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PROBLEM 1.1

KNOWN: Heat rate, q, through one-dimensional wall of area A, thickness L, thermal
conductivity k and inner temperature, T

FIND: The outer temperature of the walh. T

SCHEMATIC:
A = 10m*
k=02 W/m-K-
9 cond ~ 3kW
T,=415°C
T.

L =2.5cm —F=

> X

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions,
(3) Constant properties.

ANALYSIS: The rate equation for conduction through the wall is given by Fourier’s law,

Ueong = Ax = m--k&m_ kAT'
Solving for T> gives
Acongl
T, =T,——<cond_
2 1 KA
Substituting numerical values, find
T, _415C- 3000Wx 0.025m
0.2W/ mKx 10nt
T, = 415C-375C
T, =378 C. <

COMMENTS: Note direction of heat flow and fact thag must be less thamT
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PROBLEM 1.2
KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.

FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from
-15 to 38C.

SCHEMATIC:
A =20 m2
k=1,0.75 or 1.25 W/m-K
T1 =250C
To =-15t0 38 °C
T(x)
»L k=L =0.30m
X

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3)
Constant properties, (4) Outside wall temperature is that of the ambient air.

ANALYSIS: From Fourier’s law, it is evident that the gradiedif/dx = — d / Kk, is a constant, and

hence the temperature distribution is lineaqyf and k are each constant. The heat flux must be
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends
only weakly on temperature. The heat flux and heat rate when the outside wall temperatard 80

are

25 C-(-15

" (j-l- -]EL - -]-22 ( (:;

= —k— =k—+—=% =1W/mK =133.3W 7. 1
= L / 0.30m W (1)
Oy = Oy xA=133.3W nfx 20 = 2667W @<

Combining Egs. (1) and (2), the heat ratean be determined for the range of ambient temperature, -15
< T, < 38C, with different wall thermal conductivities, k.
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For the concrete wall, k = 1 WIKy the heat loss varies linearily from +2667 W to -867 W and is zero
when the inside and ambient temperatures are the same. The magnitude of the heat rate increases with
increasing thermal conductivity.

COMMENTS: Without steady-state conditions and constant k, the temperature distribution in a plane
wall would not be linear.



PROBLEM 1.3

KNOWN: Dimensions, thermal conductivity and surface temperatures of a concrete slab. Efficiency
of gas furnace and cost of natural gas.

FIND: Daily cost of heat loss.

SCHEMATIC:
Va Furnace, ns = 0.90
Natural gas, '
Cg = $0.01/MJ Warm air Concrete, k = 1.4 W/m-K
— 7 ¢
4
T,I =17°C )/
— | -
q t=02m
W=8m
CK_—/ L=t1m —H
To =10°

ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties.
ANALYSIS: The rate of heat loss by conduction through the slab is

T-To 7°C <

= 4312 W
0.20m

q=k(LW) =1.4W/mK(11mx 8nm)

The daily cost of natural gas that must be combusted to compensate for the heat loss is

Cy= qCqg (80)= 4312 Wx $0.01/M

N 0.9x1F J/MJ

COMMENTS: The loss could be reduced by installing a floor covering with a layer of insulation
between it and the concrete.

{24h/ax 3600s/h= $4.14/d <




PROBLEM 1.4

KNOWN: Heat flux and surface temperatures associated with awood slab of prescribed
thickness.

FIND: Thermal conductivity, k, of the wood.

SCHEMATIC:
TA
T =20°C g’;=4oW/mz
Ti) T .20°C
N >— [ =005m

ASSUMPTIONS: (1) One-dimensiona conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: Subject to the foregoing assumptions, the thermal conductivity may be
determined from Fourier’s law, Eqg. 1.2. Rearranging,

L _ 0 w 0.05m

-T2 m? (a020)°C

k=0

k=010 W/ m[K. <

COMMENTS: Note that the °C or K temperature units may be used interchangeably when
evaluating a temperature difference.



PROBLEM 15
KNOWN: Inner and outer surface temperatures of a glass window of prescribed dimensions.

FIND: Heat loss through window.

SCHEMATIC:
T'T‘ A=1mx 3m = 3m?,
T=15°C k=14 W/m K
L,=5°C
—»ka— L= 0.005m

ASSUMPTIONS: (1) One-dimensiona conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: Subject to the foregoing conditions the heat flux may be computed from
Fourier'slaw, Eq. 1.2.

-T2
L
15-5)° C
gy =1.4 W (155)
m K .005m
gx =2800 W/m*-.

ax =k

Since the heat flux is uniform over the surface, the heat loss (rate) is

q = gqx XA
q = 2800W/m? x 3m?
q = 8400 W. <

COMMENTS: A linear temperature distribution existsin the glass for the prescribed
conditions.



PROBLEM 1.6

KNOWN: Width, height, thickness and thermal conductivity of a single pane window and
the air space of a double pane window. Representative winter surface temperatures of single
pane and air space.

FIND: Heat loss through single and double pane windows.

SCHEMATIC:
- k- L=5mm -3 k= L=10mm
T,=15C _ [ 7]  T.=-20C N I
NV T,=10°C ~| | T.=-15C
[~ |/
Glass pane ~1, Air space °
kg = 1.4 W/m-K ks = 0.024 W/m-K
W=1mH=2m W=1m,H=2m
o (N
[~
[ Glass . Glass

ASSUMPTIONS: (1) One-dimensional conduction through glass or air, (2) Steady-state
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced
motion).

ANALYSIS: From Fourier's law, the heat losses are

Single Pane qg = kgA Tl;TZ =1.4 W/mDK(Zn?)OBSOSCr:nz 19,600 W
Double Pane gg = kgAL 12 = 0.024( 2n12) 2 C _ 0w
L 0.010 m

COMMENTS: Losses associated with a single pane are unacceptable and would remain
excessive, even if the thickness of the glass were doubled to match that of the air space. The
principal advantage of the double pane construction resides with the low thermal conductivity
of air (~ 60 times smaller than that of glass). For a fixed ambient outside air temperature, use
of the double pane construction would also increase the surface temperature of the glass
exposed to the room (inside) air.



PROBLEM 1.7
KNOWN: Dimensions of freezer compartment. Inner and outer surface temperatures.

FIND: Thickness of styrofoam insulation needed to maintain heat |oad below prescribed
value.

SCHEMATIC:
AT
{ 2 m=W
Styrofoam ~l— A _
k=0.03W/mK 4 =500W

ASSUMPTIONS: (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5
wallsof area A = 4m2, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS: Using Fourier'slaw, EQ. 1.2, the heat rateis

Solving for L and recognizing that Aigtg = 5><W2, find

L = 5k AT W?
q
° 2
5 x 0.03W/mK EB5- (-10)H C (4m
L=
500 W
L = 0.054m = 54mm, <

COMMENTS: The cornerswill cause local departures from one-dimensional conduction
and adlightly larger heat loss.



PROBLEM 1.8

KNOWN: Dimensions and thermal conductivity of food/beverage container. Inner and outer
surface temperatures.

FIND: Heat flux through container wall and total heat load.
SCHEMATIC:

:
- > AN

Wz=0.6m Ti=20C Ty = 20°C

Styrofoam

(k=0.023 W/m-K) ——f«— L=0.025m

k—W;=08m 4\(

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer through bottom
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining
walls.

ANALYSIS: From Fourier’s law, Eq. 1.2, the heat flux is

- 0.023 W/niIK( 26- X C
g =k12- 1= (203 C 06w <
L 0.025 m

Since the flux is uniform over each of the five walls through which heat is transferred, the
heat load is

q=d"x Atotal = o BH(2Wi+ 2Wp) + Wyx W

q=16.6 W/nf J0.6nf 1.6m 1.2Jn( 0.8m 0.§F 359 W <

COMMENTS: The corners and edges of the container create local departures from one-

dimensional conduction, which increase the heat load. However, fo HIW\/S> L, the
effect is negligible.



PROBLEM 1.9

KNOWN: Masonry wall of known thermal conductivity has a heat rate which is 80% of that
through a composite wall of prescribed thermal conductivity and thickness.

FIND: Thickness of masonry wall.

SCHEMATIC:
k=075 Wim-K ko = 0.25 Wia-K
9, 9,
Masonry wall (1) Composi‘fe wall (2.)

ASSUMPTIONS: (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS: For steady-state conditions, the conduction heat flux through a one-dimensional
wall follows from Fourier’s law, Eq. 1.2,

whereAT represents the difference in surface temperatures. Sinisethe same for both
walls, it follows that

With the heat fluxes related as
= 08¢

0.75W/niK = 1 _ o <

L, = 100mm—————— 1

0.25 W/ nIK 0.8
COMMENTS: Not knowing the temperature difference across the walls, we cannot find the
value of the heat rate.



PROBLEM 1.10

KNOWN: Thickness, diameter and inner surface temperature of bottom of pan used to boil
water. Rate of heat transfer to the pan.

FIND: Outer surface temperature of pan for an aluminum and a copper bottom.
SCHEMATIC:

T, = 110°C

b
0
o
0o
O
0
0

Aluminum

(k=240 W/m-K) k— D=200mm T, —

Dwmo T TTTTHT T amconm

ASSUMPTIONS: (1) One-dimensional, steady-state conduction through bottom of pan.

ANALYSIS: From Fourier’s law, the rate of heat transfer by conduction through the bottom
of the pan is

q:kA—Tl_T2
L
Hence,
gL
T1=To+—
1=12 KA

where A =nD2/4 = (0.2m)? /4= 0.0314 1 .

600W/( 0.005 n)

Aluminum Ty =110°C+ =110.40 C
240 W/mDK( 0.0314 r%)
. 600W( 0.005 )
Copper T1=110° C+ =110.25 C
390 W/mDK( 0.0314 )

COMMENTS: Although the temperature drop across the bottom is slightly larger for
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for
both materials. To a good approximation, the bottom may be consisetieeirmalat T=

110°C, which is a desirable feature of pots and pans.



PROBLEM 1.11
KNOWN: Dimensions and thermal conductivity of achip. Power dissipated on one surface.
FIND: Temperature drop across the chip.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat
dissipation, (4) Negligible heat |oss from back and sides, (5) One-dimensional conductionin
chip.

ANALYSIS: All of the electrical power dissipated at the back surface of the chipis
transferred by conduction through the chip. Hence, from Fourier’s law,

P=qg=KkA ATT
or
AT = tEIP2: 0.001 mx4 W ,
kW< 150 W/mK (0.005 m)
AT = 1.1 C. <

COMMENTS: For fixed P, the temperature drop across the chip decreases with increasing k
and W, aswell aswith decreasing t.



PROBLEM 1.12

KNOWN: Heat flux gage with thin-film thermocouples on upper and lower surfaces; output
voltage, calibration constant, thickness and thermal conductivity of gage.

FIND: (a) Heat flux, (b) Precaution when sandwiching gage between two materials.
SCHEMATIC:

G'age bonded
$20.25 9" AE=350 /u‘v' between laminates
=u. 777
Gage, k=14 Wfm-K

& pair type-K TC
Jjunctions,Syg= 40,4[\/_/0C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat conduction in gage,
(3) Constant properties.

ANALYSIS: (a) Fourier’s law applied to the gage can be written as

AT
n = k _
g AX

and the gradient can be expressed as

AT _ AE/N

& Sagt

where N is the number of differentially connected thermocouple junctigpsisShe Seebeck

coefficient for type K thermocouples (A-chromel and B-alumel),nd t is the gage
thickness. Hence,

kAE
NSapt

" —

6
g = LAWIMKX 350 1PV genn 2 <

 5x40x 10°% V/°Cx0.25x 103 m

(b) The major precaution to be taken with this type of gage is to match its thermal
conductivity with that of the material on which it is installed. If the gage is bonded
between laminates (see sketch above) and its thermal conductivity is significantly different
from that of the laminates, one dimensional heat flow will be disturbed and the gage will
read incorrectly.

COMMENTS: If the thermal conductivity of the gage is lower than that of the laminates,
will it indicate heat fluxes that are systematically high or low?



PROBLEM 1.13
KNOWN: Hand experiencing convection heat transfer with moving air and water.

FIND: Determine which condition feels colder. Contrast these results with a heat loss of 30rdém
normal room conditions.

SCHEMATIC:

Too= 10 °C q"
V'=02m/s / cv
h =900 W/m2-K

- Hand

T4=30°C
Too= -5 °C
V= 35 km/h
h = 40 W/m2-K

ASSUMPTIONS: (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case
of air flow.

ANALYSIS: The hand will feel colder for the condition which results in the larger heat loss. The heat
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as

q'=h(Ts- Te)
For the air stream:

i = 40W/ n? CKEB0- (- §F K= 1,400\ 1 <
For the water stream:

Gvater= 900W/ nf [K(30- 10 K= 18,000\ rh <

COMMENTS: The heat loss for the hand in the water stream is an order of magnitude larger than when
in the air stream for the given temperature and convection coefficient conditions. In contrast, the heat
loss in a normal room environment is only 30 \iAmhich is a factor of 400 times less than the loss in

the air stream. In the room environment, the hand would feel comfortable; in the air and water streams,
as you probably know from experience, the hand would feel uncomfortably cold since the heat loss is
excessively high.



PROBLEM 1.14

KNOWN: Power required to maintain the surface temperature of a long, 25-mm diameter cylinder
with an imbedded electrical heater for different air velocities.

FIND: (a) Determine the convection coefficient for each of the air velocity conditions and display
the results graphically, and (b) Assuming that the convection coefficient depends upon air velocity as
h = CV', determine the parameters C and n.

SCHEMATIC:

Ts =300 °C V(m/s) 1 2 4 8 12
P, (W/m)

450 658 983 1507 1963
g h(W/infK) 22.0 322 481 738 96.1

V, Too= 40 °C

Pe
ASSUMPTIONS: (1) Temperature is uniform over the cylinder surface, (2) Negligible radiation
exchange between the cylinder surface and the surroundings, (3) Steady-state conditions.

ANALYSIS: (a) From an overall energy balance on the cylinder, the power dissipated by the
electrical heater is transferred by convection to the air stream. Using Newtons law of cooling on a per
unit length basis,

Fe = h(rD)(Ts~ T

where P, is the electrical power dissipated per unit length of the cylinder. For the V =1 m/s
condition, using the data from the table above, find

h=450W m/mrx 0.025rf 300 40 € 22.0{v3m K <
Repeating the calculations, find the convection coefficients for the remaining conditions which are
tabulated above and plotted below. Note that h is not linear with respect to the air velocity.

(b) To determine the (C,n) parameters, we plotted h vs. V on log-log coordinates. Choosing C =
22.12 W/MIK(s/m)", assuring a match at V = 1, we can readily find the exponent n from the slope of
the hvs. V curve. From the trials with n = 0.8, 0.6 and 0.5, we recognize that n = 0.6 is a reasonable

choice. Hence, C =22.12 and n = 0.6. <
< 100 100
o -~ 80 e
£ 80 < 60 =
= < %
E 60 /‘, £ 40
o )y z /
% ey
ks 40 =
5 ki 20
3 20 7—( %
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PROBLEM 1.15
KNOWN: Long, 30mm-diameter cylinder with embedded electrical heater; power required
to maintain a specified surface temperature for water and air flows.

FIND: Convection coefficients for the water and air flow convection processes, hy, and h,
respectively.

SCHEMATIC:
T.=90°C D=30mm TL.=90°C
— —
Water | — Air >
. 7;:25°C :>[ Tw=25oc >
_ —>

- ' w
Viy=1m/a Va=tomp Ta=7002

q,-28 KW

ASSUMPTIONS: (1) Flow iscross-wise over cylinder which isvery long in the direction
normal to flow.

ANALYSIS: The convection heat rate from the cylinder per unit length of the cylinder has
the form

g =h(mD) (Ts—Tw)
and solving for the heat transfer convection coefficient, find

I

_ q
D (Ts-Too)’

Substituting numerical values for the water and air situations:

3
Water hy = — 20 107 W/m _ =4,570 W/m? K <
7T x 0.030m (90-25)° C
Air hg = 400 Wim = 65 W/m? K. <

7T x 0.030m (90-25)° C
COMMENTS: Notethat theair velocity is 10 times that of the water flow, yet
hy = 70 x hg

These values for the convection coefficient are typical for forced convection heat transfer with
liquids and gases. See Table 1.1.



PROBLEM 1.16

KNOWN: Dimensions of acartridge heater. Heater power. Convection coefficientsin air
and water at a prescribed temperature.

FIND: Heater surface temperaturesin water and air.

SCHEMATIC:

K T. -20°C h:5000W/m2'/< (water)
R\ o {b=50 Wm2-K (air)

ASSUMPTIONS: (1) Steady-state conditions, (2) All of the electrical power istransferred
to the fluid by convection, (3) Negligible heat transfer from ends.

ANALYSIS: With P = gggny, Newton's law of cooling yields

P=hA (T —Teo ) =hmDL (Ts ~Teo )

Te=Top +——.
ST T hDL

In water,

2000 W

Ts=20C+ 5
5000 W/ m* [K x 71x0.02 m x0.200 m

T,=20°C+318°C=518'C. <
Inair,

2000 W

Ts=20C+ 5
50 W/ m[K x 1x0.02 mx0.200 m

T,=20"C+3183'C=3203"C. <

COMMENTS: (1) Airismuch less effective than water as a heat transfer fluid. Hence, the
cartridge temperature is much higher in air, so high, in fact, that the cartridge would melt.

(2) Inair, the high cartridge temperature would render radiation significant.



PROBLEM 1.17

KNOWN: Length, diameter and calibration of a hot wire anemometer. Temperature of air
stream. Current, voltage drop and surface temperature of wire for a particular application.

FIND: Air velocity
SCHEMATIC:

weeme \

Hot wire (V ~ h2)
L=20mm, D =0.5mm
E=5V,1=100 mA

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer from the wire by
natural convection or radiation.

ANALYSIS: If all of the electric energy is transferred by convection to the air, the following
equality must be satisfied

Polec= El= hA(Ts Too)

where A =7DL =77(0.0005mx 0.02r)= 3.14 10 fn .

Hence,
h=— Bl _ SVx0.1A =318 Winf 0K
A(Ts~To) 3.14x 1070 n?( 50 c)
_5 5 2
V =6.25x107° P = 6.2% 10 ( 318 W/ )< = 6.3mls <

COMMENTS: The convection coefficient is sufficiently large to render buoyancy (natural
convection) and radiation effects negligible.



PROBLEM 1.18
KNOWN: Chip width and maximum allowable temperature. Coolant conditions.
FIND: Maximum allowable chip power for air and liquid coolants.
SCHEMATIC:

Tp=15°C —»

—>

Air, h=200W/m*-K
Dielectric fluid, : /,
h=3000W/m2-K  ‘--------=

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer from sides and
bottom, (3) Chip is at a uniform temperature (isothermal), (4) Negligible heat transfer by
radiation in air.

ANALYSIS: All of the electrical power dissipated in the chip is transferred by convection to
the coolant. Hence,

P=q
and from Newton’s law of cooling,

P = hA(T - Too) = h WAT - Too).
In air,

Prax = 200 W/nfIK(0.005 mf(85 - 15)° C = 0.35 W. <
In thedielectric liquid

Pax = 3000 W/nfTK(0.005 m¥(85-15)° C = 5.25 W. <

COMMENTS: Relative to liquids, air is a poor heat transfer fluid. Hence, in air the chip can
dissipate far less energy than in the dielectric liquid.



PROBLEM 1.19

KNOWN: Length, diameter and maximum allowable surface temperature of a power
transistor. Temperature and convection coefficient for air cooling.

FIND: Maximum allowable power dissipation.

SCHEMATIC:
Qeonv Ts = 85°C

K— —3>— D=12mm

T = 25°C —>
h =100 W/m%-K —% ~
p L=10 mm

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer through base of
transistor, (3) Negligible heat transfer by radiation from surface of transistor.

ANALYSIS: Subject to the foregoing assumptions, the power dissipated by the transistor is
equivalent to the rate at which heat is transferred by convection to the air. Hence,

Pelec= dconv= hA(Ts Too )
where A:n(DL +D2/4):n§).012mx 0.01m ( 0.012)F /%: 490 16 m .

For a maximum allowable surface temperature 6€8%he power is

Pelec= 100 W/nf DK( 4.96 10% rﬁ) (85 25 € 294w <

COMMENTS: (1) For the prescribed surface temperature and convection coefficient,
radiation will be negligible relative to convection. However, conduction through the base
could be significant, thereby permitting operation at a larger power.

(2) Thelocal convection coefficient varies over the surface, lamidspotscould exist if there
are locations at which the local valuenas substantially smaller than the prescribed average
value.



PROBLEM 1.20
KNOWN: Air jet impingement is an effective means of cooling logic chips.
FIND: Procedure for measuring convection coefficients associated with a 20l@imm chip.
SCHEMATIC:

(a) @ (b)
Jet, T,
l q

Chip, Tx, conv Jet, T, )
9elec g;)é M _eony plrad

Se—— Copper, Tg, Gcon

;qcond Substrate S

Substrate Heater, Insulation
delec

ASSUMPTIONS: Steady-state conditions.

ANALYSIS: One approach would be to use the actual chip-substrate system, Case (a), to perform the
measurements. In this case, the electric power dissipated in the chip would be transferred from the chip
by radiation and conduction (to the substrate), as well as by convection to the jet. An energy balance for

the Ch|p y|9|dsqe|ecz qconv+ q CondF q rad Hence, Withqcon\/: hA(TS_ Too) y Whel’e A= 100
mnT is the surface area of the chip,

h = Jelec” 9cond” 9 rad )
A(Ts—Te)

While the electric powerdg o) and the jet ) and surfaceTg) temperatures may be measured, losses
from the chip by conduction and radiation would have to be estimated. Unless the losses are negligible

(an unlikely condition), the accuracy of the procedure could be compromised by uncertainties associated
with determining the conduction and radiation losses.

A second approach, Case (b), could involve fabrication of a heater assembly for which the
conduction and radiation losses are controlled and minimized. A 18 b@mm copper block (k ~ 400
W/mIK) could be inserted in a poorly conducting substrate (k < 0.1[KY/amd a patch heater could be
applied to the back of the block and insulated from below. If conduction to both the substrate and
insulation could thereby be rendered negligible, heat would be transferred almost exclusively through the
block. If radiation were rendered negligible by applying a low emissivity coatind(1) to the surface
of the copper block, virtually all of the heat would be transferred by convection to the jet. Eigpge,
andq,,q may be neglected in equation (1), and the expression may be used to accurately determine h

from the known (A) and measuredgdes Ts, To) quantities.

COMMENTS: Since convection coefficients associated with gas flows are generally small, concurrent
heat transfer by radiation and/or conduction must often be considered. However, jet impingement is one
of the more effective means of transferring heat by convection and convection coefficients well in excess
of 100 W/nfK may be achieved.



PROBLEM 1.21

KNOWN: Upper temperature set point, T, Of abimetallic switch and convection heat
transfer coefficient between clothes dryer air and exposed surface of switch.

FIND: Electrical power for heater to maintain T When air temperature is T, = 50°C.

SCHEMATIC:

<Dryer wall

- S~ Tosulation pad
T AANNANANNAN ;
Y~—CLlectrical heater

T-50C ‘e —
h“;ZSW/mZK > jgc()nv 7;@/': 70°C, AS= 30mm=2

ASSUMPTIONS: (1) Steady-state conditions, (2) Electrical heater is perfectly insulated
from dryer wall, (3) Heater and switch are isothermal at T, (4) Negligible heat transfer from
sides of heater or switch, (5) Switch surface, Ag, loses heat only by convection.

ge/ec

ANALYSIS: Defineacontrol volume around the bimetallic switch which experiences heat
input from the heater and convection heat transfer to the dryer air. That is,

Ein - Eout =0
dalec - MAs(Tset —Too ) =0.
The electrical power required is,
delec = MAs(Tset ~Too )
_ 2 -6 2 (7_ _ <
Jelec =25 W/m“ [K x30x10™° m“ (70 -50)K=15 mW.

COMMENTS: (1) Thistype of controller can achieve variable operating air temperatures
with asingle set-point, inexpensive, bimetallic-thermostatic switch by adjusting power levels
to the heater.

(2) Will the heater power requirement increase or decrease if the insulation pad is other than
perfect?



PROBLEM 1.22

KNOWN: Hot vertical plate suspended in cool, till air. Changein plate temperature with time at
the instant when the plate temperature is 225°C.

FIND: Convection heat transfer coefficient for this condition.

SCHEMATIC:
dT
.r.

T.=225%C Tl) K =0022K]s
Air, A \
T,=25C
D,

late, 0.3x03m b 'flo
M=3.75kg, cp=2770 Jfkg-K

ASSUMPTIONS: (1) Plateisisothermal and of uniform temperature, (2) Negligible radiation
exchange with surroundings, (3) Negligible heat lost through suspension wires.

ANALYSIS: Asshown in the cooling curve above, the plate temperature decreases with time. The

condition of interest isfor timetg. For acontrol surface about the plate, the conservation of energy
requirement is

Ein - Eout = Est JT ,

-2hAg(Ts-Teo )=Mcp—

where Ag is the surface area of one side of the plate. Solving for h, find
he MCp d_T
2Ag(Ts—Teo ) dt

he 3.75kgx 2770 Jkg [K

- 5 x0.022 K/s=6.4 W/m? K <
2x(0.3x0.3)m* (225 -25)K

COMMENTS: (1) Assuming the plate is very highly polished with emissivity of 0.08, determine
whether radiation exchange with the surroundings at 25°C is negligible compared to convection.

(2) We will later consider the criterion for determining whether the isothermal plate assumption is
reasonable. If the thermal conductivity of the present plate were high (such as aluminum or copper),
the criterion would be satisfied.



PROBLEM 1.23

KNOWN: Width, input power and efficiency of a transmission. Temperature and convection
coefficient associated with air flow over the casing.

FIND: Surface temperature of casing.

SCHEMATIC:
T = 30°C
hi = 200 W/m2-K q
—
—
Po= nP;
— T
Pi =150 hp W=03m

L

ASSUMPTIONS: (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3)
Negligible radiation.

ANALYSIS: From Newton’s law of cooling,
q=hAg (T~ Teo ) = 6hW ( Ts— Too)

where the output power igP, and the heat rate is
q=R-R=P(tn)= 150hp 746W/hp 0.67 7833W

Hence,

9 __30rce 7833 W = 1028 C <

6 hw? 6x 200 W/ nf OKx( 0.3n)?

Tg=Te +

COMMENTS: There will, in fact, be considerable variability of the local convection coefficient
over the transmission case and the prescribed value represents an average over the surface.



PROBLEM 1.24

KNOWN: Air and wall temperatures of a room. Surface temperature, convection coefficient
and emissivity of a person in the room.

FIND: Basis for difference in comfort level between summer and winter.
SCHEMATIC:

Jeonv Orad

- / Tsur = 27°C (summer)

T =20°C Toyr = -14°C (winter
h = 2 W/m2-K sur ( )
Ts=32°C
€=0.9

ASSUMPTIONS: (1) Person may be approximated as a small object in a large enclosure.

ANALYSIS: Thermal comfort is linked to heat loss from the human body, ahdlied

feeling is associated with excessive heat loss. Because the temperature of the room air is
fixed, the different summer and winter comfort levels can not be attributed to convection heat
transfer from the body. In both cases, the heat flux is

Summer and Winter gisony = h(Ts= Teo ) = 2 W/nf OKx 12° C= 24 Wirfl

However, the heat flux due to radiation will differ, with values of

Summer  qpag=¢0 (Tg‘ - T@ur) = 0.9 5.6% 10° w/nfC K‘( 304- 306) K= 283 wifl

Winter. gl q = e0 (Tg - Téur) = 0.9 5.6% 10° W/nfD K‘( 304- 289) K= 95.4 wifl

There is a significant difference between winter and summer radiation fluxes, and the chilled
condition is attributable to the effect of the colder walls on radiation.
COMMENTS: For a representative surface area of A = 12.5the heat losses arggay =

36 W, Gad(summerf= 42.5 W and gd(winter)= 143.1 W. The winter time radiation loss is
significant and if maintained over a 24 h period would amount to 2,950 kcal.



PROBLEM 1.25

KNOWN: Diameter and emissivity of spherical interplanetary probe. Power dissipation
within probe.

FIND: Probe surface temperature.

SCHEMATIC:
Probe, T, £:08

/’937,,,,«- Radiation free
space

/:}=150W
N D=05m

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible radiation incident on the probe.

ANALYSIS: Conservation of energy dictates a balance between energy generation within the
probe and radiation emission from the probe surface. Hence, at any instant

'Eout + Eg =0

eAOTS =B

D1/4
/4
T - 150W ﬁl
J0.8m1(05m)?5.67x1078 W/m?2 K4

T, =254.7 K. <

COMMENTS: Incident radiation, as, for example, from the sun, would increase the surface
temperature.



PROBLEM 1.26

KNOWN: Spherical shaped instrumentation package with prescribed surface emissivity within a
large space-simulation chamber having walls at 77 K.

FIND: Acceptable power dissipation for operating the package surface temperature in the range T
40 to 85C. Show graphically the effect of emissivity variations for 0.2 and 0.3.

SCHEMATIC:
L\ N Chamber walls
_ T.=40to 85°C
Tsurr 77 K s 0

Electrical / Spherical package,
power dissipation, Pg D =100 mm, £ =0.25

ASSUMPTIONS: (1) Uniform surface temperature, (2) Chamber walls are large compared to the
spherical package, and (3) Steady-state conditions.

ANALYSIS: From an overall energy balance on the package, the internal power dissipatibn P
be transferred by radiation exchange between the package and the chamber walls. From Eq. 1.7,

- D — 4
Orad = Pe= 5A§(T45_ T su)
For the condition whenJE 40°C, with A = TD? the power dissipation will be

Pe=0.2mx 0100 5.6 10 W o & 40 25 72 de 43w <

Repeating this calculation for the range4T; < 85°C, we can obtain the power dissipation as a

function of surface temperature for the 0.25 condition. Similarly, with 0.2 or 0.3, the family of
curves shown below has been obtained.

10

g
e —
a 8
5 — |
g —
3 6 — // ] —
& L —
2 [ — [o—
é P L
—
2

40 50 60 70 80 90

Surface temperature, Ts (C)

—>¢— Surface emissivity, eps = 0.3
eps = 0.25

—— eps=0.2
COMMENTS: (1) As expected, the internal power dissipation increases with increasing emissivity
and surface temperature. Because the radiation rate equation is non-linear with respect to

temperature, the power dissipation will likewise not be linear with surface temperature.

(2) What is the maximum power dissipation that is possible if the surface temperature is not to exceed

85°C? What kind of a coating should be applied to the instrument package in order to approach this
limiting condition?



PROBLEM 1.27

KNOWN: Area, emissivity and temperature of a surface placed in alarge, evacuated
chamber of prescribed temperature.

FIND: (a) Rate of surface radiation emission, (b) Net rate of radiation exchange between
surface and chamber walls.

SCHEMATIC:

ASSUMPTIONS: (1) Areaof the enclosed surface is much less than that of chamber walls.
ANALYSIS: (a) From Eq. 1.5, the rate at which radiation is emitted by the surfaceis

Jemit =EA = €A 0TS

demit = 0.8(0.5 m2) 567 x 108 Wim? K4 ({150 + 273) K"

Ogmit = 726 W. <
(b) From Eg. 1.7, the net rate at which radiation is transferred from the surface to the chamber
wallsis

q=cA0o (Té—TSlA'Jr)

q= 0.8(0.5 m2) 5.67 x 108 wim? k* Haza )4 - (208K )45

q = 547 W. <

COMMENTS: Theforegoing result gives the net heat |oss from the surface which occurs at
the instant the surface is placed in the chamber. The surface would, of course, cool due to this
heat loss and its temperature, as well as the heat |oss, would decrease with increasing time.
Steady-state conditions would eventually be achieved when the temperature of the surface
reached that of the surroundings.



PROBLEM 1.28

KNOWN: Length, diameter, surface temperature and emissivity of steam line. Temperature

and convection coefficient associated with ambient air. Efficiency and fuel cost for gas fired
furnace.

FIND: (a) Rate of heat loss, (b) Annual cost of heat loss.

SCHEMATIC:
Tw=25C
“ h =10 W/m2-K
Tsur = 25°C \Ckonv /\

rad T, = 150°C, ¢
D =100 mm

o

’:::0
::::
G

o¥s

g
L
e e gt gt g
BIEEESEESS
g

L=25m

ASSUMPTIONS: (1) Steam line operates continuously throughout year, (2) Net radiation
transfer is between small surface (steam line) and large enclosure (plant walls).

ANALYSIS: (a) From Egs. (1.3a) and (1.7), the heat loss is
0= 0conv™ drad= AEW(TS‘ Tw)+50(T4$‘ T4$u)'§

where A =7DL =7(0.1mx 25m) = 7.8511 .

Hence,

q=7.85nf J10 Wi DK 150 25 k& 08 567 1§ whw 4{ 433 2%8 K

q=7.85nf (1,250 1,095 wifn=( 98%3 85P2 W 18,405 W <

(b) The annual energy loss is

E=qt=18,405 Wk 3600 s 24hid 365 dy 580110 J

With a furnace energy consumption®f = E/nf = 6.45¢ 161 Jthe annual cost of the loss
is

C=CyEf = 0.01$/MX 6.48 0 MJ  $6450 <

COMMENTS: The heat loss and related costs are unacceptable and should be reduced by
insulating the steam line.



PROBLEM 1.29

KNOWN: Exact and approximate expressions for the linearized radiation coeffigiant] h,,
respectively.

FIND: (a) Comparison of the coefficients wih= 0.05 and 0.9 and surface temperatures which may
exceed that of the surroundingsF 25°C) by 10 to 10€C; also comparison with a free convection
coefficient correlation, (b) Plot of the relative error{hJ)/h; as a function of the furnace temperature
associated with a workpiece at3 25 C havinge = 0.05, 0.2 or 0.9.

ASSUMPTIONS: (1) Furnace walls are large compared to the workpiece and (2) Steady-state
conditions.

ANALYSIS: (a) The linearized radiation coefficient, Eq. 1.9, follows from the radiation exchange
rate equation,

hy =eo (Ts+ Tsur)(T% + Tzsu)
If Ts= Tsu, the coefficient may be approximated by the simpler expression
hy a=4e0T T=(To+ Tsu)/2
For the condition of = 0.05, = T+ 10 =38C = 308 K and J,,= 25C = 298 K, find that

hy =0.05¢ 5.6% 10° W A0 K( 308 29% 308 zé’)s ¥ 032w k<
hy o= 4x0.05 5.6% 108 W MO K(( 308 298 )2 %= o032 fm k <

The free convection coefficient with, ¥ 35°C andT,, = Tg,,= 25°C, find that

h=09n /3= 09§ 7- )%= 0.96 308 2083 2.1lv T K <

For the range J- Ts, = 10 to 100C with € = 0.05 and 0.9, the results for the coefficients are
tabulated below. For this range of surface and surroundings temperatures, the radiation and free
convection coefficients are of comparable magnitude for moderate values of the emissitity, say
0.2. The approximate expression for the linearized radiation coefficient is valid within 2% for these
conditions.

(b) The above expressions for the radiation coefficiepemdhh, are used for the workpiece at=
25°C placed inside a furnace with walls which may vary from 100 to°ID0The relative error, {R
h.a)/h;, will be independent of the surface emissivity and is plotted as a functiqQp. oF®r Tgy, >
150°C, the approximate expression provides estimates which are in error more than 5%. The
approximate expression should be used with caution, and only for surface and surrounding
temperature differences of 50 to 200

30

Coefficients (W/rAK) —
TS (OC) € hr hr,a h

20

35 0.05 0.32 032 21
0.9 5.7 5.7

135 0.05 0.51 050 4.7
0.9 9.2 9.0

10

Relative error, (hr-hra)/hr*100 (%)

100 300 500 700 900

Surroundings temperature, Tsur (C)



PROBLEM 1.30

KNOWN: Chip width, temperature, and heat loss by convection in air. Chip emissivity and
temperature of large surroundings.

FIND: Increasein chip power due to radiation.

SCHEMATIC:

Chip, T=-358K, £:09

Tsyr=288K

ASSUMPTIONS: (1) Steady-state conditions, (2) Radiation exchange between small surface
and large enclosure.

ANALYSIS: Heat transfer from the chip due to net radiation exchange with the surroundings
is

Orag = W20 (T4 ; Téfjr)

Orag = 0.9(0.005 m)25.67x10™8 wim? K (3584 : 2884) K4

Orag = 0.0122W.

The percent increase in chip power is therefore

AP 100=9rad 100 =0012W 100 _35u <

COMMENTS: For the prescribed conditions, radiation effects are small. Relative to
convection, the effect of radiation would increase with increasing chip temperature and
decreasing convection coefficient.



PROBLEM 1.31

KNOWN: Width, surface emissivity and maximum allowable temperature of an electronic chip.
Temperature of air and surroundings. Convection coefficient.

FIND: (a) Maximum power dissipation for free convection with h(\%ﬂh) =4.2(T - Too)1/4, (b)

Maximum power dissipation for forced convection with h = 250 6Wm

SCHEMATIC:

| N2

Substrate
Qrad
Too = 25°C Chip, Pgjec
h = 4.2(TeTeo) Ts=85°C, £=0.60
or Qconv L=15mm
h = 250 W/m2-K

ASSUMPTIONS: (1) Steady-state conditions, (2) Radiation exchange between a small surface and a
large enclosure, (3) Negligible heat transfer from sides of chip or from back of chip by conduction
through the substrate.

ANALYSIS: Subiject to the foregoing assumptions, electric power dissipation by the chip must be
balanced by convection and radiation heat transfer from the chip. Hence, from Eq. (1.10),

Pelec= dconvt drad hA(T & T>0)+5M(T45‘ T43\)r

2

where A =L =(0.015m) = 2.25 104 nf .

(a) If heat transfer is by natural convection,
dconv=C A(Ts~Teo)® 4= 4.2 Winf DK5/4( 2.25% 104 n7r)( 60K’ 4= 0.158 W

qrad:o.eo( 2.25 10% rﬁ) 567 16 WAL ﬁ( 388 2§)3 % 0.065 W

Palec= 0.158 W+ 0.065 W& 0.223 W <
(b) If heat transfer is by forced convection,

deonv = hA(Ts= Teo ) = 250 Winf DK( 2.25 10% rﬁ)( 60k= 3.375W

Polec=3.375 W+ 0.065 W 3.44 W <

COMMENTS: Clearly, radiation and natural convection are inefficient mechanisms for transferring
heat from the chip. ForgF 85C and T, = 25°C, the natural convection coefficient is 11.7 V%IZEh

Even for forced convection with h = 250 V\ﬁﬂ, the power dissipation is well below that associated
with many of today’s processors. To provide acceptable cooling, it is often necessary to attach the
chip to a highly conducting substrate and to thereby provide an additional heat transfer mechanism
due to conduction from the back surface.



PROBLEM 1.32
KNOWN: Vacuum enclosure maintained at 77 K by liquid nitrogen shroud while baseplate is
maintained at 300 K by an electrical heater.

FIND: (a) Electrical power required to maintain baseplate, (b) Liquid nitrogen consumption rate, (c)
Effect on consumption rate if aluminum foil (ep = 0.09) is bonded to baseplate surface.

SCHEMATIC:

Shroud, T=77K ]7

Baseplate, D,=0.3m
Electrical heater

— Pantin,
KOCORODCOONRRN DK
WWAVAVAVAVAVAYAYAY A = AYd

f9e/ec

T,=300K, €,70.25
Insulation—""

ASSUMPTIONS: (1) Steady-state conditions, (2) No heat losses from backside of heater or sides of
plate, (3) Vacuum enclosure large compared to baseplate, (4) Enclosure is evacuated with negligible
convection, (5) Liquid nitrogen (LN2) is heated only by heat transfer to the shroud, and (6) Foil is
intimately bonded to baseplate.

PROPERTIES: Heat of vaporization of liquid nitrogen (given): 125 kJ/kg.
ANALYSIS: (a) From an energy balance on the baseplate,

Ein - Eout =0 Ogec = Yrad = 0

and using Eq. 1.7 for radiative exchange between the baseplate and shroud,
— 4 4

Substituting numerical values, with Ap = (ITD%/ 4), find

elec =0.2517(03 m)2/4@5.67x10_8 W/m? EH(4(3004 . 774)K4 =g1w. <

(b) From an energy balance on the enclosure, radiative transfer heats the liquid nitrogen stream
causing evaporation,
Ein - Bow = 0 Urag = Min2hgg = O

n
where M|\, istheliquid nitrogen consumption rate. Hence,

M N2 = qrad/hfg = 81W/125kJ/ kg = 6.48x107° kg/s=0.23kg/ h. <

(c) If aluminum foil (ep = 0.09) were bonded to the upper surface of the baseplate,
Arad,foil = drad (sf /£p) =8.1W(0.09/0.25) =2.9 W
and the liquid nitrogen consumption rate would be reduced by

(0.25 - 0.09)/0.25 = 64% to 0.083 kg/h. <



PROBLEM 1.33

KNOWN: Width, input power and efficiency of a transmission. Temperature and convection
coefficient for air flow over the casing. Emissivity of casing and temperature of surroundings.

FIND: Surface temperature of casing.

SCHEMATIC:
T = 30°C
hi = 200 W/m2-K q
—
—
Po= nP;
— T
Pi =150 hp W=03m

L

ASSUMPTIONS: (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3)
Radiation exchange with large surroundings.

ANALYSIS: Heat transfer from the case must balance heat dissipation in the transmission, which

may be expressed as q =, =R (1 -n) = 150 hpx 746 W/hpx 0.07 = 7833 W. Heat transfer
from the case is by convection and radiation, in which case

- 4_—4
where A5=6V\/2. Hence,
7833 W= do.aorw)zgzooW/%D K g~ 303k 08 567 10 WAR 4|€ o 3‘&)3 ‘E

A trial-and-error solution yields

Tg=373K=100C <

COMMENTS: (1) For Ts= 373 K, Gonv= 7,560 W and gg= 270 W, in which case heat transfer is

dominated by convection, (2) If radiation is neglected, the corresponding surface temperatare is T
102.5C.



PROBLEM 1.34

KNOWN: Resistor connected to a battery operating at a prescribed temperature in air.

FIND: (a) Considering the resistor as the system, determine corresponding vaIEﬁ(fW),
Eg (W), Eout(W) andEgt(W). If a control surface is placed about the entire system, determine

the values forEjp , Eq, Eqyt, andEgy. (b) Determine the volumetric heat generation rate within

the resistord (W/m°), (c) Neglecting radiation from the resistor, determine the convection
coefficient.

SCHEMATIC:

Resistor, Tg =95 °C

Ay T~ % D =60 mm, L =250 mm, ¢ (W/m?)

Air
To= 25 °C

ASSUMPTIONS: (1) Electrical power is dissipated uniformly within the resistor, (2) Temperature
of the resistor is uniform, (3) Negligible electrical power dissipated in the lead wires, (4) Negligible
radiation exchange between the resistor and the surroundings, (5) No heat transfer occurs from the
battery, (5) Steady-state conditions.

ANALYSIS: (a) Referring to Section 1.3.1, the conservation of energy requirement for a control
volume at an instant of time, Eq 1.11a, is

Ein + Eg - Egut = Esgt

where Em : Eout correspond taurfaceinflow and outflow processes, respectively. The energy

generation tern‘Eg is associated with conversion of some other energy form (chemical, electrical,

electromagnetic or nuclear) to thermal energy. The energy storagEgegrisl associated with

changes in the internal, kinetic and/or potential energies of the matter in the control vEgme.

Est arevolumetricphenomena. The electrical power delivered by the battery is P = VI x624%
144 W.

Control volume: Resistor.
Eih =0 Eout = 144W
<

Eg =144W Et=0

The Eg term is due to conversion of electrical energy to thermal energy. TheEl&r,mis due to

convection from the resistor surface to the air.
Continued...



PROBLEM 1.34 (Cont.)

____________ Eg’ Est
|
Control volume: Battery-Resistor System | ) | E in
| |
Ein = O EOUt = 144W < | ? : E out
Eg=0 E =-144W L — ~_
cv

The Est term represents the decrease in the chemical energy within the battery. The conversion of
chemical energy to electrical energy and its subsequent conversion to thermal energy are processes
internal to the system which are not associated ®ighor Eg. The Eqy; term is due to convection

from the resistor surface to the air.

(b) From the energy balance on the resistor with volliire (MD%/4)L,
Ey =0 144 W= 'c(n( 0.06 ) /}x 025m g 284 20 Win <
(c) From the energy balance on the resistor and Newton's law of coolingamithDA. + 2(rD?%/4),
Eout = dev = As(Ts Too)

144 W= héTx 0.06mx 0.25m @Tx 0.66 % )g 95 P5 C

144W= 1 0.047% 00097 fi{ 95 ¥5 C
h=39.0W nfK <

COMMENTS: (1) In using the conservation of energy requirement, Eq. 1.11a, it is important to
recognize thakjn, and Eqy¢ will always represersurfaceprocesses ankg and Egt, volumetric
processes. The generation teEg is associated with @onversiorprocess from some form of
energy tahermal energy The storage terrﬁ_:st represents the rate of changendérnal energy

(2) From Table 1.1 and the magnitude of the convection coefficient determined from part (c), we
conclude that the resistor is experiencing forced, rather than free, convection.



PROBLEM 1.35

KNOWN: Thickness and initial temperature of an aluminum plate whose thermal environment is
changed.

FIND: (a) Initial rate of temperature change, (b) Steady-state temperature of plate, (c) Effect of
emissivity and absorptivity on steady-state temperature.

SCHEMATIC:
E

Teo=20°C — % Qconv Gg =900 W/m?
h=20 Wim2.K — f 1/
_____ /__ ¥ _ _— Special coating

Al plate : =
p = 2700 kg/m3 Eq |L=4 mm> o5 = 0.80
¢ =900 J/kg K S T P £=025
Initial temperature, T; =25 °C
ASSUMPTIONS: (1) Negligible end effects, (2) Uniform plate temperature at any instant, (3)

Constant properties, (4) Adiabatic bottom surface, (5) Negligible radiation from surroundings, (6) No
internal heat generation.

ANALYSIS: (a) Applying an energy balance, Eqg. 1.11a, at an instant of time to a control volume
about the plateEj, — Eqt = Est, it follows for a unit surface area.

aSGS(lmz)— E(ln?)— Qonv( 1n?)=( A dr( MCT:p( 11fix ) € dT Ot

Rearranging and substituting from Eqgs. 1.3 and 1.5, we obtain

dT/dt=(¥pLc) lrsCs-ea T - (- T,)B
dT/dt=(2700kg/ mx 0.004m 900J I@])le
.8x900W nf- 025 567 1¥ W A0 K 208R- 20fv fm (< 25 Yo o

dT/dt=0.052 ¢ s <
(b) Under steady-state conditiortg, = 0, and the energy balance reduces to
asGg=e0T +h(T-T,) (2)
0.8x900W nf = 025 56% 10 W A0 kx + 20fv A0 K T 203K
The solution yields T = 321.4 K = 48@. <

(c) Using the IHTFirst Law Modelfor anlsothermal Plane Wallparametric calculations yield the
following results.

70

60

g
=
g
©
g 50
g
5 \\ |
o 40
= —
\ —
20 — | —><—_|
I

20

0 0.2 0.4 0.6 0.8 1

Coating emissivity, eps

Solar absorptivity, alphaS = 1
—><— alphaS = 0.8
—<S— alphaS=05

COMMENTS: The surface radiative properties have a significant effect on the plate temperature,
which decreases with increasiagnd decreasings. If a low temperature is desired, the plate

coating should be characterized by a large valwgogf The temperature also decreases with
increasing h.



PROBLEM 1.36

KNOWN: Surface area of electronic package and power dissipation by the electronics.
Surface emissivity and absorptivity to solar radiation. Solar flux.

FIND: Surface temperature without and with incident solar radiation.

SCHEMATIC:
9;=750W/’"2 Surface, Ag=1m?%
Q. £=1.0, xg= 0.25

Electronics, P-1kW

ASSUMPTIONS: Steady-state conditions.

ANALYSIS: Applying conservation of energy to a control surface about the compartment, at
any instant

Ein - Eow TEq = 0.
It follows that, with the solar input,

asAsgs—AsE +P=0

asAgas - AssaTSA' +P=0

/14
Ly '+PD1
To= SAsUS*PS
0 Ast0 [
In the shade (g5 =0),
4
O 1000 W g
TIs=0— g5 40 364K <
(Il m<x1x5.67 %10 ° W/m< K™
In the sun,
/14
2 2 7
Tszgo.zsxlm X750 Wim” +1000Wd _ .o <

H1 m? x1x5.67x10~8 wim? &4 [

COMMENTS: In orhit, the space station would be continuously cycling between shade and
sunshine, and a steady-state condition would not exist.



PROBLEM 1.37

KNOWN: Daily hot water consumption for a family of four and temperatures associated with ground
water and water storage tank. Unit cost of electric power. Heat pump COP.

FIND: Annual heating requirement and costs associated with using electric resistance heating or a
heat pump.

SCHEMATIC: e
i —— .,
Water, T,=15°C
| r" i

Tr=850C V=100 gal
Elactric heater ar |
heat pump, |
coP=13 A

ASSUMPTIONS: (1) Process may be modelled as one involving heat addition in a closed system,
(2) Properties of water are constant.

1

PROPERTIES: Table A-6, Water Taye = 308 K): p = v~ = 993 kg/fl, ¢ t = 4.178 kI/KE.

ANALYSIS: From Eq. 1.11c, the daily heating requiremer@g;a”y =AUt = McAT
= pVe(T; = T; ). With V = 100 gal/264.17 galfte 0.379

Quaily = 993kg/ rr?’( 0.379 rﬁ) 4.178kJ/Kgy (K 210)@ 62,900kJ

The annual heating requirement is th@ynnua/= 365day$ 62,900kJ/dyy  2.80 10 lat,
with 1 kwWh = 1 kJ/s (3600 s) = 3600 kJ,

Qannual= 6380kWh <

With electric resistance heatin@snnual= @ elec@nd the associated cost, C, is

C = 6380kwWH $0.08/kWh=$510 <
If a heat pump is use@annua= COP( Weleg - Hence,

Welec=Q annud( COP) = 6380kWH/ = 2130kWh
The corresponding cost is

C = 2130kWH $0.08/kWh=$170 <
COMMENTS: Although annual operating costs are significantly lower for a heat pump,

corresponding capital costs are much higher. The feasibility of this approach depends on other factors
such as geography and seasonal variations in COP, as well as the time value of money.



PROBLEM 1.38

KNOWN: Initial temperature of water and tank volume. Power dissipation, emissivity,
length and diameter of submerged heaters. Expressions for convection coefficient associated
with natural convection in water and air.

FIND: (a) Time to raise temperature of water to prescribed value, (b) Heater temperature
shortly after activation and at conclusion of process, (c) Heater temperature if activated in air.

SCHEMATIC:

Water
Ti=295K
T;=335K

Heater —_— |
L =250 mm

D =25 mm
C]1=500W

ASSUMPTIONS: (1) Negligible heat loss from tank to surroundings, (2) Wateels

mixed(at a uniform, but time varying temperature) during heating, (3) Negligible changes in
thermal energy storage for heaters, (4) Constant properties, (5) Surroundings afforded by tank
wall are large relative to heaters.

ANALYSIS: (a) Application of conservation of energy to a closed system (the water) at an
instant, Eq. (1.11d), yields

du dT dT
—=Mc—=plJc—=0=3
d ot Pt A
o= (pcisq) (o o
Hence, Io t=(p0c/3q) I‘I’i T

990 kg/nm x 10ga(| 3.79 10° fh /g)al 4180JMRg K
t= (335- 299 K= 4180s <

3x500 W
(b) From Eq. (1.3a), the heat rate by convection from each heater is
o1 = Ad = Ah(Ts-T) = (7DL)370( Te- T)*/3
Hence,
/4 /4
O
Te=T+E— 0L =T+0 S00 W 0 =(T+24)K

70mDLH B70 Winf OK¥3x rx 0.025 mx 0.250 i

With water temperatures of ¥ 295 K and T = 335 K shortly after the start of heating and at
the end of heating, respectively,

Tsi=319K T f=359 K <

Continued .....



PROBLEM 1.38 (Continued)

(c) From Eg. (1.10), the heat rate in air is
qq = DL g).?o(Ts— 1;0)4/3+50(Tg'— Téuaé

Substituting the prescribed values gf B, L, To = Tgyrande, an iterative solution yields
Ts=830K <

COMMENTS: In part (c) it is presumed that the heater can be operated&3D K
without experiencing burnout. The much larger valuedbi air is due to the smaller

convection coefficient. However, withghyand qagequal to 59 W and 441 W, respectively,
a significant portion of the heat dissipation is effected by radiation.



PROBLEM 1.39

KNOWN: Power consumption, diameter, and inlet and discharge temperatures of a hair
dryer.

FIND: (a) Volumetric flow rate and discharge velocity of heated air, (b) Heat loss from case.
SCHEMATIC:

M%Mmm T = 20°C
\ h =4 W/m2-K
% Teur = 20°C drad  oon To=40°C,£=0.8
/ D =70 mm

r———————— = = = = = = — — _ .

' Air ¥V, T;=20°C

Vo, To= 45°C <— L doimm o [ g APV )
| p =1.10 kg/m

cp = 1007 J/kg-K

|<—L=150mm/ —

Pejec = 500 W

ASSUMPTIONS: (1) Steady-state, (2) Constant air properties, (3) Negligible potential and
kinetic energy changes of air flow, (4) Negligible work done by fan, (5) Negligible heat
transfer from casing of dryer to ambient air (Part (a)), (6) Radiation exchange between a small
surface and a large enclosure (Part (b)).

ANALYSIS: (a) For a control surface about the air flow passage through the dryer,
conservation of energy for an open system reduces to

m(u+pv) - m(u+ py, + = 0
where u + pv =i and q =R Hence, withm(ii ‘io) :mcp (Ti ‘To)1
mcp (To— Ti) = Relec
. _  Pelec  _ 500 W
m= -
cp(To=Ti) 1007 J/kgjk( 08

C): 0.0199 kg/s

(=M _0.0199KIfS 5 h1g81 1 /s <
P 1.10 kg/n¥
Vo=l o 40 _4x00181m /s, o <

Ac 2  1(0.07 m)?
(b) Heat transfer from the casing is by convection and radiation, and from Eq. (1.10)

= hAg(Ts— T ) +€A g(T‘é—T“SU)
Continued .....



PROBLEM 1.39 (Continued)

where Ag=nDL =(0.07 mx 0.15 m)= 0.033 f1 Hence,

q=4W/mZEK(0.033 n‘?)( 20 <}+ 08 0.033fx 587 19 Wh 4(< Az f);g 4

q=2.64 W+ 3.33W= 597 W <

The heat loss is much less than the electrical power, and the assumption of negligible heat loss
is justified.

COMMENTS: Although the mass flow rate is invariant, the volumetric flow rate increases

as the air is heated in its passage through the dryer, causing a reduction in the density.
However, for the prescribed temperature rise, the chareaimd hence the effect dn is

small.



PROBLEM 1.40

KNOWN: Speed, width, thickness and initial and final temperatures of 304 stainless steel in an
annealing process. Dimensions of annealing oven and temperature, emissivity and convection
coefficient of surfaces exposed to ambient air and large surroundings of equivalent temperatures.
Thickness of pad on which oven rests and pad surface temperatures.

FIND: Oven operating power.
SCHEMATIC:

=300 K
_lh- 10 W/m2-K

Oven Felec Ts=350K
L, —25m7;>|
__ ___ o0 T __ 7 $=08

: St. St. 304

0.008 m

t.=0.5m Concrete

ASSUMPTIONS: (1) steady-state, (2) Constant properties, (3) Negligible changes in kinetic and
potential energy.

PROPERTIES: Table A.1, St.St304T = (Tj + T, )2=775K): p = 7900 kg/r ¢, = 578
J/kgK; Table A.3, Concrete, T = 300 Kk, = 1.4 W/niK.

ANALYSIS: The rate of energy addition to the oven must balance the rate of energy transfer to the

steel sheet and the rate of heat loss from the oven. E}/ri,th Eout— = 0, it follows that

Pelec* M( Ui~ Uo)— = O
where heat is transferred from the oven. Withe pVs(Wg o), (Uj = U )= G (T - Tp). and
q=(2Hy Lo+ 2HoWp+ Wl ) X %(Ts‘ To)+e Q(T45‘ T4SL)I% +ke (Wol o)(Ts—T )t o

it follows that

Pelec=PV(W§ §C fT o T)+(2H & g2H W 5 W b )k
(s To) e (T4-Th)Trk gw b YT 5T B
Pelec= 7900kg/nix 0.01mfs 2m 0.008m 578Jkg( K 1250 00 K
+(2x2mx 25m+ X 2nx 2.4m 2.4m 25m [10WAE (K 350 300 K
+0.8x 5.67 10° W/n%DK‘( 350- 306) K4 1.4wm K 2.4m 25@ 350 300 K/0.5m

Continued.....



PROBLEM 1.40 (Cont.)
Pojec= 694,000W+ 169.6M( 500 3)3 Wm  8400W
=(694,000+ 84,808 53,100 84P0 W 840kW <

COMMENTS: Of the total energy input, 83% is transferred to the steel while approximately 10%,
6% and 1% are lost by convection, radiation and conduction from the oven. The convection and
radiation losses can both be reduced by adding insulation to the side and top surfaces, which would
reduce the corresponding valueTof



PROBLEM 1.1

KNOWN: Heat rate, q, through one-dimensional wall of area A, thickness L, thermal
conductivity k and inner temperature, T

FIND: The outer temperature of the walh. T

SCHEMATIC:
A = 10m*
k=02 W/m-K-
9 cond ~ 3kW
T,=415°C
T.

L =2.5cm —F=

> X

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions,
(3) Constant properties.

ANALYSIS: The rate equation for conduction through the wall is given by Fourier’s law,

Ueong = Ax = m--k&m_ kAT'
Solving for T> gives
Acongl
T, =T,——<cond_
2 1 KA
Substituting numerical values, find
T, _415C- 3000Wx 0.025m
0.2W/ mKx 10nt
T, = 415C-375C
T, =378 C. <

COMMENTS: Note direction of heat flow and fact thag must be less thamT



PROBLEM 1.2
KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.

FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from
-15 to 38C.

SCHEMATIC:
A =20 m2
k=1,0.75 or 1.25 W/m-K
T1 =250C
To =-15t0 38 °C
T(x)
»L k=L =0.30m
X

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3)
Constant properties, (4) Outside wall temperature is that of the ambient air.

ANALYSIS: From Fourier’s law, it is evident that the gradiedif/dx = — d / Kk, is a constant, and

hence the temperature distribution is lineaqyf and k are each constant. The heat flux must be
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends
only weakly on temperature. The heat flux and heat rate when the outside wall temperatard 80

are

25 C-(-15

" (j-l- -]EL - -]-22 ( (:;

= —k— =k—+—=% =1W/mK =133.3W 7. 1
= L / 0.30m W (1)
Oy = Oy xA=133.3W nfx 20 = 2667W @<

Combining Egs. (1) and (2), the heat ratean be determined for the range of ambient temperature, -15
< T, < 38C, with different wall thermal conductivities, k.

3500

2500

1500

Heat loss, gx (W)

500

-500

-1500

-20 -10 0 10 20 30 40

Ambient air temperature, T2 (C)

- X - Wall thermal conductivity, k = 1.25 W/m.K
k =1 W/m.K, concrete wall
—©— k=0.75W/mK

For the concrete wall, k = 1 WIKy the heat loss varies linearily from +2667 W to -867 W and is zero
when the inside and ambient temperatures are the same. The magnitude of the heat rate increases with
increasing thermal conductivity.

COMMENTS: Without steady-state conditions and constant k, the temperature distribution in a plane
wall would not be linear.



PROBLEM 1.3

KNOWN: Dimensions, thermal conductivity and surface temperatures of a concrete slab. Efficiency
of gas furnace and cost of natural gas.

FIND: Daily cost of heat loss.

SCHEMATIC:
Va Furnace, ns = 0.90
Natural gas, '
Cg = $0.01/MJ Warm air Concrete, k = 1.4 W/m-K
— 7 ¢
4
T,I =17°C )/
— | -
q t=02m
W=8m
CK_—/ L=t1m —H
To =10°

ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties.
ANALYSIS: The rate of heat loss by conduction through the slab is

T-To 7°C <

= 4312 W
0.20m

q=k(LW) =1.4W/mK(11mx 8nm)

The daily cost of natural gas that must be combusted to compensate for the heat loss is

Cy= qCqg (80)= 4312 Wx $0.01/M

N 0.9x1F J/MJ

COMMENTS: The loss could be reduced by installing a floor covering with a layer of insulation
between it and the concrete.

{24h/ax 3600s/h= $4.14/d <




PROBLEM 1.4

KNOWN: Heat flux and surface temperatures associated with awood slab of prescribed
thickness.

FIND: Thermal conductivity, k, of the wood.

SCHEMATIC:
TA
T =20°C g’;=4oW/mz
Ti) T .20°C
N >— [ =005m

ASSUMPTIONS: (1) One-dimensiona conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: Subject to the foregoing assumptions, the thermal conductivity may be
determined from Fourier’s law, Eqg. 1.2. Rearranging,

L _ 0 w 0.05m

-T2 m? (a020)°C

k=0

k=010 W/ m[K. <

COMMENTS: Note that the °C or K temperature units may be used interchangeably when
evaluating a temperature difference.



PROBLEM 15
KNOWN: Inner and outer surface temperatures of a glass window of prescribed dimensions.

FIND: Heat loss through window.

SCHEMATIC:
T'T‘ A=1mx 3m = 3m?,
T=15°C k=14 W/m K
L,=5°C
—»ka— L= 0.005m

ASSUMPTIONS: (1) One-dimensiona conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: Subject to the foregoing conditions the heat flux may be computed from
Fourier'slaw, Eq. 1.2.

-T2
L
15-5)° C
gy =1.4 W (155)
m K .005m
gx =2800 W/m*-.

ax =k

Since the heat flux is uniform over the surface, the heat loss (rate) is

q = gqx XA
q = 2800W/m? x 3m?
q = 8400 W. <

COMMENTS: A linear temperature distribution existsin the glass for the prescribed
conditions.



PROBLEM 1.6

KNOWN: Width, height, thickness and thermal conductivity of a single pane window and
the air space of a double pane window. Representative winter surface temperatures of single
pane and air space.

FIND: Heat loss through single and double pane windows.

SCHEMATIC:
- k- L=5mm -3 k= L=10mm
T,=15C _ [ 7]  T.=-20C N I
NV T,=10°C ~| | T.=-15C
[~ |/
Glass pane ~1, Air space °
kg = 1.4 W/m-K ks = 0.024 W/m-K
W=1mH=2m W=1m,H=2m
o (N
[~
[ Glass . Glass

ASSUMPTIONS: (1) One-dimensional conduction through glass or air, (2) Steady-state
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced
motion).

ANALYSIS: From Fourier's law, the heat losses are

Single Pane qg = kgA Tl;TZ =1.4 W/mDK(Zn?)OBSOSCr:nz 19,600 W
Double Pane gg = kgAL 12 = 0.024( 2n12) 2 C _ 0w
L 0.010 m

COMMENTS: Losses associated with a single pane are unacceptable and would remain
excessive, even if the thickness of the glass were doubled to match that of the air space. The
principal advantage of the double pane construction resides with the low thermal conductivity
of air (~ 60 times smaller than that of glass). For a fixed ambient outside air temperature, use
of the double pane construction would also increase the surface temperature of the glass
exposed to the room (inside) air.



PROBLEM 1.7
KNOWN: Dimensions of freezer compartment. Inner and outer surface temperatures.

FIND: Thickness of styrofoam insulation needed to maintain heat |oad below prescribed
value.

SCHEMATIC:
AT
{ 2 m=W
Styrofoam ~l— A _
k=0.03W/mK 4 =500W

ASSUMPTIONS: (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5
wallsof area A = 4m2, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS: Using Fourier'slaw, EQ. 1.2, the heat rateis

Solving for L and recognizing that Aigtg = 5><W2, find

L = 5k AT W?
q
° 2
5 x 0.03W/mK EB5- (-10)H C (4m
L=
500 W
L = 0.054m = 54mm, <

COMMENTS: The cornerswill cause local departures from one-dimensional conduction
and adlightly larger heat loss.



PROBLEM 1.8

KNOWN: Dimensions and thermal conductivity of food/beverage container. Inner and outer
surface temperatures.

FIND: Heat flux through container wall and total heat load.
SCHEMATIC:

:
- > AN

Wz=0.6m Ti=20C Ty = 20°C

Styrofoam

(k=0.023 W/m-K) ——f«— L=0.025m

k—W;=08m 4\(

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer through bottom
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining
walls.

ANALYSIS: From Fourier’s law, Eq. 1.2, the heat flux is

- 0.023 W/niIK( 26- X C
g =k12- 1= (203 C 06w <
L 0.025 m

Since the flux is uniform over each of the five walls through which heat is transferred, the
heat load is

q=d"x Atotal = o BH(2Wi+ 2Wp) + Wyx W

q=16.6 W/nf J0.6nf 1.6m 1.2Jn( 0.8m 0.§F 359 W <

COMMENTS: The corners and edges of the container create local departures from one-

dimensional conduction, which increase the heat load. However, fo HIW\/S> L, the
effect is negligible.



PROBLEM 1.9

KNOWN: Masonry wall of known thermal conductivity has a heat rate which is 80% of that
through a composite wall of prescribed thermal conductivity and thickness.

FIND: Thickness of masonry wall.

SCHEMATIC:
k=075 Wim-K ko = 0.25 Wia-K
9, 9,
Masonry wall (1) Composi‘fe wall (2.)

ASSUMPTIONS: (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS: For steady-state conditions, the conduction heat flux through a one-dimensional
wall follows from Fourier’s law, Eq. 1.2,

whereAT represents the difference in surface temperatures. Sinisethe same for both
walls, it follows that

With the heat fluxes related as
= 08¢

0.75W/niK = 1 _ o <

L, = 100mm—————— 1

0.25 W/ nIK 0.8
COMMENTS: Not knowing the temperature difference across the walls, we cannot find the
value of the heat rate.



PROBLEM 1.10

KNOWN: Thickness, diameter and inner surface temperature of bottom of pan used to boil
water. Rate of heat transfer to the pan.

FIND: Outer surface temperature of pan for an aluminum and a copper bottom.
SCHEMATIC:

T, = 110°C

b
0
o
0o
O
0
0

Aluminum

(k=240 W/m-K) k— D=200mm T, —

Dwmo T TTTTHT T amconm

ASSUMPTIONS: (1) One-dimensional, steady-state conduction through bottom of pan.

ANALYSIS: From Fourier’s law, the rate of heat transfer by conduction through the bottom
of the pan is

q:kA—Tl_T2
L
Hence,
gL
T1=To+—
1=12 KA

where A =nD2/4 = (0.2m)? /4= 0.0314 1 .

600W/( 0.005 n)

Aluminum Ty =110°C+ =110.40 C
240 W/mDK( 0.0314 r%)
. 600W( 0.005 )
Copper T1=110° C+ =110.25 C
390 W/mDK( 0.0314 )

COMMENTS: Although the temperature drop across the bottom is slightly larger for
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for
both materials. To a good approximation, the bottom may be consisetieeirmalat T=

110°C, which is a desirable feature of pots and pans.



PROBLEM 1.11
KNOWN: Dimensions and thermal conductivity of achip. Power dissipated on one surface.
FIND: Temperature drop across the chip.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat
dissipation, (4) Negligible heat |oss from back and sides, (5) One-dimensional conductionin
chip.

ANALYSIS: All of the electrical power dissipated at the back surface of the chipis
transferred by conduction through the chip. Hence, from Fourier’s law,

P=qg=KkA ATT
or
AT = tEIP2: 0.001 mx4 W ,
kW< 150 W/mK (0.005 m)
AT = 1.1 C. <

COMMENTS: For fixed P, the temperature drop across the chip decreases with increasing k
and W, aswell aswith decreasing t.



PROBLEM 1.12

KNOWN: Heat flux gage with thin-film thermocouples on upper and lower surfaces; output
voltage, calibration constant, thickness and thermal conductivity of gage.

FIND: (a) Heat flux, (b) Precaution when sandwiching gage between two materials.
SCHEMATIC:

G'age bonded
$20.25 9" AE=350 /u‘v' between laminates
=u. 777
Gage, k=14 Wfm-K

& pair type-K TC
Jjunctions,Syg= 40,4[\/_/0C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat conduction in gage,
(3) Constant properties.

ANALYSIS: (a) Fourier’s law applied to the gage can be written as

AT
n = k _
g AX

and the gradient can be expressed as

AT _ AE/N

& Sagt

where N is the number of differentially connected thermocouple junctigpsisShe Seebeck

coefficient for type K thermocouples (A-chromel and B-alumel),nd t is the gage
thickness. Hence,

kAE
NSapt

" —

6
g = LAWIMKX 350 1PV genn 2 <

 5x40x 10°% V/°Cx0.25x 103 m

(b) The major precaution to be taken with this type of gage is to match its thermal
conductivity with that of the material on which it is installed. If the gage is bonded
between laminates (see sketch above) and its thermal conductivity is significantly different
from that of the laminates, one dimensional heat flow will be disturbed and the gage will
read incorrectly.

COMMENTS: If the thermal conductivity of the gage is lower than that of the laminates,
will it indicate heat fluxes that are systematically high or low?



PROBLEM 1.13
KNOWN: Hand experiencing convection heat transfer with moving air and water.

FIND: Determine which condition feels colder. Contrast these results with a heat loss of 30rdém
normal room conditions.

SCHEMATIC:

Too= 10 °C q"
V'=02m/s / cv
h =900 W/m2-K

- Hand

T4=30°C
Too= -5 °C
V= 35 km/h
h = 40 W/m2-K

ASSUMPTIONS: (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case
of air flow.

ANALYSIS: The hand will feel colder for the condition which results in the larger heat loss. The heat
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as

q'=h(Ts- Te)
For the air stream:

i = 40W/ n? CKEB0- (- §F K= 1,400\ 1 <
For the water stream:

Gvater= 900W/ nf [K(30- 10 K= 18,000\ rh <

COMMENTS: The heat loss for the hand in the water stream is an order of magnitude larger than when
in the air stream for the given temperature and convection coefficient conditions. In contrast, the heat
loss in a normal room environment is only 30 \iAmhich is a factor of 400 times less than the loss in

the air stream. In the room environment, the hand would feel comfortable; in the air and water streams,
as you probably know from experience, the hand would feel uncomfortably cold since the heat loss is
excessively high.



PROBLEM 1.14

KNOWN: Power required to maintain the surface temperature of a long, 25-mm diameter cylinder
with an imbedded electrical heater for different air velocities.

FIND: (a) Determine the convection coefficient for each of the air velocity conditions and display
the results graphically, and (b) Assuming that the convection coefficient depends upon air velocity as
h = CV', determine the parameters C and n.

SCHEMATIC:

Ts =300 °C V(m/s) 1 2 4 8 12
P, (W/m)

450 658 983 1507 1963
g h(W/infK) 22.0 322 481 738 96.1

V, Too= 40 °C

Pe
ASSUMPTIONS: (1) Temperature is uniform over the cylinder surface, (2) Negligible radiation
exchange between the cylinder surface and the surroundings, (3) Steady-state conditions.

ANALYSIS: (a) From an overall energy balance on the cylinder, the power dissipated by the
electrical heater is transferred by convection to the air stream. Using Newtons law of cooling on a per
unit length basis,

Fe = h(rD)(Ts~ T

where P, is the electrical power dissipated per unit length of the cylinder. For the V =1 m/s
condition, using the data from the table above, find

h=450W m/mrx 0.025rf 300 40 € 22.0{v3m K <
Repeating the calculations, find the convection coefficients for the remaining conditions which are
tabulated above and plotted below. Note that h is not linear with respect to the air velocity.

(b) To determine the (C,n) parameters, we plotted h vs. V on log-log coordinates. Choosing C =
22.12 W/MIK(s/m)", assuring a match at V = 1, we can readily find the exponent n from the slope of
the hvs. V curve. From the trials with n = 0.8, 0.6 and 0.5, we recognize that n = 0.6 is a reasonable

choice. Hence, C =22.12 and n = 0.6. <
< 100 100
o -~ 80 e
£ 80 < 60 =
= < %
E 60 /‘, £ 40
o )y z /
% ey
ks 40 =
5 ki 20
3 20 7—( %
0 2 4 6 8 10 12 8 10

=

Air velocity, V (m/s) 2 4 6 8 10

) Air velocity, V (m/s)
—&— Data, smooth curve, 5-points



PROBLEM 1.15
KNOWN: Long, 30mm-diameter cylinder with embedded electrical heater; power required
to maintain a specified surface temperature for water and air flows.

FIND: Convection coefficients for the water and air flow convection processes, hy, and h,
respectively.

SCHEMATIC:
T.=90°C D=30mm TL.=90°C
— —
Water | — Air >
. 7;:25°C :>[ Tw=25oc >
_ —>

- ' w
Viy=1m/a Va=tomp Ta=7002

q,-28 KW

ASSUMPTIONS: (1) Flow iscross-wise over cylinder which isvery long in the direction
normal to flow.

ANALYSIS: The convection heat rate from the cylinder per unit length of the cylinder has
the form

g =h(mD) (Ts—Tw)
and solving for the heat transfer convection coefficient, find

I

_ q
D (Ts-Too)’

Substituting numerical values for the water and air situations:

3
Water hy = — 20 107 W/m _ =4,570 W/m? K <
7T x 0.030m (90-25)° C
Air hg = 400 Wim = 65 W/m? K. <

7T x 0.030m (90-25)° C
COMMENTS: Notethat theair velocity is 10 times that of the water flow, yet
hy = 70 x hg

These values for the convection coefficient are typical for forced convection heat transfer with
liquids and gases. See Table 1.1.



PROBLEM 1.16

KNOWN: Dimensions of acartridge heater. Heater power. Convection coefficientsin air
and water at a prescribed temperature.

FIND: Heater surface temperaturesin water and air.

SCHEMATIC:

K T. -20°C h:5000W/m2'/< (water)
R\ o {b=50 Wm2-K (air)

ASSUMPTIONS: (1) Steady-state conditions, (2) All of the electrical power istransferred
to the fluid by convection, (3) Negligible heat transfer from ends.

ANALYSIS: With P = gggny, Newton's law of cooling yields

P=hA (T —Teo ) =hmDL (Ts ~Teo )

Te=Top +——.
ST T hDL

In water,

2000 W

Ts=20C+ 5
5000 W/ m* [K x 71x0.02 m x0.200 m

T,=20°C+318°C=518'C. <
Inair,

2000 W

Ts=20C+ 5
50 W/ m[K x 1x0.02 mx0.200 m

T,=20"C+3183'C=3203"C. <

COMMENTS: (1) Airismuch less effective than water as a heat transfer fluid. Hence, the
cartridge temperature is much higher in air, so high, in fact, that the cartridge would melt.

(2) Inair, the high cartridge temperature would render radiation significant.



PROBLEM 1.17

KNOWN: Length, diameter and calibration of a hot wire anemometer. Temperature of air
stream. Current, voltage drop and surface temperature of wire for a particular application.

FIND: Air velocity
SCHEMATIC:

weeme \

Hot wire (V ~ h2)
L=20mm, D =0.5mm
E=5V,1=100 mA

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer from the wire by
natural convection or radiation.

ANALYSIS: If all of the electric energy is transferred by convection to the air, the following
equality must be satisfied

Polec= El= hA(Ts Too)

where A =7DL =77(0.0005mx 0.02r)= 3.14 10 fn .

Hence,
h=— Bl _ SVx0.1A =318 Winf 0K
A(Ts~To) 3.14x 1070 n?( 50 c)
_5 5 2
V =6.25x107° P = 6.2% 10 ( 318 W/ )< = 6.3mls <

COMMENTS: The convection coefficient is sufficiently large to render buoyancy (natural
convection) and radiation effects negligible.



PROBLEM 1.18
KNOWN: Chip width and maximum allowable temperature. Coolant conditions.
FIND: Maximum allowable chip power for air and liquid coolants.
SCHEMATIC:

Tp=15°C —»

—>

Air, h=200W/m*-K
Dielectric fluid, : /,
h=3000W/m2-K  ‘--------=

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer from sides and
bottom, (3) Chip is at a uniform temperature (isothermal), (4) Negligible heat transfer by
radiation in air.

ANALYSIS: All of the electrical power dissipated in the chip is transferred by convection to
the coolant. Hence,

P=q
and from Newton’s law of cooling,

P = hA(T - Too) = h WAT - Too).
In air,

Prax = 200 W/nfIK(0.005 mf(85 - 15)° C = 0.35 W. <
In thedielectric liquid

Pax = 3000 W/nfTK(0.005 m¥(85-15)° C = 5.25 W. <

COMMENTS: Relative to liquids, air is a poor heat transfer fluid. Hence, in air the chip can
dissipate far less energy than in the dielectric liquid.



PROBLEM 1.19

KNOWN: Length, diameter and maximum allowable surface temperature of a power
transistor. Temperature and convection coefficient for air cooling.

FIND: Maximum allowable power dissipation.

SCHEMATIC:
Qeonv Ts = 85°C

K— —3>— D=12mm

T = 25°C —>
h =100 W/m%-K —% ~
p L=10 mm

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer through base of
transistor, (3) Negligible heat transfer by radiation from surface of transistor.

ANALYSIS: Subject to the foregoing assumptions, the power dissipated by the transistor is
equivalent to the rate at which heat is transferred by convection to the air. Hence,

Pelec= dconv= hA(Ts Too )
where A:n(DL +D2/4):n§).012mx 0.01m ( 0.012)F /%: 490 16 m .

For a maximum allowable surface temperature 6€8%he power is

Pelec= 100 W/nf DK( 4.96 10% rﬁ) (85 25 € 294w <

COMMENTS: (1) For the prescribed surface temperature and convection coefficient,
radiation will be negligible relative to convection. However, conduction through the base
could be significant, thereby permitting operation at a larger power.

(2) Thelocal convection coefficient varies over the surface, lamidspotscould exist if there
are locations at which the local valuenas substantially smaller than the prescribed average
value.



PROBLEM 1.20
KNOWN: Air jet impingement is an effective means of cooling logic chips.
FIND: Procedure for measuring convection coefficients associated with a 20l@imm chip.
SCHEMATIC:

(a) @ (b)
Jet, T,
l q

Chip, Tx, conv Jet, T, )
9elec g;)é M _eony plrad

Se—— Copper, Tg, Gcon

;qcond Substrate S

Substrate Heater, Insulation
delec

ASSUMPTIONS: Steady-state conditions.

ANALYSIS: One approach would be to use the actual chip-substrate system, Case (a), to perform the
measurements. In this case, the electric power dissipated in the chip would be transferred from the chip
by radiation and conduction (to the substrate), as well as by convection to the jet. An energy balance for

the Ch|p y|9|dsqe|ecz qconv+ q CondF q rad Hence, Withqcon\/: hA(TS_ Too) y Whel’e A= 100
mnT is the surface area of the chip,

h = Jelec” 9cond” 9 rad )
A(Ts—Te)

While the electric powerdg o) and the jet ) and surfaceTg) temperatures may be measured, losses
from the chip by conduction and radiation would have to be estimated. Unless the losses are negligible

(an unlikely condition), the accuracy of the procedure could be compromised by uncertainties associated
with determining the conduction and radiation losses.

A second approach, Case (b), could involve fabrication of a heater assembly for which the
conduction and radiation losses are controlled and minimized. A 18 b@mm copper block (k ~ 400
W/mIK) could be inserted in a poorly conducting substrate (k < 0.1[KY/amd a patch heater could be
applied to the back of the block and insulated from below. If conduction to both the substrate and
insulation could thereby be rendered negligible, heat would be transferred almost exclusively through the
block. If radiation were rendered negligible by applying a low emissivity coatind(1) to the surface
of the copper block, virtually all of the heat would be transferred by convection to the jet. Eigpge,
andq,,q may be neglected in equation (1), and the expression may be used to accurately determine h

from the known (A) and measuredgdes Ts, To) quantities.

COMMENTS: Since convection coefficients associated with gas flows are generally small, concurrent
heat transfer by radiation and/or conduction must often be considered. However, jet impingement is one
of the more effective means of transferring heat by convection and convection coefficients well in excess
of 100 W/nfK may be achieved.



PROBLEM 1.21

KNOWN: Upper temperature set point, T, Of abimetallic switch and convection heat
transfer coefficient between clothes dryer air and exposed surface of switch.

FIND: Electrical power for heater to maintain T When air temperature is T, = 50°C.

SCHEMATIC:

<Dryer wall

- S~ Tosulation pad
T AANNANANNAN ;
Y~—CLlectrical heater

T-50C ‘e —
h“;ZSW/mZK > jgc()nv 7;@/': 70°C, AS= 30mm=2

ASSUMPTIONS: (1) Steady-state conditions, (2) Electrical heater is perfectly insulated
from dryer wall, (3) Heater and switch are isothermal at T, (4) Negligible heat transfer from
sides of heater or switch, (5) Switch surface, Ag, loses heat only by convection.

ge/ec

ANALYSIS: Defineacontrol volume around the bimetallic switch which experiences heat
input from the heater and convection heat transfer to the dryer air. That is,

Ein - Eout =0
dalec - MAs(Tset —Too ) =0.
The electrical power required is,
delec = MAs(Tset ~Too )
_ 2 -6 2 (7_ _ <
Jelec =25 W/m“ [K x30x10™° m“ (70 -50)K=15 mW.

COMMENTS: (1) Thistype of controller can achieve variable operating air temperatures
with asingle set-point, inexpensive, bimetallic-thermostatic switch by adjusting power levels
to the heater.

(2) Will the heater power requirement increase or decrease if the insulation pad is other than
perfect?



PROBLEM 1.22

KNOWN: Hot vertical plate suspended in cool, till air. Changein plate temperature with time at
the instant when the plate temperature is 225°C.

FIND: Convection heat transfer coefficient for this condition.

SCHEMATIC:
dT
.r.

T.=225%C Tl) K =0022K]s
Air, A \
T,=25C
D,

late, 0.3x03m b 'flo
M=3.75kg, cp=2770 Jfkg-K

ASSUMPTIONS: (1) Plateisisothermal and of uniform temperature, (2) Negligible radiation
exchange with surroundings, (3) Negligible heat lost through suspension wires.

ANALYSIS: Asshown in the cooling curve above, the plate temperature decreases with time. The

condition of interest isfor timetg. For acontrol surface about the plate, the conservation of energy
requirement is

Ein - Eout = Est JT ,

-2hAg(Ts-Teo )=Mcp—

where Ag is the surface area of one side of the plate. Solving for h, find
he MCp d_T
2Ag(Ts—Teo ) dt

he 3.75kgx 2770 Jkg [K

- 5 x0.022 K/s=6.4 W/m? K <
2x(0.3x0.3)m* (225 -25)K

COMMENTS: (1) Assuming the plate is very highly polished with emissivity of 0.08, determine
whether radiation exchange with the surroundings at 25°C is negligible compared to convection.

(2) We will later consider the criterion for determining whether the isothermal plate assumption is
reasonable. If the thermal conductivity of the present plate were high (such as aluminum or copper),
the criterion would be satisfied.



PROBLEM 1.23

KNOWN: Width, input power and efficiency of a transmission. Temperature and convection
coefficient associated with air flow over the casing.

FIND: Surface temperature of casing.

SCHEMATIC:
T = 30°C
hi = 200 W/m2-K q
—
—
Po= nP;
— T
Pi =150 hp W=03m

L

ASSUMPTIONS: (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3)
Negligible radiation.

ANALYSIS: From Newton’s law of cooling,
q=hAg (T~ Teo ) = 6hW ( Ts— Too)

where the output power igP, and the heat rate is
q=R-R=P(tn)= 150hp 746W/hp 0.67 7833W

Hence,

9 __30rce 7833 W = 1028 C <

6 hw? 6x 200 W/ nf OKx( 0.3n)?

Tg=Te +

COMMENTS: There will, in fact, be considerable variability of the local convection coefficient
over the transmission case and the prescribed value represents an average over the surface.



PROBLEM 1.24

KNOWN: Air and wall temperatures of a room. Surface temperature, convection coefficient
and emissivity of a person in the room.

FIND: Basis for difference in comfort level between summer and winter.
SCHEMATIC:

Jeonv Orad

- / Tsur = 27°C (summer)

T =20°C Toyr = -14°C (winter
h = 2 W/m2-K sur ( )
Ts=32°C
€=0.9

ASSUMPTIONS: (1) Person may be approximated as a small object in a large enclosure.

ANALYSIS: Thermal comfort is linked to heat loss from the human body, ahdlied

feeling is associated with excessive heat loss. Because the temperature of the room air is
fixed, the different summer and winter comfort levels can not be attributed to convection heat
transfer from the body. In both cases, the heat flux is

Summer and Winter gisony = h(Ts= Teo ) = 2 W/nf OKx 12° C= 24 Wirfl

However, the heat flux due to radiation will differ, with values of

Summer  qpag=¢0 (Tg‘ - T@ur) = 0.9 5.6% 10° w/nfC K‘( 304- 306) K= 283 wifl

Winter. gl q = e0 (Tg - Téur) = 0.9 5.6% 10° W/nfD K‘( 304- 289) K= 95.4 wifl

There is a significant difference between winter and summer radiation fluxes, and the chilled
condition is attributable to the effect of the colder walls on radiation.
COMMENTS: For a representative surface area of A = 12.5the heat losses arggay =

36 W, Gad(summerf= 42.5 W and gd(winter)= 143.1 W. The winter time radiation loss is
significant and if maintained over a 24 h period would amount to 2,950 kcal.



PROBLEM 1.25

KNOWN: Diameter and emissivity of spherical interplanetary probe. Power dissipation
within probe.

FIND: Probe surface temperature.

SCHEMATIC:
Probe, T, £:08

/’937,,,,«- Radiation free
space

/:}=150W
N D=05m

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible radiation incident on the probe.

ANALYSIS: Conservation of energy dictates a balance between energy generation within the
probe and radiation emission from the probe surface. Hence, at any instant

'Eout + Eg =0

eAOTS =B

D1/4
/4
T - 150W ﬁl
J0.8m1(05m)?5.67x1078 W/m?2 K4

T, =254.7 K. <

COMMENTS: Incident radiation, as, for example, from the sun, would increase the surface
temperature.



PROBLEM 1.26

KNOWN: Spherical shaped instrumentation package with prescribed surface emissivity within a
large space-simulation chamber having walls at 77 K.

FIND: Acceptable power dissipation for operating the package surface temperature in the range T
40 to 85C. Show graphically the effect of emissivity variations for 0.2 and 0.3.

SCHEMATIC:
L\ N Chamber walls
_ T.=40to 85°C
Tsurr 77 K s 0

Electrical / Spherical package,
power dissipation, Pg D =100 mm, £ =0.25

ASSUMPTIONS: (1) Uniform surface temperature, (2) Chamber walls are large compared to the
spherical package, and (3) Steady-state conditions.

ANALYSIS: From an overall energy balance on the package, the internal power dissipatibn P
be transferred by radiation exchange between the package and the chamber walls. From Eq. 1.7,

- D — 4
Orad = Pe= 5A§(T45_ T su)
For the condition whenJE 40°C, with A = TD? the power dissipation will be

Pe=0.2mx 0100 5.6 10 W o & 40 25 72 de 43w <

Repeating this calculation for the range4T; < 85°C, we can obtain the power dissipation as a

function of surface temperature for the 0.25 condition. Similarly, with 0.2 or 0.3, the family of
curves shown below has been obtained.

10

g
e —
a 8
5 — |
g —
3 6 — // ] —
& L —
2 [ — [o—
é P L
—
2

40 50 60 70 80 90

Surface temperature, Ts (C)

—>¢— Surface emissivity, eps = 0.3
eps = 0.25

—— eps=0.2
COMMENTS: (1) As expected, the internal power dissipation increases with increasing emissivity
and surface temperature. Because the radiation rate equation is non-linear with respect to

temperature, the power dissipation will likewise not be linear with surface temperature.

(2) What is the maximum power dissipation that is possible if the surface temperature is not to exceed

85°C? What kind of a coating should be applied to the instrument package in order to approach this
limiting condition?



PROBLEM 1.27

KNOWN: Area, emissivity and temperature of a surface placed in alarge, evacuated
chamber of prescribed temperature.

FIND: (a) Rate of surface radiation emission, (b) Net rate of radiation exchange between
surface and chamber walls.

SCHEMATIC:

ASSUMPTIONS: (1) Areaof the enclosed surface is much less than that of chamber walls.
ANALYSIS: (a) From Eq. 1.5, the rate at which radiation is emitted by the surfaceis

Jemit =EA = €A 0TS

demit = 0.8(0.5 m2) 567 x 108 Wim? K4 ({150 + 273) K"

Ogmit = 726 W. <
(b) From Eg. 1.7, the net rate at which radiation is transferred from the surface to the chamber
wallsis

q=cA0o (Té—TSlA'Jr)

q= 0.8(0.5 m2) 5.67 x 108 wim? k* Haza )4 - (208K )45

q = 547 W. <

COMMENTS: Theforegoing result gives the net heat |oss from the surface which occurs at
the instant the surface is placed in the chamber. The surface would, of course, cool due to this
heat loss and its temperature, as well as the heat |oss, would decrease with increasing time.
Steady-state conditions would eventually be achieved when the temperature of the surface
reached that of the surroundings.



PROBLEM 1.28

KNOWN: Length, diameter, surface temperature and emissivity of steam line. Temperature

and convection coefficient associated with ambient air. Efficiency and fuel cost for gas fired
furnace.

FIND: (a) Rate of heat loss, (b) Annual cost of heat loss.

SCHEMATIC:
Tw=25C
“ h =10 W/m2-K
Tsur = 25°C \Ckonv /\

rad T, = 150°C, ¢
D =100 mm

o

’:::0
::::
G

o¥s

g
L
e e gt gt g
BIEEESEESS
g

L=25m

ASSUMPTIONS: (1) Steam line operates continuously throughout year, (2) Net radiation
transfer is between small surface (steam line) and large enclosure (plant walls).

ANALYSIS: (a) From Egs. (1.3a) and (1.7), the heat loss is
0= 0conv™ drad= AEW(TS‘ Tw)+50(T4$‘ T4$u)'§

where A =7DL =7(0.1mx 25m) = 7.8511 .

Hence,

q=7.85nf J10 Wi DK 150 25 k& 08 567 1§ whw 4{ 433 2%8 K

q=7.85nf (1,250 1,095 wifn=( 98%3 85P2 W 18,405 W <

(b) The annual energy loss is

E=qt=18,405 Wk 3600 s 24hid 365 dy 580110 J

With a furnace energy consumption®f = E/nf = 6.45¢ 161 Jthe annual cost of the loss
is

C=CyEf = 0.01$/MX 6.48 0 MJ  $6450 <

COMMENTS: The heat loss and related costs are unacceptable and should be reduced by
insulating the steam line.



PROBLEM 1.29

KNOWN: Exact and approximate expressions for the linearized radiation coeffigiant] h,,
respectively.

FIND: (a) Comparison of the coefficients wih= 0.05 and 0.9 and surface temperatures which may
exceed that of the surroundingsF 25°C) by 10 to 10€C; also comparison with a free convection
coefficient correlation, (b) Plot of the relative error{hJ)/h; as a function of the furnace temperature
associated with a workpiece at3 25 C havinge = 0.05, 0.2 or 0.9.

ASSUMPTIONS: (1) Furnace walls are large compared to the workpiece and (2) Steady-state
conditions.

ANALYSIS: (a) The linearized radiation coefficient, Eq. 1.9, follows from the radiation exchange
rate equation,

hy =eo (Ts+ Tsur)(T% + Tzsu)
If Ts= Tsu, the coefficient may be approximated by the simpler expression
hy a=4e0T T=(To+ Tsu)/2
For the condition of = 0.05, = T+ 10 =38C = 308 K and J,,= 25C = 298 K, find that

hy =0.05¢ 5.6% 10° W A0 K( 308 29% 308 zé’)s ¥ 032w k<
hy o= 4x0.05 5.6% 108 W MO K(( 308 298 )2 %= o032 fm k <

The free convection coefficient with, ¥ 35°C andT,, = Tg,,= 25°C, find that

h=09n /3= 09§ 7- )%= 0.96 308 2083 2.1lv T K <

For the range J- Ts, = 10 to 100C with € = 0.05 and 0.9, the results for the coefficients are
tabulated below. For this range of surface and surroundings temperatures, the radiation and free
convection coefficients are of comparable magnitude for moderate values of the emissitity, say
0.2. The approximate expression for the linearized radiation coefficient is valid within 2% for these
conditions.

(b) The above expressions for the radiation coefficiepemdhh, are used for the workpiece at=
25°C placed inside a furnace with walls which may vary from 100 to°ID0The relative error, {R
h.a)/h;, will be independent of the surface emissivity and is plotted as a functiqQp. oF®r Tgy, >
150°C, the approximate expression provides estimates which are in error more than 5%. The
approximate expression should be used with caution, and only for surface and surrounding
temperature differences of 50 to 200

30

Coefficients (W/rAK) —
TS (OC) € hr hr,a h

20

35 0.05 0.32 032 21
0.9 5.7 5.7

135 0.05 0.51 050 4.7
0.9 9.2 9.0

10

Relative error, (hr-hra)/hr*100 (%)

100 300 500 700 900

Surroundings temperature, Tsur (C)



PROBLEM 1.30

KNOWN: Chip width, temperature, and heat loss by convection in air. Chip emissivity and
temperature of large surroundings.

FIND: Increasein chip power due to radiation.

SCHEMATIC:

Chip, T=-358K, £:09

Tsyr=288K

ASSUMPTIONS: (1) Steady-state conditions, (2) Radiation exchange between small surface
and large enclosure.

ANALYSIS: Heat transfer from the chip due to net radiation exchange with the surroundings
is

Orag = W20 (T4 ; Téfjr)

Orag = 0.9(0.005 m)25.67x10™8 wim? K (3584 : 2884) K4

Orag = 0.0122W.

The percent increase in chip power is therefore

AP 100=9rad 100 =0012W 100 _35u <

COMMENTS: For the prescribed conditions, radiation effects are small. Relative to
convection, the effect of radiation would increase with increasing chip temperature and
decreasing convection coefficient.



PROBLEM 1.31

KNOWN: Width, surface emissivity and maximum allowable temperature of an electronic chip.
Temperature of air and surroundings. Convection coefficient.

FIND: (a) Maximum power dissipation for free convection with h(\%ﬂh) =4.2(T - Too)1/4, (b)

Maximum power dissipation for forced convection with h = 250 6Wm

SCHEMATIC:

| N2

Substrate
Qrad
Too = 25°C Chip, Pgjec
h = 4.2(TeTeo) Ts=85°C, £=0.60
or Qconv L=15mm
h = 250 W/m2-K

ASSUMPTIONS: (1) Steady-state conditions, (2) Radiation exchange between a small surface and a
large enclosure, (3) Negligible heat transfer from sides of chip or from back of chip by conduction
through the substrate.

ANALYSIS: Subiject to the foregoing assumptions, electric power dissipation by the chip must be
balanced by convection and radiation heat transfer from the chip. Hence, from Eq. (1.10),

Pelec= dconvt drad hA(T & T>0)+5M(T45‘ T43\)r

2

where A =L =(0.015m) = 2.25 104 nf .

(a) If heat transfer is by natural convection,
dconv=C A(Ts~Teo)® 4= 4.2 Winf DK5/4( 2.25% 104 n7r)( 60K’ 4= 0.158 W

qrad:o.eo( 2.25 10% rﬁ) 567 16 WAL ﬁ( 388 2§)3 % 0.065 W

Palec= 0.158 W+ 0.065 W& 0.223 W <
(b) If heat transfer is by forced convection,

deonv = hA(Ts= Teo ) = 250 Winf DK( 2.25 10% rﬁ)( 60k= 3.375W

Polec=3.375 W+ 0.065 W 3.44 W <

COMMENTS: Clearly, radiation and natural convection are inefficient mechanisms for transferring
heat from the chip. ForgF 85C and T, = 25°C, the natural convection coefficient is 11.7 V%IZEh

Even for forced convection with h = 250 V\ﬁﬂ, the power dissipation is well below that associated
with many of today’s processors. To provide acceptable cooling, it is often necessary to attach the
chip to a highly conducting substrate and to thereby provide an additional heat transfer mechanism
due to conduction from the back surface.



PROBLEM 1.32
KNOWN: Vacuum enclosure maintained at 77 K by liquid nitrogen shroud while baseplate is
maintained at 300 K by an electrical heater.

FIND: (a) Electrical power required to maintain baseplate, (b) Liquid nitrogen consumption rate, (c)
Effect on consumption rate if aluminum foil (ep = 0.09) is bonded to baseplate surface.

SCHEMATIC:

Shroud, T=77K ]7

Baseplate, D,=0.3m
Electrical heater

— Pantin,
KOCORODCOONRRN DK
WWAVAVAVAVAVAYAYAY A = AYd

f9e/ec

T,=300K, €,70.25
Insulation—""

ASSUMPTIONS: (1) Steady-state conditions, (2) No heat losses from backside of heater or sides of
plate, (3) Vacuum enclosure large compared to baseplate, (4) Enclosure is evacuated with negligible
convection, (5) Liquid nitrogen (LN2) is heated only by heat transfer to the shroud, and (6) Foil is
intimately bonded to baseplate.

PROPERTIES: Heat of vaporization of liquid nitrogen (given): 125 kJ/kg.
ANALYSIS: (a) From an energy balance on the baseplate,

Ein - Eout =0 Ogec = Yrad = 0

and using Eq. 1.7 for radiative exchange between the baseplate and shroud,
— 4 4

Substituting numerical values, with Ap = (ITD%/ 4), find

elec =0.2517(03 m)2/4@5.67x10_8 W/m? EH(4(3004 . 774)K4 =g1w. <

(b) From an energy balance on the enclosure, radiative transfer heats the liquid nitrogen stream
causing evaporation,
Ein - Bow = 0 Urag = Min2hgg = O

n
where M|\, istheliquid nitrogen consumption rate. Hence,

M N2 = qrad/hfg = 81W/125kJ/ kg = 6.48x107° kg/s=0.23kg/ h. <

(c) If aluminum foil (ep = 0.09) were bonded to the upper surface of the baseplate,
Arad,foil = drad (sf /£p) =8.1W(0.09/0.25) =2.9 W
and the liquid nitrogen consumption rate would be reduced by

(0.25 - 0.09)/0.25 = 64% to 0.083 kg/h. <



PROBLEM 1.33

KNOWN: Width, input power and efficiency of a transmission. Temperature and convection
coefficient for air flow over the casing. Emissivity of casing and temperature of surroundings.

FIND: Surface temperature of casing.

SCHEMATIC:
T = 30°C
hi = 200 W/m2-K q
—
—
Po= nP;
— T
Pi =150 hp W=03m

L

ASSUMPTIONS: (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3)
Radiation exchange with large surroundings.

ANALYSIS: Heat transfer from the case must balance heat dissipation in the transmission, which

may be expressed as q =, =R (1 -n) = 150 hpx 746 W/hpx 0.07 = 7833 W. Heat transfer
from the case is by convection and radiation, in which case

- 4_—4
where A5=6V\/2. Hence,
7833 W= do.aorw)zgzooW/%D K g~ 303k 08 567 10 WAR 4|€ o 3‘&)3 ‘E

A trial-and-error solution yields

Tg=373K=100C <

COMMENTS: (1) For Ts= 373 K, Gonv= 7,560 W and gg= 270 W, in which case heat transfer is

dominated by convection, (2) If radiation is neglected, the corresponding surface temperatare is T
102.5C.



PROBLEM 1.34

KNOWN: Resistor connected to a battery operating at a prescribed temperature in air.

FIND: (a) Considering the resistor as the system, determine corresponding vaIEﬁ(fW),
Eg (W), Eout(W) andEgt(W). If a control surface is placed about the entire system, determine

the values forEjp , Eq, Eqyt, andEgy. (b) Determine the volumetric heat generation rate within

the resistord (W/m°), (c) Neglecting radiation from the resistor, determine the convection
coefficient.

SCHEMATIC:

Resistor, Tg =95 °C

Ay T~ % D =60 mm, L =250 mm, ¢ (W/m?)

Air
To= 25 °C

ASSUMPTIONS: (1) Electrical power is dissipated uniformly within the resistor, (2) Temperature
of the resistor is uniform, (3) Negligible electrical power dissipated in the lead wires, (4) Negligible
radiation exchange between the resistor and the surroundings, (5) No heat transfer occurs from the
battery, (5) Steady-state conditions.

ANALYSIS: (a) Referring to Section 1.3.1, the conservation of energy requirement for a control
volume at an instant of time, Eq 1.11a, is

Ein + Eg - Egut = Esgt

where Em : Eout correspond taurfaceinflow and outflow processes, respectively. The energy

generation tern‘Eg is associated with conversion of some other energy form (chemical, electrical,

electromagnetic or nuclear) to thermal energy. The energy storagEgegrisl associated with

changes in the internal, kinetic and/or potential energies of the matter in the control vEgme.

Est arevolumetricphenomena. The electrical power delivered by the battery is P = VI x624%
144 W.

Control volume: Resistor.
Eih =0 Eout = 144W
<

Eg =144W Et=0

The Eg term is due to conversion of electrical energy to thermal energy. TheEl&r,mis due to

convection from the resistor surface to the air.
Continued...



PROBLEM 1.34 (Cont.)

____________ Eg’ Est
|
Control volume: Battery-Resistor System | ) | E in
| |
Ein = O EOUt = 144W < | ? : E out
Eg=0 E =-144W L — ~_
cv

The Est term represents the decrease in the chemical energy within the battery. The conversion of
chemical energy to electrical energy and its subsequent conversion to thermal energy are processes
internal to the system which are not associated ®ighor Eg. The Eqy; term is due to convection

from the resistor surface to the air.

(b) From the energy balance on the resistor with volliire (MD%/4)L,
Ey =0 144 W= 'c(n( 0.06 ) /}x 025m g 284 20 Win <
(c) From the energy balance on the resistor and Newton's law of coolingamithDA. + 2(rD?%/4),
Eout = dev = As(Ts Too)

144 W= héTx 0.06mx 0.25m @Tx 0.66 % )g 95 P5 C

144W= 1 0.047% 00097 fi{ 95 ¥5 C
h=39.0W nfK <

COMMENTS: (1) In using the conservation of energy requirement, Eq. 1.11a, it is important to
recognize thakjn, and Eqy¢ will always represersurfaceprocesses ankg and Egt, volumetric
processes. The generation teEg is associated with @onversiorprocess from some form of
energy tahermal energy The storage terrﬁ_:st represents the rate of changendérnal energy

(2) From Table 1.1 and the magnitude of the convection coefficient determined from part (c), we
conclude that the resistor is experiencing forced, rather than free, convection.



PROBLEM 1.35

KNOWN: Thickness and initial temperature of an aluminum plate whose thermal environment is
changed.

FIND: (a) Initial rate of temperature change, (b) Steady-state temperature of plate, (c) Effect of
emissivity and absorptivity on steady-state temperature.

SCHEMATIC:
E

Teo=20°C — % Qconv Gg =900 W/m?
h=20 Wim2.K — f 1/
_____ /__ ¥ _ _— Special coating

Al plate : =
p = 2700 kg/m3 Eq |L=4 mm> o5 = 0.80
¢ =900 J/kg K S T P £=025
Initial temperature, T; =25 °C
ASSUMPTIONS: (1) Negligible end effects, (2) Uniform plate temperature at any instant, (3)

Constant properties, (4) Adiabatic bottom surface, (5) Negligible radiation from surroundings, (6) No
internal heat generation.

ANALYSIS: (a) Applying an energy balance, Eqg. 1.11a, at an instant of time to a control volume
about the plateEj, — Eqt = Est, it follows for a unit surface area.

aSGS(lmz)— E(ln?)— Qonv( 1n?)=( A dr( MCT:p( 11fix ) € dT Ot

Rearranging and substituting from Eqgs. 1.3 and 1.5, we obtain

dT/dt=(¥pLc) lrsCs-ea T - (- T,)B
dT/dt=(2700kg/ mx 0.004m 900J I@])le
.8x900W nf- 025 567 1¥ W A0 K 208R- 20fv fm (< 25 Yo o

dT/dt=0.052 ¢ s <
(b) Under steady-state conditiortg, = 0, and the energy balance reduces to
asGg=e0T +h(T-T,) (2)
0.8x900W nf = 025 56% 10 W A0 kx + 20fv A0 K T 203K
The solution yields T = 321.4 K = 48@. <

(c) Using the IHTFirst Law Modelfor anlsothermal Plane Wallparametric calculations yield the
following results.

70

60

g
=
g
©
g 50
g
5 \\ |
o 40
= —
\ —
20 — | —><—_|
I

20

0 0.2 0.4 0.6 0.8 1

Coating emissivity, eps

Solar absorptivity, alphaS = 1
—><— alphaS = 0.8
—<S— alphaS=05

COMMENTS: The surface radiative properties have a significant effect on the plate temperature,
which decreases with increasiagnd decreasings. If a low temperature is desired, the plate

coating should be characterized by a large valwgogf The temperature also decreases with
increasing h.



PROBLEM 1.36

KNOWN: Surface area of electronic package and power dissipation by the electronics.
Surface emissivity and absorptivity to solar radiation. Solar flux.

FIND: Surface temperature without and with incident solar radiation.

SCHEMATIC:
9;=750W/’"2 Surface, Ag=1m?%
Q. £=1.0, xg= 0.25

Electronics, P-1kW

ASSUMPTIONS: Steady-state conditions.

ANALYSIS: Applying conservation of energy to a control surface about the compartment, at
any instant

Ein - Eow TEq = 0.
It follows that, with the solar input,

asAsgs—AsE +P=0

asAgas - AssaTSA' +P=0

/14
Ly '+PD1
To= SAsUS*PS
0 Ast0 [
In the shade (g5 =0),
4
O 1000 W g
TIs=0— g5 40 364K <
(Il m<x1x5.67 %10 ° W/m< K™
In the sun,
/14
2 2 7
Tszgo.zsxlm X750 Wim” +1000Wd _ .o <

H1 m? x1x5.67x10~8 wim? &4 [

COMMENTS: In orhit, the space station would be continuously cycling between shade and
sunshine, and a steady-state condition would not exist.



PROBLEM 1.37

KNOWN: Daily hot water consumption for a family of four and temperatures associated with ground
water and water storage tank. Unit cost of electric power. Heat pump COP.

FIND: Annual heating requirement and costs associated with using electric resistance heating or a
heat pump.

SCHEMATIC: e
i —— .,
Water, T,=15°C
| r" i

Tr=850C V=100 gal
Elactric heater ar |
heat pump, |
coP=13 A

ASSUMPTIONS: (1) Process may be modelled as one involving heat addition in a closed system,
(2) Properties of water are constant.

1

PROPERTIES: Table A-6, Water Taye = 308 K): p = v~ = 993 kg/fl, ¢ t = 4.178 kI/KE.

ANALYSIS: From Eq. 1.11c, the daily heating requiremer@g;a”y =AUt = McAT
= pVe(T; = T; ). With V = 100 gal/264.17 galfte 0.379

Quaily = 993kg/ rr?’( 0.379 rﬁ) 4.178kJ/Kgy (K 210)@ 62,900kJ

The annual heating requirement is th@ynnua/= 365day$ 62,900kJ/dyy  2.80 10 lat,
with 1 kwWh = 1 kJ/s (3600 s) = 3600 kJ,

Qannual= 6380kWh <

With electric resistance heatin@snnual= @ elec@nd the associated cost, C, is

C = 6380kwWH $0.08/kWh=$510 <
If a heat pump is use@annua= COP( Weleg - Hence,

Welec=Q annud( COP) = 6380kWH/ = 2130kWh
The corresponding cost is

C = 2130kWH $0.08/kWh=$170 <
COMMENTS: Although annual operating costs are significantly lower for a heat pump,

corresponding capital costs are much higher. The feasibility of this approach depends on other factors
such as geography and seasonal variations in COP, as well as the time value of money.



PROBLEM 1.38

KNOWN: Initial temperature of water and tank volume. Power dissipation, emissivity,
length and diameter of submerged heaters. Expressions for convection coefficient associated
with natural convection in water and air.

FIND: (a) Time to raise temperature of water to prescribed value, (b) Heater temperature
shortly after activation and at conclusion of process, (c) Heater temperature if activated in air.

SCHEMATIC:

Water
Ti=295K
T;=335K

Heater —_— |
L =250 mm

D =25 mm
C]1=500W

ASSUMPTIONS: (1) Negligible heat loss from tank to surroundings, (2) Wateels

mixed(at a uniform, but time varying temperature) during heating, (3) Negligible changes in
thermal energy storage for heaters, (4) Constant properties, (5) Surroundings afforded by tank
wall are large relative to heaters.

ANALYSIS: (a) Application of conservation of energy to a closed system (the water) at an
instant, Eq. (1.11d), yields

du dT dT
—=Mc—=plJc—=0=3
d ot Pt A
o= (pcisq) (o o
Hence, Io t=(p0c/3q) I‘I’i T

990 kg/nm x 10ga(| 3.79 10° fh /g)al 4180JMRg K
t= (335- 299 K= 4180s <

3x500 W
(b) From Eq. (1.3a), the heat rate by convection from each heater is
o1 = Ad = Ah(Ts-T) = (7DL)370( Te- T)*/3
Hence,
/4 /4
O
Te=T+E— 0L =T+0 S00 W 0 =(T+24)K

70mDLH B70 Winf OK¥3x rx 0.025 mx 0.250 i

With water temperatures of ¥ 295 K and T = 335 K shortly after the start of heating and at
the end of heating, respectively,

Tsi=319K T f=359 K <

Continued .....



PROBLEM 1.38 (Continued)

(c) From Eg. (1.10), the heat rate in air is
qq = DL g).?o(Ts— 1;0)4/3+50(Tg'— Téuaé

Substituting the prescribed values gf B, L, To = Tgyrande, an iterative solution yields
Ts=830K <

COMMENTS: In part (c) it is presumed that the heater can be operated&3D K
without experiencing burnout. The much larger valuedbi air is due to the smaller

convection coefficient. However, withghyand qagequal to 59 W and 441 W, respectively,
a significant portion of the heat dissipation is effected by radiation.



PROBLEM 1.39

KNOWN: Power consumption, diameter, and inlet and discharge temperatures of a hair
dryer.

FIND: (a) Volumetric flow rate and discharge velocity of heated air, (b) Heat loss from case.
SCHEMATIC:

M%Mmm T = 20°C
\ h =4 W/m2-K
% Teur = 20°C drad  oon To=40°C,£=0.8
/ D =70 mm

r———————— = = = = = = — — _ .

' Air ¥V, T;=20°C

Vo, To= 45°C <— L doimm o [ g APV )
| p =1.10 kg/m

cp = 1007 J/kg-K

|<—L=150mm/ —

Pejec = 500 W

ASSUMPTIONS: (1) Steady-state, (2) Constant air properties, (3) Negligible potential and
kinetic energy changes of air flow, (4) Negligible work done by fan, (5) Negligible heat
transfer from casing of dryer to ambient air (Part (a)), (6) Radiation exchange between a small
surface and a large enclosure (Part (b)).

ANALYSIS: (a) For a control surface about the air flow passage through the dryer,
conservation of energy for an open system reduces to

m(u+pv) - m(u+ py, + = 0
where u + pv =i and q =R Hence, withm(ii ‘io) :mcp (Ti ‘To)1
mcp (To— Ti) = Relec
. _  Pelec  _ 500 W
m= -
cp(To=Ti) 1007 J/kgjk( 08

C): 0.0199 kg/s

(=M _0.0199KIfS 5 h1g81 1 /s <
P 1.10 kg/n¥
Vo=l o 40 _4x00181m /s, o <

Ac 2  1(0.07 m)?
(b) Heat transfer from the casing is by convection and radiation, and from Eq. (1.10)

= hAg(Ts— T ) +€A g(T‘é—T“SU)
Continued .....



PROBLEM 1.39 (Continued)

where Ag=nDL =(0.07 mx 0.15 m)= 0.033 f1 Hence,

q=4W/mZEK(0.033 n‘?)( 20 <}+ 08 0.033fx 587 19 Wh 4(< Az f);g 4

q=2.64 W+ 3.33W= 597 W <

The heat loss is much less than the electrical power, and the assumption of negligible heat loss
is justified.

COMMENTS: Although the mass flow rate is invariant, the volumetric flow rate increases

as the air is heated in its passage through the dryer, causing a reduction in the density.
However, for the prescribed temperature rise, the chareaimd hence the effect dn is

small.



PROBLEM 1.40

KNOWN: Speed, width, thickness and initial and final temperatures of 304 stainless steel in an
annealing process. Dimensions of annealing oven and temperature, emissivity and convection
coefficient of surfaces exposed to ambient air and large surroundings of equivalent temperatures.
Thickness of pad on which oven rests and pad surface temperatures.

FIND: Oven operating power.
SCHEMATIC:

=300 K
_lh- 10 W/m2-K

Oven Felec Ts=350K
L, —25m7;>|
__ ___ o0 T __ 7 $=08

: St. St. 304

0.008 m

t.=0.5m Concrete

ASSUMPTIONS: (1) steady-state, (2) Constant properties, (3) Negligible changes in kinetic and
potential energy.

PROPERTIES: Table A.1, St.St304T = (Tj + T, )2=775K): p = 7900 kg/r ¢, = 578
J/kgK; Table A.3, Concrete, T = 300 Kk, = 1.4 W/niK.

ANALYSIS: The rate of energy addition to the oven must balance the rate of energy transfer to the

steel sheet and the rate of heat loss from the oven. E}/ri,th Eout— = 0, it follows that

Pelec* M( Ui~ Uo)— = O
where heat is transferred from the oven. Withe pVs(Wg o), (Uj = U )= G (T - Tp). and
q=(2Hy Lo+ 2HoWp+ Wl ) X %(Ts‘ To)+e Q(T45‘ T4SL)I% +ke (Wol o)(Ts—T )t o

it follows that

Pelec=PV(W§ §C fT o T)+(2H & g2H W 5 W b )k
(s To) e (T4-Th)Trk gw b YT 5T B
Pelec= 7900kg/nix 0.01mfs 2m 0.008m 578Jkg( K 1250 00 K
+(2x2mx 25m+ X 2nx 2.4m 2.4m 25m [10WAE (K 350 300 K
+0.8x 5.67 10° W/n%DK‘( 350- 306) K4 1.4wm K 2.4m 25@ 350 300 K/0.5m

Continued.....



PROBLEM 1.40 (Cont.)
Pojec= 694,000W+ 169.6M( 500 3)3 Wm  8400W
=(694,000+ 84,808 53,100 84P0 W 840kW <

COMMENTS: Of the total energy input, 83% is transferred to the steel while approximately 10%,
6% and 1% are lost by convection, radiation and conduction from the oven. The convection and
radiation losses can both be reduced by adding insulation to the side and top surfaces, which would
reduce the corresponding valueTof



PROBLEM 1.41

KNOWN: Hot plate-type wafer thermal processing tool based upon heat transfer modes by
conduction through gas within the gap and by radiation exchange across gap.

FIND: (a) Radiative and conduction heat fluxes across gap for specified hot plate and wafer
temperatures and gap separation; initial time rate of change in wafer temperature for each mode, and
(b) heat fluxes and initial temperature-time change for gap separations of 0.2, 0.5 and 1.0 mm for hot
plate temperatures 300 § € 1300C. Comment on the relative importance of the modes and the
influence of the gap distance. Under what conditions could a wafer be heate8Gar9#ss than 10
seconds?

SCHEMATIC:
<— D>>L Hot plate 9’rad » 9 cond
d=0.78 mm Th = 600°C '/
EJL Stagnant gas, k e
S | Wafer Wafer, Eg g

[ — »nO0 J
" A/IF‘AAAAAA 7 Tw,i=20C —_—
_1‘

ASSUMPTIONS: (1) Steady-state conditions for flux calculations, (2) Diameter of hot plate and

wafer much larger than gap spacing, approximating plane, infinite planes, (3) One-dimensional
conduction through gas, (4) Hot plate and wafer are blackbodies, (5) Negligible heat losses from wafer
backside, and (6) Wafer temperature is uniform at the onset of heating.

PROPERTIES: Wafer: p= 2700 kg/rr31, ¢ = 875 J/kiK; Gas in gap: k = 0.0436 WIK.

ANALYSIS: (a) The radiative heat flux between the hot plate and wafef,fer6DCC and T, =
20° C follows from the rate equation,

q';adza(Tﬁ—Tﬁv)=5.67x 168 W/rrFDK“(( 606 278 —( 20 2)&) R= 325kw/m <

The conduction heat flux through the gas in the gap with L = 0.2 mm follows from Fourier’s law,
600- 20 K
0.0002 m

Teond = k@ = 0.0436 W /ni] ( = 126 kW /rh <

The initial time rate of change of the wafer can be determined from an energy balance on the wafer at
the instant of time the heating process begins,

. . . . T [
Ey = - Er U - C w
in ~ Eout = Est st= P (ﬁd_dt H

whereEy ;=0 and Ej,, = gaq Or deong: Substituting numerical values, find

dTy O _ Gfad _ 32.5¢ 16 W/nf 176K/ <
dt H,rad pcd  2700kg/nPx 875 J/kg K 0.00078 m

wl _feond - gg 4 /s <
dt H,cond pcd
Continued .....



(b) Using the foregoing equations, the heat fluxes and initial rate of temperature change for each mode

PROBLEM 1.41 (Cont.)

can be calculated for selected gap separations L and range of hot plate tempefatitte$, =

20°C.

300

200

Heat flux (kW/m~2)

100

L

500

700

Hot plate temp

q'rad
—e— q'cond,L=1.0mm

—— q"cond,L=0.5mm
—=— q'cond,L=0.2mm

900

erature, Th (C)

1100

1300

Initial rate of change, dTw/dt (K.s"-1)

200

150

100

50

¥
L
L]
L] [
| T ] L
1 1 | |

300 500 700 900

Hot plate temperature, Th (C)

q'rad

—=e— q"cond,L=1.0mm
—&— q"cond,L=05mm
—=&— q"cond,L=02mm

1100 1300

In the left-hand graph, the conduction heat flux increases linearly wamd inversely with L as
expected. The radiative heat flux is independent of L and highly non-linear yyitlufldoes not
approach that for the highest conduction heat rate uptibproaches 120G.

The general trends for the initial temperature-time changg/dtyf, follow those for the heat fluxes.

To reach 908C in 10 s requires an average temperature-time change rate of 90 K/s. Recognizing that

(dT\/dt) will decrease with increasingyTthis rate could be met only with a very highand the
smallest L.



PROBLEM 1.42

KNOWN: Silicon wafer, radiantly heated by lamps, experiencing an annealing process with known
backside temperature.

FIND: Whether temperature difference across the wafer thickness is lesSGhimno2der to avoid
damaging the wafer.

SCHEMATIC:

SRRERRs dtag Ol O
» T
| \ on Us T 3.0x10° W/m?  Upper surface, Tw,u j [ wu
Tour =27°C V1 / &= 0ay= 0.65 e e
AIL s_ ________ Wafer 57 i T ed 3
e .\i k =30 W/m-K

L=0.78 mm Tw, =997°C Tw, = 997°C —/

g
e
SEShLE

S
:0
s
s
=%

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in wafer, (3)
Radiation exchange between upper surface of wafer and surroundings is between a small object and a
large enclosure, and (4) Vacuum condition in chamber, no convection.

PROPERTIES: Wafer: k =30 W/rK, £ =a, =0.65.

ANALYSIS: Perform a surface energy balance on the upper surface of the wafer to determine
Tw u- The processes include the absorbed radiant flux from the lamps, radiation exchange with the

chamber walls, and conduction through the wafer.
Efn - Eout=0
ay0s — drad~ dcd= 0

Tw,u _Tw,é
L

0.65x 3.0 18 W/rf- 0.68 567 I8 W/Ai i*(w”[u—( a7 2)7‘% k

aéqg‘ga(T\jlv,u_Tgur)_k =0

~30W/mKHTy  —(997+ 2735 K/0.00078 m 0

Tw,u =1273K=1000 C <
COMMENTS: (1) The temperature difference for this steady-state operating condition,
Tw,u~Tw,I» is larger than ZC. Warping of the wafer and inducing slip planes in the crystal structure
could occur.

(2) The radiation exchange rate equation requires that temperature must be expressed in kelvin units.
Why is it permissible to use kelvin or Celsius temperature units in the conduction rate equation?

(3) Note how the surface energy balance, Eq. 1.12, is represented schematically. It is essential to
show the control surfaces, and then identify the rate processes associated with the surfaces. Make
sure the directions (in or out) of the process are consistent with the energy balance equation.



PROBLEM 1.43

KNOWN: Silicon wafer positioned in furnace with top and bottom surfaces exposed to hot and cool
zones, respectively.

FIND: (a) Initial rate of change of the wafer temperature corresponding to the wafer temperature
Tw,i =300K, and (b) Steady-state temperature reached if the wafer remains in this position. How

significant is convection for this situation? Sketch how you'd expect the wafer temperature to vary as
a function of vertical distance.

SCHEMATIC:

Too = 700 K —> « Teurh = 1500 K
hy = 8 W/m2-K Qevu \ Qrad,h/ d=0.78 mm surh \g
Wafer
_ Tw,i =300 K, or Ty ss
p = 2700 kg/m3
c =875 J/kg-K
€=0.65

Teurc = 330 K /1

ASSUMPTIONS: (1) Wafer temperature is uniform, (2) Transient conditions when wafer is initially
positioned, (3) Hot and cool zones have uniform temperatures, (3) Radiation exchange is between
small surface (wafer) and large enclosure (chamber, hot or cold zone), and (4) Negligible heat losses
from wafer to mounting pin holder.

ANALYSIS: The energy balance on the wafer illustrated in the schematic above includes convection
from the upper (u) and lower (I) surfaces with the ambient gas, radiation exchange with the hot- and
cool-zone (chamber) surroundings, and the rate of energy storage term for the transient condition.

Ein — Eout = Est
n " I dTW
Orad,h* drad,c 9 cv,ur d cvF P CdT
dT,
€0 (Ts4ur,h_TVL\1l)+50 (TSLE-JI’,C_T\?V)_ h U(TW_ Too)_ h |(TW— Too) = pcdd_;:’v

(a) For the initial condition, the time rate of temperature change of the wafer is determined using the
energy balance above witfy, =T, ; =300K,

0.65x 5.6% 10° W/mi0 K‘( 1508- 36’0) R+ 0.66 587 18 w/m ”(< 3% 3‘§o .
~8W/m? K (300~ 700 K- 4W/nf0K 306 70p K
2700kg /M x 875J/k@ K0.00078 n{ d¥ /dX

(dTy /dt), =104 K/s <

(b) For the steady-state condition, the energy storage term is zero, and the energy balance can be
solved for the steady-state wafer temperatlife= Ty, ss

Continued .....



PROBLEM 1.43 (Cont.)

0.650(1506‘— T&,SS) K+ 0.65( 336- ﬁ,ss) N

-8W/m? (K (T, ss= 700) K= 4W/n? OK( Ty s~ 70 K= 0
Tw.ss=1251 K <

To determine the relative importance of the convection processes, re-solve the energy balance above
ignoring those processes to fid T, /dt)i =101 K/s and [ ss= 1262 K.We conclude that the

radiation exchange processes control the initial time rate of temperature change and the steady-state
temperature.

If the wafer were elevated above the present operating position, its temperature would increase, since
the lower surface would begin to experience radiant exchange with progressively more of the hot zone
chamber. Conversely, by lowering the wafer, the upper surface would experience less radiant
exchange with the hot zone chamber, and its temperature would decrease. The temperature-distance
trend might appear as shown in the sketch.

Top 1

Hot
Cool

zone

Elevation

»

Bottom >
300 500 1000 1500 Twss (K)




PROBLEM 1.44
KNOWN: Radial distribution of heat dissipation in acylindrical container of radioactive
wastes. Surface convection conditions.
FIND: Tota energy generation rate and surface temperature.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible temperature drop across thin
container wall.

ANALYSIS: Therate of energy generation is

Eg :quV:CIoI(;O é-(rlro)z%der
Eg =2mLag (r§/2—r§/4)
or per unit length,
Ey = ”q%rg. <
Performing an energy balance for a control surface about the container yields, at an instant,
Ey—Eou =0
and substituting for the convection heat rate per unit length,

-
P00 = h (27110 (Ts ~Too)

T =T, 4+ 9olo. <
4h
COMMENTS: The temperature within the radioactive wastes increases with decreasing r
from Tgat ry to amaximum value at the centerline.



PROBLEM 1.45

KNOWN: Rod of prescribed diameter experiencing electrical dissipation from passage of electrical
current and convection under different air velocity conditions. See Example 1.3.
FIND: Rod temperature as a function of the electrical current£or©010 A with convection

coefficients of 50, 100 and 250 V\ﬁfﬁ[. Will variations in the surface emissivity have a significant
effect on the rod temperature?

SCHEMATIC:
Teo = 300 K
h = 100 W/m2-K
— Jeonv Qrad T,D=1mm
—> \ / €=0.8, R, =0.4 Q/m
|=52A === ===—-----------ooo —=-

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform rod temperature, (3) Radiation exchange
between the outer surface of the rod and the surroundings is between a small surface and large
enclosure.

ANALYSIS: The energy balance on the rod for steady-state conditions has the form,
deonv * drad= E'gen
nDh(T- Too)+nD£a(T4 - TSA[") =17R

Using this equation in the Workspace of IHT, the rod temperature is calculated and plotted as a
function of current for selected convection coefficients.

150

125

100

Rod temperature, T (C)

75 //
50 — L
| | &
| T 1]
25
0
0 2 4 6 8 10
Current, | (amperes)
—— h=50W/m”"2K
—&— h =100 Wm"2.K
—&— h =250 Wim"2.K

COMMENTS: (1) For forced convection over the cylinder, the convection heat transfer coefficient is
dependent upon air velocity approximately as h0'~§.VHence, to achieve a 5-fold change in the
convection coefficient (from 50 to 250 V\ﬁﬂi{), the air velocity must be changed by a factor of

nearly 15.

Continued .....



PROBLEM 1.45 (Cont.)

(2) For the condition of | = 4 A with h = 50 Wﬂf( with T = 63.5C, the convection and radiation
exchange rates per unit length are, respectivgly=5.7W/m and §;q= 0.67 W/m.We conclude

that convection is the dominate heat transfer mode and that changes in surface emissivity could have
only a minor effect. Will this also be the case if h = 100 or ZSO%MPn

(3) What would happen to the rod temperature if there was a “loss of coolant” condition where the air
flow would cease?

(4) The Workspace for the IHT program to calculate the heat losses and perform the parametric
analysis to generate the graph is shown below. It is good practice to provide commentary with the
code making your solution logic clear, and to summarize the results. Itis also good practice to show
plots incustomaryunits, that is, the units used to prescribe the problem. As such the graph of the rod
temperature is shown above with Celsius units, even though the calculations require temperatures in
kelvins.

/l Energy balance; from Ex. 1.3, Comment 1
-q'cv - q'rad + Edot'g = 0

g'cv = pi*D*h*(T - Tinf)

g'rad = pi*D*eps*sigma*(T"4 - Tsur*4)
sigma = 5.67e-8

/I The generation term has the form

Edot'g = I"2*R'e

gdot = I"2*R'e / (pi*D"2/4)

/I Input parameters

D =0.001

Tsur = 300

T C=T-273 /l Representing temperature in Celsius units using _C subscript

eps =0.8

Tinf = 300

h =100

/Ih =50 /I Values of coefficient for parameter study

/Ih = 250

1=5.2 /I For graph, sweep over range from 0 to 10 A

n=4a /I For evaluation of heat rates with h = 50 W/m"2.K

R'e=0.4

/* Base case results: | =5.2 Awith h =100 W/m”2.K, find T =60 C (Comment 2 case).

Edot'g T TC g'cv g'rad gdot D | R'e
Tinf Tsur eps h sigma

10.82 332.6 59.55 10.23 0.5886 1.377E7 0.001 5.2 0.4

300 300 0.8 100 5.67E-8 */

/* Results: | =4 A with h =50 W/m"2.K, find g'cv= 5.7 W/m and g'rad = 0.67 W/m

Edot'g T TC g'cv g'rad gdot D | R'e
Tinf Tsur eps h sigma
6.4 336.5 63.47 5.728 0.6721 8.149E60.001 4 0.4

300 300 0.8 50 5.67E-8  */



PROBLEM 1.46

KNOWN: Long bus bar of prescribed diameter and ambient air and surroundings temperatures.
Relations for the electrical resistivity and free convection coefficient as a function of temperature.

FIND: (@) Current carrying capacity of the bus bar if its surface temperature is not to exteed 65
compare relative importance of convection and radiation exchange heat rates, and (b) Show
graphically the operating temperature of the bus bar as a function of current for the ragdec100

5000 A for bus-bar diameters of 10, 20 and 40 mm. Plot the ratio of the heat transfer by convection to
the total heat transfer for these conditions.

SCHEMATIC:
3 q,
| Conduit, Teyr = 30°C v \ / 0 T = 65°C
| — Bus-bar ;— —————— | o ¢ =085
—_ — Air |—>_§y._.I __________ 4._.&. D =20mm

T, N(T.D) L !

| s e =
h(T,.D) = CD %% (T- T)*?° | ¢ = 1.21 W-m-1.75K-1.25 E’gen: pe(T)

ASSUMPTIONS: (1) Steady-state conditions, (2) Bus bar and conduit are very long in direction
normal to page, (3) Uniform bus-bar temperature, (4) Radiation exchange between the outer surface of
the bus bar and the conduit is between a small surface and a large enclosure.

PROPERTIES: Bus-bar materialpe = pe o[1+a (T-Tg)], Peo=0.017Q0m, T, =25°C,
a =0.00396K " .

ANALYSIS: An energy balance on the bus-bar for a unit length as shown in the schematic above has
the form

Ein — Eout + I.5'gen: 0
' 20 _
~Orad ~ dconvt I"'R'e= 0
~enDo (T4 —Ts4ur) ~hD(T=Te )+ 120/ A ¢=

whereR, = po/A cand A =D /4. Using the relations fop, (T) andh(T,D), and substituting
numerical values with T = 8&, find

Oraq = 0.857( 0.020Mx 5.6% I8 W/AD ﬂ(([ 66 2f3-[ 30 ;]‘)) 4 223w/m<

Jeony = 7.83W/nf OK7( 0.020M( 65 30 K 17.2W/m <
where h=1.21W0m -730K 12 0.0200) 02°( 65 3P2°= 7.83wW/AD K
I2R’e=I2(198.2x 1O_GQDn) (002 M /4 6.3 T6 4 w/m

where pe=0.0172 10°QUnH¥ 0.00396K( 65 250 19820 m

The maximum allowable current capacity and the ratio of the convection to total heat transfer rate are

I =1950A %y /(dev+ Gad) = Gev / Gtor= 0.072 <
For this operating condition, convection heat transfer is only 7.2% of the total heat transfer.

(b) Using these equations in the Workspace of IHT, the bus-bar operating temperature is calculated
and plotted as a function of the current for the range<1i@05000 A for diameters of 10, 20 and 40
mm. Also shown below is the corresponding graph of the ratio (expressed in percentage units) of the

heat transfer by convection to the total heat transfgr/ gy -
Continued .....



PROBLEM 1.46 (Cont.)

100 / / 13
o 80 / a s S H
= / 3 9
= T
© 60 / ; 7 / .
=4 o /
o
5 40 2 ° /
= -1+ &
-] 3
20 1
0 1000 2000 3000 4000 5000 20 40 60 80 100
Current, | (A
* Bus bar temperature, T (C)
—D=10mm
——D=20mm —— D=10mm
—4&— D=40mm —— D=20mm

—4— D=40mm

COMMENTS: (1) The trade-off between current-carrying capacity, operating temperature and bar
diameter is shown in the first graph. If the surface temperature is not to exé€eth@Smaximum
current capacities for the 10, 20 and 40-mm diameter bus bars are 960, 1950, and 4000 A,
respectively.

(2) From the second graph with,, / diot VS. T, note that the convection heat transfer rate is always a
small fraction of the total heat transfer. That is, radiation is the dominant mode of heat transfer. Note
also that the convection contribution increases with increasing diameter.

(3) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is
shown below. It is good practice to provide commentary with the code making your solution logic
clear, and to summarize the results.

/* Results : base-case conditions, Part (a)

| R'e cvovertot hbar g'ev g'rad rhoe D Tinf C Ts_C
Tsur_C eps

1950 6.309E-5 7.171 7.826 17.21 222.8 1.982E-8 0.02 30 65
30 0.85*/

/I Energy balance , on a per unit length basis; steady-state conditions
/I Edot'in - Edot'out + Edot'gen =0
-q'cv - g'rad + Edot'gen =0

g'cv = hbar * P * (Ts - Tinf)

P=pi*D

g'rad = eps * sigma * (Ts"4 - Tsur™4)
sigma = 5.67e-8

Edot'gen = I1"2 * R'e

R'e = rhoe / Ac

rhoe =rhoeo * (1 + alpha * (Ts - To) )
To =25+ 273

Ac=pi*D"2/4

/I Convection coefficient

hbar = 1.21 * (D*-0.25) * (Ts - Tinf)"0.25 /I Compact convection coeff. correlation
/I Convection vs. total heat rates

cvovertot = g'cv / (q'cv + g'rad) * 100

/I Input parameters

D =0.020

/I D =0.010 /I Values of diameter for parameter study
/I D =0.040

/'l =1950 /I Base case condition unknown

rhoeo = 0.01711e-6

alpha = 0.00396

Tinf_ C =30

Tinf = Tinf_C + 273

Ts_C=65 /l Base case condition to determine current
Ts=Ts_C+273

Tsur_C =30

Tsur=Tsur_C + 273

eps = 0.85



PROBLEM 1.47

KNOWN: Elapsedimes corresponding to a temperature change from 15° fb4 a reference
sphere and test sphere of unknown composition suddenly immersed in a stirred water-ice mixture.
Mass and specific heat of reference sphere.

FIND: Specific heat of the test sphere of known mass.
SCHEMATIC:

== T(t), T(0)-T(t)=(15-14)°C
At =6.35s, At =4.59s

Water - ice
mixture
T, h

Reference (r) and test (t) spheres

M,=0.515kg M;=1.263 kg
Cr =447 JIkg-K ¢ =7

ASSUMPTIONS: (1) Spheres are of equal diameter, (2) Spheres experience temperature change
from 15 to 14C, (3) Spheres experience same convection heat transfer rate when the time rates of
surface temperature are observed, (4) At any time, the temperatures of the spheres are uniform,
(5) Negligible heat loss through the thermocouple wires.

PROPERTIES: Reference-grade sphere materiak d47 J/kg K.

ANALYSIS: Apply the conservation of energy requirement at an instant of time, Eq. 1.11a, after
a sphere has been immersed in the ice-water mixturg.at T

Ein - I'Eout = Est
dT
~Oconv = MCE

where g,y = hAg(T-T, ). Since the temperatures of the spheres are uniform, the change in

energy storage term can be represented with the time rate of temperature change, dT/dt. The
convection heat rates are equal at this instant of time, and hence the change in energy storage
terms for the reference (r) and test (t) spheres must be equal.

dT QO dTQO
M ¢ EH =Mt ¢y EH

Approximating the instantaneous differential change, dT/dt, by the difference change over a short
period of time AT/At, the specific heat of the test sphere can be calculated.

15-14) K 15- 14 K
0.515 kg 447 J/ kg M: 1.263kg tesg
6.35s 4.59s

¢t =132 J/kgIK <

COMMENTS: Why was it important to perform the experiments with the reference and test
spheres over the same temperature range (from 15@)24NVhy does the analysis require that
the spheres have uniform temperatures at all times?



PROBLEM 1.48

KNOWN: Inner surface heating and new environmental conditions associated with a spherical shell of
prescribed dimensions and material.

FIND: (a) Governing equation for variation of wall temperature with time. Initial rate of temperature
change, (b) Steady-state wall temperature, (c) Effect of convection coefficient on canister temperature.

SCHEMATIC:

Stainless
steel
T;=500 K

T..= 300 K
h =500 W/m2.K

ASSUMPTIONS: (1) Negligible temperature gradients in wall, (2) Constant properties, (3) Uniform,
time-independent heat flux at inner surface.

PROPERTIES: Table A.1 Stainless Steel, AISI 302 = 8055 kg/m, C, = 510 J/kK.

ANALYSIS: (a) Performing an energy balance on the shell at an instant ofije; Eqyt = Est.
Identifying relevant processes and solving for dT/dt,
" 4 dT

(o) )(-w)=o5n( 1) 0y

daT 3 v 2 2 ad

— = - hg (T- T )=
dt pcp(r3—ri3)8] I 5
Substituting numerical values for the initial condition, find

3%&22’2(0.5@2— SO%( 0.6)f( 500 390%

dTo _
dth k J
th 8055m—% 510@3 0 -(opg
9TE - _0.089Kss <
dt

(b) Under steady-state conditions WE@t =0, it follows that

qi’(4miz): h(éhbz)(T— T)

Continued .....



PROBLEM 1.48 (Cont.)

Oy F
T =7+ % 01D _ 300K 10 WP EO'SWg=439K <
h o0 500W/n? K 00.6m

(c) Parametric calculations were performed using theRiHt Law Modelfor anlsothermal Hollow

Sphere As shown below, there is a sharp increase in temperature with decreasing values of h < 1000
W/m?IK. For T > 380K, boiling will occur at the canister surface, and for T > 410 K a condition known
as film boiling (Chapter 10) will occur. The condition corresponds to a precipitous reduction in h and
increase in T.

1000
900

800 \
700 \

600

Temperature, T(K)

500

.

400

™~

\

T

300

100 400 800 2000 6000 10000

Convection coefficient, h(W/m”2.K)

Although the canister remains well below the melting point of stainless steel for h = 16&Wailing
should be avoided, in which case the convection coefficient should be maintained at h > 18680 W/m

COMMENTS: The governing equation of part (a) is a first order, nonhomogenous differential equation
with constant coefficients. Its solutionfs= (S/R)(l— e_Rt)+9i Rt Where@=T-T,, .

S=3(q |2 /p(i‘o(g’— F) R:3hg/pcp(|§— rz) Note results for t- « and for S = 0.



PROBLEM 1.49

KNOWN: Boiling point and latent heat of liquid oxygen. Diameter and emissivity of container.
Free convection coefficient and temperature of surrounding air and walls.

FIND: Mass evaporation rate.
SCHEMATIC:

dconv™, Teo=25°C
Liquid oxygen, h=10 W/m2-K
T=90K, hyy =214 kJ/kg
500 mm
T=-10°C,£=0.2 _
s Tou= 25 °C

ASSUMPTIONS: (1) Steady-state conditions, (2) Temperature of container outer surface equals
boiling point of oxygen.

ANALYSIS: (a) Applying an energy balance to a control surface about the container, it follows that,
at any instant,

Ein —Eout =0 or Gonvt Grad~ devag Q

The evaporative heat loss is equal to the product of the mass rate of vapor production and the heat of
vaporization. Hence,

g‘(Too _Ts)+5U(T§ur_ Té’)%& sMevdd ig 0 1)

Sw(Too -Ts) +sa(T§ur— Tg‘)émz
hfg
%OW/mZ [K(298- 26} K+ 0.X 568 10 W A ﬁ( 2B 26'); %1( 0.5
214kJ kg
(350+ 35.9 W/n?( 0.785 r%)

214kJ kg

(b) Using the energy balance, Eg. (1), the mass rate of vapor production can be determined for the
range of emissivity 0.2 to 0.94. The effect of increasing emissivity is to increase the heat rate into the
container and, hence, increase the vapor production rate.

Meyap=

Mevap =

Mevap= =1.41x 103 kg s <

1.9

1.8

17

16

Evaporation rate, mdot*1000 (kg/s)

15

1.4

0.2 0.4 0.6 0.8 1

Surface emissivity, eps

COMMENTS: To reduce the loss of oxygen due to vapor production, insulation should be applied
to the outer surface of the container, in order to reduggand G Note from the calculations in
part (a), that heat transfer by convection is greater than by radiation exchange.



PROBLEM 1.50

KNOWN: Frost formation of 2-mm thickness on a freezer compartment. Surface exposed to
convection process with ambient air.

FIND: Time required for the frost to melg,.t

SCHEMATIC:
T Adiabatic Frost, T;= 0°C
Freezer —Te Ambient air surface Y,
compartment lef; ABst
wall | | T,=20°C | | <— Ej
I

(

— 2_ |
. h= 2Wm2K | dx
1l s x

®>— Frost layer
\/\/\/"/ y 0 Xo =

ASSUMPTIONS: (1) Frost is isothermal at the fusion temperatuye(2) The water melt falls away
from the exposed surface, (3) Negligible radiation exchange at the exposed surface, and (4) Backside
surface of frost formation is adiabatic.

PROPERTIES: Frost, p; =770kg/n? , b = 334kJ/kg.

ANALYSIS: The time , required to melt a 2-mm thick frost layer may be determined by applying

an energy balance, Eq 1.11b, over the differential time interval dt and to a differential control volume
extending inward from the surface of the layer dx. From the schematic above, thereistigy
convection heat flux over the time period dt and the change in energy storage is the latent energy

change within the control volume gAx.
Ein — Eout = Est
deonvA ¢t =dUy g
hAg(Te = Tf )dt = —ps Aghgfdx
Integrating both sides of the equation and defining appropriate limits, find

t 0
h(Teo =T ) [ dt=—pr it [,

t = Pt hst Xo
M h(Te-T)

_ 700kg /P x 3§>4< 18 J/kg 0.002mM 1 690 == 3.2 hour <
2W/m“ [K(20- 0 K

m

COMMENTS: (1) The energy balance could be formulated intuitively by recognizing that the total
heatin by convection during the time interval, (qgy ) Must be equal to the total latent energy for

melting the frost layef p xohs ). This equality is directly comparable to the derived expression
above for f,.

(2) Explain why the energy storage term in the analysis has a negative sign, and the limits of
integration are as showmlint: Recall from the formulation of Eq. 1.11b, that the storage term
represents the change between the final and initial states.



PROBLEM 1.51

KNOWN: Vertical slab of Woods metal initially at its fusion temperatufgjoined to a substrate.

Exposed surface is irradiated with laser souce,e(W/mz).

FIND: Instantaneous rate of melting per unit arag, (kg/slmz), and the material removed in a

period of 2 s, (a) Neglecting heat transfer from the irradiated surface by convection and radiation
exchange, and (b) Allowing for convection and radiation exchange.

SCHEMATIC:

E.St Laser irradation
4G G=5 KW/m?

_ Tew=20°C
— h =15 W/m2-K
cv air

T Teur = 20°C

Substrate  ~—_|

Woods metal —_|
Ti=72°C
hgs = 33 kd/kg
e=04
a =04

qQ"rad

ASSUMPTIONS: (1) Woods metal slab is isothermal at the fusion temperatyrend (2) The melt
runs off the irradiated surface.

ANALYSIS: (a) The instantaneous rate of melting per unit area may be determined by applying an
energy balance, Eq 1.11a, on the metal slab at an instant of time neglecting convection and radiation
exchange from the irradiated surface.

—n —ir — d " _ dM"
Ein — Eout = Est a,Gy :a(_M hsf)—_hsz

wheredM"/dt = ry, is the time rate of change of mass in the control volume. Substituting values,
0.4x 5000W/nf = - 33,0001 /kg | 'm=- 606 10 kgism <

The material removed in a 2s period per unit area is
Mg =’ [t =121 g/ nf <

(b) The energy balance considering convection and radiation exchange with the surroundings yields
ayGy = ey ~ trad =~ hst My
ey = h(Tf - T ) = 15W/nf OK( 72- 2 K= 780W/

q;adzea(T?—T£)=0.4x 5.6% 108 W/nf0] »([ 72 2P 20 2}’%) k= 154w/

i, =—-32.3«< 10° kg/& M Ms= 64g/mM <

COMMENTS: (1) The effects of heat transfer by convection and radiation reduce the estimate for
the material removal rate by a factor of two. The heat transfer by convection is nearly 5 times larger
than by radiation exchange.

(2) Suppose the work piece were horizontal, rather than vertical, and the melt puddled on the surface
rather than ran off. How would this affect the analysis?

(3) Lasers are common heating sources for metals processing, including the present application of
melting (heat transfer with phase change), as well as for heating work pieces during milling and
turning (laser-assisted machining).



PROBLEM 1.52

KNOWN: Hot formed paper egg carton of prescribed mass, surface area and water content
exposed to infrared heater providing known radiant flux.

FIND: Whether water content can be reduced from 75% to 65% by weight during the 18s
period carton is on conveyor.

SCHEMATIC:
F 4 \ 7 \ 7 L /-/eafer bank
9,/=5000 W/mll l l £4q carton, M-0220kg,
As= O. 062\57"2
Conveyer —> —>

ASSUMPTIONS: gl) All the radiant flux from the heater bank is absorbed by the carton, (2)
]Ic\legll |t%![e heatdl oss from carton by convection and radiation, (3) Negligible mass |oss occurs
rom bottom side.

PROPERTIES: Water (given): hgg = 2400 kJ/kg.

ANALYSIS. Defineacontrol surface about the carton, and write the conservation of energy
requirement for an interval of time, At,

Ein ~Eou =AE4 =0

n

%] vaisr
N\ \7/\7 i
! 1
| IR ]
where Ej, isdue to the absorbed radiant flux, qj,,fromthe  —— 7~ 7" 7777
heater and Eqt iS the energy leaving due to evaporation of
water from the carton. Hence.
Op [A At = AM [hy,.
For the prescribed radiant flux gj,,
"A t 2 . 2
AM = grA LA _ 5000 W/ m” x0.0625 m” x18s _ 000234 kg.
hfg 2400 kJ/ kg

The chief engineer’ s requirement was to remove 10% of the water content, or
AM o =M x0.10=0.220 kg x0.10=0.022 kg

which is nearly an order of magnitude larger than the evaporative loss. Considering heat
losses by convection and radiation, the actual water removal from the carton will be less than
AM. Hence, the purchase should not be recommended, since the desired water removal

cannot be achieved. <



PROBLEM 1.53

KNOWN: Average heat sink temperature when total dissipation is 20 W with prescribed air and
surroundings temperature, sink surface area and emissivity.

FIND: Sink temperature when dissipation is 30 W.
SCHEMATIC:

Sink, Ts=42°C with R=20W,

Rower devices,

fe=200r30W _ [ As=0.045m? £=08
‘\I _____ 1 \
Drad i iqconv

_27oC __________ <+ E:ZV‘,C

ASSUMPTIONS: (1) Steady-state conditions, (2) All dissipated power in devicesistransferred
to the sink, (3) Sink isisothermal, (4) Surroundings and air temperature remain the same for both
power levels, (5) Convection coefficient is the same for both power levels, (6) Heat sink isasmall
surface within alarge enclosure, the surroundings.

ANALYSIS: Defineacontrol volume around the heat sink. Power dissipated within the devices
istransferred into the sink, while the sink loses heat to the ambient air and surroundings by
convection and radiation exchange, respectively.

Ein —Eout =0
Po—hAs(Ts —Too ) ~Agt0 (TS4 —T&lr) 0.

Consider the situation when Pg = 20 W for which Tg = 42°C; find the value of h.

(D

h= gDe/AS —s0 (Ts4 ~1&\ )E/ (Ts ~Teo)

h= {20 W/0.045 m? - 0.8x5.67 x1078 wim? K 4 (3154 —3004) K‘E/ (315 -300)K

h=24.4W/m? K.
For the situation when Pg = 30 W, using this value for h with Eqg. (1), obtain
30 W - 24.4 W/m? [K x0.045 m? (Tg ~300)K

~0.045 m? x0.8%5.67 x10~8 W/m? [K4(Ts4 —3004) k4 =0

30 =1.098(Tg —300) +2.041x10™2 (TS4 —3004).
By trial-and-error, find
T,=322K =49°C. <

COMMENTS: (1) Itisgood practice to express all temperatures in kelvin units when using energy
balances involving radiation exchange.

(2) Note that we have assumed Agis the same for the convection and radiation processes. Since not all
portions of the fins are completely exposed to the surroundings, Ag ragd islessthan Ag cony = As.

(3) Isthe assumption that the heat sink isisothermal reasonable?



PROBLEM 1.54

KNOWN: Number and power dissipation of PCBs in a computer console. Convection coefficient
associated with heat transfer from individual components in a board. Inlet temperature of cooling air
and fan power requirement. Maximum allowable temperature rise of air. Heat flux from component
most susceptible to thermal failure.

FIND: (a) Minimum allowable volumetric flow rate of air, (b) Preferred location and corresponding
surface temperature of most thermally sensitive component.

SCHEMATIC:
(To-Ti) max = 15°C

) 4 | APPSR P

el | iy

A 1|

2 :Ir-: S T T 7 h =200 W/m2-K
|

N B RR 4 Pomzow

) | I ’

TR ET T Pee2sw
] v

2 N O |: '2 q" =1 W/cm?

I

EEEEE

2'_ =} [ ] =y N

z ______/K::H_CD_I/;/;//_//_//_//;/Z p=1.161 kg/ m3

Air A A ¥ T=20°C  cp=1007 Jkg

ASSUMPTIONS: (1) Steady-state, (2) Constant air properties, (3) Negligible potential and kinetic
energy changes of air flow, (4) Negligible heat transfer from console to ambient air, (5) Uniform
convection coefficient for all components.

ANALYSIS: (a) For a control surface about the air space in the console, conservation of energy for
an open system, Eq. (1.11e), reduces to
m(u+ pv)i — m( u+ p\)0+ ¢ W= 0

where ur p\= i, ¢ 5p , and W~ P Hence, withri(ij —ig ) =mcp (Ti — To).

mep(To-Ti)=5 R+ R

For a maximum allowable temperature rise 01, 3he required mass flow rate is

. _ 5Bh+R _ 5x20W+25W 8.28><1O_3kg/s

m= _ =
cp(To=Ti) 1007 J/kg]k( 15’ c)
The corresponding volumetric flow rate is

. -3
_M_828107kgls 7 13163 13 /s <

P 1.161kg/n?

(b) The component which is most susceptible to thermal failure should be mounted at the bottom of
one of the PCBs, where the air is coolest. From the corresponding form of Newton’s law of cooling,

q" = h(Tg~-Tj), the surface temperature is

g 1x1d* winf

U LR
Te=Ti+ L =20° C+
h 200 W/nf OK

COMMENTS: (1) Although the mass flow rate is invariant, the volumetric flow rate increases as the
air is heated in its passage through the console, causing a reduction in the density. However, for the

prescribed temperature rise, the change #nd hence the effect di, is small. (2) If the thermally

=70 C <

sensitive component were located at the top of a PCB, it would be exposed to warmgr &5(Q)

and the surface temperature would ReB5C.



PROBLEM 1.55

KNOWN: Top surface of car roof absorbs solar flag ang and experiences for case (a): convection
with air at T, and for case (b): the same convection process and radiation emission from the roof.

FIND: Temperature of the plat&,, for the two cases. Effect of airflow on roof temperature.

SCHEMATIC:

Too = 20 °C — g q"s aps = 800 Wim?2 q" 7'S.abs £

h=12Wm2K —s N\ 7N ’ \ conv l f
——————— —fTSaAS —————————-—ﬁTS’AS

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer to auto interior, (3)
Negligible radiation from atmosphere.

ANALYSIS: (a) Apply an energy balance to the control surfaces shown on the schematic. For an
instant of time,Ej, — Eqyt = 0. Neglecting radiation emission, the relevant processes are convection

between the plate and the afony, and the absorbed solar fludg g Considering the roof to have

an areaAg,
05,abs A s hA {T 5Te)=0
Ts =Te +05 apdh

800W/nf

=20 Cr 66.7 G 867 C <
12W/m? K

Ts=20"C+
(b) With radiation emission from the surface, the energy balance has the form
0S,absA s A conv ELA 50

05 abd shA {T 5T )-€A C§T4§O-

Substituting numerical values, with temperature in absolute units (K),

8OOW2—12 \ZN (- 2938- 0.8 5.6% 1‘(53%1 g= 0
m m-[K m“K
78 A=
12Tg+ 4.536¢ 10° E= 4316
It follows that T, = 320 K = 47C. <

Continued.....



PROBLEM 1.55 (Cont.)

(c) Parametric calculations were performed using theRHdt Law Modelfor anlsothermal Plane Wall

As shown below, the roof temperature depends strongly on the velocity of the auto relative to the ambient
air. For a convection coefficient of h = 40 WKy which would be typical for a velocity of 55 mph, the

roof temperature would exceed the ambient temperature by less fitan 10

360

350

340

330

320

Temperature, Ts(K)

310

300

290

0

20

40

60

80

100 120 140 160 180 200

Convection coefficient, h(W/m”"2.K)

COMMENTS: By considering radiation emissiof, decreases, as expected. Note the manner in which
Jeony IS formulated using Newton'’s law of cooling; singg,,, is shown leaving the control surface, the
rate equation must be(Ts - Te ) and noth(Te = Ts).



PROBLEM 1.56

KNOWN: Detector and heater attached to cold finger immersed in liquid nitrogen. Detector surface of
€ = 0.9 is exposed to large vacuum enclosure maintained at 300 K.

FIND: (a) Temperature of detector when no power is supplied to heater, (b) Heater power (W) required
to maintain detector at 195 K, (c) Effect of finger thermal conductivity on heater power.

SCHEMATIC:

| Tgur= 300 K J

T === G

Electrical heater

[ =50 mm ——

Cold finger, D=5 mm
MW,LOK_JTTL =77K

. ——J .
SN

- PN ) AT XS

Liquid nitrogen — |~ PUSES

5

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction through cold finger, (3)
Detector and heater are very thin and isotherm&l,g#) Detector surface is small compared to
enclosure surface.

PROPERTIES: Cold finger (given): k=10 WI/HK.

ANALYSIS: Define a control volume about detector and heater and apply conservation of energy
requirement on a rate basis, Eg. 1.11a,

Ein —Eout=0 (1)
where

Ein = 0rad + Jelec E out= 9 cond (2,3)
Combining Egs. (2,3) with (1), and using the appropriate rate equations,

EAO (Tgur‘Tg)+q elec KA £T sT )fl— - 4)

(a) Whereqg|ec = 0, substituting numerical values

0.9x 5.67 10° W/n?DK‘( 306- ;4) K= 10w/l K J- 77 K/0.050m
5.103 168(306— 34): 200 3~ 77

Tg=79.1K <

Continued.....



PROBLEM 1.56 (Cont.)
(b) WhenTg = 195 K, Eq. (4) yields

0.9% [7(0.005m)* /4k 5.6% 1 WD ﬁ( 30b- 155’% & ofec

=10W/mIKx [77(0.005m)? /4k( 195 7} K/0.050m
Jelec = 0.457 W= 457 mW <

(c) Calculations were performed using fiiest Law Modelfor aNonisothermal Plane WallWith net
radiative transfer to the detector fixed by the prescribed valués ahd Tg;r, Eq. (4) indicates that
Jeec INCreases linearly with increasing k.

19
17
15
13
11

Heater power, gelec(W)

Bk w o N ©

0 100 200 300 400
Thermal conductivity, k(W/m.K)

Heat transfer by conduction through the finger material increases with its thermal conductivity. Note
that, for k = 0.1 W/riK, Qgjec = -2 mW, where the minus sign implies the need for adieltrather

than a heat source, to maintain the detector at 195 K. In thigjgggexceedQcgnd, and a heat sink
would be needed to dispose of the difference. A conductivity of k = 0.114BWiglds a precise

balance between5q and cond. Hence to circumvent heaving to use a heat sink, while minimizing

the heater power requirement, k should exceed, but remain as close as possible to the value of 0.114
W/mIK. Using a graphite fiber composite, with the fibers oriented normal to the direction of conduction,

Table A.2 indicates a value of0.54 W/mK at an average finger temperature'be= 136 K. For this

COMMENTS: The heater power requirement could be further reduced by decreasing



PROBLEM 1.57

KNOWN: Conditions at opposite sides of a furnace wall of prescribed thickness, thermal
conductivity and surface emissivity.

FIND: Effect of wall thickness and outer convection coefficient on surface temperatures.
Recommended values of L aifih.

SCHEMATIC:
Silica brick,
k=03W/m:K, £¢=0.8

Combustion
gases

M e o {1

h, =50 W/m2.K I
Too, 1 = 15673 K |

T Tsur= 298 K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible
radiation exchange at surface 1, (4) Surface 2 is exposed to large surroundings.

ANALYSIS: The unknown temperatures may be obtained by simultaneously solving energy balance
equations for the two surface. At surface 1,

dconv,1= 9'cond

hy (T 1= T1) = k(T1- TQL (1)
At surface 2,

dcond = dconvt d'rad

K(Ty-ToYL =h (T~ Te ’2)+50(T§ —Téu) )
Using the IHTFirst Law Modelfor aNonisothermal Plane Wallve obtain

1700

1500 1S

1300

1100

900

700

Surface temperature, T(K)

500

300 =
0 0.1 0.2 0.3 0.4 0.5
Wall thickness, L(m)

>

—©— |Inner surface temperature, T1(K)
—2&— OQuter surface temperature, T2(K)

Continued .....



PROBLEM 1.57 (Cont.)

Both (cong and To decrease with increasing wall thickness, and for the prescribed valhye ofL0
W/m’K, a value of L> 0.275 m is needed to maintalp < 373 K = 100°C. Note that inner surface
temperaturelq, and hence the temperature differenbg;-To, increases with increasing L.

Performing the calculations for the prescribed rangk-ofwe obtain

1700

1500

1300

1100

900

Surface temperature, T(K)

700

500 A
300

0 10 20 30 40 50
Convection coefficient, h2(W/m”2.K)

—&— |Inner surface temperature, T(K)
—=&— Quter surface temperature, T(K)
For the prescribed value of L = 0.15 m, a valudigf= 24 W/nfK is needed to maintaiiiy < 373

K. The variation has a negligible effect @, causing it to decrease slightly with increasimg, but
does have a strong influence g.

COMMENTS: If one wishes to avoid use of active (forced convection) cooling on side 2, reliance
will have to be placed on free convection, for whigh = 5 W/nfK. The minimum wall thickness
would then be L = 0.40 m.



PROBLEM 1.58

KNOWN: Furnace wall with inner surface temperatuje=1352C and prescribed thermal
conductivity experiencing convection and radiation exchange on outer surface. See Example 1.5.

FIND: (@) Outer surface temperaturgrésulting from decreasing the wall thermal conductivity k or
increasing the convection coefficient h by a factor of two; benefit of applying a low emissivity
coating € < 0.8); comment on the effectiveness of these strategies to reduce risk of burn injury when
T2 < 65°C; and (b) Calculate and plop &s a function of h for the range 2 < 100 W/mZ[K for

three materials with k = 0.3, 0.6, and 1.2 ViBpwhat conditions will provide for safe outer surface
temperatures.

SCHEMATIC:
T1 = 3520C T2 < 650C : -
\ £=0.80or0.1 Ambient air
k:12 or T(D=250C
0.6 W/m-K
Combustion . m h = 20 or 40 W/m?-K
gases 9 conv
q"rad

Ls>x L=0.15m

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Radiation
exchange is between small surface and large enclosure, (4) Inner surface temperature remains constant
for all conditions.

ANALYSIS: (a) The surface (x = L) energy balance is
T1-Ty _ 4 -4

With T1 = 352C, the effects of parameters h, k a&wh the outer surface temperature are calculated
and tabulated below.

Conditions k(W/mK) h(W/m2 EK) £ T, (°C)
Example 1.5 1.2 20 0.8 100

Decrease k by ¥2 0.6 20 0.8 69
Increase h by 2 1.2 40 0.8 73
Change k and h 0.6 40 0.8 51
Decrease 1.2 20 0.1 115

(b) Using the energy balance relation in the Workspace of IHT, the outer surface temperature can be
calculated and plotted as a function of the convection coefficient for selected values of the wall
thermal conductivity.

Continued .....



PROBLEM 1.58 (Cont.)

o
~ 100
'_
o
>
3 80
a
£ 60 —~
; \ ~——
g —
5 40 —_— S
“ ] T
5 .
3 20 ‘
20 40 60 80 100
Convection coefficient, h (W/m~"2.K)
—— k=12W/m.K
—— k=0.6 W/m.K
—4— k=03 W/mK

COMMENTS: (1) From the parameter study of part (a), note that decreasing the thermal
conductivity is more effective in reducing Than is increasing the convection coefficient. Only if
both changes are made wily Be in the safe range.

(2) From part (a), note that applying a low emissivity coating is not beneficial. Did you suspect that
before you did the analysis? Give a physical explanation for this result.

(3) From the parameter study graph we conclude that safe wall conditpoa$$TC) can be
maintained for these conditions: with k = 1.2 ViIKmivhen h > 55 W/r%[K; with k = 0.6 W/niK
when h > 25 W/r?[K; and with k = 0.3 W/iK when h > 20 W/riK.



PROBLEM 1.59

KNOWN: Inner surface temperature, thickness and thermal conductivity of insulation
exposed at its outer surface to air of prescribed temperature and convection coefficient.

FIND: Outer surface temperature.

SCHEMATIC:
Lnsulation, k’= 01 W/m K
71 =400°C o Teps35°C

h =500 Wfm2-K

< L=0.025m

-

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in the
insulation, (3) Negligible radiation exchange between outer surface and surroundings.

ANALYSIS: From an energy balance at the outer surface at an instant of time,
Acond = Yconv-

Using the appropriate rate equations,
T -T
((T2) - 2) =h(T2 - Te).

Solving for To, find

Kpppy, 2iWmIK (4oo° c) +500- (35° c)
T, = L ® _ 0.025m m2 K
e K s00. W, 01W/mIK
L m2K  0.025m
T, =37.9°C. <

COMMENTS: If the temperature of the surroundings is approximately that of the air,

radiation exchange between the outer surface and the surroundings will be negligible, since To
issmall. In this case convection makes the dominant contribution to heat transfer from the
outer surface, and assumption (3) is excellent.



PROBLEM 1.60

KNOWN: Thickness and thermal conductivity, k, of an oven wall. Temperature and emissiofty,
front surface. Temperature and convection coefficient, h, of air. Temperature of large surroundings.

FIND: (a) Temperature of back surface, (b) Effect of variations in k, lg.and

SCHEMATIC:
{Y
k=07 W/mK - 9 rad TH
T
conv
Too= 300 K
T —4 h =20 W/m2-K
~ | | To=400K
L=0.06m— | £=08 /-
Toyur= 300 K

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Radiation exchange with large
surroundings.

ANALYSIS: (a) Applying an energy balance, Eg. 1.13, at an instant of time to the front surface and
substituting the appropriate rate equations, Egs. 1.2, 1.3a and 1.7, find

k@zh(Tz—Tm)wa(Tg—Ts“ur).

Substituting numerical values, find

0.05 w 8 W

T-Tp= n Ezo 100K+0.8x 5.67 10° 4 a008*~( 300)*F= 200K
0.7WmMIKH m2 x m2 k4

Since To = 400 K, it follows thatTy = 600 K. <

(b) Parametric effects may be evaluated by using theHiFST Law Model for aNonisothermal Plane
Wall. Changes in k strongly influence conditions for k < 20 W/rbut have a negligible effect for
larger values, ago approached and the heat fluxes approach the corresponding limiting values

10000

600 — —
f & 8000
< /
s /
3 S 6000 - e # £ £
N 500 -c:
9 =] 4000
5 = | =) = =)
< [
g 2 2000 4
£ 400
F 0
0 100 200 300 400
Thermal conductivity, k(W/m.K)
300
0 100 200 300 400 —6— Conduction heat flux, g"cond(W/m”2)

—&— Convection heat flux, q"conv(W/m”"2)
Thermal conductivity, k(W/m.K) —B— Radiation heat flux, q"rad(W/m"2)



PROBLEM 1.60 (Cont.)

The implication is that, for k > 20 W/, heat transfer by conduction in the wall is extremely efficient
relative to heat transfer by convection and radiation, which beconfientheg heat transfer processes.

Larger fluxes could be obtained by increasirapd h and/or by decreasifg, and Tg;.

With increasing h, the front surface is cooled more effectivély decreases), and althougiyg
decreases, the reduction is exceeded by the increa@jyy. With a reduction inT» and fixed values
of k and L, qcong Must also increase.

30000

1
L1
600 T
~ e
£ 20000 -
g g «
N [on
= <
g 2 10000
= —
3 500 5
o T
g_ ? \“‘3———_(5_ =1
8 0
0 100 200
Convection coefficient, h(W/m”"2.K)
400

—6— Conduction heat flux, q"cond(W/m”"2)
0 100 200 —— Convection heat flux, g"conv(W/m~2)
vt b n
Convection coefficient, h(W/m~2.K) —&- Radiation heat flux, q"rad(W/m"2)

The surface temperature also decreases with incregsimg the increase iflygq exceeds the reduction

in deonys @llowing gepng to increase witls.

10000

—
575 — Lo
S 8000 ot
E o
_ 570 S 6000
< = )4 A A N
~ - L—
:, 565 é 4000 =
g g 2000 ]
“é& 560 T
e 0 L&
555 0 0.2 0.4 0.6 0.8 1
Emissivity
550
0 0.2 0.4 0.6 0.8 1 —6— Conduction heat flux, g"cond(W/m”"2)
) ) : ) —A— Convection heat flux, q"conv(W/m”2)
Emissivity —HB— Radiation heat flux, q"rad(W/m”2)

COMMENTS: Conservation of energy, of course, dictates that, irrespective of the prescribed
conditions,dcond = 'convt d'rad



PROBLEM 1.61

KNOWN: Temperatures at 10 mm and 20 mm from the surface and in the adjoining airflow for a
thick steel casting.

FIND: Surface convection coefficient, h.

SCHEMATIC:
et teel
|F§/_ks"' f% W/?ﬂ'K
il A 1
qcond : i qCO’W o
1 u ; T,=-50°C
20 10 x(mm)| 7;=4O°C

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction in the x-direction, (3) Constant
properties, (4) Negligible generation.

ANALYSIS: From asurface energy balance, it follows that
dcond = Yconv

where the convection rate equation has the form
deonv =h (Too _TO)’

and Qgong can be evaluated from the temperatures prescribed at surfaces 1 and 2. That is, from
Fourier’slaw,

Ti-To
X2 =X1

w  (50-40)’C
MK (20-10)x10~3m

Jcond =K

Jhong =15 =15,000 W/m?.

Since the temperature gradient in the solid must be linear for the prescribed conditions, it follows that
To=60°C.
Hence, the convection coefficient is
h= dcond
To = To
_ 15,000 W/ m?
40°C
COMMENTS: The accuracy of this procedure for measuring h depends strongly on the validity of
the assumed conditions.

h =375 W/ m? K. <



PROBLEM 1.62

KNOWN: Duct wall of prescribed thickness and thermal conductivity experiences prescribed heat flux
go at outer surface and convection at inner surface with known heat transfer coefficient.

FIND: (a) Heat flux at outer surface required to maintain inner surface of dilict=a85°C, (b)
Temperature of outer surfacy, (c) Effect of h onTy andqg .

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Constant
properties, (4) Backside of heater perfectly insulated, (5) Negligible radiation.

ANALYSIS: (a) By performing an energy balance on the wall, recognizeqba‘é q&ond- From an energy

balance on the top surface, it follows titkiond = O'conv= d o Hence, using the convection rate equation,

0 = Qeony = h(Ti— o) = 100W/nf OK( 85 3)° G 5500W /f <
(b) Considering the duct wall and applying Fourier's Law,
AT To—T;
"ok =k-O_ I
o= Ax L
"L 5500 W/nf x 0.010 o
T, =T, +20= g5 C+ I x M_(85+2.9° c= 878 C <
k 20W/mCK
(c) For Tj = 85°C, the desired results may be obtained by simultaneously solving the energy balance equations
To—-T; To—T;
do =k °L ' and k—0—L=h(T-T)

Using the IHTFirst LawModel for aNonisothermal Plane Walthe following results are obtained.

12000

91

10000

90

8000

89

6000

88

Heat flux, g"o(W/m"2)

4000 87

Surface temperature, To(C)

2000 86

0 85
0 40 80 120 160 200 0 40 80 120 160 200

Convection coefficient, h(W/m”2.K) Convection coefficient, h(W/m~2.K)

Since qgony increases linearly with increasing h, the applied heatdfyxmust be balanced by an
increase indgong, Which, with fixed k, T; and L, necessitates an increasd

COMMENTS: The temperature difference across the wall is small, amounting to a maximum value of
(To —Ti) = 5.5C for h = 200 W/rfiK. If the wall were thinner (L < 10 mm) or made from a material

with higher conductivity (k > 20 W/iK), this difference would be reduced.



PROBLEM 1.63

KNOWN: Dimensions, average surface temperature and emissivity of heating duct. Duct air
inlet temperature and velocity. Temperature of ambient air and surroundings. Convection
coefficient.

FIND: (a) Heat loss from duct, (b) Air outlet temperature.

SCHEMATIC:
Ts=50°C, =05

N . : Ambient Air

Tsur=5"C
H=200 mm ! Teo=5°C
= 2.

Heated air h =4 W/ms-K .
V=4m/s |%}
T;=58°C |

ASSUMPTIONS: (1) Steady-state, (2) Constant air properties, (3) Negligible potential and
kinetic energy changes of air flow, (4) Radiation exchange between a small surface and a large
enclosure.

ANALYSIS: (a) Heat transfer from the surface of the duct to the ambient air and the
surroundings is given by Eq. (1.10)

= hAg(Ts~ T ) +€A g(T‘é—T“SU)

where A=L(2W +2H)=15m (0.7 m+ 0.5 m) = 16.§m-|ence,

q=4 W/nf [Kx16.5 n?( 485 #+ 08 165fx 567 18  whm ‘(< 323 z‘)s 4K

0= Oconv+ drad= 2970 W+ 2298 W 5268 W <
(b) With i = u + pv, W= 0 and the third assumption, Eq. (1.11€) yields,

m(ij —ig) =mcp (Ti-To) =1
where the sign on g has been reversed to reflect the fact that heat transfethe system.
With m=pVA;=1.10 kg/nP x 4 m/§¢ 0.35m 0.20p=  0.308 kgthe outlet temperature is

To=Ti-—1 =58 C- 5268 W =4f C <
ey 0.308 kg/s 1008 J/kg K

COMMENTS: The temperature drop of the air is large and unacceptable, unless the intent is
to use the duct to heat the basement. If not, the duct should be insulated to insure maximum
delivery of thermal energy to the intended space(s).



PROBLEM 1.64

KNOWN: Uninsulated pipe of prescribed diameter, emissivity, and surface temperature in a room
with fixed wall and air temperatures. See Example 1.2.

FIND: (a) Which option to reduce heat loss to the room is more effective: reduce by a factor of two
the convection coefficient (from 15to0 7.5 V\ﬁﬁ&) or the emissivity (from 0.8 to 0.4) and (b) Show

graphically the heat loss as a function of the convection coefficient for the ranys 30 W/mZEBi
for emissivities of 0.2, 0.4 and 0.8. Comment on the relative efficacy of reducing heat losses
associated with the convection and radiation processes.

SCHEMATIC:

SPROCOROSSLBOSINNINEE
Te = 25°C Va |§

h = 15 W/m2-K Tsur = 25°C

— > Qeonv \ Orad /4 T = 200°C
—> / D =70 mm

€=0.8

ASSUMPTIONS: (1) Steady-state conditions, (2) Radiation exchange between pipe and the room is
between a small surface in a much larger enclosure, (3) The surface emissivity and absorptivity are
equal, and (4) Restriction of the air flow does not alter the radiation exchange process between the
pipe and the room.

ANALYSIS: (a) The heat rate from the pipe to the room per unit length is

Substituting numerical values for the two options, the resulting heat rates are calculated and compared
with those for the conditions of Example 1.2. We conclude that both options are comparably effective.

Conditions h (W/ m? EK) £ q(W/m)
Base case, Example 1.2 15 0.8 998
Reducing h by factor of 2 7.5 0.8 788
Reducing by factor of 2 15 0.4 709

(b) Using IHT, the heat loss can be calculated as a function of the convection coefficient for selected
values of the surface emissivity.
1200

800

400

Heatloss, g' (/m)
\

5 10 15 20

Convection coefficient, h (W/m”2.K)
— eps = 0.8, bare pipe

—8— eps = 0.4, coated pipe
—&— eps = 0.2, coated pipe

Continued .....



PROBLEM 1.64 (Cont.)

COMMENTS: (1) In Example 1.2, Comment 3, we read that the heat rates by convection and
radiation exchange were comparable for the base case conditions (577 vs. 421 W/m). It follows that
reducing the key transport parameter (l8)dsy a factor of two yields comparable reductions in the

heat loss. Coating the pipe to reduce the emissivity might to be the more practical option as it may be
difficult to control air movement.

(2) For this pipe size and thermal conditiong&md Ts), the minimum possible convection coefficient

is approximately 7.5 W/%ﬂa(, corresponding to free convection heat transfer to quiescent ambient air.
Larger values of h are a consequence of forced air flow conditions.

(3) The Workspace for the IHT program to calculate the heat loss and generate the graph for the heat
loss as a function of the convection coefficient for selected emissivities is shown below. It is good
practice to provide commentary with the code making your solution logic clear, and to summarize the
results.

/I Heat loss per unit pipe length; rate equation from Ex. 1.2
g =dg'cv+qrad

g'cv = pi*D*h*(Ts - Tinf)

g'rad = pi*D*eps*sigma*(Ts™4 - Tsur™4)

sigma = 5.67e-8

/I Input parameters

D =0.07

Ts_C =200 // Representing temperatures in Celsius units using _C subscripting

Ts =Ts_C +273

Tinf C=25

Tinf = Tinf_C + 273

h=15 /I For graph, sweep over range from 5 to 20

Tsur_C =25

Tsur=Tsur_C + 273

eps =0.8

lleps = 0.4 /I Values of emissivity for parameter study

/leps =0.2

[* Base case results

Tinf  Ts Tsur q g'cv g'rad D Tinf C Ts_C Tsur C
eps h sigma

298 473 298 997.9 577.3 4206 0.07 25 200 25

0.8 15 5.67E-8 *



PROBLEM 1.65

KNOWN: Conditions associated with surface cooling of plate glass which isinitially at 600°C.
Maximum allowable temperature gradient in the glass.

FIND: Lowest allowable air temperature, Teo
SCHEMATIC:

Glass plate, T=600°C
k=14 W/m-K, £-0.8

- Surroundings
Qrad 7;ur = Teo '

——> T h=5Wm2 K

ASSUMPTIONS: (1) Surface of glass exchanges radiation with large surroundings at Tgyr = Teo, (2)
One-dimensiona conduction in the x-direction.

ANALYSIS: The maximum temperature gradient will exist at the surface of the glass and at the
instant that cooling isinitiated. From the surface energy balance, Eq. 1.12, and the rate equations,
Egs. 1.1, 1.3aand 1.7, it follows that

-kj—l— h(Ts - Teo) —ea(T;} -Tgt,r) =0

or, with (dT/dX)max = -15°C/mm = -15,000°C/m and Ty = T,

[] °C[
—1.4£ [+15,000—J=5 w

mK g mg  m?K

(873 -Te )K

-8 W 4 _t40, 4
+0.8x5.67 x10 73" —ToxmK ™.
m2 K4 % =
T May be obtained from atrial-and-error solution, from which it follows that, for T, = 618K,
ZLOOOﬂ = 1275ﬂ + 19,730ﬂ.

m? m? m?

Hence the lowest allowable air temperatureis
T, =618K =345°C. <
COMMENTS: (1) Initially, cooling is determined primarily by radiation effects.

(2) For fixed T, the surface temperature gradient would decrease with increasing time into the

cooling process. Accordingly, To could be decreasing with increasing time and still keep within the
maximum allowabl e temperature gradient.



PROBLEM 1.66

KNOWN: Hot-wall oven, in lieu of infrared lamps, with temperatugg, ¥ 200C for heating a
coated plate to the cure temperature. See Example 1.6.

FIND: (@) The plate temperaturg fbr prescribed convection conditions and coating emissivity, and

(b) Calculate and plotglas a function of g, for the range 158 Tg,r< 250°C for ambient air

temperatures of 20, 40 and°&) identify conditions for which acceptable curing temperatures
between 100 and 110 may be maintained.

SCHEMATIC:
SRR s
T = 20°C pesesesissst
@ 2 o R
h=15W/m"-K Oven walls, Tgyr = 200°C B
s D] ” »
q Arad .
— conv Coating, Tg
- > / =05
| o Plate

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat loss from back surface of plate, (3)
Plate is small object in large isothermal surroundings (hot oven walls).

ANALYSIS: (a) The temperature of the plate can be determined from an energy balance on the plate,
considering radiation exchange with the hot oven walls and convection with the ambient air.

=in ~Eout =0 or dad= Geonv= O

ea(Tg‘ur—Tg‘)—h(Ts—Tw):o

0.5% 5.67 10° W/rEDK‘([ 208 274 - S‘f) R- 15w/f0 K[ 20 2/B X ©
Tg=357 K=8£4C <

(b) Using the energy balance relation in the Workspace of IHT, the plate temperature can be calculated
and plotted as a function of oven wall temperature for selected ambient air temperatures.

150

— L
o 1
o T
9] | L L
g 100 = — -
8_ L] L] 1
: [
o) K| ]
ks L+
o

50

150 175 200 225 250

Owven wall temperature, Tsur (C)

—— Tinf=60C
—&— Tinf=40C
— Tinf=20C

COMMENTS: From the graph, acceptable cure temperatures between 100 &6cchhme
maintained for these conditions: witl, F 20°C when 225% T, < 24C0°C; with T, = 40°C when 205
< Tsur< 220°C; and with &, = 60°C when 175 Tgy < 195°C.



PROBLEM 1.67

KNOWN: Operating conditions for an electrical-substitution radiometer having the same receiver
temperature, J in electrical and optical modes.

FIND: Optical power of a laser beam and corresponding receiver temperature when the indicated
electrical power is 20.64 mW.

SCHEMATIC:

Jioss = 0.05Pgjec

Qrad
— Teur=77 K %
TS, £=0.95, aopt =0.98

+—— P,y =0 (blocked)

Pelec = 20.64 mW

Receiver, D =15 mm

Insulation Electrical mode of operation

ASSUMPTIONS: (1) Steady-state conditions, (2) Conduction losses from backside of receiver
negligible in optical mode, (3) Chamber walls form large isothermal surroundings; negligible effects

due to aperture, (4) Radiation exchange between the receiver surface and the chamber walls is between
small surface and large enclosure, (5) Negligible convection effects.

PROPERTIES: Receiver surface = 0.95,0qpt= 0.98.

ANALYSIS: The schematic represents the operating conditions feleébtrical modewith the

optical beam blocked. The temperature of the receiver surface can be found from an energy balance
on the receiver, considering the electrical power input, conduction loss from the backside of the
receiver, and the radiation exchange between the receiver and the chamber.

Ein — Eout = 0
Pelec= dloss™ A rad™ O
Pelec— 0.05Rjec € Ag( 143‘ -'43L)r: 0

20.64x 10° W( & 0.03- O.9€En 0.0f5 )m x 587 T Wh 46 S %7 %0

T¢=213.9K <

For theoptical modeof operation, the optical beam is incident on the receiver surface, there is no
electrical power input, and the receiver temperature is the same as for the electrical mode. The optical
power of the beam can be found from an energy balance on the receiver considering the absorbed
beam power and radiation exchange between the receiver and the chamber.

Ein — Eout = 0

where gg follows from the previous energy balance usiggPR13.9K.

COMMENTS: Recognizing that the receiver temperature, and hence the radiation exchange, is the
same for both modes, an energy balance could be directly written in terms of the absorbed optical

power and equivalent electrical poweppt Popt = Pelec- Joss



PROBLEM 1.68

KNOWN: Surface temperature, diameter and emissivity of ahot plate. Temperature of surroundings
and ambient air. Expression for convection coefficient.

FIND: (&) Operating power for prescribed surface temperature, (b) Effect of surface temperature on
prg)wer freqw rement and on the relative contributions of radiation and convection to heat transfer from
the surface

SCHEMATIC:
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ASSUMPTIONS: (1) Plateis of uniform surface temperature (2) Walls of room are large relative to
plate, (3) Negligible heat loss from bottom or sides of plate.

Electric heater, Pgjec

ANALYSIS: (&) From an energy balance on the hot plate, Pglec = dconv * drad = Ap (dgony * drad )-

Substituting for the area of the plate and from Egs. (1.3a) and (1.7), withh =0.70 (Tg - Too)ll3
follows that

Pajec = (nD2/4) 5).70(TS ~To )M 34 EJ(TS4 o E
Pyec = (0.3m)? /4 5).70 (175)*/3 +0.8x5.67 x10® (4734 —2984)5 Wim?

Pyec = 0.0707 m? %85 Wim? +1913 W/ng =484 W +1352 W =190.6 W <

(b) As shown graphically, both the radiation and convection heat rates, and hence the requisite electric
power, increase with increasing surface temperature.

Effectof surface temperature on electric power and heatrates

500
z 400 A
[0)
= 300 4
©
by 200
T //
100 —E
—2 -
0 T T
100 150 200 250 300

Surface temperature (C)

However, because of its dependence on the fourth power of the surface temperature, the increase in
radiation is more pronounced. The significant relative effect of radiation is due to the small

convection coefficients characteristic of natural convection, with 3.37 <h<5.2 W/mzm( for 100< Tg
< 300°C.

COMMENTS: Radiation losses could be reduced by applying alow emissivity coating to the
surface, which would have to maintain its integrity over the range of operating temperatures.



PROBLEM 1.69

KNOWN: Long bus bar of rectangular cross-section and ambient air and surroundings temperatures.
Relation for the electrical resistivity as a function of temperature.

FIND: (a) Temperature of the bar with a current of 60,000 A, and (b) Compute and plot the operating
temperature of the bus bar as a function of the convection coefficient for the rangec1I®0

W/m?K. Minimum convection coefficient required to maintain a safe-operating temperature below
12¢°C. Will increasing the emissivity significantly affect this result?

SCHEMATIC:
Qrad d'conv
Tsur=30°C T T o= 30°C
H =600 mm h=10 Wm2-K =  ¢—————————————s
I
\), Bus bar, T Te=08 Eéen, 0o(T)
L =200 mm -«

ASSUMPTIONS: (1) Steady-state conditions, (2) Bus bar is long, (3) Uniform bus-bar temperature,
(3) Radiation exchange between the outer surface of the bus bar and its surroundings is between a
small surface and a large enclosure.

PROPERTIES: Bus-bar materialpg = pe o[1+a (T-T,)]. pe o =0.0828uQ Om, T, = 25°C,
a =0.0040K*

ANALYSIS: (a) An energy balance on the bus-bar for a unit length as shown in the schematic above
has the form

<, . _ r 2 | I—
n ~ Eout + Egen=0 ~Orad ~ dconvt I"R'e= 0
¢ Pa(T4 - Ts4ur)— hA(T- )+ Ppe/Ac=0
whereP = 2(H+ W), R, = po /A, and A;= Hx W. Substituting numerical values,

-0.8x 2(0.606- 0.20p m 5.67 I8 W/%m‘l( [ 30 2]‘}%

~10W/n? [Kx 2(0.600- 0.20p rf ¥[ 36 2JB K
+(60,OOOA)2{O.0828 1PQ0 m e 0.0040K( A 25 2]73%(/ 0.600 0.p0F#™ O

Solving for the bus-bar temperature, find T =426 K=153 C. <

(b) Using the energy balance relation in the Workspace of IHT, the bus-bar operating temperature is
calculated as a function of the convection coefficient for the rangehkx0100 W/mZ[Bi. From this

graph we can determine that to maintain a safe operating temperature bel@yth&dminimum
convection coefficient required is

hmin =16 W/ CK. <

Continued .....



PROBLEM 1.69 (Cont.)

Using the same equations, we can calculate and plot the heat transfer rates by convection and radiation
as a function of the bus-bar temperature.

3000

175
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100 1000

75

Heatrates, gq'cvorq'rad (W/m)

Bartemperature, T (C)

P
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—

T~ 0
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Bus bartemperature, T (C)

150 175

25
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Convection coefficient, h (W/m"2 K)

40 100

— Convection heatflux, g'cv
—8— Radiation exchange, q'rad, eps = 0.8

Note that convection is the dominant mode for low bus-bar temperatures; that is, for low current flow.
As the bus-bar temperature increases toward the safe-operating limi€){,1@0nvection and

radiation exchange heat transfer rates become comparable. Notice that the relative importance of the
radiation exchange rate increases with increasing bus-bar temperature.

COMMENTS: (1) It follows from the second graph that increasing the surface emissivity will be
only significant at higher temperatures, especially beyond the safe-operating limit.

(2) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is
shown below. It is good practice to provide commentary with the code making your solution logic
clear, and to summarize the results.

/* Results for base case conditions:

Ts_C dg'cv g'rad rhoe H | Tinf C  Tsur. C W alpha
eps h

153.3 1973 1786 1.253E-7 0.6 6E4 30 30 0.2 0.004
0.8 10 %

/I Surface energy balance on a per unit length basis

-g'cv - g'rad + Edot'gen =0

g'cv=h*P *(Ts - Tinf)

P=2*(W +H) /I perimeter of the bar experiencing surface heat transfer
g'rad = eps * sigma * (Ts"™4 - Tsur™4) * P

sigma = 5.67e-8

Edot'gen = "2 * Re'

Re' =rhoe / Ac

rhoe =rhoeo * (1 + alpha * (Ts - Teo))

Ac=W*H

I/l Input parameters
| = 60000

alpha = 0.0040
rhoeo = 0.0828e-6
Teo =25+ 273

W =0.200

H = 0.600

Tinf_C =30

Tinf = Tinf_C + 273
h=10

eps=0.8

Tsur_C =30
Tsur=Tsur_C + 273
Ts_C=Ts-273

/I temperature coefficient, K*-1; typical value for cast aluminum
/I electrical resistivity at the reference temperature, Teo; microohm-m
/I reference temperature, K



PROBLEM 1.70

KNOWN: Solar collector designed to heat water operating under prescribed solar irradiation and
loss conditions.

FIND: (a) Useful heat collected per unit area of the collector, qj;, (b) Temperature rise of the water
flow, T —T;, and (c) Collector efficiency.

SCHEMATIC:

Surrounqus (Sky), T q=“-]0°C -

), sk

) g’ To=25°C lp=30"C
qsﬂoo,%é%??/‘ =3 h10Wpnt K Area ASmt o5,

3 Z “““““““““““ ~1e=094 _, \
: : _ xqsolar; in / r 9 conv
Collector— : 5 a: ------------ ;

: Z;Qs,,o,.‘Q‘.;Q,.,Q,.Q, rQ.-QL

ey ——— — —— _a_—__ _______________
T ? T Im=0.01kg/s ”

ASSUMPTIONS: (1) Steady-state conditions, (2) No heat losses out sides or back of collector, (3)
Collector areais small compared to sky surroundings.

PROPERTIES: Table A.6, Water (300K): cp = 4179 Jkg[K.

ANALYSIS: (&) Defining the collector as the control volume and writing the conservation of energy
requirement on a per unit area basis, find that

Ein —Eout * Egen =Eg-.
Identifying processes as per above right sketch,

Osolar ~Arad ~Aconv ~dyu =0
where Qg = 0.9 gg; that is, 90% of the solar flux is absorbed in the collector (Eq. 1.6). Using the
appropriate rate equations, the useful heat rate per unit areais

q, =09 ds —£0 (Té‘p —T;‘(y) ~h(Ts -To)

qu = o.9><7ooﬂ2 ~0.94 x5.67 108 2W . (3034 —2634)K4 -10 \ZN (30 25)°C
m m~ [K m~ [K

q!, =630 W/ m? =194 W/ m? -50 W/ m? =386 W/ m?. <
(b) Thetotal useful heat collected is q;, LA. Defining a control volume about the water tubing, the
useful heat causes an enthalpy change of the flowing water. That is,

qu [A=rncy (Ti-To) or

(T; = To) =386 W/m? x3m? / 0.01kg/s x4179Jkg [K=27.7°C. <
(c) Theefficiency is N =, / dg = (386 W/mz)/ (700 W/m2) =0.55 or 55%. <
COMMENTS: Note how the sky has been treated as large surroundings at a uniform temperature



PROBLEM 1.71
KNOWN: Surface-mount transistor with prescribed dissipation and convection cooling conditions.

FIND: (a) Case temperature for mounting arrangement with air-gap and conductive paste between case
and circuit board, (b) Consider options for increasfﬁg; subject to the constraint thag = 40°C.

SCHEMATIC:

Too=200C —_—
h=50 Wm2.K —>

Leads (3)4Ac = bw = 1mm x 0.25 mm

Gap, kg,t:O.Z mm 4 L=4mm
Circuit board Transistor case, 150 mW diSSipation,{L‘] =8 mm
T Lo=4mm
__ quon_v _c
' ]
== ) 3qlead
E—g J9cond, gap

ASSUMPTIONS: (1) Steady-state conditions, (2) Transistor case is isothermal, (3) Upper surface
experiences convection; negligible losses from edges, (4) Leads provide conduction path between case
and board, (5) Negligible radiation, (6) Negligible energy generation in leads due to current flow, (7)
Negligible convection from surface of leads.

PROPERTIES: (Given): Air, kg,a =0.0263 WInK; Paste,kg,p = 0.12 W/niK; Metal leads ,k, =
25 W/niK.

ANALYSIS: (a) Define the transistor as the system and identify modes of heat transfer.
Ein —Eoutt Eg=AEg= 0

~0conv ™ Ycond,gap 39 lead E g0
Te-T
—hAs(Te-To) -k A s Ct b

where Ag =L 1xL p=4x 8 mnf=32x 10°m*and A; =tx w = 0.25x 1 mnf = 25x 10° n?".
Rearranging and solving fokg,

TC:{hASTw+H<gA§t+3(kgA LT E E}/%A sk § 15+3(kA )

Substituting numerical values, with tha-gap condition(kg,a =0.0263 W/nK)

-3k/A C@ME =0

TC:{SOW/n12 [Kx 32x 10°° nfx 20 Gg 0.0263W/m K 32 I8 f /x2 19 )m

+3(25W/mDK>< 25¢ 108 nf /& 10° r)% 3"5}: % 1.660 10+ 4.208 Tor 4.888‘?@ WIK

T.=47.0C. <
Continued.....



PROBLEM 1.71 (Cont.)

With thepaste conditior{ kg,p =0.12 W/niK), T =39.9C. As expected, the effect of the conductive

paste is to improve the coupling between the circuit board and the case. Heudeereases.

(b) Using the keyboard to enter model equations into the workspace, IHT has been used to perform the
desired calculations. For valueslof = 200 and 400 W/ and convection coefficients in the range

from 50 to 250 W/fiK, the energy balance equation may be used to compute the power dissipation for a
maximum allowable case temperature of@0

g 0.7
D
s =
< 0.6 - |
=3 e |
2 05 ]
o
Q
g 04 T |
= ' LA

-

03
50 100 150 200 250

Convection coefficient, h(W/m"2.K)

—©— kI =400W/m.K
—=&— kI =200 W/m.K

As indicated by the energy balance, the power dissipation increases linearly with increasing h, as well as
with increasingk,. For h =250 W/AIK (enhanced air cooling) ankly = 400 W/niK (copper leads),
the transistor may dissipate up to 0.63 W.

COMMENTS: Additional benefits may be derived by increasing heat transfer across the gap separating
the case from the board, perhaps by inserting a highly conductive material in the gap.



PROBLEM 1.72(a)
KNOWN: Solar radiation isincident on an asphalt paving.
FIND: Relevant heat transfer processes.
SCHEMATIC:

The relevant processes shown on the schematic include:

gs  Incident solar radiation, alarge portion of which qg g, is absorbed by the asphalt
surface,

Orag Radiation emitted by the surface to the air,

Jeony  Convection heat transfer from the surface to the air, and
Ogond Conduction heat transfer from the surface into the asphalt.
Applying the surface energy balance, Eg. 1.12,

dS abs ~ Arad ~ Aconv = Acond-
COMMENTS: (1) 9¢ong @d ggony could be evaluated from Egs. 1.1 and 1.3, respectively.
(2) It has been assumed that the pavement surface temperature is higher than that of the

underlying pavement and the air, in which case heat transfer by conduction and convection
are from the surface.

(3) For simplicity, radiation incident on the pavement due to atmospheric emission has been

ignored (see Section 12.8 for adiscussion). Eg. 1.6 may then be used for the absorbed
solar irradiation and Eq. 1.5 may be used to obtain the emitted radiation gy -

(4) With the rate equations, the energy balance becomes

) dT O
G5aps—€ 0 To —h(Ts —Ta ) = & A



PROBLEM 1.72(b)
KNOWN: Physical mechanism for microwave heating.

FIND: Comparison of (a) cooking in a microwave oven with a conventional radiant or
convection oven and (b) a microwave clothes dryer with a conventional dryer.

(a) Microwave cooking occurs as a result of volumetric thermal energy genénatioghout

the food, without heating of the food container or the oven wall. Conventional cooking relies
on radiant heat transfer from the oven walls and/or convection heat transfer from the air space
to the surface of the food and subsequent heat transfer by conduction to the core of the food.
Microwave cooking is more efficient and is achieved in less time.

(b) In a microwave dryer, the microwave radiation would heat the water, but not the fabric,
directly (the fabric would be heated indirectly by energy transfer from the water). By heating
the water, energy would go directly into evaporation, unlike a conventional dryer where the
walls and air are first heated electrically or by a gas heater, and thermal energy is subsequently
transferred to the wet clothes. The microwave dryer would still require a rotating drum and

air flow to remove the water vapor, but is able to operate more efficiently and at lower
temperatures. For a more detailed description of microwave dryinlesdeanical

Engineering March 1993, page 120.



PROBLEM 1.72(c)
KNOWN: Surface temperature of exposed arm exceeds that of the room air and walls.
FIND: Relevant heat transfer processes.

SCHEMATIC:
Surroundinqs

Tsar

ol

. \9rad
conv *

Neglecting evaporation from the surface of the skin, the only relevant heat transfer processes
are:

Aeonv Convection heat transfer from the skin to the room air, and

Orad Net radiation exchange between the surface of the skin and the surroundings
(walls of the room).

You are not imagining things. Even though the room air is maintained at a fixed temperature

(T = 15°C), the inner surface temperature of the outside wallg, Will decrease with
decreasing outside air temperature. Upon exposure to these walls, body heat loss will be

larger due to increaseg,g

COMMENTS: The foregoing reasoning assumes that the thermostat measures the true room
air temperature and is shielded from radiation exchange with the outside walls.



PROBLEM 1.72(d)
KNOWN: Tungsten filament is heated to 2900 K in an air-filled glass bulb.
FIND: Relevant heat transfer processes.

SCHEMATIC:
Glass bulb
Filament gconv, 9,0
e
q.*

Tsur
7;‘0 o) gc‘md'g Surroundings

The relevant processes associated with the filament and bulb include:

Orad f Radiation emitted by the tungsten filament, a portion of which is transmitted
through the glass,

Aconv f Free convection from filament to air of temperature T,; <Ts,

Orad,g,i Radiation emitted by inner surface of glass, asmall portion of which is

intercepted by the filament,

Qconv,g,i Free convection from air to inner glass surface of temperature Tgi <Tais
Qcond,g Conduction through glass wall,
Aceonv,g,0 Free convection from outer glass surface to room air of temperature
Tao < Tg'o, and
Orad,g-sur Net radiation heat transfer between outer glass surface and surroundings, such

asthewalls of aroom, of temperature Tg,, <Tgo.

COMMENTS: If the glass bulb is evacuated, ho convection is present within the bulb; that
IS, Aconv,f = dconv,gi =0



PROBLEM 1.72(e)
KNOWN: Geometry of acomposite insulation consisting of a honeycomb core.
FIND: Relevant heat transfer processes.
SCHEMATIC:

g

_ o /?rad, bc /
— 9cond,hc
Qconv, hc

The above schematic represents the cross section of a single honeycomb cell and surface
dabs. Assumed direction of gravity field is downward. Assuming that the bottom (inner)

surface temperature exceeds the top (outer) surface temperature (Ts,i > TS,O), heat transfer is
in the direction shown.

Heat may be transferred to the inner surface by convection and radiation, whereupon it is
transferred through the composite by

Jcond.i Conduction through the inner solid slab,

Jconv, he Free convection through the cellular airspace,
Jcond, he Conduction through the honeycomb wall,
Orad,hc Radiation between the honeycomb surfaces, and
Jcond.o Conduction through the outer solid slab.

Heat may then be transferred from the outer surface by convection and radiation. Note that
for asingle cell under steady state conditions,

Qrad,i * Aconv,i = Ycond,i = Yconv,hc tYcond,hc

*+0rad.hc = Acond,o0 = Arad,0 T 9conv,o-

COMMENTS: Performance would be enhanced by using materials of low thermal
conductivity, k, and emissivity, €. Evacuating the airspace would enhance performance by
eliminating heat transfer due to free convection.



PROBLEM 1.72(f)

KNOWN: A thermocouple junction is used, with or without a radiation shield, to measure
the temperature of a gas flowing through a channel. Thewall of the channel isat a
temperature much less than that of the gas.

FIND: (a) Relevant heat transfer processes, (b) Temperature of junction relative to that of
gas, (c) Effect of radiation shield.

SCHEMATIC:
Ly ls< g Side view End view
LD R S I I g P s STy R
Hor gconv 9,.6,_/ —D . . @
Soffggfﬂ —> ;.- G'GS Sfr?am u Sh:eld !
Ty TC junction, T;

(without shield)

ASSUMPTIONS: (1) Junction is small relative to channel walls, (2) Steady-state conditions,
(3) Negligible heat transfer by conduction through the thermocouple leads.

ANALYSIS: (a) Therelevant hesat transfer processes are:

Orad Net radiation transfer from the junction to the walls, and
Jconv Convection transfer from the gas to the junction.

(b) From a surface energy balance on the junction,

Qconv = Arad

or from Egs. 1.3aand 1.7,

hA(Tj-Tg)=¢ A a(Tj4 —Tsf‘).

To satisfy this equality, it follows that

TS<Tj <Tg.

That is, the junction assumes a temperature between that of the channel wall and the gas,
thereby sensing atemperature which is less than that of the gas.

(c) The measurement error (Tg - Tj) is reduced by using aradiation shield as shown in the

schematic. Thejunction now exchanges radiation with the shield, whose temperature must
exceed that of the channel wall. The radiation loss from the junction is therefore reduced, and
its temperature more closely approaches that of the gas.



PROBLEM 1.72(g)

KNOWN: Fireplace cavity is separated from room air by two glass plates, open at both ends.

FIND: Relevant heat transfer processes.
SCHEMATIC:

v

v

qcond,z

qraa’,:s S
9rad,4

gconv,z

gcon V.3

The relevant heat transfer processes associated with the double-glazed, glass fire screen are:

Urad,1

Urad,2

Urad,3

Qrad,4
Uconv,1

Gconv2

Uconv,3
Ucond,1

Ucond,2

Radiation from flames and cavity wall, portions of which are absorbed and
transmitted by the two panes,

Emission from inner surface of inner pane to cavity,

Net radiation exchange between outer surface of inner pane and inner surface
of outer pane,

Net radiation exchange between outer surface of outer pane and walls of room,
Convection between cavity gases and inner pane,

Convection across air space between panes,

Convection from outer surface to room air,
Conduction across inner pane, and

Conduction across outer pane.

COMMENTS: (1) Much of the luminous portion of the flame radiation is transmitted to the

room interior.

(2) All convection processes are buoyancy driven (free convection).



PROBLEM 1.73(a)
KNOWN: Room air is separated from ambient air by one or two glass panes.
FIND: Relevant heat transfer processes.

SCHEMATIC:
9\

DT - ~e

conv, 1 gcond,z l q qconv, 1
49_1 g «— conv,s <
conv,2 cond, 1 900,,‘,’ 2 Qeond, 1
—
—
< Zrad,s <
Zrad2 rod2 Zrade b 7 bed D
Single pane Double pane

The relevant processes associated with single (above left schematic) and double (above right
schematic) glass panes include.

Jconv,1 Convection from room air to inner surface of first pane,

Orad.1 Net radiation exchange between room walls and inner surface of first pane,
dcond,1 Conduction through first pane,

dconv.s Convection across airspace between panes,

drad.s Net radiation exchange between outer surface of first pane and inner surface of

second pane (across airspace),

dcond,2 Conduction through a second pane,
Aconv, 2 Convection from outer surface of single (or second) pane to ambient air,
Jrad.2 Net radiation exchange between outer surface of single (or second) pane and

surroundings such as the ground, and

Js Incident solar radiation during day; fraction transmitted to room is smaller for
double pane.

COMMENTS: Heat loss from the room is significantly reduced by the double pane
construction.



PROBLEM 1.73(b)
KNOWN: Configuration of a flat plate solar collector.
FIND: Relevant heat transfer processes with and without a cover plate.

SCHEMATIC.:
) f f

fCover plate

r'ddoo
COﬂV o0
f \ rad,a-c COﬁV a-c
f T sAirspace

Absorber plate-:

TR VoA Vo tpr Working fluid=2RY7 78 Yt Wy sl Vi
RIS .,‘9“' }—\Insuldflon _//__’ »,;,;. e
con

The relevant processes without (above left schematic) and with (above right schematic)
include:

Js Incident solar radiation, a large portion of which is absorbed by the absorber
plate. Reduced with use of cover plate (primarily due to reflection off cover
plate).

Jrado Net radiation exchange between absorber plate or cover plate and

surroundings,

Aconvee Convection from absorber plate or cover plate to ambient air,
Jrad.a-c Net radiation exchange between absorber and cover plates,
deonv,a-c Convection heat transfer across airspace between absorber and cover plates,

dcond Conduction through insulation, and
Jconv Convection to working fluid.

COMMENTS: The cover plate acts to significantly reduce heat losses by convection and
radiation from the absorber plate to the surroundings.



PROBLEM 1.73(c)
KNOWN: Configuration of a solar collector used to heat air for agricultural applications.
FIND: Relevant heat transfer processes.

SCHEMATIC:
9& 1 i

gl'ddk
Yv, 0-00

qrad, i-o

\gf‘ddlp_i qdd ]
rad,p-i

qco -7
\ e &95'1- f fgconv,p-a
Deonv,i-a I e T

Assume the temperature of the absorber plates exceeds the ambient air temperature. At the
cover platesthe relevant processes are:

Aconv,a-i Convection from inside air to inner surface,

Orad, p-i Net radiation transfer from absorber plates to inner surface,
deonv,i-o Convection across airspace between covers,

Arad.i-o Net radiation transfer from inner to outer cover,

Aconv, 0o Convection from outer cover to ambient air,

drad.o Net radiation transfer from outer cover to surroundings, and
Js Incident solar radiation.

Additional processes relevant to thiesorber plategandairspaceare:

ds.t Solar radiation transmitted by cover plates,
dconv,p-a Convection from absorber plates to inside air, and

Jcond Conduction through insulation.



PROBLEM 1.73(d)
KNOWN: Features of an evacuated tube solar collector.
FIND: Relevant heat transfer processes for one of the tubes.

SCHEMATIC:
/ s

Evacuated
space

qconv, o

/ qrad, o-sur

Tr'ansparenf
outer tube

\

—— e

— Opaque inner tibe

The relevant heat transfer processes for one of the evacuated tube solar collectors includes:

ds Incident solar radiation including contribution due to reflection off panel (most
is transmitted),

Aconv,o Convection heat transfer from outer surface to ambient air,

Jrad.0-sur Net rate of radiation heat exchange between outer surface of outer tube and the
surroundings, including the panel,

ds.t Solar radiation transmitted through outer tube and incident on inner tube (most
is absorbed),

Jrad.i-o Net rate of radiation heat exchange between outer surface of inner tube and
inner surface of outer tube, and

dconv,i Convection heat transfer to working fluid.

There is also conduction heat transfer through the inner and outer tube walls. If the walls are
thin, the temperature drop across the walls will be small.



PROBLEM 2.1
KNOWN: Steady-state, one-dimensional heat conduction through an axiSymmetric shape.
FIND: Sketch temperature distribution and explain shape of curve.

SCHEMATIC:
_____ o —T,
E\;WM‘/ T>T;
—_ T Tix)
Ein .L_ ——————— E Eour
X ! dT
L e, S r
% T o x C:.)lPl"eV:
T ‘
A — -

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS: Performing an energy balance on the object according to Eq. 1.11a, E;,, —Eq =0, it
follows that

Ein —Eout =dx
andthat qy # gy (X). That is, the heat rate within the object is everywhere constant. From Fourier’s
law,
dT

=-kA, —,
Ox X dx

and since gy and k are both constants, it follows that
T
Ay ar _ Constant.
dx

That is, the product of the cross-sectional area normal to the heat rate and temperature gradient

remains a constant and independent of distance x. It follows that since Ay increases with x, then
dT/dx must decrease with increasing X. Hence, the temperature distribution appears as shown above.

COMMENTS: (1) Be sureto recognize that dT/dx isthe slope of the temperature distribution. (2)
What would the distribution be when T2 > T1? (3) How does the heat flux, Qy, vary with distance?



PROBLEM 2.2
KNOWN: Hot water pipe covered with thick layer of insulation.
FIND: Sketch temperature distribution and give brief explanation to justify shape.
SCHEMATIC:

I
Hot "2 LT
F o o
warer pipe 72,.)
Thsulati ’ =T
nsuiartion i \ ,
Ler” DT, S re T

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional (radial) conduction, (3) No
internal heat generation, (4) Insulation has uniform properties independent of temperature and
position.

ANALYSIS: Fourier'slaw, Eg. 2.1, for this one-dimensional (cylindrical) radial system has the form
dT _ dT

= kA, 2 = k(2m) &
Qr rdr (nr)dr

where A, =27/ and ¢ isthe axial length of the pipe-insulation system. Recognize that for steady-
state conditions with no internal heat generation, an energy balance on the system requires
Ein = Eout SinceEq =Eg =0. Hence

gr = Constant.

That is, gy isindependent of radius (r). Since the thermal conductivity is aso constant, it follows that

r[d—T] = Constant.
dr

Thisrelation requires that the product of the radial temperature gradient, dT/dr, and theradius, r,
remains constant throughout the insulation. For our situation, the temperature distribution must
appear as shown in the sketch.

COMMENTS: (1) Notethat, while gy is a constant and independent of r, gy isnot aconstant. How
does q’r’(r) vary with r? (2) Recognize that the radial temperature gradient, dT/dr, decreases with
increasing radius.



PROBLEM 2.3
KNOWN: A spherical shell with prescribed geometry and surface temperatures.
FIND: Sketch temperature distribution and explain shape of the curve.

SCHEMATIC:
I
, LT
Spherical 2 Large mggma/
It
Shell T Small gd 7ien
dr
7;__
- A 3 L
I 1 I>T

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in radia (spherical
coordinates) direction, (3) No internal generation, (4) Constant properties.

ANALYSIS: Fourier'slaw, Eg. 2.1, for this one-dimensional, radial (spherical coordinate) system
has the form

dT 2\dT
S LI (4m )—
9 " ar dr

where Ay isthe surface area of a sphere. For steady-state conditions, an energy balance on the system
yields Ej, = Eqyt, since Eq = E¢ =0. Hence,

Oin =dout =dr 0y (r).

That is, gy is aconstant, independent of the radial coordinate. Since the thermal conductivity is
constant, it follows that

2 1O

= Constant.
Ed—rg onstan

Thisrelation requires that the product of the radial temperature gradient, dT/dr, and the radius
squared, r2, remains constant throughout the shell. Hence, the temperature distribution appears as
shown in the sketch.

COMMENTS: Note that, for the above conditions, g, # q (r); that is, gr is everywhere constant.
How does q; vary asafunction of radius?



PROBLEM 2.4

KNOWN: Symmetric shape with prescribed variation in cross-sectional area, temperature
distribution and heat rate.

FIND: Expression for the thermal conductivity, k.

SCHEMATIC:
Units
Awx)y=(1-x) T-K
T(x) =300(1-2x-x3) Z\:Z .
92:6000W

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-direction, (3)
No internal heat generation.

ANALYSIS: Applying the energy balance, Eq. 1.114, to the system, it follows that, since

Ein = Eout>
0y = Constant # f (x).

Using Fourier’slaw, Eq. 2.1, with appropriate expressionsfor Ay and T, yields

dar

=-k A, —

Qx X dx | .
— 2 3
6000W=-k [{11-x ) m“ 3— 00(1— 2X-X ) —.
) dx % Hm
Solving for k and recognizing its units are W/miK,

K -6000 _ 20 <

) (1x) %00(—2 —3x2)5 (1_X)(2 +3X2)'

COMMENTS: (1) Atx=0,k=10W/mK andk - o asx - 1. (2) Recognize that the 1-D
assumption is an approximation which becomes more inappropriate as the area change with x, and
hence two-dimensional effects, become more pronounced.



PROBLEM 2.5
KNOWN: End-face temperatures and temperature dependence of k for atruncated cone.
FIND: Variation with axial distance along the cone of gy, g%, K, and dT / dx.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x (negligible temperature gradients along y),
(2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat generation.

ANALYSIS: For the prescribed conditions, it follows from conservation of energy, Eq. 1.11a, that
for adifferential control volume, Ej,, = Egyt OF Oy = Oy 4qx- Hence

Oy IS independent of x.

Since A(x) increases with increasing x, it follows that gy = Qy /A(x) decreases with increasing Xx.

Since T decreases with increasing x, k increases with increasing x. Hence, from Fourier’s law, EQ.
2.2,

dT

"no— _k -
Ox dx

it follows that | dT/dx | decreases with increasing X.



PROBLEM 2.6

KNOWN: Temperature dependence of the thermal conductivity, k(T), for heat transfer through a
plane wall.

FIND: Effect of k(T) on temperature distribution, T(x).

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) No internal heat
generation.

ANALYSIS: From Fourier’slaw and the form of k(T),

dT dT
k — =Hk, +al)—. 1

ax =~ d

The shape of the temperature distribution may be inferred from knowledge of d2T/dx2 = d(dT/dx)/dx.
Since gy isindependent of x for the prescribed conditions,

dat, d[ dT}
Bx - 9k, +an S |=0
(ko a)dx

dx dx
2 2
—(ko+aT)d—12-—a[d—T} -0
dx dx
Hence,
ko+alr=k>0
?T_ - [dTT °
— = — where <[ qT
dx2 ko +al [ dx |:—:| >0
dx
from which it follows that for
T
a>0 d?T/dx? < 0 a>0
_G a=0
2 2 a<0
a=0 dT/dxc=0
T,
a< 0 d?T/dx? > 0. —>x

COMMENTS: The shape of the distribution could also be inferred from Eq. (1). Since T decreases
with increasing X,

a>0: kdecreaseswithincreasing x = > | dT/dx | increases with increasing x
a=0: k=kg=>dT/dx isconstant

a<0: kincreaseswithincreasing x => | dT/dx | decreases with increasing x.



PROBLEM 2.7

KNOWN: Thermal conductivit dy and thickness of a one-dimensional system with no internal heat
generation and steady-state conditions.

FIND: Unknown surface temperatures, temperature gradient or heat flux.

SCHEMATIC:
Tix)
T b ;1' L=05m
‘9';‘ g%-, Temperature gradient

k=25 W/m-K xq—‘-rz

ASSUMPTIONS: (1) One-dimensiona heat flow, (2) No internal heat generation, (3) Steady-state
conditions, (4) Constant properties.

ANALYSIS: Therate equation and temperature gradient for this system are

= —kd_T and d_T :m. (1’2)
dx dx L
Using Egs. (1) and (2), the unknown quantities can be determined.
400-300)K
()OIT szoor(/m -
W K 5 g 9%
Y =25 x200— = -5000 W/m~. 00K <
x m K m .-..-'--:_J|3
X
(b) Oy = 25V B KD 650 wim?
m [K E E EI"" T
g
KO =t
T U —1000°C-05 250 T
2= g;g ”'g . dT . -250
1007) x
T, = 225°C. ai <
W K 2
(c) gy =25 x200— = -5000 W/m = P
mEoom < m$*ﬁ=*ami
T, =80°C-0.5m 00—5- -20°C, T g gf <
1
' 2 ke
@ 9o _Ox _ _4000WmT _ 00K
dx k 25 W/m K m ,=w adhad 5o
T 0. . KJ ( ) 2 2 | 40005:] A
T =L +T, =0.5m=-160— +| 5°C|Va“ +b” | <2
== Ela= < [i
T, =-85C. £ x<| <
2
' (—3000 W/m )
© c;_T - qu T swWimK =120 o™
X m m 30 L\ /b
o KO_ o
T, =30°C-0.5m ZO—H- -30°C. 9/--3000 wz




PROBLEM 2.8
KNOWN: One-dimensiona system with prescribed thermal conductivity and thickness.
FIND: Unknowns for various temperature conditions and sketch distribution.
SCHEMATIC:

> L=025m

L
T; |—g‘-; .ll-Em'u:r.u'f'ur-E' ?rnd.ltnf'
W
ke 50 25 EE_?.
J= 30

=

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No internal heat
generation, (4) Constant properties.

ANALYSIS: Therate equation and temperature gradient for this system are
dT ar T2 Tl

=-k— and (1,2
dx dx L
Using Egs. (1) and (2), the unknown quantities for each case can be determined.
-20-50)K =
(a dar = u = -280 K/m 500 ?";
dx 0.25m
W 0 2 -20°C
= 280 —14 0 kW/m
qX E —E ot <
dr (_10 B ( _30)) K s o |
b —= =80 K/m ‘-{fu ar
®) dx 0.25m x : T0C
w KO .
= 0 = 4.0 KW/m?.
O m IIIK —E <
(© 60 =-8.0 kW/ har-Lam
= m —
x m IZIK —E T k K
0 70°C [~ dx 10m
To =L B‘L +Tp =0.25m XQGO +70°C. nsmmany
dx EE e
T, =110°C. <
w O KO
d Y= 80 =4.0 kW/
( ) Qx E —H m j; @- iT .&jﬁ
. 0. KO ‘F{.'-"I'C'
T =T —LEd—:4O C-0.25m 80—. O
1= dx B md He=A
T, =60°C.
! <
' W KO
e Oy = 00 = -10.0 kW/m? o
© = B R *gv ?50"{:
T o KO o T, t JdT K
T =T —LGd—:BO C -0.25m 200 =20 C. 1 - £= =2002
1 2 dx EE ax L <




PROBLEM 2.9

KNOWN: Planewall with prescribed thermal conductivity, thickness, and surface temperatures.

FIND: Heat flux, gy , and temperature gradient, dT/dx, for the three different coordinate systems

shown.
SCHEMATIC:
"4
T,=400K ~1- ~
T,=600K _I;/ * /
=100 W/m-K I;
=100mm 5 L TTX XL
@)

O
\T
1

AT

£ (c)

0]

ASSUMPTIONS: (1) One-dimensional heat flow, (2) Steady-state conditions, (3) No interna
generation, (4) Constant properties.

ANALYSIS: Therate equation for conduction heat transfer is

dT

"no— _k_,
Ax dx

where the temperature gradient is constant throughout the wall and of the form

dT _ T(L)-T(0)
ax L

Substituting numerical values, find the temperature gradients,

@

(b)

(©

dT _T,-T, _(600-400)K
dx L 0.100m
dT _T,-T, _(400-600)K
dx L 0.100m
dT _T,-T, _(600-400)K
dx L 0.100m

=2000K/m

=-2000 K/ m

=2000 K/ m.

The heat rates, using Eq. (1) with k = 100 W/mlK, are

@

(b)

(©

= ~100—%_x 2000 K / m = -200 kW / m?

mK

q, = —1oo£(—2ooo K/ m) = +200 KW / m?
mK

} = ~100—Y_x 2000 K / m = -200 kW / m?

mK

D

(2)



PROBLEM 2.10
KNOWN: Temperature distribution in solid cylinder and convection coefficient at cylinder surface.
FIND: Expressionsfor heat rate at cylinder surface and fluid temperature.

SCHEMATIC:
— LN\ Ty 0sbr
rO
D
h, o™
—_—

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Constant
properties.

ANALYSIS: The heat rate from Fourier’s law for the radial (cylindrical) system has the form

daT
=-kA, —.
dr o

Substituting for the temperature distribution, T(r) =a+ br2,
qy = -k(2mL) 2br = -47KbLr2,

At the outer surface ( r = rg), the conduction heat rate is

Qyar, = ~47kbLIZ. <
\\
From a surface energy balanceat r = rg, ‘,\\
+\ q,;l,
Yo ///\
qr:ro = qconv = h(ZITOL) [T(rO) _T°°]’ \/ q.conv

Substituting for ¢, =y and solving for Te,

Too = T(r0)+2kbro
h
To = a+ brg+—2kbro

To = a+ bro[ro+2—rﬂ. <



PROBLEM 2.11

KNOWN: Two-dimensional body with specified thermal conductivity and two isothermal surfaces
of prescribed temperatures; one surface, A, has a prescribed temperature gradient.

FIND: Temperature gradients, 0T/0x and 0T/dy, at the surface B.
SCHEMATIC:

t

/.53
Insulation_ 1%

k=10Wfmk—

Gradient at surface A

%-:30/(/7” S mpp— i

WA=Zm |< g

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Steady-state conditions, (3) No heat
generation, (4) Constant properties.

ANALYSIS: Atthesurface A, the temperature gradient in the x-direction must be zero. That is,
(0T/ox)a = 0. Thisfollows from the requirement that the heat flux vector must be normal to an
isothermal surface. The heat rate at the surface A is given by Fourier’slaw written as

q'yA:_kvaﬂ =-10 w
; AN mK

x2m ><305 = —600W / m.
m

On the surface B, it follows that
(dT/dy)g =0 <

in order to satisfy the requirement that the heat flux vector be normal to the isothermal surface B.
Using the conservation of energy requirement, Eqg. 1.11a, on the body, find

dy,A —dx,g =0 or ax,B =dy,A-

Note that,
oT
r=—KMWp—
dx,B B > :|B

and hence
_ ‘Q'y,A _ —(—600 W/ m)

- =60 K /m. <
B kOvg 10W/mIKx1m

(0T 1 &%)

COMMENTS: Note that, in using the conservation requirement, gy = +0y o and Qgyt = +0y B-



PROBLEM 2.12
KNOWN: Length and thermal conductivity of a shaft. Temperature distribution along shaft.

FIND: Temperature and heat rates at ends of shaft.

SCHEMATIC:

P:pe/i ne

Supporting shaft,
k=25W(m-K L=1m,

T:100-150x + 10x?

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x, (3) Constant

properties.
ANALYSIS: Temperatures at the top and bottom of the shaft are, respectively,
T(0) =100°C T(L) =-40°C. <
Applying Fourier'slaw, Eqg. 2.1,
_ dT _ 2 )
Oy = kA= 25W/m & (0.005 m?)(-150 +20x)°C/m
Oy = 0.125(150 - 20x)W.
Hence,
<

ax(0) =18.75W (L) = 16.25 W.

The difference in heat rates, qy(0) > qy(L), is dueto heat losses q, from the side of the shaft.

COMMENTS: Heat loss from the side requires the existence of temperature gradients over the shaft
cross-section. Hence, specification of T as afunction of only X is an approximation.



PROBLEM 2.13

KNOWN: A rod of constant thermal conductivity k and variable cross-sectional area A,(x) = A,e™
where A, and a are constants.

FIND: (a) Expression for the conduction heat rate, g«(x); use this expression to determine the
temperature distribution, T(X); and sketch of the temperature distribution, (b) Considering the
presence of volumetric heat generation rate, ¢ = exp(—ax) , Obtain an expression for gx(x) when

the left face, x = 0, iswell insul ated.

SCHEMATIC:

M Eg T(x)
) ,.
O — | | —ax+ ox
% 4|”|*
|
] |

A(x) = A8

ASSUMPTIONS: (1) One-dimensional conduction intherod, (2) Constant properties, (3) Steady-
state conditions.

ANALYSIS: Perform an energy balance on the control volume, A(x)[dx,
Ein —Eout +I.Eg =0
Ox ~Ox+dx + G A (x) @x =0

The conduction heat rate terms can be expressed as a Taylor series and substituting expressions for
and A(x),

d .
—&(qx)+qo exp(-ax) B g exp(ax) =0 (1)
dar
=-k[A(X)— 2
Ox () 4 @
(a) With no internal generation, g, =0, and from Eq. (1) find
d
- =0 <
dx (qX)
indicating that the heat rate is constant with x. By combining Egs. (1) and (2)
dO dTQ a7
-— kA (X)—7=0 or A(X = 3 <
dxH_ ()dXB ()dx “ 3

Continued...



PROBLEM 2.13 (Cont.)

That is, the product of the cross-sectional area and the temperature gradient is a constant, independent
of x. Hence, with T(0) > T(L), the temperature distribution is exponential, and as shown in the sketch
above. Separating variables and integrating Eq. (3), the general form for the temperature distribution
can be determined,

Agexp(ax) Gdl =C;
dx
dT = 1A 5L exp (—ax) dx

T(x)=-CiAaexp(-ax) +Co <
We could use the two temperature boundary conditions, T, = T(0) and T, = T(L), to evaluate C, and
C, and, hence, obtain the temperature distribution in termsof T, and T,.
(b) With the internal generation, from Eq. (1),
d . .
—&(qx)+quo =0 or dx =0oAoX <
That is, the heat rate increases linearly with x.

COMMENTS: In part (b), you could determine the temperature distribution using Fourier’s law and
knowledge of the heat rate dependence upon the x-coordinate. Giveit atry!



PROBLEM 2.14
KNOWN: Dimensions and end temperatures of a cylindrical rod which isinsulated on its side.
FIND: Rate of heat transfer associated with different rod materials.

SCHEMATIC:
D=25mm “«Tp=0C
\
T,=100°C
—7 X L=0.1m

ASSUMPTIONS: (1) One-dimensional conduction along cylinder axis, (2) Steady-state conditions,
(3) Constant properties.

PROPERTIES: The properties may be evaluated from Tables A-1 to A-3 at a mean temperature of
50°C = 323K and are summarized below.

ANALYSIS: The heat transfer rate may be obtained from Fourier’slaw. Since the axial temperature
gradient is linear, this expression reduces to

T-T -, 71(0.025m)” (100-0)°C

=kA-L =0491(mAC) [k
g L 4 0.1m 1( )
Cu Al St.St SIN Oak Magnesia Pyrex
(pure)  (2024) (302) (85%)
k(W/mIK) 401 177 16.3 14.9 0.19 0.052 14
q(w) 197 87 8.0 7.3 0.093 0.026 069 <

COMMENTS: Thek values of Cu and Al were abtained by linear interpolation; the k value of St.St.
was obtained by linear extrapolation, as was the value for SiN; the value for magnesia was obtained
by linear interpolation; and the values for oak and pyrex are for 300 K.



PROBLEM 2.15
KNOWN: One-dimensional system with prescribed surface temperatures and thickness.

FIND: Heat flux through system constructed of these materials. (a) pure aluminum, (b) plain carbon
stedl, (c) AlSI 316, stainless stedl, (d) pyroceram, (€) teflon and (f) concrete.

SCHEMATIC:
< > L=20mm
7; =325/< 7;.___275/<
Material of
known k >
7%
I_"x

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No heat
generation, (4) Constant thermal properties.

PROPERTIES: Thethermal conductivity is evaluated at the average temperature of the system, T =
(T1+T9)/2 = (325+275)K/2 = 300K. Property values and table identification are shown below.

ANALYSIS: For this system, Fourier’slaw can be written as

dT T, =T
m— k= k-2 1
A dx L
Substituting numerical values, the heat flux is
275-325)K
dx = (275 329K 3) = 42500 K
20x10™m m

where gy will have unitsW/m2 if k has units W/mIK. The heat fluxes for each system follow.

Thermal conductivity Heat flux
Material Table  k(W/mK) q (kW/ m2)
(@) Pure Aluminum A-1 237 593 <
(b) Plain carbon steel A-1 60.5 151
(c) AlSI 316, S.S. A-1 134 335
(d) Pyroceram A-2 3.98 9.95
(e) Teflon A-3 0.35 0.88
(f) Concrete A-3 1.4 35

COMMENTS: Recognize that the thermal conductivity of these solid materials varies by more than
two orders of magnitude.



PROBLEM 2.16

KNOWN: Different thicknesses of three materials: rock,

insulation, 6 in.

18 ft; wood, 15 in; and fiberglass

FIND: Theinsulating quality of the materials as measured by the R-value.

PROPERTIES: Table A-3 (300K):

Materid Thermal
conductivity, W/m(K
Limestone 2.15
Softwood 0.12
Blanket (glass, fiber 10 kg/m3) 0.048

ANALYSIS: The R-value, aquantity commonly used in the construction industry and building

technology, is defined as
L(in)
k(Btutin/ hit? OF)

R

The R-value can be interpreted as the thermal resistance of a 1 ft2 cross section of the material. Using
the conversion factor for thermal conductivity between the Sl and English systems, the R-values are:

Rock, Limestone, 18 ft:

18ftx121
R= ft
215 W x0577g BUNTLOF 5N
mK W/m K ft
Wood, Softwood, 15 in:
R= 15in .
012 W xos577gBU/NOEF 5in
mK W/ mK ft
Insulation, Blanket, 6 in:
R= 6in -
0048 W 0577 BU/NOOF, g5in
mK W/ mK ft

2 -1
=145 (Btu/h §t2 ¢ F)

18 (Btu/ h(it? GF)_l

=18 (Btu/hit? F)_l

COMMENTS: The R-value of 19 given in the advertisement is reasonable.



PROBLEM 2.17

KNOWN: Electrical heater sandwiched between two identical cylindrical (30 mm dia. x 60 mm
length) samples whose opposite ends contact plates maintained at T .
FIND: (a) Thermal conductivity of SS316 samples for the prescribed conditions (A) and their

average temperature, (b) Thermal conductivity of Armco iron sample for the prescribed conditions
(B), (c) Comment on advantages of experimental arrangement, lateral heat losses, and conditions for

which ATq £ AT».

SCHEMATIC:
7;: 77°C 7;= 7 706
AX=15mm SS3/6
Heater, aT=25.07C Heater, al;=150C
100V, SS316 100V, Armco iron
0:353A BT aL=250Cc 0601A AT;=15.0C
T=77°C ax=15mm T=77°C
=77 ase A ° Case B

ASSUMPTIONS: (1) One-dimensional heat transfer in samples, (2) Steady-state conditions, (3)
Negligible contact resistance between materials.

PROPERTIES: Table A.2, Stainless steel 316 (T =400 K): kKes =152 W/ mIK; Armcoiron
(T =380K): Kijron =716 W/ mK.
ANALYSIS: (&) For Case A recognize that half the heater power will pass through each of the
samples which are presumed identical. Apply Fourier’slaw to a sample

AT

=kA.—
q C Ax

(- GAx _ 05100V x0.353A) x 0015 m
AT 7(0.030m)?/4x250°C

=150 W/ mIK. <

The total temperature drop across the length of the sample is AT 1(L/Ax) = 25°C (60 mm/15 mm) =
100°C. Hence, the heater temperatureis T = 177°C. Thus the average temperature of the sampleis

T=(T,+T,)/2=127°C=400K <

We compare the calculated value of k with the tabulated value (see above) at 400 K and note the good
agreement.

(b) For Case B, we assume that the thermal conductivity of the SS316 sampleis the same as that
found in Part (a). The heat rate through the Armco iron sampleis

Continued .....



PROBLEM 2.17 (CONT.)

m0.030m)°  150°C

iron = Yheater ~Uss =100V x0.601A -150W/ m K x

4 0.015m
Ciron = (601-106)W =49.5W
where
Oss = KA ATy / AXs.
Applying Fourier’s law to theiron sample,
_ QunX, _ 495Wx0015m  _ oo <

" AMT,  1(0.030m)*/4x150°C

Thetotal drop across theiron sample is 15°C(60/15) = 60°C; the heater temperatureis (77 + 60)°C =
137°C. Hence the average temperature of the iron sampleis

T=(137 + 77)°C/2=107°C=380K. <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samplesis the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples. With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat |eakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material. Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materias.

For any combination of materials in the upper and lower position, we expect ATq = ATo. However, if
the insulation were improperly applied along the lateral surfaces, it is possible that heat |eakage will

occur, causing ATq # AT».



PROBLEM 2.18

KNOWN: Comparative method for measuring thermal conductivity involving two identical samples
stacked with areference material.

FIND: (a) Therma conductivity of test material and associated temperature, (b) Conditions for
which ATt,l * ATt,Z

SCHEMATIC:
T,=400K ax=10mm
al, ,=3.32°C
Test sample (I)— 1.1
Reference maferia/)— A—,; -249°C
Armco irom
Test sample (Z) —= AT: ,=3.3 2°C

T.=300K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer through samples
and reference material, (3) Negligible thermal contact resistance between materials.

PROPERTIES: Table A2, Armcoiron (T =350K): k, =692 W/m[K.

ANALYSIS: (a) Recognizing that the heat rate through the samples and reference material, all of the
same diameter, is the same, it follows from Fourier’s law that

AT, AT,
AX AX AX
kt:krATr =692 W/mK 222 C - 510w/ miK. <
AT, 3.32°
We should assign this value a temperature of 350 K. <

(b) If the test samples are identical in every respect, ATy 1 # ATy 2 if the thermal conductivity is highly
dependent upon temperature. Also, if there is heat leakage out the lateral surface, we can expect

ATy p <ATyt 1. Leakage could be influential, if the thermal conductivity of the test material were less
than an order of magnitude larger than that of the insulating material.



PROBLEM 2.19
KNOWN: Identical samples of prescribed diameter, length and density initially at a uniform
temperature Tj, sandwich an electric heater which provides a uniform heat flux q¢ for a period of

time Atg. Conditions shortly after energizing and a long time after de-energizing heater are
prescribed.

FIND: Specific heat and thermal conductivity of the test sample material. From these properties,
identify type of material using Table A.1 or A.2.

SCHEMATIC:
RPN - ro w2 v <«—=Insulation about the
L=]0mm\.r& <—D 60mm ’|§ entire block
P - Samp/e 1,p= 3965kg/m3
Y
T (<} —Heater, P(W)
o)== > .
;,'_}::A\“ e "3-9.'7}‘\‘:\__ \;Samp/e 2,,11=23.00 C

ASSUMPTIONS: (1) Onedimensional heat transfer in samples, (2) Constant properties, (3)
Negligible heat loss through insulation, (4) Negligible heater mass.

ANALYSIS: Consider acontrol volume about the samples

and heater, and apply conservation of energy over the time T(0)=-T;=23.00°C
interval fromt=0to Tr0)=-33.50°C

| po————

Ein —Eout =AE=E; —E; _’:_X__:

Ein ! i

PAt, =0 =Mcp[T() =T;]

where energy inflow is prescribed by the Case A power condition and the final temperature T¢ by

Case B. Solving for cp,

PAt, 15Wx120's

[o]

c. = =
" M[T(0)-T,] 2x3965kg/m’(rrx0.060°/ 4)m* x0,010 m[33.50- 23.00]°C

cp = 7653/ kg K <

whereM =pV = 2p(T[D2/4)L is the mass of both samples. For Case A, the transient thermal response
of the heater is given by

Continued .....



PROBLEM 2.19 (Cont.)

¢ 12
-]

Ty,
2
ot [ 2q; }
k =
Xy To(t)-T,
2 2
‘o 325 2x2653W /P |
1% 3965 kg/ m® x765 J/ kg [K | (24.57 - 23.00)°C
where
L LW = 2653 W/ m?.

A5 2(nD?14) 2(1mx0.060° / 4)m?
With the following properties now known,

p = 3965 kg/m° Cp = 765 JkgK k = 36 W/mIK

entriesin Table A.1 are scanned to determine whether these values are typical of ametallic material.

Consider the following,
« metallicswith low p generally have higher thermal conductivities,

» gpecific heats of both types of materials are of similar magnitude,

» thelow k value of the sampleistypical of poor metallic conductors which generally have

much higher specific heats,
« morethan likely, the material is nonmetallic.

From Table A.2, the second entry, polycrystalline aluminum oxide, has properties at 300 K

corresponding to those found for the samples.



PROBLEM 2.20

KNOWN: Temperature distribution, T(X,y,z), within an infinite, homogeneous body at agiven
instant of time.

FIND: Regionswhere the temperature changes with time.
SCHEMATIC:

+— T(x,y,z)= x2-2y2 +z2-xy +2')'Z

Zz Infinite medium
Y

X

ASSUMPTIONS: (1) Constant properties of infinite medium and (2) No internal heat generation.

ANALYSIS: Thetemperature distribution throughout the medium, at any instant of time, must
satisfy the heat equation. For the three-dimensional cartesian coordinate system, with constant
properties and no internal heat generation, the heat equation, Eq. 2.15, has the form

9°T , 0°T 9°T _107T

ax2 9y? 972 a ot
If T(X,y,2) satisfiesthis relation, conservation of energy is satisfied at every point in the medium.
Substituting T(x,y,2) into the Eq. (1), first find the gradients, 0T/0x, 0T/dy, and dT/0z.

17} 17} 0 10T
—(2X-y)+—(-4y-x+22)+—(22+2y) =— —,
(2x-y) dy( y-x+22) dz( z+2y)

D

0X a ot

Performing the differentiations,

2-442=19T
a ot
Hence,
9T _,
ot

which implies that, at the prescribed instant, the temperature is everywhere independent of time.

COMMENTS: Since we do not know the initial and boundary conditions, we cannot determine the
temperature distribution, T(X,y,z), at any futuretime. We can only determine that, for this special
instant of time, the temperature will not change.



PROBLEM 2.21

KNOWN: Diameter D, thickness L and initial temperature T; of pan. Heat rate from stove to bottom

of pan. Convection coefficient h and variation of water temperature T (t) during Stage 1.
Temperature T of pan surface in contact with water during Stage 2.

FIND: Form of heat equation and boundary conditions associated with the two stages.
SCHEMATIC:

Stage 1

e 1 1Pttt e

ASSUMPTIONS: (1) One-dimensional conduction in pan bottom, (2) Heat transfer from stove is
uniformly distributed over surface of pan in contact with the stove, (3) Constant properties.

ANALYSIS:
Sagel

2
Heat Equation: % = l —
ox< a
Boundary Conditions: —k Z—T %
X

oT

+ T =hE (L) T (0

Initial Condition: T(x,0)=T;
Sage 2

Heat Equation: —F=0

T
Boundary Conditions. -k d— =5
dx |y =0

T(L)=TL

COMMENTS: Stage 1lisatransient process for which T (t) must be determined separately. Asa
first approximation, it could be estimated by neglecting changes in thermal energy storage by the pan
bottom and assuming that all of the heat transferred from the stove acted to increase thermal energy

storage within the water. Hence, with g =Mcp d Too/dt, where M and ¢, are the mass and specific
heat of the water in the pan, Te(t) = (0/Mcp) t.



PROBLEM 2.22
KNOWN: Steady-state temperature distribution in a cylindrical rod having uniform heat generation
of 0y =5x107 W/ m°.
FIND: (a) Steady-state centerline and surface heat transfer rates per unit length, d;. (b) Initial time
rate of change of the centerline and surface temperatures in response to a change in the generation rate
from ¢y to g, = 108 W/ m?.
SCHEMATIC:

Ter) =800-4.167- 10°r2
r,=0.025m 9=9,=510"W/ms

9 k=30 Wm-k
M P=1100kg/m3, cp=800Jfkg-K

ASSUMPTIONS: (1) One-dimensional conduction in the r direction, (2) Uniform generation, and
(3) Steady-statefor ¢ = 5x10” W/m?>,

ANALYSIS: (a) From the rate equations for cylindrical coordinates,

oT oT
T =—-k— =-kA, —.
Ar ar g T or
Hence,
oT
= -k(2mmL)—
qr ( )ar
or
oT
P = —2TKr —
ar ar

where dT/dr may be evaluated from the prescribed temperature distribution, T(r).
Atr =0, thegradientis (0T/dr) = 0. Hence, from Eq. (1) the heat rateis

a;(0) =0 <
At r =rq, the temperature gradient is

oT 3 5 K _ 5
W} = —2{4.167 x10 —2}(%) = -2(4167 x10°)(0.025m)
r=ro m

T

} = -0.208 x10° K / m.
ﬁr Ir=r

Continued .....



PROBLEM 2.22(Cont.)

Hence, the heat rate at the outer surface (r = rg) per unit length is

0 (1o) = ~2n[30 W/ m K](0.025m)| 0208 x10° K / m|

q;(ro) =0980x10° W/ m. <

(b) Transient (time-dependent) conditions will exist when the generation is changed, and for the
prescribed assumptions, the temperature is determined by the following form of the heat equation, Eq.

2.20
1 0 oT oT
2 9 kw2 g, = pe 2L

r a"'r[ o"'r} G2 =P 54

oT 11 0 [ c?TJ
—=—= —|kr—[+Q5 |
ot PCp LT or or
However, initialy (at t = 0), the temperature distribution is given by the prescribed form, T(r) = 800 -
52
4.167x10°r , and

1 i[kr ‘?—T} - 5i[r(-&334 x10° m)]
r or or ror

Hence

_K (—16.668 x10° m)
;

=30 W/ mIK [-16.668 x10° K / mz]

= 5x10" W/m® (theoriginal g =¢)).
Hence, everywherein the wall,
oT _ 1

Jt 1100 kg/ m3x800 J/ kg K

[—5x107 +108] W/ ms

or
Al =5682K/s. <
ot

COMMENTS: (1) Thevalue of (9T/at) will decrease with increasing time, until a new steady-state
condition is reached and once again (0T/dt) = 0.

(2) By applying the energy conservation requirement, Eq. 1.11a, to a unit length of the rod for the
steady-state condition, Ef, —Egyt +Egen =0. Hence q;(0)—q;(ro) = —ql(nrg).



PROBLEM 2.23

KNOWN: Temperature distribution in a one-dimensional wall with prescribed thickness and thermal
conductivity.

FIND: (a) The heat generation rate, g, inthewall, (b) Heat fluxes at the wall faces and relation to
qg.

SCHEMATIC:
M= 50 WK, 4 L=
\<'—T(x)=a+bx2 T(°C) : > :
0 —| l—
e 2=200C %0 || 5 | %0
>x  |L=50mm b=-2000 C/’”z : :

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3) Constant
properties.

ANALYSIS: (&) The appropriate form of the heat equation for steady-state, one-dimensional
conditions with constant propertiesis Eq. 2.15 re-written as

._.d _dT}
4=k |
dx | dx
Substituting the prescribed temperature distribution,
d[d 2 d
=-k—| —(a+bx = —-k—([2bx| = 2bk
a dx _dx( )} dx[ ]
q:-z(-2000°C/m2)x50W/m[K:2.0><105W/m3. <

(b) The heat fluxes at the wall faces can be evaluated from Fourier’s law,
dT
v(x)=-k —| .
qX( ) dX j|x
Using the temperature distribution T(x) to evaluate the gradient, find
d 2
v(X)=-k —[a+ bx ] = —2kbx.
qX( ) dX
Thefluxesat x =0and x =L arethen
9x(0)=0 <

fy (L) = —2kbL = -2 x50W / m K (-2000°C/ m? | x0,050m

g (L) =10,000 W/ m?. <
COMMENTS: From an overall energy balance on the wall, it follows that, for aunit area,
Ein_Eout +Eg =0 q')'((O)—q’)’((L)+q|_:O
_ ax(L)-gx(0) _ 10,000 W/m? -0
L 0.050m

q =20x10°W/m?>.




PROBLEM 2.24
KNOWN: Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.

FIND: (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)
Convection coefficient.

SCHEMATIC:
| k=1W/m-k
. T(x)=200-200x + 30x2
200°C I
| 142.7°C
—_— —»
Qin ! : Qout T T
I

{ T =200°C, A
= x |L=0.3m

ASSUMPTIONS: (1) One-dimensional conductionin x, (2) Constant k.
ANALYSIS: (a) From Fourier'slaw,

aT
v = k21 (200 -60x) &
ay F ( X)

°C w

x 1 =200 W/ n¥
m mK

Qin = Oyp = 200

Oy =i =(200-60%03)°C/m x 1W/m K =182 W/m’.
Applying an energy balance to a control volume about the wall, Eq. 1.11a,
Efn ~ Ebu = Ex
E% =i~ dou =18 W/m”,
(b) Applying a surface energy balance at x = L,
Gout = [T(L) - Te]

he G _ 182 W/ m?
T(L)-T, (142.7-100)°C

h=43W/m? K.
COMMENTS: (1) From the heat equation,
(0T/ot) = (k/pcp) 62T/6x2 = 60(k/pcp),
it follows that the temperature is increasing with time at every point in the wall.

(2) Thevaue of hissmall and istypical of free convection in agas.



PROBLEM 2.25

KNOWN: Analytical expression for the steady-state temperature distribution of a plane wall
experiencing uniform volumetric heat generation ¢ while convection occurs at both of its surfaces.

FIND: (@) Sketch the temperature distribution, T(x), and identify significant physical features, (b)
Determine ¢, (c) Determine the surface heat fluxes, ay (-L) and gy (+L); how are these fluxes
related to the generation rate; (d) Calculate the convection coefficients at the surfacesx =L and x =
+L, (€) Obtain an expression for the heat flux distribution, g3 (x); explain significant features of the
distribution; (f) If the source of heat generation is suddenly deactivated (¢ = 0), what isthe rate of

change of energy stored at thisinstant; (g) Determine the temperature that the wall will reach
eventually with g = 0; determine the energy that must be removed by the fluid per unit area of the wall

to reach this state.

SCHEMATIC:
T=a+bx+cx? a = 82.0°C, x(m)
d, k=5W/m-K b =-210°C/m
p = 2600 kg/m3 ¢ = - 2x104 °C/m?2
cp = 800 J/kg-K

T(+L)

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform volumetric heat generation, (3) Constant
properties.

ANALYSIS: (a) Using the analytical expression in the Workspace of IHT, the temperature
distribution appears as shown below. The significant features include (1) parabolic shape, (2)
maximum does not occur at the mid-plane, T(-5.25 mm) = 83.3°C, (3) the gradient at the x = +L
surfaceisgreater thanat x =-L. Find also that T(-L) = 78.2°C and T(+L) = 69.8°C for use in part (d).

Temperature distribution

90

85

80

Temperature, T(x) (C)

75

70

-20 -10 0 10 20

x-coordinate, x (mm)

(b) Substituting the temperature distribution expression into the appropriate form of the heat diffusion
equation, Eq. 2.15, the rate of volumetric heat generation can be determined.
imTD+3:O where T(x) =a +bx +cx
dx HaxH k

2

dix(0+b+20x) +% =(0 +2c) +% =0
Continued .....



PROBLEM 2.25 (Cont.)
q:—2ck:—2(—2 ><104‘C/m2)5W/m K =2 X0°W/m°® <

(c) The heat fluxes at the two boundaries can be determined using Fourier’ slaw and the temperature
distribution expression.

oy (x) = —kg—;l(_ where T(x) =a+bx +cx

2
oy (-L)=—k[0+b+2cx] __, =4b —2cl] k
oy (-L) = —5—210°C/m —2(—2 ><104fc:/m2)o.020m5 SW/m K =2050W/m? <
o (+L) = (b +2cL )k = 45050W / m? <
From an overall energy balance on the wall as shown in the sketch below, E;,, —Eqt + Egen =0,

2
+qy (L) =dy (+L) +29L =0 or  -2950W/m? -5050W/m? +8000W/m? =0

where 24L = 2x2x10° W/m°> x0.020 m =8000W / m?, so the equality is satisfied

I.Eé;en =2qL T('l”—) g I T(+L)
dovi 11 ax(-L) ax(+L) 1|1 Ay
) — Il —> —> I —>
ax(-L) ax(+L) " i
| | ek k b @-
-L L> x +L
Part (c) Overall energy balance Part (d) Surface energy balances

(d) The convection coefficients, hy and hy, for the left- and right-hand boundaries (x = -L and x= +L,
respectively), can be determined from the convection heat fluxes that are equal to the conduction
fluxes at the boundaries. See the surface energy balances in the sketch above. See also part (a) result
for T(-L) and T(+L).

Gov,e =dx (L)
h Ho ~T(-L)Yg=h[20-78.2]K = 2950W/m? hj =51W/m? K <
Gov,r =dx (+L)
hy  (+L) - Twg=h, [69.8 20| K = 45050W /m? hy =101W/m? R <

(e) The expression for the heat flux distribution can be obtained from Fourier’ s law with the
temperature distribution

L —_ dT —_—
ay (x)= k= &[0 +b +2cx]

i (x)=-5W/mK 210°C/m +2( 2 x10% T/ mz)gx =1050 42 10°x <

Continued .....



PROBLEM 2.25 (Cont.)
Thedistribution is linear with the x-coordinate. The maximum temperature will occur at the location
where gy (Xmax ) =0,

2
Xmax =~ 1050W/m =525 x10‘3m =-5.25mm <

2x10° W /m3

(f) If the source of the heat generation is suddenly deactivated so that ¢ = 0, the appropriate form of
the heat diffusion equation for the ensuing transient conduction is
0 PTO_ oT

k— =pCh—
0X Ba_xH Pp ot
At the instant this occurs, the temperature distribution is still T(x) =a+ bx + cx2. Theright-hand term
represents the rate of energy storage per unit volume,

Ey :kai[o+b+2cx] =k[0+2d =5W/m K xz(e 0% C/mz) =2 A0°W/m? <
X

(g) With no heat generation, the wall will eventually (t — o) come to equilibrium with the fluid,

T(X,0) = T = 20°C. To determine the energy that must be removed from the wall to reach this state,
apply the conservation of energy requirement over an interval basis, Eq. 1.11b. The“initia” stateis

that corresponding to the steady-state temperature distribution, T;, and the “fina” state has Ts = 20°C.
We' ve used T, asthe reference condition for the energy terms.

L
~Eout =PCp2L (Tr ~Teo) =pCp [ (Ti ~Teo )k

+L
Eout = pcijII_‘ %+bx +cx2 T, Hax :pcpgax +hx?2 /2 +cx3/3 = WE—L

Ebut = 0 Cp %aL +0+2cx3/3 —ZTWLE

Efyt = 2600kg/m3x800J/ kg K %xsz%: x0,020m +2( 2 x10%c/ m2)

(0.020m)>/3- 2(20°C)0.020m§

Epyt =4.94x10% 3/ m? <

COMMENTS: (1) In part (a), note that the temperature gradient is larger at x = + L than at x
=- L. Thisisconsistent with the results of part (c) in which the conduction heat fluxes are
evaluated.

Continued .....



PROBLEM 2.25 (Cont.)

(2) In evaluating the conduction heat fluxes, g (x), it isimportant to recognize that this flux
isin the positive x-direction. See how this convention is used in formulating the energy
balance in part (c).

(3) Itisgood practice to represent energy balances with a schematic, clearly defining the
system or surface, showing the CV or CS with dashed lines, and |abeling the processes.
Review again the features in the schematics for the energy baances of parts (c & d).

(4) Re-writing the heat diffusion equation introduced in part (b) as
dQg, drg,.
-—rmrk—pg+q =0
dx H_ dx a
recognize that the term in parenthesisis the heat flux. From the differential equation, note
that if the differential of thisterm is a constant (q/ k), then the term must be alinear function

of the x-coordinate. This agrees with the analysis of part (€).
(5) In part (f), we evaluated Eg, the rate of energy change stored in the wall at the instant the

volumetric heat generation was deactivated. Did you noticethat Eg = -2 x10° W/ m® isthe
same value of the deactivated g? How do you explain this?



PROBLEM 2.26

KNOWN: Steady-state conduction with uniform internal energy generation in a plane wall;
temperature distribution has quadratic form. Surface at x=0is prescribed and boundary at x = L is
insulated.

FIND: (@) Calculate the interna energy generation rate, ¢, by applying an overal energy balanceto

the wall, (b) Determine the coefficients a, b, and c, by applying the boundary conditionsto the
prescribed form of the temperature distribution; plot the temperature distribution and label as Case 1,
(c) Determine new values for a, b, and ¢ for conditions when the convection coefficient is halved, and
the generation rate remains unchanged; plot the temperature distribution and label as Case 2; (d)
Determine new valuesfor a, b, and ¢ for conditions when the generation rate is doubled, and the
convection coefficient remains unchanged (h = 500 W/mz[K); plot the temperature distribution and
label as Case 3.

SCHEMATIC:
T(x) =a+ bx + cx2
k=5W/mK, g

T(0) = T, = 120°C

T = 20°C |
h = 500 W/m2-K ? %
L5«

L =50 mm

Insulated
boundary

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with constant
properties and uniform interna generation, and (3) Boundary at x = L is adiabatic.

ANALYSIS: (@) Theinterna energy generation rate can be calculated from an overall energy balance
on the wall as shown in the schematic below.

Efn —Eout +Egen =0 where Ein =biconv
h(Tw —To) +qL =0 0

§=-h(Te ~To)/L = -500W/m? [ (20 ~120) T/0.050 m =1.0 K0°W/m® <

To To ~ups 117

» » v

q . Yconv 1 x(0) ax(L) ! %

conv — il — > 1|

—> 7 i 1 %

) 7 ith |%
E;en | |—> X —L 5 x=L

|—> X L
(a) Overall energy balance (b) Surface energy balances

(b) The coefficients of the temperature distribution, T(x) =a+ bx + cx2, can be evaluated by applying
the boundary conditionsat x = 0and x = L. See Table 2.1 for representation of the boundary
conditions, and the schematic above for the relevant surface energy balances.

Boundary condition at x = 0, convection surface condition

Ein —Eout =deonv —0ix (0) =0 where b (0) = _kd_X B<=0

h(Teo —To) ~Hk (0 +b +2cx), _oH =0
Continued .....



PROBLEM 2.26 (Cont.)
b=-h(Te ~To)/k = 500W/m? [K (20 -120) T/5W/m K =1.0 10*K /m <

Boundary condition at x = L, adiabatic or insulated surface

dT O

Ein—Eout =0 (L) =0  where dx (L) =- &E(:L
k[o+b+2cx] _ =0 3
c=-b/2L =-1.0x10%K /m/(2 x0.050m) = 1.0 40°K / m? <

Since the surface temperature at x = 0 is known, T(0) = T, = 120°C, find
T(0)=120°C=a+b0+c or a=120C @ <

Using the foregoing coefficients with the expression for T(x) in the Workspace of IHT, the
temperature distribution can be determined and is plotted as Case 1 in the graph below.

(c) Consider Case 2 when the convection coefficient is halved, h, = h/2 =250 W/mZEE(, q= 1x10°
W/m3 and other parameters remain unchanged except that T, #120°C. We can determine a, b, and ¢

for the temperature distribution expression by repeating the analyses of parts (a) and (b).
Overall energy balance on the wall, see Egs. (1,4)

a=Ty =qL/h+Te =1x10%W/m® x0.050m/250W/m? K +20C =220C <
Surface energy balance at x = 0, see Eq. (2)

b=-h(Te ~To)/k = 250W/m? [K (20 220) T/5W/m K =1.0 40%K /m <
Surface energy balance at x = L, see Eq. (3)

c=-b/2L =-1.0x10*K /m/(2 x0.050m) =-1.0 M0°K / m? <

The new temperature distribution, T (x), is plotted as Case 2 below.
(d) Consider Case 3 when theinternal energy volumetric generation rate is doubled,
G3=24=2 x10%W / m3, h =500 W/mZEB(, and other parameters remain unchanged except that
To #120°C. Following the same analysis as part (c), the coefficients for the new temperature
distribution, T (x), are

a=220°C  b=2x10*K/m  ¢=-2x10°K/m? <
and the distribution is plotted as Case 3 below.

Continued .....
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800

700

600 el

500

400

Temperature, T (C)

300

/
/

200

AN

100

o
(3,1

10 15 20 25 30 35 40 45 50

Wall position, x (mm)

1. h =500 W/m"2.K, qdot=1e6 W/m~"3
—&— 2. h=250W/m"2 K, qdot=1e6 W/m*"3
—&— 3. h=500W/m"2.K, qdot=2e6 W/m*"3

COMMENTS: Notethefollowing featuresin the family of temperature distributions plotted above.
The temperature gradients at X = L are zero since the boundary is insulated (adiabatic) for al cases.
The shapes of the distributions are all quadratic, with the maximum temperatures at the insulated
boundary.

By halving the convection coefficient for Case 2, we expect the surface temperature T to increase
relative to the Case 1 value, since the same heat flux is removed from thewall (gL ) but the
convection resistance has increased.

By doubling the generation rate for Case 3, we expect the surface temperature T, to increase relative
to the Case 1 value, since double the amount of heat flux is removed from thewall (2qL).

Can you explain why T isthe same for Cases 2 and 3, yet the insulated boundary temperatures are
quite different? Can you explain the relative magnitudes of T(L) for the three cases?



PROBLEM 2.27

KNOWN: Temperature distribution and distribution of heat generation in central layer of a solar
pond.

FIND: (a) Heat fluxes at lower and upper surfaces of the central layer, (b) Whether conditions are
steady or transient, (c) Rate of thermal energy generation for the entire central layer.

SCHEMATIC:

o

S A Gu LD G Co~s

Y

Mixed layer

Central layer

Mixed layer

ASSUMPTIONS: (1) Central layer is stagnant, (2) One-dimensional conduction, (3) Constant
properties

ANALYSIS: (a) The desired fluxes correspond to conduction fluxesin the central layer at the lower
and upper surfaces. A genera form for the conduction flux is

oT A .
"og = —k— = k| —e* +B|.
Ucond Ix [ka }
Hence,
n — n — A 'aL [ LJ— n — A
ar = qcond(x:L) - _k[ge +B} Qu = qcond(x:O) - _k[g +B} <
(b) Conditions are steady if 0T/0t = 0. Applying the heat equation,
2 .
oT,4_107 Aga Aga 10T
Ix? k a ot K K a dt
Hence conditions are steady since
d0T/ot=0 (forall 0sx<L). <
(c) For the central layer, the energy generation is
—n — L . - L -aX
Eg _Io gdx=A _[0 e dx
L
Eg=-De®| =-L(e? ) L) <
a 0 a a

Alternatively, from an overall energy balance,
95 —0i+Eg=0 Ey=ai-a5= (‘qéond(xzo)) - (_qgond(x:L))
Eg = k[i + BJ— k[ie'a" + B} = é(1—e"""').
ka ka a

COMMENTS: Conduction isin the negative x-direction, necessitating use of minus signsin the
above energy balance.



PROBLEM 2.28
KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux.
FIND: (a) Expressionsfor the heat flux at the front and rear surfaces, (b) Heat generation rate q(x),
(c) Expression for absorbed radiation per unit surface areaintermsof A, a, B, C, L, and k.

SCHEMATIC:
l l[aser' irradiation

9:(0) ) W S
Sm— P emitransparent medium,
‘;_ _ _E-_S.’ _____ ._“‘ E : Tix ='k—Aa'z e 9% +Bx+C
vaxit)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3)
Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal
volumetric heat generation term ¢j(X).

ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found using
Fourier's law,

dT A -
v = | = o -2 (-a)e™ +B
x [dXJ [ ka2( )e }
A

Front Surface, x=0: ay(0) = —k[+kA 1+ B} = —[— + kB} <
a a

Rear Surface, x=L: ay(L)= —k[+kﬁe'aL +B] = —[ée'a'- +kB}. <
a a

(b) The heat diffusion equation for the mediumis

i(d_-rj+ﬂ:0 or q:_ki(d_-r)
dx \ dx k dx \ dx

a(x) = —ki[+ie'ax +B} =A™, <
dx| ka

(c) Performing an energy balance on the medium,
Ein — Eout +Eg =0
recognize that Eg represents the absorbed irradiation. On aunit areabasis
E5 = ~Ef + Eha = -G (0) ray(L) =+ (1-¢™) <

Alternatively, evaluate Eé by integration over the volume of the medium,

Eg = j(;' ¢(x)dx = J()L Ae®dx = -%[e‘ax]; = %(1—e'a" )



PROBLEM 2.29
KNOWN: Steady-state temperature distribution in a one-dimensiona wall of thermal
conductivity, T(x) = Ax3 + Bx2 +Cx +D.

FIND: Expressionsfor the heat generation rate in the wall and the heat fluxes at the two wall
faces(x =0,L).

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3)
Homogeneous medium.

ANALYSIS: The appropriate form of the heat diffusion equation for these conditionsis

2+ . 2
d_'2I'+g =0 or ¢@= -kd—T
dx= K dx?
Hence, the generation rateis
q:-ki[d—T}:—ki[Ssz +2Bx + C + 0
dx | dx dx
¢ =-k[6AXx + 2B] <

which is linear with the coordinate x. The heat fluxes at the wall faces can be evaluated from
Fourier'slaw,

ql = kd—T = k[SAx + 2Bx + c]
using the expression for the temperature gradient derived above. Hence, the heat fluxes are:
Surface x=0:

a%(0) = -kC <
Surface x=L:
qi(L —k[3AL2 +2BL +c] <

COMMENTS: (1) From an overal energy balance on the wall, find
Ef — Eout + Eé =0
0% (0) - (L) + E} = (~KC) ~( k)| 3AL? +2BL +C| +Ey =0
Ey = -3AKL” —2BKL.

From integration of the volumetric heat rate, we can aso find Eé as

. L
Ey = [ a(x)ax= j K[6AX + 2B]ix = -K[3Ax? +2Bx]0

Ey= —3AKL2 —2BKL.



PROBLEM 2.30
KNOWN: Planewall with no internal energy generation.

FIND: Determine whether the prescribed temperature distribution is possible; explain your
reasoning. With the temperatures T(0) = 0°C and T, =20°C fixed, compute and plot the
temperature T(L) as a function of the convection coefficient for the range 10 < h < 100 W/m?[K.

SCHEMATIC:

120
T(°C)
0

T(0)
g=0

Too= 20 °C
k=45WimK ! Zo4gm \1=30 Wim2K

ASSUMPTIONS: (1) One-dimensional conduction, (2) No internal energy generation, (3) Constant
properties, (4) No radiation exchange at the surface x = L, and (5) Steady-state conditions.

ANALYSIS: (@) Isthe prescribed temperature distribution possible? If so, the energy balance at the
surface x = L as shown above in the Schematic, must be satisfied.

Ein —Eout 2="0 ay (L) —dey 2 =20 (1,2)
where the conduction and convection heat fluxes are, respectively,

arQ

a (L) =~ = —kw = 45W/m K x(120 -0)’ C/0.18m = -3000W/m?

X =L
Ay =h[T (L) ~Teo] =30W/m? (K x(120 ~20)° C =3000W, m?

Substituting the heat flux valuesinto Eq. (2), find (-3000) - (3000) # 0 and therefore, the temperature
distribution is not possible.

(b) With T(0) = 0°C and T,, = 20°C, the temperature at the surfacex = L, T(L), can be determined
from an overall energy balance on the wall as shown above in the Schematic,

. T(L)-T(0
Ein ~Eout =0 dx (0) —dey =0 _kw _h[T (L) _Too] =0
-45W/mK (L) —0°C%/0.18m 30w/ m? KST(L)-20°¢ =0

T(L) =10.9°C <

Using this same analysis, T(L) as afunction of 2
the convection coefficient can be determined
and plotted. We don't expect T(L) to be
linearly dependent upon h. Notethat ash
increases to larger values, T(L) approaches
T,,. Towhat value will T(L) approach as h
decreases? a

16

12

Surface temperature, T(L) (C)

0 20 40 60 80 100

Convection cofficient, h (W/m"2.K)



PROBLEM 2.31

KNOWN: Coal pile of prescribed depth experiencing uniform volumetric generation with
convection, absorbed irradiation and emission on its upper surface.

FIND: (a) The appropriate form of the heat diffusion equation (HDE) and whether the prescribed
temperature distribution satisfies this HDE; conditions at the bottom of the pile, x = 0; sketch of the
temperature distribution with labeling of key features; (b) Expression for the conduction heat rate at
the location x = L; expression for the surface temperature T based upon a surface energy balance at x

=L; evaluate Tg and T(0O) for the prescribed conditions; (c) Based upon typical daily averages for Gs
and h, compute and plot Tg and T(0) for (1) h=5 W/m?K with 50 < Gs < 500 W/m?, (2) Gs = 400
W/m?with 5 < h < 50 W/m’K.

SCHEMATIC:

- ) Gg =400 W/im?2 v Gs,aps  E
i ANV
— / ,ag=e=095  gz==mm===mo= S

L=1m

ASSUMPTIONS: (1) One-dimensional conduction, (2) Uniform volumetric heat generation, (3)
Constant properties, (4) Negligible irradiation from the surroundings, and (5) Steady-state conditions.

PROPERTIES: Table A.3, Coa (300K): k =0.26 W/m.K

ANALYSIS: (a) For one-dimensional, steady-state conduction with uniform volumetric heat
generation and constant properties the heat diffusion equation (HDE) follows from Eq. 2.16,

d EDITD q (1) <
axHxH k-
Substituting the temperature distribution into the HDE, Eq. (1),
20 20 0 2 :
T(x)=Te+ q-% 995 —$+9?:?o 223)
2k L2 dx B 2k LZEE
we find that it does indeed satisfy the HDE for all values of x. <

From Eq. (2), note that the temperature distribution must be quadratic, with maximum value at x = 0.
At x =0, the heat flux is

2 | Parabolic shape
dT O L 2x [ 1
ay (0) = —k— ——kE(D+q Ep —m =0

dxa<= g 2kQ LZEEXO

Zero gradient
at bottom

so that the gradient at x = 0 is zero. Hence, the
bottom is insulated. T 7(0) T()

(b) From an overall energy balance on the pile, the conduction heat flux at the surface must be

ok (L) =Eg =dL <
Continued...



PROBLEM 2.31 (Cont.)
From a surface energy balance per unit area shown in the Schematic above,

I-Ein_'Eout""Eg =0 Ay (L)_dcv"'GS,abs'E:O
L —h(Ts - T ) +0.95Gg €0 Tg" =0 (4)

20w/ m3am -5W/m2& (T, -298K ) +0.95 x400W,/ m? ~0.95 .67 <108 W/ m2k*T4 =0

T = 295.7K =22.7°C <
From Eq. (2) withx =0, find

30W/ m2x(1m)?
2x0.26W/m K

a1 2
T(0)=Ts +% =27°C+ =61.1°C (5 <

where the thermal conductivity for coal was obtained from Table A.3.

(c) Two plots are generated using Eq. (4) and (5) for Tsand T(0), respectively; (1) with h = 5 W/m?K
for 50 < Gs < 500 W/m? and (2) with Gs = 400 W/ for 5 < h < 50 W/mPIK.

Solar irradiation, GS = 400 W/m”2

Convection coefficient, h = 5 W/im"2.K 80
80
g
S —
60 ] F 60
%) 1 a
~ =
o -
= =t E
©
5 L M g 40
- L E
g 20 — g
3
g —
qéi 0 alll 20 —
o L1 0 10 20 30 40 50
20 i Convection coefficient, h (W/m"2.K)
0 100 200 300 400 500 —— T0C
—%— Ts_C

Solar irradiation, GS (W/m”2)

— T0_C
—*%— Ts C

Fromthe T vs. h plot with Gs = 400 W/n?, note that the convection coefficient does not have a major
influence on the surface or bottom coal pile temperatures. Fromthe T vs. Gs plot with h = 5 W/m?[K,
note that the solar irradiation has a very significant effect on the temperatures. The fact that T, isless

than the ambient air temperature, Ty, , and, in the case of very low values of Gs, below freezing, isa
consequence of the large magnitude of the emissive power E.

COMMENTS: In our analysis we ignored irradiation from the sky, an environmental radiation effect
you'll consider in Chapter 12. Treated as large isothermal surroundings, Gs, = aTiy where Tgy = -
30°C for very clear conditions and nearly air temperature for cloudy conditions. For low Gg
conditions we should consider Gy, the effect of which will be to predict higher values for T, and
T(0).



PROBLEM 2.32
KNOWN: Cylindrical system with negligible temperature variation in the r,z directions.

FIND: (a) Heat equation beginning with a properly defined control volume, (b) Temperature
distribution T(¢) for steady-state conditions with no internal heat generation and constant properties,
(c) Heat rate for Part (b) conditions.

SCHEMATIC:

ry Ig.d ¢\/1§\ ;

Insulation

A
¢2, -,;- 7;
ASSUMPTIONS: (1) T isindependent of r,z, (2) Ar = (r, - ;) <<r;.

ANALYSIS: (a) Define the control volume asV = rid@ [ where L islength normal to page.
Apply the conservation of energy requirement, Eq. 1.11a,

. . ) . _ oT
Ein —Eout tEg =Eg Ay ~Ug+de tAV = PVCE (12
_ aT _ 7}
where gy = —k(Ar [Il)% Up+dg =g +%(q(p)d(p. (3,4)

Egs. (3) and (4) follow from Fourier’slaw, Eq. 2.1, and from Eq. 2.7, respectively. Combining Egs.
(3) and (4) with Eg. (2) and canceling like terms, find

1 T T

—zi(ka—j+q:pca—. 5) <

fi op\ do

Since temperature is independent of r and z, this form agrees with Eq. 2.20.

(b) For steady-state conditions with ¢ =0, the heat equation, (5), becomes
i k d—T =0. (6)
dp| de

With constant properties, it follows that dT/d@is constant which implies T(¢q) islinear in @. That is,
d_T = T2 — Tl =+ 1
do -4 n

(c) The heat rate for the conditions of Part (b) follows from Fourier’slaw, Eq. (3), using the

temperature gradient of Eq. (7). That is,

ap = +(or 1) [ #2175 -1y | = B2 1, -y, <

in(T2 -Ty) or T(g) =Ty +=(T, -Ty)e. (7,8 <

COMMENTS: Note the expression for the temperature gradient in Fourier’slaw, EqQ. (3), is

dT/ridpnot 0T/d¢. For the conditions of Parts (b) and (c), note that g isindependent of ¢
thisisfirst indicated by Eq. (6) and confirmed by Eq. (9).



PROBLEM 2.33

KNOWN: Heat diffusion with internal heat generation for one-dimensional cylindrical,
radial coordinate system.

FIND: Heat diffusion equation.
SCHEMATIC:

ASSUMPTIONS: (1) Homogeneous medium.
ANALYSIS: Control volume hasvolume, V = A, [dr = 27z [dr [1, with unit thickness
normal to page. Using the conservation of energy requirement, Eq. 1.11a,

Ein —Eout * Egen =Eg

oT
Or —Qr+gr +QV = pVey—— FT

Fourier'slaw, Eg. 2.1, for this one-dimensional coordinate systemis

qr = kA, ﬂ:—k X271 EIJ><ﬂ
Tor or

At the outer surface, r+dr, the conduction rateis

d TO
Or+dr =0r "‘(?—(Qr)dr Oy "'ﬂ%‘k ﬁ— dr.

0 r
Hence, the energy balance becomes
0TO oT
k2 — dr +( R rdr= p2 mrdr @
qu orH \ P ot

Dividing by the factor 2rr dr, we obtain

10 J0TO oT
<
rdr% Eqppo"'t

COMMENTS: (1) Note how the result compares with Eq. 2.20 when the terms for the @,z
coordinates are eliminated. (2) Recognize that we did not require ¢ and k to be independent

of r.



PROBLEM 2.34

KNOWN: Heat diffusion with internal heat generation for one-dimensional spherical, radial
coordinate system.

FIND: Heat diffusion equation.
SCHEMATIC:

_—_—
L +dr

ASSUMPTIONS: (1) Homogeneous medium.

ANALYSIS: Control volume has the volume, V = A, [dr = 4T[r2dr. Using the conservation
of energy requirement, Eq. 1.11a,

Ein —Eout * Egen =Eg
. oT
O ~Gr+ar +qV =PVCy .
t
Fourier'slaw, EQ. 2.1, for this coordinate system has the form
q = _kA d_ = _k A4 2 Lgf
At the outer surface, r+dr, the conduction rateis

[l
Or+dr =0r "‘(?—(Qr)dr =0r +07_E_k @72 ﬁ— dr.

Hence, the energy balance becomes

2 2 2 oT
k@m dr +q @ rrdr=p [@rr<dr @
ity o amp o T
Dividing by the factor 47r°dr, we obtain
10 20 TO oT
- v <
ﬁm% EIE TS

COMMENTS: (1) Note how the result compares with Eq. 2.23 when the terms for the 6,¢
directions are eliminated.

(2) Recognize that we did not require ¢ and k to be independent of the coordinater.



PROBLEM 2.35

KNOWN: Three-dimensiona system — described by cylindrical coordinates (r,q,z) —
experiences transient conduction and internal heat generation.

FIND: Heat diffusion equation.
SCHEMATIC: SeedsoFig. 2.9.

I\‘~\ -t 7T¢+d¢
dz 1 ~ 1 /}\\\ }
L N 9 T
df‘\\“", /“fdr
9¢ > Igz - Tg

ASSUMPTIONS: (1) Homogeneous medium.

ANALYSIS: Consider the differential control volume identified above having avolume
given asV = drifdpdz. From the conservation of energy requirement,

Or =Gr+dr Tdgp ~Ug+dp Tz ~Az+dz +I.Eg =Eg. )
The generation and storage terms, both representing volumetric phenomena, are
Eg=QV =q(dr fdpdz) Ey =pVcdT/dt =p(dr Bdg dz)c T/ dt. (2,3)

Using a Taylor series expansion, we can write

J J J
Or+dr =dr +_(qr)dr’ Ao+dp =g +E0(qu)d¢y Uz+dz =4z +_(QZ)dZ' (4,5,6)

or 0z
Using Fourier’ s law, the expressions for the conduction heat rates are
dr = —-kA0T/dr = —k(rde dz)dT/ or (7
dp = —KA O T/ rdp=—k(dr [dz)dT/rop (8)
a, = -kA,0T/dz=—k(dr de)dT/ 9z 9)

Note from the above, right schematic that the gradient in the ¢@-direction is dT/ro@ and not
0T/d@. Substituting Egs. (2), (3) and (4), (5), (6) into Eq. (1),

9 9 J . _ T
- (@) —%(q(p)dw—z(qz)dz +q dr [fde Gz =p(dr g dz)c—- (10)
Substituting Egs. (7), (8) and (9) for the conduction rates, find

7} oT 7} oT 7} oT

-—| —k(rdeldz)— |dr - —| —k(drdz)— |d¢p——| —k(dr [Hdgp)— |dz
ar[ (rde )o"'r} a"'qo[ ( >ra"'g0}(p a"'z[ ( (p)o"'z]
oT
+¢ dr deldz = o(dr Hd (pmlz)cz. (11)

Dividing Eqg. (11) by the volume of the CV, Eq. 2.20 is obtained.

10 oT| 1 0|,0T| 2|, 0T| . oT
T kr— |+ | k= [+ —=—| k= |+q = pc— <
rorl dr]| (20p| dp| dz| Iz ot



PROBLEM 2.36

KNOWN: Three-dimensional system — described by cylindrical coordinates (r,,0) — experiences
transient conduction and internal heat generation.

FIND: Heat diffusion equation.
SCHEMATIC: SeeFigure 2.10.
ASSUMPTIONS: (1) Homogeneous medium.

ANALYSIS: Thedifferentia control volumeisV = drlrisinBd@irtld, and the conduction terms are
identified in Figure 2.10. Conservation of energy requires

dr —Gr+dr +p ~Gg+dp +do ~Yo+de +Eq =Esg- 1)

The generation and storage terms, both representing volumetric phenomena, are
Eg =V =¢[dr Bsinbdeidf]  Eq = p/c‘;—I = p[dr Esinéde Q]c(;—-{. (2,3)
Using a Taylor series expansion, we can write

J J J
Orear =0y +——(0r)dr,  Ggedp =0g +§0(q(p)d¢, dg+do =o +55(dp)d0.  (456)

or
From Fourier's law, the conduction heat rates have the following forms.
dr = kA, dT/dr = —K[rsinbde d ] T/ or (7)
Ay = kA P T/rsindp= —k[dr 1d 6] IT /1 sin 69¢ (8)
g = —kAgd T /196 = —k[dr [MsinBdg|d T/ rdb. 9)
Substituting Egs. (2), (3) and (4), (5), (6) into Eg. (1), the energy balance becomes
0 0 7 . : . oT
—E(qr)dr —d—q)(q(p)dqo —%(QQ)dH +¢[dr Bsin@dg d6] = p[dr Msinbdy Eble]cﬁ (10)
Substituting Egs. (7), (8) and (9) for the conduction rates, find
7] . oT 0 oT
-—| -k 6de id0|— |dr ——| —k|dr id6 d
09{ [rsm ¢ ](9r}r 0(p{ [r ]rsined(p}(p
—i[—k[dr T sinedqﬂa—qqu[dr 7 sinédolid 6 = ddr [ sin @ gind &2 (11)
00 roé ot
Dividing Eq. (11) by the volume of the control volume, V, Eg. 2.23 is obtained.
izi[krzﬁ—q+ s i{kﬂ}+ - i[ksinea—T}q:pca—T. <
rcor ar résinc0 0p| 0@ | r4sngdo 20 ot

COMMENTS: Note how the temperature gradientsin Egs. (7) - (9) are formulated. The numerator
isaways dT while the denominator is the dimension of the control volume in the specified coordinate
direction.



PROBLEM 2.37
KNOWN: Temperature distribution in steam pipe insulation.

FIND: Whether conditions are steady-state or transient. Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

Insu/a‘/‘ion,

Tr)=C, /77,,4;-# C

ASSUMPTIONS: (1) One-dimensional conductioninr, (2) Constant properties.
ANALYSIS: From Equation 2.20, the heat equation reduces to
Ei(r 9_T) _19T
ror\ or

a ot
Substituting for T(r),
10T 10 (rcljzo.

aodt ror r

Hence, steady-state conditions exist. <
From Equation 2.19, the radial component of the heat flux is

oT C
"= —k—— =k,
ar or r
Hence, 0y decreaseswith increasing r(qyal/r). <

At any radial location, the heat rateis
qr =2mrLqgy = —27KC4L

Hence, gy isindependent of r. <

COMMENTS: The requirement that gy isinvariant with r is consistent with the energy conservation

requirement. If gy is constant, the flux must vary inversely with the area perpendicular to the direction
of heat flow. Hence, gy variesinversely withr.



PROBLEM 2.38

KNOWN: Inner and outer radii and surface temperatures of along circular tube with internal energy
generation.

FIND: Conditionsfor which alinear radial temperature distribution may be maintained.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, steady-state conduction, (2) Constant properties.

ANALYSIS: For the assumed conditions, Eg. 2.20 reducesto

kdOgdTg .
—_— " —/+0g=0
r dr drH q

If  =0o0r q = constant, it is clearly impossible to have alinear radial temperature distribution.
However, we may use the heat equation to infer a special form of ( (r) for which dT/dr is a constant (call
it Cy). It follows that

Kk d -

?E(rC1)+q—o

=Gk <
r

where C; = (T, - T1)/(r2 - r1). Hence, if the generation rate varies inversely with radial location, the radial
temperature distribution is linear.

COMMENTS: Conditions for which O (1/r) would be unusual.



PROBLEM 2.39

KNOWN: Radii and thermal conductivity of conducting rod and cladding material. Volumetric rate
of thermal energy generation in the rod. Convection conditions at outer surface.

FIND: Heat equations and boundary conditions for rod and cladding.
SCHEMATIC:

ry ' Cladding, k¢

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conductioninr, (3) Constant
properties.

ANALYSIS: From Equation 2.20, the appropriate forms of the heat equation are

Conducting Rod:
ﬁg(r ﬂj + q =0 <
r dr dt
Cladding:
i(r %j =0. <
dr\ dr

Appropriate boundary conditions are;

@  dT,/dr=p=0 <

0 To(r)=Te(n) <
dT.. . dT,

(c) Ky d_rrlri = kcd_rc|ri <
dT,

@ Koyl =MTelio) ~Too] <

COMMENTS: Condition (a) corresponds to symmetry at the centerline, while the interface

conditions at r = rj (b,c) correspond to requirements of thermal equilibrium and conservation of
energy. Condition (d) results from conservation of energy at the outer surface.



PROBLEM 2.40

KNOWN: Steady-state temperature distribution for hollow cylindrical solid with volumetric heat
generation.

FIND: (@) Determinethe inner radius of the cylinder, rj, (b) Obtain an expression for the volumetric
rate of heat generation, ¢, (c) Determine the axia distribution of the heat flux at the outer surface,

ar (ro, Z), and the heat rate at this outer surface; isthe heat rate in or out of the cylinder; (d)
Determine the radial distribution of the heat flux at the end faces of the cylinder, g5 (r,+z,) and

ay (r, —zo) , and the corresponding hezat rates; are the heat rates in or out of the cylinder; (e)

Determine the relationship of the surface heat rates to the heat generation rate; is an overall energy
balance satisfied?

SCHEMATIC:
[ ,/ —+z,=25m
/:/2 . T(r,z)=a+br2 +cIn(r) + dz2 r(m), z(m)
Insulated ! , _T 7 a=20°C c =-12°C
boundary !—-f ——————————— [ b = 150°C/m2 d =-300°C/m2
: k=16 W/m-K
7 — z,=25m
| | | > r
0 re=1m

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction with constant
properties and volumetric heat generation.

ANALYSIS: (a) Since theinner boundary, r = r;, is adiabatic, then gy (r;,z) =0. Hencethe

temperature gradient in the r-direction must be zero.

ARs =0+2br; +c/r; +0 =0
o

/2 o /2
ol e S, <
0 2x150°C/m<0

(b) To determine g, substitute the temperature distribution into the heat diffusion equation, Eq. 2.20,
for two-dimensional (r,z), steady-state conduction
10 GTD 00T q

vorH orH oo "k

iar( [0+2br +c/1 +0]) (O +0 +0 +2dz) E =0

—[4br+0] +2d+d =

r k

= -k[4b-2d] =-16W/m K X150 T/ m? —2( -300 T/ mz)g

q=0W/m3 <
(c) The heat flux and the hest rate at the outer surface, r = ro, may be calculated using Fourier’s law.

Note that the sign of the heat flux in the positive r- -direction s negative, and hence the heat flow isinto
the cylinder.

ar (ro2) = —kZ—TE = —« [0 +2br, +c/ 1, +0]
r
]

Continued .....



PROBLEM 2.40 (Cont.)

Gr (10,2) = -16W/m K (2 x150°C/m? x1 m ~12°C/1 mH] = 4608W / m” <
a (p)=A, q (rolz) where A, =2m, (22,)
ar (o) = =4 x1 m x2.5 m x4608W / m? = -144, 765W <

(d) The heat fluxes and the heat rates at end faces, z = + z, and — z,, may be calculated using Fourier’s
law. The direction of the heat rate in or out of the end face is determined by the sign of the heat flux in
the positive z-direction.

At the upper end face, z = + z,: heat rate is out of the cylinder <
oT
qy (r,+zo) = —ka— = &[0 +0 +0 +2dz,]
z
d, (1, +20) = -16W/m K ><2(—300°C/m2)2.5 m = +24,000W / m? <
A o _ 2 2
a; (+20) =A, a5 (1, +25) where A, -7T(ro —; )

dy (+2,) = rr(12 —0.22)m2 x24,000W / m? = 72,382W

At the lower end face, z= - z,: heat rate is out of the cylinder
oT

0y (r-zo)=—&—[ =-k[0+0+0 +2dz,]

0z L1z
a0, (r.-2o) = -16W/m? (K x2(-300°C/m)( 25 m) = -24,000W / m? <
dy (-2o) = -72,382W <

(€) The heat rates from the surfaces and the volumetric heat ﬁenerati on can be related through an
overall energy balance on the cylinder as shown in the sketch.
q)(r,+2,) = +24,000 W/m?
T q(r+zo) = +72,382 W
Ve Egen = q v
; 4 pz

q/(ro,2) = -4,608 W/m?

qr(ro,z) =-144765 W

Ls | T q(r,-2o) = -24,000 W/m?
qZ(r,-zo) =-72,382 W

Ein ~Eout +Egen =0 where Egen =qE 0
Ein =0 (o) = (<144, 765W) = 4144, 765W <
Eout = 05 (20) ~05 (2o ) =[72.382 ~(72,382)] W = 444,764 W <

The overall energy balance is satisfied.

COMMENTS: When using Fourier’slaw, the heat flux g, denotesthe heat flux in the positive z-

direction. At aboundary, the sign of the numerical value will determine whether heat is flowing into
or out of the boundary.



PROBLEM 2.41

KNOWN: An electric cable with an insulating sleeve experiences convection with adjoining air and
radiation exchange with large surroundings.

FIND: (a) Verify that prescribed temperature distributions for the cable and insulating sleeve satisfy
their appropriate heat diffusion equations; sketch temperature distributions labeling key features; (b)
Applying Fourier's law, verify the conduction heat rate expression for the sleeve, qy, in terms of Ts:
and Ts.; apply asurface energy balance to the cable to obtain an aternative expression for gy in
terms of ¢andry; (c) Apply surface energy balance around the outer surface of the sleeve to obtain an

expression for which T, can be evaluated; (d) Determine Ts1, Ts2, and T, for the specified geometry
and operating conditions; and (€) Plot T3, Ts», and T, as afunction of the outer radius for the range
155<r,<20 mm.

SCHEMATIC:

Ty =350C

Electrical cable, k., ¢
Insulation sleeve, kg =0.15 W/m-K
Ts,1

T..=25°C ry=15mm
h =25 Wim2-K
// ro=155mm
Ts,2

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Uniform volumetric heat generation
in cable, (3) Negligible thermal contact resistance between the cable and sleeve, (4) Constant
propertiesin cable and sleeve, (5) Surroundings large compared to the sleeve, and (6) Steady-state
conditions.

ANALYSIS: (@) The appropriate forms of the heat diffusion equation (HDE) for the insulation and
cable areidentified. The temperature distributions are valid if they satisfy the relevant HDE.

Insulation: The temperature distribution is given as

In(r/rp)
T(r)=Ts2+(Ts1~Ts2) 7% (1)
2T a2 )iy )
and the appropriate HDE (radial coordinates, SS, g = 0), Eq. 2.20,
dQ dTD_
H drH
d0 O d Tg1-TgoU
— +(Tgq — ?0
drﬁg) ( i In r/r2 % drﬁln rl/rz Eq
Hence, the temperature distribution satisfies the HDE. <
Cable: The temperature distri butionis given as
o E_"L 125
T(r)=Tgq +——U - 2
()=Ts1+ i~ 2p @
O 10

and the appropriate HDE (radial coordinates, SS, g uniform), Eq. 2.20,
Continued...



PROBLEM 2.41 (Cont.)

lgjd_-r[l+i =0
rdrg rH Ke

OO0 420 11l
EE][@J,ﬂ _a D+ﬂ?=?o
rdr} g 4k0%o r12 Ke
1d 8 af 2°5 a0

Hence the temperature distribution satisfies the HDE. <

The temperature distributionsin the cable, 0 < r < ry, and sleeve, r; <1 <1, and their key features are
asfollows:

(1) Zero gradient, symmetry condition,

(2) Increasing gradient with increasing radius,
r, because of ¢,

(3) Discontinuous T(r) across cable-sleeve
interface because of different thermal
conductivities,

(4) Decreasing gradient with increasing radius,
r, since heat rate is constant. 0 re

(b) Using Fourier’'s law for the radial-cylindrical coordinate, the heat rate through the insulation
(sleeve) per unit length is

ar =—kA'rd—T =—k2md—T <
dr dr
and substituting for the temperature distribution, Eqg. (1),
, 0 r O Ts1—Ts2
ar = —k527'lT ) +(Ts,1 _TS,Z)]/—D =2nksg ©) <
0 In(r/r2)0 In(r2/r1)

Applying an energy balance to a control surface placed around the cable,

Ein _Eout =0

where U represents the dissipated electrical power in the cable
Continued...



PROBLEM 2.41 (Cont.)
a(m?)-g=0 o d=mif @<

(c) Applying an energy balance to a control surface placed around the outer surface of the sleeve,

I-Ein - I'Eout =0

dr ~dev —Grad =0

)
.2 4 4
merf - (2m5) (o2 ~To) - d2 ) {75 Ty ) =0 6 <
Thisrelation can be used to determine T, in terms of the variables (, ry, 1, h, Te, € and Ty

(d) Consider a cable-sleeve system with the following prescribed conditions:

r,=15mm k. = 200 W/mK h = 25 W/m?K €=0.9
r,=15.5mm ks = 0.15 W/mK T, =25°C Ter =35°C

For 250 A with Rg = 0.005 Q/m, the volumetric heat generation rate is
a4=1° Re/U= |2R’e/(m12)
4 =(250A)% x0.005Q/ m/ (n><o.0152 m2) =4.42 x10° W/ m?

Substituting numerical valuesin appropriate equations, we can evaluate Ty, Ts2 and To.
Seeve outer surface temperature, Tso: Using Eqg. (5),

7% 4.42x10° W/ m® x(0.015m)? -25W/m? K x(27r0.0155m)(Tg 2 —298K)

—0.9% (27 x0.0155m) x5.67 X108 W/m? [K4(T§2 —3084)K4 =0

Ts,2 = 395K =122°C <
Seeve-cableinterface temperature, Tq;: Using Egs. (3) and (4), with T, = 395K,
Ts1- T
nquz =2nks( sl s,2)
In(r/n)
Ts1—395K
7% 4.42x10° W/ m® x(0.015m)? =277x0.15W/m & (Ts1-3%5K)
In(15.5/15.0)
Ts1=406K =133°C <

Continued...



Cable centerline temperature, T,: Using Eq. (2) with T4, = 133°C,
To=T(0)=Tg1 +

T, =133°C+4.42x10° W/m> x(0.015m)? / (4x200W/m [K) =133.1°C

(e) With all other conditions remaining the same, the relations of part (d) can be used to calculate T,,
Ts1 and Ts as afunction of the sleeve outer radius r, for the range 15.5 < r, < 20 mm.

Temperature, Tsl or Ts2 (C)

On the plot above T, would show the same behavior as T since the temperature rise between cable
center and its surface is 0.12°C. With increasing r,, we expect T, to decrease since the heat flux
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PROBLEM 2.41 (Cont.)
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decreases with increasing r,. We expect Ts; to increase with increasing r, since the thermal resistance

of the deeve increases.



PROBLEM 2.42
KNOWN: Temperature distribution in aspherical shell.

FIND: Whether conditions are steady-state or transient. Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

Sphemcal shell,
Tir)==£+(,

ASSUMPTIONS: (1) One-dimensiona conduction inr, (2) Constant properties.
ANALYSIS: From Equation 2.23, the heat equation reduces to

L9 (20T). LaT
2c?r or

a ot
Substituting for T(r),

10T = ii(rzﬂ) =0.

Eﬁ_ rzﬁr r2

Hence, steady-state conditions exist. <
From Equation 2.22, the radial component of the heat flux is

oT C
"= -kZ—=—k2L
Hence " d . : : 2 " 2 <
, Oy decreaseswith increasing r (qrallr )

At any radial location, the heat rateis
qr = 4nrzq'r' =47kC;.
Hence, gy isindependent of r. <

COMMENTS: Thefact that gy isindependent of r is consistent with the energy conservation
requirement. If gy is constant, the flux must vary inversely with the area perpendicular to the direction
of heat flow. Hence, gy variesinversely with r2.



PROBLEM 2.43

KNOWN: Spherica container with an exothermic reaction enclosed by an insulating material whose
outer surface experiences convection with adjoining air and radiation exchange with large
surroundings.

FIND: (a) Verify that the prescribed temperature distribution for the insulation satisfies the
appropriate form of the heat diffusion equation; sketch the temperature distribution and label key
features; (b) Applying Fourier's law, verify the conduction heat rate expression for the insulation
layer, g, interms of T4 and Ts,; apply a surface energy balance to the container and obtain an
alternative expression for g, in termsof ¢ and ry; (c) Apply a surface energy balance around the outer
surface of the insulation to obtain an expression to evaluate T,; (d) Determine T, for the specified
geometry and operating conditions; (€) Compute and plot the variation of T, as afunction of the
outer radius for the range 201 < r, < 210 mm; explore approaches for reducing Ts, < 45°C to
eliminate potential risk for burn injuries to personnel.

SCHEMATIC:
RS Reaction, T, G =Ggexp (-A/Ty)
Tar oo Insulation, k
sur -
Ts,1
Ts2
Too,h

ASSUMPTIONS: (1) One-dimensional, radial spherical conduction, (2) Isothermal reactionin
container so that T, = T4, (2) Negligible thermal contact resistance between the container and
insulation, (3) Constant properties in the insulation, (4) Surroundings large compared to the insul ated
vessel, and (5) Steady-state conditions.

ANALYSIS: The appropriate form of the heat diffusion equation (HDE) for the insulation follows
from Eq. 2.23,

1 dQodl[ <
- —r=0 1
r2drH dr @

The temperature distribution is given as

O1-(r/r) O

T(r)= Ts1— (Ts,l ‘Ts,2) mg 2

Substitute T(r) into the HDE to seeiif it is satisfied:

I:l rl D
G (Ts1—Ts,2) =07 =70 <
0 (1T )1‘(f1/f2)D

and since the expression in parenthesisis independent of r, T(r) does indeed satisfy the HDE. The
temperature distribution in the insulation and its key features are as follows:

Continued...



