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PROBLEM 2.1

FIND: Define the term signal as it relates to measurement systems and provide
examples of static and dynamic input signals to measurement systems.

SOLUTION: A signal carries information about the value and behavior of some
physical phenomenon. Within a measurement system, a signal can be thought of as the
information being carried from one place to another, such as between stages of the
measurement system. Signals have a variety of forms, including electrical, optical, and
mechanical.

Examples of static input signals are:

1. weight, such as weighing merchandise, etc.
2. body temperature, at the moment of interest
3. length or height, such as the length of a board or a person's height

Examples of dynamic input signals:

1. input signal to an automobile speed control

2. input signal to a music amplifier from a component such as a from a portable
personal device

3. input signal to a printer from a computer

4. wind speed on a gusty day as input signal to an anemometer
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PROBLEM 2.2

FIND: List the important characteristics of input and output digital signals and define
each.

SOLUTION:

1. Magnitude - generally refers to the maximum absolute value of a signal

2. Range - difference between maximum and minimum values of a signal. For a digital
signal, it is represented as the maximum number of bits

3. Amplitude - indicative of signal magnitude fluctuations relative to the mean

4. Frequency - describes the time (or space) variation of a signal.

5. Sampling frequency — For a digital signal indicates how often a digital record is
measured and recorded.

5. Bit resolution or quantization error (see Chapter 7)- smallest change that can be
recorded by a digital system

COMMENT: The process of converting an analog signal to digital form is described
in detail in Chapter 7.



PROBLEM 2.3

SOLUTION

An analog signal is continuous in time (or space or abscissa) and can assume any ordinate
value (continuous) within its range.

e Atany point in time (or space), an analog signal has a magnitude that is analogous
to the magnitude of the physical value it represents.

o As an example, an analog signal of the temperature of a mass in an oven
would increase as temperature increases assuming any appropriate value
within its range. The analog value of temperature is related to phase
change of materials, such as the freezing point of water or the melting
point of gold.

A discrete-time signal is a series having a magnitude associated with an interval in time.

e [t is not continuous in time but rather is a sequence in values assigned at discrete
time points.
o As an example, a discrete time series can be represented as a table of
magnitudes, each magnitude associated with a specific time point. The
magnitude can assume any value within its range but time is discrete.

A digital signal is a series of discrete magnitude values having a finite set of possible
values associated with a discrete time point (or abscissa point).

e As an example, a digital temperature readout provides a discrete reading of
defined resolution at each time point. Hence, its magnitude is restricted to a set of
possible values (i.e., non-continuous) assigned at discrete time points.

Analog: continuous ordinate value and continuous abscissa value.
Discrete-time: continuous ordinate value and discrete abscissa value.

Digital: discrete ordinate and discrete abscissa values.



PROBLEM 2.4

SOLUTION

The average value of a signal measures its mean value relative to zero. Here the
portions of a signal that are greater than the average value are counteracted by the
portions of the signal that are less than the average value. The average value of a
signal is also called its DC (direct current) value and has the meaning of a signal

that is constant in time with a magnitude having the DC value.

For example, consider a sinusoidal current signal with an average of zero.
Because the signal is symmetrical about™ the horizontal axis over a period,
the portion of the signal greater than zero are counteracted by the portions of
the signal below zero, resulting in the zero average. Offsetting (moving the
signal up or down the vertical axis) the average value to some positive or

negative value has the same effect but with non-zero average value.

The root-mean-square (rms) value is the “square-root of the mean of the signal
squared.” It is a means of quantifying the variation of a time-varying signal. The

time-varying portion of a signal is also called the AC (alternating current) value.

For example, consider a sinusoidal current signal with an average of zero.
Because the signal is squared, the positive and negative portions of the signal
contribute in the same way. So, unlike an average value, the effect is non-
zero. The power (P = I’R) dissipated across a resistance will be non-zero and
related to the square of the current signal. For time varying signals, it is
equivalent to the DC current or voltage that creates the same power

dissipation across a resistor.

The alternating current having some rms value L flowing through a resistor R
will create the same amount of power dissipated as produced by a direct current
(average value) luergae Of same value through that resistor R. The rms value of a

sinusoidal signal is 0.707 times its amplitude.



PROBLEM 2.5

SOLUTION

A time-based analog signal, such as y(z), is continuous in time. That is, for each

and any value of time ¢, there is an associated magnitude value of y.

A discrete-time series, such as {y(rot)}, is discrete in time. Hence, the signal only
has a value for y at each discrete time point 7o, where r is a counter 0, 1, 2, 3, ...
and of is a time interval between points in the series. For each discrete time point,
there is an associated magnitude value of y. Between discrete time point values,

the magnitude value is not specified.

COMMENT In recreating the continuous time series, the value between discrete
time points could be assumed to be constant between time points (called a
sample-and-hold) — this is quite common - or be some interpolated value between

time point values, or just be unknown.

An important parameter between analog and discrete-time series is the time step

between each point in the discrete series.



PROBLEM 2.6

KNOWN: Need to transmit voice data in digital form
FIND: The importance of multiplexing and data compression in voice transmission

SOLUTION: Multiplexing is a term that represents the idea of transmitting several
signals over the same medium at the same time. Historically, the need to transmit several
conversations over the same telephone wires spurred the development of techniques for

multiplexing, with the first applications occurring early in the 20™ century.

When considering digital signals, there are several techniques available for multiplexing.
The simplest to understand is termed time-division multiplexing where a time period is
allocated to each of several signals being transmitted. Each receiver (or person hearing a
conversation) will not “notice” that some of the time was allocated to another
conversation. Implementation of this technique is made easier by the fact that there is
much “dead” time in a conversation between two people that can be detected and used to

advantage!

Voice data compression takes several forms. A simple voice compression scheme
removes all of the frequency content that is not necessary for intelligibility. Frequency
content outside of the range from 400 to 3000 Hz is generally not needed to understand

speech. However, some loss of emotional content occurs as compression increases.



PROBLEM 2.7

KNOWN: Need to transmit and store digital image files
FIND: Compression schemes for image files

SOLUTION: Compression allows reducing the size of digital files for storage or
transmission. The file and image resulting after compression may or may not contain all
of the data present in the original file. For digital photography, a “raw” image from a 12-
bit CCD allows 4096 brightness levels for each pixel. If compressed to a JPEG image,
this output is only 8-bit where each pixel can have 256 brightness levels. The savings in
required storage is dramatic.

Another possible scheme for compression can be termed “region of interest”
compression. For example, images containing faces with a background can be reduced in
size by storing less information about the background.

You may wish to research how color images are recorded and compressed to JPEG

format.



PROBLEM 2.8

KNOWN:
y(t) =25+10sin 67t

FIND: ¥ @94Yus for the time periods £, to &, listed below
a) 0to 0.1 sec
b) 0.4 to 0.5 sec

c) 0to 1/3 sec
d) 0 to 20 sec

SOLUTION:
For the continuous function y(), the average may be expressed

1

y=——[ ¥y

2 1

and the rms as

tz _tl

yrms:\/ ! Jf[y(t)]2 dt

For V() =25+108in67 0 average is given by

7=—["(25+10sin67t)dr

2 1 1
t
4

1 10
:HPS(Q -1, ) —a(cos 67t, —cosbrt, )}

= ! 25t—£cos o6t
t,—1 6

and the rms as

1 15} 2 %
Voms =1—— | (25+10sin67¢)" dt
t,—t

1

t,—1t, 67 127

= {{62& —@cos 67t+100 (_—lsin 67tcos6rt+—t

)




The resulting numerical values are

2 7=2569 3, =318

$=2569 p =31.85

b)
o 7=125 y, =2598
g 7=25 y, =2598

COMMENT: The average and rms values for the time period 0 to 20 seconds
represents the long-term average behavior of the signal. The result in parts a) and b) are
accurate over the specified time periods and for a measured signal may have specific
significance. The period 0 to 1/3 represents one complete cycle of the simple periodic
signal and results in average and rms values which accurately represent the long-term
behavior of the signal.



PROBLEM 2.9

KNOWN: (a)y(t)=3tfor0<t<2s withT=2s
(b)y (t)=1.5t[V] for 0 <t<2sand
y(t)=0[V]for2<t<4 with T=4s

FIND: Y Vems
SOLUTION
(a) The average (or mean) value of a continuous function is given by
i 1o 1 132 132
y=2- = I3tdt=—f3tdt:—— =—— =3
Idt L—t T-0g5 T 2], 21,
h
Y- J (i = | j9z2dt— Lorf =3.46V
Yo T = r—o! 23|
(b) The average (or mean) value of a continuous function is given by
| y(ar 2 . ) "
y=" I Jl.Stdt+JOdt :lJ-I.Stdt:ll'i _S_ 075
4-01+ S 44 4 2 8

2
1% 1] N S 12257 \F
= [— t)ydt = |—| | (1L.5)dt+ | (0)dt |=,|— =, [—=122FV
Vo Jtz_n{yo H{( P+ [OFdr| =275 =3

COMMENT Keep in mind that the average and rms values are averaged over the entire
signal period even if part of that period the signal is zero.



PROBLEM 2.10

KNOWN:  y(t) = 2sin 2mt

FIND: y , Vrmsfor different signal intervals

SOLUTION

We note that this signal has a frequency of 1 Hz (i.e., 22f = 27 if f=1).
Hence, the signal has a period of 7' = 1/f= Is.

The average (or mean) value is given by

Ty(t)dt s
7= 4 T — — l:J.y(t)dl}
dx 2 Ll g4

(a)for0 <t <05s

1[0 ) 05 4
y= J.2sin27ztdt =——cos2xt| =—V
0.5-0| Vs o 7

(byfor0< t<1
1 1
sz j2Sil’lZ7Z’l‘dt =—i008272'l =0V
1-0|+ 2 0
(c)for0< t<10
1 10 o) 10
y=——0 J2sin27ztdt =———cos2xt| =0V
10-0| 5 207 0

The rms value is given by

1
t,—t

Vs = [ vy

15} ty
y = \/ 1 [ @2sin 271y dr = \/ 1 [ (4sin’ 27)cit

L=, 4 =, 4

B 4 [i_sin47ztj
t,—t\2 &

b

4



(a) sofor0 <7 <05s

0.5

4 t sindrnrt \/, 2
= _— = 2:_
Frms \/0.5—0(2 87 jo NG
(b) for) < ¢ < 1s
1
4 (¢t sindrxt \/7 2
Fms \/1—0(2 87 j(, N
(©) for0 < ¢ < 10s
10
4 !t sindrt \/, 2
= l_ ==
Frms \/10—0(2 87 jo N




PROBLEM 2.11

KNOWN: Discrete sampled data, corresponding to measurement every 0.4 seconds, as
shown below.

t »n@ | »@® |t | »n® »(2)
0 0 0

04|11.76 | 152 |24 |-11.76 | —15.29

0.8 19.02 |24.7 | 2.8 |—-19.02 | —24.73

1.2 19.02 | 247 | 3.2 |—19.02 | —24.73

1.6 | 11.76 | 152 | 3.6 | -11.76 | —15.29

201 0 0 4.0 0 0

FIND: The mean and rms values of the measured data.

SOLUTION:

For a discrete signal the mean and rms are given by

N-1 lN—]

J— 1 — 2
y=— Vi Y i
v V&

The mean value for y; is 0 and for y» is also 0.

However, the rms value of y 1s 13.49 and for y5 1s 17.53.

COMMENT: The mean value contains no information concerning the time varying
nature of a signal; both these signals have an average value of 0. But the differences in
the signals are made apparent when the rms value is examined.



PROBLEM 2.12

KNOWN: The effect of a moving average signal processing technique is to be

determined for the signal in Figure 2.22 and ¥ (#) =sin 51 +coslls

FIND: Discuss Figure 2.23 and plot the signal resulting from applying a moving
average to y(t).

ASSUMPTIONS: The signal y(f) may be represented by making a discrete
representation with &7 = 0.05.

SOLUTION:

a) The signal in Figure 2.23 clearly has a reduced level of high frequency content as
compared to that of Figure 2.22. In essence, this emphasizes longer-term (low frequency)
variations while removing shorter-term (high) fluctuations. It is clear that the peak-to-
peak value in the original signal (Figure 2.22) is significantly higher than in the signal
that has been averaged (Figure 2.23) as the higher frequency information imposed on the
lower frequency is averaged (filtered) away.
b) The figures below show in the effect of applying a moving average to
y(t)=sin5¢+cos11t

Signal y(t) = sin 5t + cos 11t
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PROBLEM 2.13
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KNOWN: A signal is known to contain random noise (noisy.xt).
FIND: Examine the effect of 2,3,and 4 point moving averages on the noisy signal.

ASSUMPTIONS: The time between each data point is the same.

SOLUTION:

The figures below show in the effect of applying a moving average to the data in the file
noisy.ixt.

Original Signal

25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
121
127




4 point

Since

and

And

KNOWN: A spring-mass system, with

m=1kg
T=2s

FIND: Spring constant, k, and natural frequency

SOLUTION:

/k
w=,—
m

(as shown in association with equation 2.7)

ro2r 1o
o f
o= rad/s

The natural frequency is then found as @ = = 3.14 rad/s

10
g
B
4
2
“ H f
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-
6
&
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PROBLEM



w=3.14= L
1 kg

k =9.87 N/m (kg/sec’)



PROBLEM 2.15

KNOWN: A spring-mass system having
m=1kg

k=5000 N/cm
FIND: The natural frequency in rad/sec (w) and Hz (f).

SOLUTION:

The natural frequency may be determined,

= [5000 N0
w=,|—= cm M —707.1rad/s
m 1 kg

and

2 25 H:
2z



PROBLEM 2.16

KNOWN: Functions:

. 107zt
sin

a)
8cos 8
b)

¢) sin5nzt for n=1to o

FIND: The period, frequency in Hz, and circular frequency in rad/s are found from

2r
—rf=22
w=2rf T
SOLUTION:
a) ® = 2m rad/s f= 1Hz T=1s
b) w = 8 rad/s f=4/7[ Hz T=7r/4s

¢) ® = Snm rad/s f=5n/2 Hz T =2/(5n)s



PROBLEM 2.17

FIND: Express each function in terms of sine terms and/or cosine terms only or as sine
and cosine terms.

SOLUTION
y(t)= Acoswt+ Bsin wt = VA +B? cos(wt — @) = NA* + B’ sin(wt + ¢*)
B
=tan ' —
¢ A
« A
=tan ' =
¢ B
o=2rf

. 2
y(t)=2sindrxt +4cosdrt =~2° + 4% cos(4nt —tan™ Z) =20 cos(4zt—26.57")

a.
. [ 4 .
y(t)=2sindzxt +4cosdrt =N2° + 47 sin(4zxt + tan™ 5) =20 sin(4xt +63.43°%)
(1) =~/2 cos(8¢ — 45%)
b.

¢ =45° :tanlgzl%B:Azl (check: C =V1> +1* =+/2)

3(f) = \/2 sin(8¢ +45°)

y(t) = cos 8¢ +sin 8¢

¥(t)=2cos 3t +5sin3t =2 + 5% cos(3¢ —tan™' %) = /29 cos(3r—68.2°)
c.

() = 2¢08 3¢ + 55in 3¢ = /29 sin(3¢ + tan ' %) =29 cos(3r+21.8°)



PROBLEM 2.18

KNOWN: Y(®)= 5sin4t +3cos 4t

FIND: Equivalent expression containing a) a cosine term only, and b) a sine term only

SOLUTION:
a) From Equations 2.10 and 2.11
., B

y=Ccosl@t—¢) ¢=tan n

and with
Acosot + Bsinwt =+ A® + B” coslat — ¢)

we find

C=NA+B =5 +3 =583

a5
@ =tan §=1.03 rad

and

y(1)=5.83cos(4r—1.03)

b) From Equations 2.10 and 2.11

y=Csin(a)t+¢*) ¢ =tan1§

and with
Acoswt + Bsinwt =\ A* + B* sin(a)t+¢*)
we find
C=NA+B =5 +3 =583
¢ =tan"' % =0.54 rad
and

y(1)=5.83sin(47+0.54)



PROBLEM 2.19

1
2n+1

= 20
y(t) = —[ sin(2n+1 l}
KNOWN: ﬂz:(; 7 ( )

FIND:

a) Equivalent expression containing cosine terms only

SOLUTION:  From Equations 2.15 and 2.17

(1) = 2%{ ! cos[(2n+1)t—7r/2]}

2n+1



PROBLEM 2.20

KNOWN:
&3 5
y(t) = z—nsin nt + —ncosnt
n=1 2 3
FIND: a) fundamental frequency and period
b) express this series in as cosine terms only
SOLUTION:

a) The fundamental frequency corresponds to n = 1, so with the general form being sin
ot and cos ot, then o= 1rad/s; and so 7=2n/0 =2x

b) From equation 2.15 and 2.17

3
y(t)=A4, +2Cn cos(zy}m —¢n]
n=l1

B
C = ‘/Aj +B,f tang = A”

n

[3nj2 (Snjz 181 ,
C,=| =] +|=| =+==n
2 3 36

9

P = tan_l(ﬁj = ¢ =0.7328

Thus the third partial sum may be written

For this Fourier series

>, 181 ,
y(t)zz zn cos (nt—0.7328)
n=l1

¥(1) = 2.24cos (1 —0.7328) + 4.48 cos (2¢ —0.7328) + 6.73 cos (31 —0.7328)



PROBLEM 2.21

KNOWN:
b% (t) =sint?

. . . t)=sint
FIND: Fourier series that represents the function »(1)=sin

SOLUTION: The function (r)=sins has a period of 27 so that the Fourier
coefficients may be found from Equation 2.18 as

1 ¢n
A =— d
) 7TJ‘_ny(t)cosntt

1 ¢n
B =— in ntd.
’ JILty(t)smntt

A .
The term ' is zero as seen from

A =LI” sintdt =0
27

And 4, is given by

1 ¢z .
A :—J. sin nt cos ntdt =0
s

-7

And B is given by

1 ¢ .
Blz—J sinr=2=1
o 7

And all other B, are given by

Lz . .
Bn:—J. sinzsinnt =0
T forn>1

The result of the Fourier coefficient equations is consistent with the expected result:

y(1)=> 4, cost+B, sint=sint



PROBLEM 2.22

SOLUTION

Loudness refers to a measure of sound intensity (akin to sound power level discussed in
Chapter 9).

Pitch refers to the frequency of the fundamental component of the sound wave.

Timbre refers to the harmonic components in the sound wave.

Two signals with the same loudness and pitch can sound quite different. For example,
consider “A below middle C” or a 220 Hz signal. We can create a pure 220 Hz sine wave
using a sine wave generator. The sound will be a pure single frequency but this will be
irritating or tiresome to listen to in a short time. Yet, a violinist playing a single note, ‘A
below middle C’ or 220 Hz, at the same loudness, will produce a sound that is quite full
and lovely. The violin sound will contain harmonics, 440 Hz, 660 Hz, 880 Hz and so on —
adding timbre.

So these two sounds contain the same loudness and pitch, but not the same timbre. The
timbre adds the richness or fullness to sound. It also makes similar sounds sound different
(and thereby distinguishing between instruments). Interestingly, the shape of these two
waveforms will also be a bit different: the sine wave generator produces a single sine
wave, whereas the violin produces more of a sawtooth wave (pure tone plus harmonics),
due in part to the resin applied to the bow and thus creating the many harmonics that
comprise the sound. Similarly, the striking of the piano key also produces harmonics, but
the difference in the harmonics allows one’s ear to distinguish between these two
instruments.

Below, we plot the Fourier analysis of two signals, each having the same loudness and

Fourier analysis of a Triangle wave Fourier analysis of a generated sine wave

@ [}

E 2

= 5

E I E

< <C
s -

220 440 660 880 1100 1320 1540 220 440 660 830 1100 1320 1540
Frequency (Hz) Frequency (Hz)

pitch. Plotted in this way, we can discern why two signals of the same intensity and
fundamental frequency might ‘sound’ differently. In fact, we should see how Fourier
analysis might be useful in discerning the different information both within and between
signals.




PROBLEM 2.23
KNOWN: y(t)zt2 for —m <t<m; y(t+2r)=y(¢t)

FIND: Fourier series for the function (7).

SOLUTION:

Since the function y(t) is an even function, the Fourier series will contain only cosine
terms,

Y(i)= A, + ZA,, cos
n=1

The coefficients are found as

2nat _ A4, + ZA” cosnwt
r =1

2
T

1 (7 1 (",
A =—| ydt=—/| Fdt=
T -1 2w d_, 3

1 (" 2
A =—I * cos nmdt
Td 2z

1 {ZICOS nt n’t’

T
+ —2 t
sSmmn»n
2
n n’ -

/A

_1 {2—7; cos(nr)+ 2—7; COS(—I’Zﬂ')}
zln n

for n even A,= 4/n* for n odd 4,= —4/n* and the resulting Fourier series is

2

s 1 1
ty=——4| cost ——cos2t+—cos3t—+...
== [ ! : }

a series approximation for 7 is

? 1 1
y(r)= = %—4[00572’—2(:0527[+§cos37z—+..}

111 7’
or l+—+—+—+...=—
4 9 16 6



PROBLEM 2.24

KNOWN: The given plot can be interpreted as
y()=0 for —z<t<0

y(t)y=-1 forOSz‘S%
y()=1 for %Stﬁﬂ

FIND: Fourier series for y(t) assuming that the function has a period of 27

SOLUTION: Since the function is neither even nor odd, the Fourier series will
contain both sine and cosine terms. The coefficients are found as

1 e
A= [ ), Vi = 2;er y(1)dt

~oe [ odre e [ 1t

:i[(—%—o%(n—%ﬂ:o foA =0

Note: Since the contribution from —x to 0 is identically zero, it will be omitted.

2| % 2n7z 2n7rt
A =— —lco + dt
" 2;zUo T I/ T }

1{[1 . }% {1 . }”}
=—<| —smunft +| —sinnt
T n 0 n %

=—1251n(m[j

zn 5

B, U in 2711 dt+I/l sin 7;’” dt}
:nlﬁ{[cosnt]/ +[- cosnt],y}:—[ cos O)—cos(n;z)}

Noting that 4,1s zero for n even, and B, is zero for n odd, the resulting Fourier series is

2 1 . 1 1. 1 1. 1
y(t)=—| —cost——sin 2t +—cos 3t ——sin4t ——cos St ——sin 6/ + —cos 7t —...
/4 2 3 4 5 6 7



PROBLEM 2.25

KNOWN:
{t for0<z<1 }
y(t) = 2—t forl<t<2
FIND: Fourier series representation of y(7)

ASSUMPTION: Utilize an odd periodic extension of y()

SOLUTION:

The function is extended as shown below with a period of 4.

Odd Periodic Extension
1
The 05 &
series for
function > | 0 |
only sine -2 -1 550 1 2
can be
1
t
- _2nmt N .
y(t) = ZB” sin =2 =Z B, sinnwt
n=1 T n=1
where

v
B, = J‘ y(t)sin 2n dt
7 T

Fourier
an odd
contains
terms and
written

For the odd periodic extension of the function y(#) shown above, this integral can be

expressed as the sum of three integrals

2nmt 2nnt

-1 1
B, =j —(2+1)sin dt +I tsin
-2 -1

2
dt +j (2—1¢)sin 2nt
1



These integrals can be evaluated and simplified to yield the following expression for B,

—sin(nz)+2 sin(m)
B =4 2

n 2 _2
n

Since sin(nm) is identically zero, and sin(nm/2) is zero for n even, the Fourier series can
be written

8 o 1 . 3m 1 . 5= 1 . Tm
Wt)=—

sin — ——sin——+ —sin— — —sin—+ —...
2 9 2 25 2 49 2

T

The first four partial sums of this series are shown below

First Four Partial Sums

=+« = - First Par- -
0.9 +— tial Sum /\
— Second
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~05 7
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PROBLEM 2.26

KNOWN: The function in Figure 2.25 can be interpreted as:

_—2t—2 for-7z<t<i
T 2
2 - T
—t for —<t<—
T 2

_—2t+2 for Z<‘c<7r
yy =7 2

FIND: Fourier series representation of y(7)
ASSUMPTION: (¢ is an odd function with a period 27

SOLUTION:

Because the function is odd, we know that
A =0and4 =0

And we can find B, from

B, = l[jm(—gt - 2} sin ntdt + Jﬂ/z (ztj sin ntdt + '[7[ [—zt + 2jsin ntdt}
_r T -7/2 T 7/2 T

The integration yields the Fourier series

-3 3 B (o)

T

The first three partial sums of the series is plotted below
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PROBLEM 2.27

KNOWN:
a)sin 10t V
b) S+2c0s2t m
c) s
42V
FIND: Classification of signals

SOLUTION:
a) Dynamic, deterministic, simple periodic waveform
b) Dynamic, deterministic periodic with a zero offset (of 5 m)
¢) Dynamic, deterministic, unbounded as = % ; not periodic
d) Static, deterministic ; not periodic



PROBLEM 2.28

KNOWN: At time zero (¢ = 0)

x=0
dx
—=5cm/s f=1Hz
dt s
FIND:
a) period, T’
b) amplitude, 4
c) displacement as a function of time, x()
d) maximum speed
SOLUTION:

The position of the particle as a function of time may be expressed

x(t) = Asin2nt

so that

@ =2Amcos2nt
dt

dx

Thus, att=0 df
From these expressions we find

a)T=1s
b) amplitude, 4 = 5/2n
x(1) =(5/27)sin 27t

5

c)

d) maximum speed =5 cm/s



PROBLEM 2.29

FIND: Define the terms listed

a) Frequency content ¢) Magnitude
b) Amplitude d) Period
SOLUTION:

a) Frequency content - for a waveform, refers to the relative amplitude in terms of the
associated frequencies of the signal. A Fourier series expresses the frequency content by
associating amplitudes with frequency terms. A result of a Fourier transform does the
same thing.

b) Amplitude — describes the range of variation of a particular frequency component in a
waveform

¢) Magnitude - the value of a signal, which may be a function of time (or space)

d) Period - the time for a signal to repeat (signal period), or the time associated with a
particular frequency component (i.e., Ty = 21/®,).



PROBLEM 2.30

KNOWN:

Fourier series for the function y(#) = ¢ in Problem 2.21

10 . 27zt 10 . 4zt 10 . 6m¢t 10 . 8xt
y(t) = —sin — ——sin— +—sin in—
Vd 10 27 10 37 10 4rx 10

FIND:

Construct an amplitude spectrum plot for this series.

SOLUTION:

DataSpect can be used to generate the plot below. Alternatively, we can construct the
amplitude spectrum directly from inspection of the Fourier series, as follows

Each term is of the form B, sin 2 xf,t.

So, for the first term: B, = [0/x at a frequency f; = 1/10 = 0.1 Hz. And so forth...

Amplitude Spectrum

35
. n

25

1.5 +
14

0.5 T "
0 ‘ ‘

f (Hz)

Amplitude




PROBLEM 2.31

KNOWN: Signal sources:
a) thermostat on a refrigerator
b) input to a spark plug
¢) input to a cruise control
d) a pure musical tone

e) note produced by a guitar string
f) AM and FM radio signals

FIND: Sketch representative signal waveforms.
SOLUTION:

a)
Signal

Time

This is a simple series of ‘on’ (high) or ‘off” (low or zero) amplitudes (which act to cycle
the refrigerator compressor on or off) occurring at alternating times corresponding to the
temperatures inside the refrigerator relative to its set temperature.

b)

Signal

Time

This is a series of pulses to ignite the spark plug consistent with the rotational speed of
the engine.






Cruise Control

Signal

Time

This is a continuous correction signal (speed up or slow down) aimed at maintaining a
constant speed relative to road conditions.

d)

Pure Musical Tone

Signal

Time

A pure musical tone is a pure sine wave.

e)

Guitar Note

Time

Signal



A guitar string produces a sine wave of a fundamental frequency (pitch) plus harmonics

(Timbre).
f)
AM radio wave
2
1.5
| |
05 n H o A
o AT L] Aap\l
l%\i@“ BRI Y2 U“%H’
£ o5 v i v v
.1 s
U | |
1.5
2
-25
time
FM Radio Wave

A

AM signals are amplitude modulating; FM signals are frequency modulating.

IRRY



PROBLEM 2.32
SOLUTION
Similarities:

Both the Fourier series and the Fourier transform represent general functions as a
superposition of sines and cosines (or in terms of exponentials by using Euler’s identity

e” =cosy+isiny)

Differences:

The Fourier series is for periodic signals. It decomposes the signal into a series of
harmonics that are integer multiples of a fundamental frequency. Not all frequencies are
represented in the series.

The Fourier transform extends the concept to include aperiodic signals. It decomposes the
signal into a continuous number of different frequencies and amplitudes, although any
particular frequency may have zero amplitude.

Note: The discrete Fourier transform includes amplitude and phase information over a
continuous number of frequency intervals.

By definition, a periodic signal extends to infinity by repeating itself every period. But
the Fourier transform can be applied to real periodic signals because the data sets of the
signals have a finite length; in effect, they are treated as being aperiodic signals.



PROBLEM 2.33

KNOWN: Ao:5V A1 =2V B, = 1V A3:3V
f]ZSHZ szIOHZ f3:15HZ

FIND: discrete series of 256 values of exactly two periods

SOLUTION
Here f; = 5 Hz and we want m = 2 periods. We will create a discrete series of N =256
data points with each data point separated by &t = m/Nf, = 2/256*5 Hz = 0.001563 s. The
first ten terms of the discrete series are shown. All 256 data points are shown in the plot.
r t y{rot}
0 0 10
0.00156 10.0631
1 3 4
0.00312 10.0562
2 5 8
0.00468 9.98060
3 8 6
9.83866
4 0.00625 3
0.00781 9.63431
5 3 3
0.00937 9.37263
6 5 1
0.01093
7 8 9.05979
8.70291
8 0.0125 6
0.01406
9 3 8.30993
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PROBLEM 2.34

KNOWN: Ap=1V A =3V B,=1V
fl = 2 Hz fz = 4 Hz
FIND: discrete series of 64 values of three periods

SOLUTION

Here fi = 2 Hz and we want m = 3 periods. We will create a discrete series of N = 64 data

points with each data point separated by 6t = m/Nf;, = 3/64*2 Hz = 0.023438 s. The first

ten terms of the discrete series are shown. All 64 data points are shown in the plot.

r t y{rst)

0 0 4
1 0.023438 4.426391
2 0.046875 4.418288
3 0.070313 3.883965
4 0.09375 2.855157
5 0.117188 1.489142
6 0.140625 0.032046
7 0.164063 -1.24566
8 0.1875 -2.12132
9 0.210938 -2.47723

5
o &, *
R 2
t +* ..
3 * * *
L2 4 . .
=2 : * : .
1} > NG
[=% ’ ’
E 0 & E 3 *
L 2 . *
1 ’ ’ ’
¢ ¢ .o
* Q_’
2
‘e “ «*
—3 T T T T T T T




PROBLEM 2.35

KNOWN: y(t) =1+3cos 47Tt+51n8ﬂ't [V]

y{rdt} with N = 64 and ot = 0.023438 s
A():lV A1:3V B2:1V
f] =2 Hz fz =4 Hz

SOLUTION

The first ten data points of the discrete series and the Fourier analysis are tabulated
below. The amplitude and phase spectra are plotted for 32 coefficients. The spectra are
consistent with the amplitude and frequency content. The f; is 90° out of phase with f;.
This is consistent with cos(x)=sin(x+pi/2).

r t yirst} C(f) f(Hz) ¢(degrees)
0 0 4'64 1 0 0
1 0.023438 4.426391°0 0 0.666667 0
2 0.046875 4.418288"0 0 1.333333 0
3 0.070313 3.88396596 3 2 0
4 0.09375 2.8551570 0 2.666667 0
5 0.117188 1.489142"0 0 3.333333 0
6 0.140625 0.032046 -32i 1 4 -90
7 0.164063 -1.24566"0 0 4.666667 0
8 0.1875 -2.121320 0 5.333333 0
9 0.210938 -2.477230 0 6 0

w
wn
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70

w
*

50

]
w

30
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=
n
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2
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*

-50

=4
wn
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PROBLEM 2.36

FIND: Discrete data set of 256 data points for three periods of a sinusoidal signal.
Compare Fourier analysis for same signal with and without a DC component (0 Hz
amplitude or signal mean value).

SOLUTION

(a) We create a data set of N = 256 points each separated by &t =0.011719 s. Strategy: in
order detail m = 3 exact periods, we need a time interval of &t = m/Nf, = 3/(256*1) s. The
first 10 terms are shown below. The discrete series is plotted in time domain. (b) The
discrete Fourier transform (DFT) analysis is also shown in the table for the signal having
Ao=1V. Here we used Excel (as instructed in a text example). The results of the Fourier
analysis are plotted in frequency domain. The DFT provides the magnitude

C, = A +B’ :
g 7" The DC component reveals itself as the zeroth frequency term. The DC
component refers to the static or non-time varying component of a signal, its mean value.

r y{rdt} t (sec) Y(f) C(f) f (Hz)
data number Discrete series time DFT return Combined Re and Im  frequency
0 1 07256 1 0
1 1.735645636 0.01171875'0 0 0.333333
2 2.467304745 0.023437570 0 0.666667
3 3.191012402 0.03515625 -1280i 10 1
4 3.902846773 0.046875"0 0 1.333333
5 4.598950365 0.05859375"0 0 1.666667
6 5.275550934 0.0703125"0 0 2
7 5.928981922 0.08203125"0 0 2.333333
8 6.55570233 0.09375"0 0 2.666667
9 7.152315906 0.10546875"0 0 3
12
10 [ ]
y{rdt}
v 8
15 E
10 ,E:L e
s 9 )
=3 0 1 [ ]
- o ]
-10 0 5 10 15 20

Time (s) Frequency (Hz)

(c) If we extract the DC component (either subtract it from the signal or set it to zero), it
adjusts the signal about zero amplitude in time domain and this is reflected by a change in
the zero hertz component in the spectrum to zero (i.e., C(fy) = 0). However, there is no



change to the remaining coefficients in the spectrum, as shown. So the DC component
(mean) value has no effect on the time-based signal information.

y{rdt}
- 10 e
10 2 8
¥ =
E =
£ o £,
£ 0 4
z ,
-10
15 . T e e
Time (s) 0 5 10 15 20

Frequency (Hz)



PROBLEM 2.37

KNOWN: ¢€(t)=5sin31.47+2sin44¢

FIND: e(?) as a discrete-time series of N = 128 numbers separated by a time increment
of &¢ . Find the amplitude-frequency spectrum.

SOLUTION:

With N =128 and 67 = 1/N, the discrete-time series will represent a total time (or series
length) of N 6¢ =1 sec. The signal to be represented contains two fundamental

frequencies,
fi=31.42n=5Hz and f,=44/2n=7Hz

We see that the total time length of the series will represent more than one period of the
signal e(7) and, in fact, will represent 5 periods of the fi component and 7 periods of the f;
component of this signal. This is important because if we represent the signal by a
discrete-time series that has an exact integer number of the periods of the fundamental
frequencies, then the discrete Fourier series will be exact.

DataSpect (or any DFT or FFT program; Matlab or Excel programmed for
Fourier analysis) is used to solve this problem. The time series and the amplitude
spectrum are plotted below.

5sin31.4t + 2 sin44t Volts

e(t)
N
"
\
/
\
Sm— //—/
—
]
\
[
T —

Time (sec)



PROBLEM 2.38

KNOWN: e(t)=5sin31.4¢1+2sin44t Volts

FIND: Discrete series using N = 256 and 8¢ = 1/256 s and 8¢ = 1/512 s; amplitude

Amplitude Spectrum

N

Signal Amplitude
w

N
<

- M O N~ O - M O K~ 0O T MO O N~ O T M 0N N O T M o oNoO M v N~
N NN A N 0 v v w

— - ™
FFFFF o N [sp) lsel o) [sp) (el © ©
Frequency (Hz)

spectra

The resolution and number of data points changes but not the signal content or the
spectrum quality. In Chapter 7, we study the relation between sample rate and discrete-
series quality.

Discrete Series
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Problem 2.38 continued

Discrete Series

Time (s)

10
9 —_—
fs=512 Hz
8 —_—
7
g 6
2
E 5 1@
£ 4
3
2 &
1
o

0 25 50 75 100 125 150 175 200 225 250
Frequency (Hz)



PROBLEM 2.39

y(t)=A4 -k/2<t<k/2
r=k/T
FIND: Coefficients Ay, 4,, B.
SOLUTION
T/2 k/2
4, = 1 [ y(@ar 1 [ Aar Ak _ 4
T -T/2 T —k/2 T

A, is simply the average of the signal over its period. This value is called the DC
component.

277 2t 27 22t 24[ T . m2m]” 24
A, == J y(t)cosn == J. Acos T gr =22 L in 57 = —sin(znr)
T s, T s, T | 27n r |,, nr
2 ¢ com2xt . 2YF 2w
B =— J y(t)smn == '[ Asin =2 gt =0
T—T/Z T Tfk/Z r
This signal is symmetric about y-axis at ¢ = 0 and is therefore even. Hence, B, = 0.

n2rt

w(t)=Ar+ Z 24 sin(zrnr) cos
n=1

If the signal were odd (opposite in sign and symmetrical about # = 0), the series would be

made up of only sines instead, that is 4, = 0 but B,# 0. So the representation would differ

only by the phase.



PROBLEM 2.40

KNOWN:  Pulse trainwith A=1V,r=0.2and f=1 Hz.
FIND: A, A, ..., Aj. Plot over two periods.

SOLUTION

&

A,

0.2
0.37420
0.30273
0.20182
0.09355
0.00000
0.06237
0.08649
0.07568
0.04158
0.00000

We draw off the previous solution for Ay, A,, and B,:

4y = Ar=(1V)(02)=02,,

SOOI W~ OS
oo ocococoocoocococoo

—_

4, =2 Sin(znr) 1 B,=0; s, 4, = Zsin(0.27) = 037420
niw VA

n2rt

w(t)=Ar+ Z ﬁsin(;rnr) Ccos
-1 N7T T V
T=1f=1s

As one adds increasing numbers of partial terms, the reconstruction improves.
e This reconstruction of the signal based on the first ten terms of the Fourier series,
as plotted, does not yet have enough terms to adequately depict the sharp rise and
fall of the pulse train. We can make out the pulse train but with some oscillations.

Reconstruction: First Ten Terms in Fourier Series of Pulse Train

1.2

1
0.8?
0.6
0.4
0.2

[ ] [ ] [ ] [ ]

_0'(2)0 ®02 0?4 0?6 0.8® 1 ®12 1’4 1?6 1.8®

y(t) (V)

Time (s)



e The series is said to “converge slowly” requiring many more terms to capture its
abrupt details accurately. Adding higher order terms improves the reconstruction
of the rapid changes.



PROBLEM 2.41

KNOWN: Pulse train with A=1V,r=05and T=1s.

FIND: A1, Az, ceey A7.
SOLUTION
We draw from the solution to the previous problems:

4y = Ar=(1V)(0.5) =05,

24 . 24 .
A =—sin(znr) = —sm(ﬂ) ;B,=0
nr nr 2

so forn=0,1,2,...,7: sin(%) =0,1,0,-1,0,1,0,—-1

and

2x1V . (7z><1

4 = ) = 0.6366

Ixm
The signal has the reconstructed form:

2ﬂnt

y(t)=— + Z — s1n(—)

T=1s

r vy

NN W=, O S

A"l

0.5
0.6366
-0.2122
0.1273

-0.0909

&

O OO OO O oo



PROBLEM 2.42

KNOWN: Data file heartbeat.xls

Aortic Flowrate over several heartbeats

Flowrate (Lpm)
[ R T S TR S RN

o
o
5}
-
5
~
n

Time (s)

SOLUTION

The signal heartbeat.xls consists of 247 data points over about 2 seconds in length
representing y {rot} versus t. The Fourier analysis in both Excel and Matlab require data
lengths to be powers of 2 (i.e., 2, 4, 8, 32, 64, 128, 256, ...). Either truncate and analyze
the first 128 data points (2%) or add another 9 data points as ‘0’ zeros to make 27 or 256
data points. Either method works. Each data point is separated by 6t = 0.008081 s.
Using Excel, Column A is the data point number (i.e., 0 to 255). Column B is y{rdt}, the
discrete signal of the flowrate with time. Column C is the time each point in Column B
was recorded relative to the start time. Column D presents the results of the Fourier
transform Y(f) (in Excel: using Data/data analysis/Fourier Analysis ) on the data in
Column B. Column E combines the imaginary and real coefficients using the IMABS
(Y (f)) function and properly scales it to show the magnitude C,. Column F determines
each coefficient frequency (f = r/Not). The first 10 rows are shown below in tabular
form. The amplitude spectrum is plotted for the first N/2 coefficients. Information at
three frequencies dominates the spectrum. Critical information is extracted:

(a) The mean flow rate is given by the ‘zero hertz or f= 0’ coefficient or DC component:
Q_avr = 1.494 liters/min. The fundamental frequency is: f; = 1.45 Hz. We would expect
the heartbeat to be at this dominant frequency. So, the heartbeat rate is: HR = f;* 60s/min
= 87 beats/min

(b) The first harmonic of the fundamental frequency is: f, =2.90 Hz

datapoint Q_ao t (sec) Y(f) C(f) f (Hz) i i . . i
0 0.124097 0738251981 1,494 0.0 Fourier analysis of infant's aortic pressure wave
1 0.193958 0.0080808 -12.11009 0.11 0.4800
2 0.216353 0.0161616 -10.36833 0.0  0.97 Heartbeat fundamental frequency
. : : . 2’500 [ ]
3 0.211496 0.0242424 55.371258 2.53 1.45
4 0.199 0.0323232 -32.07683 0.37 4.930 Mean flow rate
5 0.20321 0.040404 -41.04783 0.33 242, o . 1st Harmonic
6 0.258888 0.0484848 -189.1109 1.54 2’.90
7 0.421162 0.0565656 30.665195 0.35 3.3800
8 0.839332 0.0646464 5.8620563  0.19 3.8%0
9 1.666831 0.0727272 -13.64407 0.38 4.35 Se o0 00, % P !
0000 |'® oo 00500 007 ¢0000%00%0%00%¢

0.00 5.00 10.00 15.00 20.00

Frequency (Hz)



PROBLEM 2.43

KNOWN: y(t) =2AUT for-T/2 <t<T/2
T=2s;A=1V

FIND: C,
SOLUTION

The discrete series is developed for N = 128 points and a period of 2 s using ot = 2/128 s.
The time domain signal is plotted below revealing the odd function. The first 10 points in
the series are shown in the Table, as are the first ten coefficients from a discrete Fourier
transform (DFT) analysis. The coefficient magnitudes, |C, | are plotted against frequency.
The zero harmonic or mean value is zero. The fundamental frequency is 0.5 Hz. The
amplitude for each harmonic is a decrement of the fundamental frequency amplitude, that
is Ci/C, = n. The Fourier analysis returns the magnitude of the coefficients,
C,=\A+B’ L : :

g 7 so that the sign is lost. The comparison of the DFT results to Fourier
analysis (B,) is essentially the same except for some roundoff (due to the inexact nature
of the frequency spacing).

Sawtooth Function Amplitude Spectrum for Sawtooth Function
1 10
08 09
06 08
o _ 07
= [ [ J
5 02 g 05
E] 0 = 05
= £
5 02 Eoa
< o4 03 »
02 .
-0.6 . °
08 > T o s e
00 ®

-1 0.000 1.000 2.000 3.000 4.000 5.000
-15 -1 -0.5 0 0.5 1 15

Time [s]

Frequency [Hz]

t y(t) f c(f) G/, Bn
-1 -1 0  0.007813
-0.98438 -0.98438 0.5  0.636684
-0.96875 -0.96875 1 0.318438
-0.95313 -0.95313 1.5  0.212398 0.212207
-0.9375  -0.9375 2 0159411 -0.15915

1 0.63662

2

3

4
-0.92188 -0.92188 2.5 0.127644 5 0.127324

6

7

8

9

-0.31831

-0.90625 -0.90625 3 0.106488 -0.1061

-0.89063 -0.89063 35 0.091395 0.090946
-0.875 -0.875 4 0.080091 -0.07958

-0.85938 -0.85938 4.5 0.071314 0.070736

O 0o NOYULL B WNEFELR O =

6.000



COMMENT The Fourier analysis of the sawtooth function is provided here for
completeness but is studied in another practice problem

T/2

1 1
Ay =— | y(@)dt =—|tdt =0
7y | poass]
T/2 1
A = 2 I y(t)cos n2mi dt =Jtcos nrtdt =0
TfT/Z T -1
2 2 7’Z27Z't t _2 n
B =— t)sin dt =| tsmnxtdt =— (-1
L= | posin= J —(-1)

-T/2



PROBLEM 2.44

KNOWN: A force input signal varies between 100 and 170 N (100 < F <170 3¢ 4
frequency of @ = 10 rad/s.

FIND: Signal average value, amplitude and frequency. Express the signal, y(¢), as a
Fourier series.

SOLUTION:
The signal characteristics may be determined by writing the signal as

3(#) = 135 + 35 sin 10¢ [N]

a) A, = Average (or static) value = (170 + 100)/2 =135 N
b) Ci=(170-100)/2=135N; fi=0/2r=1027t=1.59 Hz
c) y(f)=135+ 35 sin (10t + 7/2)

A discrete time series was created using 16 points each separated by 0.1571 s. The
amplitude spectrum is shown below.

160

140 o fs=6.3654 Hz — |

120

100

80

Amplitude

60

40

20

0 L 4 L 4 L 4 L 4 L 4 L 4

Frequency (Hz)



PROBLEM 2.45

KNOWN: Wall pressure is measured in the upward flow of water and air as provided
in the file gas liquid data.txt. The flow is in the slug flow regime, with slugs of liquid
and large gas bubbles alternating in the flow, as shown in the text Figure 2.27. Pressure
measurements were acquired at a sample frequency of 300 Hz, and the average flow
velocity is 1 m/sec.

FIND: Construct an amplitude spectrum for the signal, and determine the length of the
repeating bubble/slug flow pattern.

SOLUTION:

The figure below shows the amplitude spectrum for the measured data. There is clearly a
dominant frequency at 0.73 Hz. Then with an average flow velocity of 1 m/sec, the
length is determined as

! m/sec
0.73 Hz

=1.37 m

Slug Flow Data

2500
A
2000
1500
3
2
]
£
<
1000
A
500 A
A A A
A Thaan,
A A A0 A

0 2 4 6 8 10 12 14 16 18 20

Frequency



PROBLEM 2.46

KNOWN: Sunspot data for the years 1746 to 2005, from the file sunspot.txt.

FIND: Plot the data and create an amplitude spectrum using the companion software

program Dataspect.

SOLUTION:

\\\\\\\\\\\\

mmmmmmm

data y(1)

Data from file sunspat txt

Amplitude Spectrum

Using the zoom control, we can estimate that the amplitude peak occurs at approximately
0.008 which corresponds to a period in months of 125 and a period in years of 10.4.

Most references quote an 11 year period.



PROBLEM 2.47

KNOWN: Amplitude and phase spectrum for {y(r8¢)} from Figure 2.28

FIND: {@ss)}, 07> 9t

SOLUTION:
By inspection of Figure 2.27:

=5V (C,=0V (C,=3V (C,=0V (C,=1V
fi=1Hz f,=2Hz f,=3Hz f,=4Hz f,=5Hz
¢ =0rad ¢,=0rad ¢, =02rad ¢, =0rad ¢, =0.1rad

and 5f=1HZ

The signal can be reconstructed from the above information, as

¥(t) =5sin(2zt)+3sin (67 +0.2) +sin (1077 + 0.1)

The exact phase of the signal relative to # = 0 is not known, so () is ambiguous within

£7/2 in terms of its overall phase.

A DFT returns N/2 values. Therefore 5 spectral values implies that N=10. Then
6f =1/Not=1Hz=1/105t giving 5t=0.1sec or f, =10 Hz

Alternatively, by inspection of the plots

fv=71./2=5Hzgiving f, =10 Hz or 61 =0.1 sec



PROBLEM 2.48

KNOWN:
y(1)=(4C/T)t+C -T/2<1<0
y(1)=(-4C/T)t+C 0<1<T/2

FIND: Show that the signal y(¢) can be represented by the Fourier series

0

4c(1 -
W)= A, + Z C( C(ZSI’I/Z) cos 2nnt
() T

n=1

SOLUTION:

a) Since the function y(#) is an even function, the Fourier series will contain only cosine

terms,
y(f)=A(,+ZA,Z cos I; :1404—2/1,7 cosnwt
n=1 n=1

The value of A, is determined from Equation (2.17)
L
A, == w(t)dt
Ty

0 e
A0=j (4—O+C)dt+I (4—Ct+det
SAN 0 T

integrating yields a value of zero for A,

2 0 o Yar )
Ao:i [ZCI +Ct} +{ 2¢1 +Ct} =0
T T -1 T 0

Then to determine A,

0 Ty
A, :3 .[ (ﬂ+ C) cos 2nm dt+.[ ( 4Ct+C) cos 2nm dt
T |-\ T T 0 T T

R C(-2+2 COS(I’HZ');- nrsin(nr))
(n7)
Since sin(nm) = 0, then the Fourier series is

— 4C(1-cosnz)  2nmt
w(t) = > cos
; (7m)




The values of A, are zero for n even, and the first three nonzero terms of the Fourier

series are

8C 2m  8C 6m  8C 10
CcoS cos

@ T Gy T Ay T

The first term represents the fundamental frequency.
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PROBLEM 2.49

KNOWN: Figure 2.14 illustrates the nature of spectral distribution or frequency
distribution on a signal.

FIND: Discuss the effects of low amplitude high frequency noise on signals.

SOLUTION:

Assume that Figure 2.14a represents a signal, and that Figures 2.14 b-d represent the
effects of noise superimposed on the signal. Several aspects of the effects of noise are
apparent. The waveform can be altered significantly by the presence of noise,
particularly if rates of change of the signal are important for specific purposes such as
control. Generally, high frequency, low amplitude noise will not influence a mean value,
and most of the signal statistics are not affected when calculated for a sufficiently long
signal.



PROBLEM 2.50

SOLUTION

Use Sound.vi to study the amplitude spectra related to different sounds you can supply to
your computers microphone.



