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Fluid Mechanics, 6" Ed. Kundu, Cohen, and Dowling

Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation

and evaluate or simplify them using the values or parameters given, and the definitions of ; and
&, Wherever possible. In b) through €), x is the position vector, with components x;.

a) b-c whereb=(1,4,17)and c=(-4,-3,1)

b) ( )X where u a vector with components ;.

¢) V¢, where ¢ =h-x and h is a constant vector with components #,.

d) V xu, where u = Q x x and €2 is a constant vector with components €2,.

1 2 3
e) C-x,where C=40 1 2
0 0 1

Solution 2.1.2) b-c = be, = 1(~4) + 4(=3) + 17(1) = =4 —12 +17 = +1
X

d d d 7
X

=

2

3

dxl 0').X1 dxl -
o )" e, )T e,
i 2 3 u1+u, 0+uy-0 U
0. 0. 0.
=ulﬁ+u2£+u3& =u1'0+u2'1+u3'0=uj6ij=u2 =u,’
ox, ox, \ ox,
- 0+u, 0+u,-1 u,
ox, ox, ox,
| a— + u2 — |+ u3 —_—
|\, ox, oxy )|
¢) Vg = % _ i(hixi) = hi% =hod;=h;=h
ox. ox. ox o
J J J
J
d) V Xu= V X (Q X X) = 8ijk g(gklmgl‘xm) = ljkgklm£2 6])11 = (5 6]m - 6im6jl )Qléjm = (61'151)' - 61’]'5j1)91

j
= (3611 —51.1)9, =20,Q, =2Q,=2Q
Here, the following identities have been used: ¢,¢,,, = 6,0, -96,0,,06,0,=05,,0,=3,and

jm im~ jl > YijY jk Jj
0,82, =,
I 2 3||x X, +2x, + 3x,
) C-x=Cyx, =70 1 20 1x,r=7 x,+2x,
0 0 1)]|x, X,
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Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7).

Solution 2.2. The two representations for the position vector are:
X = X€ + X,€, + X;€,, O X = Xx/e, + X,€, + X5€;.
Develop the dot product of x with e, from each representation,
e -X=¢ (xe+x,e,+xe)=xe €e+xe-€e+xe -e=x-1+x,0+x,-0=x,
and e -x=¢ -(xe +x,€,+xie})=xe e +xe e, +xie e =xC,,
set these equal to find:

X = 'x;Cli ’
where C; =e;-€’; is a 3 x 3 matrix of direction cosines. In an entirely parallel fashion, forming
the dot product of x with e,, and x with e, produces:

x,=x,C,, and x,=xC,,.
Thus, for any component x;, where j = 1, 2, or 3, we have:

x;=xC,

which is (2.7).



Fluid Mechanics, 6" Ed. Kundu, Cohen, and Dowling

Exercise 2.3. For two three-dimensional vectors with Cartesian components a; and b,, prove the
Cauchy-Schwartz inequality: (a,b,)* < (a,)*(b,)*.

Solution 2.3. Expand the left side term,
(ab,)’ = (a,b, + a,b, + a;b,)’ = a}b] +a;b; + a:b; +2a,b,a,b, + 2a,b,a,b, + 2a,b,ab, ,
then expand the right side term,
(@)’ (b))’ =(a; +a; +a;)(b] +b; +b7)
=alb’ +a;b; +a.b; +(a b + b))+ (alb; +aib})+(a;b; + a’b}).

Subtract the left side term from the right side term to find:
(@) ()" - (ab,)’

=(a;'b; -2a,ba,b, +a:b})+(a’b; -2a,ba,b, + a:b})+(a:b; —2a,b,a,b, + a;b’)

=(a\b, - a,b)’ +(a,b, - a;b,)* +(a;b, - a,b,)* = |ax b|2 .
Thus, the difference (al.)2 (b, ) - (al.bl.)2 is greater than zero unless a = (const.)b then the
difference is zero.



Fluid Mechanics, 6" Ed. Kundu, Cohen, and Dowling

Exercise 2.4. For two three-dimensional vectors with Cartesian components a; and b;, prove the
triangle inequality: |a| + |b| = |a + b| .

Solution 2.4. To avoid square roots, square both side of the equation; this operation does not
change the equation's meaning. The left side becomes:

2
(jal+[p])” =[af +2]af[b|+ b

2
s

and the right side becomes:
|a+b|2 =(a+b)-(a+b)=a-a+2a-b+b-b =|a|2 +2:;1-b+|b|2 .
So,
(Ia|+[b]) ~[a+b|" = 2[a[|b|-2a-b.
Thus, to prove the triangle equality, the right side of this last equation must be greater than or
equal to zero. This requires:

|a||b| =a-b or using index notation: W zab,,
which can be squared to find:
a’b =(ab,),
and this is the Cauchy-Schwartz inequality proved in Exercise 2.3. Thus, the triangle equality is
proved.
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Exercise 2.5. Using Cartesian coordinates where the position vector is X = (x,, X,, x;) and the
fluid velocity is w = (u,, u,, u;), write out the three components of the vector:

(u-Viju= ui(&uj/&xi).

Solution 2.5.
ou, ou, ou,
wl— |+ u,)| — [+ u| —
ox, ox, ox,
ou ou; ou; ou d d 2
a) (u-V)u=u|—L|=u|—|+u,| —L|+us| —|=1uy, el N - S R
; ox, ox, ox,4 ox, ox, ox,
ox, 0x, \0x5))
(&u) u (c?u) ‘
u—|+v|—|+w|—
X dy 0z
o) ()3
= u—|+v|—|+w—]|¢
ox ay oz
()55
U —|+v|—|+wl—
ox ay oz

The vector in this exercise, (u-V)u=udu./dx.), is an important one in fluid mechanics. As
i J i p

described in Ch. 3, it is the nonlinear advective acceleration.
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Exercise 2.6. Convert VxVp to indicial notation and show that it is zero in Cartesian
coordinates for any twice-differentiable scalar function p.

Solution 2.6. Start with the definitions of the cross product and the gradient.
2

J a°p
Vx(Vp)=¢, —(V =g,
( p) ijk Ix ( p)k ijk &xj&xk
Write out the vector component by component recalling that ¢, = 0 if any two indices are equal.
Here the "i" index is the free index.

J

3’p 3’p ’p  Ip
€123 IRV -
0x,0x; 0x,0x, 0x,0x;  dxy0x,
2 2 2 2 2
Eijk op =1 521307—/)"' 231 op (=1 ~ 7P + op (=0

Ix;0x, Ix,0x, dx,0x, ox,0x;  dx;0x,

. I’p e p ’p  dp
3 0x,0x, = dx,0x, ox,0x, Jx,0x,

where the middle equality follows from the definition of ¢ (2.18), and the final equality follows

2 2
when p is twice differentiable so that Ip__ 9P .
ox ;0x,  Ox,0x;
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Exercise 2.7. Using indicial notation, show that a x (b x ¢) =(a- ¢)b - (a - b)c. [Hint: Calld =b
x ¢. Then (a x d),, = ¢,,ad, = ¢,,a,&,bc;. Using (2.19), show that (a x d),=(a- ¢)b, - (a-

pgm pqm iiq
b)c,,.]
Solution 2.7. Using the hint and the definition of &, produces:
(axd),=¢,,ad, =¢,,a¢bc= €,E,bca,=—€,E,,bca,.
Now use the identity (2.19) for the product of epsﬂons
(axd),=-(,0,— 9,90, bca,=—-b,,a +bc,,a1,

H "

Each term in the final expression involves a sum over "p", and th1s is a dot product; therefore
(axd),=—-(a*b),+b,(a-c).
Thus, for any component m =1, 2, or 3,
ax(bxc)=-(a-b)c+(a-c)b=(a-ch-(a-b)c.
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Exercise 2.8. Show that the condition for the vectors a, b, and ¢ to be coplanar is &;ab,c, = 0.

Solution 2.8. The vector b x ¢ is perpendicular to b and ¢. Thus, a will be coplanar with b and ¢

if it too is perpendicular to b x ¢. The condition for a to be perpendicular with b x ¢ is:
a-(bxc)=0.

In index notation, this is a;¢;;b,c, = 0 = g abc,.
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=6,and g ¢ .=20

Exercise 2.9. Prove the following relationships: 6,6, = 3, ¢,,¢,, o aiEgi e

Solution 2.9. (i) 6,0,=0,= 06, + 0+ 0, =1+ 1 +1=3.
For the second two, the identity (2.19) is useful.
(1) €0 Ep0r = EpgrErpg = 0,,0,, — 0,0, 3(3) 6,=9-3=6.

Ppaq Pq-rq
(lll) pqt qu 8tpq8pq/ lpq qp/ ( ip PJ U pp) 5t'j+ 35!'] = 26!‘/'
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Exercise 2.10. Show that C-:C" = C"-C = §, where C is the direction cosine matrix and & is the
matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal
matrix because it represents transformation of one set of orthogonal axes into another.

Solution 2.10. To show that C-C" = C"-C = §, where C is the direction cosine matrix and & is
the matrix of the Kronecker delta. Start from (2.5) and (2.7), which are
x,=x,C, and x,=x/C,,

respectively, and change the index "i" into "m" on (2.5): x'j = x,,C,,; . Substitute this into (2.7) to
find:
x; = x,fCﬁ = (memi)Cle =C,C,;x,.
However, we also have x; = §,,x,,, s0

é,x,=C,C;x, — 96,=C,.C,.,

which can be written:
s, =C,C;=CC,

mi " ij

and taking the transpose of the this produces:
(6jm )T = 6mj = (C C;)T = CTC - CTC

mi mi " ij
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Exercise 2.11. Show that for a second-order tensor A, the following quantities are invariant
under the rotation of axes:

Al 1 Al 2
A21 A22

Il —A. , 12 - A22 A23 + All Al3
A32 A33 A

u

, and I; = det(A;).

31 A33

[Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that I', = A’, =
A;=1,. Then show that A;A; and A;A,A,; are also invariants. In fact, all contracted scalars of the

form AA;, - A,

are  invariants.  Finally, verify that [, = %[112 —A..Aﬁ] ,

)

I, = %[AiiAjk G- LAA+ IZAii] . Because the right-hand sides are invariant, so are /, and /,.]

yoo

Solution 2.11. First prove [, is invariant by using the second order tensor transformation rule
(2.12):
A =C, C. A

mn jnt i
Replace Cj, by C ,T] and set n = m,
Al =C,CLA, — A =C,C, A

im ™~ nj* i im™~"mj*~ij*
Use the result of Exercise 2.8, §, =C,,C, = , to find:
11 = Ai,nm = 6iiAij = Aii'
Thus, the first invariant is does not depend on a rotation of the coordinate axes.
Now consider whether or not 4,,,4,» is invariant under a rotation of the coordinate axes.

Start with a double application of (2.12):
' / T T
AmnAnm = (CimcjnAij )(Cpncqupq ) = (Cjn Cnp )(Cimcmq )Aijqu .
From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta
functions, so
A = 0,0, Ay A, = A;A ;.

Thus, the matrix contraction 4,,,4,, does not depend on a rotation of the coordinate axes.

The manipulations for A,,,4,,4,m are a straightforward extension of the prior efforts for
Aii and AUAﬁ'

’ ’ ’ T T T

AmnAnpApm = (CimcjnAij)(anCrpAqr )(Cspcthst) = (Cjncnq )(Crpcps)(cimcmt)AiqurAst .

Again, the factors in parentheses are Kronecker delta functions, so

A A A =06.00,A,A,A,=A4,AA

mn* “np* “pm Jjg rsTitt it Tqre Tst iq” “qs* “si®

which implies that the matrix contraction 4,44 does not depend on a rotation of the coordinate
axes.

Now, for the second invariant, verify the given identity, starting from the given definition
for L.
All AlZ + A22 A23 + All A13
A21 A22 A32 A33 A31 A33
= A Ay — ApAy + ApAyy — ApAyy + A Ay - Ay
= A11A22 + A22A33 + A11A33 - (AIZAZI + A23A32 + A13A31)

142 142 1 42 142 , 142 [ 142

= EAH + §A22 + §A33 + A11A22 + A22A33 + A11A33 - (AI2A2I + A23A32 + A13A31 + EAH + 5‘422 + §A33)

2
= %[An + A, + A33] - %(2A12A21 + 24,45 + 2454, + A + A, + A323)

) =
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112 - %(AIIAII + A12A21 + A13A31 + A12A21 + A22A22 + A23A32 + A13A31 + A23A32 + A33A33)
I (AA;) = (I - A,A,)

e i et
Thus, since I, only depends on I, and A;A;, it is invariant under a rotation of the coordinate axes
because I, and A;A; are invariant under a rotation of the coordinate axes.
The manipulations for the third invariant are a tedious but not remarkable. Start from the
given definition for /3, and group like terms.
13 = det(Aij) = Al 1(A22A33 - A23A32) - A]Z(A21A33 - A23A31) + A13(A21A32 - A22A31)
= A11A22A33 + A12A23A31 + A13A32A21 - (Al 1A23A32 + A22A13A31 + A33A12A21) (a)
Now work from the given identity. The triple matrix product 4;4;4 has twenty-seven terms:
A131 + A11A12A21 + Al 1A13A31 + A12A21A11 + A12A22A21 + A12A23A31 + A13A31All + A13A32A21 + A13A33A3l +
A21A11A12 + A21A12A22 + A21A13A32 + A22A21A12 + A;Z + A22A23A32 + A’Z3A31A12 + A23A32A22 + A23A33A32 +
A31A11A13 + A31A12A23 + A31A13A33 + A32A21A13 + A32A22A23 + A32A23A33 + A33A31Al3 + A33A32A23 + A333
These can be grouped as follows:
AijAjkAki = 3(A12A23A31 + A13A32A21) + AII(A121 + 314121421 + 3A13A31) +
A22(3A21A12 + A222 + 3A23A32) + A33(3A31A13 + 3A32A23 + A323 (b)
The remaining terms of the given identity are:
—LAA + LA, =L, - AA) = (1L + 21, -I}) =311, - I,
where the result for /, has been used. Evaluating the first of these two terms leads to:
3L, = 3(A) + Ay + Ap)(Aj Ay — ApAy + ApAys — Ay Ay + A Ay — AAy)
=3(A; + Ay + Ap)(A Ay + ApAys + A Ay) = 3(A) + Ay + Ap)(AR Ay + ApAsy, + AjAy).
Adding this to (b) produces:
AszjkAki + 31112 = 3(A12A23A31 + A13A32A2l) + 3(1411 + A22 + A33 )(AIIAZZ + A22A33 + AIIASS) +
A11(A121 - 3A23A32) + Azz(A222 - 3A13A31) + A33(A323 - 3A12A21)
=3(A, A543 + A3ApAy — A AR Ay, — ApAAsy - AjApAy)) +
3(1411 + A22 + A33)(A11A22 + A22A33 + A11A33) + A131 + A232 + A333 (C)
The last term of the given identity is:
113 = A131 + A232 + A333 + 3(141211422 + A121A33 + A222A11 + A222A33 + A323A11 + A§3A22) + 6A11A22A33
= A131 + A;2 + A333 + 3(1411 + A22 + A33)(A11A22 + A11A33 + A22A33) - 3A11A22A33
Subtracting this from (c) produces:
AijAjkAki + 311[2 - 113 = 3(A12A23A31 + A13A32A21 - A11A23A32 - A22A13A31 - A33A12A21 + A11A22A33)
=31.
This verifies that the given identity for I; is correct. Thus, since I; only depends on /,, /,, and
AA;A,, 1t 1s invariant under a rotation of the coordinate axes because these quantities are
invariant under a rotation of the coordinate axes as shown above.

= | —
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Exercise 2.12. If u and v are vectors, show that the products u,v; obey the transformation rule
(2.12), and therefore represent a second-order tensor.

Solution 2.12. Start by applying the vector transformation rule (2.5 or 2.6) to the components of
u and v separately,
u, =C,u;, and v, =C,v..
The product of these two equations produces:
u,v, =C,C,uy,;,

which is the same as (2.12) for second order tensors.
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Exercise 2.13. Show that §; is an isotropic tensor. That is, show that §'; = §; under rotation of
the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.10.]

Solution 2.13. Apply (2.12) to 6,

ijo
61’nn = Ciijn(Sij = Cimcin = Cﬂj;icin = 6’”" :

where the final equality follows from the result of Exercise 2.10. Thus, the Kronecker delta is
invariant under coordinate rotations.
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Exercise 2.14. If u and v are arbitrary vectors resolved in three-dimensional Cartesian

coordinates, use the definition of vector magnitude, a|2 =a-a, and the Pythagorean theorem to

show that u-v = 0 when u and v are perpendicular.

Solution 2.14. Consider the magnitude of the sum u + v,
o+ V] = (a4 v)7 + (y +v,)7 + (uy +v,)°

=+ S+ UL+ V]V VS 22Uy, + 22Uy, + 22UV,

2 2

=[]+ M+ 20,

which can be rewritten:
2 2 2
o+ ][~ ol = V" = 2u- v
When u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus,
u-v=_0.
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Exercise 2.15. If u and v are vectors with magnitudes u and v, use the finding of Exercise 2.14
to show that u-v = uvcos@ where 6 is the angle between u and v.

Solution 2.15. Start with two arbitrary vectors (u and v), and view them so that the plane they
define is coincident with the page and v is horizontal. Consider two additional vectors, v and w,
that are perpendicular (v-w = 0) and can be summed together to produce u: w + v =u.

Compute the dot-product of u and v:
wv=(W+pv) v=wv+ fvv=p0.
where the final equality holds because v-w = 0. From the geometry of the figure:

m_ﬁ_v, or ﬁ:ZCOSG.

cosf = =
ol v

Insert this into the final equality for u-v to find:

u
u-v= (—cos@)v2 = uvcosh.
v
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Exercise 2.16. Determine the components of the vector w in three-dimensional Cartesian
coordinates when w is defined by: u'w = 0, v'w = 0, and w'w = ©’v’sin’0, where u and v are
known vectors with components u; and v; and magnitudes u and v, respectively, and 60 is the
angle between u and v. Choose the sign(s) of the components of w so that w = e; when u = ¢,
andv=e,.

Solution 2.16. The effort here is primarily algebraic. Write the three constraints in component
form:
uw=0,or uw, +u,w, +uw, =0, (1)
v'w=0,or v,w, +v,w, +v,w, =0, and 2)
The third one requires a little more effort since the angle needs to be eliminated via a dot
product:
ww = 1’ Usin’0 = > (1 — cos’0) = u*v* — (u'w)’* or
W+ Wi+ wh = () + ul + ud)(V] + Ui +v3) = (g, + v, + uv,)’, which leads to
W+ Wi+ wi = (v, -, + (U, - uv,)’ + (, - uyv,)°. (3)
Equation (1) implies:
w, =—(w,u, + w,u,)/u, 4)
Combine (2) and (4) to eliminate w,, and solve the resulting equation for w,:

U, U,

v v U;U, — uU
1 1 371 1-3

Wy =4+W,| — Uy =V, | [ |—— Uy + U, | = w;| ————|. 5)
u, u, WU, — U,U,

Combine (4) and (5) to find:

Y, Y,
v, (Wylty + waus) /U, + vw, + V3w, =0, or [——Lu, +v, |w, +|-—Luy; + v, lwy, =0.

Thus:

w v.u, —v,U w v.uu, —vuu, +v,uu, —uU,u
W1=—3(13 31)u2+u3=— 3(132 sy QU U5 123+)
u \\,u; —v,ie, U, v,u, - v,
w v uu, +vV,u U uv, — u,v
L s, 2l |y [ BT 0T ) (6)
U U,U — i, uu, — u,v,

Put (5) and (6) into (3) and factor out w, on the left side, then divide out the extensive common
factor that (luckily) appears on the right and as the numerator inside the big parentheses.

2 2 2
2((u2v3 —u3U,)" + (uU, —uv5)” + (U, — u,v,)
3

2 2 2
5 ) = (uv, —uv))" + (WU, —uv,)” + (UU; — Uv,)
(wv, - hv)" |
wi| ————— =1, s0 w, ==(uv, -u,v,).
(v, - u,v,)
Ifu=(1,0,0),and v=(0,1,0), then using the plus sign produces w; = +1,s0 w, = +(yv, - u,v,).
Cyclic permutation of the indices allows the other components of w to be determined:
Wy = U)Us = UV,,
Wy = UV = U5,
Wy = UU, — U,.
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Exercise 2.17. If a is a positive constant and b is a constant vector, determine the divergence and

the curl of u = ax/x’ and u = bx(x/x*) where x =[x + X + X3 =+/x,x, is the length of x.

Solution 2.17. Start with the divergence calculations, and use x =+/x; + X, + x; to save writing.
v.(a_’j)=a 9 0 SN men | f0 9 9 (u)
X ax, ox, ox, [x12+x§+x32] ax, ox, ox, X
a (x, d x2) &(xg) (1 3 x, 1 3x, I 3x, )
=al—| = |+—| = |+—|5||l=d 5 -—=>—52x)+ 5 -—=—=<02x,)+ 5 -—=-—=(2x
(&xl(x3) (9x2(x3 dx, \ x° x° 2x5( ) x° 2x5( ) x? 2x5( )

x2+x2+x2
=a(3_(1 : 3)]=a(i_i)=o,
X

3
X XS

Thus, the vector field ax/x’ is divergence free even though it points away from the origin
everywhere.

V(bﬂ) _[ 9 9 9 ) [brXs=Dsxy by, —bixy,bixs —byx,
ox, ’é'xz ’0x3 X[+ X5+ X5

d (b2x3—b3x2) d (ngl—b1x3) d (blxz—ble)
il e e e e e R R
ox, X ox, X ox, X

4
= —F(bzxyc1 —byx,x, + byx,x, —bx x, + bx,x, — b2x1x3) =0.

This field is divergence free, too. The curl calculations produce:

( ax) Jd d d (xl,xz,x3) x> x> ox7 o ox” ox”
Vx|—|=aq—,—,—|xX|—5|=4gx; - X, X, - X, X, - X,
ox, 0x, Ox, X ox, ox, ox, ox, ox, ox,

3 3 3 3 3
- a(—5—5(2x2) + 5%(2x3),-5%(2x3) + 5%(2)6')’_5%(2)“')* 5%(2;@) = (0,0,0)

Thus, thus the vector field ax/x’ is also irrotational.
V x (b X X) _[9 0 ) [bxi-bixybx —bxbx, —byx )
x? ox, ox, ox, X;+ X5+ X3
There are no obvious simplifications here. Therefore, compute the first component and obtain the
others by cyclic permutation of the indices.

Vx(bxx) =i(b1x2—b2xl)_i(b3xl—blxs)
1

2 2 2
X ox, X X

-2 b -2
=5t (blxz - ble)(7)2x2 + x_12 - (b3x1 - byx, )(7)2)(3

B 2b1x2 - 4blx§ +4b,x,x, + 4b,x,x, — 4b1x§ _ 2_19l N ﬂ
x* x* o x?
This field is rotational. The other two components of its curl are:

(bx, + byx, + byx;,)
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VX(bXX) =_%+4x2 (b1x1+b2-x2+b3x3)’ Vx(bxx) =_%+ﬂ(b1xl+b2x2+b3x3)'
5 3

x? x> X! x? x* X!
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Exercise 2.18. Obtain the recipe for the gradient of a scalar function in cylindrical polar
coordinates from the integral definition (2.32).

Solution 2.18. Start from the appropriate form of (2.32),
VW = liml f f WndA, where W is a scalar function of
V=0 o

position x. Here we choose a nearly rectangular volume
V = (RA@)(AR)(Az) centered on the point x = (R, ¢, )
with sides aligned perpendicular to the coordinate
directions. Here the e, unit vector depends on ¢ so its
direction is slightly different at ¢ + Ag/2. For small A, ¢ R
this can be handled by keeping the linear term of a g

simple Taylor series: [e(p ]%AWZ =e, = (Ap/ 2)(<9e¢ / &(p) =e, ¥ (Ag/2)e, . Considering the drawing

and noting that n is an outward normal, there are six contributions to ndA:

outside = (R + %)A@Aze R inside = —(R - %)A(pAze R

. . A . . . A
close vertical side :ARAz(—e(p - T(pe R), more distant vertical side = ARAz(e(p - 7('0(3 R) ,
top = RA@ARe,_, and bottom = —~RA@ARe .
Here all the unit vectors are evaluated at the center of the volume. Using a two term Taylor series
approximation for W on each of the six surfaces, and taking the six contributions in the same
order, the integral definition becomes a sum of six terms representing WndA.

(. ARGW\ , AR AR 3®\( . AR
Wit ——|R+—|e;AQAz|-|| P ——— || R—— |e,A@pAz|+
( 2&R)( 2)“’”} [( 2&R)( 2)’”’”]
VW= lim ————1 ‘Ij—%ﬂ (—e(p—A—(peR)ARAz +|| W+ A I (e(p—A—(peR)ARAZ + ¢
ARZS RAQARAZ || 2 Jdo 2 2 do 2

Az—0

0z

(422 ragan] - [ -2 2)e ragar ..
L <

Here the mean value theorem has been used and all listings of W and its derivatives above are
evaluated at the center of the volume. The largest terms inside the big {,}-brackets are
proportional to ApARAz. The remaining higher order terms vanish when the limit is taken.

P R oW Y RW )
—e, +——¢e, [ApARAz -|-—e, ———e, |[AQARAZ +
_2R2aRR]"v [ZRZ&RR]('D
e e
Vo fim— %Y _Ceglagaraz+ |2 Y _ e wiagaraz + >
gg:gRAquRAz |2 dp 2 2 dp 2
Az—0 r
R W R W
T e [A@ARAz - |-~ "¢ |AGARAZ + ...
2 9z *'](p [2& ‘](p

R

7

1 ¥ Y
——e

1 0¥
e, ——+
"R dgp

Y

M
—_— + —_—
oR

€
Z(?Z

€r
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Exercise 2.19. Obtain the recipe for the divergence of a vector function in cylindrical polar
coordinates from the integral definition (2.32).

Solution 2.19. Start from the appropriate form of (2.32),
o1 ‘
V-Q- }/li%vafn' QdA , where Q = (O, 0., Q,) is a vector

function of position x. Here we choose a nearly rectangular
volume V = (RA@)(AR)(Az) centered on the point x = (R, ¢,
z) with sides aligned perpendicular to the coordinate
directions. Here the e, unit vector depends on ¢ so its
direction is slightly different at ¢ + Ag/2. Considering the
drawing and noting that n is an outward normal, there are
six contributions to ndA:

o-Ap/2’

outside = (R + %)A(PAZG & » Inside = —(R - %)A@Aze « » close vertical side :—ARAz[e(p]

more distant vertical side = ARAz[ew] ,»top = RA@ARe_, and bottom = —-RA@ARe, .

p+Ap,
Here the unit vectors are evaluated at the center of the volume unless otherwise specified. Using
a two-term Taylor series approximation for the components of Q on each of the six surfaces, and
taking the six contributions to n- QdA in the same order, the integral definition becomes:

- AR O?QR & _ _&é)QR _& |
(QR 2 R )(R+ 2 )AQAZ} [(QR 2 R )(R 2 )A(pAZl+
tim g A0 Ag 90,
V-Q nggRA(pARAz _(Qw 2 dg )( ARAZ) + (Q¢+ 2 )ARAZ + {
A—>0 _ EQ g@
U(QZ+ > )RA@AR] [(Q "3 % )RquAR}

Here the mean value theorem has been used and all listings of the components of Q and their
derivatives are evaluated at the center of the volume. The largest terms inside the big {,}-
brackets are proportional to ApARAz. The remaining higher order terms vanish when the limit is
taken.

[%+5%]A¢ARA _{_&—E&QR ]AquRAz+
2 2 0R 2 2 JdR
7,
V-Q=lim ; -1k Q¢ A@QARAZ + l&A(pARAz+ >
ﬁR:gRA(pARAZ 20 24
Az~>0
R W R ¥
—— |AQpARAz - ———A ARAZ + .
[2 az] v [ 2 % ] v
7]
V.Q= %4_&QR l Q¢+ Z =li(RQR)+l&+(9_QZ
R OJR RJip 0z R R R dp 0z
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Exercise 2.20. Obtain the recipe for the divergence of a vector function in spherical polar
coordinates from the integral definition (2.32).

Solution 2.20. Start from the appropriate Z‘
.1
form of (2.32), V-Q=}/123VfAfn QdA,

where Q = (Q,, O., 0,) is a vector function
of position x. Here we choose a nearly
rectangular volume V = (rA0)(rsinOAp)(Ar)
centered on the point X = (r, 0, @) with sides
aligned perpendicular to the coordinate
directions. Here the unit vectors depend on
0 and @ so directions are slightly different at
0 = AO/2, and ¢ + Ag@/2. Considering the
drawing and noting that n is an outward
normal, there are six contributions to ndA:

outside :(r + %)AB(;” + %) sinfAg(e,), inside :(r - %)Ae(r - %) sinfAg(-e, ),

bottom = [ rsin(6+ A6/2)AgAr](e,)

close vertical side = rAHAr(—em)

top = [ rsin(6 - A6/2)AqAr|(-e,)

. and more distant vertical side = rAHAr(+e¢)

6+A0/2° 6-A6/2°

¥-Ag g+Ag/2"

Here the unit vectors are evaluated at the center of the volume unless otherwise specified. Using
a two-term Taylor series approximation for the corresponding components of Q on each of the
six surfaces produces:

. Ar 9Q. o Ar 90, A0 &Qg)
outside: +——"1le , inside: —-——"\e , bottom: +——|(e ,
(Qr ) &r) r (Qr 9 0”7‘) r (QH 2 070 ( 0)9+A0/2
_ A6 90, . S Ag 90,
top: (Q@ - 7(9—9)(69 )B_M/z, close vertical side (Qw - 7% (_efﬂ)(p—w/z’ and
Jd
more distant vertical side :{ O, + A_(p& (e ) .
2 dp P/ p+ap/2
Collecting and summing the six contributions to n- QdA, the integral definition becomes:
V-Q=lim 1 X
Ar= (rA0)(rsinOA@)Ar
Ap—0
r Ar dQ AFY Ar 9Q A\ \
+——"|A0|r+—| sinOAgp|- -——= A6l r ——| sinbA
(o5 ol s 0.5 2 Jaf 5 s

s

2000\ (o A0\ 1 [(, 8000, . [, A6\
+[(Q9+ > &B)Sm(0+ Z)AgoAl [( > 00) sn(f) 2)A¢Al

—[(Q«p _AT(PO;&)MQNI . (Qw " %‘p%)mam} o

© ap
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The largest terms inside the big {,}-brackets are proportional to AOA@Ar. The remaining higher
order terms vanish when the limit is taken.

r 90, + 2rQr]A6 sin OA@Ar
or
V-Q=lim 1 X1+ sinQ% + COSOQH}rAHA(pAr >
Ao (rA0)(rsinBA@)Ar | 00
Ap—0 r
J
+ &erGAtpAr+
L 9

Cancel the common factors and take the limit, to find:

! x{[r2&—Q’+2rQr]sin9+ -smea—%’+cos€Q9]r+laQ‘”] }

" ("(rsind) or
_ ! 9 s
Tond {&r(r Q)sm8+ rag(s1n6Q9)+r 6’(,0}

i(sint9Q9)+ L o0,

19/,
- L2 .
roor rsin@ 90 rsin@ Jdg
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Exercise 2.21. Use the vector integral theorems to prove that V-(V xu) =0 for any twice-
differentiable vector function u regardless of the coordinate system.

Solution 2.21. Start with the divergence theorem for a vector
function Q that depends on the spatial coordinates,

[[JV-QaV = [[n-QdA

where the arbitrary closed volume V has surface A, and the
outward normal is n. For this exercise, let Q =V xu so that

f{fv'(qu)dV=fAfn-(qu)dA.

Now split V into two sub-volumes V, and V,, where the surface of V| is A, and the surface of V,
is A,. Here A, and A, are not closed surfaces, but A;+ A, = A so:

f{fv'(vxu)dv={fn'(qu)dA+£fn-(qu)dA.

where n is the same as when the surfaces were joined. However, the bounding curve C for A, and
A, is the same, so Stokes theorem produces:

fffV'(qu)dV=fu~t1ds+fu.t2ds‘

Here the tangent vectors t, =n, xn and t, =n_, xn have opposite signs because n,, and n,,, the
normals to C that are tangent to surfaces A, and A,, respectively, have opposite sign. Thus, the
two terms on the right side of the last equation are equal and opposite, so

[[f V- (Vxu)av =0. 0)

For an arbitrary closed volume of any size, shape, or location, this can only be true if
V- (V xu) =0. For example, if V-(V xu) were nonzero at some location, then integration in
small volume centered on this location would not be zero. Such a nonzero integral is not allowed
by (7); thus, V- (V X u) must be zero everywhere because V is arbitrary.
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Exercise 2.22. Use Stokes’ theorem to prove that V x(V¢)=0 for any single-valued twice-
differentiable scalar ¢ regardless of the coordinate system.

Solution 2.22. From (2.34) Stokes Theorem is:

[J(V xu)-ndA = [u-tds.

A C
Let u=V¢g, and note that V¢ - tds = (ﬁq) / (9s)ds = d¢ because the t vector points along the contour
C that has path increment ds. Therefore:

JI(V*[Vg])-ndA=[V¢-tds = [dp=0, (i)

where the final equality holds for integration on a closed contour of a single-valued function ¢.
For an arbitrary surface A of any size, shape, orientation, or location, this can only be true

if Vx(V¢)=0. For example, if Vx(V¢)=0 were nonzero at some location, then an area
integration in a small region centered on this location would not be zero. Such a nonzero integral
is not allowed by (ii); thus, V x (Vq)) =0 must be zero everywhere because A is arbitrary.



