


# FOUNDATION DESIGN

Principles and Practices

# DONALD P. CODUTO



Upper Saddle River, NJ 07458

Acquisitions Editor: Laura Fischer Supplement Editor: Erin Katchmar Managing Editor: David A. George Production Editor: James Buckley

Supplement Cover Manager: Paul Gourhan Supplement Cover Designer: PM Workshop Inc.

Manufacturing Buyer: Ilene Kahn



All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

## ISBN 0-13-032358-6

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacíon de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Upper Saddle River, New Jersey

# **Contents**

| Chapter 2  | 1  |
|------------|----|
| Chapter 3  | 5  |
| Chapter 4  | 13 |
| Chapter 5  | 19 |
| Chapter 6  | 24 |
| Chapter 7  | 39 |
| Chapter 8  | 63 |
| Chapter 9  | 76 |
| Chapter 10 | 90 |
| Chapter 11 | 92 |

# **Chapter 2** — Performance Requirements

2.1 A proposed column has the following design loads:

Axial load:  $P_D = 200 \text{ k}$ ,  $P_L = 170 \text{ k}$ ,  $P_E = 50 \text{ k}$ ,  $P_W = 60 \text{ k}$  (all compression)

Shear load:  $V_D = 0$ ,  $V_L = 0$ ,  $V_E = 40$  k,  $V_W = 48$  k

Compute the design axial and shear loads for foundation design using ASD.

Solution

(2.1) 
$$P = P_D = Zook$$
  
 $V = V_D = Ok$ 

(2.3A) 
$$P=0.75'(P01P_0+P_0)=0.75(200+170+60)=312K$$
  
 $V=0.75'(V01VL+V_0)=0.75'(0+0+48)=\boxed{36k}$  = Control

2.2 Repeat Problem 2.1 using LRFD with the ACI load factors.

(2.12) 
$$u = 0.9D + 1.3W$$
  
 $P_0 = 0.9(200) + 1.3(60) = 258k$   
 $V_0 = 0.9(0) + 1.3(48) = 62k$ 

Coduto - Foundation Design: Principles and Practices/2e Solutions Manual

2.3 A certain foundation will experience a bearing capacity failure when it is subjected to a downward load of 2200 kN.

Using ASD with a factor of safety of 3, determine the maximum allowable load that will satisfy geotechnical strength requirements.

Solution

A steel pile foundation with a cross-sectional area of 15.5 in<sup>2</sup> and  $F_{\nu} = 50 \text{ k/in}^2$  is to carry axial compressive dead and live loads, of 300 and 200 k, respectively. Using LRFD with the ANSI/ASCE load factors and a resistance factor of 0.75, determine whether this pile satisfies structural strength requirements for axial compression.

Solution

A seven-story steel-frame office building will have columns spaced 7 m on center and will have typical interior and exterior finishes. Compute the allowable total and differential settlements for this building.

Coduto — Foundation Design: Principles and Practices/2e Solutions Manual

2.6 A two-story reinforced concrete art museum is to be built using an unusual architectural design. It will include many tile murals and other sensitive wall finishes. The column spacing will vary between 5 and 8 m. Compute the allowable total and differential settlements for this building.

Solution

$$\delta_{a} = 15mm$$

$$\delta_{a} = 1/000$$

$$\delta_{Da} = 1/000$$

$$\delta_{Da} = 1/000$$

$$\delta_{Da} = 1/000$$

$$\delta_{Da} = 1/000$$

2.7 A 40 ft × 60 ft one-story agricultural storage building will have corrugated steel siding and no interior finish or interior columns. However, it will have two roll-up doors. Compute the allowable total and differential settlement for this building.

Solution

2.8 A sandy soil has 0.03 percent sulfates. Evaluate the potential for sulfate attack of concrete exposed to this soil and recommend preventive design measures, if needed.

Solution

A certain clayey soil contains 0.30 percent sulfates. Would you anticipate a problem with concrete foundations in this soil? Are any preventive measures necessary? Explain.

Solution

2.10 A series of 50-ft long steel piles are to be driven into a natural sandy soil. The groundwater table is at a depth of 35 ft below the ground surface. Would you anticipate a problem with corrosion? What additional data could you gather to make a more informed decision?

Coduto - Foundation Design: Principles and Practices/2e Solutions Manual

A one-story steel warehouse building is to be built of structural steel. The roof is to be supported by steel trusses that will span the entire 70 ft width of the building and supported on columns adjacent to the exterior walls. These trusses will be placed 24 ft on center. No interior columns will be present. The walls will be made of corrugated steel. There will not be any roll-up doors. Compute the allowable total and differential settlements.

Solution

$$\begin{cases}
\delta_{\alpha} = 2 \text{ in} \\
\Theta_{\alpha} = 1/150
\end{cases}$$

$$\delta_{DA} = (1/150)(24)(12) = 1 \text{ in}$$

2.12 The grandstands for a minor league baseball stadium are to be built of structural steel. The structural engineer plans to use a very wide column spacing (25 m) to provide the best spectator visibility. Compute the allowable total and differential settlements.

Solution

2.13 The owner of a 100-story building purchased a plumb bob with a very long string. He selected a day with no wind, and then gently lowered the plumb bob from his penthouse office window. When it reached the sidewalk, it was 1.0 m from the side of the building. Is this building tilting excessively? Explain.

Solution

2.14 A two-story department store identical to the one in Figure 2.12 is to be built. This structure will have reinforced masonry exterior walls. The ground floor will be slab-on-grade. The reinforced concrete upper floor and roof will be supported on a steel-frame with columns 50 ft on-center. Compute the allowable total and differential settlements for this structure.

# Chapter 3 — Soil Mechanics

3.1 Explain the difference between moisture content and degree of saturation.

### Solution

Moisture content is the ratio of the mass of water to the mass of solids, while degree of saturation is the percentage of the volume of voids filled with water. Both parameters are zero when the soil is completely dry, and increase when the amount of water increases. However, the degree of saturation has a maximum possible value of 100%, whereas the moisture content can exceed 100%.

A certain saturated sand (S = 100%) has a moisture content of 25.1% and a specific gravity of solids of 2.68. It also has a maximum index void ratio of 0.84 and a minimum index void ratio of 0.33. Compute its relative density and classify its consistency.

### Solution

$$e = \frac{\omega G_5}{2} = \frac{(0.21)(2.68)}{(0.84 - 0.673)} = 0.673$$

$$D_1 = \frac{e_{max} - e_{max}}{e_{max} - e_{max}} \times 1007_2 = \frac{6.84 - 0.673}{0.84 - 0.35} \times 1007_2 = \boxed{339}_2$$

$$the Joil 13 Louse$$

Consider a soil that is being placed as a fill and compacted using a sheepsfoot roller (a piece of construction equipment). Will the action of the roller change the void ratio of the soil? Explain.

### Solution

The volume of the solids remains constant, but compaction reduces the total volume and thus reduces the volume of the voids. This results in a lower void ratio.

Coduto - Foundation Design: Principles and Practices/2e Solutions Manual

3.4 A sample of soil has a volume of 0.45 ft<sup>3</sup> and a weight of 53.3 lb. After being dried in an oven, it has a weight of 45.1 lb. It has a specific gravity of solids of 2.70. Compute its moisture content and degree of saturation before it was placed in the oven.

Solution

$$w = \frac{W_w}{W_s} \times 100\% = \frac{53.3 - 45.1}{45.1} \times 100\% = 18.2\%$$

$$\gamma = \frac{W}{V} = \frac{53.3}{0.45} = 118.4 \text{ lb/ft}^3$$

$$\gamma_d = \frac{\gamma}{1+w} = \frac{118.4}{1+0.182} = 100.2 \text{ lb/ft}^3$$

$$w = S\left(\frac{\gamma_w}{\gamma_d} - \frac{1}{G_s}\right) \rightarrow 0.182 = S\left(\frac{62.4}{100.2} - \frac{1}{2.70}\right) \rightarrow S = 72.1 \%$$

- 3.5 A site is underlain by a soil that has a unit weight of 18.7 kN/m³ above the groundwater table and 19.9 kN/m³ below. The groundwater table is located at a depth of 3.5 m below the ground surface. Compute the total vertical stress, pore water pressure, and effective vertical stress at the following depths below the ground surface:
  - a. 2.2 m
  - b. 4.0 m
  - c. 6.0 m

$$\frac{Part}{q} = \frac{\frac{Depoth}{(m)}}{(m)} = \frac{\frac{Gz}{(kRa)}}{\frac{(kRa)}{(kRa)}} = \frac{\frac{Gz}{(k$$