Chapter 2: Time Value of Money

2.1)
$$I = (iP)N = (0.06)(\$2,000)(5) = \$600$$

2.2)

• Simple interest:

$$F = P(1+iN)$$

\$6,000 = \$3,000(1+0.08N)
$$N = 12.5 \text{ years (or 13 years)}$$

• Compound interest:

$$\$6,000 = \$3,000(1+0.07)^{N}$$

 $2 = 1.07^{N}$
 $\log 2 = N \log 1.07$
 $N = 10.24 \text{ years (or 11 years)}$

2.3)

• Simple interest:

$$I = (iP)N = (0.07)(\$15,000)(25)$$
$$= \$26,250$$

• Compound interest:

$$I = P[(1+i)^{N} - 1] = $15,000[(1.07)^{25} - 1]$$
$$= $66,411.50$$

2.4)

• A: Simple interest:

$$I = (iP)N = (0.06)(\$10,000)(15)$$
$$= \$9,000$$

• B : Compound interest:

$$I = P[(1+i)^{N} - 1] = $10,000[(1.055)^{15} - 1]$$

= \$12,324.76

B is a better option.

2.5)

• Compound interest:

$$F = \$1,000(1+0.065)^5$$
$$= \$1,370.09$$

• Simple interest:

$$F = \$1,000(1+0.068(5))$$
$$= \$1,340$$

The compound interest option is better.

2.6)

• Loan balance calculation:

	Principal	Interest	Remaining
End of period	Payment	Payment	Balance
0	\$0.00	\$0.00	\$10,000.00
1	\$1,670.92	\$900.00	\$8,329.08
2	\$1,821.30	\$749.62	\$6,507.78
3	\$1,985.22	\$585.70	\$4,522.56
4	\$2,163.89	\$407.03	\$2,358.67
5	\$2,358.64	\$212.28	\$0.00

2.7)
$$P = \$5,000(P/F,7\%,5) = \$5,000(0.7130) = \$3,565$$

2.8)
$$F = \$25,000(F/P,8\%,2) = \$25,000(1.1664) = \$29,160$$

2.9)

• Alternative 1

$$P = $100$$

• Alternative 2

$$P = \$120(P/F,10\%,2) = \$120(0.8264) = \$99.168$$

• Alternative 3

$$P = \$170(P/F, 10\%, 5) = \$170(0.6209) = \$105.553$$

• Alternative 3 is preferred

2.10)
$$F = \$1,000(F/P,5\%,3) = \$1,000(1.1576) = \$1,157.6$$

2.11)
$$F = $500(P/F, 9\%, 5) = $500(0.6499) = $324.95$$

2.12)
$$i = 10.5\%$$
, two-year discount rate is $(1+0.105)^2 = 1.221(22.1\%)$

2.13) (a)
$$F = \$6,000(F/P,6\%,8) = \$6,000(1.5938) = \$9,563$$

(b)
$$F = \$1,550(F/P,5\%,12) = \$1,550(1.7959) = \$2,784$$

(c)
$$F = \$8,000(F/P,9\%,32) = \$8,000(15.7633) = \$126,106$$

(d)
$$F = \$12,000(F/P,8\%,9) = \$12,000(1.999) = \$23,988$$

2.14) (a)
$$P = \$5,500(P/F,10\%,6) = \$5,500(0.5645) = \$3,105$$

(b)
$$P = \$7,000(P/F,9\%,3) = \$7,000(0.7722) = \$5,405$$

(c)
$$P = \$22,000(P/F,8\%,5) = \$22,000(0.6806) = \$14,973$$

(d)
$$P = \$13,000(P/F,7\%,8) = \$13,000(0.5820) = \$7,566$$

2.15) (a)
$$P = \$8,000(P/F,8\%,5) = \$8,000(0.6806) = \$5,445$$

(b)
$$F = \$10,000(F/P,8\%,4) = \$10,000(1.3605) = \$13,605$$

2.16)

$$F = 3P = P(1+0.07)^{N}$$

log 3 = N log 1.07
 $N = 16.24$ years (or 17 years)

2.17)

$$F = 2P = P(1+0.06)^{N}$$

log 2 = N log 1.06
 $N = 11.896$ years (or 12 years)

2.18)

• Rule of 72:

$$72/8 = 9$$
 years

$$F = 2P = P(1+0.08)^{N}$$

log 2 = N log 1.08
 $N = 9$ years

2.19)
$$F = \$1(1.08)^{389} = \$10,042,477,894,213$$

2.20)
$$P = \$35,000(P/F,9\%,4) + \$10,000(P/F,9\%,2)$$
$$= \$35,000(0.7084) + \$10,000(0.8417)$$
$$= \$33,211$$

2.21)
$$P = \$450,000(P/F,5\%,5) = 450,000(0.7835) = \$352,575$$

2.22)

• Simple interest (John):

$$I = iPN = (0.1)(\$1,000)(5) = \$500$$

• Compound interest (Susan):

$$I = P[(1+i)^{N} - 1] = \$1,000[(1+.095)^{5} - 1]$$
$$= \$574.24$$

• Susan's balance will be greater by \$74 (or \$74.24 to be exact)

2.23)
$$P = \frac{\$2,000}{1.1^1} + \frac{\$800}{1.1^2} + \frac{\$1,000}{1.1^3} = \$3,230.65$$

2.24)
$$P = \frac{\$3,000}{1.05^2} + \frac{\$3,500}{1.05^3} + \frac{\$4,200}{1.05^4} + \frac{\$6,500}{1.05^5} = \$14,292.8$$

2.25)
$$F = \$2,000(F / P,8\%,10) + \$3,000(F / P,8\%,8) + \$4,000(F / P,8\%,6)$$

$$= \$16,218$$

$$P = \$3,000,000 + \$2,400,000(P/A,8\%,5)$$

+ \\$3,000,000(P/A,8%,5)(P/F,8%,5)
= \\$20,734,774.86

2.27)
$$P = \$3,000(P/F,9\%,2) + \$4,000(P/F,9\%,5) + \$5,000(P/F,9\%,7)$$

$$= \$7,859.7$$

2.28)

• Method 1:

$$F = \$2,000(1.05)(1.1)(1.15) + \$3,000(1.1)(1.15) + \$5,000$$

= \\$11,451.5

• Method 2:

$$F = \underbrace{\left(\$2,000(1.05) + \$3,000\right)}_{\$5,100} (1.10)(1.15) + \$5,000$$
$$= \$11,451.50$$

2.29)
$$\$180,000 = \$20,000(P/A,9\%,5) - \$10,000(P/F,9\%,3) + X(P/F,9\%,6)180,000 - 20,000(3.8897) + 10,000(0.7722)$$
$$= X(0.5963)$$
$$X = \$184,350.16$$

2.30)

$$F = \$80,000 = \$10,000(1.08)^5 + \$12,000(1.08)^3 + X(1.08)^2$$

$$X = \$43,029.99$$

2.31)

$$100(1.08)^{4} = 8(1.08)^{3} + 9(1.08)^{2} + 10(1.08) + 11 + X$$

$$X = $93.67$$

This is the minimum selling price. If John can sell the stock for a higher price than \$93.67, his return on investment will be higher than 8%.

2.32)
$$P = \frac{\$60,000}{1.14} + \frac{\$77,000}{1.14^2} + \frac{\$65,000}{1.14^3} + \frac{\$57,000}{1.14^4} + \frac{45,000}{1.14^5} = \$212,873.89$$

2.33)
$$F = \$5,000(F/A,6\%,10) = \$5,000(13.1808) = \$65,904$$

2.34) (a)
$$F = \$5,000(F/A,5\%,7) = \$5,000(8.1420) = \$40,710$$

(b)
$$F = \$5,000(F / A,5\%,7)(1.05)$$
$$= \$5,000(8.1420)(1.05) = \$42,745.50$$

2.35) (a)
$$F = \$6,000(F / A, 6\%, 6) = \$6,000(6.9753) = \$41,851.80$$

(b)
$$F = \$8,000(F / A,7.25\%,9) = \$96,825.60$$

(c)
$$F = \$15,000(F / A,8\%,25) = \$15,000(73.1059) = \$1,096,588.50$$

(d)
$$F = \$3,000(F / A, 9.75\%, 10) = \$47,242.80$$

2.36) (a)
$$A = \$18,000(A/F,5\%,13) = \$18,000(0.0565) = \$1,017$$

(b)
$$A = \$11,000(A/F,6\%,8) = \$11,000(0.1010) = \$1,111$$

(c)
$$A = \$8,000(A/F,8\%,25) = \$8,000(0.0137) = \$109.6$$

(d)
$$A = \$12,000(A/F,6.85\%,8) = \$1,176$$

2.37)
$$A = \$250,000(A/F,5\%,5) = \$250,000(0.1810) = \$45,250$$

2.38)
$$A = \$25,000(A/F,5\%,5) = \$25,000(0.1810) = \$4,525$$

2.39)

$$\$35,000 = \$3,000(F / A,6\%, N)$$

$$(F / A,6\%, N) = 11.6666$$

$$\frac{(1+0.06)^{N} - 1}{0.06} = 11.6666$$

$$N \cdot \log(1.06) = \log(1.7)$$

$$N = 9.11$$
 years

2.40)
$$A = \$10,000(A/F,9\%,5)$$
$$= \$1,670.92$$

2.41)
$$F = \$500(1.04)^{10} + \$1,000(1.04)^{8} + \$1,000(1.04)^{6} + \$1,000(1.04)^{4} + \$1,000(1.04)^{2} + \$1,000$$

$$= \$6,625.47$$

2.42) (a)
$$A = \$18,000(A/P,8\%,5) = \$18,000(0.2505) = \$4,509$$

(b)
$$A = \$4,200(A/P,9.5\%,4) = \$1,310.82$$

(c)
$$A = \$7,700(A/P,11\%,3) = \$7,700(0.4092) = \$3,150.84$$

(d)
$$A = \$23,000(A/P,6\%,20) = \$23,000(0.0872) = \$2,005.60$$

2.43)

Equal annual payment amount:

$$A = \$20,000(A/P,10\%,3) = \$20,000(0.4021) = \$8,042$$

Loan balance calculation:

	Principal	Interest	Remaining
End of period	Payment	Payment	Balance
0	\$0.00	\$0.00	\$20,000.00
1	\$6,042.00	\$2,000.00	\$13,958.00
2	\$6,646.20	\$1,395.80	\$7,311.80
3	\$7,310.82	\$731.18	\$0

Interest payment for the second year = \$1,395.80

2.44) (a)
$$P = \$9,000(P/A,6\%,8) = \$9,000(6.2098) = \$55,888.20$$

(b)
$$P = \$1,500(P/A,9\%,10) = \$1,500(6.4177) = \$9,626.55$$

(c)
$$P = \$7,500(P/A,7.25\%,6) = \$35,475$$

(d)
$$P = \$9,000(P/A,8.75\%,30) = \$52,529$$

2.45) (a)
$$(A/P, 6.25\%, 36) = \frac{0.0625(1+0.0625)^{36}}{(1+0.0625)^{36} - 1} = 0.07044$$

(b) $(P/A, 9.25\%, 125) = \frac{(1+0.0925)^{125} - 1}{0.0925(1+0.0925)^{125}} = 10.81064$

(b)
$$(P/A, 9.25\%, 125) = \frac{(1+0.0925)^{125} - 1}{0.0925(1+0.0925)^{125}} = 10.81064$$

2.46)
$$F = \$500(F / A, 7\%, 15)(1.07) = \$500(25.1290)(1.07) = \$13,444.02$$

2.47)
$$A = \$5,000(A/P,11\%,5) = \$5,000(0.2706) = \$1,353$$

If you make the first payment on the loan at the end of the second year:

$$F = \$5,000(F/P,11\%,1)(A/P,11\%,4) = \$5,000(1.11)(0.3223) = \$1,788.78$$

2.48) New equipment: \$195,000

O&M cost: P = \$30,000(P/A,10%,10) = \$30,000(6.1446) = \$184,338

New equipment isn't worth buying.

2.49)
$$P = -\$3,460 + \frac{250}{i} = 0 \implies I = 7.225\%$$

2.50)
$$P = \frac{1,000}{0.1} = \$10,000$$

2.51)
$$F = F_1 + F_2$$

$$= \$5,000(F / A,8\%,5) + \$2,000(F / G,8\%,5)$$

$$= \$5,000(F / A,8\%,5) + \$2,000(A / G,8\%,5)(F / A,8\%,5)$$

$$= \$5,000(5.8666) + \$2,000(1.8465)(5.8666)$$

$$= \$50,998.35$$

2.52)

$$F = \$5,000(F / A,10\%,5) - \$500(F / G,10\%,5)$$

$$= \$5,000(F / A,10\%,5) - \$500(P / G,10\%,5)(F / P,10\%,5)$$

$$= \$5,000(6.1051) - \$500(6.8618)(1.6105)$$

$$= \$25,000.04$$

2.53)
$$P = \$100(P/F, 8\%, 1) + \$150(P/F, 8\%, 3) + \$200(P/F, 8\%, 5) + \$250(P/F, 8\%, 7) + \$300(P/F, 8\%, 9) + \$350(P/F, 8\%, 11) = \$793.83$$

2.54)
$$A = \$30,000 - \$3,000(A / G,8\%,10)$$
$$= \$30,000 - \$3,000(3.8713)$$
$$= \$18,386.1$$

2.55)

$$P = \$3,000(P/A,12\%,8) + \$600(P/G,12\%,8)$$

$$= \$3,000(4.9676) + \$600(14.4714)$$

$$= \$23,585.64$$

2.56)

$$C(P/G,9\%,6) = \$1000(F/P,9\%,4) + \$800(F/P,9\%,3) + \$600(F/P,9\%,2) + \$400(F/P,9\%,1) + \$200$$

$$C(10.0924) = \$3796.46$$

$$\rightarrow 1,000(F/P,9\%,4) + 800(F/A,9\%,4) - 200(P/G,9\%,4)(F/P,9\%,4)$$

$$\therefore C = \$376.17$$

$$P = \$6,000(P/A_{1},5\%,9\%,40)$$

$$= \$6,000 \frac{1 - (1.05)^{40} (1.09)^{-40}}{0.09 - 0.05}$$

$$= \$116,379.57$$

$$\$116379.57*(F/P,9\%,40) = \$3,655.412.47$$

2.58) (a)

$$P = \$10,000,000(P/A_{1,}-10\%,12\%,7)$$

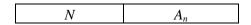
$$= \$10,000,000 \cdot \frac{1 - (1 - 0.1)^{7} (1 + 0.12)^{-7}}{0.12 - (-0.1)}$$

$$= \$35,620,126$$

(b) Note that the oil price increases at the annual rate of 5% while the oil production decreases at the annual rate of 10%. Therefore, the annual revenue can be expressed as follows:

$$A_n = \$100(1+0.05)^{n-1}100,000(1-0.10)^{n-1}$$
$$= \$10,000,000(0.945)^{n-1}$$
$$= \$10,000,000(1-0.055)^{n-1}$$

This revenue series is equivalent to a decreasing geometric gradient series with g = -5.5%.



1	\$10,000,000
1	
2	\$9,450,000
3	\$8,930,250
4	\$8,439,086
5	\$7,974,937
6	\$7,536,315
7	\$7,121,818

$$P = \$10,000,000(P/A_{1,} - 5.5\%,12\%,7)$$

$$= \$10,000,000 \cdot \frac{1 - (1 - 0.055)^{7} (1 + 0.12)^{-7}}{0.12 - (-0.055)}$$

$$= \$39,746,494.51$$

(c) Computing the present worth of the remaining series (A_4, A_5, A_6, A_7) at the end of period 3 gives

$$P = \$8,439,086.25(P/A_1,-5.5\%,12\%,4)$$

$$= \$8,439,086.25 \cdot \frac{1 - (1 - 0.055)^4 (1 + 0.12)^{-4}}{0.12 - (-0.055)}$$

$$= \$23,782,713$$

2.59)
$$P = \sum_{n=1}^{20} A_n (1+i)^{-n}$$

$$= \sum_{n=1}^{20} (2,000,000) n (1.06)^{n-1} (1.06)^{-n}$$

$$= (2,000,000/1.06) \sum_{n=1}^{20} n (\frac{1.06}{1.06})^n$$

$$= (2,000,000/1.06) \sum_{n=1}^{20} n$$

$$= (2,000,000/1.06) \frac{20(21)}{2}$$

$$= \$396,226,415.1$$

2.60)

(a) The withdrawal series would be:

Period	Withdrawal
11	\$3,000
12	\$3,000(1.06)
13	$3,000(1.06)^2$
14	$3,000(1.06)^3$
15	$\$3,000(1.06)^4$

Equivalent worth of the withdrawal series at period 10, using i = 8%:

$$P = \$3,000(P/A_1,6\%,8\%,5)$$

$$= \$3,000 \cdot \frac{1 - (1 + 0.06)^5 (1 + 0.08)^{-5}}{0.08 - (0.06)}$$

$$= \$13,383.92$$

Assuming that each deposit is made at the end of each year, the following equivalence must be hold:

$$$13,384 = A(F/A,8\%,10)$$

= 14.4866A
 $A = 923.88

(b) Equivalent present worth of the withdrawal series at 6%

$$P = \$3,000(P / A_1, 6\%, 6\%, 5) = \$3,000 \frac{5}{1 + 0.06} = \$14,150.94$$

$$\$14,151 = A(F / A, 6\%, 10)$$

$$= 13.1808A$$

$$A = \$1,073.60$$

2.61)
$$\$1,000,000 = A(F/A,6\%,30) = A(79.0582)$$

 \rightarrow A = \$12,649 should be set aside on the account

a)
$$$1,000,000 = A(P/A,6\%,20) = A(11.4699)$$

 \rightarrow A = \$87,185 / year

b)

\$1,000,000 =
$$A_1 (P/A_{1,3}\%, 6\%, 20)$$

= $A_1 \frac{1 - (1.03)^{20} (1.06)^{-20}}{0.06 - 0.03}$
= \$68,674/year

2.62)
$$\frac{\$50}{1.1} + \frac{\$70}{1.1^{2}} + \frac{\$50}{1.1^{3}} = \frac{2C}{1.1} + \frac{C}{1.1^{2}} + \frac{2C}{1.1^{3}} = \frac{5.52C}{1.331}$$

$$\rightarrow 140.8715 = 4.1473C$$

$$C = \$33.97$$

2.63)
$$P = [\$100(F / A, 10\%, 8) + \$50(F / A, 10\%, 6) + \$50(F / A, 10\%, 4)](P / F, 10\%, 8)$$

$$= [\$100(11.4359) + \$50(7.7156) + \$50(4.6410)](0.4665)$$

$$= \$821.70$$

2.64) Select (a).

2.65)
$$P = -\$500(P/F,10\%,1) + \$300(P/A,10\%,3)(P/F,10\%,1) + \$800(P/F,10\%,5)$$

$$= -\$500(0.9091) + \$300(2.4869)(0.9091) + \$800(0.6209)$$

$$P = \$720.42$$

2.66)

Computing the equivalent worth at period 3 will require only two different types of interest factors.

$$P_{1} = \$200(P/A,10\%,5)(F/P,10\%,3)$$

$$= \$200(3.7908)(1.3310)$$

$$= \$1,009.11$$

$$P_{2} = A(P/A,10\%,2)(F/P,10\%,3) + A(P/A,10\%,2)$$

$$= A(1.7355)(1.3310) + A(1.7355)$$

$$= A(4.0455)$$

$$A = \$1,009.11/4.0455$$

$$= \$249.44$$

2.67)
$$P_{1,1} = \$200(P/A,10\%,4) - 100(P/A,10\%,2)$$

$$= \$200(3.1699) - 100(1.7355)$$

$$= 460.43$$

$$P_{2,1} = X + X(P/A,10\%,4)$$

$$= X + X(3.1699)$$

$$= 4.1699X$$

$$P_{1,1} = P_{2,1}$$

$$\$460.43 = 4.1699X$$

X = \$110.42

C = \$43.96

2.68)
$$P_{1} = \$50(P/A,10\%,4) + \$35(P/A,10\%,2)(P/F,10\%,2)$$

$$= \$50(3.1699) + \$35(1.7355)(0.8264)$$

$$= 208.6926$$

$$P_{2} = C(P/A,10\%,4) + C(P/A,10\%,2)(P/F,10\%,1)$$

$$= C(3.1699) + C(1.7355)(0.9091)$$

$$= 4.7476C$$

$$P_{1} = P_{2}$$

2.69)

$$C(F/A,9\%,8) = \$5,000(P/A,9\%,2) + \$5000$$
$$C(11.0285) = \$5,000(1.7591) + \$5000$$
$$C = \$1,250.90$$

2.70) The original cash flow series is

n	A_n
0	\$0
1	\$800
2	\$820
3	\$840
4	\$860
5	\$880
6	\$900
7	\$920
8	\$300
9	\$300
10	\$300 - \$500

2.71)
$$2C + C(P/A,12\%,7)(P/F,12\%,1)$$

$$= \$1,200(P/A,12\%,8) - 400(P/A,12\%,4)$$

$$2C + C(4.5638)(0.8929)$$

$$= \$1,200(4.9676) - 400(3.0373)$$

$$6.075C = \$4,746.20$$

$$C = \$781.27$$
2.72)
$$200(1.06)(1.08)(1.12)(1.15)$$

$$+ X(1.08)(1.12)(1.15)$$

$$+ \$300(1.15)$$

$$= \$1000$$

$$247.9 + 1.39104X + 345 = 1000$$

$$1.39104X = 360.1$$

$$X = \$258.87$$

2.73)
$$A(F/A,8\%,18) = \$20,000 + \$20,000(P/A,8\%,3)$$
$$A(37.4502) = \$20,000 + \$20,000(2.5771)$$
$$= \$71,542$$
$$A = \$1,910.32$$

2.74)
$$P_{1} = \$500 + \$500(P/A,10\%,5)$$

$$= \$500 + \$500(3.7908)$$

$$= \$2,395.4$$

$$P_{2} = X [(P/A,10\%,4)]$$

$$= X [(3.1699)]$$

$$= 2,395.4$$

X = \$755.67

2.75)
$$P_{1,2} = X(P/F, 8\%, 3)$$

$$= X(0.7938)$$

$$P_{2,2} = 800(P/A, 8\%, 10)$$

$$= 800(6.7101)$$

$$= 5368.08$$

$$X = 6,762.51$$
2.76)
$$C(P/A, 9\%, 5)(P/F, 9\%, 1) = \$4,000$$

$$C(3.8897)(0.9174) = \$4,000$$

$$C = \$1,120.95$$
2.77)

$$P(1.05)(1.08)(1.1)(1.06)$$

$$= \$1,000(1.08)(1.1)(1.06) + \$1,500(1.1)(1.06)$$

$$+\$1,000(1.06) + \$1000$$

$$P(1.322244) = \$5,068.28$$

$$P = \$3,833.09$$

$$P_{1} = 30,723(P/F,i\%,5)$$

$$P_{2} = A(P/A,i\%,10)$$

$$\$50,000(1+i)^{-5} = \$5,000 \left(\frac{(1+i)^{10}-1}{i(1+i)^{10}} \right)$$

$$\therefore i = 13.06\%$$

2.79) • Exact:

$$2P = P(1+i)^{5}$$

 $2 = (1+i)^{5}$
 $\log 2 = 5 \log(1+i)$
 $i = 14.87\%$

• Rule of 72:

$$72/i = 5$$
 years $i = 14.4\%$

2.80)

$$P_{1} = \$150(P/A,i,5) - \$50(P/F,i,1)$$

$$= \$150\left(\frac{(1+i)^{5} - 1}{i(1+i)^{5}}\right) - \$50 \cdot (1+i)^{-1}$$

•
$$P_2 = \frac{\$200}{(1+i)} + \frac{\$150}{(1+i)^2} + \frac{\$50}{(1+i)^3} + \frac{\$200}{(1+i)^4} + \frac{\$50}{(1+i)^5}$$

• $P_1 = P_2$ and solving *i* with Excel Goal Seek function, i = 14.96%

2.81)

$$$35,000 = $10,000(F/P,i,5)$$

 $= $10,000(1+i)^5$
 $i = 28.47\%$

2.82)

$$\$104(1+i)^{25} = \$7.92(F/A,i\%,25)(1+i)$$

$$= \$7.92\left(\frac{(1+i)^{25}-1}{i}\right)(1+i)$$

$$\therefore i = 6.37\%$$

2.83) The equivalent future worth of the prize payment series at the end of Year 20 (or beginning of Year 21) is

$$F_1 = \$1,952,381(F / A,6\%,20)$$
$$= \$1,952,381(36.7856)$$
$$= \$71,819,506.51$$

The equivalent future worth of the lottery receipts is

$$F_2 = (\$36,100,000 - \$1,952,381)(F / P,6\%,20)$$
$$= (\$36,100,000 - \$1,952,381)(3.2071)$$
$$= \$109,514,828.9$$

The resulting surplus at the end of Year 20 is

$$F_2 - F_1 = $109,514,828.9 - $71,819,506.51$$

= \$37,695,322.4

2.84)

$$\$1,000(F/P,9.4\%,5) + \$500(F/A,9.4\%,5)$$

$$= \$1,000((1+0.094)^{5}) + \$500(\frac{(1+0.094)^{5}-1}{0.094})$$

$$= \$1,000(1.5671) + \$500(6.0326)$$

$$= \$4,583.4$$

$$\$4,583.4(F/P,9.4\%,60)$$

$$= \$4,583.4((1+0.094)^{60})$$

$$= \$4,583.4(219.3)$$

$$= \$1,005,141.21$$

The main question is whether or not the U.S. government will be able to invest the social security deposits at 9.4% interest over 60 years.

2.85)

```
\begin{split} P_{\text{Contract}} &= \$3,875,000 + \$3,125,000 (P/F,6\%,1) + \$5,525,000 (P/F,6\%,2) \\ &+ 6,275,000 (P/F,6\%,3) + 6,625,000 (P/F,6\%,4) \\ &+ 7575000 (P/F,6\%,5) + 8125000 (P/F,6\%,6) \\ &+ \$8,875,000 (P/F,6\%,7) \\ &= \$3,875,000 + \$2,550,000 (0.9434) \\ &+ \$5,525,000 (0.8900) + \cdots \\ &+ \$8,875,000 (0.6651) \\ &= \$39,548,212.5 \end{split}
```