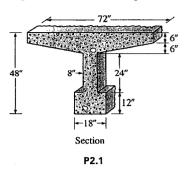
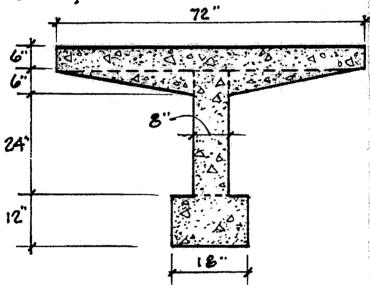
FUNDAMENTALS OF STRUCTURAL ANALYSIS

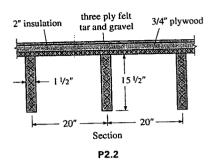

4th Edition

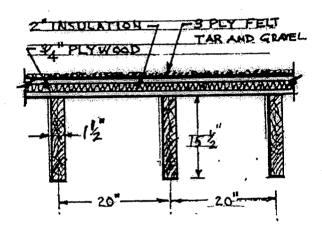
Kenneth M. Leet, Chia-Ming Uang, Anne M. Gilbert


SOLUTIONS MANUAL

CHAPTER 2: DESIGN LOADS

P2.1. Determine the deadweight of a 1-ft-long segment of the prestressed, reinforced concrete tee-beam whose cross section is shown in Figure P2.1. Beam is constructed with lightweight concrete which weighs 120 lbs/ft³.


COMPUTE THE WEIGHT/H. OF CROSS SECTION @ 120LB/FT3.



COMPUTE CROSS SECTIONAL AREA: AREA = (0.5'x.6')+2(1/2 × 0.5 × 2.67')+ (0.67' × 2.5')+(1.5' × 1') = 7.5 FT²

WEIGHT OF MEMBER PER FOOT LENGTH: WT/FT = 7.5 FT2 x 120 LB/FT3 = 900 LB/FT.

P2.2. Determine the deadweight of a 1-ft-long segment of a typical 20-in-wide unit of a roof supported on a nominal 2 in \times 16 in southern pine beam (the actual dimensions are $\frac{1}{2}$ in smaller). The $\frac{3}{4}$ -in plywood weighs 3 lb/ft².

SEE TABLE 2.1 FOR WEIGHTS

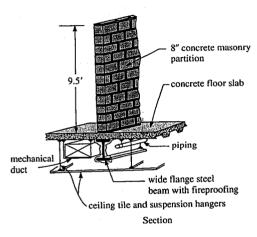
wi /20" unit

PLYWOOD: 3 psf x 20/12 x 1' = 5 lb

1 MSULATION: 3 psf x 20/12 x 1' = 5 lb

ROOFGTARK G: 55 psf x 20/12 1' = 9.17 lb

19.17 lb


WOOD JOIST = 37 16 (1.5 x 15.5) , 1 = 59716

TOTAL WT op 20" Unit = 19.17 + 5.97

P2.3. A wide flange steel beam shown in Figure P2.3 supports a permanent concrete masonry wall, floor slab, architectural finishes, mechanical and electrical systems. Determine the uniform dead load in kips per linear foot acting on the beam.

The wall is 9.5 ft high, non-load bearing and laterally braced at the top to upper floor framing framing (not shown). The wall consists of 8 inch lightweight reinforced concrete masonry units with an average weight of 90 psf. The composite concrete floor slab construction spans over simply supported steel beams, with a tributary width of 10 ft, and weighs 50 psf.

The estimated uniform dead load for structural steel framing, fireproofing, architectural features, floor finish and ceiling tiles equals 24 psf, and for mechanical ducting, piping and electrical systems equals 6 psf.

P2.3

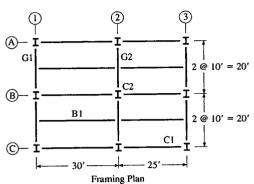
UNIFORM DEAD LOAD WOL ACTING AN THE WIDE FLANGE BEAM:

WALL WAD:

9.5'(0.09ksp) = 0.855 kup

FLOOR SLAB!

10'(0.05 Ksf)

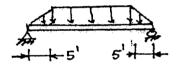

= 0.50 KUF

STEEL FRMA, FIREPROOFA, ARCH'L FEMURES FLOOR FINISHES, & CEILING: 10' (0.024 KGF) = 0.24 KLF

MECH'L, MMNA É ELECTRICAL SYSTEMS: 10'(0.006 KSF) = 0.06 KUF

TOTAL WOL = 1.66 KMF

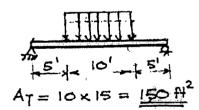
P2.4. Consider the floor plan shown in Figure P2.4. Compute the tributary areas for (a) floor beam B1, (b) girder G1, (c) girder G2, (d) corner column C1, and (e) interior column C2.

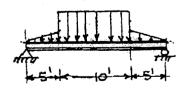

P2.4

(A) BEAM B1 SPAN 30 ft.

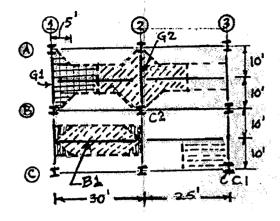
METHOD 1: UNIFORM LOAD OVER 30'

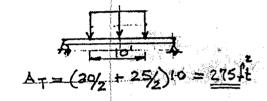
AT = 30(5+5) = 300 FT²

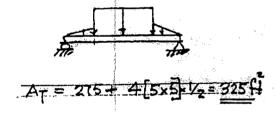

METHOD 2: TAPER LOADS AT ENDS


Ar = 300 - 4 (5×5×1/2)=250

(b) GIRDER G1 SPAN 20 ft.

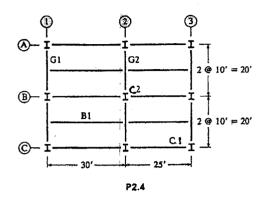

METHOD 1: UNIFORM LOAD


METHOD 2: ADD TAPERED LOADS


 $A_7 = 150 + (5x5x\frac{1}{2})^2$ $A_7 = 175 ft^2$ COMPUTE TRIBUTARY AREAS, AL

(C)GIRDER G2 SPAN 2091
METHOD 1: UNIFORM LOAD

METHOD 2 TAPER LOAD AT EURS

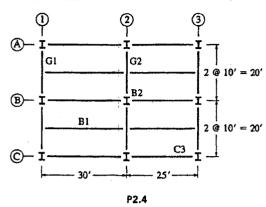


(d) <u>Calumn Cl</u>

AT = 25/2 × 10 = 125 ft²

(e) COLUMB C2 AT = (15+12.5) 10+16)

AT = 550 (12 **P2.5.** Refer to Figure P2.4 for the floor plan. Calculate the tributary areas for (a) floor beam B1, (b) girder G1, (c) girder G2, (d) corner column C1, and (e) interior column C2.



Multiply the values of AT in problem P2.4 by.

KLL, where KLL = 4 for columns and 2 for heams.

BEAM BI	
METHOD 1	KILAT = 2(300FT2)=600 FT2
Method 2	KLL AT = 2 (500 FT) = 500 FT
airder ai	
METHOD 1	KLLAT=2 (150 F12)=300 F12
метнор 2	KLAT = 2(175 PT2) = 350 PT2
GIKDER 42	
METHOD 1	Ku AT = 2(275 FT2) = 550 FT2
method 2	Ku Aj = 2(275 FT2) = 550 FT2 Ku Aj = 2(325FT2) = 650 FT2
COWMH CI	KUAT=4(125FT2)= 500FT2
COMMH CT	kuar = 4 (550 Ft) = 2,200 Ft2

P2.6. The uniformly distributed live load on the floor plan in Figure P2.4 is 60 lb/ft². Establish the loading for members (a) floor beam B1, (b) girder G1, and (c) girder G2. Consider the live load reduction if permitted by the ASCE standard.

Values of AT are evaluated in Prob 24. Use simplified loading

(a) Loading for B1. $K_{LL} A_{T} = 2 \times 300 = 600 > 400$ $L = L_{0} (0.25 + \frac{15}{\sqrt{600}})$ $= 60.(0.25 + \frac{15}{\sqrt{600}}) = 51.7 \text{ lb/ft}^{2}$ $LIVE LOAD/FT = 61.7 \times 10 = 0.517 \text{ k/ft}$ W = 0.517 k/ft W = 0.517 k/ft

(C.) LOAD TO GIRDER G2

LOAD TO GIRDER G2 WHICH SUTTORS

LOAD TO GIRDER G2 WHICH SUTTORS

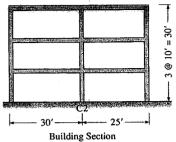
KLAT = 2 (10) 30/2 +25/2] = 550ft 2400

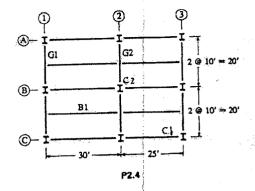
LOAD TO GIRDER G2 WHICH SUTTORS

KLAT = 2 (10) 30/2 +25/2] = 550ft 2400

LOAD TO GIRDER G2 WHICH SUTTORS

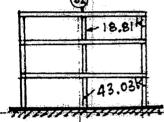
ESTABLISH LOAD FOR G2 WHICH SUTTORS


BEAMS OF 25' AND 30' AT 175 CEWTER


KLAT = 2 (10) 30/2 +25/2] = 550ft 2400

LOAD TO GIRDER G2

WE 0.534 KFT


P2.7. The building section associated with the floor plan in Figure P2.4 is shown in Figure P2.7. Assume a live load of 60 lb/ft2 on all three floors. Calculate the axial forces produced by the live load in column C2 in the third and first stories. Consider any live load reduction if permitted by the ASCE standard.

P2.7

COMPUTE THE LIVE LOAD FORCES IN COLUMN C2 IN W1 = 60 lb/FT2

$$A_T = (\frac{30}{2} + \frac{25}{2})20 = \frac{550}{1} \text{ ft}^2$$

KLL AT = 4 × 550 = 2,200 ft > 400ft ... Reduce WL

3RD story

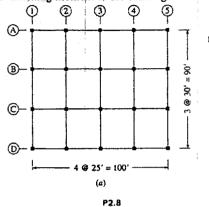
W= WL [0.25 +
$$\frac{15}{\sqrt{k_L A_T}}$$
]

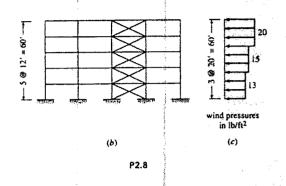
= $60[0.25 + \frac{15}{\sqrt{2200}}]$ = 34.19 psf

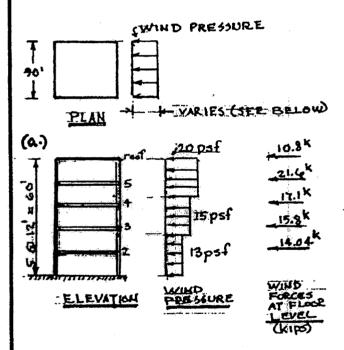
SINCE 34.19> 0.5 WL=30, USC 34.19 psf

SINCE 34.19> 0.5 WL=30, USC 34.19 pt

 $P = WA_T = \frac{34.19}{1000}(550) = 18.81 \text{ kips}$


1 ST Story
COLUMN SUPPORTS 3 FLOORS


 $K_{LAT} = 4(550 \times 3) = 6600 \text{ ft}^2$ $\therefore \text{ Reduce WL}$ $W = 60[0.25 + \frac{15}{16600}] = 26.08 \text{ ps}^2$


SILICE 26.08>.4 (60), USE 26.08 pof

 $P = WA_T = 26.08(3 \times 550)$ = 43.03 kips

P2.8. A five-story building is shown in Figure P2.8. Following the ASCE standard, the wind pressure along the height on the windward side has been established as shown in Figure P2.8(c). (a) Considering the windward pressure in the east-west direction, use the tributary area concept to compute the resultant wind force at each floor level. (b) Compute the horizontal base shear and the overturning moment of the building.

2) Resulant Wind Forces

East 20psf (6 x 90) = 10,800 lb

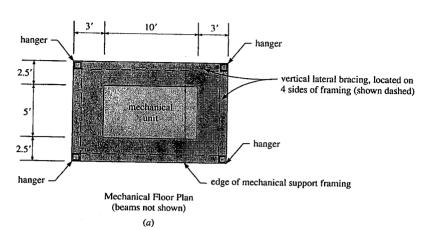
5 floor 20psf (12x 90) = 21,600 lb

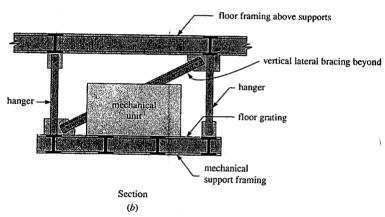
4 floor 20psf (2x 90) + 15(10x 90) = 17,100 lb

13 floor 15psf (10x 90) + 13(2x 90) = 15,800 lb

2nd floor 13 psf (12x 90) = 14,040 lb

b) HORIZONTAL BASE SHEAR VENSE EFORCES AT EACH LEVEL = 10.8k+ 21.6k+ 17.1k+ 15.8k+ 14.64k= VBASE= 79.34k


OVERTURNING MOMENT OF THE BUILDING = Σ (FORCE GEALEVEL & HEIGHT ABOVE BASE)


10.8 (60) + 21.0(48') + 17.1(36') + 15.8 (24') + 14.04 (12') =

MOVERTURNING: 2.848

P2.9. A mechanical support framing system is shown in Figure P2.9. The framing consists of steel floor grating over steel beams and entirely supported by four tension hangers that are connected to floor framing above it. It supports light machinery with an operating weight of 4,000 lbs, centrally located. (a) Determine the impact factor I from the Live Load Impact Factor, Table 2.3.

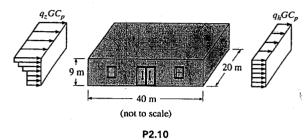
(b) Calculate the total live load acting on one hanger due to the machinery and uniform live load of 40 psf around the machine. (c) Calculate the total dead load acting on one hanger. The floor framing dead load is 25 psf. Ignore the weight of the hangers. Lateral bracing is located on all 4 edges of the mechanical floor framing for stability and transfer of lateral loads.

P2.9

a) LIVE WAD IMPACT FACTOR = 20%.

b.) TOTAL LL

MACHINERY = 1.20(4 k/ps) = 4.8 kUNIFORM LL = $(10' \times 16') - (5' \times 10'))(0.04 \text{ ksf})$ = 4.4 kTOTAL LL = 9.2 k


: TOTAL IL ACTING ON ONE HANGER = 9.2k/4-HANGERS = 2.3kips

C.) TOTAL DL

FLOOR FRAMING = 10'x 16' (Q 025 KgF) = 4K : 191AL DL ACTING ON ONE HANGER = 4K/4 HANGER = 1 KIP

: TOTAL DLILL ON ONE HANGER = 2.3k+1k = 3.3kips

P2.10. The dimensions of a 9-m-high warehouse are shown in Figure P2.10. The windward and leeward wind pressure profiles in the long direction of the warehouse are also shown. Establish the wind forces based on the following information: basic wind speed = 40 m/s, wind exposure category = C, $K_d = 0.85$, $K_D = 1.0$, G = 0.85, and $C_p = 0.8$ for windward wall and -0.2 for leeward wall. Use the K_Z values listed in Table 2.4. What is the total wind force acting in the long direction of the warehouse?

9= - 930.8(1)K=(1)(0.85)=833.7K=

0-46m: $q_2 = 833.7(0.85) = 708.6 \frac{M}{M}$ 46-61 m: $q_2 = 833.7(0.94) = 750.3 \frac{M}{M}$ 6.1-7.6m: $q_3 = 833.7(0.94) = 763.7 \frac{M}{M}$ 7.6=9m: $q_3 = 833.7(0.98) = 817.1 \frac{M}{M}$

ESP THE WINDWARD WHILE

p= q= GCp (EQ21)

where GCp= 0.85(0.5) = 0.68

p= 0.68 Q=

0-4.6m p= 481.8 N/m²

4.6-6.lm p= 510.2 N/m²

6.1=7.6m p= 532.9 N/m²

7.6-9 m p= 555.6 N/m²

TOTAL WIND FORCE F, WINDWARD WAY

F= 481.8[46x20] + 510.2[1.5x20]

+532.9[15x20] + 555.6 [1.4x20]

F= 91.180 N

FOR SEEWARD WALL

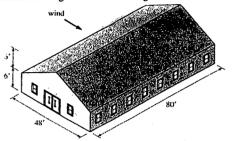
P=qhqCp=qh (0.85)-0.2)

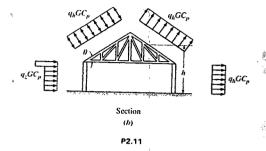
qh=q=at 9m=817.1 N/m² (above)

p=817.1 (0.85)-0.2)==138.9 N/m²

TOTAL WIND FORCE, F, ON LEEWAPD
WALL

F=(20×9)(-138.9)=-25,003 N²


TOTAL FORCE = Fw + FL


= 91,180N+25,003

= 116,183.3 N

BOTH T AND TO ACT IN SAME DIRECTION. **P2.11.** The dimensions of an enclosed gabled building are shown in Figure P2.11a. The external pressures for the wind load perpendicular to the ridge of the building are shown in Figure P2.11b. Note that the wind pressure can act toward or away from the windward roof surface. For the particular building dimensions given, the C_p value for the roof based on the ASCE standard can be determined from Table P2.11, where plus and minus signs signify pressures acting toward and away from the surfaces, respectively. Where two values of C_p are listed, this indicates that the windward roof slope is subjected to either positive or negative pressures, and the roof structure should be designed for both loading conditions. The ASCE

standard permits linear interpolation for the value of the inclined angle of roof θ . But interpolation should only be carried out between values of the same sign. Establish the wind pressures on the building when positive pressure acts on the windward roof. Use the following data: basic wind speed = 100 mi/h, wind exposure category = B, $K_d = 0.85$, $K_{ut} = 1.0$, G = 0.85, and $C_p = 0.8$ for windward wall and -0.2 for leeward wall.

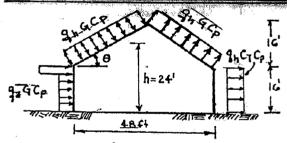


TABLE P2.11

	Coefficient	

*0	defined	in	Figure	P2.11

Windward							Leeward				
Angle 0	10	15	20	25	30	35	45	≥60	10	15	≥20
C,	-0.9	-0.7	-0.4	-0.3	-0.2	-0.2	0.0	$0.01\theta*$	-0.5	-0.5	-0.6
•			0.0	0.2	. 0.2	0.3	0.4			j	`

MEAN ROOF HEIGHT, h = 24ft $e = tan^{-1} \left(\frac{16}{24} \right) = 33.69^{\circ} (for Table 24)$

CONSIDER POSITIVE WINDWARD PRESSURE ON BOOK, I.C. left side.

Cp = 0.2 + (33.69-30) x0.1 (35-30) Cp = 0.2738 (Roop ONLY)

FROM TABLE 2.4 (SEE P48 of TEXT)

K≥= 0.57, 0-15'

= 0.62, 15-20

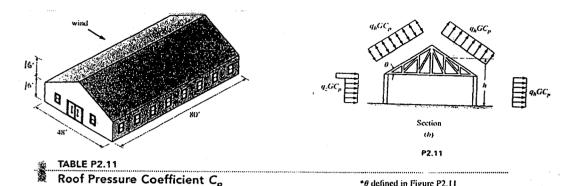
= 0.66, 20-25

= 0.70, 25'-30' 0.74, 36'-32'

0.76, 36-32'

 $K_{24} = 1.0$, $K_{d} = 0.85$, I = 1 $q_{e} = 0.00256 V^{2}$ (Eq.24a). $q_{e} = 0.00256 (100)^{2} = 25.6 lb/ft^{2}$ $q_z = q_s \text{ I } k_z k_z k_d$ 0-15, $q_z = 25$, $(1\times0.57)(1)(0.85)$ $= 12.40 \text{ lb/ft}^2$ h = 24, $q_z = 13.49 \text{ lb/ft}^2$

WIND PRESSURE ON WINDWARD WALLS KOO


P= 9 z G C R
WALL, 0-151 P= 12.40 x 0.85 x 0.80
P= 8.43 psf

WALL, 15-16 P= 13.49 x 0.85 x 0.8-9.17 psf

Reof: p= 14.36 x 0.85 x 0.2738
P= 3.34 psf

WIND PRESSURE ON LEEVARD SIDE

FOR WALL $p = q_h G C_p$ FOR h = 24; $q_h = q_2 = [4.3 \text{ lb/f1}^2]$ $C_{p} = -0.2$ FOR WALL = 0.6 FOR PROF FOR p = 14.36 (0.85) +0.2) $p = -2.44 \text{ lb/f1}^2$ FOR ROOF p = 14.36 (0.85) +0.9= -7.32 lb/f2 (upliff) **P2.12.** Establish the wind pressures on the building in Problem P2.11 when the windward roof is subjected to an uplift wind force.

			P			o defined fir i iguic i 2.14					
			<u> </u>	Wiı	idward					Leeward	l
Angle θ C _n	10 0.9	15 -0.7	20 0.4	25	30	35	45	≥60	10	15	≥20
C ₃ ,	-0.9	-0,7	0.0	-0.3 0.2	- 0.2 0.2	-0.2 0.3	0.0	0.010*	-0.5	-0.5	-0.6

WINDWARD ROOF (NEGATIVE PRESSURE)

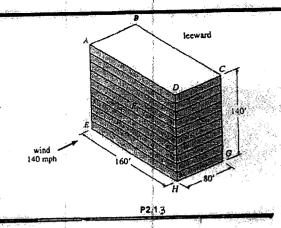
0 = 33.7°

Interpolate between 30° and 35°

for negative Cp value in Table P2.10

Cp = -0.274

P = 94 GCp = 21.76 (0.66) 0.85(-0.274)


= -334 lb/46 (SULTION)

NOTE: Wind pressures on other

3 surfaces are the same as in

P 2.11

P2.13. (a) Determine the wind pressure distribution on the four sides of the 10-story hospital shown in Figure P2.13. The building is located near the Georgia coast where the wind velocity contour map in Figure 2.15 of the text specifies a design wind speed of 140 mph. The building, located on level flat ground, is classified as stiff because its natural period is less than 1 s. On the windward side, evaluate the magnitude of the wind pressure every 35 ft in the vertical direction. (b) Assuming the wind pressure on the windward side varies linearly between the 35-ft intervals, determine the total wind force on the building in the direction of the wind. Include the negative pressure on the leeward side.

(a.) COMPUTE VARIATION OF WIND PACE

9= 95 I Kz Kzt Kd EQ 2.8

9= 0.00256 V² EQ 2.60

= 0.00256 (140)²

9= 50.176 psf; Round to 50.18

Psf

I = 1.15 for hospitals

Kat = 1; Ka = 0.85

Kz 1 READ IN TABLE 2.4

and the second sections of	ورا جون دروهما الموه سارد ال	and the second second	
ELEV CH	G 35'	70 105	140 L
T 7 7 7 7 7 7 7 7 1 1 1 5 7 1	market at their	Commence of the second	1 3 Michael
- W	1.03 1.19	1 44 1 14	1152
	1.001 14.2	THEFT	1.11.2.

q = 50.18(LIS) K;) 1 (0.85)

COMPUTE WIND PERSEURE P ON

where G= 0.85 for natural period

(ass than 1-sec.

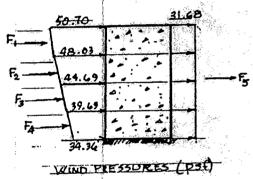
Tp=0.8 on windward side

p= 49.05 k2(0.85)(0.8) = 33.354 K2

Compute p for VARIOUS ELEVATIONS

	1		x - 7/31		~
ELEY.(FI)		35 \ /	0 110	2II ~E	Ų.,, l
To be be a fact of the		- · · · · · · · · · · · · · · · · · · ·			
	—	792 IA	44.16.		
p (psf)	T24 26	39.69	44.67	140,02	150.14
	124			I	1 1
1 4	J				1

COMPUTE WIND PRESSURE ON LEEWARD.


p= 14.556 GCp= 74.556(0.85)-0.5)
p= -31.68 psf ANS.

PERSONE OH ENDEWAUS

PERSONE OH ENDEWAUS

PERSONE OH ENDEWAUS

(b.) VARIATION OF WIND PRESSURE BU

COMPUTE TOTAL WIND FORCE (kps)

E = 50.7 + 4.8.03 [35×160] = 276.42 kips

F2 = 48.03 + 44.69 [35×160] = 259.62 k

E3 = 44.69 + 39.69 [35×160] = 259.62 k

E4 = 39.69 + 34.36 [35×160] = 736.72 k

E4 = 39.69 + 34.36 [35×160] = 709.63 k

TOYAL WIND FORGE = 5 F+E+E+E+E+

P2.14. Consider the five-story building shown in Figure P2.8. The average weights of the floor and roof are 90 lb/ft² and 70 lb/ft², respectively. The values of S_{DS} and S_{D1} are equal to 0.9g and 0.4g, respectively. Since *steel* moment frames are used in the north-south direction to resist the seismic forces, the value of R equals 8. Compute the seismic base shear V. Then distribute the base shear along the height of the building.

FUNDAMENTAL	PERIOD
T = C ho	C+0.035 for
T= 0.035 (60) 3/4	steel moment
T = 0.75 SEC.	[frames

W= 4 (100 x 90) 90 b/ft2 + (100 x 90) TO 1b/1.

$$V = \frac{S_{D1} W}{T(R/I)}$$
 I=1 for office blogs.

$$V = \frac{5.4(3876)}{6.75(8/1)} = 258 \text{ kips}$$

Vmm = 0.0441 I Sto W = 0.0441 (1/0.9) 3870) = 153.6 KIDS

THEREFORE, USE V= 258 KIPS

FORCES AT EACH FLOOR LEVEL

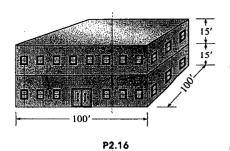
FLOOR	WEIGHT WEIGHT	FLOOR HEIG hi (4+)	ht wiki	Wx hx	Fx. (Kips)
10	630	60	63,06L	0.295	76.L.
Roof	810	48	63,079	0.295	761
416	810	36	45, 638	0.213	560
3rd	9-10	24	18,922	0.135	24.8
2114	810	12	13.261	0.062	16.0
	2 = 3 870		$\Sigma = 213,961$	+	T= 258

0 0	9 9	9
O		N
B-		30,
©-		0.00
D		- W. W. W.
	4 @ 25' = 100' ——————————————————————————————————	•
	P2.8	
T) is a
- 5 0 12' = 60'		-,09 = ,02 • £ 1 3
		wind pressures in lb/ft ²
	(b)	(c)
	P2.8	•

P2.15. When a moment frame does not exceed 12 stories in height and the story height is at least 10 ft, the ASCE standard provides a simpler expression to compute the approximate fundamental period:

where N = number of stories. Recompute T with the above expression and compare it with that obtained from Problem P2.14. Which method produces a larger seismic base shear?

T = 0.1N


MOCE APPROXIMATE FUNDAMENTAL PERIOD:

T= 0.1N N=5 : T= 0.5 SECONDS

V = 0.3 x 6150 = 810 kiss

THE SIMPLER APPROXIMATE METHOD PRODUCES A LARACK YALVE OF BASE SHEAR.

P2.16. (a) A two-story hospital facility shown in Figure P2.16 is being designed in New York with a basic wind speed of 90 mi/h and wind exposure D. The importance factor I is 1.15 and $K_z = 1.0$. Use the simplified procedure to determine the design wind load, base shear, and building overturning moment. (b) Use the equivalent lateral force procedure to determine the seismic base shear and overturning moment. The facility, with an average weight of 90 lb/ft² for both the floor and roof, is to be designed for the following seismic factors: $S_{DS} = 0.27g$ and $S_{D1} = 0.06g$; reinforced concrete frames with an R value of 8 are to be used. The importance factor I is 1.5. (c) Do wind forces or seismic forces govern the strength design of the building?

(a.) HIND LOADS LIGHTY SIMPLIFIED PROCEDURE: PESIAH WIND PRESSURE P. = X Kat I Paso X=1.46 Table 2.8, MEAN ROOF HEIGHT = 30.

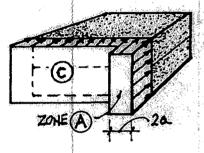
ZOHES	P330	Ps = 1-46 (1)1.15 Ps 30=1,909 Ps 30
A	12.8psf	24.44 PSF
C	8.5 psf	1622 PSF

RESULTANT FORCE AT EACH LEVEL; WHERE DISTANCE a = 0.1 (100') = 10'; 0.4 (30') = 12'; 3'

A=10' CONTROLS & 20 REGION FROOF: ZONE (15' (24.44 psf) 201/000 = 3.674

ZOHE (: 15' (14.5 MF) 80'/1000 = 9.78"

FROOF RESULTANT = 13.45


F 200: ZONE A: 15' (24.44 PSF) 20/1000 = 7.33 k

ZONE (16:3 PSF) 80/1000 = 19.54 k FZNP RESULTANT = 26.89 k

BASE SHEAK VEASE = FROOF + F2HD = 40.34k

OVERTURNING MOMENT MO.T. = EF; h.

MO.T. = 13. 45 (30') + 24.89 (15') = 804.9 M.K

P2.16 CHTINUED

P2.16 CONTINUED

(b) SEISMIC LOADS BY EQUIVALENT LATERAL FORCE PROCEPURE

AIVEN: W = 90 PSF FLOOR & ROOF; SOS = 0.274, SOS = 0.069; R=8, I=1.5

BASE SHEAR VBASE = SMW T(R/I)

WHERE TO TOTAL BUILDING DEAD LOAD:

 $W_{200} = 90 \text{ psf} (100^{\circ})^{2} = 900^{\circ}$ $W_{200} = 90 \text{ psf} (100^{\circ})^{2} = 900^{\circ}$

WTOTAL = 1800K

AND T= Gh = 0.342 466.

CT = 0.016 REINF. CONCRETE FRAME

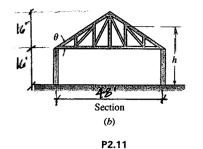
X=0.9

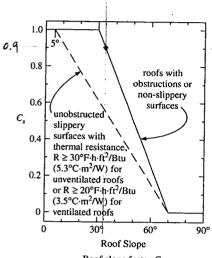
h = 30' BUILDING HEIGHT

VBASE = Q.Q6 (1800K) = 0.033 W = 59.2K (0.34244)(8/1.5) CONTROLS 3

YMAX. = 305 W = 0.27(1800 k) = 0.051W=91.1k

V_{MIN.} = 0.044 Sos I W = 0.044 (0.27)(15)(1800k) = 0.0178W = 32.1 k


FORCE@ EACH LEVEL Fx = Wxhxk VBASE, WHERE VEASE=59.2k
ZWihik
T<0.5 SEC. THUS K=1.0


	•	ZHih:	- 40500	ZFX	= VBASE = 59.2 K
249	900K	15.	13500	0.333	F249 + 19.76*
ROOF	900k	30'	27000	9.667	Froof = 39.5x
LEVEL	Wi	hi	Wih:k	Hxhx Wilik	FORCE & EA. LEVEL:

OVERTURNING MOMENT MO.T. = EFx h; Mat. = 39.5k(30')+19.76k(15')= 1,481.4 Fr.k

(C) SEISMIC FORCES GOVERN THE LATERAL STRENGTH DESIGN.

P2.17. In the gabled roof structure shown in Figure P2.11, determine the sloped roof snow load P_s . The building is heated and is located in a windy area in Boston. Its roof consists of asphalt shingles. The building is used for a manufacturing facility, placing it in a type II occupancy category. Determine the roof slope factor, C_s using the ASCE graph shown in Figure P2.17. If roof trusses are spaced at 16 ft on center, what is the uniform snow load along a truss?

Roof slope factor C_s with warm roofs and $C_t \le 1.0$

P2.17

SLOPED ROOF SNOW LOAD $P_s = C_s pf$ WHERE p_f FLMI ROOF SNOW LOAD $p_f = 0.7 C_e C_t I pg$ $C_e = 0.7$ WINDY AREA $C_t = 1.0$ HEMSED BUILDING I = 1.0 TYPE II OCCUPANCY $p_g = 40$ PSF for BOSTON $C_S = BASED ON ROOF SLOPE 0 = TAN^{-1} (\frac{16}{24}) = 33.7^{\circ}$ FROM FIG. P2.17 C_S IS APPROXIMMELY 0.9 (NON-SLIPPERY SURFACE) $p_f = 0.7 (0.7) (1.0) (1.0) (40 psf) = 19.6.psf$ $p_s = C_s p_s = 0.9 (19.6 psf) = 17.64 psf$

UNIFORM LOAD ACTING ON TRUSSES SPACED @ 16' Q.C.

Wanow = 17-64 PSF (16) = 282,2 PLF

P2.18. A beam that is part of a rigid frame has end moments and mid-span moments for dead, live and earth-quake loads shown below. Determine the governing load combination for both negative and positive moments at the ends and mid-span of the beam. Earthquake load can act in either direction, generating both negative and positive moments in the beam.

End Moments (ft-kip)		Mid-Span Moments (ft-kip)
Dead Load	-180	+90
Live Load	-150	+150
Earthquake	±80	0

LOAD COMBINATIONS-PACTORED STRENGTH

END MOMENTS

```
1.40L = 1.4(-180 \text{ Fr.k}) = -252 \text{ Fr.k}
1.20L + 1.6LL + 0.5(L_{\text{R}} = 5) = 1.2(-180) + 1.6(-150) = -456 \text{ Fr.k} *
1.20L + 1.08 + LL + 0.2(8) = 1.2(-180) + (-80) + (-150) = -446 \text{ Fr.k}
```

MID-SPAN MOMENTS

$$\begin{aligned} 1.4 &\Omega = 1.4 (90 \text{ FT/K}) \\ 1.2 &DL + 1.6 LL + 0.5 (Lg.0R3) \\ 1.2 &DL + 1.0E + LL + 0.2 (3)^0 = 1.2 (90) + 0 + (150) \\ &= +348 \text{ FT/K} \\ &= +298 \text{ FT/K} \end{aligned}$$

BEAM NEEDS TO BE DESIGNED FOR MAX. END MOMENT = -456FT·K

MAX. MID-SPAN MOMENT = +348 FT·K