 The Limit of a Function

1. As x approaches 2, f(x) approaches 5. [Or, the values of f () can be made as close to 5 as we like by taking x sufficiently

close to 2 (but = # 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) = 3.

2. As z approaches 1 from the left, f(z) approaches 3; and as x approaches 1 from the right, f(z) approaches 7. No, the limit

does not exist because the left- and right-hand limits are different.

3. (a) f(x) approaches 2 as x approaches | from the left, so lim f(z) = 2.

z—1—

(b) f(x) approaches 3 as x approaches | from the right, so lim f(x) = 3.

rx—1

() lim1 f(x) does not exist because the limits in part (a) and part (b) are not equal.
(d) f(x) approaches 4 as x approaches 5 from the left and from the right, so lin}r) flx) =4.

(e) f(5) is not defined, so it doesn’t exist.

4. (a) il_)r% flx)y=3 (b) lim f(z)=4 (©) lim+ flz)=2

r—3 r—3

(d) lirr})) f(x) does not exist because the limits in part (b) and part (c) are not equal.

() f(3)=3
5. (a) lim g(¢t) = -1 (b) lim g(t) = -2
t—0~ t—0t

(c) tliH(l) g(t) does not exist because the limits in part (a) and part (b) are not equal.

(d) lim g(t) =2 (e) lim g(t)=0
t—2+

t—2—

() thn% g(t) does not exist because the limits in part (d) and part (e) are not equal.
(@9(2)=1 (h) lim g(t) = 3

6. (a) h(x) approaches 4 as = approaches —3 from the left, so lim h(z) = 4.

r——3"

(b) h(x) approaches 4 as x approaches —3 from the right, so lim h(z) = 4.

r——3+

(c) lim3 h(x) = 4 because the limits in part (a) and part (b) are equal.
(d) h(—3) is not defined, so it doesn’t exist.

(e) h(z) approaches 1 as x approaches 0 from the left, so lim h(x) = 1.

rz—0—

(f) h(x) approaches —1 as x approaches 0 from the right, so lim h(x) = —1.

z—0T

(2) lir% h(z) does not exist because the limits in part (e) and part (f) are not equal.

(h) h(0) = 1 since the point (0, 1) is on the graph of h.
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(i) Since lim h(z) =2and lim A(x) = 2, we have lim h(z) = 2.

r—27 r—2 z—2

(j) h(2) is not defined, so it doesn’t exist.

(k) h(x) approaches 3 as x approaches 5 from the right, so lim h(z) = 3.

r—5

(1) h(x) does not approach any one number as 2 approaches 5 from the left, so lim h(x) does not exist.

. From the graph of
142 ifzx<-—1
flx) =< 22 if -1<z<1,
2—z ifx>1
we see that lim f(z) exists for all a except a = —1. Notice that the

Tr—a

right and left limits are different at a = —1.

. From the graph of
1+sinz if x <0
f(z) = cosx ifo<z<m,
sinx if z>mn

we see that lim f(x) exists for all a except a = m. Notice that the

r—a

right and left limits are different at a = 7.

(@ lim f(z)=1

z—0—

(b) lim f(z)=0
z—0t

(c) liII(l) f(x) does not exist because the limits
in part (a) and part (b) are not equal.

(@ lim f(z)=-1

r—0—

(b) lim+ fl@)=1

z—0
(©) lin% f(x) does not exist because the limits
in part (a) and part (b) are not equal.

(@ lim f(x)=-2

r—0—

(b) lim f(z) =2

z—0t

(©) lin% f(x) does not exist because the limits
xTr—

in part (a) and part (b) are not equal.

r—5"

x>+ x

i+ x?

;

V2 —2cos 2x

X

91
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12. lim f(t) = 150 mg and 1irn+ f(t) = 300 mg. These limits show that there is an abrupt change in the amount of drug in
t—12— t—12

the patient’s bloodstream at ¢t = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

13. lim f(z) =-1, lim f(z)=2, f(0)=1 14. lim f(z) =1, lim f(z)=-2, lim f(z) =2,
z—0~ z—07F z—0 z—3~ z—3+
y f0)=-1f3)=1

0 X ’ é !
—1e
\‘1 )
15. lim f(z) =4, lim f(x)=2, lim f(z) =2, 16. lim f(z) =2, lim f(z) =0, lim f(x)=23,
z—3+ z—3~ z——2 z—0~ z—0+ z—4~
& =3 f-2=1 lim f(x) = 0. £(0) =2 f(4) = 1

0l 1 X
z? — 2z z? — 2z
17. F =—": 18. F =—":
or f(x) P p— 8. For f(x) P p—
x f(x) x f(x) x f(x) x f(x)
2.5 0.714286 1.9 0.655172 0 0 -2 2
2.1 0.677419 1.95 0.661017 —0.5 -1 -1.5 3
2.05 0.672131 1.99 0.665552 -0.9 -9 -1.1 11
2.01 0.667774 1.995 | 0.666110 —0.95 —-19 —1.01 101
2.005 | 0.667221 1.999 | 0.666556 —0.99 —-99 —1.001 | 1001
2.001 | 0.666778 —0.999 | —999
It that 1i 952_—2“%—06—3 z? — 2z
appears that i, 2 —gx—2 3 It appears that lim P — does not exist since

f(x) > occasx — —1" and f(z) — —ocoasx — —17.



5t
19, For f(t) = < . L
t f(t) t f(t)
0.5 22.364988 —0.5 1.835830
0.1 6.487213 —0.1 3.934693
0.01 5.127110 —0.01 4.877058
0.001 5.012521 —0.001 4.987521
0.0001 5.001250 —0.0001 | 4.998750
5t
It appears that 1%ir% =5.
21. For f(x) = %4_2:
x () x f(x)
1 0.236068 -1 0.267949
0.5 | 0.242641 —0.5 | 0.258343
0.1 0.248457 —0.1 0.251582
0.05 | 0.249224 —0.05 | 0.250786
0.01 | 0.249844 —0.01 | 0.250156
It appears that lim 7'33_;4_2 =0.25 = ;.
6
z° —1
23. For f(x) = TSR
x f(x) x f(x)
0.5 0.985337 1.5 0.183369
0.9 0.719397 1.1 0.484119
0.95 | 0.660186 1.05 | 0.540783
0.99 0.612018 1.01 0.588022
0.999 | 0.601200 1.001 | 0.598800
. oxf -1 3
It appears that iﬂ T 0.6 =z

25. (a) From the graphs, it seems that lin})

1

COs 2x — COS T

22

SECTION 2.2 THELIMITOF AFUNCTION O

= —1.b.

5 —
20. For f(h) = W:
h f(h) h f(h)
0.5 131.312500 -0.5 48.812500
0.1 88.410100 —0.1 72.390100
0.01 80.804010 —0.01 79.203990
0.001 80.080040 —0.001 79.920040
0.0001 80.008000 —0.0001 | 79.992000
. (2+h)° =32
It appears that }ILLII%] h = 80.
tan 3z
22, F = :
or f () tan 5z
x f(x)
+0.2 0.439279
+0.1 0.566236
+0.05 | 0.591893
+0.01 0.599680
£0.001 | 0.599997
. tan3x
It appears that ilil}] tan e 0.6 %
24, For f(x) = 9 =5 :
T
x /(@) x f(z)
0.5 1.527864 -0.5 0.227761
0.1 0.711120 —0.1 0.485984
0.05 | 0.646496 —0.05 | 0.534447
0.01 0.599082 —0.01 | 0.576706
0.001 | 0.588906 —0.001 | 0.586669

It appears that lim >
x—0 x

0.59. Later we will be able

to show that the exact value is In(9/5).

(b)
z f(z)
+0.1 —1.493759
+0.01 —1.499938
+0.001 | —1.499999
+0.0001 | —1.500000
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sinx

26. (a) From the graphs, it seems that lim — = 0.32.

z—0 SINn T

2 0.5

(b)

Later we will be able to show that

x f(z)
+0.1 0.323068
+0.01 0.318357
£0.001 0.318310
£0.0001 | 0.318310

1
the exact value is —.
T

-1 : 5 : 1-02 0.2
27. (a) Let h(z) = (1 + 2)"/®. (b)
x h(z)

—0.001 2.71964
—0.0001 2.71842 —4
—0.00001 2.71830 L
—0.000001 | 2.71828

0.000001 | 2.71828

0.00001 2.71827

0.0001 2.71815

0.001 2.71692

It appears that lir% 1+ x)l/z ~ 2.71828, which is approximately e.

In Section 3.7 we will see that the value of the limit is exactly e.

28. For the curve y = 2% and the points P(0,1) and Q(x, 2%):

T Q mpQ
0.1 (0.1,1.0717735) | 0.71773
0.01 (0.01,1.0069556) | 0.69556
0.001 (0.001,1.0006934) | 0.69339
0.0001 | (0.0001,1.0000693) | 0.69317
The slope appears to be about 0.693.
29. For f(z) = = — (2"/1000):
(a) (b)
1 0.998000 0.04 0.000572
0.8 | 0.638259 0.02 | —0.000614
0.6 0.358484 0.01 —0.000907
0.4 | 0.158680 0.005 | —0.000978
0.2 | 0.038851 0.003 | —0.000993
0.1 | 0.008928 0.001 | —0.001000
0.05 | 0.001465

It appears that lirr%] f(z)=0.

It appears that lin%] f(xz) = —0.001.




(b) It seems that lin}) h(z) = 3.

30. For h(x) = tanf—gx:
(a)
x h(zx)
1.0 0.55740773
0.5 0.37041992
0.1 0.33467209
0.05 0.33366700
0.01 0.33334667
0.005 | 0.33333667

-1

1

0.4

1

—5x107°

0.2

SECTION 2.2 THELIMITOF AFUNCTION O

(©)

x h(x)
0.001 0.33333350
0.0005 0.33333344
0.0001 0.33333000
0.00005 | 0.33333600
0.00001 0.33300000
0.000001 | 0.00000000

Here the values will vary from one

95

calculator to another. Every calculator

will eventually give false values.
(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

r
1 —0.1 l

5%107° -10°¢

0.4
0 0.1
0.4

107°
0.2

31. We need to have 5.8 < 2® — 3z + 4 < 6.2. From the graph we obtain the approximate points of intersection P(1.9774, 5.8)
and Q(2.0219, 6.2). So if « is within 0.021 of 2, then y will be within 0.2 of 6. If we must have 2® — 3z 4 4 within 0.1 of 6,
we get P(1.9888,5.9) and Q(2.0110,6.1). We would then need z to be within 0.011 of 2.

6.3 6.3
/ y=6.2 ( )
0 y=6.1
y=x"—3x+4 y=x3—3x+/Q
P y=59
P y=5.8 /
1.9 / 2.1 1.9 N 7 2.1
5.7 5.7
-1
32. (a) Let Yy = % 6.f6 d
o T Y Q y=6.5
From the table and the graph, we guess that 0.99 5.92531 _ xi -1
the limit of y as x approaches 1 is 6. 0.999 5.99250 w1
0.9999 | 5.99925 P y=55
1.01 6.07531 0'75: L
1.001 | 6.00750 '
1.0001 | 6.00075

1.3
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-1

Jz 1

(b) We need to have 5.5 <

< 6.5. From the graph we obtain the approximate points of intersection P(0.9314, 5.5)

and (1.0649,6.5). Now 1 — 0.9314 = 0.0686 and 1.0649 — 1 = 0.0649, so by requiring that z be within 0.0649 of 1,

we ensure that y is within 0.5 of 6.

2.3 Calculating Limits Using the Limit Laws

1. (a) li_)m2 [f(x) +59(x)] = liém2 f(z)+ li_>rn2 [5g(z)] [Limit Law 1]
= 1Ln12 flx)+5 liLn2 g(x) [Limit Law 3]
—4+45(-2)=—6
3
(b) lim [g(@)]* = [ lim g(=)] " [Limit Law 6]

=(-2?=-8

(0) lim V@)= \/iir% f(z) [Limit Law 11]
=4=2

_ 3f(z) lim [3f(x)] o
(d) il_)mQ 9@ lim29(x) [Limit Law 5]

3 lim f(x)
= _r=2 [Limit Law 3]
th g(x)

(e) Because the limit of the denominator is 0, we can’t use Limit Law 5. The given limit, lir%
xr—

denominator approaches 0 while the numerator approaches a nonzero number.

lim [g(x) h(x
(f) lim g (‘";)(Z)(I) - w*ji[i( f)(x)( ) [Limit Law 5]

lim g(z) - lim h(z)
—z=2  o—2 [Limit Law 4]
hm2 f(x)

2. (@) lim [f(x) + g(2)] = lim () + lim g(x) =240 =2

g(x)

h(z)’

does not exist because the

(b) lim1 g(x) does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
xr—

(©) lim [f(z)g(x)] = lim f(z) - lim g(x) =0-1.3=0

z—0

(d) Since lin}1 g(z) = 0 and g is in the denominator, but lin}1 f(x) = —1 # 0, the given limit does not exist.
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(©) lim 2* f(2) = [lim m?’} [iig; f(x)} —23.2=16

x—2

(f)ilnll\/3+f(x):\/3+iig11f(:c)=\/3+1=2

3. lim2(3x4 +22° —x+1) = lim_ 3zt + lim 22° — lim »+ lim 1 [Limit Laws 1 and 2]
=3 hm zt +2 hm — 11m2x+ hm 1 3]
=3(—2)* +2(-2)* — (-2) + (1) [9, 8, and 7]

=48+8+2+1=259

4. tliml(t2 +1)3(t+3)° = tliml(t2 +1)%- Jim (¢ + 3)° [Limit Law 4]
3 5
o . 2 . .
= {tliml(t +1)] [tgml(t+3)] [6]
3 5
= {lim t? + lim 1] . [lim t+ lim 3} [1]
t——1 t——1 t——1 t——1

= [(-1)?+1]° [-1+3]° =8-32 =256 [9,7, and 8]

5. lim 1+ ¥z)(2—62° +2°) = lim 1+ Jx)- hrn( — 62° + %) [Limit Law 4]
= (hml—i— lim \/_) (ilg{ng—Ghmsx + 11rr18:1c3) [1, 2, and 3]
(1+\/_)-(2—6‘82+83) [7, 10, 9]

= (3)(130) = 390

6. hm Vut +3u+6 = lim2 (u* + 3u + 6) [11]
= hm2 ut+3 hm u~+ hm2 6 [1,2, and 3]
=/(-2)" +3(-2) +6 [9, 8, and 7]

—V16—-6+6=16=4

2 2
2 +1—\/1' 207 +1 [Limit Law 11]

m1§12 3r—2
lim (22° + 1)

- lim (32 — 2) ]

2 lim 22 + lim 1
= |2=2 @ ==2 [1,2, and 3]

31imx—lim22

B 2(2)2+1_\/§_§
= m = Z = D) [9, 8, and7]
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98
(a) The left-hand side of the equation is not defined for x = 2, but the right-hand side is.

in Example 3. Remember that in finding lim f(z), we never consider z = a.

2_ J— p—
o lim 2 =02 +5 _ ) BZO@ D 0y o514
r—5 J,'—E) x—5 1’—5 r—5
z(z —4) I 4 4
Casdax4+1 4415

2’ — 4z =lim ——————
T @@+ )

i gy
2_

11. lirr%%jv;_6 does not exist since  — 5 — 0, but 22 — 52 +6 — 6 as z — 5.
. 22+ 3z +1 . (24 1)(z+1) 2z+1  2(-1)+1 -1 1

12.1 Il = = = — = —
2 2r -3 e @ —3)(z+1) eotiz-3  —1-3 -4 4
t—3  —-3-3 -6 _6
5

(t+3)(t=3) _ | N
@t+1)(t+3) t-32t+1 2(-3)+1 -5

8.
(b) Since the equation holds for all « # 2, it follows that both sides of the equation approach the same limit as x — 2, just as

13. 1 ﬁ;gi
TS F T 43 1ol
% — 4z
14. lim —————— does not exist since > — 3z —4 — Obutz®> — 42 — 5asz — —1.
c—-1722 —3x —4
2 2y 2
15, fim AHR)" =16 (64 8+ R 216 BhER PR ) =8+0=8
h—0 h h—0 h h—0 h h—0 h h—0
. (2+h)P—-8 . (84+12n+6R>+h*)—8 12h+6h>+h®
16. lim = lim = lim
h—0 h h—0 h h—0 h
= lim (12+6h + h*) =124+ 0+0 = 12
h—0
17. By the formula for the sum of cubes, we have
im z+2 _ lim z+2 = lim ! = 1 L
e——2334+8 a—-2(x+2)(x2—-22+4) 2--222-2x+4 4+4+4 12
. NVI+¥h—-1 . JI+h-1 VI+h+1 . (14+h) -1 . h
18. hm— = hm . = hm—: hm—
h—0 h h—0 h VIi+h+1 h=0h(y/1+h+1) hr=0h(y/1+h+1)
. 1 1 1
= lim = = —
h=0T+h+1 VI+1 2
1 1 r+4
.17 Z . 1z . T+ 4 1 1 1
Yt eotadtr aotadz(dt o) eoade 4(—4) 16
20 fim DEZAL_ o @HDT (z +1)° — fim —2r 0
' -1 a1 (24 D@2 —-1) =1 (22+ D@+ D(x—-1) o1 (@2+1)(z—1) 2(-2)

r——1
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2. lim 2VE gy GVOUEVD) g 10—z
=16 162 — 22 2—16 (162 — 22)(4++/x) =2—16 (16 — z)(4+ /7)
1 1 1 1

= Jim, r(A+Vz) 16(4++16) 16(8) 128

2 lim (£ - 1 :limwzlim S NS SRS S
t—=0\t t241 t=0  t(t2 4t) t=0t-t(t+1) t=0t+1 041
1 1 1T+t . (A=VIF)(Q+VIF+E) —t
23. lim — =] =lim = lim = lim
=0 \ty/1+¢ t =0 ty/T+t =0 t\t4+1(14+V/1+1) t—=0ty/14+t(1+V1+1)
- = _ -1 _ !
=0T+ E(14+vI+E) VIFO0(1+VIF0) 2
u fim YOOI (VEHI-B)(VATHO4E) 0 (@®49) -2
C o4 x4+ 4 z——4 (Z‘+4)(1 /12 +9+5) z——4 (ZL'+4)(1 /2 +9+5)
_ ? — 16 _ (z +4)(x — 4)
= lim = lim
e=—4(z+4) (Va2 +9+5) -4 (z+4)(VaZ+9+5)
oy %4 44 -8 4
z——44/z24+9+5 164+9+5 5+5 5
2. (a) = (b) e
X X
—0.001 0.6661663
7 —0.0001 0.6666167 )
—1 1 —0.00001 0.6666617 The limit appears to be 3
L J —0.000001 | 0.6666662
—0.5 0.000001 | 0.6666672
i T 2 0.00001 | 0.6666717
2=0/T+3x—-1 3 0.0001 0.6667167
0.001 0.6671663
(c) lim v YIESRl g elisSerl) o(VIHSoal)
=0 \/T+3z -1 IT+3z+1) -0 (1+32)—-1 a0 3z
= % lim (v1+3z+1) [Limit Law 3]

1 - .

g{ /ili%(l—o—Bm)—}—ili%l] [l and 11]
1 ; -

:—( /11m1+311mm+1> [1,3,and 7]
3 x—0 x—0

(VI+3-0+1) [7 and 8]

Wl Wl

a+1)=2
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26. (a) 0.5 (b) =
X X

—0.001 0.2886992

—0.0001 0.2886775

—0.00001 | 0.2886754

—0.000001 | 0.2886752

- 0 ! 0.000001 | 0.2886751

0.00001 | 0.2886749

i V3T VB oy 0.0001 | 0.2886727

=0 x 0.001 0.2886511

The limit appears to be approximately 0.2887.

(c)lim(v3+x_\/§-V3+x+\/§)_lim B+2)-3 lim ——~
2—0 x V3+z++v3) =0z (V3+z++vV3) +=0B+r+3
lir%l
= — Limit Laws 5 and 1
lir%\/S—i—a:—l—lin%)\/g [ ]
= ! [7 and 11]
/lim (3 + ) + /3
-1 [1,7, and 8]
/—3+0+\/§ s Iy
1
243

27. Let f(z) = —2?, g(v) = 2 cos 20wz and h(x) = 2. Then

—1<cos20mr <1 = —2?<a%cos20mz <2® = f(z)<g(x) < h(x).

So since lin%) flz) = lir% h(z) = 0, by the Squeeze Theorem we have

lim g(z) = 0.

xz—0

28. Let f(x) = —va3 + 22, g(x) = Va3 + 22 sin(n/x), and h(x) = v/x* + 2. Then
—1<sin(r/z) <1 = —vad 422 <Vad +22sin(n/z) <Vad +22 =
f(z) < g(z) < h(z). So since lin%) flz) = ,lin}) h(z) = 0, by the Squeeze Theorem

we have lin}) g(z) = 0.

29. We have lim (4z — 9) = 4(4) — 9 = 7 and lim (2* —4x+7) =4 —4(4) +7="7.Since 4z — 9 < f(z) < a® — 4z + 7

forz > 0, /lirri f(z) = 7 by the Squeeze Theorem.

-1

30. We have lim (27) = 2(1) = 2 and liml(x4 — 22 4+2)=1* - 124+ 2 = 2. Since 2z < g(x) < z* — 2> + 2 forall z,

lim1 g(x) = 2 by the Squeeze Theorem.

3. —1<cos(2/z) <1 = —a* <a*cos(2/r) < z*. Since liH(l) (—a:4) = 0and lin}) z* = 0, we have

lim, [2* cos(2/z)] = 0 by the Squeeze Theorem.
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32 —1<sin(r/z) <1 = e ' <D <l = x/e <z <\ Jxe. Since lim+ (v/z/e) = 0and
z—0

lirn+ (v/z e) = 0, we have lim+ [\/E esin(r/ ")] = 0 by the Squeeze Theorem.
z—0 r—0

Tz —3 ifz—3>0 z—3 ifx>3
3B jz—3| = =

—(x—3) ifz—3<0 |3—z ifz<3

Thus, lim (2z+ |z —3|) = lim 2z +2—3) = lim (3z —3) = 3(3) — 3 = 6and

r—3+ r—3+ r—37+

lim (2z+ [z —3|) = lim (2z4+3 —2) = lim (z + 3) = 3 + 3 = 6. Since the left and right limits are equal,

r—37 r—3~ r—3~

lim (22 + |z — 3[) = 6.

z+6 if z4+6>0 z+6 if > —6
3. |x+6|= =

—(z+6) ifz4+6<0 | —(x+6) ifz<—6

We’ll look at the one-sided limits.

2+ 12 . 2(z+6) . 2412 . 2(z 4 6)
im = lim ———~ =2 and lm ——= lim —=% =-2
r——61 |1:+6| r——671 .’I:+6 r——6" |$+6| r——6— —($+6)
The left and right limits are different, so lirn6 2|x _—:: (15‘2 does not exist.
r— — x
. . 1 1 . 1 1 .2 . S
35. Since || = —x forz < 0,wehave lim { = — — ) = lim [ = — — | = lim =, which does not exist since the
rz—0— X |:C| x—0— X —X x—0— I
denominator approaches 0 and the numerator does not.
36. Since |z = —z forz < 0, we have Tim 1% — pim 220G oy 28T g2
z—-2 24+ z—-2 24 z——-224x T——2

37. (a) (i) lir?i glx) = lim z=1

x—1—

(ii) lim+ g(x) = lim (2—2%) =2—12 = 1. Since lim g(x) = land lim g(x) = 1, we have lim1 g(x) =1.

x—1 r—1+ r—1— r—1t r—

Note that the fact g(1) = 3 does not affect the value of the limit.
(iil) When z = 1, g(z) = 3,50 g(1) = 3.

(iv) lim g(z)= lim 2—-2%)=2-2>=2—-4= -2

r—2" T—2"

(v) lim+g(x): lim (r—3)=2-3=-1

x—2 r—2

(vi) lirn2 g(x) does not exist since lim g(z) # lim g(z).

rx—2~ r—2+

(b) T if x <1
3 ifz=1

g(z) = . |
(@) 2—z%2 ifl<z<2 T /
z—3 if >2 «Ol\/ *

101
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38.

39.

40.

41.

42.
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@ () lim F(z)= lim el S et R (z+1) =2 ©) Y
r—1+ _I—)1+ |x_1| _m—>1+ x—1 _a:—>1+ B 21 /
2 2
x©—1 x° —1
ii) lim F(z)= li = lim ———— = lim — 1) = —2 0,
(i) fim Fe)= lm o= m —gop = im e+ D) AN

(b) No, lim1 F(z) does not exist since lim F(z) # lim F(x).

rz—1+ r—1—

@ (@) [z]=-2for—2<z<-1,s0 lim [z] = lim (-2)=-2

z——2F r——2
(i) [z] = —3for =3 <z < —2,s0 lim [z] = lim (-3)=-3.
T——2" r——2"

The right and left limits are different, so lim2 [x] does not exist.

(i) [z] = =3 for =3 < x < —2, 50 lim 4[[33‘]] = lim (-3)=-3.

r——2.4

b)) @zl=n—-1forn—1<z<mn,so lim 2] = lim (n—1)=n—1.

r—n— r—n—
(i) [z] =nforn<z<n+1,s0 lim [z] = lim n=n.
z—nt z—nTt

(c) lim [z] exists < a isnot an integer.
(a) See the graph of y = cosz. y

Since —1 < cosz < 0 on [—7, —7/2), we have y = f(z) = [cosa] = —1

— j T x
on [—7, —7/2). 1}{

Since 0 < cosx < 1 on [—7/2,0) U (0, 7/2], we have f(x) =0

on [~/2,0) U (0, 7/2]. 1

- 0
Since —1 < cosx < 0 on (7/2, 7], we have f(z) = —1 on (w/2, 7]. . WL —
Note that f(0) = 1.

(b) () lir(rJE f(x)=0and lim f(z)=0,so0 liir%] flx)=0.

z—0t

(i) Asz — (w/2)", f(x) — 0,50 1(in/12)_ flz)=0.

(i) Asz — (/2)7, f(@) = ~Lso lim  f(a) =1

(iv) Since the answers in parts (ii) and (iii) are not equal, lim/ ) f(x) does not exist.
Tr—T

(¢) lim f(x) exists for all a in the open interval (—, 7) except a = —7/2 and a = 7/2.

The graph of f(z) = [x] + [—=z] is the same as the graph of g(x) = —1 with holes at each integer, since f(a) = 0 for any

integer a. Thus, lim f(z) = —1 and lirn+ f(z) =-1,s0 lim2 f(x) = —1. However,
z—2 z—

x—2~

F(2) = [2] + [-2] = 2+ (~2) = 0.0 lim f(2) # f(2).

r—2

v—CcT

2
lim (Lm /1 — Z—Q > = Lov/1 — 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since L is not defined for v > c.



43.

44,

45,

46.

47.
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Since p(x) is a polynomial, p(x) = ao + a1z + azx® + - - - + anz™. Thus, by the Limit Laws,
lim p(x) = lim (ao+a1x+agx2+~--+anx") =ao+ a1 lim z + as lim 22 + - - - + a, lim 2"

=ao +ara+ aza® + --- + ana™ = p(a)

Thus, for any polynomial p, lim p(z) = p(a).

Letr(z) = p) where p(z) and ¢(z) are any polynomials, and suppose that ¢(a) # 0. Thus,

q(x)
I ) = lim 22) _ i Limit Laws] = 2% [Exercise 43] —
lim r(z) = lim @) liin e [Limit Law 5] = a(@) [Exercise 43] = r(a).

lim [f() - 8] = tim | 2 =8 o _ )] = im D=8 i@ 1) =10.0=0.

z—1 z—1 x—1 z—1 x—1 z—1

Thus, lim f(2) = lim {[f(z) — 8] + 8} = lim[f(x) — 8] + im 8 =0+ 8 = 8.

Note: The value of lim1 &18 does not affect the answer since it’s multiplied by 0. What’s important is that
x— Xr —

lim M exists.

z—1 x—1

(@) lim f(z) = lim {f(x) ~x2} :hmM}%ﬁzs-ozo

) lim 2% _ iy {f(x)'x} zlimLf)-lir%x:E)-O:O

x—0 I x—0

Let f(z) = [z] and g(z) = —[«]. Then lin% f(z) and ling g(x) do not exist [Example 9]
but lin}q} [f(x)+g(x)] = lin}q’ ([=] = [=]) = 1111130 = 0.
Let f(z) = H(z) and g(z) = 1 — H(z), where H is the Heaviside function defined in Example 6 in Section 2.2.

Thus, either f or g is O for any value of z. Then lin% f(z) and lin%J g(x) do not exist, but lin% [f(z)g(z)] = lir% 0=0.

Since the denominator approaches 0 as x — —2, the limit will exist only if the numerator also approaches

0 as © — —2. In order for this to happen, we need lim2 (33:2 +ax +a-+ 3) =0 &

3(-2)*+a(-2)+a+3=0 & 12—2a+a+3=0 < a=15 Witha = 15, the limit becomes

322 + 15z + 18 . 3z +2)(z+3) . 3(x+3) 3(—24+3) 3
im ———m—m89 — = lim ————————~ = lim = = — =-1.
r——2 CC2+$*2 r——2 (z— 1)($+2) z——-2 x—1 —-2—-1 -3

103
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50. Solution 1: First, we find the coordinates of P and () as functions of . Then we can find the equation of the line determined
by these two points, and thus find the z-intercept (the point R), and take the limit as » — 0. The coordinates of P are (0, r).
The point @ is the point of intersection of the two circles z* + y* = r? and (z — 1)? + y® = 1. Eliminating y from these
equations, we getr” —2° =1—(z—1)> & r>=142z—1 < z = 1r’ Substituting back into the equation of the

2

shrinking circle to find the y-coordinate, we get (%7"2)2 +y¥P=r? o y?=1? (1 -1

(the positive y-value). So the coordinates of () are (%’I‘Q, rqy/1 — irz ) The equation of the line joining P and @ is thus

4

1.2
5T 0

ry/1—1r2 — ¢

y—r= (x — 0). We set y = 0 in order to find the x-intercept, and get

Now we take the limitas 7 — 0%: Tim o = lim 2(\/1—4r2+1)= lim 2(VI+1) =4
r—0

r—0+ r—0t

So the limiting position of R is the point (4, 0).

Solution 2: We add a few lines to the diagram, as shown. Note that
/PQS = 90° (subtended by diameter P.S). So ZSQR = 90° = £20QT
(subtended by diameter OT)). It follows that ZOQS = LT QR. Also

ZPSQ =90° — LSPQ = ZORP. Since AQOS is isosceles, so is T R x
AQTR, implying that QT = T'R. As the circle Cs shrinks, the point Q)

plainly approaches the origin, so the point R must approach a point twice

as far from the origin as 7', that is, the point (4, 0), as above.

2.4 Continuity

1. From Definition 1, lin}L flz) = f(4).

2. The graph of f has no hole, jump, or vertical asymptote.

3. (a) f is discontinuous at —4 since f(—4) is not defined and at —2, 2, and 4 since the limit does not exist (the left and right
limits are not the same).

(b) f is continuous from the left at —2 since lim f(x) = f(—2). f is continuous from the right at 2 and 4 since

r——2"

lim+ f(x) = f(2) and 1im+ f(x) = f(4). It is continuous from neither side at —4 since f(—4) is undefined.
z—2 r—4

4. g is continuous on [—4, —2), (-2, 2), [2,4), (4,6), and (6, 8).



5. The graph of y = f(«) must have a discontinuity at

x = 2 and must show that lim+ f(z) = f(2).
T—2

y

g

/=

\o

7. The graph of y = f(x) must have a removable

discontinuity (a hole) at x = 3 and a jump discontinuity

SECTION 24 CONTINUITY [

6. The graph of y = f(x) must have discontinuities

at z = —1 and x = 4. It must show that

T——

lim f(@) = F(-1)

and hlil+ flx) = f(4).

7

8. The graph of y = f(x) must have a discontinuity
atx = —2with lim f(x)# f(—2)and
r——27

lim s f(x) # f(—2). It must also show that

r——2

lim f(z) = f(2)

r—2"

and lim f(x) # f(2).
z—2+

o

(b) There are discontinuities at times ¢t = 1, 2, 3, and 4. A person

atx = 5.
y
| /_/\
0 é é X
L]
9. (a) Cost
(in dollars) T
1 _
+ o—e
I oo
Toe
be
1 4
of1 Time
(in hours)

jump at the beginning of each hour.

parking in the lot would want to keep in mind that the charge will

105

10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps

from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,

without any instantaneous jumps.
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(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one
height to another without going through all of the intermediate values —at a cliff, for example.
(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value,

without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.
11. Since f and g are continuous functions,
il_r% 2f(z) — g(x)] =2 i:rré flz) — il_)n}% g(x) [by Limit Laws 2 and 3]
=2f(3) — g(3) [by continuity of f and g at z = 3]
=2:5-9(3) =10-4(3)

Since it is given that lirrg [2f(x) — g(x)] = 4, we have 10 — ¢g(3) = 4, so g(3) = 6.

. a2 . _an 2
12, tim (t) = i 2230 _ EAGCT30) 2T oy s 1, )
e t—1 1413 lim (1 +¢7) lim 1 4 lim #3 14 (1)3 2 '

By the definition of continuity, & is continuous at a = 1.
4 4 4
13. lim f(z)= lim (z+22%)" = ( lim 2+ 2 lim1x3> =[-142(-1)°]" = (-3)* =81 = f(-1).

By the definition of continuity, f is continuous at a = —1.

14. For a < 3, we have

lim g(z) = lim 23—z

Tr—a r—a

=2lim+3—=z [Limit Law 3]

r—a

=2, /lim(3—=zx) [11]
=2 /lim 3 — lim z [2]

=2+v3—a [7 and 8]
=9(a)
So g is continuous at © = a for every a in (—oo, 3). Also, lim g(z) = 0 = ¢(3), so g is continuous from the left at 3.
r—37
Thus, g is continuous on (—oo, 3].
15, f(x) e’ ifz<0
. flx) = y
22 ifz>0
The left-hand limit of f ata = 0is lim f(z) = lim e® = 1. The y=x
z—0— z—0~ X 1
y=e
right-hand limit of f ata = 0 is 1im+ fz) = lim+ x? = 0. Since these
z—0 z—0 0 X

limits are not equal, lin%) f(x) does not exist and f is discontinuous at 0.
xr—



17.

18.

19.

20.

21,

22,

23.
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2
‘-z ,
if #1 )

fay={ w1 177

1 ifx=1 _

y=1
? —x z(x—1) x 1 0 x

li = lim —— = lim —————— = li ==
lim f(=) = lim 5 At D@1 +oizrl 2
but f(1) = 1, so f is discontinous at 1. r=-1

cosT if <0
fz)=<0 ifz=0 Y

1—2® ifz>0
lir% f(z) =1,but f(0) =0 # 1, so f is discontinuous at 0.

22% — 5z — 3

SETOTTY f o £3 ,
f@)={ -3 o

6 if z=3 sl
_ 2 —b5x—-3 . (2z+1)(x-3) B
lim f(@) = lim ———2— = lm ———0— = lm@e 4+ 1) =7,
but f(3) = 6, so f is discontinuous at 3. / 5 |

3 X

By Theorem 5, the polynomials 2 and 2 — 1 are continuous on (—o0, c0). By Theorem 7, the root function / is

1

continuous on [0, c0). By Theorem 9, the composite function v/2z — 1 is continuous on its domain, [£,00).

By part 1 of Theorem 4, the sum R(x) = z* + /22 — 1 is continuous on [, c0).

29

By Theorem 7, the root function {¢/z and the polynomial function 1 4 z* are continuous on R. By part 4 of Theorem 4, the

product G(z) = ¥/ (1 + 2®) is continuous on its domain, R.

By Theorem 7, the exponential function e ~>* and the trigonometric function cos 27t are continuous on (—o0, c0).

By part 4 of Theorem 4, L(t) = e~ °" cos 27t is continuous on (—o0, 00).

By Theorem 7, the trigonometric function sin = and the polynomial function « 4 1 are continuous on R.

By part 5 of Theorem 4, h(z) = smxl is continuous on its domain, {z | z # —1}.
x

107

By Theorem 5, the polynomial t* — 1 is continuous on (—00, o). By Theorem 7, In - is continuous on its domain, (0, 00).

By Theorem 9, In (t4 — 1) is continuous on its domain, which is

{t|t*—1>0}={t|t*>1} ={t|[t| > 1} = (—o0,—1) U (1,00)
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24. The sine and cosine functions are continuous everywhere by Theorem 7, so F' (x) = sin(cos(sin ) ), which is the composite

of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9.

. 1 L .
25. The function y = ————— is discontinuous at x = 0 because the - 3 N
1 + el /x
left- and right-hand limits at = 0 are different.
‘_/-/-
—4 4
. J/

26. The function y = tan?® z is discontinuous at - = 5 + mk, where k is

any integer. The function y = In (tan2 ;1:) is also discontinuous

where tan® z is 0, that is, at z = 7k. Soy = In (tan2 9:) is 2

discontinuous at x = 5 n, n any integer.

-6

27. Because we are dealing with root functions, 5 4 1/ is continuous on [0, 00), v/z + 5 is continuous on [—5, 00), so the

5+
Vit

quotient f(z) = is continuous on [0, o). Since f is continuous at x = 4, linr}1 flz)=f4) =1

28. Because z is continuous on R, sin x is continuous on R, and = + sin x is continuous on R, the composite function

f(x) = sin(z + sinz) is continuous on R, so lim f(z) = f(7) = sin(7 +sin7) = sinw = 0.

r—T

. . . . 2z .
29. Because 2> — x is continuous on R, the composite function f(z) = e” ~“ is continuous on R, so

lim f(z) = f(1) =e' "t =¢ = 1.

x—1

30. 2® — 3z + 1 = 0 for three values of z, but 2 is not one of them. Thus, f(x) = (2* — 3z 4 1) ~* is continuous at z = 2 and

lim f(z) = f(2) =(8—6+1)"%=3"%= L.

r—2

. f(2) x> if x <1
. flx) =
( v ifx>1

By Theorem 5, since f(x) equals the polynomial 2° on (—oo, 1), f is continuous on (—oo, 1). By Theorem 7, since f(z)

equals the root function 1/ on (1, 00), f is continuous on (1,00). Atz = 1, lim f(x) = lim 2® = 1 and

r—1— z—1—

lim f(z)= 1im+ vz = 1. Thus, lim1 f(z) exists and equals 1. Also, f(1) = +/1 = 1. Thus, f is continuous at z = 1.

r—1+ x—1

We conclude that f is continuous on (—oo, co).
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34.

35.

36.
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inx if x<w/4
f(m)z{s e

cosz if x >n/4

By Theorem 7, the trigonometric functions are continuous. Since f(x) = sinx on (—oo, 7/4) and f(x) = cosz on

(/4, 00), f is continuous on (—oo, 7/4) U (1/4,00). lim  f(z) = lim sinz =sinZ = 1/v/2 since the sine
z—(m/4)~ z—(7/4)~
function is continuous at 7w /4. Similarly,  lim . f@)= lim L cosT = 1/4/2 by continuity of the cosine function at
z—(7/4) z—(mw/4)

/4. Thus, h(m/ o f(z) exists and equals 1/+/2, which agrees with the value f(7/4). Therefore, f is continuous at 7 /4, so

f is continuous on (—oo, 00).

r+2 ifz<0 Y
(Le)
f@)=de  if0o<z<1 (0,2)/
_ i (L1
2—z ifx>1 0.1)
f is continuous on (—oo, 0) and (1, 0co) since on each of these intervals / 0 \X
it is a polynomial; it is continuous on (0, 1) since it is an exponential.

Now lim f(z) = lim (x+2)=2and lim f(z) = lim e” = 1,so f is discontinuous at 0. Since f(0) =1, f is

r—0— r—0— z—0T1 r—0

continuous from the right at 0. Also lim f(z) = lim e” =eand lim f(z) = lim (2 — ) = 1, so f is discontinuous

z—1— z—1 r—1+ z—1

at 1. Since f(1) = e, f is continuous from the left at 1.

By Theorem 5, each piece of F' is continuous on its domain. We need to check for continuity at r = R.

. .. GMr GM . .. GM GM . GM . _ GM
TErlgi F(r)= TEI}I?L T e and Tlirlg+ F(r)= TEIII%I+ 2 = % }E}}% F(r)= 2 Since F(R) = T2

F' is continuous at R. Therefore, F' is a continuous function of r.

A cx?+2¢ ifz<?2
xTr) =
2 —cx if x>2

f is continuous on (—o00,2) and (2,00). Now lim f(z) = lim (cz®+2z) = 4c+ 4 and

r—27 rx—27

lim, f(z) = lim, (2 —cx) =8 —2c. So fiscontinuous < 4c+4=8-2c < 6c=4 < c= 2. Thus,for f
T—2 r—2

to be continuous on (—oco, 00), ¢ = 2.
2
z°—4 .
if ©<2
z—2

F@) =902 b3 if 2<z<3
2r—a+b if >3

2 — —
Atz =2  lim f(z)= lim 22 = qim EFDE@E=D o —oyoy
r—2" r—2— T — r—2" T —2 r—2"
lim f(z) = lim (az® —bx +3) =4a —2b+ 3
z—21 r—2+

We must have 4a —b+3 =4,orda — 2b=1 (1).
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Atz =3 lim f(z)= lim (az® — bz +3) =9a —3b+3

r—3 r—3"
lim f(z)= lim (22 —a+b)=6—a+b
z—3+ z—3T

We musthave 9a —3b+3 =6 —a+b,or 10a — 4b =3 (2).

Now solve the system of equations by adding —2 times equation (1) to equation (2).

—8a +4b= —2
10a —4b= 3
2a = 1

1

5 as well. Thus, for f to be continuous on (—o0, 00),

Soa = % Substituting % for a in (1) givesus —2b = —1,s0b =

a:b:

= 2’ —1 = (@ + D~ 1) = @+ )@+ -1 =@*+1)(z+1) [ora®+2°+2+1]
z—1 z—1 z—1

(@) f(z)
for  # 1. The discontinuity is removable and g(z) = 2® + 2® + 2 + 1 agrees with f for # # 1 and is continuous on R.

3 _ 2 2 o o
(0) f(z) = " 2o _ 2z — 2) _ 2@ ;z(; 1 o +1) [ora?+a] fora £ 2. The discontinuity

is removable and g(z) = x? + x agrees with f for 2 # 2 and is continuous on R.
(¢) lim f(z) = lim [sinz] = lim 0=0and lirnJr (x) = lim+ [sinz] = lirn+(—1) = —1,s0 lim f(x) does not

exist. The discontinuity at x = 7 is a jump discontinuity.

y y

31 31 /
5 ) N=2

N=2
14 14

o[ 025 =~ 1 = o 025 = 1 x

f does not satisfy the conclusion of the f does satisfy the conclusion of the
Intermediate Value Theorem. Intermediate Value Theorem.

f(x) = 2* + 10sin z is continuous on the interval [31,32], f(31) ~ 957, and f(32) ~ 1030. Since 957 < 1000 < 1030,
there is a number ¢ in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: There is also a number ¢ in

(—32, —31) such that f(c) = 1000.

Suppose that f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2, 3],
the fact that f(2) = 8 > 6 and f(3) < 6 implies that there is a number c in (2, 3) such that f(c) = 6. This contradicts the fact
that the only solutions of the equation f(z) = 6 are x = 1 and = = 4. Hence, our supposition that f(3) < 6 was incorrect. It

follows that f(3) > 6. But f(3) # 6 because the only solutions of f(z) = 6 are x = 1 and « = 4. Therefore, f(3) > 6.

f(x) = z* + z — 3 is continuous on the interval [1, 2], f(1) = —1, and f(2) = 15. Since —1 < 0 < 15, there is a number c
in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation z* + z — 3 = 0 in the

interval (1, 2).
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f(x) = ¥z + x — 1is continuous on the interval [0, 1], f(0) = —1, and f(1) = 1. Since —1 < 0 < 1, there is a number ¢ in
(0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation vz + z — 1 = 0, or

V& =1 — z, in the interval (0, 1).

The equation e” = 3 — 2z is equivalent to the equation e® + 22 — 3 = 0. f(x) = e” + 2z — 3 is continuous on the interval
[0,1], f(0) = —2,and f(1) = e — 1 =~ 1.72. Since —2 < 0 < e — 1, there is a number c in (0, 1) such that f(c) = 0 by the

Intermediate Value Theorem. Thus, there is a root of the equation e” + 2z — 3 = 0, or €” = 3 — 2z, in the interval (0, 1).

The equation sin x = x® — x is equivalent to the equation sinz — 2> + z = 0. f(x) = sinx — 2 + z is continuous on the
interval [1,2], f(1) =sinl & 0.84, and f(2) =sin2 — 2 ~ —1.09. Since sin1 > 0 > sin 2 — 2, there is a number ¢ in
(1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin z — x> + 2 = 0, or

sinz = x? — x, in the interval (1, 2).

(a) f(z) = cosx — 2* is continuous on the interval [0, 1], f(0) = 1 > 0, and f(1) = cos1 — 1 ~ —0.46 < 0. Since
1> 0 > —0.46, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root
of the equation cos x — x* = 0, or cos x = x>, in the interval (0, 1).

(b) £(0.86) ~ 0.016 > 0 and f(0.87) ~ —0.014 < 0, so there is a root between 0.86 and 0.87, that is, in the interval
(0.86,0.87).

(@) f(x) = Inxz — 3 4 2z is continuous on the interval [1,2], f(1) = —1 < 0,and f(2) =In2+ 1 ~ 1.7 > 0. Since
—1 < 0 < 1.7, there is a number c in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of
the equation Inx — 3 + 2z = 0, or Inx = 3 — 2z, in the interval (1, 2).

(b) £(1.34) = —0.03 < 0 and f(1.35) ~ 0.0001 > 0, so there is a root between 1.34 and 1.35, that is, in the
interval (1.34,1.35).

(a) Let f(z) = 100e~*/1°° — 0.0122. Then f(0) = 100 > 0 and

F(100) = 100e™! — 100 ~ —63.2 < 0. So by the Intermediate &
Value Theorem, there is a number ¢ in (0, 100) such that f(c) = 0. \
This implies that 100e /1% = 0.01¢>.
(b) Using the intersect feature of the graphing device, we find that the 100 . ! . 100

root of the equation is = 70.347, correct to three decimal places.

(a) Let f(z) = vz —5— %4-3 Then f(5) = —% < Oand f(6) = § > 0, and f is continuous on [5, c0). So by the

13:\/0—5.

Intermediate Value Theorem, there is a number ¢ in (5, 6) such that f(¢) = 0. This implies that

C
(b) Using the intersect feature of the graphing device, we find 0.2
that the root of the equation is = 5.016, correct to three { y=\x=5 W
decimal places. _ 1
ecimal places y=
5 ' : : : 5.1
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}llimo sin(a + h) = flLiH%) (sinacosh + cosasinh) = lim (sinacosh) + }llir% (cosasinh)

—0

= (lim sin a) (;ILIL% cos h) + (ili% cos a) <}1111% sin h) = (sina)(1) 4 (cosa)(0) = sina

h—0

As in the previous exercise, we must show that }llin% cos(a + h) = cos a to prove that the cosine function is continuous.
%in% cos(a + h) = %ir% (cosacosh —sinasinh) = }llin% (cosacosh) — I}Lir% (sinasinh)

= <lim cos a) (;ILIL% cos h) - (lim sin a) (lim sin h) = (cosa)(1) — (sina)(0) = cosa

h—0 h—0 —

If there is such a number, it satisfies the equation z®> +1 =2 < 2® —x +1 = 0. Let the left-hand side of this equation be

called f(z). Now f(—2) = —5 < 0,and f(—1) =1 > 0. Note also that f(x) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number ¢ between —2 and —1 such that f(c) = 0, so that ¢ = ¢® + 1.

a n b
3 +222 -1 2342 —2

=0 = a(z®+2—2)+b(>+22°> — 1) = 0. Let p(z) denote the left side of the last

equation. Since p is continuous on [—1, 1], p(—1) = —4a < 0, and p(1) = 2b > 0, there exists a ¢ in (—1, 1) such that
p(c) = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (—1,1) is
(—=14++/5)/2 =7, but p(r) = (3+/5 — 9)a/2 # 0. Thus, c is not a root of either denominator, so p(c) =0 =

x = cis a root of the given equation.

f(x) = x*sin(1/z) is continuous on (—o0, 0) U (0, 0o) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since —1 < sin(1/z) < 1, we have —2* < z*sin(1/x) < 2*. Because
lin%(—x‘l) = 0and lir% x* = 0, the Squeeze Theorem gives us lirr})(x4 sin(1/x)) = 0, which equals f(0). Thus, f is

r— T— xr—

continuous at 0 and, hence, on (—oo, 00).

(@) lim F(z)=0and lim F(z)=0,so lir% F(z) = 0, which is F'(0), and hence F is continuous at z = a if a = 0. For

z—0 z—0—
a >0, lim F(z) = limz =a = F(a). Fora < 0, lim F(z) = lim(—z) = —a = F(a). Thus, F' is continuous at

x = a; that is, continuous everywhere.

(b) Assume that f is continuous on the interval I. Then for a € I, lim |f(x)| =

lim f(:r)’ = |£(a)| by Theorem 8. (If a is
an endpoint of I, use the appropriate one-sided limit.) So | f| is continuous on I.
1 ifx>0

(c) No, the converse is false. For example, the function f(x) = { L i 0 is not continuous at z = 0, but | f(z)| = 1 s
-1 ifz<

continuous on R.
Define u(t) to be the monk’s distance from the monastery, as a function of time, on the first day, and define d(t) to be his
distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to the top of
the mountain. From the given information we know that (0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now consider the
function u — d, which is clearly continuous. We calculate that (u — d)(0) = —D and (u — d)(12) = D. So by the
Intermediate Value Theorem, there must be some time ¢o between 0 and 12 such that (u — d)(to) =0 < u(to) = d(to).

So at time ¢ after 7:00 AM, the monk will be at the same place on both days.
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2.5 Limits Involving Infinity

1. (a) As z approaches 2 (from the right or the left), the values of f(x) become large.
(b) As x approaches 1 from the right, the values of f(z) become large negative.
(c) As x becomes large, the values of f(x) approach 5.

(d) As x becomes large negative, the values of f(x) approach 3.

2. (a) The graph of a function can intersect a The graph of a function can intersect a horizontal asymptote.
vertical asymptote in the sense that it can It can even intersect its horizontal asymptote an infinite
meet but not cross it. number of times.

Y y
y

_____ /\ a
\/ x

=

0/ / X

(b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown.

y y y

X Y X X
No horizontal asymptote One horizontal asymptote Two horizontal asymptotes
3. (a) lim2 flx) =00 (b) lim f(x)=o00 (©) hm+ flz)=—o0 (d lim f(z)=1
r— r——1- r——1 T—00
(e) lim f(z)=2 (f) Vertical: x = —1, x = 2; Horizontal: y = 1, y = 2
4. (a) lim g(z) =2 (b) lim g(z)= -2 (©) lirré g(x) = 00
(d) lir% g(z) = —c0 (e) lim+ g(z) = —0 (f) Vertical: © = —2, x = 0, x = 3; Horizontal: y = —2,y = 2
z— r——2
5. lir% f(z) = —o0, 6. lirré f(x) =00, lim f(x)= o0, 7. lim2 f(z) = —o0, lim f(z) = oo,
r— r— r——2 r— r— 00
lim f(x) =5, lim f(z) = —o0, lim f(z)=0, lim f(x)=0, lirn+ f(x) = oo,
xTr——00 T——2— xr— —00 T — — 00 z—0
lim f(z)=-5 lim f(z)=0, f(0)=0 lim f(x) = —o0
T—00 L0 z—0—
y
_ y =
ysﬁ o Moix=2
0
y=-5
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8. . lim+ f(z) = —o0, 9. f(0)=3, lim f(x)=4, 10. lirré f(x) =—o0, lim f(z) =2,
x—3 z—0— T— T — 00
lim f(z) = oo, lim+ f(z) =2, f(0)=0, fiseven
r—37 z—0
lim f(z) = oo, fisodd lim f(z) = —o00, lim f(x)= —oo, x=-3 y x=3
z—00 T——00 z—4—
y=2

y

Jim f(z) =oc, lim f(z) =3 Y 7

[ N N
A7

S
=

11. If f(x) = 2%/2%, then a calculator gives f(0) = 0, f(1) = 0.5, f(2) = 1, f(3) = 1.125, f(4) = 1, f(5) = 0.78125,
£(6) = 0.5625, £(7) = 0.3828125, £(8) = 0.25, £(9) = 0.158203125, £(10) = 0.09765625, f(20) ~ 0.00038147,
f(50) ~ 2.2204 x 10~'2, £(100) ~ 7.8886 x 10~ 2.

It appears that lim (z°/2%) = 0.

12. (a) f(z) = msl_ T
x f(z) x f(z)
0.5 —1.14 1.5 0.42
From these calculations, it seems that 0.9 —3.69 1.1 3.02
lim f(z) = —occand lim f(z) = oo. 0.99 —33.7 1.01 33.0
o o 0.999 | —333.7 1.001 | 333.0
0.9999 | —3333.7 1.0001 | 3333.0
0.99999 | —33,333.7 1.00001 | 33,333.3

(b) If x is slightly smaller than 1, then 22— 1willbea negative number close to 0, and the reciprocal of x> — 1, that is, f(x),

will be a negative number with large absolute value. So lim f(z) = —oco.

z—1-
If 2 is slightly larger than 1, then > — 1 will be a small positive number, and its reciprocal, f(z), will be a large positive

number. So lim f(x) = co.

r—1

(c) It appears from the graph of f that r

lim f(z) = —ocoand lim f(z)= co.

z—1— r—1t 0 )
ﬁ J

—-10
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Vertical: x =~ —1.62, x ~ 0.62, z = 1; . 10 \
Horizontal: y = 1 ‘ ‘
—-10 10
N\ n J
-10
(a) From a graph of f(z) = (1 — 2/x)" in a window of [0, 10,000] by [0, 0.2], we estimate that lim f(z)=10.14
(to two decimal places.)
(b) From the table, we estimate that lim f(z) = 0.1353 (to four decimal places.)
z f(z) e
10,000 | 0.135308
100,000 | 0.135333
1,000,000 | 0.135335
lim 2o = oo since the numerator is positive and the denominator approaches 0 through positive values as x — 1.

2 . . . . L _
= oo since the numerator is negative and the denominator approaches 0 from the negative side as x — —3~.

Lett =3/(2—x). Asz — 2%, t — —o0. So lim ¥/ () = lim e' = 0by (7).

r—2

Cos ™

lim cotz = lim = —oo0 since the numerator is negative and the denominator approaches 0 through positive values

T—TT r—n— SINX

asxr — m .

Lett =2? —9. Thenasz — 3%, ¢t — 0T, and lim,_ In(z® —9) = lim Int = —oo by (3).
r—3 t—0

. x? — 2z . z(z—2) . x . . .. .
lim ——— = lim ——= = lim = —oo since the numerator is positive and the denominator
e—2- 22 —4dx+4 o2 (x—2)2 22—z —2

approaches 0 through negative values as x — 2.

lim xzcscx = lim — = —oo since the numerator is positive and the denominator approaches 0 through negative
T—21T x—2n— SINT

values as x — 27~ .

. 1
3r+5 . (Br+5)/x . 3—0—5/:671152034_5%11,120;734—5(0)73
lim 1—4 lim + 1~ 4(0)

T — 00 r—o0 I

lim > - =
00 T —4  aneo (z—4)/z  aveel-4/z

Divide both the numerator and denominator by z* (the highest power of x that occurs in the denominator).

3 5
z° 4+ bz 5 li 14+ =
. 2® + b _ 23 I+ minio< o
lim ———— = lim ——~—5—— = lim =
e—o0 223 — 22 44 w00 22° — 2% +4 Iﬂmg_l_i_i i g1 4
— Q= @ S\ttt s

. . 1
s 1O M 1+50) 1

- 1 1 7 2-0+4(0) 2
3

Iim 2— lim — +4 lim

xr— 00 r—00 I r—oc I
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2 1 22 +2)/2 1t+2/8 040

A ol A B oD E A T -1 1+0-0

25, First, multiply the factors in the denominator. Then divide both the numerator and denominator by u*.

4u* +5 PR
lim du’ +5 — limﬂ— 1im“—4— limi
u—>oo(u2—2)(2uz—1) 7u—>002u4—5u2+27u—>oo 2u4_5u2+2 7u—>oo2_i+1
lim (44 -2 . —
__ umee ut) am 4+5 lim -7 _ 4450 _4_,
L 5 2\ . .1 1 " 2-5(0)+20) 2
A (2 “wt ;) AN e T
2. lim x+2 oy (r+2)/x — lim 1+2/z 140 1

—_—_— I —— = = =
2=00 /922 +1  2—00 (/922 +1/V/22 =2—-%,/0+1/22 V9+0 3

2 — 2 p) 2 2
2. tim (VT T 3a) — lim WU T2 S (e tdy)  (VORFa) - @)
A, A, N R Y T E R

. (9x2+x) — 92 . T 1/x
= lim —2— = lim ———— - =
gooo /072 x4+ 3z 22— /92 + 43z 1/z
. )z . 1 1 11
= lim = lim = = ==
v—oo /922 /22 4 /a2 4+ 3x/x oo \/O9+1/x+3 V9+3 3+3 6

(\/a:2+am—\/x2—|—bx) (\/x2+a:r+\/x2+bx)

28. lim (V22 +az — Va2 +bz) = lim

z—00 Va2 + ax +x? + bx
2 (2 _
~ lim (% 4+ ax) — (z* + bx) ~ lim [(a —b)zx]/x
e—oo a2 ar + Va2 +br  e—e (Va2 +az + Va2 +ba)/Va?
~ lim a—b B a—b _a—b
e \/T+a/z+/1+b/z  VI+0+V1I+0 2
29. Lett = —22. Asz — 00, — —00. So lim e™* = lim e’ = 0by (7).

30. Forx > 0,22+ 1> +vx2 =2x. Soasx — oo, we have vz2 + 1 — oo, thatis, lim /22 + 1 = co.

31. lim cosx does not exist because as x increases cos x does not approach any one value, but oscillates between 1 and —1.

r— 00

202
1 1
22T < —-Now lim 0 =0and lim — = 0, so by the Squeeze Theorem,
x

.7,‘2 - T — 00 x—00 332 -

32. Since 0 < sin® z < 1, we have 0 <

. sin’z
lim

xr— 00 (1,‘2

=0.

33. Since —1 < cosz < 1 and e~ > 0, we have —e** < ¢"** cosx < e~ 2*. We know that lim (—e~ ") = 0 and

lim (e~**) = 0, so by the Squeeze Theorem, lim (e~ > cosz) = 0.
3z —3x —6x
.. . - 1-— 1-—
34. Divide numerator and denominator by e3*: xlin;o 23’”—}—% = xlin;o T Z_Gx =17 8 =1
35. lim (z*+2°) = lim 2°(2 +1) [factor out the largest power of 2] = —oo because 2> — —ccand 1/z +1 — 1

xr— —0Q xr— — 00

as r — —OoQ.

Or: lim (174 —I—x5) = lim z*(1+2z)=—c0.

xr— — 00 r— — 00
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36. If we lett = tanz, thenas z — (7/2)",t — —oo. Thus, lim . et = lim e’ =0.
z—(7/2) ——00

3 5 3 5 4
37, lim 2ET Ty, e te)/e
z—oo 1 —a2 4+ 2%  sooo (1—a2+at)/zt

~ lim 1/2* +1/z+x ~ e
JE 1/t —1/22 4+ 1 N

[divide by the highest power of  in the denominator]

because (1/2® +1/2 4+ x) — ocoand (1/2* — 1/2° + 1) — lasx — oco.

38. (a) 10 1

| ™\ e ‘ N
10 —100 100
| —

J (. /

From the graph, it appears at first that there is only one horizontal asymptote, at y ~ 0, and a vertical asymptote at

x ~ 1.7. However, if we graph the function with a wider viewing rectangle, we see that in fact there seem to be two

horizontal asymptotes: one at y ~ 0.5 and one at y ~ —0.5. So we estimate that

2 2
V20041 05 and lim Y22l o5

. V2x2 +1
(b) £(1000) ~ 0.4722 and f(10,000) =2 0.4715, so we estimate that lim 35—_—; ~ 0.47.

V2x2 +1

f(—1000) ~ —0.4706 and f(—10,000) ~ —0.4713, so we estimate that lim -5 —0.47.
Tr— — 00 €Xr —
v 2x2 2+ 1/x2
(¢) lim v2ritl = lim +7/I [since Va2 =z forx > 0] = Q ~ 0.471404.
For z < 0, we have Va2 = |z| = —=x, so when we divide the numerator by x, with < 0, we
get l\/2x2 +1= L V222 +1 = —/2 + 1/22. Therefore,
T V2
/52 1 2T 1 22
hm V2L SVRHUE VR s
20° 2 -1 IR SN S TN (I
. 2041 . 72 . +5_§ z—00 x 22
39. lim ———— = lim —5—~—— = lim =
z—oo 24+ —2  w—oo ¥4 —2 wﬂool_i_l_l I 1 1 2
Q2 2 S\t e

. o1 L1
Mt M 240-0

T = 1+0-2(0)
2

i =2, soy = 2is a horizontal asymptote.
lim 14 lim — —2 lim

T— 00 r—oo U r—0o0 I 7
202+ -1 (2z—1)(z+1) ,
= = = 1 =
y=f@ 2 +x—2 (x+2)(x—1) s J(@) = oo,
w_l}ing+ flx) = —o0, wl_l}r{l_ f(x) = —o0, and I/l_l)r{l+ f(x) = oco. Thus, z = —2 L
and xz = 1 are vertical asymptotes. The graph confirms our work. L / 3 \ J

17
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40.

41.

42.

00 CHAPTER2 LIMITS AND DERIVATIVES

2 1
x4+ 1 1 li 14 —
e 2 el ()
im — = l1IIm = lim =
x—o00 202 —3x —2 az—oo 222 — 31— 2 z_>°°2—§fi : 3 2
= PO lim 2————2
€T xr— 00 e X
= 3 5 = 5-0-0_ 2 so y = 5 is a horizontal asymptote.
lim 2— lim — — lim —
oot T aBee T b 22
2 +1 241 4

y=1@)= 202 — 317 —2 2z + 1) (z —2)’ 50 z—>(lir1n/2)* J(@) = oo

because as ¢ — (—1/2)~ the numerator is positive while the denominator

approaches 0 through positive values. Similarly,  lim . f(z) = —o0, Bl 4
o (=1/2) [F\ J
lim f(z) = —o0, and lim+ f(z) = oc. Thus, z = — 3 and = = 2 are vertical 3
r—2 r—2 -

asymptotes. The graph confirms our work.

-~z z@@®-1) z+D@-1) z(x+1)
1‘2—6I+5_(x—1)(x—5)_ (x—1)(z —5) T Tr_5 = g(x) forx # 1.

y=f(z) =

40

The graph of g is the same as the graph of f with the exception of a hole in the

graph of f at z = 1. By long division, g(z) = T z+6+ i
r—95 r—35
As z — Fo00, g(x) — o0, so there is no horizontal asymptote. The denominator -20 40
of g is zero whenz = 5. lim g¢(z) = —oo and lim+ g(x) =o00,s0x =5isa t J
r—5" r—5
-20
vertical asymptote. The graph confirms our work.
2e” 2e”  1/e” 2 2 . .
mlggo = e_ F= TIEEO " e_ £ 1;; = mlggo T (5/c) =1-0°" 2, so y = 2 is a horizontal asymptote.
. 2e” 2(0) . . . . o
lim 5 =05 0, so y = 0 is a horizontal asymptote. The denominator is zero (and the numerator isn’t)
r——oco e¥ — —
whene” —-5=0 = ¢e"=5 = z=Inb.
5
lim N 2 5= since the numerator approaches 10 and the denominator L
z—(In5)+ €% —
approaches 0 through positive values as  — (In 5)". Similarly, i ;
. 2e” . . ‘ \ )
lim 5 = o0 Thus, z = In 5 is a vertical asymptote. The graph 5
z—(In5)— ¥ — -

confirms our work.
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43. (a)  —100 0 (b)
x f(x)
—10,000 | —0.4999625
—100,000 | —0.4999962
—1,000,000 | —0.4999996
From the table, we estimate the limit to be —0.5.
From the graph of f(z) = Va2 +x + 1+ x, we

estimate the value of lim f(z) to be —0.5.

) _ 2 1) —
(c) lir_n (v/—x2+x+1+x): lim (/—332+x+1+a:) 2+ +1—2 ~ lim (:E +3c+)

z——00 vez+ax+1—=x zo—00 \x24+ax+1—=x
T R eV R 1+ (1/2)
e=—oo (Va2 o+ 1—x)(1/x) e=—cc —\/T+ (1/z) + (1/22) —
_ 140 _ 1
—/1+0+0-1 2
Note that for z < 0, we have Va2 = || = —z, so when we divide the radical by z, with < 0, we get
1 1
;\/IQ—‘,-I—F :——2\/ZL‘2—|—33+ =—/1+ (1/z) + (1/22).
VI
44. (a) LS (b)
T f(@)

10,000 | 1.44339
100,000 | 1.44338
1,000,000 | 1.44338

0~ 100
1.4

From the table, we estimate (to four decimal places)

From the graph of the limit to be 1.4434.

f(x) =322 + 8z +6 — 322 + 3z + 1, we

estimate (to one decimal place) the value of lim f(z)

Tr— 00

to be 1.4.
© lim f(z) = lim (\/39:2+8x+6—\/3x2+3x—|—1)(\/3:r2+8x+6+\/3x2+3x+1)
z—00 z—00 V322 + 82 +6+ 312+ 3z + 1
B (32 + 82 +6) — (32> +3x+1) - (5z + 5)(1/z)
e=o0 /322 + 82+ 6+ 322 +3x+1  o—oo (V322 + 8z +6+ V322 + 3z +1)(1/x)
~ lim 5+5/z 5 _ 5 _5Y3 1 iu3376

woo\/3+8/m+6/m2+\/3+3/x+1/x2 T V3143 243 6

19
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45. From the graph, it appears y = 1 is a horizontal asymptote.

3a2® + 5002
lim 3z% + 50022 ~ lm - 3 ~ lim 3+ (500/x)
z—oo 13 + 50022 + 100z + 2000  z—00 z° + 50022 4+ 100z + 2000  =—c0 1 + (500/z) + (100/22) + (2000/x3)
3
B 3+0 _ o .
1707070 3, soy = 3 is a horizontal asymptote.
2
The discrepancy can be explained by the choice of the viewing window. Try
[—100,000, 100,000] by [—1, 4] to get a graph that lends credibility to our
calculation that y = 3 is a horizontal asymptote.
-10 10
0
46. (a) 100 100
0 ‘ : : : 5 0 ‘ : : : 5

No, because the calculator-produced graph of f(z) = e” + In |z — 4| looks like an exponential function, but the graph of f
has an infinite discontinuity at z = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to
reveal the discontinuity at z = 4.

(b) There isn’t a single graph that shows all the features of f. Several graphs are needed since f looks like In |z — 4| for large

negative values of = and like e* for x > 5, but yet has the infinite discontiuity at x = 4.

6 60
—100 : 0 3.9540 4.05
A hand-drawn graph, though distorted, might be better at revealing the main Y
features of this function.
\/\
° i
x=4
47. Let’s look for a rational function.
(1) 1i111 f(x) =0 = degree of numerator < degree of denominator
2) lirr%) f(x) = —oo = there is a factor of 2% in the denominator (not just x, since that would produce a sign
change at x = 0), and the function is negative near x = 0.
(3) lim f(x) = ocoand lim+ f(z) = —c0 = vertical asymptote at x = 3; there is a factor of (x — 3) in the
r—3~ z—3

denominator.
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4) f(2) =0 = 2isan z-intercept; there is at least one factor of (x — 2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us

flz) = 2

m as one possibility.

48. Since the function has vertical asymptotes = 1 and « = 3, the denominator of the rational function we are looking for must

have factors (x — 1) and (z — 3). Because the horizontal asymptote is y = 1, the degree of the numerator must equal the
2

degree of the denominator, and the ratio of the leading coefficients must be 1. One possibility is f(z) = m
x—1)(z —
49. (a) We must first find the function f. Since f has a vertical asymptote = 4 and z-intercept x = 1, x — 4 is a factor of the
denominator and = — 1 is a factor of the numerator. There is a removable discontinuity atx = —1,s0z — (—1) =z + 1 is
alx —1)(z+1)

a factor of both the numerator and denominator. Thus, f now looks like this: f(x) = , where a is still to

(z —4)(z+1)
. . L ale—1)(z+1) . alr—1) a(-1-1) 2 2
be determined. Then Il_l)nzlf(:c) _zlinill D@D _zli}l;ll pray ey o M 50, 8O 5a_2, and

5 D@+ 1)

a = 5. Thus f(z) = m is a ratio of quadratic functions satisfying all the given conditions and
5(-1)@) _5
FO) = =50 =
(491 4
. . z? -1 . (22 /2?) — (1/2?) 1-0
®) lim f@) =5l g 1 R @ et (@) P1-0-0 "M T8
50. (a) In both viewing rectangles, 2 10,000
. . 0 P ofp
lim P(z) = lim Q(z) = oo and
lim P(z)= lim Q(x)= —ooc. -2 ' ‘ 2 -10 10
In the larger viewing rectangle, P and ) { P g J FPlo
become less distinguishable. —2 —10,000
. P(x) . 3x% —52® 42 . 5 1 2 1
(b) lim_ o) :wlin;oT:wh_)n;O -3 S5+3 =1-2(0)+2(00)=1 =

P and @ have the same end behavior.

51. (a) Divide the numerator and the denominator by the highest power of x in Q(z).
(a) If deg P < deg @, then the numerator — 0 but the denominator doesn’t. So lim [P(z)/Q(x)] = 0.

(b) If deg P > deg @, then the numerator — oo but the denominator doesn’t, so lim [P(z)/Q(z)] = +oo
(depending on the ratio of the leading coefficients of P and Q).

) y | / \y|/ | L J k
/‘ 0 x 0 ‘ x j) ‘ x 0
Hn=0 (i)n >0 (nodd) (i) n > 0 (n even) iv)n <0 (nodd) (v)n <0 (neven)

From these sketches we see that
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1 ifn=0
1 ifn=0 )
) 0 ifn>0
(@ lim z"=¢0 ifn>0 (b) lim z" = )
x—0t z—0~ —oco if n <0, nodd
oo ifn<0 )
oo if n <0, neven
1 ifn=0
1 ifn=0
) —oo if n >0, nodd
©) lim 2" =<0 ifn>0 (d lim z" = )
T—00 T——00 oo if n >0, neven
0 ifn<O )
0 ifn<O
5. lim Y2 VT b _ % _5ad
z—oo \Jx —1 1/3/x =2—00 \/1—(1/x) V1-0
. 10e” =21 1/e” . 10— (21/€") 10-0 . 10e” — 21 5T
lim . = lim = = 5. Since ——

we have lim f(z) = 5 by the Squeeze Theorem.

r— 00

54, lim m = lim \/%. Asv — ¢, /1 —v2/c2 — 0", and m — oo.

v—cT v—cT — V4/C
55. (a) After ¢t minutes, 25¢ liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains

(5000 + 25t) liters of water and 25¢ - 30 = 750¢ grams of salt. Therefore, the salt concentration at time ¢ will be
B oe o 30t g
~ 5000+25¢ 2004t L
. . 30t . 30t/t 30

b) 1 t) = lim —— = =
() fim C(t) = Jim 55077 = M0 500/t 1471 ~ 041

being pumped into the tank.

C(t)

= 30. So the salt concentration approaches that of the brine

56. (a) tlim u(t) = tlim v* (1 - e*gt/“*) =0v"(1-0)=0"
(b) We graph v(t) = 1 — e~ 2% and v(t) = 0.99v*, or in this case,
v(t) = 0.99. Using an intersect feature or zooming in on the point of

intersection, we find that ¢t =~ 0.47 s.

0 1

57. (a) If t = —x/10, then z = —10¢ and as x — oo, t — —oo. Thus, lim e /10 = lim et =0 by Equation 7.

T — 00 t——o0

(b) y = e/ and y = 0.1 intersect at 1 ~ 23.03. !

Ifz > z1, then e */° < 0.1.

(e <01 = —2/10<In0.1 =

z>-10ln+ = —-10In10"" = 10In10 ~ 23.03

42* — 5z 4—5/x 4
(@) i = lim — 2% = Jim — % =2 =9
% (@ lim fl@) = lim ST = i s T g

(®) f(z) =19 = =z~253744,s0 f(x) > 1.9 whenz > N = 25.4.
flz)=199 = x=~250.3974,s0 f(z) > 1.99 whenz > N = 250.4.
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2.6 Derivatives and Rates of Change

1. (a) This is just the slope of the line through two points: mpg = % = %ﬁ’j(?’)

(b) This is the limit of the slope of the secant line PQ as () approaches P: m = lir% w

2. The curve looks more like a line as the viewing rectangle gets smaller.

2 1.5
/:e)‘ y= er
-1 1 —0.5 0.5 —0.1
0 0.5
3. (a) (i) Using Definition 1 with f(z) = 4z — 2* and P(1, 3),
T—a Tr—a rz—1 x—1 r—1 r—1 r—1 x—1

=lmB—-z)=3-1=2

x—1

(ii) Using Equation 2 with f(x) = 4z — 2* and P(1, 3),

ot L@ = F@) PR~ 1) [0~ (1)) 3
h

h—0 h—0 h h—0 h
N e S el et SN e SN o ) B RS
h—0 h h—0 h h—0 h h—0

(b) An equation of the tangent line is y — f(a) = f'(a)(z —a) = y—f(1)=f(1)(z—-1) = y—-3=2(x—-1),

ory =2z + 1.

(c) 6 The graph of y = 2z + 1 is tangent to the graph of y = 4 — 2 at the
point (1, 3). Now zoom in toward the point (1, 3) until the parabola and
the tangent line are indistiguishable.

-1 0 5

4. (a) (i) Using Definition 1 with f(x) = z — 2® and P(1,0),

— _ 3 .2 B
m—tim L@ =0 et e et a)(ioa)
z—1 x_]— z—1 x_l x—1 €xT — r—1 :L._l

= liIn1 [—z(1+2)]=-1(2) = -2

(ii) Using Equation 2 with f(x) =  — 2® and P(1,0),

fla+h) = f@) _ o fO+n) = f() _ o [k = (14 0)*] 0
h

m= }ILIET}) h h—0 h—0 h
. 1+h—(Q+3h+3R*+h* . —h*-3n*—-2h . h(-h®-3h-2)
= lim =lim —— = lim
h—0 h h—0 h h—0 h

= lim (—h? — 3h — 2) = -2
h—0
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(b) An equation of the tangent line isy — f(a) = f'(a)(z —a) = y—f()=f(1)(x-1) = y—0=-2(xz-1),
ory = —2x + 2.

() 2 The graph of y = —2x + 2 is tangent to the graph of y = = — 2° at the

Ml
_

5. Using (1) with f(z) = 4z — 32 and P(2, —4) [we could also use (2)],

point (1,0). Now zoom in toward the point (1, 0) until the cubic and the

|
[\

tangent line are indistinguishable.

_ 4 _3 2\ _ _4 B 2
m:hmM:hm(m 7*)—( )zlim 3z +4x +4
o (B —-2)(x—2) B B
= lim o —— = lim(—3r - 2) = -3(2) ~2= -8

Tangent line: y — (—4) = —8(z —2) & y+4=-8r+16 & y=—-8x+12.

6. Using (2) with f(z) = 2® — 3z + 1 and P(2, 3),
o flath) = fl@) L fRHR—F?) L (24R)P-3@+R)+1-3

=R h h—0 h h—0 h
. 8+ 12h+6hR*+h*—6—3h—2 . 9h+6R>+h® h(9+6h+ h%)
= lim =lim — = lim ——=
h—0 h h—0 h h—0 h

= lim (9 + 6h +h%) =9
h—0
Tangentline: y —3=9(x—2) & y—3=92—-18 & y=9x—15

\/E—ﬁ:rm(\/a?—1)(\/§+1) . z—1 1
r—1

= llm e lim

1
el (@ D)(Va+1) el @- Dz +1) eyl 2

Tangentline: y —1=3(z—1) & y=3z+3

7. Using (1), m = lim1

8. Using (1) with f(z) = 2; +21 and P(1, 1),
23:—!—1_1 2 +1—(z+2)
m:IimM:th:hm r+2 :hmx—_l
T—a r—a z—1 r—1 z—1 r—1 z—1 (x —1)(x +2)
. 1 1
=lim —=—— ==
z—1x+ 2 1+2 3
Tangentline: y —1=3(z—1) & y—-1l=2z—-1 & y=iz+32

9. (a) Using (2) withy = f(z) = 3 + 42 — 223,
fla+h)— f(a) ~ im 3+ 4(a+h)* —2(a+h)® — (34 4a® — 2a)

m= fllll{%) h h—0 h
i 3 4(a® + 2ah + h?) — 2(a® + 3a®h + 3ah® + h®) — 3 — 4a® + 2a°
T RS0 h
i 3 4a® + 8ah + 4h* — 2a® — 6a’h — 6ah® — 2h°> — 3 — 4a® 4 2a°
Ao h
. 8ah +4h* — 6a®h — 6ah® —2h®> . h(8a 4+ 4h — 6a® — 6ah — 2h?)
= lim = lim
h—0 h h—0 h

— %in})(&t +4h — 6a® — 6ah — 2h*) = 8a — 6a°
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(b) At (1,5): m = 8(1) — 6(1)% = 2, so an equation of the tangent line (© 10

isy—5=2(z—-1) & y=2z+3.
At (2,3): m = 8(2) — 6(2)® = —8, so0 an equation of the tangent

lineisy—3=-8z—-2) & y=-8r+19. ) \ J4
-3
10. (a) Using (1),
N va-— Ve
m_limM:limi‘am:hm (\/__ﬁ)(\/a—i_\/z):lim a-z
g—a T —a z—a T —a e—a /Jax (z —a) (vVa++/x) =—a/ax(z—a)(Va+ /)
= lim ! = -1 L
S VEa Ve Vv | 2Tl
(b) At (1,1): m = —%, so an equation of the tangent line (c) 2
sy—1=-1(z-1) & y=—-iz+3.
At (4,3): m = —&, so an equation of the tangent line

sy—s=—-15%@—-4) & y=—-Fz+32

0o 12

11. (a) The particle is moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to
the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when s is constant; that is, on the

intervals (1, 2) and (3, 4).

vA (m/s)
(b) The velocity of the particle is equal to the slope of the tangent line of the I_Q
graph. Note that there is no slope at the corner points on the graph. On the
1 o————0
. . 3-0 . . |
interval (0, 1), the slope is = 3. On the interval (2, 3), the slope is o] 7
1-0 T (seconds)
1-3 3—-1 T —

—— = —2. On the interval (4, 6), the slope is

=1
3—-2

6—4

12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.

(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two

graphs—this appears to be somewhere between 9 and 10 seconds.

(c) The runners had the same velocity when the slopes of their respective position functions are equal—this also appears to be
at about 9.5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity

for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.

13. Let s(t) = 40t — 16t>.
_ 40t — 16t%) — 16 —16t> _ —8(2t — 5t +2
v(2) = lim () = 5(2) = lim ( ) = lim 16¢7 40t 16 _ lim ( +2)
t—2 t—2 t—2 t—2 t—2 t—2 t—2 t—2

= lim 8t =2 -1 _ —8lim(2t — 1) = —8(3) = —24

t—2 t—2 t—2

Thus, the instantaneous velocity when ¢t = 2 is —24 ft/s.
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14. (a) Let H(t) = 10t — 1.86°.

H(1+h)—H(1) [10(1 4 h) — 1.86(1 + h)*] — (10 — 1.86)

v = fim = = = i h
. 10+ 10h — 1.86(1 + 2h + h?) — 10 + 1.86
= Jim, h

h—0 h
. 2
= lim M = lim (6.28 — 1.86h) = 6.28
h—0 h h—0

The velocity of the rock after one second is 6.28 m/s.

(b) v(a) = lim 2ot P) = Hl@) [10(a + h) — 1.86(a + h)?] — (10a — 1.86a%)

h—0 h h—0 h

_ |y 10+ 10h — 1.86(a® + 2ah + h?) — 10a + 1.86a>
" h—0 h

10a + 10h — 1.86a2 — 3.72ah — 1.86h% — 10a + 1.864> o 10h — 3.72ah — 1.86h>

= lim =1l

h—0 h h—0 h
~ i P10 = 3720 = 1.86h) _ lim (10 — 3.72a — 1.86h) = 10 — 3.72a
h—0 h h—0

The velocity of the rock when ¢ = a is (10 — 3.72a) m/s.

(c) The rock will hit the surface when H =0 <« 10t — 1.86t> =0 <« ¢(10—1.86t) =0 < t=0or1.86t = 10.
The rock hits the surface when ¢ = 10/1.86 ~ 5.4 s.

(d) The velocity of the rock when it hits the surface is ’u(l—o) =10— 3.72(%) =10—20=—10m/s.

1.86
1 1 a®? — (a + h)?

.. sla+h)—s(a) ..  (a+h)?2 a® a2(a+h)2 . a®— (a®+2ah + h?)
15 v(a) = fim ————— = lim = i — = = i Ty

i —(2ah + h?) iy —P2ath) _ m —(2a+h) _ —2a _ =2 ms

~ h—0 ha%(a+h)2 k>0 ha?(a+h)2  h=0a2(a+h)2  a2-a? a3

-2 -2 1 -2 2
Sowv(l) = == —2m/s,v(2) = 55 = —Zm/s, and v(3) = 55 = T or m/s.

16. (a) The average velocity between times ¢ and ¢ + h is

s(t+h)—s(t) (t+h)’>—8(t+h)+18— (t*—8t+18) >+ 2th+ h* — 8t —8h + 18 — > + 8t — 18

(t+h)—t h h
2 —
— w — (2t +h—8)ms.
(1) [3,4]: t =3,h=4—3 =1, so the average (ii) [3.5,4]: t = 3.5, h = 0.5, so the average velocity
velocity is 2(3) + 1 — 8 = —1 m/s. is2(3.5) + 0.5 —8 = —0.5m/s.
(iii) [4,5]: t =4, h =1, so the average velocity (iv) [4,4.5]: t =4, h = 0.5, so the average velocity

is2(4)+1—-8=1m/s. is 2(4) + 0.5 — 8 = 0.5 m/s.
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. s(t+h)—s(t) ..
b) v(t) = lim ——F——= =1 2t+h—8) =2t —8
(b) v(t) = Jim S lim (2t + —8) @ -
sov(4) =0. 51
14
L N L

17. ¢’ (0) is the only negative value. The slope at x = 4 is smaller than the slope at x = 2 and both are smaller than the slope
atz = —2. Thus, ¢'(0) < 0 < ¢'(4) < ¢'(2) < ¢'(—-2).

18. Since g(5) = —3, the point (5, —3) is on the graph of g. Since g’(5) = 4, the slope of the tangent line at z = 5 is 4.

Using the point-slope form of a line gives us y — (—3) = 4(x — 5), or y = 4x — 23.

19. For the tangent line y = 4= — 5: when x = 2, y = 4(2) — 5 = 3 and its slope is 4 (the coefficient of ). At the point of

tangency, these values are shared with the curve y = f(x); that is, f(2) = 3 and f'(2) = 4.

20. Since (4,3) isony = f(x), f(4) = 3. The slope of the tangent line between (0,2) and (4, 3) is 1, so f'(4) = 1.

21. We begin by drawing a curve through the origin with a y y
slope of 3 to satisfy f(0) = 0 and f’(0) = 3. Since 1+ / 1
f'(1) = 0, we will round off our figure so that there is 1 ——— N——" — Kx
a horizontal tangent directly over « = 1. Last, we
make sure that the curve has a slope of —1 as we pass

over x = 2. Two of the many possibilities are shown.

22. We begin by drawing a curve through the origin with a slope of 1 to satisfy
g(0) = 0 and ¢'(0) = 1. We round off our figure at z = 1 to satisfy ¢'(1) = 0,

and then pass through (2, 0) with slope —1 to satisfy g(2) = 0 and ¢’(2) = —1.

We round the figure at x = 3 to satisfy g’(3) = 0, and then pass through (4, 0)

with slope 1 to satisfy g(4) = 0 and ¢’(4) = 1. Finally we extend the curve on

both ends to satisfy lim g(z) =ocoand lim g(x) = —o0.

23. Using (4) with f(z) = 32® —z® and a = 1,

[3(1+h)%—(1+h)®] -2

= lim

h—0 h h—0 h

. (3+6h+3h*)—(1+3h+3R*+h*)—2 . 3h—h* . h(3-h?
zhm :hm—:hm—

h—0 h h—0 h h—0 h
=lim(3-h*)=3-0=3

h—0

Tangentline: y —2=3(z—1) & y—2=3r—-3 & y=3r—-1
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24, Using (5) with g(z) = 2* — 2anda = 1,

g (1) = lim g9(z) —9(1) — lim w lim vt -1 _ lim (z* +1)(2* —1)

rz—1 rx—1 rz—1 x—1 :zl—>1 rz—1 . rx—1
2 J—
= lim (@ “)(;”jl”(x D _ lim (2 + 1)(z +1)] = 2(2) = 4

Tangentline: y — (=1) =4(z—-1) & y+1=4r—-4 & y=4x-5

25. (a) Using (4) with F((z) = 5z/(1 + 2*) and the point (2, 2), we have (b) 4
52+h)
— 2
F(2) = lim FQ+h)-F@2) _ . 1+@2+h
h—0 h h—0 h -1
5h+10 5h + 10 — 2(h* + 4h + 5) L
— i P24 +5 — lim h?2+4h+5 -2
h—0 h h—0 h
— 2 P— — p— —_— —_— —_—
~ Jim 2h" —3h  _ I h(—2h —3) . 2h —3 =3

h0 R(h® +4h +5)  ho0 h(h2+ 4h+5) ho0h2+4h+5 5

So an equation of the tangent line at (2,2) isy —2 = —2(z —2) or y = -2z 4 2.

26. (a) Using (4) with G(x) = 42® — 2®, we have

_ 2 _ 31 _ 2 _ 3
¢ (a) = lim Glat+h)=Gla) _ lim [4(a+h)* — (a+ h)’] — (4a® —a”)
h—0 h h—0 h
. 4a® + 8ah + 4h* — (a® + 3a®h + 3ah® + h®) — 4a®> +a® . 8ah + 4h® — 3a®h — 3ah® — h?
= hm h = h

h(8a + 4h — 3a® — 3ah — h?)

= lim = lim (8a + 4h — 3a® — 3ah — h*) = 8a — 3a®
h—0 h h—0
At the point (2,8), G'(2) = 16 — 12 = 4, and an equation of the (b) 12

tangent line is y — 8 = 4(x — 2), or y = 4. At the point (3,9),
G'(3) = 24 — 27 = —3, and an equation of the tangent line is
y—9=-3(x—3),ory =—3x + 18.

~( |

—
]

27. Use (4) with f(x) = 32° — 4z + 1.

/(a) = lim fla+h)— f(a) _ lim [3(a+h)* —4(a+h) +1] — (3a® — 4a + 1)]

h—0 h h—0 h
. 3a2+6ah+3h%>—4a—4h+1—-3a*>+4a—1 . 6ah+3h®—4h
= hm = hm _
h—0 h h—0 h
_ i PB2t 30— 4) = lim (6a + 3h — 4) = 6a — 4

h—0 h
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28. Use (4) with f(t) = 2> + t.

flath)—fla) _ . [a+h)?’+(a+h)]—(2°+a)

f'(a) = lim

h—0 ]’L h—0 ]’L
. 2a®+6a*h+6ah®>+2h3 +a+h—2a%—a . 6a’h+6ah?+2h3+h
= lim = lim
B0 h h—0 h
2 2
_ Jim h(6a +6al;+ 2p*+1) }Limo(mg +6ah+2h? +1) = 6a% +1

29. Use (4) with f(t) = (2t +1)/(t + 3).

20a+h)+1 2a+1
f(a+h)—f(a):hm (a+h)+3 a+3

2a+2h +1)(a+3) — (2a+1)(a+ h +3)

:lim(

f'(a) = lim

h—0 h R0 h R0 h(a+h+3)(a+3)
i (2a + 6a + 2ah + 6h + a + 3) — (2a® + 2ah + 6a +a + h + 3)
T RS0 h(a+h+3)(a+3)

. 5h B 5 5
~ h—o0h(a+h+3)(a+3)

i
it0 (at+h+3)(at3) (at3)?

30. Use (4) with f(z) =272 = 1/2°.

1 1 @ —(ath)?
iy o fla+h)=fla) .. (a+h)? a* . a2(a+h)2 . a®— (a® + 2ah + h?)
L R P PR
—2ah — h? . h(=2a—h) .  —2a—h —2a -2

- hli%m N h%m ~ Ao a2(a+h)?2  a2(a?) a3
31. Use (4) with f(z) = /1 — 2z.
flath) = f(a)

V1-2(a+h)—+1-2a

= lim

f'(a) = lim

h—0 h h—0 h
i VTIET VT TR ey (V) - ()’
o " VI=2Aath)+VT=2a 20 h(\/1_2(0+h)+\/1—2a)

SOn(VI=2at Ry +vT=2a)  On(T=2(+ )+ VT 2a)

—2 —2 —2 —1
lim = = =
h=0,/1-2(a+h)++vI-2a V1-2a++v1-2a 2V1-2a 1-2a

32. Use (4) with f(z) = 14
— T
4 4
f’(a)_%gw:mﬂ—(w? Vi-a
Vi-a—+V1-a—h
EVRT \/1—a—h\/1_a B ] \/1_a—\/1—a—h
=4 lim 5 74}1L1_’H%]h\/1—a—h\/1_a

[continued]
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— 41im \/1—a—\/1—a—h.\/1—a+\/1—a—h_4lim (V1I—=a)* - (V1—a—h)?
0 h/T—a—hvi—a Vi—a+vVi—a—h h0h/I—a—hvI—a(vVI—a+vVI—a—h)
=4 lim U-a)-(1-a-h) = 4 lim —h
h—0hy1—a—hy1—a(v/IT—a++v1—a—h) h—0hy1—a—hv1—a(v/T—a++vV1—a—h)
=4 lim ! =4. —!
h—=0+1—a—h+1—a(v/T—a++1—a—h) Vi—av1I—a(v1—a++1—a)
4 —9 )

T (-a@Vi—a) (-o@l-a)Z (T-ap"

Note that the answers to Exercises 33 — 38 are not unique.

10 _
33. By (4), lim % = f'(1), where f(z) = z'®anda = 1.
10 _
Or: By (4), }llin%) % = £'(0), where f(z) = (1+z)'° and a = 0.

V16 +h — 2
h

34. By (4), }ILILI}) = f'(16), where f(z) = ¥z and a = 16.

4 —
Or: By (4), }ILin}] 16+}12 = f'(0), where f(z) = v/16 + z and a = 0.
. . 2% — 32 / x
35. By Equation 5, th -5 = f'(5), where f(x) = 2% anda = 5.
36. By Equation 5, lim tanz — 1 _ f'(m/4), where f(x) = tanx and a = 7/4.

r—mw/4 T — 7T/4

cos(m+h)+1

37. By (4), }llli% f'(m), where f(x) = cosz and a = 7.

h
Or: By (4), }llin%] M = f'(0), where f(z) = cos(m + x) and a = 0.
. .ttt —2 , 4
38. By Equation 5, }mi -1 - f'(1), where f(t) =t* +tanda = 1.

i L6+ = f(5) [100 + 50(5 + h) — 4.9(5 + h)?] — [100 + 50(5) — 4.9(5)?]

T _ IRT
. 0(6) = 1'(9) = fim T = iy h
. (100 4 250 + 50h — 4.9h* — 49h — 122.5) — (100 + 250 — 122.5) . —4.9h* +h
= hm = hm
h—0 h h—0 h
. h(—=49h+1) .
= lim =————= = lim (—4.9h 4 1) = 1m/s
The speed when ¢ = 5is |1| = 1 m/s.
ey i JOER) —fB) L [5+R) T (B4 R)] (57" —5)
B h
5—5h(5+h)—(5+h
R =5 "3 (asﬁm( :
h—0 h h—0 h h—0 h
— lim 5—25h—5h° —5—h _ lim —5h% — 26h o M=Bh—26) . —Bh—26 _ —26 m/s
T 0 5h(5 + h) ~h=0 5h(5+h)  w—0 Bh(5+h) k-0 5(5+h) 25

The speed when t = 5 is |—22| = 22 = 1.04 m/s.
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41. The sketch shows the graph for a room temperature of 72° and a refrigerator Temperature
(in °F)
72
temperature of 38°. The initial rate of change is greater in magnitude than the
rate of change after an hour. R
0 i é Time
(in hours)
42. The slope of the tangent (that is, the rate of change of temperature with respect 7('F)
. 75 — 168 .
to time) at £ = 1 h seems to be about ———— ~ —0.7 °F /min. 2007
132 — 0 I P

1001

o] 30 60 90 120 150 180 .
(min)

N(2006) — N(2002) 233 —141 92

43. (a) (i) [2002,2006]: 2006 — 2002 7 il 23 millions of cell phone subscribers per year

N(2004) — N(2002) 182 —141 41

(ii) [2002, 2004]: — = 20.5 millions of cell phone subscribers per year

2004 — 2002 - 2 2
(iii) [2000, 2002]: N(2§8§; : %5)20000) _ 4l ; 109 _ % = 16 millions of cell phone subscribers per year
. . 20.5 4 16 . .
(b) Using the values from (ii) and (iii), we have —s = 18.25 millions of cell phone subscribers per year.
(c) Estimating 4 as (2000, 107) and B as (2004, 175), the slope at 2002 N
250+
175 — 107 68 - .
is 3004 —2000 — 4 — 17 millions of cell phone subscribers per 2004 B
year. 1501
100+ " c
50+
0 1956 1958 2(;00 2(;02 2(;04 2(;06 ;
(midyear)
4. ) (i) [2005,2007): Y (23852 = i\g 5)25005) _ 15011 - 10241 _ 47270 — 2385 locations per year

N(2006) — N(2005) 12,440 — 10,241
2006 — 2005 1

(ii) [2005, 2006]: = 2199 locations per year

N(2005) — N(2004) _ 10,241 — 8569
2005 — 2004 1

(iii) [2004, 2005]: = 1672 locations per year

(b) Using the values from (ii) and (iii), we have w = 1935. 5 locations per year.

131
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(c) Estimating 4 as (2004, 8300) and B as (2006, 12,200), the slope at N
16,000 +
. 12,200 — 8300 3900 .
= = 2 14,000 +
2005 is 5006 — 2004 5 1950 locations per year.
12,000 + B
10,000 +
8,000+ - c
6,000 +
0 2063 2054 2(;05 20§O6 20§O7 ;
(midyear)
.. AC (C(105) — C(100) 6601.25 — 6500 .
4 . P = = 2 .2 t.
@ 03X 105 — 100 5 820.25/uni

(i) AC _ C(101) — C(100) _ 6520.05 — 6500
Az 101 — 100 1
®) C(100+h) — C(100) _ [5000 + 10(100 + h) +0.05(100 + h)*] — 6500 _ 20h + 0.05h
h h h
=20+ 0.05h, h # 0
C(100 + h) — C(100)
h

= $20.05/unit.

So the instantaneous rate of change is }lbin%] = }llin%) (20 + 0.05h) = $20/unit.

t+h\? £\
46. AV = V(t+h) — V(t) = 100,000 1 - —5~) — 100000 (1- =

t+h (t+h)? t t2 h  2th h?
= 100,000 | (1 — —— —(1-= =100,000( — o~ + ——
’ [( 30 3600 30 T 3600 ’ 30 T 3600 | 3600

100,000 250
= ogo [ (F120 4+ 2t + h) = = =h (=120 + 2t + )

Dividing AV by h and then letting h — 0, we see that the instantaneous rate of change is % (t — 60) gal/min.

t | Flow rate (gal/min) | Water remaining V' (¢) (gal)
0 —33333 100, 000

10 27777 69,444.4

20 —2222.2 44,4444

30 —1666.6 25,000

40 —1111.1 11,111.1

50 —555.5 2, 7777

60 0 0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0.
47. (a) f'(x) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are
dollars per ounce.
(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost
of producing the 800th (or 801st) ounce is about $17.

(c) In the short term, the values of f'(z) will decrease because more efficient use is made of start-up costs as = increases. But

eventually f(x) might increase due to large-scale operations.



48.

49,

50.

51.

52,

53.

54,
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(@) f'(5) is the rate of growth of the bacteria population when ¢ = 5 hours. Its units are bacteria per hour.

(b) With unlimited space and nutrients, f’ should increase as ¢ increases; so f'(5) < f’(10). If the supply of nutrients is
limited, the growth rate slows down at some point in time, and the opposite may be true.

T'(10) is the rate at which the temperature is changing at 10:00 AM. To estimate the value of 7"(10), we will average the

difference quotients obtained using the timest = 8 and ¢t = 12. Let A = T(8) = 7(10) = 65 — 76 = 5.5 and

8—10 )
p_TU2)-T(10) _85-76 _ Then 7"(10) = lim T(H) -T(10) A+B _55+45

12 —10 2 t—10 t—10 2 2

= 5°F/h.

(@) f'(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.

The units for f’(8) are pounds/(dollars /pound).

(b) f'(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally

less willing to buy a product when its price increases.

(a) S'(T) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg/L)/°C.

(b) For T' = 16°C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). So

—14 . .
6 8 —0.25 (mg/L)/°C. This means that as the temperature increases past 16°C, the oxygen

"(16) = = —
5(6) 32—-0 32

solubility is decreasing at a rate of 0.25 (mg/L)/°C.

(a) S'(T) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units
are (cm/s)/°C.

(b) For T' = 15°C, it appears the tangent line to the curve goes through the points (10, 25) and (20, 32). So

S'(15) ~ % = 0.7 (cm/s)/°C. This tells us that at 7" = 15°C, the maximum sustainable speed of Coho salmon is
changing at a rate of 0.7 (cm/s)/°C. In a similar fashion for 7' = 25°C, we can use the points (20, 35) and (25, 25) to
25—-35

obtain S’ (25) ~ = —2(cm/s)/°C. As it gets warmer than 20°C, the maximum sustainable speed decreases

25 —-20
rapidly.
Since f(z) = zsin(1/x) when 2 # 0 and f(0) = 0, we have

ron o f(O+h)—f(0) . hsin(1/h) -0
FO=m™ =%
values —1 and 1 on any interval containing 0. (Compare with Example 4 in Section 2.2.)

= }ILiI% sin(1/h). This limit does not exist since sin(1/h) takes the

Since f(x) = ?sin(1/z) when z # 0 and f(0) = 0, we have
— 2 1 j—
£(0) = tim LOHM = FO) ) W SnQ/R) =0 g in(1/h). Since —1 < sin = < 1, we have
h—0 h—0 h h—0 h

_h < |h|sin% <Ih| = —Jh< hsin% < |]. Because Jim (— [A]) = 0 and Jim [h] = 0, we know that

lim (h sin %) = 0 by the Squeeze Theorem. Thus, f’(0) = 0.

—0
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2.7 The Derivative as a Function

1. It appears that f is an odd function, so f’ will be an even

function—that is, f'(—a) = f’(a).

2. Your answers may vary depending on your estimates.
(a) Note: By estimating the slopes of tangent lines on the graph of f,
it appears that f/(0) ~ 6.

(b) f'(1)
© f(2) =
(@ f'(3)
(e) f'(4)
()
(6)
(7)

Q

Q

Q

1.5
1.3
0.8

(f) f'(5) ~ —0.3

(2) f'(6

(h) f'(7) ~ 0.2

0
0

Q

3. (a)’ = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b)’ = 1V, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph I'V indicate sudden changes in the slopes of the tangents.

(c)' = I, since the slopes of the tangents to graph (c) are negative for z < 0 and positive for z > 0, as are the function values of

graph L.

(d)’ = 111, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.
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Hints for Exercises 4 —11: First plot z-intercepts on the graph of f’ for any horizontal tangents on the graph of f. Look for any corners on the graph
of f—there will be a discontinuity on the graph of f’. On any interval where f has a tangent with positive (or negative) slope, the graph of £’ will be
positive (or negative). If the graph of the function is linear, the graph of f will be a horizontal line.

y

y

y
y
f/
¢ f' 0 X
f' )
0 X
0 , X
7 y 8. y 9 y
0 X 0 v
0 X
y
y
f’ y Oo—C .f,
f’ - 0 X
0 X k\
ﬁo X

10. 1.
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12. The slopes of the tangent lines on the graph of y = P(t) are always y
1001

positive, so the y-values of y = P'(t) are always positive. These values start
out relatively small and keep increasing, reaching a maximum at about 50+

t = 6. Then the y-values of y = P'(t) decrease and get close to zero. The

graph of P’ tells us that the yeast culture grows most rapidly after 6 hours

and then the growth rate declines.

13. It appears that there are horizontal tangents on the graph of M for ¢ = 1963

and ¢ = 1971. Thus, there are zeros for those values of ¢ on the graph of

M. The derivative is negative for the years 1963 to 1971.

_0.0% | ,

1950 1960 1970 1980 1990 2000

14. See Figure 1 in Section 3.3.

15. Y 16. Y
1 /
0 + + + x
1
—/ y=fx)=Inx
o
y y

—
t

ol 1 = x

The slope at 0 appears to be 1 and the slope at 1 As z increases toward 1, f'(z) decreases from very large
appears to be 2.7. As x decreases, the slope gets numbers to 1. As x becomes large, f'(x) gets closer to 0.
closer to 0. Since the graphs are so similar, we might As a guess, f'(z) = 1/12 or f'(x) = 1/z makes sense.

guess that f'(z) = e”.

17. (a) By zooming in, we estimate that f'(0) = 0, f'(3) =1, f'(1) = 2, 2.5

and f'(2) = 4.
(b) By symmetry, f'(—z) = —f'(z). So f'(—3) = -1 f'(-1) = -2,
and f'(—2) = —4.

(c) It appears that f’(x) is twice the value of , so we guess that f'(z) = 2x.

vy o fla+h)—fl@) . (z+h)?—2° 0 25
(d) fi(2) = llli% h _}LLO h
2 2h h2 2 2
gy (F A 2ha ) —at L 2hat kL h(2z 4 h)

h—0 h h—0 h h—0 h - %%(235 +h) =2z



18. (a) By zooming in, we estimate that f'(0) = 0, f’(%) ~ 0.75,

/(1) ~3, f'(2) ~12,and f'(3) ~ 27.
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f'(x). So f'(~1) ~ 0.75,

(b) By symmetry, f'(—z)
f(=1) ~ 3, f'(—=2) ~ 12, and f'(—3) =~ 27.

(d) Since f'(0) = 0, it appears that f’ may have the

form f'(z) = ax®. Using f'(1) = 3, we have a = 3,

so f'(z) = 32°.

(c) y
4..
-1 1 X
_ 3 .3 3 2 2 3y .3
© f'(z) = lim flx+h)— f(x) lim (x+h)° —x ~ im (z° + 3x°h + 3zh® + h°) — x
h—0 h h—0 h—0 h
2 2 3 2 2
i STh BT AR PO SThENT) (302 4 30k 4 h2) = 302
h—0 h h—0 h h—0
o o @R =0 _ e 4 (e d)  ewdho i desd
R h = h
1
=h
— lim 2 i L= 1
_flLl—>o h flLlL%? 2
. mx+mh+b—mz—>
= lim
h—0 h

Domain of f = domain of f' = R.

[m(z + h) +b] — (mz +b)

h

= lim
h—0

2. f(x) = lim w

h .
=limm=m
h—0

=
Domain of f = domain of f' = R
— 5(t + h) — 9(t + h)?] — (5t — 9t*
2. £(t) = lim fa+h) =@ _ [5(t+h) —9( )*] — ( )
h—0 h h—0 h
. 5t+5h—9(t>+2th+ k%) — 5t +9t>  5t+5h — 9t — 18th — 9h® — 5t + 9t?
= lim = lim
h—0 h, h—0 h,
J— J— 2 J— —
i PRIt =BT RGZISEZ0R) (5— 18t —9h) =5 — 18t
h—0 h h—0 h h—0
Domain of f = domain of f' =R
— 1.5 h)* — h) +3.7] — (1.52% —x + 3.7
2. /(o) = lim LEFN = F@) g @D = (@ W) +3.7] = (152" —a +37)
h—0 h h—0 h
1.5z +3zh +1.5h* —2 —h+3.7— 152> +2—3.7 . 3zh+15h*—h
h = fim h

= lim
h—0

Domain of f = domain of f' =R

:}llin}](3m+1.5h—1) =3z—-1
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fe+h) = f@) o (@ h)? =2+ 0] - (@ = 22°)

8. fi(z) = flLlE}) h h—0 h
. 2?24+ 2zh + h? — 22% — 62%h — 62h% — 2R3 — 2% + 222
= lim
h—0 h
. 2xh+ h® —62*h — 6xh®> —2h® . h(2x + h — 62 — 62h — 2h?)
= hm = hm
h—0 h h—0 h

= lim (22 + h — 62% — 6xh — 2h?) = 22 — 622

Domain of f = domain of f' = R.

oy L@ —f@) o (EthtVEER) - (@4 V)

2. (=) = o h h—0 h
:hm( L Yerho Ve Veih +\/_) lim |14 M =2
h—0 \ h h V+h+ T h—0 h(\/x+h+\/5)
= lim ( = ) NI S Y
e VTt h+z Vi+yr o2z
Domain of f = [0, c0), domain of f' = (0, c0).
— 142 h)—+v1+4+2 1+ 2(z 142
2. gla) = tim EFN Z9() _p, VIF2Aw ) ZVIH2 ) V1T h) V1420
h—0 h h—0 h V1+2(z+h)+v1+22
(1+ 2z + 2h) — (1 + 22) 2 2 1

= lim = lim

h_’oh[\/1+2(x+h)+\/1+2x} WO VTt2s t2h+V1+28  2v1+2s Vi1t 2z

Domain of g = [—3, 00), domain of ¢’ = (-3, 00).

(x+h)2—1_x2—1
flath) —f@) . 20@+h) -3 20-3
h Ao h

2. f(z) = lim

[(z+h)? —1](2x —3) — [2(z + h) — 3](2* — 1)
~ lim [2(x 4+ h) — 3](2z — 3)
h—0 h

— lim (x® + 2xh + h? — 1)(2x — 3) — (2z +2h — 3)(2® — 1)
T >0 h2(x + h) — 3](2z — 3)

o (223 + 42%h + 2zh® — 2x — 32® — 6xh — 3h® + 3) — (22 + 22°h — 32% — 20 — 2h + 3)
R0 h(2z + 2h — 3)(2z — 3)

o 42°h + 2zh® — 6xh — 3h* — 22°h + 2h - h(2z* + 2xh — 6x — 3h + 2)
h=0 h(2z + 2h — 3)(2z — 3) ~ h—0  h(2x +2h — 3)(2x — 3)

_hm2x2+2mh—6m—3h—|—2_2m2—6x—|—2
T he0 (2042h—3)(2z—3)  (2z — 3)2

Domain of f = domain of f = (—o0, 2) U (2, 00).
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At+h) 4t 4t +h)(t+1) —4at(t+h+1)
- G,(t):hmw:hm (t+h)+1 t+1 (t+h+1)(t+1)
h—0 h h—0 h h—0 h
o (46% + 4ht + 4t + 4h) — (4 + 4ht +4t) 4h
= o hE+h+ D)+ 1) TSRt +h+ )¢+ 1)
4 4

R RIS TN N TN

Domain of G = domain of G’ = (—o00, —1) U (—1, 00).

11 Vi—Vith
28 g,(t):hmg(tJrh)—g(t):hm Vith Vb VEFRVE Vi—Vi+h Vi+Vi+h
h—0 h h—0 h h—0 h h=0 \ h/T+ hvt Vt+VE+h
= lim t—(t+h) = lim —h = lim —1
h=0 h\/t+hvt (VE+VEt+h)  h=0h/t+hVt(VE+VE+h) h=0t+hVEt(VE+VE+h)
—1 1 1

TVIVEVIEVE)  t2VE) T 2

Domain of g = domain of g’ = (0, c0).

4 3 2,2 3, 34 4
29, f'(x) = lim fla+h) - f@) _ lim @+t -2t — lim (z" + 42’k + 627h" + dah® + 1) ~ &
' h—0 h h—0 h h—0 h
3 2,2 3., p4
= i 2RO A TR F R iy (408 4 60%h 4 dch® 4 1Y) = 42
h—0 h h—0
Domain of f = domain of f' = R.
(x+h)?2+1 2241
oy J@Ah) = f@) [+ h)+ 1/ (et h)] - (z+ 1) t+h
W@ S = T T h gl h
— lim z[(x+h)?+1] - (z+h)(2®+1) _ lim (x® + 2ha® + xh? + ) — (2 + = + ha® + h)
h—0 h(z + h)x h—0 h(z + h)x
~ lim ha® +zh®> —h lim h(z® +xh—1) lim 2> +ah—1 2°-1 or 1_L
~h>0 h(x+h)x  ws0 h(z+h)z w0 (z+h)x a2 z?
(b) Notice that f’(z) = 0 when f has a horizontal tangent, f'(z) is 4
positive when the tangents have positive slope, and f'(z) is ‘ 5 \/ f

are discontinuous at x = 0.

negative when the tangents have negative slope. Both functions 6| J 6

)
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M. (@) f(2)= lim LT @ _ o (@4 W) 2+ )] - (@ 4 20)

h h—0 h
ot A+ 62t RP Ak + R+ 22+ 2h — 2t — 22
= lim
h—0 h
. 4zh 4+ 622h* +4xh® + Rt +2h . h(4z® + 62°h + 4zh® + h® + 2)
= jim h = jim h

= }llirr%)(élx?’ + 622h + 4xh® + h® +2) = 423 + 2

(b) Notice that f'(x) = 0 when f has a horizontal tangent, f'(x) is
positive when the tangents have positive slope, and f'(z) is

negative when the tangents have negative slope.

[(t+h)?—VE+h]— (£ — V)

32. (a) f'(t) = lim fe+h) - f) _ lim

h h—0 h

P42t + R —Vt+h =+t (2h+ B Vt—\t+h
= lim = lim +

h—0 h h—0 h h
i (h(2t+h) N Vi—Vi+h \/E+\/t+h)  lim <2t+h+ t—(t+h) )

h—0 h h VE+VEt+h) k=0 h(Vt+VE+h)
= lim (2t+h+ _—h) = lim <2t+h+_71) _or L
ho h(VEi+VE+h)) k=0 Vi+vith) T 2Vi

(b) Notice that f'(¢) = 0 when f has a horizontal tangent, f'(¢) is &l
f
positive when the tangents have positive slope, and f’(t) is f'

negative when the tangents have negative slope.

-1 5
| |

-2
33. (a) U'(t) is the rate at which the unemployment rate is changing with respect to time. Its units are percent per year.

U(t+h) —Ut) _U(t+h) —U)

(b) To find U’ (t), we use }llin%) ( ) = Y for small values of h.
U(1999) —U(1998) 4.2—45
For 1998: U’ (1 R = = 0.
or U'(1998) 1999 — 1998 1 030

For 1999: We estimate U’ (1999) by using h = —1 and h = 1, and then average the two results to obtain a final estimate.
U(1998) —U(1999) 4.5 —4.2

— ! ~ — = —0. .
h=—1 = U'(1999) 5081999 — 0.30;
B , _U(2000) — U(1999) 4.0 —-42
h=1 = U'(1999) ~ oo = =" = ~0.20.

So we estimate that U’(1999) ~ 1[(—0.30) + (—0.20)] = —0.25.

t 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Uu'(t) | =030 -0.25 025 090 065 —0.15 —-045 —0.45 —0.25 0.00
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34. (a) P'(t) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are

percent per year (%/yr).

(b) To find P’(t), we use }llin%) Pt + h})L = P) R Pt + hf)L - P®) for small values of h.

P(1960) — P(1950)  35.7 — 31.1
1960 — 1950 10

For 1960: We estimate P’ (1960) by using h = —10 and h = 10, and then average the two results to obtain a

For 1950: P'(1950) ~ = 0.46

final estimate.
N P(1950) — P(1960) 311357

-1 P —04
h=-10 = P(1960) 1950 — 1960 Ty 0-46

B , _ P(1970) — P(1960)  34.0—35.7
h=10 = P/(1960) m — ) S0 S o g7

So we estimate that P’ (1960) ~ 2[0.46 + (—0.17)] = 0.145.
2

t 1950 1960 1970 1980 1990 2000
P'(t) | 0.460 0.145 —0.385 —0.415 —0.115 0.000

(©) P'()
0.5+

P(1)
0.4+

37T
0.31

351
0.2+

331
0.1

31

29T t

—0.11

271
70_2__

2571
< . . . . \ \ —0.37
| 1950 1960 1970 1980 1990 2000 ! —0.4+
_0_5_-

(d) We could get more accurate values for P’(t) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, and 1995.
35, f is not differentiable at z = —4, because the graph has a corner there, and at z = 0, because there is a discontinuity there.

36. f is not differentiable at x = 0, because there is a discontinuity there, and at z = 3, because the graph has a vertical tangent

there.

37. f is not differentiable at x = —1, because the graph has a vertical tangent there, and at x = 4, because the graph has a corner
there.

38. f is not differentiable at x = —1, because there is a discontinuity there, and at x = 2, because the graph has a corner there.

2

39. As we zoom in toward (—1, 0), the curve appears more and more like a straight

line, so f(x) = x + +/|z]| is differentiable at x = —1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t

-2 1
eliminate the sharp point (a cusp). So f is not differentiable at x = 0. L J
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40. As we zoom in toward (0, 1), the curve appears more and more like a straight 3
line, so f is differentiable at x = 0. But no matter how much we zoom in toward

(1,0) or (—1,0), the curve doesn’t straighten out—we can’t eliminate the sharp

-2 2
point (a cusp). So f is not differentiable at z = +1. L J
-1

M. a= f,b= f',c= f". We can see this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,
¢ = 0. We can immediately see that c can be neither f nor f’, since at the points where ¢ has a horizontal tangent, neither a

nor b is equal to 0.

42. Where d has horizontal tangents, only c is 0, so d’ = c. ¢ has negative tangents for z < 0 and b is the only graph that is
negative for z < 0, so ¢’ = b. b has positive tangents on R (except at z = 0), and the only graph that is positive on the same

domain is a, so b’ = a. We conclude thatd = f,c= ', b= f",and a = f"".

43. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,
neither ¢ nor b is equal to 0. Next, we note that a = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b’ = a. We conclude that c is the graph of the position function.

44, a must be the jerk since none of the graphs are 0 at its high and low points. a is 0 where b has a maximum, so b’ = a. bis 0
where c has a maximum, so ¢’ = b. We conclude that d is the position function, c is the velocity, b is the acceleration, and a is

the jerk.

f(z+h) — f(2) Bz + h)? +2(x+h) +1] — (32 + 22 + 1)

A h
. (32 +6xzh +3h% + 22 +2h +1) — (32> +2x+1) . 6xh+3h*+2h
= lim =lim ——
h—0 h h—0 h
= lim h(6z +3h+2) _ lim (62 + 3h + 2) = 6z + 2
h—0 h h—0

! /
lim fl@th) - fix) lim [6(x+h)+2]— (62 +2) lim (62 + 6h + 2) — (6 + 2)
h—0 h h—0 h h—0 h

f'(@) =

= limG—h: lim 6 =6
h—0 h h—0

We see from the graph that our answers are reasonable because the graph of

f' is that of a linear function and the graph of f” is that of a constant

function.

J 4

46. f'(z) = lim fath) = f@) oy, e+ h)? =3+ h)] - (@ - 32)

h—0 h h—0 h
. (2®+32°h + 3zh® + h® — 3z — 3h) — (2* — 32) . 3x2h +3zh? +h® —3h
= b h = b n

. h(3x? 4 3zh + h* — 3)
— lim

= lim (322 + 3zh +h* —3) = 32> — 3
h—0 h h—0
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i fllx+h)— f'(z) lim [3(z + h)? — 3] — (322 — 3) (32 + 6zh + 3h? — 3) — (32% — 3)

f"(x) = lim - lim D = hm h
= iy S5 = gy MO o 30) = o
3 - We see from the graph that our answers are reasonable because the graph of
{ ':'lf " / Y } f' is that of a even function (f is an odd function) and the graph of £ is
-3 I,I 3 that of an odd function. Furthermore, f' = 0 when f has a horizontal
L / ,l'l tangent and f' = 0 when f’ has a horizontal tangent.
-3

fath) — f(@) [2(z + h)* = (@ + h)°] = (22% —2°)

feoN 1 o
R e h
_ 2 _ _ 12
= lim h(dz +2h — 32" — 3wh — h’) = lim (42 + 2h — 32® — 3xh — h?) = 4z — 32°
h—0 h h—0
! —f 4 h) —3 h)?*| — (4x — 32° — 62 —
h—0 h h—0 h h—0 h

= lim (4 — 62 —3h) =4 — 6z

" 17
meoy i @) = @) . [4—6(x+h)] - (4—6x) _ A —
(@) = Jim, h = Jim, h = Jim == = Jim (=6) = =6
" "
W AR @) 6= (=6) . 0 _
fo@) = lim h P fim 3, = fim, (0) =0

3

( f of ' ) The graphs are consistent with the geometric interpretations of the

- “‘\ ¥ derivatives because f’ has zeros where f has a local minimum and a local
\
f ‘\‘ maximum, f” has a zero where f’ has a local maximum, and ' is a
[y f///

C LuE| p, constant function equal to the slope of f".

-7

48. (a) Since we estimate the velocity to be a maximum at ¢ = 10, the acceleration is 0 at ¢ = 10.

v
501 a
T 20
25+ ?
O__ 1()\/ t
0 10 20

b) Drawing a tangent line at ¢ = 10 on the graph of a, a appears to decrease by 10 ft/s? over a period of 20 s.
g g grap pp y p

Soatt = 10s, the jerk is approximately —10/20 = —0.5 (ft/s®)/s or ft/s>.

143
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49.

50.

51.

52,

00 CHAPTER2 LIMITS AND DERIVATIVES

(a) Note that we have factored = — a as the difference of two cubes in the third step.

_ 1/3 _ 1/3 1/3 _ 1/3
f(a) = lim f@) — f(a) —limZ——2  — lim x a4
z—a T —a z—a r—a z—a (xl/?’ — a1/3)(x2/3 + x1/3q1/3 4+ a2/3)
- 1 1 1 —2/3
= ilflll 2273 1+ 71/3q1/3 1 q2/3  3q2/3 orza

3
(b) f(0) = lim F0+1) - £(0) = lim Vh =0 = lim L This function increases without bound, so the limit does not
h—0 h h—0 h h—0 h,2/3

exist, and therefore f'(0) does not exist.

1 . . . .
(c) lir% |f'(z)| = lirr%) 3525 = and f is continuous at z = 0 (root function), so f has a vertical tangent at x = 0.
xr— xr— €T

vy — i 9@) —g(0) 2?0 - -
(a) ¢'(0) = ili% 0 ili% - = ili% VER which does not exist.
, L g(l’) _g(a) . .’172/3 o a2/3 . (.%'1/3 _a1/3)($1/3 +a1/3)
(b) g'(a) = mh_rg T a—a il_rg r—a ilg}l (2173 — al/3)(22/3 + 21/3a1/3 + a2/3)
$1/3+a1/3 2a1/3 2
= lim — = = or 2¢71/3
voa 223 + £1/3q1/3 + q2/3  3g2/3  3q1/3 3
(c) g(z) = 2*/? is continuous at z = 0 and (d) - 04 N
. / 1 _ .
ilg}) lg'(z)| = ilg}) PYRIYE HE = 00. This shows that
g has a vertical tangent line at z = 0.
-02% 5 0.2
z—6 ifx—6>6 z—6 if x>6
f(z) =z —6] = . = :
—(z—6) fz—6<0 6—z ifx<6
So the right-hand limitis Tim L =FO) _ o [2=61=0 2 =6  p 1 _ 1 and the lefi-hand limit
r—61 r—6 r—61 x—6 z—6+ T —6 r—6T
is lim f@) = (6) = lim lz=6=0 = lim 6=z _ lim (—1) = —1. Since these limits are not equal,
z—6— r—06 r—6— x—06 z—6— T — 6 z—6—
1'(6) = lim fz) = 1(6) does not exist and f is not differentiable at 6. Y y=f(x)
x—6 z—6 |
- . Ia for /' s f'(x) 1 ifx>6
owever, a formula for [’ is f'(x) = '
~1 ifz<6 0 o
6 -1
Another way of writing the formula is f'(z) = |i+6|

f(x) = [«] is not continuous at any integer n, so f is not differentiable
at n by the contrapositive of Theorem 4. If a is not an integer, then f is

constant on an open interval containing a, so f(a) = 0. Thus,

f!(z) = 0, z not an integer.
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53. (a) If f is even, then

Plea) = i LETEM I _ g S S
oy S =h) = f(2) . fle—h) = fz) _
L Y - R— et = =0
_ fle+Az) — fx)
Therefore, f' is odd.
(b) If f is odd, then
B N (I
_ fle+Az) — fx)
o Alx—>0 Az = 1@
Therefore, f' is even.
54. (a) T
0 t

(b) The initial temperature of the water is close to room temperature because of the water that was in the pipes. When the
water from the hot water tank starts coming out, d7'/dt is large and positive as T" increases to the temperature of the water
in the tank. In the next phase, dT'/dt = 0 as the water comes out at a constant, high temperature. After some time, dT'/dt
becomes small and negative as the contents of the hot water tank are exhausted. Finally, when the hot water has run out,

dT /dt is once again 0 as the water maintains its (cold) temperature.

(c) dTvdt

55, In the right triangle in the diagram, let Ay be the side opposite angle ¢ and Az
the side adjacent angle ¢. Then the slope of the tangent line ¢

ism = Ay/Axz = tan ¢. Note that 0 < ¢ < Z. We know (see Exercise 17)

that the derivative of f(x) = x? is f’(z) = 2. So the slope of the tangent to

the curve at the point (1, 1) is 2. Thus, ¢ is the angle between 0 and § whose

tangent is 2; that is, ¢ = tan™' 2 ~ 63°.



146 0 CHAPTER2 LIMITS AND DERIVATIVES

2.8 What Does f’ Say about f?

1. (a) Since f'(x) < 0on (1,4), f is decreasing on this interval. Since f'(x) > 0 on (0,1) and (4, 5), f is increasing on these
intervals.
(b) Atz =1, f’(x) = 0 and f’ changes from positive to negative there, f changes from increasing to decreasing and has a
local maximum at x = 1. Atz = 4, f'(x) = 0 and f’ changes from negative to positive there, f changes from decreasing

to increasing and has local minimum at z = 4.

(c) Since f(0) = 0, start at the origin. Draw an increasing function on (0, 1)

with a local maximum at = 1. Now draw a decreasing function on (1, 4) f

and the steepest slope should occur at x = 2.5 since that’s where the o

smallest value of f’ occurs. Last, draw an increasing function on (4, 5) /

making sure you have a local minimum at x = 4.

2. (a) f'(x) > 0 and f is increasing on (—2,0) and (2, 3). f'(z) < 0and f is (c)
decreasing on (—3, —2) and (0, 2). '

(b) Atz =0, f'(z) = 0 and f’ changes from positive to negative, so f has a

local maximum atx = 0. Atz = —2andz = 2, f'(z) = 0 and f’ changes #\:2 0 # 2/ x
from negative to positive, so f has local minima at x = —2 and = = 2.

3. (@) f'(x) > 0and f is increasing on (-2, —1), (0,1), and (2, 3). f'(z) <0 (©) Y
and f is decreasing on (—1,0) and (1, 2). f

(b) Atz = —landx =1, f/(z) = 0 and f’ changes from positive to negative, /

so f has local maximaatx = —land x = 1. Atz = 0 and x = 2,
f'(z) = 0 and f' changes from negative to positive, so f has local minima

atz =0andx = 2.

4. (a) f'(x) > 0and f is increasing on (—2,—1) and (0,1). f'(z) < Oand f is (c)

decreasing on (—1,0) and (1, 2).

f
(b) Atz = —landx =1, f/(x) = 0 and f’ changes from positive to negative, / ‘

-1 0 1 x
so f has local maximaatz = —landx = 1. Atz =0, f'(z) = 0 and f’ /

changes from negative to positive, so f has a local minimum at z = 0.

(The points at = —2 and = 2 are not part of the graph.)

5. The derivative f’ is increasing when the slopes of the tangent lines of f are becoming larger as x increases. This seems to be
the case on the interval (2, 5). The derivative is decreasing when the slopes of the tangent lines of f are becoming smaller as
increases, and this seems to be the case on (—o0, 2) and (5, 00). So f” is increasing on (2, 5) and decreasing on (—oo, 2)

and (5, 00).
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. Call the curve with the smallest positive z-intercept g and the other curve h. Notice that where ¢ is positive in the first

quadrant, h is increasing. Thus, h = f and g = f’. Now f’(—1) is positive since f’ is above the z-axis there and f” (1)

appears to be zero since f has an inflection point at z = 1. Therefore, f”'(—1) is greater than f'(1).

. Call the curve with the positive y-intercept g and the other curve h. Notice that g has a maximum (horizontal tangent) at

x = 0, but h # 0, so h cannot be the derivative of g. Also notice that where g is positive, h is increasing. Thus, h = f and
g = f'. Now f’(—1) is negative since f’ is below the z-axis there and f” (1) is positive since f is concave upward at x = 1.

Therefore, f”(1) is greater than f'(—1).

(a) Y (b) ’ (¢) In part (a), the graph of y = e” is a curve whose
/ slope is always positive and increasing. In
— > / > part (b), the graph of y = In x is a curve whose
( slope is always positive and decreasing.

. If D(t) is the size of the deficit as a function of time, then at the time of the speech D’(t) > 0, but D" (t) < 0 because

D" (t) = (D")(t) is the rate of change of D' (t).

(a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about

t = 8 hours, and decreases toward 0 as the population begins to level off.

(b) The rate of increase has its maximum value at ¢ = 8 hours.

(c) The population function is concave upward on (0, 8) and concave downward
on (8,18).

(d) Att = 8, the population is about 350, so the inflection point is about (8, 350).

(a) The rate of increase of the population is initially very small, then P(1)
increases rapidly until about 1932 when it starts decreasing. The 5T
rate becomes negative by 1936, peaks in magnitude in 1937, and 4T
approaches 0 in 1940. 37
(b) Inflection points (IP) appear to be at (1932, 2.5) and (1937, 4.3). 27
The rate of change of population density starts to decrease in 1932 T
and starts to increase in 1937. The rates of population increase and 027 1930 1952 1954 1996 1938 1540 7

decrease have their maximum values at those points.

(a) If the position function is increasing, then the particle is moving toward the right. This occurs on ¢-intervals (0, 2) and
(4,6). If the function is decreasing, then the particle is moving toward the left—that is, on (2, 4).

(b) The acceleration is the second derivative and is positive where the curve is concave upward. This occurs on (3, 6). The

acceleration is negative where the curve is concave downward —that is, on (0, 3).

Most students learn more in the third hour of studying than in the eighth hour, so K (3) — K(2) is larger than K (8) — K (7).
In other words, as you begin studying for a test, the rate of knowledge gain is large and then starts to taper off, so K’ (t)

decreases and the graph of K is concave downward.
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14. At first the depth increases slowly because the base of the mug is wide. depth of coffee

But as the mug narrows, the coffee rises more quickly. Thus, the depth Ol}eﬁfﬁg 1

d increases at an increasing rate and its graph is concave upward. The
. . . . P
rate of increase of d has a maximum where the mug is narrowest; that is,

when the mug is half full. It is there that the inflection point (IP) occurs.

Then the rate of increase of d starts to decrease as the mug widens and timeto !
fill mug
the graph becomes concave down.

15. (a) f is increasing where f’ is positive, that is, on (0, 2), (4, 6), and (8, c0); and decreasing where f’ is negative, that is, on
(2,4) and (6, 8).
(b) f has local maxima where f’ changes from positive to negative, at z = 2 and at x = 6, and local minima where f’ changes
from negative to positive, at x = 4 and at z = 8.
(c) f is concave upward (CU) where f’ is increasing, that is, on (3, 6) and (6, co), and concave downward (CD) where f’ is

decreasing, that is, on (0, 3).

(d) There is a point of inflection where f changes from (e) y

being CD to being CU, that is, at x = 3.

16. (a) f is increasing where f’ is positive, on (1,6) and (8, 0o), and decreasing where f’ is negative, on (0, 1) and (6, 8).

(b) f has a local maximum where f’ changes from positive to negative, at x = 6, and local minima where f’ changes from

negative to positive, at x = 1 and at z = 8.

(c) f is concave upward where f’ is increasing, that is, on (0, 2), (3, 5), and (7, c0), and concave downward where f’ is

decreasing, that is, on (2, 3) and (5, 7).

(d) There are points of inflection where f changes its (e) y
direction of concavity, at x = 2, x = 3, x = 5 and
="
N
17. The function must be always decreasing (since the first 18. The function must be always decreasing and concave
derivative is always negative) and concave downward upward.

(since the second derivative is always negative).

y

—

~
0 \ O\X




19.

20.

21,

22,

23.

24,

SECTION 2.8 WHAT DOES f SAY ABOUT f? O

f'(0)=f'(4) =0 = horizontal tangents at z = 0, 4. !
f'(x) >0ifz <0 = fisincreasing on (—oo,0).
fl(x)<0if0 <z <4orifz >4 = fisdecreasingon (0,4) and (4, c0).
f'(x) >0if2<x <4 = fisconcave upward on (2,4).
['(z) <0ifx <2o0rz >4 = fisconcave downward on (—oo, 2)
and (4, 0o). There are inflection points when z = 2 and 4.
f'(z) > 0 for all z # 1 with vertical asymptote = = 1, so f is increasing on ¥
(—00,1) and (1,00). f”(x) > 0ifz < Lorz > 3,and f"(z) < 0if 1 < z < 3,
so f is concave upward on (—oo, 1) and (3, 00), and concave downward on (1, 3).
There is an inflection point when x = 3. /{ 1 / 3 x
f'(0)=f(2)=f'(4) =0 = horizontal tangents at z = 0, 2, 4. y
f(x)>0ifz<0or2<xz<4 = fisincreasing on (—oo,0) and (2, 4).
f'(z) <0if0 <z <20rz >4 = fisdecreasingon (0,2) and (4, c0).

f’(z) >0if1l <z <3 = fisconcave upward on (1, 3).

f'(z)<0ifx<lorx >3 = fisconcave downward on (—oco, 1)
and (3, co0). There are inflection points when z = 1 and 3.
f/(1)=f(-1)=0 = horizontal tangents at x = +1. y
f'(x) <0if|z| <1 = fisdecreasingon (—1,1).
f(x) >0ifl <|z|] <2 = fisincreasing on (—2, —1) and (1,2). \/\1\/\
f'(x) =—1if|z| >2 = the graph of f has constant slope —1 on (—oo, —2) EEBRR >
and (2, 00).

f"(z) <0if—2 <2 <0 = fisconcave downward on (—2,0). The point (0, 1) is an inflection point.

f'(x) >0if|z| <2 = fisincreasing on (—2,2). y y
f'(x) <0if|z| >2 = fisdecreasing on (—oo, —2)
and (2,00).  f'(=2)=0 = horizontal tangent at

=-2. }1212 |f'(x)] =00 = thereis a vertical o0 =2 50 2 x
asymptote or vertical tangent (cusp) at x = 2. f”(x) > 0ifz #2 = f is concave upward on (—oo, 2) and (2, 00).
f'(x) >0if|z| <2 = fisincreasingon (—2,2). f'(z) < 0if|z| >2 = y
[ is decreasing on (—oo, —2) and (2, 00). f'(2) = 0, so f has a horizontal tangent G T ST
(and local maximum) at x = 2. IILHC}O f(x) =1 =y = 1isahorizontal asymptote. y=-1 ) 3 X
f(=z) = —f(z) = fisanodd function (its graph is symmetric about the origin).

Finally, f(z) < 0if0 < z < 3and f”(z) > 0ifx > 3,s0 f is CD on (0, 3) and
CU on (3, 00).

149
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25. (a) Since e is positive for all z, f'(z) = ze ™ is positive where > 0 and negative where © < 0. Thus, f is increasing

on (0, co) and decreasing on (—o0, 0).

(b) Since f changes from decreasing to increasing at = 0, f has a minimum value there.
26. Since f'(z) = e >00nR, f is increasing on R.
27. (a) To find the intervals on which f is increasing, we need to find the intervals on which f'(x) = 32% — 1 is positive.
33 -1>0 & 32°>1 & 2°>31 & |z|>,/i,s0z€ (—007— %) U (\/g,oo).Thus,fis

increasing on <—oo, —\/g ) and on (\/g , oo) In a similar fashion, f is decreasing on (—\/g , \/g )

(b) To find the intervals on which f is concave upward, we need to find the intervals on which f”'(z) = 6z is positive.

6x >0 < x> 0. So fisconcave upward on (0, 00) and f is concave downward on (—oo, 0).

(c) There is an inflection point at (0, 0) since f changes its direction of concavity at « = 0.

flz+h) - f(z) [(z +1)* = 2(x + 1)?] — (2 — 22%)

o .
2. (@) f(z) = Jim, h = i h
_ (x* + 42®h + 622h? + 4xh® + h* — 227 — dwh — 2h?) — (2* — 227)
= Ao h
3 272 3 4 o2

h—0 h

Pl = tim L@ = @) Bt h)” A b)) - (420 - do)

h—0 h h—0 h
. (42® + 1222h + 122h® + 4h® — 4o — 4h) — (42 —4x) . 122°h + 12xh® + 4h® — 4h
= lim = lim
h—0 h h—0 h
= lim (122 + 12zh + 4h* — 4) = 1222 — 4

() f'(z) >0 < 42°—42>0 < 4x(2®—1)>0 & da(zr+1)(z— 1) > 0,so f is increasing on (—1,0)

and (1, 00) and f is decreasing on (—oo, —1) and (0, 1).

© f'(2)>0 & 122°-4>0 & 122°>4 & 2°>1 & |x|>\/E,sofisCUon(—oo,—\/g)and

(/5.00) and fiscDon (=/2./3).

29. b is the antiderivative of f. For small x, f is negative, so the graph of its antiderivative must be decreasing. But both a and ¢
are increasing for small x, so only b can be f’s antiderivative. Also, f is positive where b is increasing, which supports our

conclusion.

30. We know right away that ¢ cannot be f’s antiderivative, since the slope of c is not zero at the z-value where f = 0. Now f is

positive when a is increasing and negative when « is decreasing, so a is the antiderivative of f.
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sinx
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33. f(x) = 2 <z <27

Note that the graph of f is one of an odd function, so the graph of F will

be one of an even function.

M. f(x)=+va* —2224+2-2, -3<x<3

Note that the graph of f is one of an even
function, so the graph of F’ will be one of an

odd function.
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The graph of F' must start at (0, 1). Where the given graph, y = f(z), has a

local minimum or maximum, the graph of F* will have an inflection point.

Where f is negative (positive), F' is decreasing (increasing).

Where f changes from negative to positive, F' will have a minimum.

Where f changes from positive to negative, F’ will have a maximum.

Where f is decreasing (increasing), F’ is concave downward (upward).

Where v is positive (negative), s is increasing (decreasing).

Where v is increasing (decreasing), s is concave upward (downward).

Where v is horizontal (a steady velocity), s is linear.

-2

0.5

2
-0.5

y
27 0 27 X

y

1+ F

2 -1 0 2/ x
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2 Review
CONCEPT CHECK

1. (a) lim f(x) = L: See Definition 2.2.1 and Figures 1 and 2 in Section 2.2.

(b) lirn+ f(x) = L: See the paragraph after Definition 2.2.2 and Figure 9(b) in Section 2.2.

r—a

(¢) lim f(z) = L: See Definition 2.2.2 and Figure 9(a) in Section 2.2.

r—a~

(d) lim f(z) = oo: See Definition 2.5.1 and Figure 2 in Section 2.5.

r—a

(e) lim f(z) = L: See Definition 2.5.4 and Figure 9 in Section 2.5.

2. In general, the limit of a function fails to exist when the function does not approach a fixed number. For each of the following

functions, the limit fails to exist at x = 2.

y
y y
il NS 0
/ 0 2 X — 2 4 x
72 4
x=2
The left- and right-hand There is an There are an infinite
limits are not equal. infinite discontinuity. number of oscillations.

3. (a)—(g) See the statements of Limit Laws 1—6 and 11 in Section 2.3.

4. See Theorem 3 in Section 2.3.
5. (a) See Definition 2.5.2 and Figures 2— 4 in Section 2.5.

(b) See Definition 2.5.5 and Figures 9 and 10 in Section 2.5.
6. (a) y = =*: No asymptote

(b) y = sin x: No asymptote

(c) y = tan z: Vertical asymptotes z = 5 + 7n, n an integer

— —00

(d) y = €”: Horizontal asymptote y = 0 ( lim e" = 0)

(e) y = Inx: Vertical asymptote x = 0 < lim lnx = —oo)

x—0
(f) y = 1/x: Vertical asymptote = = 0, horizontal asymptote y = 0
(g) y = Vz: No asymptote

7. (a) A function f is continuous at a number « if f(x) approaches f(a) as x approaches a; that is, lim f(x) = f(a).

r—a

(b) A function f is continuous on the interval (—oo, 00) if f is continuous at every real number a. The graph of such a

function has no breaks and every vertical line crosses it.
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12.

13.
14.

15.
16.

17.
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. See Theorem 2.4.10.

. See Definition 2.6.1.

See the paragraph containing Formula 3 in Section 2.6.

(a) The average rate of change of y with respect to « over the interval [z1, z2] is M
Tro — 1

. . . x2) — f(x
(b) The instantaneous rate of change of y with respectto x at z = x1 is lim M
T2 —T1 T2 — X1

See Definition 2.7.2. The pages following the definition discuss interpretations of f’(a) as the slope of a tangent line to the

graph of f at x = a and as an instantaneous rate of change of f(x) with respect to = when = = a.

See the paragraphs before and after Example 7 in Section 2.7.
(a) A function f is differentiable at a number q if its derivative f’ exists ) y
at x = a; that is, if f'(a) exists.

(b) See Theorem 2.7.4. This theorem also tells us that if f is not

continuous at a, then f is not differentiable at a. 0 2 x

See the discussion and Figure 8 on page 152.

(a) See the first box in Section 2.8.

(b) See the second box in Section 2.8.

(a) An antiderivative of a function f is a function F such that I’ = f.

153

(b) The antiderivative of a velocity function is a position function (the derivative of a position function is a velocity function).

The antiderivative of an acceleration function is a velocity function (the derivative of a velocity function is an acceleration

function).

TRUE-FALSE QUIZ

. False. Consider lim

. False.  Limit Law 2 applies only if the individual limits exist (these don’t).
. False.  Limit Law 5 cannot be applied if the limit of the denominator is O (it is).
. True. Limit Law 5 applies.

. True. The limit doesn’t exist since f(x)/g(x) doesn’t approach any real number as x approaches 5.

(The denominator approaches 0 and the numerator doesn’t.)

x(x —55) or lim sin(z — 5)

r—5 I — x—5 xr —

. The first limit exists and is equal to 5. By Example 3 in Section 2.2,

we know that the latter limit exists (and it is equal to 1).

r—6

. False.  Consider lin% [f(x)g(z)] = lim [(m —6) ﬁ} It exists (its value is 1) but f(6) = 0 and ¢g(6) does not exist,

so f(6)g(6) # 1.

. True. A polynomial is continuous everywhere, so lirr%) p(x) exists and is equal to p(b).
xr—



154 [0 CHAPTER2 LIMITS AND DERIVATIVES

8. False.  Consider lin%) [f(z) — g(x)] = lim <— - F) This limit is —oo (not 0), but each of the individual functions
approaches co.
9. True. See Figure 11 in Section 2.5.

10. False.  Consider f(x) =sinx forz > 0. lim f(z) # +oo and f has no horizontal asymptote.

1/(z—1) ifx#1
1. False.  Consider f(z) = /( ) ) 7
2 if x =1

12. False.  The function f must be continuous in order to use the Intermediate Value Theorem. For example, let

1 fo<z<3
f(z) = _r 5 There is no number ¢ € [0, 3] with f(c) = 0.
-1 ifz=

13. True.  Use Theorem 2.4.8 with a = 2, b = 5, and g(x) = 42® — 11. Note that f(4) = 3 is not needed.
14. True. Use the Intermediate Value Theorem witha = —1,b=1,and N = 7, since 3 < 7 < 4.
15. False. See the note after Theorem 4 in Section 2.7.

16. True. f/(r) exists = fisdifferentiableatr = fiscontinuousatr = lim f(z) = f(r).

2 2
17. False. d—;y is the second derivative while (%) is the first derivative squared. For example, if y = x,
i x
d?y dy'\’
then — =0,but [ — | =1.
N a2 - (daz

> +1 ifx#0
18. False.  For example, let f(z) = ]
2 if =0

Then f(x) > 1 forall 2, but lim f(z) = lim (z®4+1) =1.

EXERCISES

1. (@) () lim f(z)=3 (i) lim f(z)=0
z—2+ +

r——3

(iii) lirn3 f(x) does not exist since the left and right limits are not equal. (The left limit is —2.)

(V) lim f(x) =2

V) liir%] fl@) =00 (vi) 111;1_ flx) = —o0
(vii) ,li_)m flz)=4 (viii) EI_H flz)=-1

(b) The equations of the horizontal asymptotes are y = —1 and y = 4.
(c) The equations of the vertical asymptotes are z = 0 and x = 2.

(d) f is discontinuous at z = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.
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lim f(z)=-2, lim f(z)=0, lim3f(m) = o0, Y
lim f(z) =—oc0, lim f(z)= +2
r—3" z—3+ \
f 1s continuous from the right at 3 / 0 x
y=-2 \
x=-3 x=3
. Since the exponential function is continuous, lim T —elml 0 — 1
Since rational functions are continuous, lim 2” — 9 3 -9 S 0
' z—3 2242 —3 32+2(3)—3_12_ ’
) -9 (x+3)(z—3 . -3 -3-3 -6 3
. lim ——— = lim ———*———< = lim = =— ==
e—»-322+2x -3 +—>-3(x+3)(z—1) +o-3z—-1 -3-1 -4 2
) L 4 )
.xllr{g_m——oosmcex +2z—-3—0asz —1 andm<0forl<x<3.
—1)° h’> —3h*+3h—1)+1 3 _ 3p?
i P DL PSR PP 3h 2 gh3)
h—0 h h—0 h h—0 ]’L h—0

Another solution: Factor the numerator as a sum of two cubes and then simplify.

o (h=1?+1 . (h=1P%41® [(h=1)+1][(h—1)* —1(h—1)+1?]
lim ——————— = lim = lim
h—0 h h—0 h h—0 h
=lim [(h—1)>—-h+2]=1-0+2=3
h—0
2— J—
lm D =4 gy CEDE=D #2242 4

1
T2 13 —8 -2 (t—2)(12+20+4) =212 +2t4+4 4+4+4 12 3

9. Tli_lgﬁ :oosince(r—9)4—>Oasr—>9andﬁ > 0 forr # 9.
10. lim = lim = lim — =-1
l v—4t |4—’U‘ N v—4t —(4—U) B v—dat —1 o
4 _ 2 2 _ 2 _ 2
1. Tim u* —1 _ lim (v +1)(u* —1) ~ im w*+D(u+1)(u—1) ~ lim v+ D(u+1) _ 2(2) _4
uolud +5u? —6u uw—1 w(u24+5u—6) w—1 u(u+6)(u—1) u—1  u(u+6) 17 7
12 lim \/x+6—x_lim Vi+6—z Jr+6+a ~ him (Vo +6)% —2?
"o—3 23 —322 o3| 22(x—3) Vr+6+x| o3 22(z —3) (Vo +6+x)
. r+6—2° —(2® —x —6) . —(x—=3)(z+2)
= lim = lim = lim
=3 x2(x — 3 (\/x—l- —l—x) e—3 g2 (x — 3) (\/x—i— +:17) e—3 x2(xr — 3 (\/m—|— —|—:r)
fm—@+2) 5 5
T 2(Vot6+a) 9B3+3) b4
13. Lett = sinz. Thenasx — 7, sinz — 07, s0¢ — 0. Thus, lim In(sinz) = lim+ Int = —o0.
T—T t—0
9.2 4 9.2 4y, 4 4572 _0_ _
14 lim 1—-22" —a” lim (1—-2z"—2%)/x ~ lim 1/z* —2/x 1_0-0-1_-1_11

z——oc0 54+ —3x* w—-o0 (5+xz—32*)/z* e——cob/zt+1/23—-3 0+0-3 -3 3

1585
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15. Since z is positive, v &2 = || = . Thus,

i N VI-9/2 JT-0 1
s 237—6 T—00 (21‘— 6)/x _:cHoo 2—6/z S 2-0 2
16. Lett =z — 2® = (1 — ). Thenas x — oo, t — —o0, and lim e’ :tliin e’ =0.
) ) \/27_ \/27 ] 2 _ 2
7. lm (V2 F a2 71 —) = lim e’ +dr+1l-—z Valtdor+lta ~ lim (z*+4x+1)— =
z—00 z—00 1 Va2 t+dz +1+x z—oo \r2+4r+ 1+
— lim @zt D)o [divide by & = V27 for z > 0]
e—oo (VaZ+ 4z + 1+ 1)/
o 44+1/z 440 4
e—=oo \/1+4/z+1/x2+1 V1+04+0+1 2
18, lim (—— + —— = lim | —— + . — lim o2 .
"1 \zx—1 22-32+2) -ijz—-1 (z-1@-2)] —1|(z—1)(-2) (z-1)(z-2)

= lim v—1
19. From the graph of y = (cos® z) /?, it appears that y = 0 is the horizontal

asymptote and = = 0 is the vertical asymptote. Now 0 < (cosz)?> <1 =

0 cos® 1 cos? x 1
— < <= = 0L < —.But lim 0=0and
x2 x2 x2 x2 x? z—Foo
. 1 cos® x
lim — =0, so by the Squeeze Theorem, hm =0.
z—+oo T2 z—too 2

S2$

Thus, y = 0 is the horizontal asymptote. lin%

vertical asymptote.

20. From the graph of y = f(z) =

1 1
2)} ez —2  1-2

-1

= oo because cos®? z — land 2?> — Oasz — 0, sox = 0 is the

Vx2 + 2 + 1 — /22 — z, it appears that there are 2 horizontal asymptotes and possibly 2

vertical asymptotes. To obtain a different form for f, let’s multiply and divide it by its conjugate.

(> +z+1)— (2% —2)

V2 +z+1+V22 -z
)= (Va2 +z+1—+vVz?2 -2 =
fiw) = (v v )\/x2+m+l+\/x2—m
o 2¢ +1
Vet r 1+ -2
Now
. 2c+ 1
lim = lim
a:—>oof1() m—>oo\/1;2+1;_’_1+\/x2_$
_ 2+ (1/x)
»C—>°°\/1 + (1/2) + (1/22) + /1 — (1/z)
2
:—:1
141 ’

so y = 1 is a horizontal asymptote. For x < 0, we have v«

VeZ+z+1+Va? —x

[since v a2 = x for x > 0]

= |z| = —x, so when we divide the denominator by z,
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22,

23.

24,
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with z < 0, we get

Va2 ta+14+va2 -z Valdaot+l4va? -z

T vl

1, 1 1
\/1+—+—2+\/1——]
T T x

Therefore,
2 1 2 1
lim fi(z)= lim = s = = lim + (1/2)
a——oo e VR ek TVt e e [T () + (120 + /T (1/7)
= 2 = —1,
—(1+1)
so y = —1 is a horizontal asymptote. p 4 N
The domain of f is (—o00,0] U [1,00). Asz — 07, f () — 1, s0
x = 0 is not a vertical asymptote. As z — 11, f(z) — v/3,s02 =1 B IR 10
is not a vertical asymptote and hence there are no vertical asymptotes.
(. J
—4

Since 2 — 1 < f(z) < 2 for0 < z < 3 and lim (2z — 1) = 1 = lim x?, we have lim f(x) = 1 by the Squeeze Theorem.

z—1

Let f(x) = —a?, g(x) = 22 cos(l/;rQ) and h(z) = 2. Then since |cos(1/x2)| < 1 for x # 0, we have

f(x) < g(z) < h(x) for z # 0, and so ili% f(z) = };IL% h(z)=0 = ;12% g(x) = 0 by the Squeeze Theorem.

@) f(x) =v—zifz <0, f(z) =3 —zif0 <z <3, f(z) = (z —3)ifz > 3.

(i) lim f(z)= lim (3—2)=3 (i) lim f(z)= lim /=2 =0
z—0+ z—0t z—0~ z—0~
(iii) Because of (i) and (ii), lin%) f(x) does not exist. (iv) lim f(z)= lim 3—z)=0
x— r—3" r—3~
v) lirn+ f(z)= lim (z—3)*>=0 (vi) Because of (iv) and (v), lin}% flx)=0.
x—3 r—3 xr—
(b) f is discontinuous at 0 since lin}) f(x) does not exist. (c) Y

3
f is discontinuous at 3 since f(3) does not exist.

OT 3 X

(a) 22 — 9 is continuous on R since it is a polynomial and +/z is continuous on [0, o), so the composition /2 — 9 is

continuous on {z | #* —9 > 0} = (—o0, —3] U [3, 00). Note that 2° — 2 7 0 on this set and so the quotient function

7 _
g(z) = 32; ? is continuous on its domain, (—oo, —3] U [3, 00).
22—

sin x

(b) sin x is continuous on R by Theorem 7 in Section 2.5. Since e” is continuous on R, e is continuous on R by

sinx ;

Theorem 9 in Section 2.5. Lastly, x is continuous on R since it’s a polynomial and the product xe is continuous on its

domain R by Theorem 4 in Section 2.5.
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25. f(z) = 22® + 2 + 2 is a polynomial, so it is continuous on [~2, —1] and f(—2) = —10 < 0 < 1 = f(—1). So by the
Intermediate Value Theorem there is a number c in (—2, —1) such that f(c) = 0, that is, the equation 22 + z* +2 = 0 has a
rootin (—2,—1).

2

26. f(x) =e~® — xis continuous on R so it is continuous on [0,1]. f(0) =1 > 0> 1/e —1 = f(1). So by the Intermediate
Value Theorem, there is a number c in (0, 1) such that f(c) = 0. Thus, e —p= 0, or e=*" = x, has a root in (0,1).
27. (a) s = s(t) = 1 + 2t 4 t* /4. The average velocity over the time interval [1, 1 4 h] is

_s(14+h)—s(1)  14+2(1+h)+ (1+h)°/4—13/4 10h+h* 10+h
Vave = (1+h)— 1 - h - 4h o 4

So for the following intervals the average velocities are:
(i) [1,3]: h =2, Vave = (10 4+ 2)/4 =3 m/s (i) [1,2]: h=1,vave = (10+1)/4 = 2.75m/s

(iii) [1,1.5): h = 0.5, vave = (10 + 0.5)/4 = 2.625m/s  (iv) [1,1.1]: h = 0.1, vaye = (10 + 0.1)/4 = 2.525 m/s

'S(lL]W: tim 20 20 g 5y

b) When ¢t = 1, the instant locity is li
(b) en , the mstantaneous velocity 1s hlil}) oo 4 4

28. (a) When V increases from 200 in® to 250 in®, we have AV = 250 — 200 = 50 in®, and since P = 800/V,
800 800

AP = P(250) — P(200) = 250~ 200 — 3.2 —4 = —0.8 Ib/in®. So the average rate of change
. AP —08 Ib/in?
N 50 0.016 in®

(b) Since V' = 800/ P, the instantaneous rate of change of V' with respect to P is

AV V(P+h)—-V(P) . 800/(P+h)—800/P . 800[P — (P+h)
i Xp = A h = fim h Ay AYE
=800 800
= hm —_—_ =

h—o (P+h) P P?
which is inversely proportional to the square of P.

29. Estimating the slopes of the tangent lines at x = 2, 3, and 5, we obtain approximate values 0.4, 2, and 0.1. Since the

graph is concave downward at x = 5, f”/(5) is negative. Arranging the numbers in increasing order, we have:

f'(5) <0< f1(5) < f'(2) <1< f(3).

J— 3 — J—
0@ /0=l S5 iy 2 © ?

4
(b)) y—4=10(x —2) ory = 10z — 16 { / / J
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31. (a) Estimating f’(1) from the triangle in the graph, 15
Ay  —0.37
— ~ —— = —-0.74.
weet Ay ¥ om0 - 07 !

To estimate f’(1) numerically, we have

2
iy e JAER) = fQ) e T et
o= ==~ ’ v
From the table, we have f'(1) ~ —0.736. h Y

0.01 —0.732

0.001 —0.735

(b)y —e '~ —0.736(x — 1) ory ~ —0.736z + 1.104 0.0001 | —0.736
—0.01 —0.739

(c) See the graph in part (a). —0.001 —0.736
—0.0001 [ —0.736

32. 2 = 64,50 f(z) =2 and a = 2.
33. (a) f'(r) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars/(percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As r increases, C increases. So f’(r) will always be positive.

34 —/O/\f | 35. \ O/ . 36. \\/0/\ j\\
e

vy fle+h)—f@) . /3=b&+h)—+3=5x/3—5(x+h)+3—bzx
@ [(w) = Jim S = iy h V3-5@th) +v3—bz
lim [3—5(x+h)] —(3—5x) ~ lim -5 _ -5
hﬂoh(\/3—5(x+h)+\/3_5m) =0 \/3—5(x+h)+v3—bxr 2V3- 5z
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(b) Domain of f: (the radicand must be nonnegative) 3 — 5z >0 =

S50 <3 = we(—oo,%}

. . . f
Domain of f': exclude % because it makes the denominator zero; \

z € (—00,2) ] }

f/
(c) Our answer to part (a) is reasonable because f'(x) is always negative and f \

is always decreasing. -6

38. (a) Asx — o0, f(z) = (4 —x)/(3 + &) — —1, so there is a horizontal ‘ y
asymptote aty = —1. Asz — —3", f(z) — oo,andasz — —3,

f(x) — —oo. Thus, there is a vertical asymptote at x = —3.

(b) Note that f is decreasing on (—oo, —3) and (—3, 00), so f’ is negative on y
those intervals. As x — +oo, f' — 0. Asx — —3~ andas z — —3T,

f— —o0.

4—(r+h) 4-=
b fle+h)—flx) .. 34+(@+h) 34+z . B+zx)d—(x+h)]—(4—2)3+(x+h)
(© f'(z) = lim Jim, h = fim, B+ @t h] B+
_ i (12 — 3z — 3h + 4o — 2> — hz) — (12 + 42 + 4h — 3z — 2 — hx)
= hmo W3+ (z +h)(3+x)
—Th -7 7

MR @Bt ARBr @G (Bt

(d) The graphing device confirms our graph in part (b).

39. f is not differentiable: at x = —4 because f is not continuous, at x = —1 because f has a corner, at x = 2 because f is not

continuous, and at z = 5 because f has a vertical tangent.

40. The graph of a has tangent lines with positive slope for z < 0 and negative slope for > 0, and the values of c fit this pattern,
so ¢ must be the graph of the derivative of the function for a. The graph of ¢ has horizontal tangent lines to the left and right of

the x-axis and b has zeros at these points. Hence, b is the graph of the derivative of the function for c. Therefore, a is the graph

of f, cis the graph of f’, and b is the graph of f”.
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C'(1990) is the rate at which the total value of US currency in circulation is changing in billions of dollars per year. To
estimate the value of C’(1990), we will average the difference quotients obtained using the times ¢ = 1985 and ¢ = 1995.
C(1985) — C(1990)  187.3 —271.9  —84.6

Let A = 1935 — 1990 5 = = 16.92 and
C(1995) — C(1990)  409.3 —271.9  137.4
1995 — 1990 5 5 748. Then
. C(H)—C(1990) A+ B 169242748 444 .
/ —_— ~~ — p— —
C'(1990) = tllfglgo 1990 Ny = 5 === 22.2 billion dollars/year.

Let C(¢) be the function that denotes the cost of living in terms of time ¢. C'(¢) is an increasing function, so C’(t) > 0. Since
the cost of living is rising at a slower rate, the slopes of the tangent lines are positive but decreasing as ¢ increases. Hence,
C"(t) <O0.
(@) f'(r) >0o0n(—2,0)and (2,00) = f isincreasing on those intervals. f'(z) < 0 on (—oo, —2) and (0,2) =

f is decreasing on those intervals.
(b) f'(z) =0atx = —2,0, and 2, so these are where local maxima or minima will occur. Atz = +2, f changes from

negative to positive, so f has local minima at those values. Atz = 0, f’ changes from positive to negative, so f has a local

maximum there.

(c) f' is increasing on (—oo, —1) and (1,00) = (d) Y

f"” > 0and f is concave upward on those intervals. — R
f’is decreasing on (—1,1) = f” <O0and

f is concave downward on this interval.

(a) (b) .
Y f possible graph of f
\ AN I T
SNV A T NS
F0)=0,f(=2) = (1) = f(9) =0, lim f(x)=0,lim f(z) = —o0, ’ e
xr— 00 xr— ix:
#/(x) < 0on (—o0,—2), (1,6),and (9, 00), f'(x) > 0 on (—2,1) and (6,9), 20} /’\
1 : 9 12 X
f"(z) > 0on (—o0,0) and (12, 00), f"(x) < 0 on (0,6) and (6, 12) \/
(a) Drawing slope triangles, we obtain the following estimates: F'(1950) ~ 2 = 0.11, F'(1965) ~ ==% = —0.16,

and F'(1987) ~ %2 = 0.02.
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(b) The rate of change of the average number of children born to each woman was increasing by 0.11 in 1950, decreasing
by 0.16 in 1965, and increasing by 0.02 in 1987.
(¢) There are many possible reasons:
e In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.

e In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a
large family.

o In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

47. (a) Using the data closest to t = 6, we have 8(88) — 2(6) = 1802_ 9% =425
s (feet)
4) — 40 — . .
and s( i 2(6) = 0 295 = 27.5. Averaging these two values gives us 4001
42.5 4 21. : o1
5+75 = 35 ft/s as an estimate for the speed of the car after
2001
6 seconds.
100 1
(b) From the graph, it appears that the inflection point is at (8, 180). A
2 4 6 8 10 12 14 ¢
(c) The velocity of the car is at a maximum at the inflection point. (seconds)
48. Let f be the function shown. Since f is negative for z < 0 and positive for > 0, y
F is decreasing for z < 0 and increasing for > 0. f is increasing on (—a, a) F
(from the low point to the high point) so its derivative f’ (the second derivative of F')
is positive, making F' concave upward on (—a, a). f is decreasing elsewhere, so its o 0] a x
derivative f’ is negative and F' is concave downward on (—oo, —a) and (a, 00).
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1. Lett = ¢z, s0x =5 Thent — lasz — 1, s0
Yr—1 . -1 t—1@+1) . t+1 1+1 2

li = - = = = = -.
il T—1 et —1 e (t-1) (2 4t+1) 2 4t+1 12+1+1 3
Another method: Multiply both the numerator and the denominator by (1/z + 1) (\3/ x2 + Yz + 1).

. . . . Var+b—2 +ar—+b+2 . ar+b—4 . .
2. First rationalize the numerator: lim . = lim —————. Now since the denominator
z—0 T var+b+2 -0 x(\/a:c+b+2)

approaches 0 as  — 0, the limit will exist only if the numerator also approaches 0 as x — 0. So we require that

a a
a(0)+b—4=0 = b=4. Sotheequation becomes lim ——=1 = — =1 = a=4
(0) q z—0 \/ax +4+ 2 VA +2

Therefore, a = b = 4.

w

.For—1 <z <1 wehave2r —1<0and2z+1> 0,502z — 1| = —(2z — 1) and |2z + 1| = 2z + 1.

20 — 1| — |2 1 —(2x—1) — (2 1 —
Rl el O Pl e el A D R PR U PN L S}
xT x—0 X x—0 xT x—0

Therefore, lim
r—0

4. Let R be the midpoint of O P, so the coordinates of R are (3, 32°) since the coordinates of P are (z,z?). Let Q = (0, a).

2 1.2 2
. T 1 . . 27 —a  z°—2a
Since the slope mop = — = x, mgr = —— (negative reciprocal). But mgr = 5 0 = , so we conclude that
T T B T
2
—1=2>-2a = 2a=2z+1 = a=32"+1 Asz— 0,a— 3, and the limiting position of Q is (0, 3).

. [=] x [z] +1 x 1
5. Since [z] <z < [z] + 1, we have +—= < — < = 1<—=<1l+-—=forz>1 Asz — oo, [z] — oo,
[z] ~ [=] [] [] []
1 1 T
so — — 0and 1 + — — 1. Thus, lim —— = 1 by the Squeeze Theorem.
[z] [] a—oo [x]
6. (a) [z]* + [y]* = 1. Since []* and [y]? are positive integers or 0, there are S

only 4 cases:

Case (i): [x] =1,y =0 =1<z<2and0<y<1 ‘

Case (ii): [x] = -1, [y =0=-1<z<0and0 <y <1

Case (iii):[x] =0,y =1 =0<z<landl <y<2

Case (iv):[x] =0,y =—-1=0<zx<land-1<y <0

(b) [z]? — [w]* = 3. The only integral solution of n> — m? = 3isn = +2
and m = =£1. So the graph is

1<y<2o0r -1<y<0

{(@,y) | [2] = £2, [y] = £1} = {(w,y)

2<zx<3 or —2§w<1,}

©z+y]’=1 = [z+y]=%1 = 1<z4+y<?2

or—1<z+y<0

163
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(dForn<z<n+1l[z]=nThen[z]+[y]=1 = [yj=1-n =

1 —n <y < 2 —n. Choosing integer values for n produces the graph.

7. f is continuous on (—o0, a) and (a, o). To make f continuous on R, we must have continuity at a. Thus,

lim+f(x): lim f(z) = lim+:r2: lim (z+1) = &*=a+1 = a*—-a—-1=0 =

r—a r—a~

[by the quadratic formula] a = (1 + \/5)/2 ~ 1.618 or —0.618.

8. (a) Here are a few possibilities:

y
14

(b) The “obstacle” is the line z = y (see diagram). Any intersection of the graph of f with the line y = x constitutes a fixed
point, and if the graph of the function does not cross the line somewhere in (0, 1), then it must either start at (0, 0)
(in which case O is a fixed point) or finish at (1, 1) (in which case 1 is a fixed point).

(c) Consider the function F'(x) = f(x) — x, where f is any continuous function with domain [0, 1] and range in [0, 1]. We
shall prove that f has a fixed point. Now if f(0) = 0 then we are done: f has a fixed point (the number 0), which is what
we are trying to prove. So assume f(0) # 0. For the same reason we can assume that f(1) # 1. Then F'(0) = f(0) > 0
and F'(1) = f(1) — 1 < 0. So by the Intermediate Value Theorem, there exists some number c in the interval (0, 1) such

that F'(¢c) = f(c) — ¢ = 0. So f(c) = ¢, and therefore f has a fixed point.

9. (a) Consider G(z) = T'(x + 180°) — T'(z). Fix any number a. If G(a) = 0, we are done: Temperature at a = Temperature
ata + 180°. If G(a) > 0, then G(a + 180°) = T'(a + 360°) — T'(a + 180°) = T'(a) — T'(a + 180°) = —G(a) < 0.
Also, G is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, G has a zero on the
interval [a, a + 180°]. If G(a) < 0, then a similar argument applies.
(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.
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10. (a) Solution 1: We introduce a coordinate system and drop a perpendicular y s
from P, as shown. We see from Z/NCP that tan 20 = 1 L , and from
/N BP that tan § = y/x . Using the double-angle formula for tangents, P(x, y)
2 2 .
we get Y —tan20 = fan 29 = (y/z) . After a bit of 0
1—2x 1—tan?6 1—(y/x)? B0 20\ C
1 2z 0 MoN- L

simplification, this becomes 17 = 22 7 s Y =23x-2).

As the altitude AM decreases in length, the point P will approach the z-axis, that is, y — 0, so the limiting location of P
must be one of the roots of the equation 2:(3xz — 2) = 0. Obviously it is not = 0 (the point P can never be to the left of

the altitude AM, which it would have to be in order to approach 0) so it must be 3z — 2 = 0, that is, z = %

Solution 2: We add a few lines to the original diagram, as shown. Now note

that /ZBPQ = ZPBC (alternate angles; QP || BC by symmetry) and

similarly ZCQP = ZQCB. So ABPQ and ACQP are isosceles, and o <

the line segments BQ, QP and PC are all of equal length. As |[AM| — 0,

P and @ approach points on the base, and the point P is seen to approach a B ¢

position two-thirds of the way between B and C, as above.

(b) The equation y* = z(3x — 2) calculated in part (a) is the equation of ’ A

the curve traced out by P. Now as [AM| — 00,20 — 5,0 — %,

2 — 1, and since tan § = y/x, y — 1. Thus, P only traces out the P y)

part of the curve with 0 < y < 1.
B 09 c
0 M 2 1 x

11. Let a be the z-coordinate of Q. Since the derivative of y = 1 — 2% is y/ = —2x, the slope at @ is —2a. But since the triangle

is equilateral, E/@ = \/3/1, so the slope at @ is —/3. Therefore, we must have that —2a = V3 = a= ?

2
Thus, the point ) has coordinates <§, 1-— (@) > = (@, i) and by symmetry, P has coordinates (—@, %)

12. (a) V'(¢) is the rate of change of the volume of the water with respect to time. H'(¢) is the rate of change of the height of the
water with respect to time. Since the volume and the height are increasing, V' (¢) and H'(t) are positive.
(b) V'(¢) is constant, so V" (t) is zero (the slope of a constant function is 0).

(c) At first, the height H of the water increases quickly because the tank is narrow. But as the sphere widens, the rate of
increase of the height slows down, reaching a minimum at ¢ = . Thus, the height is increasing at a decreasing rate on
(0, t2), so its graph is concave downward and H" (¢1) < 0. As the sphere narrows for ¢ > t2, the rate of increase of the

height begins to increase, and the graph of H is concave upward. Therefore, H' (t2) = 0 and H" (t3) > 0.

13. (a) Putz = 0 and y = 0 in the equation: f(0 +0) = £(0) + f(0) +0°-0+0-0> = £(0) = 2f(0).
Subtracting f(0) from each side of this equation gives f(0) = 0.
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14.

15.

16.

17.
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- 0 h) + 0%k + 0h*] — £(0
(b”’(o):,l%w:m [£(0) + f(h) + - + 0n’] f<>:£%@:m@:1
(©) f'(x) = lim f<l’+h}17 f@) _ lim /(=) + f(h) +whh+wh |- f@) _ Jim f(h) +x;h+xh2

h—0 h

= lim [M—I—:f—&—xh} =1+ 22

We find the equation of the parabola by substituting the point (—100, 100), at which the car is situated, into the general
equation y = az®: 100 = a(—100)> = a= %. Now we find the equation of a tangent to the parabola at the point

(z0,y0). We can show that y’ = a(2z) = 155 (22) = &, so an equation of the tangent is y — yo = =zo(z — o).

106
Since the point (o, yo) is on the parabola, we must have yo = 1(1)0 xp, so our equation of the tangent can be simplified to

y = 1—303:3 + 5—10330 (x — o). We want the statue to be located on the tangent line, so we substitute its coordinates (100, 50)
into this equation: 50 = 15523 + =0(100 — z0) = xf — 200zo + 5000 =0 =

xro = % [200 + /2002 — 4(5000) ] = 1z =100+ 50/2. But 2o < 100, so the car’s headlights illuminate the statue

when it is located at the point (100 — 50 \/_ 2,150 — 100 \/_) (29.3, 8.6), that is, about 29.3 m east and 8.6 m north of

the origin.

lim (a) = lim (& [f(z) +g(@)] + £ /(@) — 9(@)]) = } lim [£(z) +g(a)] + } lim [/(@) — g(a)
= % 22+ % 1= %’

and lim g(z) = lim ( [f(2) + 9(2)] — f(2)) = lim[f(2) + g(a)] — lim f(z) =2~ % = L.

So lim [f(z)g(z) {hmf } [hmg } ) =2-2=3

Another solution: Since lim [f(x) + g(x)] and lim [f(x) — g(«)] exist, we must have

Tr—a r—a

tim [£(@) + g(@))* = (lim [(2) + 9(a)]) and lim [£(x) — (@) = (1im [F(@) — g(a)]) .50

r—a r—a

lim [f(z) g(z)] = lim ([f(z) + g(@)]? = [f (z) — g(:v)]Q) [because all of the f? and g* cancel]

= (tim [f(@) + 9(@) - lim [f(2) - 9(@)") = §(2* - 1°) = 4.
/ . (z+h) —g(z) . (x+h)flx+h)—xf(x) . [zf(x+h)—af () hf(x+h)
g'(@) = fim T = Jim, 7 :%11%[ I R }
:x;{%wﬂ%ﬂﬂh)=wf’(x)+f(w)

because f is differentiable and therefore continuous.

We are given that | f(z)| < x? for all 2. In particular, | f(0)| < 0, but |a| > 0 for all a. The only conclusion is

@l 2 L < @@
ol 2l al S a0 T
f(x) ~ 1(0)
z—0

that f(0) = 0. Now ’f(zx) — g(o) ’ - ‘ f(x:z:)

But lir% (=lz]) =0= lin}) ||, so by the Squeeze Theorem, lin}) = 0. So by the definition of a derivative,

f is differentiable at 0 and, furthermore, f'(0) = 0.
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From the tables (to two decimal places),

b b
lim u = 0.99 and lim M =1.03.
h—0 h h—0 h

Since 0.99 <1 < 1.03,2.7 < e < 2.8.

The function value at x = 0 is 1 and the slope at z = 0 is 1.

3.1 Derivatives of Polynomials and Exponential Functions
eh -
1. (a) e is the number such that lin}) =1.
(b)
2.7% — 1 2.8" — 1
x —_— X —_—
xX x
—0.001 0.9928 —0.001 1.0291
—0.0001 | 0.9932 —0.0001 | 1.0296
0.001 0.9937 0.001 1.0301
0.0001 0.9933 0.0001 1.0297
2. (a) '
4_.
3_.
2..
‘—’/l
—=2 —=1 0 1 2

d

o B

10

1.

12,

14.

15.

(b) f(z) = €” is an exponential function and g(z) = z° is a power function. 4 (e¥) =e” and — (z°) = ex

e—1

dzx dx

(c) f(x) = e” grows more rapidly than g(x) = x° when z is large.

- f(
L f(@) =
L f(@t) =
. h(
A(s) = _g .
L g(t) =2t73/4
y=3e” + %

it +8) = f@)

—1257° = A'(s) = —12(—5s

win

Bly)=cy ® = B'(y)=c(-6y™ ") =

—6cy ™"

= g =203 =37

h(t) = v/t — 4et = tY/4 — 4¢t

=3e"+42713 = oy

!

f(z) = 186.5 is a constant function, so its derivative is 0, that is, f'(z) = 0.
f(x) = /30 is a constant function, so its derivative is 0, that is, f'(z) = 0.
f=2-2t = fH)=0-2=—
F(z) =32 = F'(z)=3(8z") =6a’
r)=2%—4r+6 = f'(v)=32"—-4(1)+0=32>—4

-3t +t = f(t)=3(6t°) —3(4t*) +1=3t> — 12> + 1
=1(t'+8) =14t +0)=¢
r)=(x—-2)22+3)=22"-2—-6 = h(z)=2022)-1-0=4dr—1

%) =60s"% or 60/s°

= K(t) =371 —4(e!) = 173/ — 4t

=3(e”) +4(—3)z 7 =3¢ — 4273

167
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16 y=Vr(x—1) =22 —2"? = ¢ =322Y2 1p7Y2 = L137Y2(32 — 1) [factor out Sz~ /]
or 3 = 3xr—1
2vVx
17. F(x) = (%x)s = (%)5 2’ =52 = F(z) = 5(52") = Sa*
2
— 1 1
8 foy =200l 3 Ly gy o
x x oz
_ _ _ 3 2 3x — 2
f(x)=0-3(-Dz 2+ (-2)z 3 =32"2—-22"3 or i e
2
19. y = w — 3/2 _|_41-1/2 _|_31.—1/2 =
Va
y = %Il/z —|—4(%)m_1/2 —l—3(—%)x_3/2 =3 Vo + 23 [note that 23/2 = 22/2 . 21/2 = :L‘\/E]
vV 2zVz
3z 4 3 32 + 4z -3
The last expression can be written as + - = .
20V 22Vz 22V 20 Vz
2. g(u) =V2u+V3u=v2u+V3yu = g'(u)=+v2(1)+ \/5(%”—1/2) =2+ 2‘\//_?;7
21, y = 4n®> = o' = 0since 477 is a constant.
b b 2
22, y:ae”—i———l—i =ae’ +bv !+ ? = y':ae“—bv*2—20v*3:ae“————c
v V2 v2 03
Bou= T+ AVE =104 42 5o = g (392) = L 1082 or 1/ (5 Y07) + 10V
24 (\/_ 1 )2 \/_ 2 2\/_ 1 1 ? 2 1/2—-1/3 1/ 2/3 2 1/6 2/3
. V= T+ == :(:U)+ m——i—(—) =x+ 2z +1/x =x+2x'" +x =
Va Ve \Vz
1 2
’_ 1.-5/6\ 2 -5/3 _ 1.-5/6 _ 2 -5/3 _
v—1—|—2(6x ) ZT =1+3x ZT or 14—3{5/96_5 33/}
A 104
25. z = —5; + Be¥ = Ay + BeY = 2 =-104y ' + Be¥ = —% + BeY
Yy Y
26.y=e"""+1l=¢"e'+1l=c-e"+1 = y =ec- " =¢"M
1 . .
. y=Vz=2z"* = ¢ = ix*?’/‘l = ——=. At(1,1),y = 7 and an equation of the tangent line is
4/ 23
y—l=3(x—-1) or y=1z+3.
28 y=2a*+22> —2x = ¢ =42>+4x—1. At(1,2),y = 7 and an equation of the tangent line is
y—2="7x—-1) or y="Tx —5.
2. y=2a"+2" = o =42®+2e". At(0,2),y = 2and an equation of the tangent line is y — 2 = 2(x — 0)

or y = 2x + 2. The slope of the normal line is —% (the negative reciprocal of 2) and an equation of the normal line is

y—2=—2(x—0) or y=—2z+2.



30.

31.

32,

33.

34.

35.
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y=(1+22)°=1+4x+42> = o =4+8z. At(1,9),y = 12 and an equation of the tangent line is

y—9=12(x — 1) or y = 12z — 3. The slope of the normal line is —1—12 (the negative reciprocal of 12) and an equation of the

L

normal lineis y — 9 = — 5

(x—1) or y=—Hz+ L,

3 = o =6z —32%

y=3z>—zx
At (1,2),y =6 — 3 = 3, so an equation of the tangent line is

y—2=3(x—1) or y =3z —1.

1
y=z—-Vz = y =1-1a"YV2=1- .
? 2V
At (1,0), ¥ = 1, so an equation of the tangent line is
y—0=32(z—1) or y=1z— 1.

f(z)=¢e"—bzx = f'(z)=¢e"—5.

Notice that f/(z) = 0 when f has a horizontal tangent, f’ is positive

when f is increasing, and f’ is negative when f is decreasing.

f(z) =32° —202® + 500 = f'(x) = 152" — 602 + 50.

Notice that /() = 0 when [ has a horizontal tangent and that f” is

an even function while f is an odd function.

f(@) =32 52 +3 = f'(z) =452 — 1522

Notice that f’(z) = 0 when f has a horizontal tangent, f’ is positive

when f is increasing, and f’ is negative when f is decreasing.

5
-2 4
(g \)

-1
1
0 /2
5 g
'd 5 N\
f
-5 5
]
60 /
WoNa
A
f
—60
8
=
—120 12
B
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6. f(z)=z+1l/z=a+2' = fl2)=1-22=1-1/2% P 6 .
f
Notice that f'(«) = 0 when f has a horizontal tangent, f is positive £ P
when f is increasing, and f’ is negative when f is decreasing. —6 N T/ 6
)
\C J

37. To graphically estimate the value of f'(1) for f(z) = 322 — 23, we’ll graph f in the viewing rectangle [1 — 0.1,1 + 0.1] by
[£(0.9), f(1.1)], as shown in the figure. [When assigning values to the window variables, it is convenient to use Y1(0.9) for
Ymin and Y1(1.1) for Ymax.] If we have sufficiently zoomed in on the graph of f, we should obtain a graph that looks like a
diagonal line; if not, graph again with 1 — 0.01 and 1 4 0.01, etc.

2.299
Estimated value:
NS SR
Exact value: f(z) = 32° —2® = f/'(x) = 62 — 322,
sof'(1)=6—-3=3. 0.9 < : 1.1

38. See the previous exercise. Since f is a decreasing function, assign Y1(3.9) t0 Ymax and Y1(4.1) to Yomin.

Estimated value: f'(4) ~ 0'49:18(13 : 2'30637 = _0312251 —0.06255.

Exactvalue: f(z) =2~ '/ = f'(z) = —227%% s0 f'(4) = —1(47%?) = —3(%) = — % = —0.0625.

16

39. (a) 50 (b) From the graph in part (a), it appears that f’ is zero at 71 &~ —1.25, 22 ~ 0.5,

and 23 &~ 3. The slopes are negative (so f’ is negative) on (—oo, z1) and

(z2,3). The slopes are positive (so f’ is positive) on (x1,z2) and (3, 00).

_3L A JS y—
—10 1
. /3\ .

RYAND V4
720..

() f(zx)=a*—32> — 62> + Tz +30 = 100

f(z) =42 — 922 — 1224+ 7
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40. (a) 8 (b) From the graph in part (a), it appears that f’ is zero at 1 ~ 0.2 and =2 =~ 2.8.

The slopes are positive (so f’ is positive) on (—oo, 1) and (2, o). The slopes

N 4 are negative (so f' is negative) on (z1, z2).

oo}

(©) g(z) =€ - 32> = ¢'(z)=¢" —6x

h \\/ 4
-8

4. f(z) =102 +52° —2 = f'(z) =1002° +252* —1 = f"(z) = 9002® + 100>

2. Gr)=Vr+Vr = G'(r)=3r"2 4173 = GQU(r)=—1r3/2 20708

43. f(z) =2z — 503/ = fl(z)=2- %x_l/‘l = f(z)= }—gx_5/4 é‘ - <
—1 == 30
Note that f’ is negative when f is decreasing and positive when f is !
increasing. f” is always positive since f’ is always increasing. f
J
-10
4, f)=e" —2*> = fl(z)=e" 32> = f'(z)=¢e" -6z 3 i
{ \\\\ f”'ll
Note that f’(xz) = 0 when f has a horizontal tangent and that " (x) = 0 -2 o "lf’ 6
when f' has a horizontal tangent. V T3 / f
-12
45. () s=t>—3t = w(t)=s()=3t>-3 = at)=1'(t) =6t
(b) a(2) = 6(2) = 12 m/s?
(c) v(t) = 3t> — 3 = 0 when t* = 1, thatis, ¢t = 1 and a(1) = 6 m/s°.
4. (a) s=t*—203+t2—t = () 3 :
o(t) =5 (t) =4t> —6t> +2t—1 = 3 al vl s
t) ='(t) = 12t> — 12t + 2 \
a(t) = v'(t) 0 “\ Ly 2.5
(b) a(1) = 12(1)% = 12(1) + 2 = 2m/ > - J
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41.

48.

49.

50.

51.

52.

53.

54,

55.
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flz)y=5bzx—e* = [fl(zg)=5-¢€". f(z)>0 = 5—-e">0 = <5 = z<Inbx16l
f is increasing when f’ is positive; that is, on (—oo, In5).
fx)=2%—42>+52 = f'(z)=32>-8z+5 = f'(z)=6x-38.
f'(x)>0 = 6x—8>0 = x> 3. fisconcaveupwardwhen f”(z) > 0; thatis, on (3,00).
The curve y = 22> + 32® — 12 + 1 has a horizontal tangent when y’ = 62> +6r —12=0 < 6(z°+2-2)=0 &
6(x+2)(x—1)=0 < x=—2orx = 1. The points on the curve are (—2,21) and (1, —6).
f(x) = 2 + 32% + x + 3 has a horizontal tangent when f'(z) = 32> + 6z +1=0 <

I _6i\/636_12:—1:t%\/6.

y=6z>4+5x—3 = m=1y =18z% +5,butz® > 0 forall z, som > 5 for all .

Yy=x Ve=a%? = y = %xl/z. The slope of the line y = 1 + 3z is 3, so the slope of any line parallel to it is also 3.
Thus,y' =3 = 22'/?2=3 = V=2 = =4, whichis the z-coordinate of the point on the curve at which the
slope is 3. The y-coordinate is y = 4 /4 = 8, so an equation of the tangent line is y — 8 = 3(x — 4) or y = 3z — 4.

The slope of the line 122 — y = 1 (or y = 122 — 1) is 12, so the slope of both lines tangent to the curve is 12.

y=1+2> = ¢ =32% Thus,32° =12 = 2> =4 = = £2, which are the z-coordinates at which the tangent

lines have slope 12. The points on the curve are (2,9) and (—2, —7), so the tangent line equations are y — 9 = 12(x — 2)

ory=12x —15andy + 7 = 12(x + 2) ory = 122 + 17.

The slope of y = 1 + 2e” — 3z is given by m = y' = 2e” — 3. y=1+2e"—3x 6

=

Theslopeof3x —y=5 & y=3x—5is3.
m=3 = 2°-3=3 = =3 = zx=1In3.

This occurs at the point (In3,7 — 31n 3) ~ (1.1,3.7).

-3 4
. // A J

y=3x+7—-6In3 -1 y=3x—5

1

The slope of y = 22 — 5x + 4 is given by m = ¢/ = 2z — 5. Theslopeof z — 3y =5 < y= 3

z—2is %,
so the desired normal line must have slope %, and hence, the tangent line to the parabola must have slope —3. This occurs if

20 —-5=-3 = 22=2 = z=1Whenz=1,y=1%—-5(1)+4 = 0, and an equation of the normal line is

y—0=3(x—1ory=iz— 3.



5. y = f(z) = o — a2

57.

So f'(1) = —

of the tangent line, that is, —1/(—1) = 1. So the equation of the normal line at

(1,0)isy—0=1(x — 1)

1, and the slope of the normal line is the negative reciprocal of that

= fl(z)=1-2z. y

y = x — 1. Substituting this into the equation of
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the parabola, we obtainz — 1 =z — 2> < x = +1. The solutionz = —1 is
the one we require. Substituting z = —1 into the equation of the parabola to find
the y-coordinate, we have y = —2. So the point of intersection is (—1, —2), as shown in the sketch.

(a,a?)

(0, —4)

Let (a, a2) be a point on the parabola at which the tangent line passes
through the point (0, —4). The tangent line has slope 2a and equation
y—(—4)=2a(x —0) < y=2ax — 4. Since (a,a”) also lies on the
line, a® = 2a(a) — 4, or a® = 4. So a = +2 and the points are (2,4)

and (—2,4).

58. (a) If y = 2% + x, then iy = 2z + 1. If the point at which a tangent meets the parabola is (a, a? + a), then the slope of the

Ay a®+a+3

tangent is 2a + 1. But since it passes through (2, —3), the slope must also be —=

Therefore,

20+ 1 =

Az a—2

3 . . .
. Solving this equation for a we get a®> + a +3 = 24> —3a —2 <

a’>—4a—5=(a—5)(a+1)=0 < a=5o0r—1 Ifa= —1,thepointis (—1,0) and the slope is —1, so the

equationisy — 0 = (=1)(z + 1) ory = —a — 1. If a = 5, the point is (5, 30) and the slope is 11, so the equation is

y—30=11(x —5)ory = 11z — 25.
(b) As in part (a), but using the point (2, 7), we get the equation y
2 _ y=x"+x
20 +1= g ta-7 = 20 -3a—-2=d’+a—-7 & a®>—4a+5=0.
a—2 —(2,7)
6<>
The last equation has no real solution (discriminant = —16 < 0), so there is no line
through the point (2, 7) that is tangent to the parabola. The diagram shows that the
point (2, 7) is “inside” the parabola, but tangent lines to the parabola do not pass 1o 2 x
through points inside the parabola.
1 1
o fleth)—f@) . ath o or—(zt+h) —h . -1 1
59. f'(z) = lim ——————~* =] =lim ————* = —=lm——=—-—
(@) Py h s h s hxz(xz + h) e’ hxz(x + h) s z(xz+ h) x?
60. (a) f(x) =" = f/(x) = nxn_l = f//(x) =n (n — 1) xn—Z = ... =

M (z) =n(n—1)(n—2)-

2-1z"7" =nl
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61.

62.

63.

64.

65.

66.

(b) f(l') - xil = fl(l') = (—1)1‘72 = f”(x) = (—1)(—2)5573 = ... =

£ @) = (~1)(~2)(=8) - (~m)ar= 0D = (—1)tala= D o I

Let P(x) = ax® + bz + c. Then P'(x) = 2az +band P"(x) = 2a. P"(2) =2 = 2a=2 = a=1.

P'2)=3 = 2)2)+b=3 = 4+b=3 = b=—1

P2)=5 = 122+ (-1)(2)+c=5 = 2+c=5 = c=3.S0P(x)=2>—x+3.

y=Az*4+Br+C = 3y =2Ax+B = 3" =2A. We substitute these expressions into the equation
y" +y' — 2y = x? to get
(24) + (2Az + B) — 2(A2® + Bz + C) = 2°
2A +2Ax + B — 2Ax® — 2Bz — 2C = 2°

(—24)2® + (2A — 2B)z + (2A+ B — 2C) = (1) + (0)z + (0)

The coefficients of 22 on each side must be equal,so 2A =1 = A= f%. Similarly, 2A — 2B =0 =

A=B=-1and24+B-20=0 = -1-1-20=0 = C=-3%

(a) At this stage, we would guess that an antiderivative of 2% must have 2* in it. Differentiating 2* gives us 32, so we know
that we must divide 2° by 3. That gives us F'(z) = $2°. Checking, we have F”(z) = %(3z%) = 2* = f(x). Because we
can add an arbitrary constant C' to F' without changing its derivative, we have an infinite number of antiderivatives of the

form F(z) = 32° + C.

(b) As in part (a), antiderivatives of f(z) = z° and f(z) = 2* are F(z) = *2* + C and F(z) = 12° + C.

(c) Similarly, an antiderivative for f(x) = 2" is F(z) = —11- 1;1:"+1 + C, since then
n
F'z) = HLH [(n+1)2"] = &" = f(x) forn # —1.
@ fl@)=vz=2'? = F(2)=ggms/?T +0=32+0C

®) f(x) =" +82° = F(:c):ex+8-ﬁllx3+1+C:em—|—2m4+C

Substituting = 1 and y = 1 into y = ax?® + bx gives us a + b = 1 (1). The slope of the tangent line y = 3z — 2 is 3 and the
slope of the tangent to the parabola at (z,y) isy’ = 2ax +b. Atz =1,y =3 = 3 =2a+ b (2). Subtracting (1) from
(2) gives us 2 = a and it follows that b = —1. The parabola has equation y = 2z — .

y=a*4+ax® +br’ +cxr+d = y(0)=d. Since the tangent line y = 2x + 1 is equal to 1 at = = 0, we must

haved =1. ¢ =42° +3az® +2bx+c = %' (0) = c. Since the slope of the tangent line y = 2z + 1 atx = 0 is 2, we



67.

68.

69.

70.

71.
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must have c = 2. Now y(1) = 14+ a+ b+ ¢+ d = a+ b+ 4 and the tangent line y = 2 — 3z at x = 1 has y-coordinate —1,
soa+b+4=—lora+b= -5 (1). Also,y'(1) =4+ 3a + 2b + ¢ = 3a + 2b + 6 and the slope of the tangent line
y=2—-3zatx=1is —3,s03a+2b+6 = —3 or3a + 2b = —9 (2). Adding —2 times (1) to (2) givesus a = 1 and

hence, b = —6. The curve has equation y = z* + 2® — 62 + 2z + 1.

y=f(x)=az® +b2®> +cx+d = f'(x)=3ax®+ 2bx + c. The point (—2,6) ison f,s0 f(—2) =6 =
—8a+4b—2c+d =6 (1). The point (2,0)ison f,so f(2) =0 = 8a+4b+ 2c+d =0 (2). Since there are
horizontal tangents at (—2,6) and (2,0), f'(£2) =0. f'(-2) =0 = 12a—4b+c¢=0 3)and f'(2) =0 =

12a 4 4b + ¢ = 0 (4). Subtracting equation (3) from (4) gives 80 =0 = b = 0. Adding (1) and (2) gives 8b + 2d = 6,

so d = 3 since b = 0. From (3) we have ¢ = —12a, so (2) becomes 8a + 4(0) + 2(—12a) +3=0 = 3=16a =

a= 2. Nowc=—12a = —12(<2) = —2 and the desired cubic functionis y = 22° — S + 3.
The slope of the curve y = ¢ Vazisy = 5 \C/_ and the slope of the tangent line y = %x +61s % These must be equal at the
x
point of tangency (a, cva ) , SO 5 \C/_ = g = ¢ = 3va. The y-coordinates must be equal at x = a, so
a
cva = %a—l—ﬁ = <3\/5> Va = %a—|—6 = 3a= %a—|—6 = %a:6 = a = 4. Since ¢ = 3/a, we have
c=3V4=6.
y= f(x) =ax® = f'(z) =2ax. So the slope of the tangent to the parabola at z = 2 is m = 2a(2) = 4a. The slope
of the given line, 2z +y =b < 1y = —2x + b, isseento be —2, so we must have 4da = -2 & a = f%. So when
x = 2, the point in question has y-coordinate —% - 2% = —2. Now we simply require that the given line, whose equation is

2z + y = b, pass through the point (2, —2): 2(2) + (—=2) =b < b=2. Sowemusthavea = —5 and b = 2.
@zy=c = y= S LetP = (a, E). The slope of the tangent line at x = a is y'(a) = —%. Its equation is
x a a

c c 2c . . . 2c . . . .
y——= ——2(1‘ —a)ory = —— & + —, so its y-intercept is —. Setting y = 0 gives x = 2a, so the z-intercept is 2a.
a a a a a

The midpoint of the line segment joining (0, %) and (2a,0) is (a, 2) = P.

(b) We know the x- and y-intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes and the

tangent is 3 (base) (height) = 22y = 3 (2a)(2¢/a) = 2c, a constant.

21000 _ 4

Solution 1:  Let f(x) = x*°°°. Then, by the definition of a derivative, f’(1) = lim % = lim ——

But this is just the limit we want to find, and we know (from the Power Rule) that f’(z) = 10002°?, so

£/(1) = 1000(1)°° = 1000. So Ii =1 _ 000
= = . Oxlig - 1 = .

[continued]
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Solution 2:  Note that (2'°%° — 1) = (z — 1)(2*? +2°?® + 2" + ... + 2> + x +1). So

1000 __ -1 999 998 997 2 1
lim & =Ly @ V@R A e A R D) gy 0999 4 995 4997 02 gy 1)
z—1 T — z—1 r—1 z—1
=1+1+1+---+1+1+1=1000, as above.

1000 ones

72. In order for the two tangents to intersect on the y-axis, the points of tangency must be at

equal distances from the y-axis, since the parabola y = x? is symmetric about the y-axis.

(—a,a

Say the points of tangency are (a,a”) and (—a, a®), for some a > 0. Then since the
-1

derivative of y = 22 is dy/dx = 2z, the left-hand tangent has slope —2a and equation

y —a® = —2a(x + a), or y = —2ax — a?, and similarly the right-hand tangent line has

equation y — a® = 2a(x — a), or y = 2az — a®. So the two lines intersect at (0, —a”). Now if the lines are perpendicular,

then the product of their slopes is —1, 50 (—2a)(2a) = -1 < a* =13 < a = 1. Sothe lines intersect at (0, — ).
73. y =2> = y = 2z, so the slope of a tangent line at the point (a, @) is ' = 2a and the slope of a normal line is —1/(2a),
a*—c a*—c 1
for a # 0. The slope of the normal line through the points (a, @) and (0, ¢) is g s° =5 =
a— a a
a®—c=—-1 = a® =c— 3. Thelast equation has two solutions if ¢ > %, one solution if ¢ = 1, and no solution if

c< % Since the y-axis is normal to y = 2% regardless of the value of ¢ (this is the case for a = 0), we have three normal lines

ifc > % and one normal line if ¢ < %

74. From the sketch, it appears that there may be a line that is tangent to both

y=x>—2x+2
curves. The slope of the line through the points P(a, a*) and

b2 —2b+ 2 — a?
b—a

is2a [y =2x] andatQis2b—2 [y = 2z — 2]. All three slopes are

Q(b,b* —2b+2) is . The slope of the tangent line at P

0; X
equal,so2a =2b—2 & a=0b-1

2 2 2 _ _ 2
Also’2b_2:m = 2b_2:b 2b+2 (b 1)

2—2=0b>—-20+2—-0>+2b—1
b—a b (-1 - * * -

26=3 = b=2=2anda=2—1=1. Thus, an equation of the tangent line at P is y — (%)2 =2(3)(z—3)or
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1. @) f(x) =arx® +bx+c = f(z)=2ax+b.

The origin is at P:
The slope of the ascent is 0.8:
The slope of the drop is —1.6:

= c=0
= b=0.8

f(100) = —-1.6 = 200a+b=—1.6

24

(b) b=0.8,50200a +b=—-16 = 200a+08=-1.6 = 200a=-24 = a= ~500 = —0.012.
Thus, f(z) = —0.0122% + 0.8.
(c) Since L1 passes through the origin with slope 0.8, it has equation y = 0.8z. 30 -
The horizontal distance between P and @ is 100, so the y-coordinate at ) is _50[ P(0,0) l % W 150
f(100) = —0.012(100)* + 0.8(100) = —40. Since L2 passes through the 0(100,—40)
f

point (100, —40) and has slope —1.6, it has equation y + 40 = —1.6(z — 100)

ory = —1.6x + 120.

—100

(d) The difference in elevation between P(0,0) and (100, —40) is 0 — (—40) = 40 feet.

2. (a)
Interval Function First Derivative Second Derivative
(—00,0) Li(z) = 0.8z Li(z) =0.8 L{(z) =0
[0,10) g(z) = kx® +12° + mx +n g (x) = 3kx® + 2lx +m g"(x) = 6kx + 21
[10,90] q(x) =az® +br +c q(z) =2az+b q"(xz) =2a
(90, 100] h(z) = px® + q2® +rx + s h'(x) = 3pa® + 2qx +r R (z) = 6pz + 2¢q
(100, c0) La(z) = —1.6x + 120 Ly(z) = —1.6 Ly(z) =0

There are 4 values of = (0, 10, 90, and 100) for which we must make sure the function values are equal, the first derivative

values are equal, and the second derivative values are equal. The third column in the following table contains the value of

each side of the condition —these are found after solving the system in part (b).

Atx = Condition Value Resulting Equation
0 g(0) = L1(0) 0 n=0

g'(0) = L1(0) 2 m = 0.8
g"(0) = LY (0) 0 20=0

10 g(10) = ¢(10) & 1000k + 100 + 10m + n = 100a + 10b + ¢
g'(10) = ¢'(10) 2 300k + 200 +m = 20a + b
g"(10) = ¢"'(10) -2 60k + 21 = 2a

90 h(90) = q(90) 220 729,000p + 8100g + 90r + s = 8100a + 90b + ¢
h'(90) = ¢'(90) -2 24,300p + 180q + r = 180a + b
R''(90) = ¢''(90) —Z 540p + 2q = 2a

100 h(100) = L2(100) —40 1,000,000p + 10,000q + 1007 + s = —40

h'(100) = L5(100) -8 30,000p + 200q + 7 = —1.6
" (100) = L%(100) 0 600p + 2¢ = 0
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(b) We can arrange our work in a 12 x 12 matrix as follows.

a b c k l m n P q r s constant
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0.8
0 0 0 0 2 0 0 0 0 0 0
—100 | —10 | —1 | 1000 | 100 10 1 0 0 0 0 0
—20 -1 0 300 20 1 0 0 0 0 0 0
-2 0 0 60 2 0 0 0 0 0 0 0
—-8100 | —90 | —1 0 0 0 0 729,000 8100 90 1 0
—180 -1 0 0 0 0 0 24,300 180 1 0 0
-2 0 0 0 0 0 0 540 2 0 0 0
0 0 0 0 0 0 0 | 1,000,000 | 10,000 | 100 1 —40
0 0 0 0 0 0 0 30,000 200 1 0 —-1.6
0 0 0 0 0 0 0 600 2 0 0 0
Solving the system gives us the formulas for g, g, and h.
_ k= —0.0004 = — 5=
a=—0.013 = 77_15 o 2250
b=0B=1 @ =-gfrHe-g o) = —mme’ + 50
c=-04= —% >
n=20
p = 0.0004 = ﬁ
g=—-013= _115 1,32 2, 176 2920
pengsogp (M7 EET TR
s=—3244 =220
(c) Graphof L1, q, g, h, and Lo: The graph of the five functions as a piecewise-defined function:
50
( g (}O,68/9> ]
PR,
5000 > 150
) (90, —220/9)8 1
: (100, —40)
-100
This is the piecewise-defined function assignment on a TI-83 A comparison of the graphs in part 1(c) and part 2(c):
Plus calculator, where Yo = L1, Y6 = g9, Y5 = q, Y7 = h,
and Y3 = L2. 20
( « Problem 2 ]
Flakl Flakz Flokz —10, / 110
wWas ek CELB Y 6 Problem 1
CrsE and Bolga+l
ekl H=1A and K=90
AN R CE A and X
Z1@E+Y 2R 18R D r
wY'e=
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3.2 The Product and Quotient Rules

1. Product Rule: f(z) = (1 + 22%)(z — 2%) =
() =1 +22H)(1 —22) + (x — 2?)(4r) = 1 — 22 + 227 — 42> + 42 — 42® = 1 — 22 + 627 — 82>

Multiplying first: f(z) = (1 + 22%)(z — 2°®) =2 — 2> + 22° — 22" = f'(z) = 1 — 22 + 62° — 82° (equivalent).

ozt =528+ at — b2 4 at/?

2 2

2. Quotient Rule: F'(x) =

x x

2? (42 — 1527 + 3271/2) — (2* — 52° + 2%/?)(22) B 42° — 152 + 12%/? — 22° + 102* — 22°/2

F'(z) =
@ = -

225 — bt — %x3/2 3
= 7 =2xr—5—3x
T

—5/2

' —52° + x

x2

Simplifying first: F'(x) = 2?2 —5r+a27%? = F'(z)=2r-5— %:175/2 (equivalent).

For this problem, simplifying first seems to be the better method.
3. By the Product Rule, f(x) = (z° + 2x)e” =
f(z) = (2% + 22) (") + e (2® + 22) = (2% + 2x)e” + e*(32° + 2)

= e'”[(x?’ +2x) + (3:52 +2)] = ex(x?’ + 322 + 22 + 2)

4. By the Product Rule, g(z) = Vze® = z1/2e® = g¢'(x) = 2'/2(e%) + €® (%x_l/z) =172 (22 +1).

T x —(e"”)—ez—(xQ) 2.y _ =z T o T o
5. By the Quotient Rule, y — 6_2 Sy = dx ~ dx _z (e”) 46 (2z) _ ze (:174 2) _e¢ (.’133 2).
x (a:Q) x x x
. e’ (1+x)e” —e®(1) e +xe” —e” xe®
6. By the Quotient Rule, y = = 4y = = = )
y the Q Y=112 y (1+ z)? (z+1)2 (z+1)2

PR R
The notations = and % indicate the use of the Product and Quotient Rules, respectively.

B2-1 ® , . (204+1)@B)—(Bx—1)(2) 6z+3-6z+2 5
9@ =5 9(x) = (27 + 1)2 T @Qrr1? 2zt 1)e
2t R, (A+tD)(2) - (20)(2t) 8 +27 —4® 82
IO = = U= (4 +12)2 T+ (At2)2

9. F(y) = <% - y%)(y +50%) = (y 2 -3y H(y+5°) =

F'(y) = (y2 =3y ") (1 +15y°) + (y + 5y°) (—2y > + 12y77)
=(y 2 +15—-3y * —45y ) + (—2y 2 + 12y~ * — 10 + 60y~ ?)

=54+ 14y 2 +9y * or 5+ 14/y*> +9/y*
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10. R(t) = (t+e")(3-Vt) =

R'(t) = (t+¢€) (—%t_l/z) +(B3=Vt)(1+¢€)

= (302 - L) (B3¢ — VE— Vi) = 3436 — SVE— Vi — ¢ /(2V)

M ow— x3 R (1—2?)(32%) —2®(—22) 2?3 — 32> +22°) 2°(3—2?)
SR g v (1—a22)2 T -2z (1-a22)p
z+1 QR
12 y = —
L —) -

@4z -2) 1) —(z+1)B2®+1) 2 +2x-2-32°-32"—x—-1 —22°—32°-3

N (23 +x—2) (23 +x —2)? (3t —2)2
o 22" +32%43
(x —1)2(x2 +z +2)2
t2 42 QR
18y = ————
(R TE

;=32 +1)(2t) — (2 +2)(4® —6t)  2t[(#" — 37 +1) — (£ + 2)(2t° — 3)]

v= (t* — 3t2 + 1) - (t* — 312 + 1)2
2ttt =32+ 1 —2t" — 42 + 382 +6) 2t — 4+ 7)
(t* =32 +1)2 (=32 +1)2
t t R
14. = =
L o R VT |
;P =2t+ D)) —t(2t—2)  (t-12—2tt—-1) (t-D[t-1)—-2t] —t—1
[(t —1)%]? a (t—1)* a (t—1)* (-3
PR

5. y=>=2r)e” = ¢y =@>=-2r)(e")+e (2r—2)=e"(r* —2r+2r—2) =e"(r* - 2)

1 ® p_ (s+ke’)(0) — (1) +ke’) 14 ke’
s+ kes v (s + kes)? (st ke®)?

16. y =

3
-2
17. y = M :v2—2\/1_):v2—2v1/2 = y':2v—2(%)v71/2 =20 — v V2

_ 3/2 _
We can change the form of the answer as follows: 2v — v =2y — L = 2v/v—1 = 2v 1
VU Vu Vv

18. 2 = W (w+ce”) = w/? + cw? e = 2 =32uw/? +c(w3/2 eV 4e" - %wl/Q) = 2uw*? + Lew'/?e" (2w + 3)

2 ® _(2+t1/2)(2)_2t(%t_1/2>_4+2t1/2—t1/2_ 44112 4+t
W= T TS 2+ V1) T RAVD? ViR D AR

t—\/Z i tl/z 2/3 1/6 ’ 2,1
— - _ __2,-1/3 _ 1,-5/6
20.9(t) =7 =775~ 75 =t e = g(t) =3t 5t




21,

22,

23.

24,

25,

26.

27.

28.

29,

30.
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_ A R Lo (B+Ce")-0-A(Ce")  ACe”
1@)=g76e = f@= (Bt Cev)? (Bt Ce)
R e
R Fa) = (z+e”)[—(xe” + ew(-ml_)g ;)(21 +e” — xe” — ze®)
 —rPe” —ze’ —xe® — e —1—e" txe” fae® —ale” —e¥ —e' -1
- (z +e)? B (z + ev)?
oz oy (@te/z)1)—2(l—c/2®) x4c/r—x+c/z  2c/x ac_2 2z
f(z)_—x—i—c/x = fl(z) = (x+£)2 - 22 1 e\2 _(x2+c)2 22 (22 +c)2
x (=) =
_ar+b ;o (cx+d)(a) — (ax+b)(c) acx+ad—acx—bc  ad—bc
Jw) = cr+d = f@)= (cx + d)? N (cx + d)? ~ (cx + d)?

fl@)=a%e" = fl(z)=a"€"+e" 42° = (z* + 42°)e” [or 2% (z +4)] =
(x) = (z* + 423)e” + e*(4a® + 1227) = (2* 4 42® + 42® + 122%)e”
= (z* 4 82° + 122%)e” [or z’e”(z +2)(z + 6)]
flx) = %% = f(z) = z%/2e® + e® §x3/2 = (1‘5/2 + %ms/z>ew [or %13/2696(2.% + 5)} =

F(2) = (11?5/2+3933/2)6924—6%(%:173/24—%561/2) _ (I5/2—|—5x3/2—|—%1‘1/2>6m {OI‘ %1‘1/2636(41‘24—201‘—1-15)}

2 by (L+22)(22) —2%(2) 22 +4+42® — 222  22°+ 2z
1@) =17, fa) = 1+ 22)2 T T (Ar20? (Q+22°
() = (1+22)*(4z +2) — (22° 4+ 22)(1 + 4o + 42%)  2(1+22)°(2x + 1) — 2z(z + 1)(4 + 8z)
N [(1+ 22)2)2 N (1+ 2x)*
C2(1+422)[(1 4 22)° —dax(x + 1)) 2(1 + 4w +42® — 42® —4a) 2
N (1+ 2x)4 N (1+ 2z)3 - (1+22)3
oz oy @@ -11)—2(22) 2?—-1-22° —2®-1
J@=F= = JO="—m 9y  ~@-n @i
£(z) = (x® —1)?(—22) — (—2* — 1)(z* — 22% + 1)’ _ (22 — 1)%(—2x) + (2® + 1)(42> — 4z)
(2 —1)?]? (22 —1)*
_ (@ —1)(=220) + (2® + D(d2)(2* = 1) _ (2® = D[(z® ~1)(=22) + (2* +1)(42)]
(@ — 1) T
_ —22% + 22 + 42% + 4 . 223 + 62
N (22 —1)3 C (z2—1)3
2z , (x+1)(2) - (22)(1) 2
V=11 TV T (x + 1) BCESEN
At (1,1),y" = £, and an equation of the tangent lineisy — 1 = (z — 1), ory = 2z + 3.
yzé S oy = m~ezx—261'1 _ e””(:;—l).

At (1;e), y=10,/and an equation.of the:tangent line is y=re = 0(z —1), ory =e:
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HNoy=2ze" = ¢y =2(x-e"+e" 1) =2e"(x+1).
At (0,0),y" =2¢°(0+1) = 2-1-1 = 2, and an equation of the tangent line is y — 0 = 2(z — 0), or y = 2. The slope of

the normal line is —%, so an equation of the normal lineis y — 0 = —%(w —0),ory = —%x.
@+ 1) —=) = vz (1)
Vr , 2Vz (z+1) — (22) l1—z
Roy=——- = y = 3 = = .
z+1 (z+1) 2Vr(z+1)2  2Vz(z+1)2

At (4,0.4),y" = 5> = —0.03, and an equation of the tangent line is y — 0.4 = —0.03(z — 4), or y = —0.03z + 0.52. The

slope of the normal line is %, so an equation of the normal line is y — 0.4 = %(z —4) & y= %x - 4%:)0 + % &
y= 201
B@y= @)= (b) E
1+ 22
oy (L2 (0)—1(22) -2z
fl(x) = T+ a7 =09 So the slope of the (-1,05)
. . . 2 . 4 4
tangent line at the point (—1, 1) is f'(—1) = 5 = 1 and its L / J
equationisy — 1 =1(z+1)ory =1z +1. —03
x
4. (@) y=flz) = 172 (b) 0.75
(1+ 2%)1 — z(2x) 1—2? (3.03)
fl(x) = e = S So the slope of the
-2 5
tangent line at the point (3, 0.3) is f'(3) = 155 and its equation is J
y—0.3=—0.08(x — 3) ory = —0.08z + 0.54. Y
35. (a) f(x) = (2° —2)e* = f(z)= (2 —2)e" +e"(32%> — 1) =" (2® + 32° —x — 1)
(b) 2 f' = 0 when f has a horizontal tangent line, f' is negative when f is

decreasing, and f’ is positive when f is increasing.

2
%. @ f(2) = o
' T 224 +1
floy= B tat e —e(o+l) (i tatl-do—1) _ (2’ —3n)
(222 +z+1)? (222 + x + 1)2 (20% + x + 1)2

f' = 0 when f has a horizontal tangent line, f’ is negative when f is

(b)

decreasing, and f' is positive when f is increasing.
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2

@ f@) =

Fla) = (z® +1)(22) — (2> = 1)(22) _ 22)[(z"+1) — («® - 1)] _ (20)(2) _ 4 N
a (22 +1)2 a (22 +1)2 S (@412 (22 4 1)2

Fr(a) = (2% +1)%(4) —da(z® + 222 +1)  4(z® +1)? — (42 + 42)

Yo (22 + 12 - (@ + 1)
4@+ 1)2—162%(2® +1) 4@+ D[z +1) —42?]  4(1 - 32?)
- (x2 + 1)4 - (gc2 + 1)4 - (xz + 1)3
(b) 4 f' = 0 when f has a horizontal tangent and f” = 0 when f’ has a

A

'l . . . . . o, .

\ horizontal tangent. f’ is negative when f is decreasing and positive when f
41

1
is increasing. f” is negative when f’ is decreasing and positive when f’ is

increasing. f” is negative when f is concave down and positive when f is

concave up.

38. () f(x) = (2 —1)e” = fl(z)= (2" —1)e" +e"(22) = (x* + 22— 1) =
f(x) =e" (20 +2) + (2° + 2z — 1)e” = e“(2® + 42+ 1)

(b) 4 We can see that our answers are plausible, since f has horizontal tangents

1

1
+i
1

where f'(x) = 0, and f’ has horizontal tangents where " (z) = 0.

=

-2
a? / (1+x)(2z) —22(1) 2z + 22% — 22 2% + 2z
39.f(l’):1+x = f(x): (1_1_1,)2 = (1_1_1,)2 :1‘2+2LL‘+1
f”((l?) o ($2 + 2z + 1)(21‘ + 2) — (:)32 + 2;3)(21; + 2) B (21= + 2)($2 424+ 1— 22— 21‘)
B (1‘2 + 2x + 1)2 B [(:C + 1)2]2
2(x4+1)(1) 2
T @)t @
" 2 2 1
o f11) = (1+1)2 8 4
, e’ 1—x-e” e’(1—x) 1—2x
Voo =3 = 9@= (e*)? - (ex)2 R =
o = e - seg - -
9" (z) = zegz_ e L (_65)02_ 2 3e_x$ =
(@—n)(=1)"

The pattern suggests that ¢(™) (z) = . (We could use mathematical induction to prove this formula.)

183
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41. We are given that f(5) = 1, f'(5) =6, g(5) = —3,and ¢'(5) = 2.
@ (f9)'(5) = f(5)g'(5) + 9(5).f'(5) = (1)(2) + (=3)(6) =2 — 18 = —16
b) <f>/ (5) = 9(5)f'(5) — 2(5)9'(5) (=3)6) - 1)(2) _ 20

g 6) ) LR
9\ o I5)46)—gBG)f(5) (D)) - (=3)(6)
© (f) 5) = FEIE = X

42. We are given that £(2) = —3, g(2) =4, f/(2) = —2,and ¢/(2) = 7.
@ h(z) =5f(z) —4g(z) = h'(z) =5f"(z) — 4g'(z),s0
W (2) =5f'(2) — 4g'(2) = 5(—2) — 4(7) = —10 — 28 = —38.
(b) h(z) = f(z)g(x) = W (z) = f(x)g'(z) + g(z)f (z), so0
W(2) = f(2)g'(2) +9(2)f'(2) = (=3)(T) + (4)(-2) = —21 — 8 = —29.

9(@) 9@
Wy SRR~ F@@) A2 - (1) _ s+ 13
9P 2 6 16

@A) = 29 o ) [1+ f(2)]g'(x) — g(2) ' (x)

1+ f(2) v [+ F ()2
)= L@@ -9@) [ _ L+ (N0 -4(=2) _-14+8_—6_ 3
1+ f(x)]? [1+(-3)]? (—2)2 4 2

8. f(x) =e"g(x) = [(z)=e"g () +g(x)e” =e"[g'(z) +g(x)]. f'(0) =e"lg'(0) +9(0)] =1(5+2) =7

. % {h(xx)} _ zh(z) —h(z) -1 N d {@} _2M(2)—Nh(2) _2(=3)—(4) _—10 _ o

x2 dx 22 4 4

45. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1, 2) is on the graph of f;

g(1) = 1 since the point (1, 1) is on the graph of g; f'(1) = 2 since the slope of the line segment between (0, 0) and

— . . . —4
(2,4) is 1-0_ 2; ¢’'(1) = —1 since the slope of the line segment between (—2,4) and (2, 0) is 0

2-0 ° 2-(-2)
Now u(z) = f(x)g(x), sou'(1) = f(1)g'(1) + 9(1) f/(1) =2- (1) +1-2=0.

=—1.

B e 9BV (B) = f(B)g' () 2(-3)-3-F % 2
46. (a) P(z) = F(z) G(z),s0 P'(2) = F(2) G'(2) + G(2) F'(2) =3-2 +2.0= 2.
QW) = F@)/a(), 0@ = LD LOED _La- 505 _ 4, 008

/

4. @ y=uag(zx) = y =zg'(x)+g(x) 1=u1ug(z)+g(z)

b) v = — - i —
b)y @) = ¥y
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©y=98 _ o _2d@—9@) 1 _zg'x)—g()
x (z)? x?

@y=2"fzx) = y =2"f(2)+ f(z)(2)
wy=d8 oy IS ) e

_x? r_ fl2)(2z) — 2 f'(x)
©v=7m ~ ¥ F@P

_1+zf(x)
(dy= —

/ 1
. Va[zf'(z) + f(2)] = [1 + 2 f(z)] N
(vVz)?
_ 232 (x) + 22 f(x) — %x_l/Q — %xlﬂf(x) ‘ 2072 xf(x) + 227 f (x) — 1
N T 21/2 2x3/2

. If P(t) denotes the population at time ¢ and A(t) the average annual income, then T'(t) = P(t) A(t) is the total personal
income. The rate at which T'(¢) is rising is given by 7" (t) = P(t)A’(t) + A(t)P'(t) =
T'(1999) = P(1999)A’(1999) + A(1999)P'(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000/yr + $281,455,600/yr = $1,627,415,600/yr
So the total personal income was rising by about $1.627 billion per year in 1999.
The term P(t)A’(t) ~ $1.346 billion represents the portion of the rate of change of total income due to the existing
population’s increasing income. The term A(¢) P’(t) ~ $281 million represents the portion of the rate of change of total

income due to increasing population.

. (2) f(20) = 10,000 means that when the price of the fabric is $20/yard, 10,000 yards will be sold.
/'(20) = —350 means that as the price of the fabric increases past $20/yard, the amount of fabric which will be sold is

decreasing at a rate of 350 yards per (dollar per yard).

(b) R(p) =pf(p) = R'(p)=pf'(p)+f(p)-1 = R(20)=20f'(20)+ f(20) -1 = 20(—350) + 10,000 = 3000.
This means that as the price of the fabric increases past $20/yard, the total revenue is increasing at $3000/($/yard). Note
that the Product Rule indicates that we will lose $7000/($/yard) due to selling less fabric, but this loss is more than made
up for by the additional revenue due to the increase in price.

. f is increasing when f is positive. f(z) = z%¢® = f'(x) = 2°e” + €"(32%) = 2%¢”(x + 3). Now 2> > 0 and * > 0

for all z, so f'(x) > 0 when z + 3 > 0 and = # 0; that is, when = € (—3,0) U (0, 00). So f is increasing on (—3, 00).
. f is concave downward when f” is negative. f(z) = z°e* = f'(z) = 2°¢” +€"(22) =
f(x) = 2%e® + e"(2x) + e"(2) + (2z)e” = e (2 + 2z + 2 + 2x) = e” (2 + 4x + 2). Note that e” > 0 for all =

and f"(z) =0 & x=-2£+v2 f'(z) <Owhenz € (—2—+v2,-2+2).
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53.

54,

55.

56.

57.

Ify = f(x) = xL—f—l’ then f(z) = (z +(1$)(_:)1)—293(1) _ @ j ek When 2 = a, the equation of the tangent line is
-2 = L (x — a). This line passes through (1,2) when 2 — 2 = L 1-a) &
Y a+1 (a+1)2 ’ P g5 a+1 (a+1)2

20a+1)? —ala+1)=1-a < 2a*°+4a+2-a*—-a—-1+a=0 & a®>+4a+1=0.

—4+ /241 —4+VI2

The quadratic formula gives the roots of this equation as a = 200) 5 —24/3,
so there are two such tangent lines. Since .
' A
—2++3 —-2+v3 -1 3
f(laiyE) 2EVE 245 1%V
—-2+v3+1 -1+£+v3 -1¥V3 5
2423733 —1+V3 1743 » Af A
N 1-3 =227
the lines touch the curve at A(—Q +/3, 1’—2‘5) ~ (—0.27,—-0.37)
\ J
and B(—2 - 3,158 ~ (-3.73,1.37). 0
x—1 (z+ 1)) — (= —1)(1) 2 .
y== 1 = y = @T1)? = CEEEL If the tangent intersects . 6 \

the curve when = = a, then its slope is 2/(a + 1)?. But if the tangent is parallel to

r — 2y = 2, thatis, y = %3: — 1, then its slope is % Thus, ﬁ = % =

(a+1)*=4 = a+1=42 = a=1or—3. Whena =1,y = 0and the

equation of the tangentisy — 0 = %(x —1lory= %x — % Whena = -3,y = 2 and

NI~

the equation of the tangentisy — 2 = 2 (z 4+ 3) ory = 2 +

/7 /
Rzg = R’:gfg—zfg.Forf(x):m—3a:3—|—5a:5,f'(a:):1—9w2+25x4,

and for g(x) = 1 + 32® + 625 + 92°, ¢/ (x) = 92% + 362° + 8125,

Thus, B'(0) = 9(0)f'(0[;(6)]£(0)9'(0) _ L 11—20 0 _ % 1

f

! !
Q== = Q/:M.Forf(x):l—l—x—i-ajz—i—xem,f/(ﬂc):1+2x+$€€z+61,
g g

and for g(z) =1 —x + 2° — xe”, ¢'(z) = —1 + 22 — we” — €”.

yon_ g0)F(0) = FO)g(0) _1-2-1-(=2) _4
s QO =" mr - 1

@) (fgh) =1[(fo)n] = (fg)'h+ (fo)h' = (f'g+ fg")h+ (fg)h' = f'gh + fg'h + fgh'

%[f(ﬂﬁ)]3 = (ffN) =L+ 1+ FRF =311 =3[f(@)]*f (2).

(b) Putting f = g = h in part (a), we have

i 3zy _ % x\3 __ r\2 T __ 2 x __ 3z
(C)dx(e )—dx(e) =3(e%)%e” = 3e?"e” = 3e
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58. (a) We use the Product Rule repeatedly: F' = fg = F' = f'g+ fg =
F' = (f"g+ f'd) + (f'g + fg") = f"g +2f'd + "
) F"=f"g+ f"'d" +2(f"'d' + f'g")+ 9"+ fg" = f"g+3f"d +3f'¢" + fg" =
FW = fWOgt g +3(f"g + ') +3(f"g" + f'd") + 9" + fg'¥
= fWg+4f"g +6f"g" +4f'g" + fg'¥

(c) By analogy with the Binomial Theorem, we make the guess:

PO = [ 4 nfDg 4 @ R <Z> PG g gD 4 g,

where (n) = n! _nn-Hn-2)---(n—k+1)
k) TRk T :

59. For f(x) = x2%e”, f'(z) = x%e” + €”(2z) = e”(z* + 2x). Similarly, we have
f(z) = e* (2 + 4z + 2)
" (x) = e*(x* + 6x + 6)
W (z) = e® (2% + 8z + 12)
f®(z) = e (2% 4 10z + 20)

It appears that the coefficient of = in the quadratic term increases by 2 with each differentiation. The pattern for the

constant terms seemstobe 0 =1-0,2=2-1,6 =3-2,12 =4-3,20 = 5 - 4. So a reasonable guess is that
f™(z) = e*[z2 + 2nz + n(n — 1)].
Proof: Let S, be the statement that f(™) (z) = e®[2? + 2nz 4 n(n — 1)].
1. S is true because f'(z) = " (2 + 22).
2. Assume that Sy, is true; that is, f*)(z) = e®[2? + 2kx + k(k — 1)]. Then
FERD () = % [£9@)] = e (22 + 26) + [2? + 2be + k(k — D]e”

=[x + 2k + 2z + (K® + k)] = e”[2® + 2(k + D + (k + 1)K]

This shows that Sy is true.

3. Therefore, by mathematical induction, S,, is true for all n; that is, f(™) () = e*[22 + 2nax + n(n — 1)] for every

positive integer n.

d d
g1 9@ -1 )] | _g@)0-1-g@) 0—g@) 4@
60. (a) — (g(x)) = 9@ [Quotient Rule] PR TP @)
1 y . 1+ke
®)y= s+ kes - ¥ = (s + kes)?

n\/ n—1
(c) di (z7") = a4 <L) =— (") [by the Reciprocal Rule] = e = —nz" 17" = —pg!
x x
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3.3 Derivatives of Trigonometric Functions

10.

1.

12.

13.

14.

. f(x) =32% —2cosx = f'(x) = 6x —2(—sinx) = 6z + 2sinx

.y=2cscx+5cosx = 3y = —2cscx cotx — Hsinx

x :sina:—i—lcotx = "(z) =cosz — % csc?x
f( ) 2 2
sinx

2V

f(z)=Vrsinz = f'(z)=+Vzcosz+sinz (%aflm) = Vzcosz +

.y =sechtanf = 1y =sech (sec’d) + tanf (sectanf) = sec (sec’ § + tan® #). Using the identity

1+ tan? § = sec? 6, we can write alternative forms of the answer as sec § (1 + 2tan®6) or secd (2sec® — 1).

. g9(0) =€ (tanh —0) = ¢'(0) = e’(sec? @ — 1) + (tan 6 — 0)e’ = € (sec* § — 1 +tanf — 0)

.y=ccost+t’sint = y =c(—sint)+t*(cost)+sint (2t) = —csint + t(tcost + 2sint)

Ft) = cott £t = e'(—csc®t) — (cott)e’  e'(—csc’t —cott) _CSC2 t+cott
T et - (et)2 - (et)2 - et
B x ,  (2—tanz)(1) —x(—sec®z) 2 —tanz + xsec’
YT T tang v (2 — tan z)2 N (2 — tan z)2
_ l+sinz
v= T+ cosx

, _ (z+cosz)(cosz) — (1 +sinz)(l —sinz)  xcosx + cos’x — (1 — sin® z)

(z + cos x)? (z + cosx)?
_ xcosz +cos’x — (cos’x)  wcosm
(z + cosx)? ~ (z+cosx)?
sec 0
10) = 1+ sect
£1(0) = (1 4 sech)(sech tan @) — (secf)(secd tanf)  (sech tanf) [(1 +sech) —secH]  secf tand
N (1 + sec6)? N (1 + sec6)? (1 +sech)?
1 —secx
Y= —FT—"
tan x

, _tanz (—secx tanz) — (1 —secx)(sec®z)  secx (—tan® z — secx + sec” x) _secx (1 —secx)

(tanz)? tan? tan?

Using Exercise 3.2.57(a), f(z) = ze“cscx =
f(z) = (z)'e” cscx + z(e”) cscx + xe® (cscx)’ = 1e® cscx + we® cscx + xe”™ (— cot z cscx)

=e"cscx (1 +x — zcotx)

Using Exercise 3.2.57(a), f(z) = z?sinx tanz =

f/(z) = (2*) sinz tanz + 2% (sinz) tanx + 22 sinz (tanz)’ = 2zsinz tanz + 22 cos x tanz + 2 sinx sec’

2

= 2zsinz tanx + 22 sinz + 2 sinx sec’ x = rsinz (2tanx + = + xsec? x).
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5. d (csc) = d '1 _ (smx)(O') - 1(cos ) _ —'cc;sa: _ .1 LOOST _ ew coba
dz dz \ sinx sin“ x sin“ x sinz sinz
1. i(secm) _d 1 _ (cosz)(0) — 1(—sinx) _sinz 1 sinz e tana
dx dz \ cosx cos?x cos?2x  cosx Cos®T
. o B . 2 2
17 i(cotx) _d (c?sx) _ (sinz)( sm;v.)2 (cosx)(cos x) _ _sin ac.—l;cos T '12 C es?a
dx dr \sinz sin® x sin® x sin® x
18. f(z) =cosz =
F(z) = lim flx+h)— f(x) _ iy 08 (x+ h) —cosx _ iy 087 cosh —sinx sinh — cosx
h—0 h h—0 h h—0 h
. cosh —1 . sinh . cosh—1 . . sinh
= lim ( cosx ———— —sinx =cosz lim ———— —sinz lim
h—0 h h h—0 h h—0 h
= (cosz)(0) — (sinz)(1) = —sinz
19. y =secr = 1y =secx tanz,so y'(%) =sec 3 tan § = 2 V3. An equation of the tangent line to the curve y = sec =
atthe point (%,2) isy —2=2v3(z — %) ory =232 +2—- 23
20 y=c”cosz = y =e”(—sinx)+ (cosz)e® = e”(cosz —sinz) = the slope of the tangent line at (0, 1) is
€’ (cos0 —sin0) = 1(1 — 0) = 1 and an equationisy — 1 = 1(x — 0) ory = = + 1.
M. y=x+cosz = y =1-sinz. At(0,1),y" = 1, and an equation of the tangent lineisy — 1 = 1(z — 0),ory = = + 1.
22, y= 1 o _Coswsing [Reciprocal Rule]. At (0,1),y" = 120 —1, and an equation
Y7 Sinz + cosa v (sinz + cosx)? P ' Y= 0+1)2 7 d
of the tangent lineisy — 1 = —1(x — 0), ory = —z + 1.
23. (a) y =2xsinx = 1y =2(xcosz+sinz-1). At (%,w), (b)
y' =2(5cosZ +sinZ) =2(0+ 1) = 2, and an equation of the
tangent lineisy — m = 2(x — %), or y = 2.
24. (a)y=3x+6cosz = y =3—6sinz. At(5,7+3), (b)

y' =3—6sinZ% :3—6§ = 3 — 3+/3, and an equation of the
tangent lineisy — (m +3) = (3—3v3)(z — %), or
y=(3-3v3)+3+7V3.




