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Exercise 1.1. Many centuries ago, a mariner poured 100 cm® of water into the ocean. As time
passed, the action of currents, tides, and weather mixed the liquid uniformly throughout the
earth's oceans, lakes, and rivers. Ignoring salinity, estimate the probability that the next cup of
water you drink will contain at least one water molecule that was dumped by the mariner. Assess
your chances of ever drinking truly pristine water. [Some possibly useful facts: M,, for water is
18.0 kg per kg-mole, the radius of the earth is 6370 km, the mean depth of the oceans is
approximately 3.8 km and they cover 71% of the surface of the earth. One cup is ~240 m/.]

Solution 1.1. To get started, first list or determine the volumes involved:

vs = volume of water dumped = 100 cm’, v, = volume of a cup ~ 240 cm’, and

V = volume of water in the oceans = 4zR’Dy,
where, R is the radius of the earth, D is the mean depth of the oceans, and yis the oceans'
coverage fraction. Here we've ignored the ocean volume occupied by salt and have assumed that
the oceans' depth is small compared to the earth's diameter. Putting in the numbers produces:
V =47(6.37x10°m)*(3.8 x10°m)(0.71)=1.376 x 10" m".

For well-mixed oceans, the probability P, that any water molecule in the ocean came from the
dumped water is:

_ (100 cm’ of water) Uy 1.0x10"*m’

(oceans' volume) ¥V 1.376x10%m’
Denote the probability that at least one molecule from the dumped water is part of your next cup
as P; (this is the answer to the question). Without a lot of combinatorial analysis, P; is not easy
to calculate directly. It is easier to proceed by determining the probability P, that all the
molecules in your cup are not from the dumped water. With these definitions, P; can be
determined from: P; = 1 — P,. Here, we can calculate P, from:

P, = (the probability that a molecule was not in the dumped water)™mPer of melecules in a cup],

The number of molecules, N, in one cup of water is

N, =240cm* x 1.00g gmole % 6.023x10% molecules

cm’ * 18.0g gmole
Thus, P, =(1—P,)" =(1-7.27 x102)**"  Unfortunately, electronic calculators and modern
computer math programs cannot evaluate this expression, so analytical techniques are required.
First, take the natural log of both sides, i.e.

In(P)=N,_In(1—P)=8.03x10** In(1—7.27 x10>)
then expand the natural logarithm using In(1-¢&) = —¢ (the first term of a standard Taylor series
for e 0)

=727x107%,

=8.03 x 10* molecules

In(P)=-N,-P,=-8.03x10"-7.27x10> =-584,
and exponentiate to find:
P=e™™ =107 . ()
Therefore, P, = 1 — P, is very-very close to unity, so there is a virtual certainty that the next cup
of water you drink will have at least one molecule in it from the 100 cm® of water dumped many
years ago. So, if one considers the rate at which they themselves and everyone else on the planet
uses water it is essentially impossible to get a truly fresh cup to drink.
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Exercise 1.2. An adult human expels approximately 500 ml of air with each breath during
ordinary breathing. Imagining that two people exchanged greetings (one breath each) many
centuries ago, and that their breath subsequently has been mixed uniformly throughout the
atmosphere, estimate the probability that the next breath you take will contain at least one air
molecule from that age-old verbal exchange. Assess your chances of ever getting a truly fresh
breath of air. For this problem, assume that air is composed of identical molecules having M,, =
29.0 kg per kg-mole and that the average atmospheric pressure on the surface of the earth is 100
kPa. Use 6370 km for the radius of the earth and 1.20 kg/m’ for the density of air at room
temperature and pressure.

Solution 1.2. To get started, first determine the masses involved.
m = mass of air in one breath = density X volume = (1.2Okg/m3X0.5 x 1073m3) = 0.60x10" kg

M = mass of air in the atmosphere = 4 7R’ T p(z)dz

z=0
Here, R is the radius of the earth, z is the elevation above the surface of the earth, and p(z) is the
air density as function of elevation. From the law for static pressure in a gravitational field,

dP/dz =—pg, the surface pressure, P, on the earth is determined from P, — P, = | p(z)gdz so
z=0

P-P
that: M =47R* —=—==47(6.37x10°m)*(10° Pa)=5.2 x 10" kg.
g
where the pressure (vacuum) in outer space = P, = 0, and g is assumed constant throughout the
atmosphere. For a well-mixed atmosphere, the probability P, that any molecule in the
atmosphere came from the age-old verbal exchange is
B 2 x (mass of one breath) _2m 12X 107 kg

°  (mass of the whole atmosphere) M  52x10"kg
where the factor of two comes from one breath for each person. Denote the probability that at
least one molecule from the age-old verbal exchange is part of your next breath as P; (this is the
answer to the question). Without a lot of combinatorial analysis, P; is not easy to calculate
directly. It is easier to proceed by determining the probability P, that all the molecules in your
next breath are not from the age-old verbal exchange. With these definitions, P; can be
determined from: P; = 1 — P,. Here, we can calculate P, from:

P, = (the probability that a molecule was not in the verbal exchange
The number of molecules, N, involved in one breath is

-3 3
_ 0.6x10" kg 8 10°g < 6.023 x 10°
29.0g/gmole kg gmole
Thus, P,=(1-P)" =(1-2.31x 10‘22)1'2”1022 . Unfortunately, electronic calculators and modern

computer math programs cannot evaluate this expression, so analytical techniques are required.
First, take the natural log of both sides, i.e.

In(P)=N,In(1—-P)=1.25x10"In(1-2.31x10*)
then expand the natural logarithm using In(1—&) = —¢ (the first term of a standard Taylor series
for e 0)

=2.31x107,

)[number of molecules in a breath]

s molecules _ 1.25 x10% molecules

b

In(P)=-N, - P,=—1.25x10"-2.31x107* =-2.89,
and exponentiate to find:
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P,=e?* =0.056.
Therefore, P; =1 — P, = 0.944 so there is a better than 94% chance that the next breath you take
will have at least one molecule in it from the age-old verbal exchange. So, if one considers how
often they themselves and everyone else breathes, it is essentially impossible to get a breath of
truly fresh air.
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Exercise 1.3. In Cartesian coordinates, the Maxwell probability distribution, f{u) = f{u,uz,u3), of
molecular velocities in a gas flow with average velocity U = (U;,U,,Us) is

32
Jw= {2 ij eXp{ 2kBT|u U|}

where 7 is the number of gas molecules in volume ¥, m is the molecular mass, kp is Boltzmann’s
constant and 7 is the absolute temperature.
a) Verify that U is the average molecular velocity, and determine the standard deviations (o7,

/2
o2, 03) of each component of U using o, =D.” (u, - Ui)zf(u)aﬁu}] fori=1, 2, and 3.

allu

b) Using the molecular version of perfect gas law (1.21), determine »n/V at room temperature 7" =
295 K and atmospheric pressure p = 101.3 kPa.

¢) Determine 7 for volumes ¥ = (10 zm)*, 1 gm’, and (0.1 um)’.

d) For the i™ velocity component, the standard deviation of the average, o, over n molecules

is 0,; = o,/Yn when n >> 1. For an airflow at U = (1.0 ms ', 0, 0), compute the relative
uncertainty, 2o,,/U,, at the 95% confidence level for the average velocity for the three volumes
listed in part c).

e) For the conditions specified in parts b) and d), what is the smallest volume of gas that ensures
a relative uncertainty in U of less than one percent?

Solution 1.3. a) Use the given distribution, and the definition of an average:

u,.= [l uf(u>d3u—( JTTF Xp{ T|u—U|2}d3u.

27k, T
allu —00—00 —00
Consider the first component of u, and separate out the integrations in the "2" and "3" directions.

wn={yz] TTTuew] 52

—00—00—00

32, 2 + 2
=[ n J qul exp{——m(u1 Y) }a’ulf xp{——m(u2 Us) }a’uzr xp{——m(u3_U3) }du3

27k, T) _, 2k,T o 2k, T g 2k,T
The integrations in the "2" and "3" directions are equal to: (272kBT / m)l/ 2, SO

/2 )
m m(u, —U,) }
= B B VIR
(ul)ave [27[](371) ;[:ul eXp{ 2kBT ul

The change of integration variable to = (u, — Ul)(m/ 2k, T )1/ ? changes this integral to:

+ 1/2
(ul)ave:\/lz {ﬂ(ZIZT] +U1Jexp{_ﬂ2}dﬂ:0+ﬁU1’\/;:Up

where the first term of the integrand is an odd function integrated on an even interval so its
contribution is zero. This procedure is readily repeated for the other directions to find (#2)4e =
U,, and (u3)4v. = Us. Using the same simplifications and change of integration variables

produces:
] [T Tw-uy exp{

—00 —00 —00

[(ul U +(u,—U,) +(uy, —Uy) ]}a’ulduza’u3

1 (Zﬂk T k,T [(u1 - U1)2 +(u, - U2)2 +(u; — U3)2]}duldu2du3
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V2 2 +
=[ " ] T(ul—wexp{—w}dul:%(iﬂf PP exp = Jap.

27k, T) _, 2k,T
The final integral over Sis: 7 / 2, so the standard deviations of molecular speed are
1/2
o,=(k,T/m)" =0, =0,

where the second two equalities follow from repeating this calculation for the second and third
directions.

b) From (1.21), n/V = p/k,T =(101.2kPa)/[1.381 <10 J/K - 295K]=2.487 x 10* m™
c¢) From n/V from part b): n=2.487x10" for V=10 gm’* = 10" m’
n=2487x10" for V=1.0 um* = 10" m’
n=2.487x10* for ¥=0.001 um® = 107" m’
d) From (1.22), the gas constant is R = (kg/m), and R = 287 m*/s*K for air. Compute:
20,,/U, =2(k,T/mn)"” [[tm/s]=2(RT/n)"” /im /s = 2(287-295/n)"* = 582/+/n . Thus,
for  V=10"m’: 20,,/U, =0.00369,
V=10"m’: 20,,/U, =0.117, and
V=10""m': 20, /U, =3.69.
e) To achieve a relative uncertainty of 1% we need n = (582/0.01)* =3.39x10°, and this
corresponds to a volume of 1.36 x10™'® ® which is a cube with side dimension = 5 zm.
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Exercise 1.4. Using the Maxwell molecular velocity distribution given in Exercise 1.3 with U =

1/2
0, determine the average molecular speed = v {m o’/ (u)d 34 and compare it with ¢ = speed of

allu

sound in a perfect gas under the same conditions.

Solution 1.4. Use the specified form for v and the Maxwell distribution

32 s
V= m |u|2f(u)d3u :( ” ] rfT(uf +ul + ui)exp{— ” (ul2 +ul + ui)}dulduzdu3.

wllu 27k, T 2k, T
This can be re-arranged and expanded into a total of nine one-variable integrations:

3/2+ 2 + 2 + 2
v’ =( m u’ ex {— i }du ex {— e }du ex {— ) }du
27k, T E T ‘_j: P17 26,7 Sow 26,7

—o B

3/2+ 2 + 2 + 2
+{ m _rexp{— ! }a’ul ru§ exp{— ! }a’u2 _rexp{— e }a’u3
27k,T) °, 2k,T 2k,T 2k,T

—00 —00

3/2+ 2 + 2 + 2
+{ m _rexp{— ! }a’ul fexp{— ! }a’u2 _fgui exp{— T }a’u3.
27k,T) °, 24,T) 2, 26,T) 22, 2k,T

In this arrangement, the six off-diagonal integrals are equal to (27, T/ m)l/ ? and the three on-
diagonal integrals are equal to (2k, 7’/ m)3/ 2(w/;/ 2). Thus,

3/2 3/2 3/2 3/2
52:( m J (kaT (2kBT) +(2kBTj +(2kBTj %/E o ST
27k, T m m m m J 2 m

From (1.22), R = (kg/m) so v =+/3RT and this speed has the same temperature dependence but is
a factor of +/3/y larger than the speed of sound in a perfect gas: ¢ =/)RT .

—00—00 —00
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Exercise 1.5. By considering the volume swept out by a moving molecule, estimate how the
mean-free path, /, depends on the average molecular cross section dimension 4 and the
molecular number density 7 for nominally spherical molecules. Find a formula for /7" (= the
ratio of the mean-free path to the mean intermolecular spacing) in terms of the molecular volume
(d*) and the available volume per molecule (1/i1). Is this ratio typically bigger or smaller than
one?

Solution 1.5. The combined collision cross section for two spherical molecules having diameter

d is md*. The mean free path / is the average distance traveled by a molecule between collisions.
Thus, the average molecule should experience one collision when

sweeping a volume equal to md*1. 1f the molecular number density is

i1, then the volume per molecule is 7', and the mean intermolecular )
spacing is il Assuming that the swept volume necessary to d
produce one collision is proportional to the volume per molecule —Y
produces:

md’l=Clii or 1=C[(fimd*),
where C is a dimensionless constant presumed to be of order unity. The dimensionless version of
this equation is:
mean free path 1
- ﬁ—l/S

~_1)%3 2/3
__c —c _gn | _ C(Volume per moleculej
1 ud? (ﬁZ[ 3 )2/ ’ d’ molecular volume ’

where all numerical constants like 7 have been combined into C. Under ordinary conditions in

gases, the molecules are not tightly packed so />> i In liquids, the molecules are tightly

packed so [~ ",

— lﬁl/3

mean intermolecular spacing
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Exercise 1.6. In a gas, the molecular momentum flux (MFj) in the j-coordinate direction that
crosses a flat surface of unit area with coordinate normal direction i is:

MF; =— J;I;I muu, f(u)d"u where f{u) is the Maxwell distribution given in Exercise 1.3. For a

perfect gas that is not moving on average (i.e. U = 0), show that MFj; = p, the pressure, when i =
J»> and that MF; = 0, when i #.

Solution 1.6. Start from the given equation using the Maxwell distribution:

wr, =[] muiu_,«f(u)d3u=”—(2 - Tj 17T exp{

KT (ul2 +u+ ui)}dula’uzdu3

allu V
and first consider i =j = 1, and recognize p= nm/V as the gas density (see (1.22)).
3/2
MF,, = p{zﬂk T} _J::T;J: ! Xp{ (”12 +u + uf)}dulduzd%

:p( n T/zTuz exp{— ™ }du rexp{— i }du +Jﬁoexp{ it }du

27k, T) . 2k, T) ', 2k,T) 2, 2k,T)

The first integral is equal to (2k,T/ m)3/ ? (\E/ 2] while the second two integrals are each equal to
(27szT/m)l/2. Thus:

32 3/2 1/2 1/2
Mlﬂl:p( m j (ZkBTj W/;[ZﬁkBTj (27szTj kT e,
27k, T m 2 m m m

where kz/m = R from (1.22). This analysis may be repeated with i =j =2, and i =j = 3 to find:

MFzz = MF33 =p,as well.
Now consider the case i # . First note that MF;; = MFj; because the velocity product

under the triple integral may be written in either order w;u; = uju;, so there are only three cases of
interest. Start with i =1, and j = 2 to find:

32,
MF,, = Y Tj _r _rUTu u, exp{ KT (ul2 +ul + ug)}dula’uza’u3

—00—00 —00

¥z, 2 2 + 2
m mu mu mu
= ex d. expy ——=rdu, | ex d.
p[ZﬂkBT) _E”‘ p{ 2% T} ”‘_j:”z P { 2kBT} “ E p{ 2% T} “s

Here we need only consider the first integral. The integrand of this integral is an odd function
because it is product of an odd function, u;, and an even function, exp {—muf [2k,T } The

integral of an odd function on an even interval [—o0,+0] is zero, so MF, = 0. And, this analysis
may be repeated for i =1 andj =3, and i =2 and j = 3 to find MF3 = MF»; =0.
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Exercise 1.7. Consider the viscous flow in a channel of width 2. The channel is aligned in the
x-direction, and the velocity u in the x-direction at a distance y from the channel centerline is

given by the parabolic distribution u(y)=U, [1 -(v/ b)z] Calculate the shear stress 7 as a
function y, x4, b, and U,. What is the shear stress at y = 0?

2
Solution 1.7. Start from (1.3): 7= y@ = ,ui U, 1—(Zj =-2uU, 12 At y =0 (the location of
dy dy b b

maximum velocity) 7= 0. At At y = =+b (the locations of zero velocity), 7=n2uU, /b.
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Exercise 1.8. Estimate the height to which water at 20 °C will rise in a capillary glass tube 3 mm
in diameter that is exposed to the atmosphere. For water in contact with glass the wetting angle is

nearly 90°. At 20 °C, the surface tension of an water-air interface is o= 0.073 N/m. (Answer: h =
0.99 cm.)

Solution 1.8. Start from the result of Example 1.1.
e 2o0sina 2(0.073N /m)sin(90°) 9.9 mm

pgR (10°kg/m*)(9.81m/s*)(1.5x107m)
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Exercise 1.9. A manometer is a U-shaped tube containing mercury of density pn. Manometers
are used as pressure measuring devices. If the fluid in the tank A has a pressure p and density p,
then show that the gauge pressure in the tank is: p — pam = pmgh — pga. Note that the last term on
the right side is negligible if p << p,,. (Hint: Equate the pressures at X and Y.)

| =

Solution 1.9. Start by equating the pressures at X and Y.
px=p+pga =pam+ pugh=pr.
Rearrange to find:
P —Pam = pugh— pga.
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Exercise 1.10. Prove that if e(7, v) = e(T) only and if A(7, p) = h(T) only, then the (thermal)
equation of state is (1.22) or pv = kT.

Solution 1.10. Start with the first member of (1.18): de = Tds — pdv, and rearrange it:

dszlde+£du:(§) de+(ﬁj dv,
T T ), oo

e

where the second equality holds assuming the entropy depends on e and v. Here we see that:
1 (& and 2 — &

7 &))" 1 )
Equality of the crossed second derivatives of s, (ﬁ(éj J =[é(éj ] , implies:
ov\ee),), \&\dv/,),
ov 124

1%

T YT
However, if e depends only on T, then (6/0v). = (6/0v)r, thus (é( 0,’/ )j =(é( 0”/ )j =0, so
v

v T

T
(—OA(];Z ) ] =0, and this can be integrated once to find: p/T = fi(v), where f; is an undetermined

v

function.
Now repeat this procedure using the second member of (1.18), dh = Tds + vdp.

ds:ldh—ﬂdp:(éj a’h+(éj dp.
ot \a)" &),

1 (&
Here equality of the coefficients of the differentials implies: T = (5] and -2 = (%J .
h

P ’ T
So, equality of the crossed second derivatives implies: [Oﬂ(l@/f)} = {OA(Z%/T)j .
h p

/T /T
Yet, if & depends only on 7, then (0/0p), = (0/0p)r, thus (%j =(%] =0, so
h

*(—5(;/171)} =0, and this can be integrated once to find: v/T = f2(p), where f, is an undetermined

P

T

function.

Collecting the two results involving f; and f,, and solving for T produces:

P _r__ Y r = =

I r @ ° php)=uvh(v) =k,
where k& must be is a constant since p and v are independent thermodynamic variables.
Eliminating f; or f, from either equation of the left, produces pv = kT.

And finally, using both versions of (1.18) we can write: dh — de = vdp + pdv = d(pv).
When e and / only depend on T, then dh = C,dT and de = C\dT, so

dh —de = (C, — C\)dT =d(pv) = kdT , thus k=C,— C, =R,

where R is the gas constant. Thus, the final result is the perfect gas law: p = kT/v = pRT.
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Exercise 1.11. Starting from the property relationships (1.18) prove (1.25) and (1.26) for a
reversible adiabatic process when the specific heats C, and C, are constant.

Solution 1.11. For an isentropic process: de = Tds — pdv = —pdv, and dh = Tds + vdp = +uvdp.
Equations (1.25) and (1.26) apply to a perfect gas so the definition of the specific heat capacities
(1.14), and (1.15) for a perfect gas, dh = C,dT, and de = C,dT , can be used to form the ratio
dhlde:

d_CdT G, wdp _dv_ dp_dp
de C,dI C, pdv v p D
The final equality integrates to: In(p) = yn(p) + const which can be exponentiated to find:
p = const.p,

which is (1.25). The constant may be evaluated at a reference condition p, and p, to find:
p/p, =(p/p,) and this may be inverted to put the density ratio on the left

1/
plp,=/p,)",
which is the second member of (1.26). The remaining relationship involving the temperature is

found by using the perfect gas law, p = pRT, to eliminate p = p/RT:

1y -1/ (r-1/r
P, D,/RT, p,T \p, T, p,\p, P,

which is the first member of (1.26).
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Exercise 1.12. A cylinder contains 2 kg of air at 50 °C and a pressure of 3 bars. The air is
compressed until its pressure rises to 8 bars. What is the initial volume? Find the final volume for
both isothermal compression and isentropic compression.

Solution 1.12. Use the perfect gas law but explicitly separate the mass M of the air and the
volume Vit occupies via the substitution p= M/V-
p=pRT=(M/NRT.
Solve for V at the initial time:
V; = initial volume = MRT/p; = (2 kg)(287 m*/s*K)(273 + 50°)/(300 kPa) = 0.618 m’.
For an isothermal process:

V;= final volume = MRT/p,= (2 kg)(287 m*/s*K)(273 + 50°)/(800 kPa) = 0.232 m’.
For an isentropic process:

V,=V,(p,/p,) 0.618m* (300kPa/800kPa)"* =0.307m’.
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Exercise 1.13. Derive (1.29) starting from the arguments provided at the beginning of Section
1.10 and Figure 1.8.

Solution 1.13. Take the z axis vertical, and consider a small fluid element dm of fluid having

volume oV that starts at height z in a stratified fluid medium having a vertical density profile =

p(z), and a vertical pressure profile p(z). Without any vertical displacement, the small mass and

its volume are related by om = p(zy)oV. If the small mass is displaced vertically a small distance

¢ via an isentropic process, its density will change isentropically according to:
P.(zy+8)=p(zy) + (dpa /dz)§+

where dp,/dz is the isentropic density at zy. For a constant om, the volume of the fluid element

will be:
=" om _om (1— ! dpﬂ;+..}
P, P(Zg)+ (dpa/dZ){%- e P(zZg) Azo) dz
The background density at zy + {'is:
oAz, +8)=plz,)+ (dp/dz)§+
If g is the acceleration of gravity, the (upward) buoyant force on the element at the vertically
displaced location will be go(zp + {)oV, while the (downward) weight of the fluid element at any
vertical location is gom. Thus, a vertical application Newton's second law implies:
d’c om 1 dp
om—==+gp(z, + O)OV — gom = g((z,) + (dp/dz) + ... 1- “l4 . |—gom,
5 = repE O g g(p(zy) + (dp/dz)S }p(zo)( o) dz 4 J g
where the second equality follows from substituting for p(zy + ¢) and oV from the above
equations. Multiplying out the terms in (,)-parentheses and dropping second order terms
produces:
2
5m% :g5m+@@é’—@%§+ e gom = gom [@— d’o")
dt p(z) dz = p(z,) dz plz)\dz dz
Dividing by om and moving all the terms to the right side of the equation produces:

¢ g(dp%:o

at*  p(z)\dz dz
Thus, for oscillatory motion at frequency N, we must have
N? = _i(@ —_ %j ,
plz)\dz  dz
which is (1.29).
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Exercise 1.14. Starting with the hydrostatic pressure law (1.8), prove (1.30) without using
perfect gas relationships.

Solution 1.14. The adiabatic temperature gradient d7,/dz, can be written terms of the pressure

gradient:
ﬂ_[zj d__ {@J
iz \@)d Np)

where the hydrostatic law dp/dz = —pg has been used to reach the second equality. Here, the final
partial derivative can be exchanged for one involving v = 1/p and s, by considering:

dhz[@) ds+ @J dp=Tds+ vdp.
& P

P K

Equality of the crossed second derivatives of 4, [2(@) J = [é(@] J , implies:
@ &1 P/ &)‘ @ s/ p
BREREIERENE
PD s & P ar P & p ar p ar p’

where the second two equalities are mathematical manipulations that allow the introduction of

TR
g () ) 5

p

Thus,
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Exercise 1.15. Assume that the temperature of the atmosphere varies with height z as 7= Tj +

/KR
Kz where K is a constant. Show that the pressure varies with height as p = pO[T OK T , Where
L+ Kz

g is the acceleration of gravity and R is the gas constant for the atmospheric gas.

Solution 1.15. Start with the hydrostatic and perfect gas laws, dp/dz = —pg, and p = pRT,
eliminate the density, and substitute in the given temperature profile to find:

d| d, dz

B g Py P 8 A

dz RT° ™ R(T,+Kz) p  R(T,+Kz)
The final form may be integrated to find:

g
Inp= —an(]"0 +Kz)+ const.
At z = 0, the pressure must be p,, therefore:
g
Inp, = —an(ﬂ))jt const.

Subtracting this from the equation above and invoking the properties of logarithms produces:

k{ﬁ] __g 1{MJ
Py RK T,
Exponentiating produces:

T + Ky g/KR T /KR
v ={°—] , which is the same as: p = po{ 0 T .
Py Ty 1, + Kz
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Exercise 1.16. Suppose the atmospheric temperature varies according to: 7= 15 — 0.001z, where
T is in degrees Celsius and height z is in meters. Is this atmosphere stable?

Solution 1.16. Compute the temperature gradient:
dl" d °C °C

—=—(5-0.001z) =-0.001 — =-1.0—.
dz dz m km
For air in the earth's gravitational field, the adiabatic temperature gradient is:
dT, _ gal _(9.81m/s)U/T)T _ 93C
dz C 1004m*/s*°C ~km

p
Thus, the given temperature profile is stable because the magnitude of its gradient is less than
the magnitude of the adiabatic temperature gradient.
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Exercise 1.17. Consider the case of a pure gas planet where the hydrostatic law is:
dp/dz=—p(z) Gm(z)/z*. Here G is the gravitational constant, and m(z) = 47rfjp(§)g" *d¢ is the
planetary mass up to distance z from the center of the planet. If the planetary gas is perfect with
gas constant R, determine p(z) and p(z) if this atmosphere is isothermal at temperature 7. Are
these vertical profiles of p and p valid as z increases without bound?

Solution 1.17. Start with the given relationship for m(z), differentiate it with respect to z, and use
the perfect gas law, p = pRT to replace the p with p.
dm _d 2 2 2 P(2)
P dz(47zj: P& dé’j =4z p(z)=4rnz RT
Now use this and the hydrostatic law to obtain a differential equation for m(z),
dp Gm(z) ( RT d_mj _ { 1 dmj Gm(z)
dz ) dz 4z’ dz Amz* dz) zZ°

After recognizing T as a constant, the nonlinear second-order differential equation for m(z)
simplifies to:

RT d(l dm) 1 dm

—m—.
G dz\Z* dz 2 dz

This equation can be solved by assuming a power law: m(z) = Az". When substituted in, this trial
solution produces:

RT d

G dz
Matching exponents of z across the last equahty produces: n —4 =2n — 5, and this requires n = 1.
For this value of 7, the remainder of the equation is:

—ZAn n 1)_ (n 3)Anzn -4 _ —4A2nZZn—l

%(_ZW_3 =—z"4%2", which reduces to: 4= 2%
Thus, we have m(z) = 2RTz/G, and this leads to:
=— ,and =
p( ) 47222 p(Z) G 47222

Unfortunately, these profiles are not valid as z increases without bound, because this leads to an
unbounded planetary mass.
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Exercise 1.18. Consider a heat-insulated enclosure that is separated into two compartments of
volumes ¥ and V5, containing perfect gases with pressures and temperatures of p1, p», and 71, T,
respectively. The compartments are separated by an impermeable membrane that conducts heat
(but not mass). Calculate the final steady-state temperature assuming each gas has constant
specific heats.

Solution 1.18. Since no work is done and no heat is transferred out of the enclosure, the final
energy Eris the sum of the energies, E; and E>, in the two compartments.
E\+E,= Ef implies P1 ViCuT) + szszsz = (,01 ViCyi + ,DszCVQ)Tf,
where the C,'s are the specific heats at constant volume for the two gases. The perfect gas law
can be used to find the densities: p; = p1/R\ T\ and p, = p2/R, T, so
PiVICa/Ry + paVaCoo/Ry = (1 ViCyl/Ri T + paVoCuw/RyTH) T
A little more simplification is possible, Cy1/R; = 1/()1 — 1) and C\»/R; = 1/(» — 1). Thus, the final
temperature is:
_ V(=D +p.V, (7, —1)
B (R Al (RS A |
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Exercise 1.19. Consider the initial state of an enclosure with two compartments as described in
Exercise 1.18. At ¢ =0, the membrane is broken and the gases are mixed. Calculate the final
temperature.

Solution 1.19. No heat is transferred out of the enclosure and the work done by either gas is
delivered to the other so the total energy is unchanged. First consider the energy of either gas at
temperature 7, and pressure P in a container of volume V. The energy E of this gas will be:
E=pVC,T=@/RT)VC,T=pV(C\/R)=pVI(y—1).
where yis the ratio of specific heats. For the problem at hand the final energy £, will be the sum
of the gas energies, E| and E», in the two compartments. Using the above formula:
E, =pV/(n=D+p,Vs/(r,=1).
Now consider the mixture. The final volume and temperature for both gases is V1+V>, and 7.
However, from Dalton's law of partial pressures, the final pressure of the mixture prcan be
considered a sum of the final partial pressures of gases "1" and "2", pirand pa:
Pr=pirt pay
Thus, the final energy of the mixture is a sum involving each gases partial pressure and the total
volume:

Ef :pl_f(Vl + Vz)/(% -D+ pzf(Vl + Vz)/(yz —D.
However, the perfect gas law implies: pi(Vi+V2) = niR, Ty, and prAV1+V>) = noR, Ty where ny and
n, are the mole numbers of gases "1" and "2", and R, is the universal gas constant. The mole
numbers are obtained from:
ny = pi Vl/RuTl, and ny =p» Vz/RuTz,
Thus, final energy determined from the mixture is:
g MR mRT =(P1V1]Ru]} +{P2V2J R.T; =£P1V1J Ty J{PszJ L
" on-ton-t R -1 RL)p-1 UL ) y-1 71
Equating this and the first relationship for £rabove then produces:
_ Vi /(=D +pVs/(y, =)
LA (R R N CEaiA |
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Exercise 1.20. A heavy piston of weight W is dropped onto a thermally insulated cylinder of
cross-sectional area 4 containing a perfect gas of constant specific heats, and initially having the
external pressure p;, temperature 77, and volume V;. After some oscillations, the piston reaches
an equilibrium position L meters below the equilibrium position of a weightless piston. Find L. Is
there an entropy increase?

Solution 1.20. From the first law of thermodynamics, with O =0, AE = Work = WL. For a
perfect gas with constant specific heats, £ = C,T, so AE = E, — E; = C(T> — T) = WL. Then
T, =T + WL/C,. Also, for a perfect gas, PV/T = constant so p;V/T; = p2V>/T5. For the cylinder,
Vo=V, —AL, and p, = p; + W/A. Therefore:

pV _(p+W/A)(V, —AL) .

L L+WL/C,
Solve for L.

)24 WL ( Wj

T +—|=|p+—|V,-A4L),

T (1 CVJ p y 4 )

{Pl—“ﬂ[pﬁ}l}(pﬁ]m—PI—V'TllVl,
T C, A A T ' A4
W/A

(PVITYW/C,)+ pA+W
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Exercise 1.21. A gas of non-interacting particles of mass m at temperature 7 has density p, and
internal energy per unit volume &.

a) Using dimensional analysis, determine how & must depend on p, 7, and m. In your formulation
use kz = Boltzmann’s constant, # = Plank’s constant, and ¢ = speed of light to include possible
quantum and relativistic effects.

b) Consider the limit of slow moving particles without quantum effects by requiring ¢ and 4 to
drop out of your dimensionless formulation. How does & depend on p and 7?7 What type of gas
follows this thermodynamic law?

c) Consider the limit of massless particles (i.e. photons) by requiring m and p to drop out of your
dimensionless formulation of part a). How does ¢ depend on T in this case? What is the name of
this radiation law?

Solution 1.21. a) Construct the parameter & units matrix noting that kz and 7 must go together
since they are the only parameters that involve temperature units.

g Joi kT m h c
M 1 1 1 1 1 0
L -1 -3 2 0 2 1
T -2 0 -2 0 -1 -1

This rank of this matrix is three. There are 6 parameters and 3 independent units, so there will be
3 dimensionless groups. Two of the dimensionless groups are energy ratios that are easy spot:
I1, =g/ pc’ and 1, = k,T/mc”. There is one dimensionless group left that must contain 4. A bit

3 3
of work produces: I1, = ph SO gz :gol[kB];, 'Ofl J.
m'c oc mc” m'c
b) Dropping # means dropping I1;. Eliminating ¢ means combining I1; and I, to create a new
m,_ dpe’ _
I, k,T/mc* pk,T

dimensionless group that lacks c: . However, now there is only one

. . . C k, T S
dimensionless group so it must be a constant. This implies: &= const - (’O—BJ which is the

m
caloric equation of state for a perfect gas.
c¢) Eliminating p means combining I'l; and Il to create a new dimensionless group that lacks pr
£ h ah’ . . . . . o

> P +—5 = - Now combine this new dimensionless group with I, to eliminate

pct m'cc m'c
4
g’ 1 e’ [ me’ eh’c’ . . . : . :
= +- Again there is only a single dimensionless group so it
kT) (kT

const
hc’

I, - I, =

m: ——+—F = :
4 5 4 4 5
m'c’ 1, m'c

must equal a constant; therefore &= (kT )4 . This is the Stephan-Boltzmann radiation law.
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Exercise 1.22. Many flying and swimming animals — as well as human engineered vehicles —
rely on some type of repetitive motion for propulsion through air or water. For this problem,
assume the average travel speed U, depends on the repetition frequency f, the characteristic
length scale of the animal or vehicle L, the acceleration of gravity g, the density of the animal or
vehicle p,, the density of the fluid p, and the viscosity of the fluid z.

a) Formulate a dimensionless scaling law for U involving all the other parameters.

b) Simplify your answer for a) for turbulent flow where # is no longer a parameter.

c¢) Fish and animals that swim at or near a water surface generate waves that move and propagate
because of gravity, so g clearly plays a role in determining U. However, if fluctuations in the
propulsive thrust are small, then f may not be important. Thus, eliminate f from your answer for
b) while retaining L, and determine how U depends on L. Are successful competitive human
swimmers likely to be shorter or taller than the average person?

d) When the propulsive fluctuations of a surface swimmer are large, the characteristic length
scale may be U/f instead of L. Therefore, drop L from your answer for b). In this case, will
higher speeds be achieved at lower or higher frequencies?

e) While traveling submerged, fish, marine mammals, and submarines are usually neutrally
buoyant (p, = p) or very nearly so. Thus, simplify your answer for b) so that g drops out. For
this situation, how does the speed U depends on the repetition frequency f?

f) Although fully submerged, aircraft and birds are far from neutrally buoyant in air, so their
travel speed is predominately set by balancing lift and weight. Ignoring frequency and viscosity,
use the remaining parameters to construct dimensionally-accurate surrogates for lift & weight to
determine how U depends on p,/p, L, and g.

Solution 1.22. a) Construct the parameter & units matrix

U f L g La Jo) U
M 0 0 0 0 1 1 1
L 1 0 1 1 -3 -3 -1
T -1 -1 0 -2 0 0 -1

This rank of this matrix is three. There are 7 parameters and 3 independent units, so there will be
4 dimensionless groups. First try to assemble traditional dimensionless groups, but its best to use
the solution parameter U only once. Here U is used in the Froude number, so its dimensional

counter part, /gL , is used in place of U in the Reynolds number.
I, = S Froude number, II, =

plsl’
Vel p

The next two groups can be found by inspection:

= a Reynolds number

I, = Po—y density ratio , and the final group must include f: I1, = S , and is a frequency
Yo 4\ g/L

ratio between f and that of simple pendulum with length L. Putting these together produces:
U _|pel p, f
1 ’ ’
p gL

\/_L = where, throughout this problem solution, y;,i=1,2,3, ... are
g

unknown functions.
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b) When x is no longer a parameter, the Reynolds number drops out: v _ wz[&,ij.
el g/L
¢) When f'is no longer a parameter, then U = Jg_L -y5(p,/p), so that U is proportional to VL.
This scaling suggests that taller swimmers have an advantage over shorter ones. [Human
swimmers best approach the necessary conditions for this part of this problem while doing
freestyle (crawl) or backstroke where the arms (and legs) are used for propulsion in an
alternating (instead of simultaneous) fashion. Interestingly, this length advantage also applies to
ships and sailboats. Aircraft carriers are the longest and fastest (non-planing) ships in any Navy,
and historically the longer boat typically won the America’s Cup races under the 12-meter rule.
Thus, if you bet on a swimming or sailing race where the competitors aren’t known to you but
appear to be evenly matched, choose the taller swimmer or the longer boat.]
d) Dropping L from the answer for b) requires the creation of a new dimensionless group from f,
g, and U to replace I'1; and I1,. The new group can be obtained via a product of original

dimensionless groups: I'LI1, = Uf . Thus, v —1/14('0 OJ or U —gl//4[’0 "j Here,
x/ w/ g P Jo\p

U is inversely proportional to /' which suggests that higher speeds should be obtained at lower
frequencies. [Human swimmers of butterfly (and breaststroke to a lesser degree) approach the
conditions required for this part of this problem. Fewer longer strokes are typically preferred
over many short ones. Of course, the trick for reaching top speed is to properly lengthen each
stroke without losing propulsive force].

e) When g is no longer a parameter, a new dimensionless group that lacks g must be made to

/gL
Hs SNl L

law must be: U = fL- l//s(p "j Thus, U will be directly proportional to /. Simple observations of
P

replace I and I'ls. This new dimensionless group is — =—, so the overall scaling

swimming fish, dolphins, whales, etc. verify that their tail oscillation frequency increases at
higher swimming speeds, as does the rotation speed of a submarine or torpedo’s propeller.
f) Dimensionally-accurate surrogates for weight and lift are: p L’g and pU’L’, respectively. Set

these proportional to each other, p L’goc pU’L’, to find U o« +/p,gL/p, which implies that larger

denser flying objects must fly faster. This result is certainly reasonable when comparing
similarly shaped aircraft (or birds) of different sizes.
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Exercise 1.23. The acoustic power W generated by a large industrial blower depends on its
volume flow rate Q, the pressure rise AP it works against, the air density p, and the speed of
sound c. If hired as an acoustic consultant to quiet this blower by changing its operating
conditions, what is your first suggestion?

Solution 1.23. The boundary condition and material parameters are: O, p, AP, and c. The
solution parameter is /. Create the parameter matrix:
0 AP p c w

Mass: 0 1 1 1
Length: 3 -1 -3 1 2
Time: -1 -2 0 -1 -3

This rank of this matrix is three. Next, determine the number of dimensionless groups: 5
parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: [[1 = W/QAP, []2 =
AP/pc?. Now write the dimensionless law: W= QAP®(AP/pc?), where @ is an unknown
function. Since the sound power W must be proportional to volume flow rate O, you can
immediately suggest a decrease in Q as means of lowering . At this point you do not know if
QO must be maintained at high level, so this solution may be viable even though it may oppose
many of the usual reasons for using a blower. Note that since @ is unknown the dependence of
W on AP cannot be determined from dimensional analysis alone.
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Exercise 1.24. A machine that fills peanut-butter jars must be reset to accommodate larger jars.
The new jars are twice as large as the old ones but they must be filled in the same amount of time
by the same machine. Fortunately, the viscosity of peanut butter decreases with increasing
temperature, and this property of peanut butter can be exploited to achieve the desired results
since the existing machine allows for temperature control.

a) Write a dimensionless law for the jar-filling time #; based on: the density of peanut butter p,
the jar volume V, the viscosity of peanut butter z, the driving pressure that forces peanut butter
out of the machine P, and the diameter of the peanut butter delivery tube d.

b) Assuming that the peanut butter flow is dominated by viscous forces, modify the relationship
you have written for part a) to eliminate the effects of fluid inertia.

c) Make a reasonable assumption concerning the relationship between #- and V" when the other
variables are fixed, so that you can determine the viscosity ratio fie./ s necessary for proper
operation of the old machine with the new jars.

Solution 1.24. a) The boundary condition and material parameters are: V, p, P, i, and d. The
solution parameter is #1. First create the parameter matrix:

14 P P d n tr

Mass: 0 1 1 0 1 0
Length: 3 -1 -3 1 -1 0
Time: 0 -2 0 0 -1 1

This rank of this matrix is three. Next determine the number of dimensionless groups: 6
parameters - 3 dimensions = 3 groups. Construct the dimensionless groups: [[1 = Pt/u, [[2 =

w?/pd?P, T3 = VId3, and write a dimensionless law: tr= (u/P)®(u?/pd?P,V/d3), where @ is an
unknown function.

b) When fluid inertia is not important the fluid's density is not a parameter. Therefore, drop []»
from the dimensional analysis formula: #= (W/P)¥(V/d3), where ¥ is yet another unknown
function.

¢) One might reasonably expect that Zroc V' (these are the two extensive variables). Therefore, we
end up with 7= const-uV/Pd3. Now form a ratio between the old and new conditions and cancel
common terms:

t
(f)new SO Vnew:2 - M: l

=1= (IUV/PdS)new — (IUV)new
(tf)old (/’lV/Pd3)old V) g1 , Vo Hyq 2
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Exercise 1.25. As an idealization of fuel injection in a Diesel engine, consider a stream of high-
speed fluid (called a jer) that emerges into a quiescent air reservoir at £ = 0 from a small hole in
an infinite plate to form a p/lume where the fuel and air mix.

a) Develop a scaling law via dimensional analysis for the penetration distance D of the plume as
a function of: Ap the pressure difference across the orifice that drives the jet, d, the diameter of
the jet orifice, p, the density of the fuel, p., and p. the viscosity and density of the air, and ¢ the
time since the jet was turned on.

b) Simplify this scaling law for turbulent flow where air viscosity is no longer a parameter.

c¢) For turbulent flow and D « d,, d, and p, are not parameters. Recreate the dimensionless law
for D.

d) For turbulent flow and D » d,, only the momentum flux of the jet matters, so Ap and d, are
replaced by the single parameter J, = jet momentum flux (J, has the units of force and is
approximately equal to Apd>). Recreate the dimensionless law for D using the new parameter J,,.

Solution 1.25. a) The parameters are: D, ¢, Ap, p,, P, M, and d,. First, create the parameter
matrix:

D t Ap Po P Koo do

Mass: 0 0 1 1 1 1 0
Length: 1 0 -1 -3 -3 -1 1
Time: 0 1 -2 0 0 -1 0

Next, determine the number of dimensionless groups. This rank of this matrix is three so 7

parameters - 3 dimensions = 4 groups, and construct the groups: I1,=D/d,, I1,=p,/p, ,
I, =Apt*/ p,d>, and T1, = p,Apd’ / 1. Now write a dimensionless law:
D _ [p, &pt® pApd;

=fl—= 5 where f'is an unknown function.

d, "\p, p.d.’ 1
b) For high Reynolds number turbulent flow when the reservoir viscosity is no longer a

parameter, the above result becomes:
D g{ o, AptzJ
d, A\p, pd)
where g is an unknown function.
¢) When d, and p., are not parameters, there is only one dimensionless group: Apt*/p, D?, so

the dimensionless law becomes: D = const - t:]/Ap/ p, .

d) When Ap and d, are replaced by the single parameter J, = jet momentum flux, there are two
dimensionless parameters: .J t*/ p,D*, and p,/p, , so the dimensionless law becomes:

D=(,2/p.) Flp,/p.).

where F is an unknown function.
[The results presented here are the fuel-plume penetration scaling laws for fuel injection in
Diesel engines where more than half of the world's petroleum ends up being burned. ]
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Exercise 1.26. One of the simplest types of gasoline carburetors is a tube with small port for
transverse injection of fuel. It is desirable to have the fuel uniformly mixed in the passing air
stream as quickly as possible. A prediction of the mixing length L is sought. The parameters of
this problem are: p = density of the flowing air, d = diameter of the tube, ¢ = viscosity of the
flowing air, U = mean axial velocity of the flowing air, and J = momentum flux of the fuel
stream.

a) Write a dimensionless law for L.

b) Simplify your result from part a) for turbulent flow where 4 must drop out of your
dimensional analysis.

c) When this flow is turbulent, it is observed that mixing is essentially complete after one
rotation of the counter rotating vortices driven by the injected-fuel momentum (see downstream-
view of the drawing for this problem), and that the vortex rotation rate is directly proportional to
J. Based on this information, assume that L oc (rotation time)(U) to eliminate the arbitrary
function in the result of part b). The final formula for L should contain an undetermined
dimensionless constant.

IE :
>| mean motion
looking downstream

e //@ d

fuel input cross section view J

Solution 1.26. a) The parameters are: L, J, d, 1, p, and U. Use these to create the parameter
matrix:
L J d Y7, yo, U

Mass: 0 1 0 1 1 0
Length: 1 1 1 -1 -3 1
Time: 0 -2 0 -1 0 -1

Next, determine the number of dimensionless groups. This rank of this matrix is three so 6
parameters - 3 dimensions = 3 groups, and construct them: [[1 = L/d, [[2 = pUd/w, [ |3 =
pU2d2/J. And, finally write a dimensionless law: L = d ®(oUd/u, pU2d?/J), where ® is an
unknown function.

b) At high Reynolds numbers, z must not be a parameter. Therefore: L = d¥(pU2d?2/J) where ¥
is an unknown function.

c¢) Let Q = vortex rotation rate. The units of Q2 are 1/time and Q must be proportional to J.
Putting this statement in dimensionless terms based on the boundary condition and material

parameters of this problem means: QO = const += (rotation time)"!
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- » - P 2 13 L 0 2 72
Therefore: L = const (Q-')U = const , or —= const 7 Thus, for transverse

injection, more rapid mixing occurs (L decreases) when the injection momentum increases.
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Exercise 1.27. Consider dune formation in large horizontal desert of deep sand.

a) Develop a scaling relationship that describes how the height 4 of the dunes depends on the
average wind speed U, the length of time the wind has been blowing At, the average weight and
diameter of a sand grain w and d, and the air’s density p and kinematic viscosity V.

b) Simplify the result of part a) when the sand-air interface is fully rough and v is no longer a
parameter.

c) If the sand dune height is determined to be proportional to the density of the air, how do you
expect it to depend on the weight of a sand grain?

Solution 1.27. a) The boundary condition and material parameters are: U, At, w, d, p, and v. The
solution parameter is 4. First create the parameter matrix:
h U At w d yo, v

Mass: 0 0 0 1 0 1 0
Length: 1 1 0 1 1 -3 2
Time: 0 -1 1 -2 0 0 -1

Next determine the number of dimensionless groups. This rank of this matrix is three so 7
parameters - 3 dimensions = 4 groups. Construct the dimensionless groups: [[1 = A/d, [[2 = Ud/ v,

13 = w/pU*d*, and [[4 = UA#/d. Thus, the dimensionless law is
h (ud w UAtJ

d  \v pUd* d
where @ is an unknown function.
b) When vis no longer a parameter, [ [> drops out:

h W UAtJ

d \pUd* d
where YV is another unknown function.
c) When £ is proportional to p, then

h_pUd @(@j
d —w d )
where © is another unknown function. Under this condition, dune height will be inversely

proportional to w the sand grain weight.
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Exercise 1.28. An isolated nominally-spherical bubble with radius R undergoes shape
oscillations at frequency f. It is filled with air having density p, and resides in water with density
pw and surface tension o. What frequency ratio should be expected between two isolated bubbles
with 2 ¢m and 4 cm diameters undergoing geometrically similar shape oscillations? If a soluble
surfactant is added to the water that lowers o by a factor of two, by what factor should air bubble
oscillation frequencies increase or decrease?

Solution 1.28. The boundary condition and material parameters are: R, p,, pw, and o. The
solution parameter is f. First create the parameter matrix:

S R po pv O

Mass: 0 0 1 1 1
Length: 0 1 -3 -3
Time: -1 0 0 0 -2

Next determine the number of dimensionless groups. This rank of this matrix is three, so 5

parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: [[1 = f4/p, R’ /o,
and [ ]2 = pu/pa. Thus, the dimensionless law is

- % @ P
! prRﬂ(paj’

where @ is an unknown function. For a fixed density ratio, ®(p,/p,) will be constant so f is

proportional to R~ and to o, Thus, the required frequency ratio between different sizes
bubbles is:

(Do :(2c_m j/ 32083
(Daen \em o
Similarly, if the surface tension is decreased by a factor of two, then
(o _(1/2)‘1/2 1

(f)g T = E = 0707
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Exercise 1.29. In general, boundary layer skin friction, 7, depends on the fluid velocity U above
the boundary layer, the fluid density p, the fluid viscosity u, the nominal boundary layer
thickness o, and the surface roughness length scale &.

a) Generate a dimensionless scaling law for boundary layer skin friction.

b) For laminar boundary layers, the skin friction is proportional to 4. When this is true, how must
1, depend on U and p?

¢) For turbulent boundary layers, the dominant mechanisms for momentum exchange within the
flow do not directly involve the viscosity p. Reformulate your dimensional analysis without it.
How must 7, depend on U and p in when p is not a parameter?

d) For turbulent boundary layers on smooth surfaces, the skin friction on a solid wall occurs in a
viscous sub-layer that is very thin compared to 6. In fact, because the boundary layer provides a
buffer between the outer flow and this viscous sub-layer, the viscous sub-layer thickness /, does
not depend directly on U or 6. Determine how /, depends on the remaining parameters.

e) Now consider non-trivial roughness. When ¢ is larger than /, a surface can no longer be
considered fluid-dynamically smooth. Thus, based on the results from parts a) through d) and
anything you may know about the relative friction levels in laminar and turbulent boundary
layer, are high or low speed boundary layer flows more likely to be influenced by surface
roughness?

Solution 1.29. a) Construct the parameter & units matrix and recognizing that 7, is a stress and
has units of pressure.
T U P y7, o £

M 1 0 1 1 0 0

L -1 1 -3 -1 1 1

T -2 -1 0 1 0 0
This rank of this matrix is three. There are 6 parameters and 3 independent units, thus there will
be 6 — 3 = 3 dimensionless groups. By inspection these groups are: a skin-friction coefficient =

I, = " >, a Reynolds number = I1, = pUo
U

Uo
a2 ==/ ('O—,EJ where f'1s an undetermined function.
pU i o

b) Use the result of part a) and set 7, oc z2. This involves requiring I1; to be proportional to 1/ I1,
so the revised form of the dimensionless law in part a) is: iz =M gf , where g is an
pU”  pUd \o

Hy g . Thus, in laminar

, and the relative roughness = I1, = g . Thus the

dimensionless law is:

undetermined function. Simplify this relationship to find: 7, =

boundary layers, 7, is proportional to U and independent of p.
c) When g is not a parameter the second dimensionless group from part a) must be dropped.

Thus, the dimensionless law becomes: 22 =h g where / is an undetermined function. Here
Yo,

we see that 7, oc pU?. Thus, in turbulent boundary layers, 7, is linearly proportional to p and

quadratically proportional to U. In reality, completely dropping x from the dimensional analysis
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is not quite right, and the skin-friction coefficient (I1; in the this problem) maintains a weak
dependence on the Reynolds number when &0 << 1.

d) For this part of this problem, it is necessary to redo the dimensional analysis with the new
length scale /, and the three remaining parameters: z,, o, and p. Here there are four parameters

. : : : lApT, :
and three units, so there is only one dimensionless group: II =———. This means that:

Y7,

l, ocy/«/prw = V/W/Tw/p =v/u,.
In the study of wall bounded turbulent flows, the length scale /, is commonly known as the
viscous wall unit and u+ is known as the friction or shear velocity.
e) The results of part b) and part ¢) both suggest that 7, will be larger at high flow speeds than at
lower flow speeds. This means that /, will be smaller at high flow speeds for both laminar and
turbulent boundary layers. Thus, boundary layers in high-speed flows are more likely to be
influenced by constant-size surface roughness.
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Exercise 1.30. Turbulent boundary layer skin friction is one of the fluid phenomena that limit
the travel speed of aircraft and ships. One means for reducing the skin friction of liquid boundary
layers is to inject a gas (typically air) from the surface on which the boundary layer forms. The
shear stress, z,, that is felt a distance L downstream of such an air injector depends on: the
volumetric gas flux per unit span ¢ (in m%/s), the free stream flow speed U, the liquid density p,
the liquid viscosity g, the surface tension o, and gravitational acceleration g.

a) Formulate a dimensionless law for 7, in terms of the other parameters.

b) Experimental studies of air injection into liquid turbulent boundary layers on flat plates has
found that the bubbles may coalesce to form an air film that provides near perfect lubrication,
r,, — 0 for L > 0, when ¢ is high enough and gravity tends to push the injected gas toward the
plate surface. Reformulate your answer to part a) by dropping 7, and L to determine a
dimensionless law for the minimum air injection rate, g., necessary to form an air layer.

¢) Simplify the result of part ¢) when surface tension can be neglected.

d) Experimental studies (Elbing et al. 2008) find that g. is proportional to U. Using this
information, determine a scaling law for g, involving the other parameters. Would an increase in
g cause ¢, to increase or decrease?

q
'
o o]
©0006% %, 0 04 Oo°§°0° 0%0 95°%00°
| > o o
— |
U p. .

Solution 1.30. a) Construct the parameter & units matrix and recognizing that z, is a stress and
has units of pressure.

w L ¢ U p u o g

M 1 0 0 0 1 1 1 0
L -1 1 2 1 -3 -1 0 1
T -2 0 -1 -1 0 -1 -2 -2

This rank of this matrix is three. There are 8 parameters and 3 independent units, thus there will
be 8 —3 =5 dimensionless groups. By inspection these groups are: a skin-friction coefficient =

T U
I, =— —_—
1 @

UL .
a Reynolds number = I1, = ’0—, a Froude number = I1; = , a capillary number
yri

2
U

=11, = ﬂ, and flux ratio = Il = A4 Thus the dimensionless law is:
o H

—_— —J where fis an undetermined function.

b) Dropping 7, means dropping I'1;. Dropping L means combining I, and IT; to form a new
_pULU’ _pU’

dimensionless group: I'IT;
u gL g

. Thus, with ITs as the solution parameter, the
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scaling law for the minimum air injection rate, g., necessary to form an air layer is:
g, u= ¢(pU * | ug, U/ 0) where ¢1is an undetermined function.

¢) When ois not a parameter, I14 can be dropped leaving: pg, /u= (p(pU 3/ ug) where ¢ is an

undetermined function.
d) When ¢ is proportional to U7, then dimensional analysis requires:

2/3 1/3
q.=(u/ p)const.(pU 3/ ,ug) = const.U* (,u/ pgz) :
So, an increase in g would cause ¢, to decrease.
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Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation
and evaluate or simplify them using the values or parameters given, and the definitions of J; and
&jx wherever possible. In b) through e), x is the position vector, with components x;.

a) b-c whereb=(1,4,17)and ¢ = (-4, -3, 1)

b) (u-V)x where u a vector with components u;.

c) Vg, where ¢=h-x and h is a constant vector with components ;.

d) V xu, where u =Q x x and Q is a constant vector with components €2;.

1 23
e) C-x,where C=90 1 2
0 0 1

Solution 2.1. a) b-c=bc, =1(-4)+4(-3)+17()=—4—-12+17 =+1

X

b) (@ Vx=u, 2 x,= (ﬁj[ij(i) Y
éxj ékl éxz 03“3

X

3

% &, &

)" ) A
0’}51 é}: d: u - 1+u,-0+u,-0 u

=] =2 || = | usl | |F O+ uy - 1+ uy -0 = w0, = u, =y,
ax, ax, ax, ‘
u -0+ u,-0+u,-1 u,

&3 &3 &3

w| =2 |+ w,| =2 |+ uy| =2
&, 03“2 ;)|

)V¢_ (hz 1) h__hlé‘lj h =h

ﬁ
d) V xu= v x (Q X X) 1]1( dC (gklanlxm): gljkgklmglé‘jm = (5i15jm im le = (51'1511' ij ]lp
J

= (35, -5, =25,Q, =20, =2Q
Here, the following identities have been used: ¢,¢,,, =9,0,, —9,,0;, 6,0, =3, 6, =3, and
0.Q. =Q.
yoJ i

I 2 3||x X, +2x,+ 3x,
e) C-x=Cyx,=10 1 2nx,r=) x,+2x,
0 0 1J(x, X,
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Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7).

Solution 2.2. The two representations for the position vector are:
X =X,e, +X,e, + x;e;, O X =x/e| +x,e,+ x;es.
Develop the dot product of x with e; from each representation,
e-x=e -(xe +xe, +xe)=xe- e +xe- e +xe-e=x-1+x,-0+x,-0=x,
_ [N [N PN ) ' ' ' ' '
and e -x=e, - (xje] +x;e},+xie})=x/e -e +xse -, +xie - e =xC,,
set these equal to find:
’
x = x;Cys
where C, =e,-¢’, is a 3 x 3 matrix of direction cosines. In an entirely parallel fashion, forming
the dot product of x with e, and x with e, produces:
— ! Y
x,=x,C,, and x,=x]C;,.
Thus, for any component x;, where j = 1, 2, or 3, we have:
ot
x; =xC;,
which is (2.7).
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Exercise 2.3. Using Cartesian coordinates where the position vector is X = (xj, X, x3) and the
fluid velocity is uw = (u;, up, u3), write out the three components of the vector:

(u-V)u:ui(éhj/éki).

Solution 2.3.
d‘l d/tl dj{l}
| = |+ | = |+ uy| —-
dcl dCZ &3
au, u, A, 2
a) (“‘V)“:”;[_jj:%[_Jij uz(—’j+ u{—’jz u ) +u, Ay + u; %j
o, ax, ok, ok, ax, ok, ks
as ), [an @3]
w| =2 [+ | =2 |+ uy| =2
dcl dCZ &3

() f2)(2)

The vector in this exercise, (u-V)u= u,(&”u ; /dci), is an important one in fluid mechanics. As

described in Ch. 3, it is the nonlinear advective acceleration.
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Exercise 2.4. Convert VxVp to indicial notation and show that it is zero in Cartesian
coordinates for any twice-differentiable scalar function p.

Solution 2.4. Start with the definitions of the cross product and the gradient.

o P
Vx(Vp)=¢,—(Vp) =¢, ——
( p) ijk d(fj ( p)k ijk d(fjd(?k
Write out the vector component by component recalling that g = 0 if any two indices are equal.
Here the "i" index is the free index.

gp ap ap ap
fn 5 a0 o ok, ok
2 3 3 2 2 3 3 2
7 Za i 7 7
L ) e b o o )
Jj k 1 3 3 1 1 3 3 1
ap ap ap ap
B o o O A o Gk, ik
1 2 2 1 1 2 2 1
where the middle equality follows from the definition of & (2.18), and the final equality follows
p Fp

when p is twice differentiable so that

&, Ao,

J
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Exercise 2.5. Using indicial notation, show that a x (b x ¢)=(a - ¢)b — (a- b)c. [Hint: Calld=b
x ¢. Then (a x d),, = &ymapdy = Egmap&ijebici. Using (2.19), show that (a x d),, = (a - ¢)b,, — (a -
b)cu.]

Solution 2.5. Using the hint and the definition of & produces:
(@ X D) = Ggmapdy = EpqmpijgbiC; = Epqméijq bicity = =EjgEqpm biCiap.
Now use the identity (2.19) for the product of epsilons:
(@ x d) == (3pGim — Oim0y) bicjay == bpCnap + buCpttp.

n.n

Each term in the final expression involves a sum over "p", and this is a dot product; therefore
(axd),= —(a-b)cy,+by(a-c).
Thus, for any component m =1, 2, or 3,
ax(bxc)=—-(a-b)et+(a-c)b=(a-c)b—-(a-b)c.
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Exercise 2.6. Show that the condition for the vectors a, b, and ¢ to be coplanar is gja;b;ci = 0.

Solution 2.6. The vector b x ¢ is perpendicular to b and ¢. Thus, a will be coplanar with b and ¢

if it too is perpendicular to b x ¢. The condition for a to be perpendicular with b x ¢ is:
a-(bxc)=0.

In index notation, this is a;gbicr = 0 = gjrabjcy.
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Exercise 2.7. Prove the following relationships: 90 = 3, &gr&qr = 6, and &g = 20

Solution 2.7. (Z) 5,']'5,']'= é},’ = 511 + 522 + 533 =1+1+1=3.

For the second two, the identity (2.19) is useful.

(11) &pqr&pgr = Epqréipg = OppOyq — Opg0pq = 3(3) — Gpp =9 -3 =6.

(110 &pqi€pgj = EipgEpg = — Eipaypi = — (OpOpj — GjOpp) == 05 + 305 = 2.
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Exercise 2.8. Show that C-C' = C'.C = §, where C is the direction cosine matrix and 8 is the
matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal
matrix because it represents transformation of one set of orthogonal axes into another.

Solution 2.8. To show that C-C" = C"-C = §, where C is the direction cosine matrix and & is the
matrix of the Kronecker delta. Start from (2.5) and (2.7), which are

r _ o
x'=x,C,; and x, =x/C,,

respectively, and change the index "i" into "m" on (2.5): x’, =x, C, . Substitute this into (2.7) to
find:
x,=x,C,= (me,m.)Cle =C, C.x

L Jitm®
However, we also have x; = §x, so
Omx,=C,Cix, — 0,=C,C

Jm~ m mi~~ ji""m mi " ji?
which can be written:
T T
5, =C,Cl=CC,

mi " ij

and taking the transpose of the this produces:
(5jm )T =9, =(C.C; )T =C,C;=C"C.

mi " ij mi " ij
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Exercise 2.9. Show that for a second-order tensor A, the following quantities are invariant under

the rotation of axes:

All A12 A22 A23 All A13

A21 A22 A32 A33 A31 A33
[Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that I'y = 4'; =

A;;=1;. Then show that 4;4;; and 4;A4;Aw; are also invariants. In fact, a/l contracted scalars of

L=4;, I,= , and Iz = det(4;).

the form A4;Ax - A, are invariants. Finally, verify that [,= [ U i ],
I = [A A, A, —1LA. A, + LA, ] . Because the right-hand sides are invariant, so are /; and /3.]

i< jk [/

Solution 2.9. First prove /; is invariant by using the second order tensor transformation rule
(2.12):
A =C, C. A.

im~ jn* i "
Replace Cj, by C,.and setn=m
A =C, CTA — A =C, ct A;.

im™~"'nj im ™~ mj

Use the result of Exercise 2.8, o, =C, Cc' = tofind:

im =~ mj
L=4,,= 5z'inj =4,
Thus, the first invariant is does not depend on a rotation of the coordinate axes.
Now consider whether or not AnnAnm IS invariant under a rotation of the coordinate axes.
Start with a double application of (2.12):

’ ’
AmnAnm (Ctm Jn UX pn-—qm pq) (Cjn anCIm mq)AU pq’

From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta
functions, so
A A —5 0. AA =A.A..

mn*"nm iq” "y~ " pq [/
Thus, the matrix contraction Am,Anm does not depend on a rotation of the coordinate axes.

The manipulations for AnAnpApm are a straightforward extension of the prior efforts for
Aii and A,JAjl

Ar,rmA;;pA;m = ClmC/Vl Alj Xqu‘l CIpAqVXCSp CImAS‘l) (C/Vl nq XCVp stClm mt )Alj qr st*

Again, the factors in parentheses are Kronecker delta functlons o)
Ar,nnA;tpA;Jm = é‘]q é;sgttAtqurAst tq qust’

which implies that the matrix contraction A;jAjAx does not depend on a rotation of the coordinate
axes.

Now, for the second invariant, verify the given identity, starting from the given definition
for 1.
All Alz A22 AZS All A13
A21 A22 A32 A33 A31 A33
= A11A22 - A12A21 + A22A33 - A23A32 + A11A33 - A13A31
= A11A22 + A22A33 + A11A33 - (A12A21 + A23A32 + A13A31)
= lAlzl + lAzzz + lA323 + A11A22 + A22A33 + A11A33 - (A12A21 + A23A32 + A13A31 + %Alzl + lezzz + %A323)

[All + A22 + A33 (2A12A21 + 2A23A32 + 21413"431 + Alzl + A222 + A323)

= 7(A11A11 + A12A21 + A13A31 + A12A21 + A22A22 + A23A32 + A13A31 + A23A32 + A33A33)

5

2
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1 2 1 1 2
=20 =5 (AijAji): 2 (11 B AijAji)

Thus, since /> only depends on /; and 4;4;, it is invariant under a rotation of the coordinate axes
because /; and 4;4;; are invariant under a rotation of the coordinate axes.

The manipulations for the third invariant are a tedious but not remarkable. Start from the
given definition for I3, and group like terms.

Iy = det(Aij): 4, (A22A33 - A23A32) — 4, (A21A33 - A23A31) +4; (A21A32 - A22A31)

= A11A22A33 + A12A23A31 + A13A32A21 - (A11A23A32 + A22A13A31 + A33A12A21) (a)
Now work from the given identity. The triple matrix product A;jjAjAx has twenty-seven terms:
A131 + Ay A Ay + Ay A Ay + Ap Ay Ay + A Ay Ay + Ap Ay Ay + A Ay Ay + Ay Ay Ay + Ay A Ay, +

A21A11A12 + A21A12A22 + A21A13A32 + AZZAZIAIZ + A232 + A22A23A32 + A23A31A12 + A23A32A22 + A23A33A32 +

A31A11A13 + A31A12A23 + A31A13A33 + A32A21A13 + A32A22A23 + A32A23A33 + A33A31A13 + A33A32A23 + A3§3
These can be grouped as follows:
AijAjkAki = 3(1412‘423‘6131 + A13A32A21) + A11(A121 + 3A12A21 + 3A13A31) +
A22(3A21A12 + A222 + 3A23A32) + A33 (3A31A13 + 3A32A23 + A§3) (b)
The remaining terms of the given identity are:
_]lAijAji + I2Aii = 11(]2 - AijAji) = 11(12 + 212 - 112) = 311[2 - 113 >
where the result for 7, has been used. Evaluating the first of these two terms leads to:
311]2 = 3(A11 + Azz + A33 )(AnAzz - A12A21 + A22A33 _A23A32 + A11A33 - A13A31)
= 3(‘All + A22 + A33 )(A11A22 + A22A33 + A11A33) - 3(A11 + A22 + A33 )(A12A21 + A23A32 + A13A31) .
Adding this to (b) produces:
AijAjkAki + 31112 = 3(A12A23A31 + A13A32A21) + 3(A11 + Azz + A33 )(Aquz + A22A33 + A11A33) +
An (A121 - 3A23A32) + Azz (A222 - 3A13A31) + A33 (A323 - 3A12A21)
= 3(A12A23A31 + A13A32A21 - A11A23A32 - A22A13A31 - A33A12A21) +
3(‘All + A22 + A33 )(A11A22 + A22A33 + Al 1A33) + A131 + A232 + A3?3 (C)
The last term of the given identity is:
113 = A131 + A232 + A333 + 3("41211422 + A121A33 + A222A11 + A222A33 + A§3All + A§3A22) + 6A11A22A33
= A131 + A;Z + A§3 + 3(‘411 + A22 + A33)(A11A22 + A11A33 + A22A33) - 3‘41114221433
Subtracting this from (c) produces:
AijAjkAki + 341, _]13 = 3(’412’423‘431 + Ay A Ay — Ay Ay Ay — Ay Ay Ay — Ay Ay Ay, + A11A22A33)
=31;.
This verifies that the given identity for /5 is correct. Thus, since /53 only depends on [, >, and
A;jApAy, 1t 1s invariant under a rotation of the coordinate axes because these quantities are
invariant under a rotation of the coordinate axes as shown above.
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Exercise 2.10. If u and v are vectors, show that the products u;v; obey the transformation rule
(2.12), and therefore represent a second-order tensor.

Solution 2.10. Start by applying the vector transformation rule (2.5 or 2.6) to the components of

u and v separately,
u, =C,u,, and v, =C,v,.
The product of these two equations produces:
u v = Ciijn Uy,

which is the same as (2.12) for second order tensors.
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Exercise 2.11. Show that ¢; is an isotropic tensor. That is, show that J; = J; under rotation of
the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.8.]

Solution 2.11. Apply (2.12) to oy,
5 =C, C. 5 =C C =C C, =0

im™~~ jn~ij im~in mi~~in mn *
where the final equality follows from the result of Exercise 2.8. Thus, the Kronecker delta is
invariant under coordinate rotations.
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Exercise 2.12. If u and v are arbitrary vectors resolved in three-dimensional Cartesian
coordinates, show that u-v = 0 when u and v are perpendicular.

Solution 2.12. Consider the magnitude of the sum u + v,
||u+ V||2 =, + )"+ (uy +v,)" + (uy +v,)

= + 1+ U+ + Vi Vi +2uy, +2u,v, +2uv,

=l + V][ + 2u- v,
which can be rewritten:

o] =l = V][ =20 v.
When u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus,
u-v=0.
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Exercise 2.13. If u and v are vectors with magnitudes u and v, use the finding of Exercise 2.12
to show that u-v = uovcos@where fis the angle between u and v.

Solution 2.13. Start with two arbitrary vectors (u and v), and view them so that the plane they
define is coincident with the page and v is horizontal. Consider two additional vectors, fv and w,
that are perpendicular (v-w = 0) and can be summed together to produce u: w + fv = u.

Compute the dot-product of u and v:
uv=(W+/fv)-v=wv+ fvv= ,BUZ.

where the final equality holds because v-w = 0. From the geometry of the figure:

EM:@, or ﬁzﬁcosﬁ.

cost
ol - u v

Insert this into the final equality for u-v to find:

u 2
u- V:(—coseju =uvcosh.
v



