
PROBLEM 2.1

 
FIND:  Define the term signal as it relates to measurement systems and provide 
examples of static and dynamic input signals to measurement systems.

SOLUTION:  A signal carries information about the value and behavior of some 
physical phenomenon. Within a measurement system, a signal can be thought of as the 
information being carried from one place to another, such as between stages of the 
measurement system.  Signals have a variety of forms, including electrical, optical, and 
mechanical.

Examples of static input signals are:

1. weight, such as weighing merchandise, etc.
2. body temperature, at the moment of interest
3. length or height, such as the length of a board or a person's height

Examples of dynamic input signals:

1. input signal to an automobile speed control
2. input signal to a music amplifier from a component such as a from a portable 
personal device
3. input signal to a printer from a computer
4. wind speed on a gusty day as input signal to an anemometer
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PROBLEM 2.2

 
FIND:  List the important characteristics of input and output digital signals and define 
each.

SOLUTION:

1. Magnitude - generally refers to the maximum absolute value of a signal 
2. Range - difference between maximum and minimum values of a signal.  For a digital 
signal, it is represented as the maximum number of bits
3. Amplitude - indicative of signal magnitude fluctuations relative to the mean
4. Frequency - describes the time (or space) variation of a signal. 
5.  Sampling frequency – For a digital signal indicates how often a digital record is 
measured and recorded.
5. Bit resolution or quantization error (see Chapter 7)- smallest change that can be 
recorded by a digital system

COMMENT:  The process of converting an analog signal to digital form is described 
in detail in Chapter 7.



PROBLEM 2.3

SOLUTION

An analog signal is continuous in time (or space or abscissa) and can assume any ordinate 
value (continuous) within its range. 

 At any point in time (or space), an analog signal has a magnitude that is analogous 
to the magnitude of the physical value it represents. 

o As an example, an analog signal of the temperature of a mass in an oven 
would increase as temperature increases assuming any appropriate value 
within its range. The analog value of temperature is related to phase 
change of materials, such  as the freezing point of water or the melting 
point of gold.

A discrete-time signal is a series having a magnitude associated with an interval in time. 

 It is not continuous in time but rather is a sequence in values assigned at discrete 
time points. 

o As an example, a discrete time series can be represented as a table of 
magnitudes, each magnitude associated with a specific time point. The 
magnitude can assume any value within its range but time is discrete.

A digital signal is a series of discrete magnitude values having a finite set of possible 
values associated with a discrete time point (or abscissa point). 

 As an example, a digital temperature readout provides a discrete reading of 
defined resolution at each time point. Hence, its magnitude is restricted to a set of 
possible values (i.e., non-continuous) assigned at discrete time points.

Analog: continuous ordinate value and continuous abscissa value. 

Discrete-time: continuous ordinate value and discrete abscissa value.

Digital: discrete ordinate and discrete abscissa values.



PROBLEM 2.4

SOLUTION

The average value of a signal measures its mean value relative to zero. Here the 

portions of a signal that are greater than the average value are counteracted by the 

portions of the signal that are less than the average value. The average value of a 

signal is also called its DC (direct current) value and has the meaning of a signal 

that is constant in time with a magnitude having the DC value.

For example, consider a sinusoidal current signal with an average of zero. 

Because the signal is symmetrical about` the horizontal axis over a period, 

the portion of the signal greater than zero are counteracted by the portions of 

the signal below zero, resulting in the zero average. Offsetting (moving the 

signal up or down the vertical axis) the average value to some positive or 

negative value has the same effect but with non-zero average value. 

The root-mean-square (rms) value is the “square-root of the mean of the signal 

squared.” It is a means of quantifying the variation of a time-varying signal. The 

time-varying portion of a signal is also called the AC (alternating current) value.

For example, consider a sinusoidal current signal with an average of zero. 

Because the signal is squared, the positive and negative portions of the signal 

contribute in the same way. So, unlike an average value, the effect is non-

zero. The power (P = I2R) dissipated across a resistance will be non-zero and 

related to the square of the current signal. For time varying signals, it is 

equivalent to the DC current or voltage that creates the same power 

dissipation across a resistor. 

The alternating current having some rms value Irms flowing through a resistor R 

will create the same amount of power dissipated as produced by a direct current 

(average value) Iavergae of same value through that resistor R. The rms value of a 

sinusoidal signal is 0.707 times its amplitude.



PROBLEM 2.5

SOLUTION

A time-based analog signal, such as y(t), is continuous in time. That is, for each 

and any value of time t, there is an associated magnitude value of y. 

A discrete-time series, such as {y(rt)}, is discrete in time. Hence, the signal only 

has a value for y at each discrete time point rt, where r is a counter 0, 1, 2, 3, … 

and t is a time interval between points in the series. For each discrete time point, 

there is an associated magnitude value of y. Between discrete time point values, 

the magnitude value is not specified. 

COMMENT In recreating the continuous time series, the value between discrete 

time points could be assumed to be constant between time points (called a 

sample-and-hold) – this is quite common - or be some interpolated value between 

time point values, or just be unknown.

An important parameter between analog and discrete-time series is the time step 

between each point in the discrete series.



PROBLEM 2.6

KNOWN: Need to transmit voice data in digital form 
 
FIND:  The importance of multiplexing and data compression in voice transmission 

SOLUTION:    Multiplexing is a term that represents the idea of transmitting several 

signals over the same medium at the same time.  Historically, the need to transmit several 

conversations over the same telephone wires spurred the development of techniques for 

multiplexing, with the first applications occurring early in the 20th century. 

When considering digital signals, there are several techniques available for multiplexing. 

The simplest to understand is termed time-division multiplexing where a time period is 

allocated to each of several signals being transmitted.  Each receiver (or person hearing a 

conversation) will not “notice” that some of the time was allocated to another 

conversation.  Implementation of this technique is made easier by the fact that there is 

much “dead” time in a conversation between two people that can be detected and used to 

advantage! 

Voice data compression takes several forms.  A simple voice compression scheme 

removes all of the frequency content that is not necessary for intelligibility.  Frequency 

content outside of the range from 400 to 3000 Hz is generally not needed to understand  

speech.  However, some loss of emotional content occurs as compression increases.



PROBLEM 2.7

KNOWN: Need to transmit and store digital image files 
 
FIND:  Compression schemes for image files 

SOLUTION:    Compression allows reducing the size of digital files for storage or 

transmission.  The file and image resulting after compression may or may not contain all 

of the data present in the original file.  For digital photography, a “raw” image from a 12-

bit CCD allows 4096 brightness levels for each pixel.  If compressed to a JPEG image, 

this output is only 8-bit where each pixel can have 256 brightness levels.  The savings in 

required storage is dramatic. 

Another possible scheme for compression can be termed “region of interest” 

compression.  For example, images containing faces with a background can be reduced in 

size by storing less information about the background.

You may wish to research how color images are recorded and compressed to JPEG 

format.



PROBLEM 2.8

KNOWN:

 

FIND:   for the time periods t1 to t2 listed below 

a) 0 to 0.1 sec
b) 0.4 to 0.5 sec
c) 0 to 1/3 sec
d) 0 to 20 sec

SOLUTION: 

For the continuous function y(t), the average may be expressed

and the rms as 

For , the average is given by

and the rms as 



The resulting numerical values are

a) 

b) 

c) 

d) 

COMMENT:   The average and rms values for the time period 0 to 20 seconds 
represents the long-term average behavior of the signal.  The result in parts a) and b) are 
accurate over the specified time periods and for a measured signal may have specific 
significance.  The period 0 to 1/3 represents one complete cycle of the simple periodic 
signal and results in average and rms values which accurately represent the long-term 
behavior of the signal.



PROBLEM 2.9

KNOWN:   (a) y(t) = 3t for 0 ≤ t ≤ 2 s   with T = 2 s
(b) y (t) = 1.5t [V] for 0 ≤ t ≤ 2 s and
       y(t) = 0 [V] for 2 ≤ t ≤ 4  with  T = 4 s

FIND:   ,  

SOLUTION 
(a) The average (or mean) value of a continuous function is given by

 

 
(b) The average (or mean) value of a continuous function is given by

 

COMMENT Keep in mind that the average and rms values are averaged over the entire 
signal period even if part of that period the signal is zero.



PROBLEM 2.10

KNOWN:   y(t) = 2sin 2t  

FIND:   ,   for different signal intervals 

SOLUTION 
We note that this signal has a frequency of 1 Hz (i.e., 2f = 2, if f = 1). 
Hence, the signal has a period of T = 1/f = 1s.

The average (or mean) value is given by

 

The rms value is given by



(a)

(b) 

(c) 



PROBLEM 2.11

KNOWN:  Discrete sampled data, corresponding to measurement every 0.4 seconds, as 
shown below. 

t y1(t) y2(t) t y1(t) y2(t)

0   0   0

0.4 11.76 15.2

9

2.4 −11.76 −15.29

0.8 19.02 24.7

3

2.8 −19.02 −24.73

1.2 19.02 24.7

3

3.2 −19.02 −24.73

1.6 11.76 15.2

9

3.6 −11.76 −15.29

2.0   0   0 4.0     0     0

FIND:  The mean and rms values of the measured data.

SOLUTION: 

For a discrete signal the mean and rms are given by 
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The mean value for y1 is 0 and for y2 is also 0.

However, the rms value of y1 is 13.49 and for y2 is 17.53.

COMMENT:  The mean value contains no information concerning the time varying 
nature of a signal; both these signals have an average value of 0.  But the differences in 
the signals are made apparent when the rms value is examined.



PROBLEM 2.12

KNOWN:  The effect of a moving average signal processing technique is to be 

determined for the signal in Figure 2.22 and 
 
FIND:  Discuss Figure 2.23 and plot the signal resulting from applying a moving 
average to y(t).

ASSUMPTIONS:  The signal y(t) may be represented by making a discrete 
representation with t = 0.05.

SOLUTION:

a)  The signal in Figure 2.23 clearly has a reduced level of high frequency content as 
compared to that of Figure 2.22.  In essence, this emphasizes longer-term (low frequency) 
variations while removing shorter-term (high) fluctuations.  It is clear that the peak-to-
peak value in the original signal (Figure 2.22) is significantly higher than in the signal 
that has been averaged (Figure 2.23) as the higher frequency information imposed on the 
lower frequency is averaged (filtered) away.
b) The figures below show in the effect of applying a moving average to 
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PROBLEM 2.13
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KNOWN:  A signal is known to contain random noise (noisy.txt). 
FIND:  Examine the effect of 2,3,and 4 point moving averages on the noisy signal.

ASSUMPTIONS:  The time between each data point is the same.

SOLUTION:

The figures below show in the effect of applying a moving average to the data in the file 
noisy.txt.
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PROBLEM 
2.14

KNOWN:  A spring-mass system, with

m = 1 kg
T = 2 s

 
FIND:  Spring constant, k, and natural frequency 

SOLUTION:

Since

(as shown in association with equation 2.7)

and

The natural frequency is then found as  =  = 3.14 rad/s

And



 



PROBLEM 2.15

KNOWN:  A spring-mass system having

m = 1 kg

k = 5000 N/cm
 
FIND: The natural frequency in rad/sec () and Hz (f ). 

SOLUTION:

The natural frequency may be determined, 



PROBLEM 2.16

KNOWN:  Functions:

a) 

b) 

c) 

FIND:  The period, frequency in Hz, and circular frequency in rad/s are found from

SOLUTION:

a)  = 2 rad/s f =  1 Hz T  = 1 s

b)  = 8 rad/s f =  Hz T  =  s

c)  = 5n rad/s f = 5n/2 Hz T  = 2/(5n) s



PROBLEM 2.17

FIND: Express each function in terms of sine terms and/or cosine terms only or as sine 
and cosine terms.

SOLUTION

 

a.

b.

 

c.



PROBLEM 2.18

KNOWN:   
 
FIND:  Equivalent expression containing a) a cosine term only, and b) a sine term only

SOLUTION: 
a) From Equations 2.10 and 2.11

and with 

we find

and 

b) From Equations 2.10 and 2.11

and with 

we find

and 



 
PROBLEM 2.19

KNOWN: 
 
FIND: 

a)  Equivalent expression containing cosine terms only

SOLUTION:  From Equations 2.15 and 2.17

 



PROBLEM 2.20

KNOWN: 

 
FIND:  a)  fundamental frequency and period

b)  express this series in as cosine terms only 

SOLUTION: 

a)  The fundamental frequency corresponds to n = 1, so with the general form being sin 
t and cos t, then  = 1 rad/s;  and so  T = 2/ = 2

b) From equation 2.15 and 2.17

For this Fourier series

Thus the third partial sum may be written



PROBLEM 2.21

KNOWN: 

 

FIND:  Fourier series that represents the function 

SOLUTION: The function  has a period of  so that the Fourier 
coefficients may be found from Equation 2.18 as 
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The term  is zero as seen from 

And  is given by 

And  is given by 

And all other  are given by 

    for n > 1

The result of the Fourier coefficient equations is consistent with the expected result:



PROBLEM 2.22

SOLUTION

Loudness refers to a measure of sound intensity (akin to sound power level discussed in 
Chapter 9).
Pitch refers to the frequency of the fundamental component of the sound wave.
Timbre refers to the harmonic components in the sound wave.

Two signals with the same loudness and pitch can sound quite different. For example, 
consider “A below middle C” or a 220 Hz signal. We can create a pure 220 Hz sine wave 
using a sine wave generator. The sound will be a pure single frequency but this will be 
irritating or tiresome to listen to in a short time. Yet, a violinist playing a single note, ‘A 
below middle C’ or 220 Hz, at the same loudness, will produce a sound that is quite full 
and lovely. The violin sound will contain harmonics, 440 Hz, 660 Hz, 880 Hz and so on – 
adding timbre. 

So these two sounds contain the same loudness and pitch, but not the same timbre. The 
timbre adds the richness or fullness to sound. It also makes similar sounds sound different 
(and thereby distinguishing between instruments). Interestingly, the shape of these two 
waveforms will also be a bit different: the sine wave generator produces a single sine 
wave, whereas the violin produces more of a sawtooth wave (pure tone plus harmonics), 
due in part to the resin applied to the bow and thus creating the many harmonics that 
comprise the sound. Similarly, the striking of the piano key also produces harmonics, but 
the difference in the harmonics allows one’s ear to distinguish between these two 
instruments. 

Below, we plot the Fourier analysis of two signals, each having the same loudness and 

pitch. Plotted in this way, we can discern why two signals of the same intensity and 
fundamental frequency might ‘sound’ differently. In fact, we should see how Fourier 
analysis might be useful in discerning the different information both within and between 
signals. 



PROBLEM 2.23

KNOWN: 

FIND:  Fourier series for the function y(t).

SOLUTION:

Since the function y(t) is an even function, the Fourier series will contain only cosine 
terms,

The coefficients are found as

for n even An= 4/n2   for n odd An = 4/n2 and the resulting Fourier series is

a series approximation for  is 



PROBLEM 2.24

KNOWN:   The given plot can be interpreted as

 

FIND:  Fourier series for y(t) assuming that the function has a period of   

SOLUTION:  Since the function is neither even nor odd, the Fourier series will 
contain both sine and cosine terms.  The coefficients are found as 

Note:  Since the contribution from  to 0 is identically zero, it will be omitted.

Noting that An is zero for n even, and Bn is zero for n odd, the resulting Fourier series is



PROBLEM 2.25

KNOWN: 

y(t) = 
 
FIND:  Fourier series representation of y(t) 

ASSUMPTION:   Utilize an odd periodic extension of y(t)

SOLUTION: 

The function is extended as shown below with a period of 4. 

The Fourier 
series for an odd 
function contains 
only sine terms and 
can be written

where

For the odd periodic extension of the function y(t) shown above, this integral can be 
expressed as the sum of three integrals
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These integrals can be evaluated and simplified to yield the following expression for Bn

Since sin(n) is identically zero, and sin(n/2) is zero for n even, the Fourier series can 
be written

The first four partial sums of this series are shown below
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PROBLEM 2.26

KNOWN:   The function in Figure 2.25 can be interpreted as:

y(t) = 
 
FIND:  Fourier series representation of y(t) 

ASSUMPTION:   y(t) is an odd function with a period  

SOLUTION: 

Because the function is odd, we know that

 

And we can find Bn from

 

The integration yields the Fourier series

 

The first three partial sums of the series is plotted below
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PROBLEM 2.27

KNOWN: 
a) sin 10t  V

b) 

c)  
d)  2  V 

FIND:  Classification of signals

SOLUTION:
a)  Dynamic, deterministic, simple periodic waveform
b)  Dynamic, deterministic periodic with a zero offset (of 5 m)
c)  Dynamic, deterministic, unbounded as ; not periodic
d)  Static, deterministic  ; not periodic



PROBLEM 2.28

KNOWN:  At time zero (t = 0)

 
FIND:

a) period, T
b) amplitude, A
c) displacement as a function of time, x(t)
d) maximum speed

SOLUTION:

The position of the particle as a function of time may be expressed

so that 

Thus, at t = 0 
From these expressions we find

a) T = 1 s

b) amplitude, A = 5/2

c) 

d) maximum speed  = 5 cm/s



PROBLEM 2.29

FIND:  Define the terms listed

a) Frequency content c)  Magnitude
b)  Amplitude d)  Period 

SOLUTION:

a) Frequency content - for a waveform, refers to the relative amplitude in terms of the 
associated frequencies of the signal. A Fourier series expresses the frequency content by 
associating amplitudes with frequency terms. A result of a Fourier transform does the 
same thing.

b)  Amplitude – describes the range of variation of a particular frequency component in a 
waveform

c)  Magnitude - the value of a signal, which may be a function of time (or space)

d)  Period - the time for a signal to repeat (signal period), or the time associated with a 
particular frequency component (i.e., Tn = 2/n). 



PROBLEM 2.30

KNOWN: 
Fourier series for the function y(t) = t in Problem 2.21

FIND:
Construct an amplitude spectrum plot for this series. 

SOLUTION:

DataSpect can be used to generate the plot below. Alternatively, we can construct the 
amplitude spectrum directly from inspection of the Fourier series, as follows 

Each term is of the form Bn sin 2fnt.  

So, for the first term: B1 = 10/ at a frequency f1 = 1/10 = 0.1 Hz. And so forth…
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PROBLEM 2.31

KNOWN:  Signal sources:

a) thermostat on a refrigerator

b) input to a spark plug

c) input to a cruise control

d) a pure musical tone

e) note produced by a guitar string

f) AM and FM radio signals

FIND:  Sketch representative signal waveforms.

SOLUTION: 

a)

This is a simple series of ‘on’ (high) or ‘off’ (low or zero) amplitudes (which act to cycle 
the refrigerator compressor on or off) occurring at alternating times corresponding to the 
temperatures inside the refrigerator relative to its set temperature.

b)

This is a series of pulses to ignite the spark plug consistent with the rotational speed of 
the engine.

Time

Signal

Time

Signal





c)

This is a continuous correction signal (speed up or slow down) aimed at maintaining a 
constant speed relative to road conditions.

d)

A pure musical tone is a pure sine wave.
e) 
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A guitar string produces a sine wave of a fundamental frequency (pitch) plus harmonics 
(Timbre).

f)

AM signals are amplitude modulating; FM signals are frequency modulating.

AM radio wave
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PROBLEM 2.32

SOLUTION

Similarities: 

Both the Fourier series and the Fourier transform represent general functions as a 
superposition of sines and cosines (or in terms of exponentials by using Euler’s identity 

). 

Differences: 

The Fourier series is for periodic signals. It decomposes the signal into a series of 
harmonics that are integer multiples of a fundamental frequency. Not all frequencies are 
represented in the series.

The Fourier transform extends the concept to include aperiodic signals. It decomposes the 
signal into a continuous number of different frequencies and amplitudes, although any 
particular frequency may have zero amplitude. 

Note: The discrete Fourier transform includes amplitude and phase information over a 
continuous number of frequency intervals.

By definition, a periodic signal extends to infinity by repeating itself every period. But 
the Fourier transform can be applied to real periodic signals because the data sets of the 
signals have a finite length; in effect, they are treated as being aperiodic signals. 



PROBLEM 2.33

KNOWN:  A0 = 5V A1 = 2V B2 = 1V A3 = 3V
f1 = 5 Hz f2 = 10 Hz f3 = 15 Hz

FIND: discrete series of 256 values of exactly two periods 

SOLUTION
Here f1 = 5 Hz and we want m = 2 periods. We will create a discrete series of N = 256 
data points with each data point separated by t = m/Nf1 = 2/256*5 Hz = 0.001563 s. The 
first ten terms of the discrete series are shown. All 256 data points are shown in the plot.

r t y{rt}
0 0 10

1
0.00156
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PROBLEM 2.34

KNOWN:  A0 = 1V A1 = 3V B2 = 1V
f1 = 2 Hz f2 = 4 Hz

FIND: discrete series of 64 values of three periods 

SOLUTION
Here f1 = 2 Hz and we want m = 3 periods. We will create a discrete series of N = 64 data 
points with each data point separated by t = m/Nf1 = 3/64*2 Hz = 0.023438  s. The first 
ten terms of the discrete series are shown. All 64 data points are shown in the plot.

r t y{rdt}
0 0 4
1 0.023438 4.426391
2 0.046875 4.418288
3 0.070313 3.883965
4 0.09375 2.855157
5 0.117188 1.489142
6 0.140625 0.032046
7 0.164063 -1.24566
8 0.1875 -2.12132
9 0.210938 -2.47723



PROBLEM 2.35

KNOWN:   [V]
 y{rt} with N = 64 and t = 0.023438  s
A0 = 1V A1 = 3V B2 = 1V

f1 = 2 Hz f2 = 4 Hz

SOLUTION
The first ten data points of the discrete series and the Fourier analysis are tabulated 
below. The amplitude and phase spectra are plotted for 32 coefficients. The spectra are 
consistent with the amplitude and frequency content. The f2 is 90o out of phase with f1. 
This is consistent with cos(x)=sin(x+pi/2).

r t y{rdt} C(f) f(Hz) f(degrees)
0 0 4 64 1 0 0
1 0.023438 4.426391 0 0 0.666667 0
2 0.046875 4.418288 0 0 1.333333 0
3 0.070313 3.883965 96 3 2 0
4 0.09375 2.855157 0 0 2.666667 0
5 0.117188 1.489142 0 0 3.333333 0
6 0.140625 0.032046 -32i 1 4 -90
7 0.164063 -1.24566 0 0 4.666667 0
8 0.1875 -2.12132 0 0 5.333333 0
9 0.210938 -2.47723 0 0 6 0



PROBLEM 2.36

FIND:  Discrete data set of 256 data points for three periods of a sinusoidal signal. 
Compare Fourier analysis for same signal with and without a DC component (0 Hz 
amplitude or signal mean value).

SOLUTION
(a) We create a data set of N = 256 points each separated by t = 0.011719 s. Strategy: in 
order detail m = 3 exact periods, we need a time interval of t = m/Nf1 = 3/(256*1) s. The 
first 10 terms are shown below. The discrete series is plotted in time domain. (b) The 
discrete Fourier transform (DFT) analysis is also shown in the table for the signal having 
A0 = 1 V.  Here we used Excel (as instructed in a text example). The results of the Fourier 
analysis are plotted in frequency domain. The DFT provides the magnitude 

. The DC component reveals itself as the zeroth frequency term. The DC 
component refers to the static or non-time varying component of a signal, its mean value. 

(c)  If we extract the DC component (either subtract it from the signal or set it to zero), it 
adjusts the signal about zero amplitude in time domain and this is reflected by a change in 
the zero hertz component in the spectrum to zero (i.e., C(f0) = 0). However, there is no 

r y{rdt} t (sec)  Y(f) C(f) f (Hz)
data number Discrete series time DFT return Combined Re and Im frequency

0 1 0 256 1 0
1 1.735645636 0.01171875 0 0 0.333333
2 2.467304745 0.0234375 0 0 0.666667
3 3.191012402 0.03515625 -1280i 10 1
4 3.902846773 0.046875 0 0 1.333333
5 4.598950365 0.05859375 0 0 1.666667
6 5.275550934 0.0703125 0 0 2
7 5.928981922 0.08203125 0 0 2.333333
8 6.55570233 0.09375 0 0 2.666667
9 7.152315906 0.10546875 0 0 3



change to the remaining coefficients in the spectrum, as shown. So the DC component 
(mean) value has no effect on the time-based signal information. 



PROBLEM 2.37

KNOWN:  

FIND:  e(t) as a discrete-time series of N = 128 numbers separated by a time increment 
of t .  Find the amplitude-frequency spectrum.

SOLUTION:

With N = 128 and t = 1/N, the discrete-time series will represent a total time (or series 
length) of N t = 1 sec.  The signal to be represented contains two fundamental 
frequencies,

f1 = 31.4/2 = 5 Hz and f2 = 44/2 = 7 Hz 

We see that the total time length of the series will represent more than one period of the 
signal e(t) and, in fact, will represent 5 periods of the f1 component and 7 periods of the f2 
component of this signal.  This is important because if we represent the signal by a 
discrete-time series that has an exact integer number of the periods of the fundamental 
frequencies, then the discrete Fourier series will be exact.

DataSpect (or any DFT or FFT program; Matlab or Excel programmed for 
Fourier analysis) is used to solve this problem.  The time series and the amplitude 
spectrum are plotted below.
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PROBLEM 2.38

KNOWN:  

FIND:  Discrete series using N = 256 and t = 1/256 s and t = 1/512 s; amplitude 

spectra

The resolution and number of data points changes but not the signal content or the 
spectrum quality. In Chapter 7, we study the relation between sample rate and discrete-
series quality.
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Problem 2.38 continued
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PROBLEM 2.39

KNOWN:  

 

FIND: Coefficients A0, An, Bn

SOLUTION

Ao is simply the average of the signal over its period. This value is called the DC 
component. 

 
This signal is symmetric about y-axis at t = 0 and is therefore even. Hence, Bn = 0.

 
If the signal were odd (opposite in sign and symmetrical about t = 0), the series would be 
made up of only sines instead, that is An = 0 but Bn ≠ 0. So the representation would differ 
only by the phase.



PROBLEM 2.40

KNOWN: Pulse train with A = 1 V, r = 0.2 and f = 1 Hz.

FIND: A1, A2, …, A10. Plot over two periods.

SOLUTION

We draw off the previous solution for A0, An, and Bn:

V

  

  V
T = 1/f = 1 s

As one adds increasing numbers of partial terms, the reconstruction improves. 
 This reconstruction of the signal based on the first ten terms of the Fourier series, 

as plotted, does not yet have enough terms to adequately depict the sharp rise and 
fall of the pulse train. We can make out the pulse train but with some oscillations. 
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Reconstruction: First Ten Terms in Fourier Series of Pulse Train

Time (s)

y(
t)

  (
V)

n An Bn

0 0.2 0
1 0.37420 0
2 0.30273 0
3 0.20182 0
4 0.09355 0
5 0.00000 0
6 0.06237 0
7 0.08649 0
8 0.07568 0
9 0.04158 0

10 0.00000 0



 The series is said to “converge slowly” requiring many more terms to capture its 
abrupt details accurately. Adding higher order terms improves the reconstruction 
of the rapid changes.



PROBLEM 2.41

KNOWN: Pulse train with A = 1 V, r = 0.5 and T = 1 s.

FIND: A1, A2, …, A7. 

SOLUTION

We draw from the solution to the previous problems:

V

  
and

 

The signal has the reconstructed form:

  V
T = 1 s

n An Bn

0 0.5 0
1 0.6366 0
2 0 0
3 -0.2122 0
4 0 0
5 0.1273 0
6 0 0
7 -0.0909 0



PROBLEM 2.42

KNOWN:  Data file heartbeat.xls

SOLUTION

The signal heartbeat.xls consists of 247 data points over about 2 seconds in length 
representing y{rt} versus t. The Fourier analysis in both Excel and Matlab require data 
lengths to be powers of 2 (i.e., 2, 4, 8, 32, 64, 128, 256, …). Either truncate and analyze 
the first 128 data points (28) or  add another 9 data points as ‘0’ zeros to make 27 or 256 
data points. Either method works. Each data point is separated by t = 0.008081 s. 
Using Excel, Column A is the data point number (i.e., 0 to 255). Column B is y{rt}, the 
discrete signal of the flowrate with time. Column C is the time each point in Column B 
was recorded relative to the start time. Column D presents the results of the Fourier 
transform Y(f) (in Excel: using Data/data analysis/Fourier Analysis ) on the data in 
Column B. Column E combines the imaginary and real coefficients using the IMABS 
(Y(f)) function and properly scales it to show the magnitude Cn.  Column F determines 
each coefficient frequency (f  = r/Nt). The first 10 rows are shown below in tabular 
form. The amplitude spectrum is plotted for the first N/2 coefficients. Information at 
three frequencies dominates the spectrum. Critical information is extracted:

(a) The mean flow rate is given by the ‘zero hertz or f = 0’ coefficient or DC component: 
Q_avr = 1.494 liters/min. The fundamental frequency is: f1 = 1.45 Hz. We would expect 
the heartbeat to be at this dominant frequency. So, the heartbeat rate is: HR = f1* 60s/min 
= 87 beats/min 

(b) The first harmonic of the fundamental frequency is: f2 = 2.90 Hz

datapoint Q_ao t (sec) Y(f) C(f) f (Hz)
0 0.124097 0 382.519812255921.494 0.00
1 0.193958 0.0080808 -12.1100937022033-7.79105649976433i0.11 0.48
2 0.216353 0.0161616 -10.3683378355985-23.4142135746255i0.20 0.97
3 0.211496 0.0242424 55.3712585362952-319.057986749803i2.53 1.45
4 0.1996 0.0323232 -32.0768379972382+34.4139696475625i0.37 1.93
5 0.20321 0.040404 -41.0478315907563+11.081973049884i0.33 2.42
6 0.258888 0.0484848 -189.110999669544-53.3567227863484i1.54 2.90
7 0.421162 0.0565656 30.6651954786552+31.9106827270251i0.35 3.38
8 0.839332 0.0646464 5.86205639975097+24.0918081360412i0.19 3.87
9 1.666831 0.0727272 -13.6440718149365+46.9049691339719i0.38 4.35



PROBLEM 2.43

KNOWN:  y(t) = 2At/T  for –T/2 < t < T/2
T = 2 s; A = 1 V

FIND: Cn  

SOLUTION 

The discrete series is developed for N = 128 points and a period of 2 s using t = 2/128 s. 
The time domain signal is plotted below revealing the odd function. The first 10 points in 
the series are shown in the Table, as are the first ten coefficients from a discrete Fourier 
transform (DFT) analysis. The coefficient magnitudes, |Cn | are plotted against frequency. 
The zero harmonic or mean value is zero. The fundamental frequency is 0.5 Hz. The 
amplitude for each harmonic is a decrement of the fundamental frequency amplitude, that 
is C1/Cn = n. The Fourier analysis returns  the magnitude of the coefficients, 

 , so that the sign is lost. The comparison of the DFT results to Fourier 
analysis (Bn) is essentially the same except for some roundoff (due to the inexact nature 
of the frequency spacing).

r t y(t) f C(f) C1/Cn Bn

0 -1 -1 0 0.007813
1 -0.98438 -0.98438 0.5 0.636684 1 0.63662
2 -0.96875 -0.96875 1 0.318438 2 -0.31831
3 -0.95313 -0.95313 1.5 0.212398 3 0.212207
4 -0.9375 -0.9375 2 0.159411 4 -0.15915
5 -0.92188 -0.92188 2.5 0.127644 5 0.127324
6 -0.90625 -0.90625 3 0.106488 6 -0.1061
7 -0.89063 -0.89063 3.5 0.091395 7 0.090946
8 -0.875 -0.875 4 0.080091 8 -0.07958
9 -0.85938 -0.85938 4.5 0.071314 9 0.070736



COMMENT The Fourier analysis of the sawtooth function is provided here for 
completeness but is studied in another practice problem



PROBLEM 2.44

KNOWN:  A force input signal varies between 100 and 170 N ( ) at a 
frequency of  = 10 rad/s. 
 
FIND:  Signal average value, amplitude and frequency.  Express the signal, y(t), as a 
Fourier series.

SOLUTION: 

The signal characteristics may be determined by writing the signal as

y(t) = 135 + 35 sin 10t  [N]

a) Ao = Average (or static) value = (170 + 100)/2 = 135 N

b) C1 = (170  100)/2 = 135 N;  f1 = /2 = 10/2 = 1.59 Hz

c) y(t) = 135 + 35 sin (10t  /2) 

A discrete time series was created using 16 points each separated by 0.1571 s. The 
amplitude spectrum is shown below.
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PROBLEM 2.45

KNOWN:  Wall pressure is measured in the upward flow of water and air as provided 
in the file gas_ liquid_data.txt.  The flow is in the slug flow regime, with slugs of liquid 
and large gas bubbles alternating in the flow, as shown in the text Figure 2.27.  Pressure 
measurements were acquired at a sample frequency of 300 Hz, and the average flow 
velocity is 1 m/sec.

FIND:   Construct an amplitude spectrum for the signal, and determine the length of the 
repeating bubble/slug flow pattern.

SOLUTION:

The figure below shows the amplitude spectrum for the measured data.  There is clearly a 
dominant frequency at 0.73 Hz.  Then with an average flow velocity of 1 m/sec, the 
length is determined as 
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PROBLEM 2.46

KNOWN:  Sunspot data for the years 1746 to 2005, from the file sunspot.txt. 
 
FIND:  Plot the data and create an amplitude spectrum using the companion software 
program Dataspect. 

SOLUTION:

Using the zoom control, we can estimate that the amplitude peak occurs at approximately 
0.008 which corresponds to a period in months of 125 and a period in years of 10.4.  
Most references quote an 11 year period.



PROBLEM 2.47

KNOWN:   Amplitude and phase spectrum for {y(rt)} from Figure 2.28

FIND: {y(rt)}, 

SOLUTION:
By inspection of Figure 2.27:

and .

The signal can be reconstructed from the above information, as

The exact phase of the signal relative to t = 0 is not known, so y(t) is ambiguous within 

in terms of its overall phase.

A DFT returns N/2 values.  Therefore 5 spectral values implies that N = 10.  Then

Alternatively, by inspection of the plots 



PROBLEM 2.48

KNOWN: 

 
FIND:  Show that the signal y(t) can be represented by the Fourier series

SOLUTION:

a)  Since the function y(t) is an even function, the Fourier series will contain only cosine 
terms,

The value of Ao is determined from Equation (2.17)

integrating yields a value of zero for Ao

Then to determine An

Since sin(n) = 0, then the Fourier series is



The values of An are zero for n even, and the first three nonzero terms of the Fourier 
series are 

The first term represents the fundamental frequency.
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PROBLEM 2.49

KNOWN:  Figure 2.14 illustrates the nature of spectral distribution or frequency 
distribution on a signal.

FIND:  Discuss the effects of low amplitude high frequency noise on signals.

SOLUTION: 

Assume that Figure 2.14a represents a signal, and that Figures 2.14 b-d represent the 
effects of noise superimposed on the signal.  Several aspects of the effects of noise are 
apparent.  The waveform can be altered significantly by the presence of noise, 
particularly if rates of change of the signal are important for specific purposes such as 
control.  Generally, high frequency, low amplitude noise will not influence a mean value, 
and most of the signal statistics are not affected when calculated for a sufficiently long 
signal.



PROBLEM 2.50

SOLUTION

Use Sound.vi to study the amplitude spectra related to different sounds you can supply to 
your computers microphone. 


