Chapter 2

Random Variables, Distributions, and Expectations

- 2.1 Discrete; continuous; continuous; discrete; discrete; continuous.
- 2.2 A table of sample space and assigned values of the random variable is shown next.

Sample Space	X
NNN	0
NNB	1
NBN	1
BNN	1
NBB	2
BNB	2
BBN	2
BBB	3

2.3 A table of sample space and assigned values of the random variable is shown next.

Sample Space	W
HHH	3
HHT	1
HTH	1
THH	1
HTT	-1
THT	-1
TTH	-1
TTT	-3

2.4 $S = \{HHH, THHH, HTHHH, TTHHH, TTTHHH, THTHHH, THTHHH, THTHHH\}$; The sample space is discrete.

Copyright ©2013 Pearson Education, Inc.

2.5 (a)
$$c = 1/30$$
 since $1 = c(x^2 + 4) = 30c$.

(b) $c = 1/10$ since

$$1 = \sum_{x=0}^{\infty} {2 \choose 3} = {1 \choose 2}(3) + {2 \choose 3}(3) + {2 \choose 2}(3) = 10c.$$

2.6 (a) $P(X > 200) = \int_{200}^{\infty} {20000 \choose (x+100)^3} dx = -\frac{10000}{(x+100)^2} = 1 -\frac{1}{2000} = 1$

(b) $P(80 < X < 200) = \int_{1/2}^{0.00} {20000 \choose (x+100)^3} dx = -\frac{10000}{(x+100)^2} = 1 -\frac{1}{2000} = 1 -\frac{1}{2000} = 10000$

2.7 (a) $P(X < 1.2) = 0 \times dx + \frac{1}{1}(2 - x) dx = \frac{x_2}{2} + 2x - \frac{x_2}{2} = 0.68.$

(b) $P(0.5 < X < 1) = \int_{0.5}^{1} {2(x+2) \choose 5} dx = \frac{x_2}{2} = 0.375.$

2.8 (a) $P(0 < X < 1) = \int_{1/2}^{1} {2(x+2) \choose 1/4} = 1 -\frac{1}{2}(x+2) - \frac{1}{2}(x+2) = 1$

(b) $P(1/4 < X < 1/2) = \int_{1/2}^{1/2} {2(x+2) \choose 1/4} = 1 -\frac{1}{2}(x+2) - \frac{1}{2}(x+2) = 1$

$$dx = \frac{(x+2)_2}{5} = 1.$$
(c) $P(1/4 < X < 1/2) = \int_{1/2}^{1/2} {2(x+2) \choose 1/4} = 1 -\frac{1}{2}(x+2) -\frac{1}{2}(x+2) -\frac{1}{2}(x+2) -\frac{1}{2}(x+2) -\frac{1}{$

2.9 We can select x defective sets from 2, and 3-x good sets from 5 in x ways. A random selection of 3 from 7 sets can be made in x ways. Therefore, $f(x) = x \cdot \begin{pmatrix} 3 \\ 7 \end{pmatrix}, \qquad x = 0,1,2.$

$$f(x) = {\begin{pmatrix} x & 3 - x \\ 7 & 3 - x \end{pmatrix}}, x = 0,1,2$$

In tabular form

The following is a probability histogram:

1

4/7

3/7

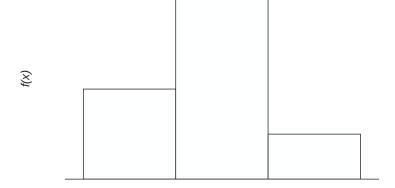
2/7

1/7

Copyright ©2013 Pearson Education, Inc.

3

2



2.10 (a)
$$P(T = 5) = F(5) - F(4) = 3/4 - 1/2 = 1/4$$
.

(b)
$$P(T > 3) = 1 - F(3) = 1 - 1/2 = 1/2$$
.

(c)
$$P(1.4 < T < 6) = F(6) - F(1.4) = 3/4 - 1/4 = 1/2$$
.

(d)
$$P(T \le 5 | T \ge 2) = \frac{P(2 \le T \le 5)}{P(T \ge 2)} = \frac{3/4 - 1/4}{1 - 1/4} = \frac{2}{3}$$
.

2.11 The c. φ .f. of X is

$$F(x) = \begin{cases} 0, & \text{for } x < 0, \\ 0.41, & \text{for } 0 \le x < 1, \end{cases}$$

$$0.78, & \text{for } 1 \le x < 2, \\ 0.94, & \text{for } 2 \le x < 3, \\ 0.99, & \text{for } 3 \le x < 4, \end{cases}$$

$$1, & \text{for } x \ge 4.$$

2.12 (a)
$$P(X < 0.2) = F(0.2) = 1 - e^{-1.6} = 0.7981$$
;

(a)
$$f(x) = F(x) = 8e^{-8x}$$
. Therefore, $P(X < 0.2) = 8$

$$0.7981.$$

$$\int_{0.2}^{0.2} e^{-8x} dx = -e^{-8x}|_{0.2}^{0.2} = 0.7981.$$

2.13 The c.
$$\phi$$
.f. of X is

$$F(x) = \begin{cases} 0, & \text{for } x < 0, \\ 2/7, & \text{for } 0 \le x < 1, \\ 6/7, & \text{for } 1 \le x < 2, \end{cases}$$

$$1, & \text{for } x \ge 2.$$

(a)
$$P(X = 1) = P(X \le 1) - P(X \le 0) = 6/7 - 2/7 = 4/7$$
;

(b)
$$P(0 < X \le 2) = P(X \le 2) - P(X \le 0) = 1 - 2/7 = 5/7$$
.

2.14 A graph of the c.d.f. is shown next.

2.15 (a)
$$1 = k \int_{0}^{1} \sqrt{x} dx = \frac{2k}{3} x^{3/2} \int_{0}^{1} = 3$$
. Therefore, $k = \frac{3}{2}$

Copyright ©2013 Pearson Education, Inc.

(b) For
$$0 \le x < 1$$
, $F(x) = \int_{2}^{3} \int_{0}^{3} t \, dt = t^{3/2} \Box_{x} = t^{3/2} C$. Hence,
$$F(x) = \int_{0}^{3} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C C$$

$$F(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C$$

$$f(x) = \int_{0}^{3/2} \int_{0}^{3/2} t \, dt = t^{3/2} C C C$$

2.16 Denote by *X* the number of spades int he three draws. Let *S* and *N* stand for a spade and not a spade, respectively. Then

$$P(X = 0) = P(NNN) = (39/52)(38/51)(37/50) = 703/1700,$$

 $P(X = 1) = P(SNN) + P(NSN) + P(NNS) = 3(13/52)(39/51)(38/50) = 741/1700,$
 $P(X = 3) = P(SSS) = (13/52)(12/51)(11/50) = 11/850,$ and
 $P(X = 2) = 1 - 703/1700 - 741/1700 - 11/850 = 117/850.$

The probability mass function for *X* is then

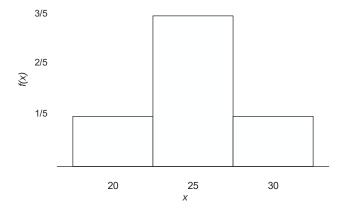
2.17 Let *T* be the total value of the three coins. Let *D* and *N* stand for a dime and nickel, respectively. Since we are selecting without replacement, the sample space containing elements for which t = 20, 25, and 30 cents corresponding to the selecting of 2 nickels and 1 dime, 1 nickel and 2 dimes, and 3 dimes. Therefore, $P(T = 20) = \binom{22}{41} = \binom{23}{41}$ (63)

$$P (T = 25) = \frac{\binom{2_1}{4_2}}{\binom{6_3}{3}} = 3^5,$$

$$P (T = 30) = \frac{\binom{6_3}{3}}{\binom{6_3}{3}} = \frac{5}{5}$$

 $(^{\circ}3) = _{5}$, and the probability distribution in tabular form is

As a probability histogram



Copyright ©2013 Pearson Education, Inc.

2.18 There are $\binom{(10)}{4}$ ways of selecting any 4 CDs from 10. We can select x jazz CDs from 5 and 4 - x from the remaining CDs in $\binom{5}{4-x}$ ways. Hence

$$f(x) = {}^{x}(10) = {}^{x}(10$$

2.19 (a) For
$$x \ge 0$$
, $F(x) = \int_{0}^{x} \int_{0}^{1} \exp(-t/2000) dt = -\exp(-t/2000)|_{0}^{x}$
= 1 - exp(-x/2000). So
$$\begin{cases} F(x) = 0, & x < 0, \\ 1 - \exp(-x/2000), & x \ge 0. \end{cases}$$

- (b) $P(X > 1000) = 1 F(1000) = 1 [1 \exp(-1000/2000)] = 0.6065$.
- (c) $P(X < 2000) = F(2000) = 1 \exp(-2000/2000) = 0.6321$.

2.20 (a)
$$f(x) \ge 0$$
 and $\int_{26.252}^{23.75} \int_{5}^{5} \int$

(b) For
$$x \ge 1$$
, $F(x) = \begin{cases} \int_{1}^{x} 3t^{-4} dt = 1 - x^{-3} \text{. So,} \\ 0, & x < 1, \\ 1 - x^{-3}, & x \ge 1. \end{cases}$

(c)
$$P(X > 4) = 1 - F(4) = 4^{-3} = 0.0156$$
.

2.22 (a)
$$1 = k \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 \end{pmatrix} dx = k \begin{pmatrix} 3x - x_3 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 &$$

2.22 (a)
$$1 = k \begin{pmatrix} 1 & 1 & 3 - x \\ -1 & 2 \end{pmatrix} dx = k \begin{pmatrix} 3x & -x_3 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 - x \\ 2 & 3x \end{pmatrix} = \begin{pmatrix} 1 & 3 - x \\ 2 & 3x \end{pmatrix} = \begin{pmatrix} 1 & 3 - x \\ 2 & 3x \end{pmatrix} = \begin{pmatrix} 1 & 3 - x \\ 3$$

(c)
$$P(|X| < 0.8) = P(X < -0.8) + P(X > 0.8) = \frac{128}{F}(-0.8) + 1 - F(0.8)(1)(1)$$

=1+

 $2 \quad 160^{.8+} \cdot 460^{.8} \cdot 3 - 2 \quad 160^{.8-} \cdot 460^{.8} \cdot 3 = 0.164.$
(a) For $y \ge 0$, $F(y) = \frac{14}{5} \cdot \frac{1}{5} \cdot$

2.23

2.24 (a)
$$f(y) \ge 0$$
 and ${}_{0}^{\int_{1}^{1}} 5^{(1-y)} d^{y=-(1-y)} |_{5}|^{0} = 1$. So, this is a valid density function.

(b)
$$P(Y < 0.1) = -(1 - y)^5|_{0}^{0.1} = 1 - (1 - 0.1)^5 = 0.4095.$$

(c)
$$P(Y > 0.5) = (1 - 0.5)^5 = 0.03125$$
.

2.25 (a) Using integral by parts and setting $1 = k \int_0^1 y^4 (1-y)^3 d^{y}$, we obtain k=280.

(b) For
$$0 \le y < 1$$
, $F(y) = 56y^5(1 - y)^3 + 28y^6(1 - y)^2 + 8y^7(1 - y) + y^8$. So, $P(Y \le 0.5) = 0.3633$.

(c) Using the cdf in (b), P(Y > 0.8) = 0.0563.

2.26

(a) The event Y = y means that among 5 selected, exactly y tubes meet the specification (M) and 5 - y(M) does not. The probability for one combination of such a situation is $(0.99)^y(1-0.99)^{5-y}$ if we assume independence among the

tubes. Since there are $\frac{1}{\sqrt{15-\sqrt{15}}}$ p ermutations of getting y M s and 5 - y M's, the probability of this event (Y = y) would be what it is specified in the problem.

(b) Three out of 5 is outside of specification means that Y = 2. $P(Y = 2) = 9.8 \times 10^{-6}$ which is extremely small. So, the conjecture is false.

2.27 (a)
$$P(X > 8) = 1 - P(X \le 8) = \sum_{X!}^{8} = 1 - e^{-6} \begin{pmatrix} \frac{6^0}{9!} + \frac{6_4}{1!} + \dots + \frac{6_8}{8!} = 0.1528.$$

(b)
$$P(X = 2) = e^{-6\theta_2} = 0.0446$$
.

(b)
$$P(X = 2) = e^{-6\theta_2} = 0.0446$$
.
2.28 For $0 < x < 1$, $F(x) = 2 \int_{0}^{x} (1 - t) dt = -(1 - t)^2 |_{0}^{x} = 1 - (1 - x)^2$.

(a)
$$P(X \le 1/3) = 1 - (1 - 1/3)^2 = 5/9$$
.

(b)
$$P(X > 0.5) = (1 - 1/2)^2 = 1/4$$
.

(c)
$$P(X < 0.75 \mid X \ge 0.5) = \frac{P(0.5 \le X < 0.75)}{P(X \ge 0.5)} = {1 \choose 1 - 0.5}^{2} = {3 \choose 1 - 0.5}^{2} = {3 \choose 1 - 0.5}^{2}$$

(c)
$$P(X < 0.75 \mid X \ge 0.5) = \frac{P(0.5 \le X < 0.75)}{P(X \ge 0.5)} = \frac{1 - 0.5}{(1 - 0.5)^2} = \frac{1}{4}$$

2.29 (a) $\sum_{x=0}^{3} \sum_{y=0}^{3} f(x, y) = c$ $\sum_{x=0}^{3} \sum_{y=0}^{3} xy = 36c = 1$. Hence $c = 1/36$.

(b)
$$\sum_{x} \sum_{y} f(x, y) = c \sum_{x} \sum_{y} |x - y| = 15c = 1$$
. Hence $c = 1/15$.

2.30 The joint probability distribution of (X, Y) is

		X				
f(x)	(, y)	0	1	2	3	
	0	0	1/30	2/30	3/30	
У	1	1/30	2/30	3/30	4/30	
	2	2/30	3/30	4/30	5/30	

(a)
$$P(X \le 2, Y = 1) = f(0,1) + f(1,1) + f(2,1) = 1/30 + 2/30 + 3/30 = 1/5$$
.

(b)
$$P(X > 2, Y \le 1) = f(3,0) + f(3,1) = 3/30 + 4/30 = 7/30$$
.

(c)
$$P(X > Y) = f(1, 0) + f(2, 0) + f(3, 0) + f(2, 1) + f(3, 1) + f(3, 2)$$

= $1/30 + 2/30 + 3/30 + 3/30 + 4/30 + 5/30 = 3/5$.

(d)
$$P(X + Y = 4) = f(2,2) + f(3,1) = 4/30 + 4/30 = 4/15$$
.

(e) The possible outcomes of X are 0, 1, 2, and 3, and the possible outcomes of Y are 0, 1, and 2. The marginal distribution of X can be calculated such as $f_{\chi}(0) = 1/30 + 2/30 = 1/10$. Finally, we have the distribution tables.

2.31 (a) We can select x oranges from 3, y apples from 2, and 4 - x - y bananas from $3_{(3)}$

(2)() (8) $\frac{3}{4-x-y}$ ways. A random selection of 4 pieces of fruit can be made in ways. Therefore,

ways. Therefore,

$$\frac{\binom{3}{2}\binom{2}{\binom{3}{2}}}{\binom{4-x-y}{4}}, \qquad x = 0,1,2,3; \ y = 0,1,2; \qquad 1 \le x + y \le 4.$$

Hence, we have the following joint probability table with the marginal distributions on the last row and last column.

X

$$f(x, y)$$
 0
 1
 2
 3
 $f_Y(y)$

 0
 0
 3/70
 9/70
 3/70
 3/14

 y
 1
 2/70
 18/70
 18/70
 2/70
 8/14

 2
 3/70
 9/70
 3/70
 0
 3/14

 $f_X(x)$
 1/14
 6/14
 6/14
 1/14

(b)
$$P[(X,Y) \in A] = P(X + Y \le 2) = f(1,0) + f(2,0) + f(0, 1) + f(1, 1) + f(0, 2)$$

= 3/70 + 9/70 + 2/70 + 18/70 + 3/70 = 1/2.

(c)
$$P(Y = 0|X = 2) = P(X = 2, Y = 0) = \frac{9/70}{6/14}$$

(d) We know from (c) that P(Y = 0|X = 2) = 3/10, and we can calculate

$$P(Y = 1|X = 2) = {18/70 \atop -6/14} = {3 \atop 5, and} P(Y = 2|X = 2) = 6/14$$
 10.

2.32 (a)
$$g(x) = \frac{1}{3} \int_{0}^{1} (x + 2y) dy = \bar{(x + 1)}$$
, for $0 \le x \le 1$.

(b)
$$h(y) = {}^{2} \int_{1}^{1} (x + 2y) dx = {}^{1}(1 + 4y)$$
, for $0 \le y \le 1$.

(c)
$$P(X < 1/2) = {}^{2} \int_{1/2} (x+1) dx = {}^{5}$$

2.32 (a)
$$g(x) = \frac{\int_{1}^{1} (x + 2y) dy}{\int_{1}^{3} (x + 2y) dx} = \frac{1}{2}(x + 1)$$
, for $0 \le x \le 1$.
(b) $h(y) = \frac{1}{2} \int_{1}^{3} (x + 2y) dx = \frac{1}{2}(1 + 4y)$, for $0 \le y \le 1$.
(c) $P(X < \frac{1}{2}) = \frac{1}{2} \int_{1/2}^{3} (x + 1) dx = \frac{1}{2}$.
2.33 (a) $P(X + Y \le \frac{1}{2}) = \frac{1}{2} \int_{1/2 - y}^{3} (x + 1) dx = \frac{1}{2} \int_{1/2 - y}^{3} (x + 1) dx = \frac{1}{2} \int_{1/2 - y}^{3} (x + 1) dx = \frac{1}{2} \int_{1/2 - y}^{3/2} (x + 1) dx = \frac{1}{2} \int_{1/2}^{3/2} (x + 1) dx = \frac{1}{2$