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Exercise 1.1. Many centuries ago, a mariner poured 100 cm
3
 of water into the ocean. As time 

passed, the action of currents, tides, and weather mixed the liquid uniformly throughout the 

earth's oceans, lakes, and rivers. Ignoring salinity, estimate the probability that the next cup of 

water you drink will contain at least one water molecule that was dumped by the mariner. Assess 

your chances of ever drinking truly pristine water. [Some possibly useful facts: Mw for water is 

18.0 kg per kg-mole, the radius of the earth is 6370 km, the mean depth of the oceans is 

approximately 3.8 km and they cover 71% of the surface of the earth. One cup is ~240 ml.] 

 

Solution 1.1. To get started, first list or determine the volumes involved: 

d = volume of water dumped = 100 cm
3
, c = volume of a cup ≈ 240 cm

3
, and 

V = volume of water in the oceans = 



4R2D , 

where, R is the radius of the earth, D is the mean depth of the oceans, and  is the oceans' 

coverage fraction. Here we've ignored the ocean volume occupied by salt and have assumed that 

the oceans' depth is small compared to the earth's diameter. Putting in the numbers produces: 



V  4(6.37106 m)2(3.8103 m)(0.71) 1.3761018 m3 . 

For well-mixed oceans, the probability Po that any water molecule in the ocean came from the 

dumped water is: 



Po 
(100 cm3 of water)

(oceans'  volume)

d

V


1.0104 m3

1.376 1018 m3
 7.271023 , 

Denote the probability that at least one molecule from the dumped water is part of your next cup 

as P1 (this is the answer to the question).  Without a lot of combinatorial analysis, P1 is not easy 

to calculate directly. It is easier to proceed by determining the probability P2 that all the 

molecules in your cup are not from the dumped water. With these definitions, P1 can be 

determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the dumped water)
[number of molecules in a cup]

. 

The number of molecules, Nc, in one cup of water is 



Nc  240cm 3 
1.00g

cm 3


gmole

18.0g
 6.0231023 molecules

gmole
 8.031024

molecules 

Thus, 



P2  (1 Po)Nc  (1 7.271023)8.031024

.  Unfortunately, electronic calculators and modern 

computer math programs cannot evaluate this expression, so analytical techniques are required.  

First, take the natural log of both sides, i.e. 



ln(P2)  Nc ln(1Po)  8.031024 ln(1 7.271023) 

then expand the natural logarithm using ln(1–) ≈ – (the first term of a standard Taylor series 

for 



  0) 



ln(P2) Nc Po 8.031024  7.271023 584 , 

and exponentiate to find: 



P2  e584 10254  ... (!) 

Therefore, P1 = 1 – P2 is very-very close to unity, so there is a virtual certainty that the next cup 

of water you drink will have at least one molecule in it from the 100 cm
3
 of water dumped many 

years ago. So, if one considers the rate at which they themselves and everyone else on the planet 

uses water it is essentially impossible to get a truly fresh cup to drink. 
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Exercise 1.2. An adult human expels approximately 500 ml of air with each breath during 

ordinary breathing.  Imagining that two people exchanged greetings (one breath each) many 

centuries ago, and that their breath subsequently has been mixed uniformly throughout the 

atmosphere, estimate the probability that the next breath you take will contain at least one air 

molecule from that age-old verbal exchange. Assess your chances of ever getting a truly fresh 

breath of air. For this problem, assume that air is composed of identical molecules having Mw = 

29.0 kg per kg-mole and that the average atmospheric pressure on the surface of the earth is 100 

kPa. Use 6370 km for the radius of the earth and 1.20 kg/m
3
 for the density of air at room 

temperature and pressure. 

 

Solution 1.2. To get started, first determine the masses involved. 

m = mass of air in one breath = density x volume = 



1.20kg /m3 0.5103 m3  = 



0.60103 kg 

M = mass of air in the atmosphere = 



4R2 (z)dz
z 0



  

Here, R is the radius of the earth, z is the elevation above the surface of the earth, and (z) is the 

air density as function of elevation.  From the law for static pressure in a gravitational field, 



dP dz  g , the surface pressure, Ps, on the earth is determined from 



Ps  P  (z)gdz
z 0

z

  so 

that:                    



M  4R2 Ps  P

g
 4 (6.37106 m)2(105 Pa)  5.2 1018 kg . 

where the pressure (vacuum) in outer space = P∞ = 0, and g is assumed constant throughout the 

atmosphere.  For a well-mixed atmosphere, the probability Po that any molecule in the 

atmosphere came from the age-old verbal exchange is  



Po 
2 (mass of one breath)

(mass of the whole atmosphere)


2m

M


1.2103 kg

5.21018 kg
 2.311022 , 

where the factor of two comes from one breath for each person.  Denote the probability that at 

least one molecule from the age-old verbal exchange is part of your next breath as P1 (this is the 

answer to the question).  Without a lot of combinatorial analysis, P1 is not easy to calculate 

directly. It is easier to proceed by determining the probability P2 that all the molecules in your 

next breath are not from the age-old verbal exchange. With these definitions, P1 can be 

determined from: P1 = 1 – P2.  Here, we can calculate P2 from: 

P2 = (the probability that a molecule was not in the verbal exchange)
[number of molecules in a breath]

. 

The number of molecules, Nb, involved in one breath is  



Nb 
0.6103 kg

29.0g /gmole


103 g

kg
 6.0231023 molecules

gmole
1.25 1022 molecules 

Thus, 



P2  (1 Po)Nb  (1 2.311022)1.251022

.  Unfortunately, electronic calculators and modern 

computer math programs cannot evaluate this expression, so analytical techniques are required.  

First, take the natural log of both sides, i.e. 



ln(P2)  Nb ln(1Po) 1.251022 ln(12.311022) 

then expand the natural logarithm using ln(1–) ≈ – (the first term of a standard Taylor series 

for 



  0) 



ln(P2) Nb  Po 1.251022 2.311022 2.89 , 

and exponentiate to find: 
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

P2  e2.89  0.056. 

Therefore, P1 = 1 – P2 = 0.944 so there is a better than 94% chance that the next breath you take 

will have at least one molecule in it from the age-old verbal exchange.  So, if one considers how 

often they themselves and everyone else breathes, it is essentially impossible to get a breath of 

truly fresh air. 
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Exercise 1.3. In Cartesian coordinates, the Maxwell probability distribution, f(u) = f(u1,u2,u3), of 

molecular velocities in a gas flow with average velocity U = (U1,U2,U3) is  



f (u) 
m

2kBT











3 2

exp 
m

2kBT
uU

2







 

where n is the number of gas molecules in volume V, m is the molecular mass, kB is Boltzmann’s 

constant and T is the absolute temperature. 

a) Verify that U is the average molecular velocity, and determine the standard deviations (1, 

2,3) of each component of U using 



 i  (ui Ui)
2

all u

 f (u)d3u










1 2

 for i = 1, 2, and 3. 

b) Using the molecular version of perfect gas law (1.21), determine n/V at room temperature T = 

295 K and atmospheric pressure p = 101.3 kPa. 

c) Determine n for volumes V = (10 m)
3
, 1 m

3
, and (0.1 m)

3
. 

d) For the i
th

 velocity component, the standard deviation of the average, a,i, over n molecules 

isa,i = 



 i n  when n >> 1. For an airflow at U = (1.0 ms
–1

, 0, 0), compute the relative 

uncertainty, 



2 a ,1 U1
, at the 95% confidence level for the average velocity for the three volumes 

listed in part c). 

e) For the conditions specified in parts b) and d), what is the smallest volume of gas that ensures 

a relative uncertainty in U of less than one percent? 

 

Solution 1.3. a) Use the given distribution, and the definition of an average: 



uave  u
all u

 f (u)d3u 
m

2kBT











3 2

u
–

+


–

+


–

+

 exp 
m

2kBT
uU

2







d3u . 

Consider the first component of u, and separate out the integrations in the "2" and "3" directions. 



(u1)ave 
m

2kBT











3 2

u1

–

+


–

+


–

+

 exp 
m

2kBT
(u1 U1)

2  (u2 U2)2  (u3 U3)2 








du1du2du3

 

          




m

2kBT











3 2

u1

–

+

 exp 
m(u1 U1)

2

2kBT









du1 exp 
m(u2 U2)2

2kBT









du2

–

+

 exp 
m(u3 U3)2

2kBT







–

+

 du3

 

The integrations in the "2" and "3" directions are equal to: 



2kBT m 
1 2

, so 



(u1)ave 
m

2kBT











1 2

u1

–

+

 exp 
m(u1 U1)

2

2kBT









du1
 

The change of integration variable to 



  (u1 U1) m 2kBT 
1 2

 changes this integral to: 



(u1)ave 
1




2kBT

m











1 2

U1











–

+

 exp  2 d  0
1


U1  U1

, 

where the first term of the integrand is an odd function integrated on an even interval so its 

contribution is zero. This procedure is readily repeated for the other directions to find (u2)ave = 

U2, and (u3)ave = U3. Using the same simplifications and change of integration variables 

produces: 



1

2 
m

2kBT











3 2

(u1 U1)
2

–

+


–

+


–

+

 exp 
m

2kBT
(u1 U1)

2  (u2 U2)2  (u3 U3)2 








du1du2du3
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


m

2kBT











1 2

(u1 U1)
2

–

+

 exp 
m(u1 U1)

2

2kBT









du1 
1



2kBT

m









  2

–

+

 exp  2 d . 

The final integral over  is: 



 2, so the standard deviations of molecular speed are 



1  kBT m 
1 2
 2  3 ,  

where the second two equalities follow from repeating this calculation for the second and third 

directions.  

b) From (1.21), 



n V  p kBT  (101.2kPa) [1.3811023 J /K 295K] 2.4871025 m3  

c) From n/V from part b): 



n  2.4871010
 for V = 10

3
 m

3
 = 10

–15
 m

3
 

    



n  2.487107
 for V = 1.0 m

3
 = 10

–18
 m

3
 

    



n  2.487104
 for V = 0.001 m

3
 = 10

–21
 m

3
 

d) From (1.22), the gas constant is R = (kB/m), and R = 287 m
2
/s

2
K for air. Compute: 



2 a,1 U1  2 kBT m n 
1 2

1m /s  2 RT n 
1 2

1m /s  2 287  295 n 
1 2
 582 n . Thus,  

for V = 10
–15

 m
3
 : 



2a,1 U1  = 0.00369, 

 V = 10
–18

 m
3
 : 



2a,1 U1  = 0.117, and  

 V = 10
–21

 m
3
 : 



2a,1 U1  = 3.69. 

e) To achieve a relative uncertainty of 1% we need n ≈ (582/0.01)
2
 = 3.39



10
9
, and this 

corresponds to a volume of 1.36



10
-16

 m
3 
which is a cube with side dimension ≈ 5 m. 
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Exercise 1.4. Using the Maxwell molecular velocity distribution given in Exercise 1.3 with U = 

0, determine the average molecular speed = 



v  u
2

all u

 f (u)d 3u










1 2

 and compare it with c = speed of 

sound in a perfect gas under the same conditions. 

 

Solution 1.4. Use the specified form for 



v  and the Maxwell distribution 



v 2  u
all u


2
f (u)d3u 

m

2kBT











3 2

u1

2  u2

2  u3

2 
–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
. 

This can be re-arranged and expanded into a total of nine one-variable integrations: 

        



v 2 
m

2kBT











3 2

u1

2 exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

  




m

2kBT











3 2

exp 
mu1

2

2kBT









du1

–

+

 u2

2 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

  




m

2kBT











3 2

exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 u3

2 exp 
mu3

2

2kBT







–

+

 du3
. 

In this arrangement, the six off-diagonal integrals are equal to 



2kBT m 
1 2

 and the three on-

diagonal integrals are equal to 



2kBT m 
3 2

 2 . Thus,  



v 2 
m

2kBT











3 2

2kBT

m











2kBT

m











3 2


2kBT

m











3 2


2kBT

m











3 2











2
,  or  



v 2 
3kBT

m
. 

From (1.22), R = (kB/m) so 



v  3RT  and this speed has the same temperature dependence but is 

a factor of 



3   larger than the speed of sound in a perfect gas: 



c  RT . 
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Exercise 1.5. By considering the volume swept out by a moving molecule, estimate how the 

mean-free path, l, depends on the average molecular cross section dimension 



d  and the 

molecular number density 



˜ n  for nominally spherical molecules. Find a formula for 



l ˜ n 1 3 (= the 

ratio of the mean-free path to the mean intermolecular spacing) in terms of the molecular volume 

(



d 3) and the available volume per molecule (



1 ˜ n ). Is this ratio typically bigger or smaller than 

one? 

 

Solution 1.5. The combined collision cross section for two spherical molecules having diameter 



d  is 



d 2. The mean free path l is the average distance traveled by a molecule between collisions. 

Thus, the average molecule should experience one collision when 

sweeping a volume equal to 



d 2l . If the molecular number density is 



˜ n , then the volume per molecule is 



˜ n 1
, and the mean intermolecular 

spacing is 



˜ n 1 3
. Assuming that the swept volume necessary to 

produce one collision is proportional to the volume per molecule 

produces: 



d 2l C ˜ n   or  



l C ˜ n d 2 , 
where C is a dimensionless constant presumed to be of order unity. The dimensionless version of 

this equation is: 

     



mean free path

mean intermolecular spacing


l

˜ n 1 3
 l ˜ n 1 3

 

                                                     




C

˜ n 2 3d 2


C

˜ n d 3 
2 3

C
˜ n 1

d 3











2 3

C
volume per molecule

molecular volume











2 3

, 

 

where all numerical constants like  have been combined into C. Under ordinary conditions in 

gases, the molecules are not tightly packed so 



l  ˜ n 1 3
. In liquids, the molecules are tightly 

packed so 



l ~ ˜ n 1 3
. 



d 
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Exercise 1.6. In a gas, the molecular momentum flux (MFij) in the j-coordinate direction that 

crosses a flat surface of unit area with coordinate normal direction i is: 



MFij 
n

V
muiu j f (u)d3u

all u

  where f(u) is the Maxwell distribution given in Exercise 1.3. For a 

perfect gas that is not moving on average (i.e. U = 0), show that MFij = p, the pressure, when i = 

j, and that MFij = 0, when i ≠ j. 

 

Solution 1.6. Start from the given equation using the Maxwell distribution: 



MFij 
n

V
muiu j f (u)d3u

all u

 
nm

V

m

2kBT











3 2

uiu j

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

and first consider i = j = 1, and recognize  = nm/V as the gas density (see (1.22)).  

 



MF11  
m

2kBT











3 2

u1

2

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

          



 
m

2kBT











3 2

u1

2 exp 
mu1

2

2kBT









du1

–

+

 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

The first integral is equal to 



2kBT m 
3 2

 2  while the second two integrals are each equal to 



2kBT m 
1 2

. Thus:  

 



MF11  
m

2kBT











3 2

2kBT

m











3 2


2

2kBT

m











1 2
2kBT

m











1 2

 
kBT

m
 RT  p 

where kB/m = R from (1.22). This analysis may be repeated with i = j = 2, and i = j = 3 to find: 

MF22 = MF33 = p, as well.  

 Now consider the case i ≠ j. First note that MFij = MFji because the velocity product 

under the triple integral may be written in either order uiuj = ujui, so there are only three cases of 

interest.  Start with i = 1, and j = 2 to find: 



MF12  
m

2kBT











3 2

u1u2

–

+


–

+


–

+

 exp 
m

2kBT
u1

2  u2

2  u3

2 








du1du2du3
 

         



 
m

2kBT











3 2

u1 exp 
mu1

2

2kBT









du1

–

+

 u2 exp 
mu2

2

2kBT









du2

–

+

 exp 
mu3

2

2kBT







–

+

 du3
 

Here we need only consider the first integral. The integrand of this integral is an odd function 

because it is product of an odd function, u1, and an even function, 



exp mu1

2 2kBT . The 

integral of an odd function on an even interval [–∞,+∞] is zero, so MF12 = 0. And, this analysis 

may be repeated for i = 1 and j = 3, and i = 2 and j = 3 to find MF13 = MF23 = 0. 



Fluid Mechanics, 5
th

 Ed.                                                                                                      Kundu, Cohen, and 

Dowling 

Exercise 1.7. Consider the viscous flow in a channel of width 2b. The channel is aligned in the 

x-direction, and the velocity u in the x-direction at a distance y from the channel centerline is 

given by the parabolic distribution 



u(y) = U0 1 y b 
2 . Calculate the shear stress  as a 

function y, , b, and Uo. What is the shear stress at y = 0? 

 

Solution 1.7. Start from (1.3):



  
du

dy
 

d

dy
Uo 1

y

b











2







 –2Uo

y

b2
. At y = 0 (the location of 

maximum velocity)  = 0. At At y = ±b (the locations of zero velocity), 



  m2Uo b . 
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Exercise 1.8. Estimate the height to which water at 20 C will rise in a capillary glass tube 3 mm 

in diameter that is exposed to the atmosphere. For water in contact with glass the wetting angle is 

nearly 90. At 20 C, the surface tension of an water-air interface is  = 0.073 N/m. (Answer: h = 

0.99 cm.)  

 

Solution 1.8. Start from the result of Example 1.1. 



h 
2 sin

gR


2(0.073N /m)sin(90)

(103 kg /m3)(9.81m /s2)(1.5103 m)
 9.92mm  
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Exercise 1.9. A manometer is a U-shaped tube containing mercury of density m. Manometers 

are used as pressure measuring devices. If the fluid in the tank A has a pressure p and density , 

then show that the gauge pressure in the tank is: p  patm = mgh  ga. Note that the last term on 

the right side is negligible if  << m. (Hint: Equate the pressures at X and Y.) 

 

 
 

Solution 1.9. Start by equating the pressures at X and Y. 

pX = p + ga  = patm + mgh = pY. 

Rearrange to find:  

 p – patm  =  mgh – ga. 
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Exercise 1.10. Prove that if e(T, ) = e(T) only and if h(T, p) = h(T) only, then the (thermal) 

equation of state is (1.22) or p = kT.  

 

Solution 1.10. Start with the first member of (1.18): de = Tds – pd, and rearrange it: 



ds 
1

T
de 

p

T
d 

s

e












de 
s













e

d , 

where the second equality holds assuming the entropy depends on e and . Here we see that: 



1

T


s

e












, and 



p

T


s













e

. 

Equality of the crossed second derivatives of s, 







s

e






















e




e

s













e












, implies: 



 1 T 












e


 p T 
e












. 

However, if e depends only on T, then (∂/∂)e = (∂/∂)T, thus 



 1 T 












e


 1 T 












T

 0 , so



 p T 
e












 0 , and this can be integrated once to find: p/T = f1(), where f1 is an undetermined 

function.  

 Now repeat this procedure using the second member of (1.18), dh = Tds + dp. 



ds 
1

T
dh 



T
dp 

s

h











p

dh 
s

p











h

dp. 

Here equality of the coefficients of the differentials implies: 



1

T


s

h











p

, and 






T


s

p











h

. 

So, equality of the crossed second derivatives implies: 



 1 T 
p











h

 
  T 
h











p

. 

Yet, if h depends only on T, then (∂/∂p)h = (∂/∂p)T, thus 



 1 T 
p











h


 1 T 
p











T

 0, so




  T 
h











p

 0, and this can be integrated once to find: /T = f2(p), where f2 is an undetermined 

function. 

 Collecting the two results involving f1 and f2, and solving for T produces: 



p

f1()
 T 



f2( p)
   or   



pf2(p) f1()  k , 

where k must be is a constant since p and  are independent thermodynamic variables. 

Eliminating f1 or f2 from either equation of the left, produces p = kT. 

 And finally, using both versions of (1.18) we can write: dh – de = dp + pd = d(p). 

When e and h only depend on T, then dh = CpdT and de = CvdT, so 

dh – de = (Cp – Cv)dT = d(p) = kdT ,  thus  k = Cp – Cv = R, 

where R is the gas constant. Thus, the final result is the perfect gas law: p = kT/ = RT. 
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Exercise 1.11. Starting from the property relationships (1.18) prove (1.25) and (1.26) for a 

reversible adiabatic process when the specific heats Cp and Cv are constant. 

 

Solution 1.11. For an isentropic process: de = Tds – pd = –pd, and dh = Tds + dp = +dp. 

Equations (1.25) and (1.26) apply to a perfect gas so the definition of the specific heat capacities 

(1.14), and (1.15) for a perfect gas, dh = CpdT, and de = CvdT , can be used to form the ratio 

dh/de: 



dh

de


CpdT

CvdT


Cp

Cv

   
dp

pd
  or  




d


 

d




dp

p
. 

The final equality integrates to: ln(p) = ln() + const which can be exponentiated to find: 

p = const., 

which is (1.25). The constant may be evaluated at a reference condition po and o to find: 



p po   o 

and this may be inverted to put the density ratio on the left  



 o  p po 
1 

, 

which is the second member of (1.26). The remaining relationship involving the temperature is 

found by using the perfect gas law, p = RT, to eliminate  = p/RT: 





o


p RT

po RTo


pTo

poT


p

po











1 

  or  



T

To


p

po

p

po











1 


p

po











( 1) 

, 

which is the first member of (1.26).   
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Exercise 1.12. A cylinder contains 2 kg of air at 50 C and a pressure of 3 bars. The air is 

compressed until its pressure rises to 8 bars. What is the initial volume? Find the final volume for 

both isothermal compression and isentropic compression.  

 

Solution 1.12. Use the perfect gas law but explicitly separate the mass M of the air and the 

volume V it occupies via the substitution  = M/V: 

p = RT = (M/V)RT. 

Solve for V at the initial time: 

Vi = initial volume = MRT/pi = (2 kg)(287 m
2
/s

2
K)(273 + 50°)/(300 kPa) = 0.618 m

3
. 

For an isothermal process: 

Vf = final volume = MRT/pf = (2 kg)(287 m
2
/s

2
K)(273 + 50°)/(800 kPa) = 0.232 m

3
. 

For an isentropic process: 



V f Vi pi p f 
1 

0.618m3 300kPa 800kPa 
11.4

 0.307m3. 
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Exercise 1.13. Derive (1.29) starting from the arguments provided at the beginning of Section 

1.10 and Figure 1.8.  

 

Solution 1.13. Take the z axis vertical, and consider a small fluid element m of fluid having 

volume V that starts at height z0 in a stratified fluid medium having a vertical density profile = 

(z), and a vertical pressure profile p(z). Without any vertical displacement, the small mass and 

its volume are related by m = (z0)V. If the small mass is displaced vertically a small distance 

 via an isentropic process, its density will change isentropically according to: 



a(z0 )  (z0) da dz   ... 

where da/dz is the isentropic density at z0. For a constant m, the volume of the fluid element 

will be: 



V 
m

a


m

(z0) da dz   ...


m

(z0)
1

1

(z0)

da

dz
  ...









 

The background density at z0 +  is: 



(z0 )  (z0) d dz   ... 

If g is the acceleration of gravity, the (upward) buoyant force on the element at the vertically 

displaced location will be g(z0 + )V, while the (downward) weight of the fluid element at any 

vertical location is gm. Thus, a vertical application Newton's second law implies: 



m
d2

dt2
 g(z0  )V  gm  g (z0) d dz   ... 

m

(z0)
1

1

(z0)

da

dz
  ...









 gm , 

where the second equality follows from substituting for (z0 + ) and V from the above 

equations. Multiplying out the terms in (,)-parentheses and dropping second order terms 

produces: 



m
d2

dt 2
 gm 

gm

(z0)

d

dz
 

gm

(z0)

da

dz
  ... gm 

gm

(z0)

d

dz


da

dz









  

Dividing by m and moving all the terms to the right side of the equation produces: 



d2

dt 2


g

(z0)

d

dz


da

dz









  0 

Thus, for oscillatory motion at frequency N, we must have  



N 2  
g

(z0)

d

dz


da

dz









, 

which is (1.29).  
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Exercise 1.14. Starting with the hydrostatic pressure law (1.8), prove (1.30) without using 

perfect gas relationships. 

 

Solution 1.14. The adiabatic temperature gradient dTa/dz, can be written terms of the pressure 

gradient: 



dTa

dz


T

p











s

dp

dz
 g

T

p











s

 

where the hydrostatic law dp/dz = –g has been used to reach the second equality. Here, the final 

partial derivative can be exchanged for one involving  = 1/ and s, by considering: 



dh 
h

s











p

ds
h

p











s

dp  Tdsdp . 

Equality of the crossed second derivatives of h, 





p

h

s











p











s




s

h

p











s











p

, implies: 



T

p











s




s











p




T











p

T

s











p




T











p

s

T











p

, 

where the second two equalities are mathematical manipulations that allow the introduction of 



  
1





T











p

 


T











p

,  and  



Cp 
h

T











p

 T
s

T











p

. 

Thus,  



dTa

dz
 g

T

p











s

 g


T











p

s

T











p

 g
Cp

T









 

gT

Cp

. 
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Exercise 1.15. Assume that the temperature of the atmosphere varies with height z as T = T0  

Kz where K is a constant. Show that the pressure varies with height as 



p = p0

T0

T0  Kz











g/KR

,  where 

g is the acceleration of gravity and R is the gas constant for the atmospheric gas. 

 

Solution 1.15. Start with the hydrostatic and perfect gas laws, dp/dz = –g, and p = RT, 

eliminate the density, and substitute in the given temperature profile to find:  



dp

dz
 g  

p

RT
g  

p

R(T0  Kz)
g  or  



dp

p
 

g

R

dz

(T0  Kz)
. 

The final form may be integrated to find: 



ln p  
g

RK
ln T0 Kz  const. 

At z = 0, the pressure must be p0, therefore: 



ln p0  
g

RK
ln T0  const. 

Subtracting this from the equation above and invoking the properties of logarithms produces: 



ln
p

p0









 

g

RK
ln

T0 Kz

T0









 

Exponentiating produces: 



p

p0

=
T0  Kz

T0











g/KR

, which is the same as: 



p = p0

T0

T0 Kz











g/KR

. 

 



Fluid Mechanics, 5
th

 Ed.                                                                                                      Kundu, Cohen, and 

Dowling 

Exercise 1.16. Suppose the atmospheric temperature varies according to: T = 15  0.001z, where 

T is in degrees Celsius and height z is in meters. Is this atmosphere stable? 

 

Solution 1.16. Compute the temperature gradient: 



dT

dz


d

dz
(150.001z)  0.001

C

m
 1.0

C

km
. 

For air in the earth's gravitational field, the adiabatic temperature gradient is: 



dTa

dz
 

gT

Cp


(9.81m /s2)(1/T)T

1004m2 /s2C
 9.8

C

km
. 

Thus, the given temperature profile is stable because the magnitude of its gradient is less than 

the magnitude of the adiabatic temperature gradient.  
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Exercise 1.17. Consider the case of a pure gas planet where the hydrostatic law is: 



dp dz  (z)Gm(z) z2 . Here G is the gravitational constant, and 



m(z)  4 ( ) 2

o

z

 d  is the 

planetary mass up to distance z from the center of the planet. If the planetary gas is perfect with 

gas constant R, determine (z) and p(z) if this atmosphere is isothermal at temperature T. Are 

these vertical profiles of  and p valid as z increases without bound? 

 

Solution 1.17. Start with the given relationship for m(z), differentiate it with respect to z, and use 

the perfect gas law, p = RT to replace the  with p. 



dm

dz


d

dz
4 ( ) 2d

0

z










 4z2(z)  4z2 p(z)

RT
. 

Now use this and the hydrostatic law to obtain a differential equation for m(z),  



dp

dz
 (z)

Gm(z)

z2


d

dz

RT

4z2

dm

dz









 

1

4z2

dm

dz











Gm(z)

z2
. 

After recognizing T as a constant, the nonlinear second-order differential equation for m(z) 

simplifies to: 



RT

G

d

dz

1

z2

dm

dz









 

1

z4
m

dm

dz
. 

This equation can be solved by assuming a power law: m(z) = Az
n
.  When substituted in, this trial 

solution produces: 



RT

G

d

dz
z2Anz n1 

RT

G
n  3 Anz n4  z4 A2nz2n1

. 

Matching exponents of z across the last equality produces: n – 4 = 2n – 5, and this requires n = 1. 

For this value of n, the remainder of the equation is: 



RT

G
2 Az3  z4 A2z1, which reduces to: 



A  2
RT

G
. 

Thus, we have m(z) = 2RTz/G, and this leads to: 



(z) 
2RT

G

1

4z2
  , and  



p(z) 
2R2T 2

G

1

4z2
. 

Unfortunately, these profiles are not valid as z increases without bound, because this leads to an 

unbounded planetary mass.  
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Exercise 1.18. Consider a heat-insulated enclosure that is separated into two compartments of 

volumes V1 and V2, containing perfect gases with pressures and temperatures of p1, p2, and T1, T2, 

respectively. The compartments are separated by an impermeable membrane that conducts heat 

(but not mass). Calculate the final steady-state temperature assuming each gas has constant 

specific heats.  

 

Solution 1.18. Since no work is done and no heat is transferred out of the enclosure, the final 

energy Ef is the sum of the energies, E1 and E2, in the two compartments. 

E1 + E2 = Ef   implies  1V1Cv1T1 + 2V2Cv2T2 = (1V1Cv1 + 2V2Cv2)Tf, 

where the Cv's are the specific heats at constant volume for the two gases. The perfect gas law 

can be used to find the densities: 1 = p1/R1T1 and 2 = p2/R2T2, so  

p1V1Cv1/R1 + p2V2Cv2/R2 = (p1V1Cv1/R1T1 + p2V2Cv2/R2T2)Tf. 

A little more simplification is possible, Cv1/R1 = 1/(1 – 1) and Cv2/R1 = 1/(2 – 1). Thus, the final 

temperature is: 



Tf 
p1V1 (1 1) p2V2 (2 1)

p1V1 (1 1)T1  p2V2 (2 1)T2 
. 
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Exercise 1.19. Consider the initial state of an enclosure with two compartments as described in 

Exercise 1.18. At t = 0, the membrane is broken and the gases are mixed. Calculate the final 

temperature.  

 

Solution 1.19. No heat is transferred out of the enclosure and the work done by either gas is 

delivered to the other so the total energy is unchanged. First consider the energy of either gas at 

temperature T, and pressure P in a container of volume V. The energy E of this gas will be: 

E = VCvT = (p/RT)VCvT = pV(Cv/R) = pV/( – 1). 

where  is the ratio of specific heats. For the problem at hand the final energy Ef will be the sum 

of the gas energies, E1 and E2, in the two compartments. Using the above formula: 



E f  p1V1 (1 1) p2V2 (2 1). 

Now consider the mixture. The final volume and temperature for both gases is V1+V2, and Tf. 

However, from Dalton's law of partial pressures, the final pressure of the mixture pf can be 

considered a sum of the final partial pressures of gases "1" and "2", p1f and p2f: 

pf = p1f + p2f. 

Thus, the final energy of the mixture is a sum involving each gases partial pressure and the total 

volume: 



E f  p1 f (V1 V2) (1 1) p2 f (V1 V2) (2 1). 

However, the perfect gas law implies: p1f(V1+V2) = n1RuTf, and p2f(V1+V2) = n2RuTf where n1 and 

n2 are the mole numbers of gases "1" and "2", and Ru is the universal gas constant. The mole 

numbers are obtained from:  

n1 = p1V1/RuT1,  and n2 = p2V2/RuT2, 

Thus, final energy determined from the mixture is: 



E f 
n1RuTf

1 1


n2RuTf

1 1


p1V1

RuT1











RuTf

1 1


p2V2

RuT2











RuTf

2 1


p1V1

T1











Tf

1 1


p2V2

T2











Tf

2 1
. 

Equating this and the first relationship for Ef above then produces: 



Tf 
p1V1 (1 1) p2V2 (2 1)

p1V1 (1 1)T1  p2V2 (2 1)T2 
. 
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Exercise 1.20. A heavy piston of weight W is dropped onto a thermally insulated cylinder of 

cross-sectional area A containing a perfect gas of constant specific heats, and initially having the 

external pressure p1, temperature T1, and volume V1. After some oscillations, the piston reaches 

an equilibrium position L meters below the equilibrium position of a weightless piston. Find L. Is 

there an entropy increase?  

 

Solution 1.20. From the first law of thermodynamics, with Q = 0, E = Work = WL. For a 

perfect gas with constant specific heats, E = CvT, so E = E2 – E1 = Cv(T2 – T1) = WL.  Then  

T2 = T1 + WL/Cv. Also, for a perfect gas, PV/T = constant so p1V1/T1 = p2V2/T2. For the cylinder, 

V2 = V1 – AL, and p2 = p1 + W/A. Therefore: 



p1V1

T1


(p1 W A)(V1  AL)

T1 WL Cv

. 

Solve for L. 



p1V1

T1

T1 
WL

Cv









 p

W

A









(V1  AL) , 



L
p1V1

T1

W

Cv

 p
W

A









A









 p

W

A









V1 

p1V1

T1

T1 
W

A
V1, 



L 
WV1 A

pV1 T1 W Cv  pA W
. 
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Exercise 1.21. A gas of non-interacting particles of mass m at temperature T has density , and 

internal energy per unit volume .  

a) Using dimensional analysis, determine how  must depend on , T, and m. In your formulation 

use kB = Boltzmann’s constant, h = Plank’s constant, and c = speed of light to include possible 

quantum and relativistic effects. 

b) Consider the limit of slow moving particles without quantum effects by requiring c and h to 

drop out of your dimensionless formulation.  How does  depend on  and T? What type of gas 

follows this thermodynamic law? 

c) Consider the limit of massless particles (i.e. photons) by requiring m and  to drop out of your 

dimensionless formulation of part a). How does  depend on T in this case?  What is the name of 

this radiation law? 

 

Solution 1.21. a) Construct the parameter & units matrix noting that kB and T must go together 

since they are the only parameters that involve temperature units. 

 

     kBT m h c 

  M 1 1 1 1 1 0 

  L -1 -3 2 0 2 1 

  T -2 0 -2 0 -1 -1 

 

This rank of this matrix is three. There are 6 parameters and 3 independent units, so there will be 

3 dimensionless groups.  Two of the dimensionless groups are energy ratios that are easy spot: 



1  c2  and 



2  kBT mc2 .  There is one dimensionless group left that must contain h. A bit 

of work produces: 



3 
h 3

m4c 3
, so 





c2
1

kBT

mc2
,
h3

m4c3









. 

b) Dropping h means dropping 3. Eliminating c means combining 1 and 2 to create a new 

dimensionless group that lacks c: 



1

2


 c 2

kBT mc 2


m

kBT
.  However, now there is only one 

dimensionless group so it must be a constant.  This implies: 



  const 
kBT

m









 which is the 

caloric equation of state for a perfect gas. 

c) Eliminating  means combining 1 and 3 to create a new dimensionless group that lacks : 



1  3 


c 2

h3

m4c 3


h3

m4c 5
.  Now combine this new dimensionless group with 2 to eliminate 

m: 



h3

m4c 5


1

2

4


h3

m4c 5


mc 2

kBT











4


h3c 3

kBT 
4

.  Again there is only a single dimensionless group so it 

must equal a constant; therefore 



 
const

h3c3
 kBT 

4
.  This is the Stephan-Boltzmann radiation law. 
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Exercise 1.22.  Many flying and swimming animals – as well as human engineered vehicles – 

rely on some type of repetitive motion for propulsion through air or water.  For this problem, 

assume the average travel speed U, depends on the repetition frequency f, the characteristic 

length scale of the animal or vehicle L, the acceleration of gravity g, the density of the animal or 

vehicle o, the density of the fluid , and the viscosity of the fluid .  

a) Formulate a dimensionless scaling law for U involving all the other parameters. 

b) Simplify your answer for a) for turbulent flow where  is no longer a parameter. 

c) Fish and animals that swim at or near a water surface generate waves that move and propagate 

because of gravity, so g clearly plays a role in determining U. However, if fluctuations in the 

propulsive thrust are small, then f may not be important. Thus, eliminate f from your answer for 

b) while retaining L, and determine how U depends on L. Are successful competitive human 

swimmers likely to be shorter or taller than the average person? 

d) When the propulsive fluctuations of a surface swimmer are large, the characteristic length 

scale may be U/f instead of L. Therefore, drop L from your answer for b).  In this case, will 

higher speeds be achieved at lower or higher frequencies? 

e) While traveling submerged, fish, marine mammals, and submarines are usually neutrally 

buoyant (a ≈ ) or very nearly so.  Thus, simplify your answer for b) so that g drops out.  For 

this situation, how does the speed U depends on the repetition frequency f? 

f) Although fully submerged, aircraft and birds are far from neutrally buoyant in air, so their 

travel speed is predominately set by balancing lift and weight. Ignoring frequency and viscosity, 

use the remaining parameters to construct dimensionally-accurate surrogates for lift & weight to 

determine how U depends on o/, L, and g. 

 

Solution 1.22. a) Construct the parameter & units matrix 

 

   U f L g a   

  M 0 0 0 0 1 1 1 

  L 1 0 1 1 -3 -3 -1 

  T -1 -1 0 -2 0 0 -1 

 

This rank of this matrix is three. There are 7 parameters and 3 independent units, so there will be 

4 dimensionless groups. First try to assemble traditional dimensionless groups, but its best to use 

the solution parameter U only once.  Here U is used in the Froude number, so its dimensional 

counter part, 



gL , is used in place of U in the Reynolds number.  



1 
U

gL
 = Froude number,  



2 
 gL3


 = a Reynolds number 

The next two groups can be found by inspection: 



3 
o


 = a density ratio , and the final group must include f: 



4 
f

g L
, and is a frequency 

ratio between f and that of simple pendulum with length L.  Putting these together produces: 



U

gL
1

 gL3


,
o


,

f

g L













 where, throughout this problem solution,  i , i = 1, 2, 3, …  are 

unknown functions. 
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b) When  is no longer a parameter, the Reynolds number drops out: 



U

gL
2

o


,

f

g L









. 

c) When f is no longer a parameter, then 



U  gL 3 o  , so that U is proportional to 



L .  

This scaling suggests that taller swimmers have an advantage over shorter ones.  [Human 

swimmers best approach the necessary conditions for this part of this problem while doing 

freestyle (crawl) or backstroke where the arms (and legs) are used for propulsion in an 

alternating (instead of simultaneous) fashion.  Interestingly, this length advantage also applies to 

ships and sailboats.  Aircraft carriers are the longest and fastest (non-planing) ships in any Navy, 

and historically the longer boat typically won the America’s Cup races under the 12-meter rule.  

Thus, if you bet on a swimming or sailing race where the competitors aren’t known to you but 

appear to be evenly matched, choose the taller swimmer or the longer boat.] 

d) Dropping L from the answer for b) requires the creation of a new dimensionless group from f, 

g, and U to replace 1 and 4. The new group can be obtained via a product of original 

dimensionless groups: 



14 
U

gL

f

g L


Uf

g
. Thus, 



Uf

g
4

o











, or 



U 
g

f
4

o











.  Here, 

U is inversely proportional to f which suggests that higher speeds should be obtained at lower 

frequencies.  [Human swimmers of butterfly (and breaststroke to a lesser degree) approach the 

conditions required for this part of this problem.  Fewer longer strokes are typically preferred 

over many short ones.  Of course, the trick for reaching top speed is to properly lengthen each 

stroke without losing propulsive force]. 

e) When g is no longer a parameter, a new dimensionless group that lacks g must be made to 

replace 1 and 5.  This new dimensionless group is 



1

5


U gL

f g L


U

fL
, so the overall scaling 

law must be: 



U  fL 5

o











.  Thus, U will be directly proportional to f.  Simple observations of 

swimming fish, dolphins, whales, etc. verify that their tail oscillation frequency increases at 

higher swimming speeds, as does the rotation speed of a submarine or torpedo’s propeller. 

f) Dimensionally-accurate surrogates for weight and lift are: 



oL
3g and 



U2L2, respectively.  Set 

these proportional to each other, 



oL
3gU2L2 , to find 



U  ogL  , which implies that larger 

denser flying objects must fly faster.  This result is certainly reasonable when comparing 

similarly shaped aircraft (or birds) of different sizes.   
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Exercise 1.23. The acoustic power W generated by a large industrial blower depends on its 

volume flow rate Q, the pressure rise P it works against, the air density , and the speed of 

sound c. If hired as an acoustic consultant to quiet this blower by changing its operating 

conditions, what is your first suggestion?  

 

Solution 1.23. The boundary condition and material parameters are: Q, , P, and c.  The 

solution parameter is W. Create the parameter matrix: 

  Q P  c W 

         –––––––––––––––––––––––––––––––––– 

Mass:  0 1 1 0 1 

Length: 3 -1 -3 1 2 

Time:  -1 -2 0 -1 -3 

 

This rank of this matrix is three. Next, determine the number of dimensionless groups:  5 

parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: ∏1 = W/QP, ∏2 = 

P/c2. Now write the dimensionless law: W = QP(P/c2), where  is an unknown 

function. Since the sound power W must be proportional to volume flow rate Q, you can 

immediately suggest a decrease in Q as means of lowering W.  At this point you do not know if 

Q must be maintained at high level, so this solution may be viable even though it may oppose 

many of the usual reasons for using a blower.  Note that since  is unknown the dependence of 

W on P cannot be determined from dimensional analysis alone. 
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Exercise 1.24. A machine that fills peanut-butter jars must be reset to accommodate larger jars.  

The new jars are twice as large as the old ones but they must be filled in the same amount of time 

by the same machine.  Fortunately, the viscosity of peanut butter decreases with increasing 

temperature, and this property of peanut butter can be exploited to achieve the desired results 

since the existing machine allows for temperature control.  

a) Write a dimensionless law for the jar-filling time tf based on: the density of peanut butter , 

the jar volume V, the viscosity of peanut butter , the driving pressure that forces peanut butter 

out of the machine P, and the diameter of the peanut butter delivery tube d. 

b) Assuming that the peanut butter flow is dominated by viscous forces, modify the relationship 

you have written for part a) to eliminate the effects of fluid inertia. 

c) Make a reasonable assumption concerning the relationship between tf and V when the other 

variables are fixed, so that you can determine the viscosity ratio new/old necessary for proper 

operation of the old machine with the new jars. 

 

Solution 1.24. a) The boundary condition and material parameters are: V, , P, µ, and d.  The 

solution parameter is tf. First create the parameter matrix: 

  V P  d µ tf 

         –––––––––––––––––––––––––––––––––– 

Mass:  0 1 1 0 1 0 

Length: 3 -1 -3 1 -1 0 

Time:  0 -2 0 0 -1 1 

 

This rank of this matrix is three. Next determine the number of dimensionless groups:   6 

parameters - 3 dimensions = 3 groups. Construct the dimensionless groups: ∏1 = Ptf/µ, ∏2 = 

µ2/d2P, ∏3 = V/d3, and write a dimensionless law: tf = (µ/P)(µ2/d2P,V/d3), where  is an 

unknown function.  

b) When fluid inertia is not important the fluid's density is not a parameter.  Therefore, drop ∏2 

from the dimensional analysis formula:  tf =  (µ/P)(V/d3), where  is yet another unknown 

function. 

c) One might reasonably expect that tf  V (these are the two extensive variables).  Therefore, we 

end up with tf =  constµV/Pd3.  Now form a ratio between the old and new conditions and cancel 

common terms: 



(t f )new

(t f )old

 = 1 = 



(V /Pd 3)new

(V /Pd 3)old

 = 



(V )new

(V )old

,  so  



Vnew

Vold

= 2       



new

old

=  



1

2
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Exercise 1.25. As an idealization of fuel injection in a Diesel engine, consider a stream of high-

speed fluid (called a jet) that emerges into a quiescent air reservoir at t = 0 from a small hole in 

an infinite plate to form a plume where the fuel and air mix.  

a) Develop a scaling law via dimensional analysis for the penetration distance D of the plume as 

a function of: p the pressure difference across the orifice that drives the jet, do the diameter of 

the jet orifice, o the density of the fuel, µ∞ and ∞ the viscosity and density of the air, and t the 

time since the jet was turned on. 

b) Simplify this scaling law for turbulent flow where air viscosity is no longer a parameter. 

c) For turbulent flow and D « do, do and ∞ are not parameters. Recreate the dimensionless law 

for D. 

d) For turbulent flow and D » do, only the momentum flux of the jet matters, so p and do are 

replaced by the single parameter Jo = jet momentum flux (Jo has the units of force and is 

approximately equal to 



pdo

2). Recreate the dimensionless law for D using the new parameter Jo. 

 

Solution 1.25. a) The parameters are: D, t, p, o, ∞, µ∞, and do. First, create the parameter 

matrix: 

  D t p o ∞ µ∞ do 

         –––––––––––––––––––––––––––––––––––––––– 

Mass:  0 0 1 1 1 1 0 

Length: 1 0 -1 -3 -3 -1 1 

Time:  0 1 -2 0 0 -1 0 

 

Next, determine the number of dimensionless groups. This rank of this matrix is three so 7 

parameters - 3 dimensions = 4 groups, and construct the groups: 



1  D do , 



2  o  , 



3 pt2 do

2 , and 



4  pdo

2 
2 . Now write a dimensionless law: 



D

do

 f
o


,
pt2

do

2
,
pdo

2


2









 where f is an unknown function. 

b) For high Reynolds number turbulent flow when the reservoir viscosity is no longer a 

parameter, the above result becomes: 



D

do

 g
o


,
pt 2

do

2









,  

where g is an unknown function. 

c) When do and ∞ are not parameters, there is only one dimensionless group: 



pt2 D2 , so 

the dimensionless law becomes: 



D  const  t p o . 

d) When p and do are replaced by the single parameter Jo = jet momentum flux, there are two 

dimensionless parameters: 



Jot
2 D4 , and 



o  , so the dimensionless law becomes: 



D Jot
2  

1 4

F o  , 

where F is an unknown function.  

[The results presented here are the fuel-plume penetration scaling laws for fuel injection in 

Diesel engines where more than half of the world's petroleum ends up being burned.] 
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Exercise 1.26. One of the simplest types of gasoline carburetors is a tube with small port for 

transverse injection of fuel. It is desirable to have the fuel uniformly mixed in the passing air 

stream as quickly as possible. A prediction of the mixing length L is sought. The parameters of 

this problem are:  = density of the flowing air, d = diameter of the tube,  = viscosity of the 

flowing air, U = mean axial velocity of the flowing air, and J = momentum flux of the fuel 

stream. 

a) Write a dimensionless law for L. 

b) Simplify your result from part a) for turbulent flow where  must drop out of your 

dimensional analysis. 

c) When this flow is turbulent, it is observed that mixing is essentially complete after one 

rotation of the counter rotating vortices driven by the injected-fuel momentum (see downstream-

view of the drawing for this problem), and that the vortex rotation rate is directly proportional to 

J. Based on this information, assume that L  (rotation time)(U) to eliminate the arbitrary 

function in the result of part b). The final formula for L should contain an undetermined 

dimensionless constant. 

 
 

Solution 1.26. a) The parameters are: L, J, d, , , and U. Use these to create the parameter 

matrix: 

  L J d   U 

         ––––––––––––––––––––––––––––––––––– 

Mass:  0 1 0 1 1 0 

Length: 1 1 1 -1 -3 1 

Time:  0 -2 0 -1 0 -1 

 

Next, determine the number of dimensionless groups. This rank of this matrix is three so 6 

parameters - 3 dimensions = 3 groups, and construct them: ∏1 = L/d, ∏2 = Ud/, ∏3 = 

U2d2/J. And, finally write a dimensionless law: L = d(Ud/, U2d2/J), where  is an 

unknown function. 

b) At high Reynolds numbers,  must not be a parameter. Therefore: L = d(U2d2/J) where 

is an unknown function. 

c) Let  = vortex rotation rate. The units of  are 1/time and  must be proportional to J. 

Putting this statement in dimensionless terms based on the boundary condition and material 

parameters of this problem means:   =  const 



J

Ud 3
=  (rotation time)-1 
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Therefore: L  =  const (-1)U  =  const 



U 2d 3

J
,   or   



L

d
=  const 



U 2d 2

J
.  Thus, for transverse 

injection, more rapid mixing occurs (L decreases) when the injection momentum increases.  
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Exercise 1.27. Consider dune formation in large horizontal desert of deep sand.  

a) Develop a scaling relationship that describes how the height h of the dunes depends on the 

average wind speed U, the length of time the wind has been blowing t, the average weight and 

diameter of a sand grain w and d, and the air’s density  and kinematic viscosity . 

b) Simplify the result of part a) when the sand-air interface is fully rough and  is no longer a 

parameter.  

c) If the sand dune height is determined to be proportional to the density of the air, how do you 

expect it to depend on the weight of a sand grain?  

 

Solution 1.27. a) The boundary condition and material parameters are: U, t, w, d, , and .  The 

solution parameter is h. First create the parameter matrix: 

  h U t w d   

         ––––––––––––––––––––––––––––––––––––––– 

Mass:  0 0 0 1 0 1 0 

Length: 1 1 0 1 1 -3 2 

Time:  0 -1 1 -2 0 0 -1 

 

Next determine the number of dimensionless groups. This rank of this matrix is three so 7 

parameters - 3 dimensions = 4 groups. Construct the dimensionless groups: ∏1 = h/d, ∏2 = Ud/, 

∏3 = w/U
2
d

2
, and ∏4 = Ut/d. Thus, the dimensionless law is 



h

d


Ud


,

w

U 2d2
,
Ut

d









, 

where  is an unknown function.  

b) When  is no longer a parameter, ∏2 drops out:  



h

d
 

w

U 2d2
,
Ut

d









, 

where  is another unknown function.  

c) When h is proportional to , then  



h

d

U 2d2

w


Ut

d









,  

where  is another unknown function. Under this condition, dune height will be inversely 

proportional to w the sand grain weight.  
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Exercise 1.28. An isolated nominally-spherical bubble with radius R undergoes shape 

oscillations at frequency f. It is filled with air having density a and resides in water with density 

w and surface tension . What frequency ratio should be expected between two isolated bubbles 

with 2 cm and 4 cm diameters undergoing geometrically similar shape oscillations? If a soluble 

surfactant is added to the water that lowers  by a factor of two, by what factor should air bubble 

oscillation frequencies increase or decrease? 

 

Solution 1.28. The boundary condition and material parameters are: R, a, w, and .  The 

solution parameter is f. First create the parameter matrix: 

  f R a w  

         –––––––––––––––––––––––––––– 

Mass:  0 0 1 1 1 

Length: 0 1 -3 -3 0 

Time:  -1 0 0 0 -2 

 

Next determine the number of dimensionless groups. This rank of this matrix is three, so 5 

parameters - 3 dimensions = 2 groups. Construct the dimensionless groups: ∏1 = 



f wR3  , 

and ∏2 = w/a. Thus, the dimensionless law is 



f 


wR3


w

a









, 

where  is an unknown function. For a fixed density ratio, (w/a) will be constant so f is 

proportional to R
–3/2

 and to 1/2
.  Thus, the required frequency ratio between different sizes 

bubbles is: 



( f )2cm

( f )4cm


2cm

4cm











3 2

 2 2  2.83.  

Similarly, if the surface tension is decreased by a factor of two, then  



( f ) 2

( f )


1/2

1











1 2


1

2
 0.707. 
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Exercise 1.29. In general, boundary layer skin friction, w, depends on the fluid velocity U above 

the boundary layer, the fluid density , the fluid viscosity µ, the nominal boundary layer 

thickness , and the surface roughness length scale . 
a) Generate a dimensionless scaling law for boundary layer skin friction. 

b) For laminar boundary layers, the skin friction is proportional to µ. When this is true, how must 

w depend on U and ? 

c) For turbulent boundary layers, the dominant mechanisms for momentum exchange within the 

flow do not directly involve the viscosity µ. Reformulate your dimensional analysis without it. 

How must w depend on U and  in when µ is not a parameter? 

d) For turbulent boundary layers on smooth surfaces, the skin friction on a solid wall occurs in a 

viscous sub-layer that is very thin compared to . In fact, because the boundary layer provides a 

buffer between the outer flow and this viscous sub-layer, the viscous sub-layer thickness lv does 

not depend directly on U or .  Determine how lv depends on the remaining parameters. 

e) Now consider non-trivial roughness. When  is larger than lv a surface can no longer be 

considered fluid-dynamically smooth. Thus, based on the results from parts a) through d) and 

anything you may know about the relative friction levels in laminar and turbulent boundary 

layer, are high or low speed boundary layer flows more likely to be influenced by surface 

roughness? 

 

Solution 1.29. a) Construct the parameter & units matrix and recognizing that w is a stress and 

has units of pressure. 

   w U     
   ––––––––––––––––––––––––––––––– 

  M 1 0 1 1 0 0 

  L -1 1 -3 -1 1 1 

  T -2 -1 0 1 0 0 

This rank of this matrix is three. There are 6 parameters and 3 independent units, thus there will 

be 6 – 3 = 3 dimensionless groups.  By inspection these groups are: a skin-friction coefficient = 



1 
w

U 2
, a Reynolds number = 



2 
U


, and the relative roughness = 



3 



.  Thus the 

dimensionless law is: 



w

U 2
 f

U


,












  where f is an undetermined function.  

b) Use the result of part a) and set 



w . This involves requiring 1 to be proportional to 1/2 

so the revised form of the dimensionless law in part a) is: 



w

U 2




U
g











, where g is an 

undetermined function.  Simplify this relationship to find: 



w 
U


g











.  Thus, in laminar 

boundary layers, w is proportional to U and independent of .  

c) When  is not a parameter the second dimensionless group from part a) must be dropped. 

Thus, the dimensionless law becomes: 



w

U 2
 h












 where h is an undetermined function.  Here 

we see that 



w U2 . Thus, in turbulent boundary layers, w is linearly proportional to and 

quadratically proportional to U. In reality, completely dropping  from the dimensional analysis 
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is not quite right, and the skin-friction coefficient (1 in the this problem) maintains a weak 

dependence on the Reynolds number when / << 1. 

d) For this part of this problem, it is necessary to redo the dimensional analysis with the new 

length scale lv and the three remaining parameters: w, , and µ.  Here there are four parameters 

and three units, so there is only one dimensionless group: 



 
l w


.  This means that:  



l  w  w   u* . 

In the study of wall bounded turbulent flows, the length scale lv is commonly known as the 

viscous wall unit and u* is known as the friction or shear velocity. 

e) The results of part b) and part c) both suggest that w will be larger at high flow speeds than at 

lower flow speeds. This means that lv will be smaller at high flow speeds for both laminar and 

turbulent boundary layers.  Thus, boundary layers in high-speed flows are more likely to be 

influenced by constant-size surface roughness.  
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Exercise 1.30. Turbulent boundary layer skin friction is one of the fluid phenomena that limit 

the travel speed of aircraft and ships. One means for reducing the skin friction of liquid boundary 

layers is to inject a gas (typically air) from the surface on which the boundary layer forms. The 

shear stress, w, that is felt a distance L downstream of such an air injector depends on: the 

volumetric gas flux per unit span q (in m
2
/s), the free stream flow speed U, the liquid density , 

the liquid viscosity , the surface tension , and gravitational acceleration g.  

a) Formulate a dimensionless law for w in terms of the other parameters. 

b) Experimental studies of air injection into liquid turbulent boundary layers on flat plates has 

found that the bubbles may coalesce to form an air film that provides near perfect lubrication, 



 w  0 for L > 0, when q is high enough and gravity tends to push the injected gas toward the 

plate surface. Reformulate your answer to part a) by dropping w and L to determine a 

dimensionless law for the minimum air injection rate, qc, necessary to form an air layer. 

c) Simplify the result of part c) when surface tension can be neglected. 

d) Experimental studies (Elbing et al. 2008) find that qc is proportional to U
2
. Using this 

information, determine a scaling law for qc involving the other parameters. Would an increase in 

g cause qc to increase or decrease? 

 
 

Solution 1.30. a) Construct the parameter & units matrix and recognizing that w is a stress and 

has units of pressure. 

   w L q U    g 

   ––––––––––––––––––––––––––––––––––––––––––– 

  M 1 0 0 0 1 1 1 0 

  L -1 1 2 1 -3 -1 0 1 

  T -2 0 -1 -1 0 -1 -2 -2 

This rank of this matrix is three. There are 8 parameters and 3 independent units, thus there will 

be 8 – 3 = 5 dimensionless groups.  By inspection these groups are: a skin-friction coefficient = 



1 
w

U 2
, a Reynolds number = 



2 
UL


, a Froude number = 



3 
U

gL
, a capillary number 

= 



4 
U


, and flux ratio = 



5 
q


.  Thus the dimensionless law is: 



w

U 2
 f

UL


,

U

gL
,
U


,
q











 where f is an undetermined function.  

b) Dropping w means dropping 1. Dropping L means combining 2 and 3 to form a new 

dimensionless group: 



23

2 
UL



U 3

gL

U 3

g
. Thus, with 5 as the solution parameter, the 
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scaling law for the minimum air injection rate, qc, necessary to form an air layer is:



qc    U 3 g,U   where  is an undetermined function.  

c) When  is not a parameter, 4 can be dropped leaving: 



qc   U 3 g  where  is an 

undetermined function. 

d) When qc is proportional to U
2
, then dimensional analysis requires: 



qc    const. U3 g 
2 3

 const.U2  g2 
1 3

. 

So, an increase in g would cause qc to decrease.  
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Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation 

and evaluate or simplify them using the values or parameters given, and the definitions of ij and 

ijk wherever possible. In b) through e), x is the position vector, with components xi. 

a) 



b  c  where b = (1, 4, 17) and c = (–4, –3, 1)  

b) 



u   x  where u a vector with components ui. 

c) 



 , where 



  h  x  and h is a constant vector with components hi. 

d) 



  u, where u =   x and  is a constant vector with components i. 

e) 



C  x , where 



C 

1 2 3

0 1 2

0 0 1

















 

 

Solution 2.1. a) 



b  c  bici 1(4) 4(3)17(1)  4 1217  1 

b) 



u   x  u j



x j

x i  u1



x1









 u2



x2









 u3



x3





















x1

x2

x3

















 

                     





u1

x1

x1









 u2

x1

x2









 u3

x1

x3











u1

x2

x1









 u2

x2

x2









 u3

x2

x3











u1

x3

x1









 u2

x3

x2









 u3

x3

x3





































u1 1 u2  0  u3  0

u1  0  u2 1 u3  0

u1  0  u2  0  u3 1

















 u jij 

u1

u2

u3

















 ui
 

c) 



 


x j




x j

hix i  hi

x i

x j

 hiij  h j  h  

d) 



 u     x  ijk



x j

klml xm  ijkklml jm  il jm im jl l jm  il jj ij jl l  

  



 3il il l  2ill  2l  2 

Here, the following identities have been used: 



ijkklm il jm im jl
, 



ij jk ik
, 



 jj  3, and 



ij j i
 

e) 



C  x  Cij x j 

1 2 3

0 1 2

0 0 1

















x1

x2

x3


















x1  2x2  3x3

x2  2x3

x3
















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Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7). 

 

Solution 2.2. The two representations for the position vector are: 



x  x1e1  x2e2  x3e3,  or  



x  x 1 e 1  x 2 e 2  x 3 e 3. 

Develop the dot product of x with e1 from each representation,  



e1  x  e1  x1e1  x2e2  x3e3  x1e1  e1  x2e1  e2  x3e1  e3  x1 1 x2 0 x3 0  x1
 , 

and  



e1  x  e1  x 1 e 1  x 2 e 2  x 3 e 3  x 1e1  e 1  x 2e1  e 2  x 3e1  e 3  x iC1i
,  

set these equal to find: 



x1  x iC1i ,  

where 



Cij  ei  e j  is a 3  3 matrix of direction cosines. In an entirely parallel fashion, forming 

the dot product of x with e2, and x with e2 produces:  



x2  x iC2i   and  



x3  x iC3i . 

Thus, for any component xj, where j = 1, 2, or 3, we have:  



x j  x iC ji
, 

which is (2.7). 
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Exercise 2.3. Using Cartesian coordinates where the position vector is x = (x1, x2, x3) and the 

fluid velocity is u = (u1, u2, u3), write out the three components of the vector: 



u   u  ui u j x i . 
 

Solution 2.3.  

a) 



u   u  ui

u j

x i









 u1

u j

x1









 u2

u j

x2









 u3

u j

x3











u1

u1

x1









 u2

u1

x2









 u3

u1

x3











u1

u2

x1









 u2

u2

x2









 u3

u2

x3











u1

u3

x1









 u2

u3

x2









 u3

u3

x3







































 

      





u
u

x









 v

u

y









 w

u

z











u
v

x









 v

v

y









 w

v

z











u
w

x









 v

w

y









 w

w

z







































 

The vector in this exercise, 



u   u  ui u j x i , is an important one in fluid mechanics. As 

described in Ch. 3, it is the nonlinear advective acceleration.  
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Exercise 2.4. Convert 



  to indicial notation and show that it is zero in Cartesian 

coordinates for any twice-differentiable scalar function .  

 

Solution 2.4. Start with the definitions of the cross product and the gradient.  



    ijk



x j

 
k
 ijk

2

x jxk

 

Write out the vector component by component recalling that ijk = 0 if any two indices are equal. 

Here the "i" index is the free index. 



ijk

 2

x jxk



123

 2

x2x3

 132

 2

x3x2

213

 2

x1x3

 231

 2

x3x1

312

 2

x1x2

 321

 2

x2x1































 2

x2x3

–
 2

x3x2

–
 2

x1x3


 2

x3x1

 2

x1x2


 2

x2x1





























 0 , 

where the middle equality follows from the definition of ijk (2.18), and the final equality follows 

when  is twice differentiable so that 



2

x jxk


2

xkx j

. 
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Exercise 2.5. Using indicial notation, show that a  (b  c) = (a  c)b  (a  b)c. [Hint: Call d  b 

 c. Then (a  d)m = pqmapdq = pqmapijqbicj.  Using (2.19), show that (a  d)m = (a  c)bm  (a  

b)cm.]  

 

Solution 2.5. Using the hint and the definition of ijk produces: 

(a  d)m = pqmapdq = pqmapijqbicj =  pqmijq bicjap = –ijqqpm bicjap. 

Now use the identity (2.19) for the product of epsilons:  

(a  d)m = – (ipjm – impj) bicjap = – bpcmap + bmcpap. 

Each term in the final expression involves a sum over "p", and this is a dot product; therefore 

(a  d)m =  – (a  b)cm + bm(a  c). 

Thus, for any component m = 1, 2, or 3,  

a  (b  c) =   (a  b)c + (a  c)b = (a  c)b  (a  b)c. 
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Exercise 2.6. Show that the condition for the vectors a, b, and c to be coplanar is ijkaibjck = 0.  

 

Solution 2.6. The vector b  c is perpendicular to b and c. Thus, a will be coplanar with b and c 

if it too is perpendicular to b  c. The condition for a to be perpendicular with b  c is: 

a  (b  c) = 0. 

In index notation, this is aiijkbjck = 0 = ijkaibjck. 
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Exercise 2.7. Prove the following relationships: ijij = 3,  pqrpqr = 6, and pqipqj = 2ij.  

 

Solution 2.7. (i) ijij = ii = 11 + 22 + 33 = 1 + 1 + 1 = 3.  

For the second two, the identity (2.19) is useful. 

(ii) pqrpqr = pqrrpq = ppqq – pqpq = 3(3) – pp = 9 – 3 = 6. 

(iii) pqipqj = ipqpqj = – ipqqpj = – (ippj – ijpp) = – ij + 3ij = 2ij. 
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Exercise 2.8. Show that CC
T
 = C

T
C = , where C is the direction cosine matrix and  is the 

matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal 

matrix because it represents transformation of one set of orthogonal axes into another.  

 

Solution 2.8. To show that CC
T
 = C

T
C = , where C is the direction cosine matrix and  is the 

matrix of the Kronecker delta. Start from (2.5) and (2.7), which are 



x j  xiCij
  and 



x j  x iC ji
,  

respectively, and change the index "i" into "m" on (2.5): 



x j  xmCmj
. Substitute this into (2.7) to 

find: 



x j  x iC ji  xmCmi C ji  CmiC ji xm
. 

However, we also have xj = jmxm, so  



 jm xm CmiC ji xm   jm CmiC ji
,  

which can be written: 



 jm  CmiCij

T  CC
T
,  

and taking the transpose of the this produces: 



 jm 
T

mj  CmiCij

T 
T

Cmi

T Cij  C
T
C. 
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Exercise 2.9. Show that for a second-order tensor A, the following quantities are invariant under 

the rotation of axes: 

I1 = Aii ,  



I2 
A11 A12

A21 A22


A22 A23

A32 A33


A11 A13

A31 A33

 ,  and I3 = det(Aij). 

 [Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that I1 = Aii = 

Aii.= I1.  Then show that AijAji and AijAjkAki are also invariants. In fact, all contracted scalars of 

the form AijAjk  Ami are invariants. Finally, verify that 



I2 
1

2
I1

2  Aij A ji , 



I3 
1

3
Aij A jk Aki  I1Aij A ji  I2Aii  i. Because the right-hand sides are invariant, so are I2 and I3.] 

 

Solution 2.9. First prove I1 is invariant by using the second order tensor transformation rule 

(2.12): 



A mn CimC jn Aij
. 

Replace Cjn by 



Cnj

T
and set n = m,  



A mn CimCnj

T Aij  A mm CimCmj

T Aij . 

Use the result of Exercise 2.8, 



ij CimCmj

T   , to find: 



I1  A mm ijAij  Aii
. 

Thus, the first invariant is does not depend on a rotation of the coordinate axes.  

 Now consider whether or not AmnAnm is invariant under a rotation of the coordinate axes. 

Start with a double application of (2.12): 



A mn
A nm  CimC jn Aij CpnCqmApq  C jnCnp

T CimCmq

T Aij Apq. 

From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta 

functions, so  



A mn
A nm  jpiqAij Apq  AijA ji

. 

Thus, the matrix contraction AmnAnm does not depend on a rotation of the coordinate axes. 

 The manipulations for AmnAnpApm are a straightforward extension of the prior efforts for 

Aii and AijAji.  



A mn
A np

A pm  CimC jn Aij CqnCrp Aqr CspCtmAst  C jnCnq

T CrpCps

T CimCmt

T Aij AqrAst . 

Again, the factors in parentheses are Kronecker delta functions, so 



A mn
A np

A pm  jqrsit AijAqrAst  AiqAqsAsi
,  

which implies that the matrix contraction AijAjkAki does not depend on a rotation of the coordinate 

axes. 

 Now, for the second invariant, verify the given identity, starting from the given definition 

for I2. 



I2 
A11 A12

A21 A22


A22 A23

A32 A33


A11 A13

A31 A33

 

  



 A11A22  A12A21  A22A33  A23A32  A11A33  A13A31 

  



 A11A22  A22A33  A11A33  A12A21  A23A32  A13A31  

  




1

2
A11

2 
1

2
A22

2 
1

2
A33

2  A11A22  A22A33  A11A33  A12A21  A23A32  A13A31 
1

2
A11

2 
1

2
A22

2 
1

2
A33

2  
  




1

2
A11  A22  A33 

2


1

2
2A12A21  2A23A32  2A13A31  A11

2  A22

2  A33

2  
  




1

2
I1

2 
1

2
A11A11  A12 A21  A13 A31  A12 A21  A22 A22  A23 A32  A13 A31  A23 A32  A33 A33  
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


1

2
I1

2 
1

2
Aij A ji  1

2
I1

2  Aij A ji  
Thus, since I2 only depends on I1 and AijAji, it is invariant under a rotation of the coordinate axes 

because I1 and AijAji are invariant under a rotation of the coordinate axes. 

 The manipulations for the third invariant are a tedious but not remarkable. Start from the 

given definition for I3, and group like terms. 

       



I3  det Aij  A11(A22A33  A23A32) A12(A21A33  A23A31) A13(A21A32  A22A31) 

           



 A11A22A33  A12A23A31  A13A32A21  A11A23A32  A22A13A31  A33A12A21                          (a) 

Now work from the given identity. The triple matrix product AijAjkAki has twenty-seven terms: 



A11

3  A11A12A21  A11A13 A31  A12 A21A11  A12A22A21  A12A23A31  A13 A31A11  A13 A32A21  A13A33A31 

A21A11A12  A21A12A22  A21A13A32  A22A21A12  A22

3  A22A23 A32  A23A31A12  A23A32 A22  A23A33A32 

A31A11A13  A31A12A23  A31A13A33  A32A21A13  A32 A22 A23  A32A23A33  A33 A31A13  A33A32A23  A33

3

These can be grouped as follows:  

       



Aij A jk Aki  3(A12 A23 A31  A13 A32 A21) A11(A11

2  3A12 A21  3A13 A31)  

                        



A22(3A21A12  A22

2  3A23A32) A33(3A31A13  3A32A23  A33

2 )                                (b) 

The remaining terms of the given identity are: 



I1Aij A ji  I2Aii  I1(I2 – Aij A ji )  I1(I2  2I2  I1

2)  3I1I2 – I1

3
,  

where the result for I2 has been used. Evaluating the first of these two terms leads to: 



3I1I2  3(A11  A22  A33)(A11A22  A12A21  A22A33  A23A32  A11A33  A13A31) 

        



 3(A11  A22  A33)(A11A22  A22A33  A11A33) 3(A11  A22  A33)(A12A21  A23A32  A13A31) . 

Adding this to (b) produces:  



AijA jk Aki  3I1I2  3(A12A23A31  A13A32A21) 3(A11  A22  A33)(A11A22  A22A33  A11A33)  

                                



A11(A11

2  3A23A32) A22(A22

2  3A13A31) A33(A33

2  3A12A21) 

                          



 3(A12A23A31  A13A32A21  A11A23A32  A22A13A31  A33A12A21)  

                             



3(A11  A22  A33)(A11A22  A22A33  A11A33) A11

3  A22

3  A33

3                            (c) 

The last term of the given identity is: 



I1

3  A11

3  A22

3  A33

3  3(A11

2 A22  A11

2 A33  A22

2 A11  A22

2 A33  A33

2 A11  A33

2 A22) 6A11A22A33
 

    



 A11

3  A22

3  A33

3  3(A11  A22  A33)(A11A22  A11A33  A22A33) – 3A11A22A33
 

Subtracting this from (c) produces:  



Aij A jk Aki  3I1I2  I1

3  



3(A12A23A31  A13A32A21  A11A23A32  A22A13A31  A33A12A21  A11A22A33) 

                                 



 3I3 . 

This verifies that the given identity for I3 is correct. Thus, since I3 only depends on I1, I2, and 

AijAjkAki, it is invariant under a rotation of the coordinate axes because these quantities are 

invariant under a rotation of the coordinate axes as shown above. 



Fluid Mechanics, 5
th

 Ed.                                                                                                      Kundu, Cohen, and 

Dowling 

Exercise 2.10. If u and v are vectors, show that the products uij obey the transformation rule 

(2.12), and therefore represent a second-order tensor.  

 

Solution 2.10. Start by applying the vector transformation rule (2.5 or 2.6) to the components of 

u and v separately,  



u m Cimui  ,  and  



v n C jnv j
. 

The product of these two equations produces: 



u m v n CimC jnuiv j
, 

which is the same as (2.12) for second order tensors. 

 



Fluid Mechanics, 5
th

 Ed.                                                                                                      Kundu, Cohen, and 

Dowling 

Exercise 2.11. Show that ij is an isotropic tensor. That is, show that ij = ij under rotation of 

the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.8.]  

 

Solution 2.11. Apply (2.12) to ij, 



mn CimC jnij CimCin Cmi

T Cin mn . 

where the final equality follows from the result of Exercise 2.8. Thus, the Kronecker delta is 

invariant under coordinate rotations. 
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Exercise 2.12. If u and v are arbitrary vectors resolved in three-dimensional Cartesian 

coordinates, show that uv = 0 when u and v are perpendicular.  

 

Solution 2.12. Consider the magnitude of the sum u + v,  



u v
2
 (u1  v1)

2  (u2  v2)2  (u3  v3)2 

             



 u1

2  u2

2  u3

2  v1

2  v2

2  v3

2  2u1v1  2u2v2  2u3v3
 

             



 u
2
 v

2
 2u  v , 

which can be rewritten: 



u + v
2
 u

2
 v

2
 2u  v . 

When u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus,  



u  v  0. 
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Exercise 2.13. If u and v are vectors with magnitudes u and , use the finding of Exercise 2.12 

to show that uv = ucos where  is the angle between u and v.  

 

Solution 2.13. Start with two arbitrary vectors (u and v), and view them so that the plane they 

define is coincident with the page and v is horizontal. Consider two additional vectors, v and w, 

that are perpendicular (vw = 0) and can be summed together to produce u: w + v = u. 

 
Compute the dot-product of u and v: 

uv = (w + v) v = wv + vv = 2
. 

where the final equality holds because vw = 0. From the geometry of the figure: 



cos 
v

u



u
,  or  



 
u


cos . 

Insert this into the final equality for uv to find: 



u  v 
u


cos











2  u cos . 

 



u 

v 

v 

w 


