
Exercise 2.2.1a

For relation Accounts, the attributes are:

acctNo, type, balance

For relation Customers, the attributes are:

firstName, lastName, idNo, account

Exercise 2.2.1b

For relation Accounts, the tuples are:

(12345, savings, 12000),
(23456, checking, 1000),
(34567, savings, 25)

For relation Customers, the tuples are:

(Robbie, Banks, 901-222, 12345),
(Lena, Hand, 805-333, 12345),
(Lena, Hand, 805-333, 23456)

Exercise 2.2.1c

For relation Accounts and the first tuple, the components are:

123456  acctNo
savings  type
12000  balance

For relation Customers and the first tuple, the components are:

Robbie  firstName
Banks  lastName
901-222  idNo
12345  account

Exercise 2.2.1d

For relation Accounts, a relation schema is:

Accounts(acctNo, type, balance)
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For relation Customers, a relation schema is:

Customers(firstName, lastName, idNo, account)

Exercise 2.2.1e

An example database schema is:

Accounts (
acctNo,
type,
balance

)
Customers (

firstName,
lastName,
idNo,
account

)

Exercise 2.2.1f

A suitable domain for each attribute:

acctNo  Integer
type  String
balance  Integer
firstName  String
lastName  String
idNo  String (because there is a hyphen we cannot use Integer)
account  Integer

Exercise 2.2.1g

Another equivalent way to present the Account relation:

acctNo balance type
34567 25 savings
23456 1000 checking
12345 12000 savings



Another equivalent way to present the Customers relation:

idNo firstName lastName account
805-333 Lena Hand 23456
805-333 Lena Hand 12345
901-222 Robbie Banks 12345

Exercise 2.2.2

Examples of attributes that are created for primarily serving as keys in a relation:

Universal Product Code (UPC) used widely in United States and Canada to track products in 
stores.

Serial Numbers on a wide variety of products to allow the manufacturer to individually track 
each product.

Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry 
to identify vehicles.

Exercise 2.2.3a

We can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 
3! = 6 ways. Thus, the number of presentations is 6*6 = 36.

Exercise 2.2.3b

We can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any 
of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880

Exercise 2.2.3c

We can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n! 
ways. Thus, the number of presentations is n!m!

Exercise 2.3.1a

CREATE TABLE Product (
maker CHAR(30),
model CHAR(10) PRIMARY KEY,
type CHAR(15)

);

Exercise 2.3.1b

CREATE TABLE PC (



model CHAR(30),
speed DECIMAL(4,2),
ram INTEGER,
hd INTEGER,
price DECIMAL(7,2)

);

Exercise 2.3.1c

CREATE TABLE Laptop (
model CHAR(30),
speed DECIMAL(4,2),
ram INTEGER,
hd INTEGER,
screen DECIMAL(3,1),
price DECIMAL(7,2)

);

Exercise 2.3.1d

CREATE TABLE Printer (
model CHAR(30),
color BOOLEAN,
type CHAR (10),
price DECIMAL(7,2)

);

Exercise 2.3.1e

ALTER TABLE Printer DROP color;

Exercise 2.3.1f

ALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’;

Exercise 2.3.2a

CREATE TABLE Classes (
class CHAR(20),
type CHAR(5),
country CHAR(20),
numGuns INTEGER,
bore DECIMAL(3,1),
displacement INTEGER

);



Exercise 2.3.2b

CREATE TABLE Ships (
name CHAR(30),
class CHAR(20),
launched INTEGER

);

Exercise 2.3.2c

CREATE TABLE Battles (
name CHAR(30),
date DATE

);

Exercise 2.3.2d

CREATE TABLE Outcomes (
ship CHAR(30),
battle CHAR(30),
result CHAR(10)

);

Exercise 2.3.2e

ALTER TABLE Classes DROP bore;

Exercise 2.3.2f

ALTER TABLE Ships ADD yard CHAR(30);

Exercise 2.4.1a

R1 := σspeed ≥ 3.00 (PC)
R2 := πmodel(R1)

Exercise 2.4.1b

R1 := σhd ≥ 100 (Laptop)
R2 := Product  (R1)
R3 := πmaker (R2)

model
1005
1006
1013

maker



Exercise 2.4.1c

R1 := σmaker=B (Product  PC)
R2 := σmaker=B (Product  Laptop)
R3 := σmaker=B (Product  Printer)
R4 := πmodel,price (R1)
R5 := πmodel,price (R2)
R6: = πmodel,price (R3)
R7 := R4  R5  R6

model price
1004 649
1005 630
1006 1049
2007 1429

Exercise 2.4.1d

R1 := σcolor = true AND type = laser (Printer)
R2 := πmodel (R1)

Exercise 2.4.1e

R1 := σtype=laptop (Product)
R2 := σtype=PC(Product)
R3 := πmaker(R1)
R4 := πmaker(R2)
R5 := R3 – R4

Exercise 2.4.1f

E
A
B
F
G

model
3003
3007

maker
F
G



R1 := ρPC1(PC)
R2 := ρPC2(PC)
R3 := R1  (PC1.hd = PC2.hd AND PC1.model <> PC2.model) R2
R4 := πhd(R3)

Exercise 2.4.1g

R1 := ρPC1(PC)
R2 := ρPC2(PC)
R3 := R1  (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model) R2
R4 := πPC1.model,PC2.model(R3)

Exercise 2.4.1h

R1 := πmodel(σspeed ≥ 2.80(PC))  πmodel(σspeed ≥ 2.80(Laptop))
R2 := πmaker,model(R1  Product)
R3 := ρR3(maker2,model2)(R2)
R4 := R2  (maker = maker2 AND model <> model2) R3
R5 := πmaker(R4)

Exercise 2.4.1i

R1 := πmodel,speed(PC)
R2 := πmodel,speed(Laptop)
R3 := R1  R2
R4 := ρR4(model2,speed2)(R3)
R5 := πmodel,speed (R3  (speed < speed2 ) R4)
R6 := R3 – R5
R7 := πmaker(R6  Product)

maker
B

Exercise 2.4.1j

hd
250
80
160

PC1.model PC2.model
1004 1012

maker
B
E



R1 := πmaker,speed(Product  PC)
R2 := ρR2(maker2,speed2)(R1)
R3 := ρR3(maker3,speed3)(R1)
R4 := R1  (maker = maker2 AND speed <> speed2) R2
R5 := R4  (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3
R6 := πmaker(R5)

 

Exercise 2.4.1k

R1 := πmaker,model(Product  PC)
R2 := ρR2(maker2,model2)(R1)
R3 := ρR3(maker3,model3)(R1)
R4 := ρR4(maker4,model4)(R1)
R5 := R1  (maker = maker2 AND model <> model2) R2
R6 := R3  (maker3 = maker AND model3 <> model2 AND model3 <> model) R5
R7 := R4  (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6
R8 := πmaker(R7)

Exercise 2.4.2a

Exercise 2.4.2b

maker
A
D
E

maker
A
B
D
E



Exercise 2.4.2c

Exercise 2.4.2d



Exercise 2.4.2e

Exercise 2.4.2f

Exercise 2.4.2g



Exercise 2.4.2h

Exercise 2.4.2i



Exercise 2.4.2j



Exercise 2.4.2k



Exercise 2.4.3a

R1 := σbore ≥ 16 (Classes)
R2 := πclass,country (R1)

class country
Iowa USA
North Carolina USA
Yamato Japan

Exercise 2.4.3b



R1 := σlaunched < 1921 (Ships)
R2 := πname (R1)

name
Haruna
Hiei
Kirishima
Kongo
Ramillies
Renown
Repulse
Resolution
Revenge
Royal Oak
Royal Sovereign
Tennessee

Exercise 2.4.3c

R1 := σbattle=Denmark Strait AND result=sunk(Outcomes) 
R2 := πship (R1)

ship
Bismarck
Hood

Exercise 2.4.3d

R1 := Classes  Ships
R2 := σlaunched > 1921 AND displacement > 35000 (R1)
R3 := πname (R2)

name
Iowa
Missouri
Musashi
New Jersey
North Carolina
Washington
Wisconsin
Yamato

Exercise 2.4.3e

R1 := σbattle=Guadalcanal(Outcomes)



R2 := Ships  (ship=name) R1
R3 := Classes  R2
R4 := πname,displacement,numGuns(R3)

name displacement numGuns
Kirishima 32000 8
Washington 37000 9

Exercise 2.4.3f

R1 := πname(Ships)
R2 := πship(Outcomes)
R3 := ρR3(name)(R2)
R4 := R1  R3

name
California
Haruna
Hiei
Iowa
Kirishima
Kongo
Missouri
Musashi
New Jersey
North Carolina
Ramillies
Renown
Repulse
Resolution
Revenge
Royal Oak
Royal Sovereign
Tennessee
Washington
Wisconsin
Yamato
Arizona
Bismarck
Duke of York
Fuso
Hood
King George V
Prince of Wales
Rodney
Scharnhorst



Exercise 2.4.3g

From 2.3.2, assuming that every class has one ship named after the class.

R1 := πclass(Classes)
R2 := πclass(σname <> class(Ships))
R3 := R1 – R2

Exercise 2.4.3h

R1 := πcountry(σtype=bb(Classes))
R2 := πcountry(σtype=bc(Classes))
R3 := R1 ∩ R2

Exercise 2.4.3i

R1 := πship,result,date(Battles  (battle=name) Outcomes)
R2 := ρR2(ship2,result2,date2)(R1)
R3 := R1  (ship=ship2 AND result=damaged AND date < date2) R2
R4 := πship(R3)

No results from sample data.

Exercise 2.4.4a

South Dakota
West Virginia
Yamashiro

class
Bismarck

country
Japan
Gt. Britain



Exercise 2.4.4b

Exercise 2.4.4c

Exercise 2.4.4d

Exercise 2.4.4e



Exercise 2.4.4f

Exercise 2.4.4g



Exercise 2.4.4h

Exercise 2.4.4i

Exercise 2.4.5

The result of the natural join has only one attribute from each pair of equated attributes. On the 
other hand, the result of the theta-join has both columns of the attributes and their values are 
identical.

Exercise 2.4.6



Union
If we add a tuple to the arguments of the union operator, we will get all of the tuples of 
the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then 
the set behavior will eliminate that tuple. Thus the union operator is monotone.

Intersection
If we add a tuple to the arguments of the intersection operator, we will get all of the 
tuples of the original result and maybe the added tuple. If the added tuple does not exist 
in the relation that it is added but does exist in the other relation, then the result set will 
include the added tuple. Thus the intersection operator is monotone.

Difference
If we add a tuple to the arguments of the difference operator, we may not get all of the 
tuples of the original result. Suppose we have relations R and S and we are computing R 
– S. Suppose also that tuple t is in R but not in S. The result of R – S would include tuple 
t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the 
difference operator is not monotone.

Projection
If we add a tuple to the arguments of the projection operator, we will get all of the tuples 
of the original result and the projection of the added tuple. The projection operator only 
selects columns from the relation and does not affect the rows that are selected. Thus the 
projection operator is monotone.

Selection
If we add a tuple to the arguments of the selection operator, we will get all of the tuples 
of the original result and maybe the added tuple. If the added tuple satisfies the select 
condition, then it will be added to the new result. The original tuples are included in the 
new result because they still satisfy the select condition. Thus the selection operator is 
monotone.

Cartesian Product
If we add a tuple to the arguments of the Cartesian product operator, we will get all of the 
tuples of the original result and possibly additional tuples. The Cartesian product pairs the 
tuples of one relation with the tuples of another relation. Suppose that we are calculating 
R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already 
in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesian 
product operator is monotone.

Natural Joins
If we add a tuple to the arguments of a natural join operator, we will get all of the tuples 
of the original result and possibly additional tuples. The new tuple can only create 
additional successful joins, not less. If, however, the added tuple cannot successfully join 
with any of the existing tuples, then we will have zero additional successful joins. Thus 
the natural join operator is monotone.



Theta Joins
If we add a tuple to the arguments of a theta join operator, we will get all of the tuples of 
the original result and possibly additional tuples. The theta join can be modeled by a 
Cartesian product followed by a selection on some condition. The new tuple can only 
create additional tuples in the result, not less. If, however, the added tuple does not satisfy 
the select condition, then no additional tuples will be added to the result. Thus the theta 
join operator is monotone.

Renaming
If we add a tuple to the arguments of a renaming operator, we will get all of the tuples of 
the original result and the added tuple. The renaming operator does not have any effect on 
whether a tuple is selected or not. In fact, the renaming operator will always return as 
many tuples as its argument. Thus the renaming operator is monotone.

Exercise 2.4.7a

If all the tuples of R and S are different, then the union has n + m tuples, and this number is the 
maximum possible.

The minimum number of tuples that can appear in the result occurs if every tuple of one relation 
also appears in the other. Then the union has max(m , n) tuples. 

Exercise 2.4.7b

If all the tuples in one relation can pair successfully with all the tuples in the other relation, then 
the natural join has n * m tuples. This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if none of the tuples of one 
relation can pair successfully with all the tuples in the other relation. Then the natural join has 
zero tuples.

Exercise 2.4.7c

If the condition C brings back all the tuples of R, then the cross product will contain n * m tuples. 
This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if the condition C brings 
back none of the tuples of R. Then the cross product has zero tuples.

Exercise 2.4.7d

Assuming that the list of attributes L makes the resulting relation πL(R) and relation S schema 
compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R) 
are not in S.



The minimum number of tuples that can appear in the result occurs when all of the tuples in 
πL(R) appear in S. Then the difference has max(n – m , 0) tuples. 

Exercise 2.4.8

Defining r as the schema of R and s as the schema of S:

1. πr(R  S)

2. R  δ(πr∩s(S))where δ is the duplicate-elimination operator in Section 5.2 pg. 213

3. R – (R – πr(R  S))

Exercise 2.4.9

Defining r as the schema of R

1. R - πr(R  S)

Exercise 2.4.10

πA1,A2…An(R  S)

Exercise 2.5.1a

σspeed < 2.00 AND price > 500(PC) = ø

Model 1011 violates this constraint.

Exercise 2.5.1b

σscreen < 15.4 AND hd < 100 AND price ≥ 1000(Laptop) = ø

Model 2004 violates the constraint.

Exercise 2.5.1c

πmaker(σtype = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = ø

Manufacturers A,B,E violate the constraint.

Exercise 2.5.1d

This complex expression is best seen as a sequence of steps in which we define temporary 
relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:

    R1(maker, model, speed) := πmaker,model,speed(Product  PC)



     R2(maker, speed) := πmaker,speed(Product  Laptop)
     R3(model) := πmodel(R1  R1.maker = R2.maker AND R1.speed ≤ R2.speed R2)
     R4(model) := πmodel(PC)

The constraint is R4 ⊆ R3
Manufacturers B,C,D violate the constraint.

Exercise 2.5.1e

πmodel(σLaptop.ram > PC.ram AND Laptop.price ≤ PC.price(PC × Laptop)) = ø

Models 2002,2006,2008 violate the constraint.

Exercise 2.5.2a

πclass(σbore > 16(Classes)) = ø

The Yamato class violates the constraint.

Exercise 2.5.2b

πclass(σnumGuns > 9 AND bore > 14(Classes)) = ø

No violations to the constraint.

Exercise 2.5.2c

This complex expression is best seen as a sequence of steps in which we define temporary 
relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:

    R1(class,name) := πclass,name(Classes  Ships)
    R2(class2,name2) := ρR2(class2,name2)(R1)
    R3(class3,name3) := ρR3(class3,name3)(R1)
    R4(class,name,class2,name2) := R1  (class = class2 AND name <> name2) R2
    R5(class,name,class2,name2,class3,name3) := R4  (class=class3 AND name <> name3 AND name2 <> name3) R3

The constraint is R5 = ø
The Kongo, Iowa and Revenge classes violate the constraint.

Exercise 2.5.2d

πcountry(σtype = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = ø

Japan and Gt. Britain violate the constraint.

Exercise 2.5.2e



This complex expression is best seen as a sequence of steps in which we define temporary 
relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:

    R1(ship,battle,result,class) := πship,battle,result,class(Outcomes  (ship = name) Ships)
    R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1  Classes)
    R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2))
    R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2)))
    R5(ship2) := πship2(R3  (battle = battle2) R4)

The constraint is R5 = ø
No violations to the constraint. Since there are some ships in the Outcomes table that are not in 
the Ships table, we are unable to determine the number of guns on that ship.

Exercise 2.5.3

Defining r as the schema A1,A2,…,An and s as the schema B1,B2,…,Bn:

πr(R)  πs(S) = ø where  is the antisemijoin

Exercise 2.5.4

The form of a constraint as E1 = E2 can be expressed as the other two constraints. 
Using the “equating an expression to the empty set” method, we can simply say:

E1 – E2 = ø

As a containment, we can simply say:

E1  E⊆ 2 AND E2  E⊆ 1

Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in 
this section.


