Chapter 1

Solutions to Exercises



Chapter 2

Solutions to Exercises

EXERCISE 2.1. 1. Let r(t) = \/r2 + (vt)2 + 2rouvt cos(¢). Then,
3?[04(9, W, f)exp{j2nf(1 —r(t)/c)}]
r(t) '

Moreover, if we assume that ro > vt, then we get that r(t) =~ ro + vt cos(¢).
Thus, the doppler shift is fvcos(¢)/c.

E(f,t,r(t),0,9)) =

2. Let (z,vy, z) be the position of the mobile in Cartesian coordinates, and (r,,0)
the position in polar coordinates. Then

(x,y,z) = (rsinfcost,rsinfsiny,rcosb)

(r,,0) = (ng + y2 + 22 arctan(y/x), arccos(z// 2% + y% + 22))
Lo Ty — Ty
v = 22 4+ y2
i - _ Zr —2r

1—(z/r)?

We see that ¢ is small for large 22 +y2. Also 6 is small for |z/r| < 1 and r large.
If [r/z] = 1 then @ = 0 or # = 7 and v <= r|f| so v/r large assures that 6 is
small. If 7 is not very large then the variation of § and 1 may not be negligible
within the time scale of interest even for moderate speeds v. Here large depends
on the time scale of interest.

EXERCISE 2.2.

acos2rf (t —r(t)/c)] 2ald—r(t)]cos2nf (t —r(t)/c)]

E\(f.t) = 20— ) * r(t)2d = r(#)]
_acos 2af (¢ + (r(t) — 2d)/c)]
2d — r(t)
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2acsin 27 f (t — d/c)]sin 27 f (r(t) — d) /] N 2ac[d —r(t)] cos[2mf (t — r(t)/c)]
2d — r(t) r(t)[2d —r(t)]
(2.1)

where we applied the identity

. (x—I—y) . (y—x)
CcoOsT — cosy = 2sin — sin 5

We observe that the first term of (2.1) is similar in form to equation (2.13) in the
notes. The second term of (2.1) goes to 0 as r(t) — d and is due to the difference in
propagation losses in the 2 paths.

EXERCISE 2.3. If the wall is on the other side, both components arrive at the mobile
from the left and experience the same Doppler shift.
Rlovexp{j2r[f(1 —v/c)t — fro/c]}] Rlaexp{j2r[f(1 —v/c)t — f(ro +2d)/c]}]

E,(f,t) = _
) E— ro + 2d + vt

We have the interaction of 2 sinusoidal waves of the same frequency and different
amplitude.

Over time, we observe the composition of these 2 waves into a single sinusoidal
signal of frequency f(1—wv/c) and constant amplitude that depends on the attenuations
(ro + vt) and (r¢ + 2d + vt) and also on the phase difference f2d/c.

Over frequency, we observe that when f2d/c is an integer both waves interfere
destructively resulting in a small received signal. When f2d/c = (2k +1)/2,k € Z
these waves interfere constructively resulting in a larger received signal. So when f
is varied by c¢/4d the amplitude of the received signal varies from a minimum to a
maximum.

The variation over frequency is similar in nature to that of section 2.1.3, but since
the delay spread is different the coherence bandwidth is also different.

However there is no variation over time because the Doppler spread is zero.

EXERCISE 2.4. 1. i) With the given information we can compute the Doppler spread:

v
D,=1fi — fo| = f7|00801 — cos by

from which we can compute the coherence time

1 c
4D, 4fv|cosf; — cos by

1. =

ii) There is not enough information to compute the coherence bandwidth, as it
depends on the delay spread which is not given. We would need to know the

difference in path length to compute the delay spread T, and use it to compute
W..
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2. From part 1 we see that a larger angular range results in larger delay spread and
smaller coherence time. Then, in the richly scattered environment the channel
would show a smaller coherence time than in the environment where the reflectors
are clustered in a small angular range.

EXERCISE 2.5. 1.

(hs_hr)2

1 = 12+ (hy—h)2=r\/1+4 (hy — h,) /7“2%7“(1—1——22 )
”

hs + h,)?

ry = /12 + (hs+ h.)2 =ry/1+ (hs +hT)2/r2mr(1+—( 5;20)
,

(hs + hr) — (hs — hr) B h? + hf + 2hsh, — hz — hf + 2hsh,
2r a 2r

ro —1r1 =

2hsh,

r

Therefore b = 2h h,.

2.
E(f1) ~ Re|alexp{j2n(ft — frl/cgl] —exp{j2n(ft — fra/c)]]
_ Relofexp{j2n(ft — fri/c)][l — exp(j2mf(r1 —r2)/c)]
_ Relofexp{j2n(ft - fry/e)|[1 - expl(i2nf o b/r)
- Re|alexp{j2n(ft — fri/o)][1 — (1 — 527 f/cx b/r)]
= 2P exp( o explion( 1 frafel]
= —%L&‘b sin[2w(ft — fri/c) + Za]]
Therefore 5 = 2x f|a|b/c.
3.

1 1 1 1 To —T1 1 b
ro  ri4(ro—ry)  r[l4+(ro—mr)/r1] 1 el re

Therefore if we don’t make the approximation of b) we get another term in
the expansion that decays as r—3. This term is negligible for large enough r as
compared to 3/r?.
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r2

EXERCISE 2.6. 1. Let fy be the probability density of the distance from the origin
at which the photon is absorbed by exactly the 2nd obstacle that it hits. Let =
be the location of the first obstacle, then

fa(r) = P {photon absorbed by 2nd obstacle at r}
= / P {absorbed by 2nd obstacle at r | not absorbed by 1st obstacle at x}

xT

x P {not absorbed by 1st obstacle at z} dz

Since the obstacle are distributed according to poisson process which has mem-
oryless distances between consecutive points, the first term inside the integral is
fi(r — x). The second term is the probability that the first obstacle is at z and
the photon is not absorbed by it. Thus, it is given by (1 — )g(z). Thus,

hr) = /m (1 = a(@) fulr — x)de

T=—00

2. Similarly, we observe that fi.1(r) is given by

fraa(r) = /P{absorbed by (k + 1)th obst at r | not absorbed by 1st obst at x}

x

x P {not absorbed by 1st obstacle at } dx

- /m (1~ 7)) fulr — 2)da (2.2)

=—00

3. Summing up (2.2) for k£ =1 to oo, we get:

> fulr) = /OO (1—7)q() (ka(r—l’)>da:

=—00
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Thus,
f0)-5i0) = [ (= a@f(r - o),
or equivalently,

fr) = alr) + /Oo (1= ale)f(r — 2)de (2.3)

4. Using (2.3), we get that

Flw) = (1-7)Qw)+ F(w)Q(w), (2.4)

where F' and () denote the Fourier transform of f and ¢ respectively. Since the
q(z) is known explicitly, its Fourier transform can be directly calculated and it
turns out to be:

7
Substituting thin in (2.4), we get
2
I
Flw) = —T
((,U) 7772 + w2

Thus, F' is of the same form as @), except for a different parameter . Thus,

fr) = @e—ﬁm

5. Without any loss of generality we can assume that r is positive, then power
density at r is given by

/ f(z)dx :/ @e‘ﬁmda@

_ le_ﬁnr.

A similar calculation for a negative r gives power density at distance r to be

e_ﬁn‘rl
2 .

EXERCISE 2.7.
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EXERCISE 2.8. The block diagram for the (unmodified) system is:
w(t)

- Jﬁ =y t:/kTH B,

A ——lo() %T R[] —n(t) b T

\/§ej27rfct \/iefj%rfct
1. Which filter should one redesign?

One should redesign the filter at the transmitter. Modifying the filter at the receiver
may cause {0(t — kT)}, no longer to be an orthonormal set, resulting in noise on the
samples not to be i.i.d. By leaving {0(t — kT") }; at the receiver as an orthonormal set,
we are assured the the noise on the samples is i.i.d.

Let the modified filter be g(t). The block diagram for the modified system is:

w(t)
A —Ig(0)] %T R[] ) HJ; oo} B
V2eim et 2ei2mfet

(Solution to Part 3: Figure of the various filters at passband).

We want to find g(t) such that there is no ISI between samples. Before we continue
to find g(t), we depict the desired simplified block diagram for the system with no IST:
A ——P—— By

>
S

Wk
For ease of manipulation, we transform the passband representation of the system
to a baseband representation
w(t)

Ay —=g(t) ’—> ha(t) }—>£*> 0(—t) %t:/kTH By,

_ww
where H,(f) = { ()H(f o) ft}[ler\%visé |

H(f) is assumed bandlimited between [f. — %, f. + %]

We let g(t) = >, gx0(t — kT), and redraw the block diagram:
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w(t)

t=kT
A AT} —400) |0 |00 B,
We now convert the signals and filters from the continuous to discrete time domain:
Wi

Ay ——{I . i B

where hy = 0 % hy % 0_|,_r.

We justify interchanging the order of w(t) and 6(—t), since we know the noise on
the samples is i.i.d.

G(z) = H'(2) gives the desired result.

In summary, g(t) = ., gx0(t — kT') where g; is given by G(2) = H~'(z), and H(2)
is given by the Z-Transform of iLk =0 x hy * 0_|—xr

EXERCISE 2.9. Part 1)

x10* hik, 1]| for W=10KHz
. . .

25F H

Ik, 1|

0.5- [ |

0 I I I I I I
-20 -15 -10 -5 0 5 10 15 20

Figure 2.1: Magnitude of taps, W = 10kHz, time = 1 sec. Two paths are completely
lumped together
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4 hik, 11| for W=100KHz
. . .

35

Ihtk, 1]

Figure 2.2: Magnitude of taps, W = 100kHz, time = 1 sec. Two paths are starting to
become resolved.

x 10"

h[k,1]| for W=1MHz
T

[k, 1]

-20 -15 -10 -5 0 5 10 15 20

Figure 2.3: Magnitude of taps, W = 1MHz, time = 1 sec. T'wo paths are more resolved.
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%10 Ih[k,1]| for W=3MHz
T

|k, 1]

0 I I I I I I I
0 5 10 15 20 25 30 35 40

Figure 2.4: Magnitude of taps, W = 3MHz, time = 1 sec. Two paths are clearly
resolved.
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Part 2) We see that the time variations have the same frequency in both cases
(flat fading in Figure 2.5 and frequency selective fading in Figure 2.7), but are much
more pronounced in the case of flat fading. This is because in frequency selective
fading (large W) each of the signal paths corresponds to a different tap, so they don’t
interfere significantly and the taps have small fluctuations. On the other hand in the
case of flat fading, we sample the channel impulse response with low resolution and
all the signal paths are lumped into the same tap. They interfere constructively and
destructively generating large fluctuations in the tap values. If the model included
more signal paths, then the number of paths contributing significantly to each tap
would vary as a function of the bandwidth W so the frequency of the tap variations
would depend on the bandwidth, smaller bandwidth corresponding to larger Doppler
spread and faster fluctuations (smaller 7,). Finally we could analyze this effect in the
frequency domain. In frequency selective fading, the channel frequency response varies
within the bandwidth of interest. There is an averaging effect and the resulting signal
is never faded too much. This is an example of diversity over frequency.

EXERCISE 2.10. Consider the environment in Figure 2.9.

The shorter paths (dotted lines) contribute to the first tap and the longer paths
(dashed) contribute to the second tap. Then the delay spread for the first tap is given
by:

(%
f?| cos ¢ — €08 P,

and the delay spread for the second tap is given by:
&] cos 0 — cos bs].
c

By appropriately choosing 61,05, ¢1 and ¢, we can construct examples where the
doppler spreads for both the taps are same or different.

EXERCISE 2.11. Let H(f) =1 for |f| < W/2 and 0 otherwise. Then if h(t) <> H(f) it
follows that h(t) = Wsinc(Wt). Then we can write:

R{w[m|} = {[w(t)x/icos(?wfct)] x h(t) |t:m/W}
= [/OO w(T)V2W cos(2m fo7)sinc(W (t — T))d7:|

00 t=m/W

= /_OO w(T)V2W cos(2n f.7)sinc(m — Wr)dr

o0

= [ wtr)matrr

o0



Tse and Viswanath: Fundamentals of Wireless Communication 12

x 10" |h[0,m]| for W=10KHz
12 T T T

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
m

Figure 2.5: Flat fading: time variation of magnitude of 1 tap. (x-axis is the time index

phase(h[0,m]) for W=10KHz
0 T T T

phase(h[0,m])

_7 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

m

Figure 2.6: Flat fading: time variation of phase of 1 tap. (x-axis is the time index m).
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x 10 |h[5,m]| for W=1MHz
7 T T

6.9

6.8

6.7

(5, mi|

6.6

6.4

6.3 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2.7: Frequency selective fading: time variation of magnitude of 1 tap. Note:
scale of y-axis is much finer here than in the flat fading case. (x-axis displays time
with units of seconds. x-axis label of time index 'm’ is a typo. Should be ’time.’)

phase(h[5,m]) for W=1MHz
0 T T T

phase(h[5,m])

x 10"

Figure 2.8: Frequency selective fading: time variation of phase of 1 tap. (x-axis displays
time with units of seconds. x-axis label of time index 'm’ is a typo. Should be ’time.’

)
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P

Rx
Tx

T
Figure 2.9: Location of reflectors, transmitter and receiver

where V,1(7) = V2W cos(2r f.7)sinc(m — Wr).
Similarly,

Swlm]} = —{[w(t)ﬁsin(?wfct)]*h(t) h:m/W}
_ [ /_ ()W sin(2r f7)sine(W (1 — T))df]

oo t=m/W

_ / " w(r)VAW sin(2n . 7)sine(m — Wr)dr

o0

— [ wnatrlds

where ,,2(7) = —v/2W sin (27 f.7)sinc(m — Wr).

EXERCISE 2.12. 1) Let 6,(t) denote 8(t — nT).

Show that if the waveforms {6,,(¢)}, form an orthogonal set, then the waveforms
{¥n1,Vn,2}n also form an orthogonal set, provided 6(t) is band-limited to [—f., fe|.
Yn1,Yn, 2 are defined as

wn,1<t) = Qn(t)COS27cht (25>
Yna(t) = 6,(t)sin2nft

By definition {6,,(¢)}, forms an orthogonal set

= [T 05(t)0,(t)dt = ad[m —n] for some a € R
— [ 0:(f)On(f)df =adlm—n] for some a € R, by Parseval’s Theorem(2.6)

where ©,,(f) is the Fourier Transform of 6,,(¢).
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We would like to show
1) <ni(t),Yma(t) > x o[m—n] VmmneZ
waveforms modulated by cos 27 f.t remain orthogonal to each other
2) <o), Ym2(t) > x dm—n] VmmneZ
waveforms modulated by sin 27 f.t remain orthogonal to each other
3) <VUni(t),Yma(t)> = 0 VmnelZ
waveforms modulated by cos2nf.t are orthog. to waveforms modulated by

sin 27 f.t.
We will show these three cases individually:
Case 1)
U mal) > = [ 00U
= / U (f)Vm 1 (f)df by Parseval’s (2.7)
where

Voi(f) = /OO Y (t)e 72t

_ / Ou(t) cos(27 fut)e 92Tt from (2.5)

= 0.(f) * (0(F — fo) + 507 + 1)

1

Substituting into (3)

-1/ TO0 — 1) L O+ SOl — 1)+ Oulf + £Ndf

4 —00
= 1 [ O 1B~ £+ O~ £)8(T + S+

=0

-~

=0

The second and third terms equal zero since 6(t) is bandlimited to [— f,, f.| resulting
in no overlap in the region of support of O(f + f.) and O(f — f.), as seen in Figure
2.10(b).

= i/_oo OL(f = fo)Om(f = fo) + OL(f + f)Ou(f + fo)df
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_ 1 / 0 (HOn(f) + O (FOn(Fdf

since integrals from —oo to oo are invariant to shifts of the integrand along the x-axis.

1

- 2/ ewnenn

= gd[m — nJ, by equation (2.6) (2.8)
x d[m —n]

Case 2)
< ¢n,2(t)7¢m,2(t) >

= /_ wz,z(t)wm,z(t)dt

= / U o (f) Vo o f)df by Parseval’s

—00

= /_oo (%)*[@Z(f —fo) = OL(f + fc)](zij)[@m(f — fe) = Om(f + fo)ldf

= i/ O,(f = f)Ou(f = fo) = O,(f = [)Om(f + fo) +

g

=0

— O (f + f)Om(f = fo) +OL(f + fe)Om(f + fo)df

'

=0

IS,

|

/ T 0:(1)On(f) + O5(N)Ou(F)df

—_

-1 /_OO 0% (£)Ou(f)df

= %5[m —nJ, by equation (2.6) (2.9)

W

x d&[m —n]

Case 3)
< 1/%,1(?5)7 wm,2<t> >

= [

= / U (f) W, 2(f)df by Parseval’s
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- ) [ TO — 1) L Ot L NOnf — £) — Oulf + fNdf

47" ) -
1. [~ \
- ()] e - penls -1 - QA = 1S+ )
S m@*<0— JOu(f — f.)— O3(f + )0 )d
- 4—]./00 (F O] — ) — O5(f + )OS + L)
1 o * *
- () / OLNOw ()~ OO
=0 VmneZ

For 1(t) to be orthonormal, set § = 1 in (2.8) and (2.9), which implies a = 2. We
should scale 6,,(t) by v/2.

Part 2) 0(t) = 4f.sinc(4f.t) is an example A(t) that is not band-limited to [—f., f.].
See Figure 2.10(c). For this example, there will be an overlap in the region of support
of O(f + f.) and O(f — f.). See Figure 2.10(d). The cross terms O* (f — £.)Oum(f + f.)
and ©%(f + f.)Oum(f — f.) will no longer = 0 and {41, % 2}n will no longer by or-
thogonal.

2 take away messages:

1) The orthogonality property of a set of waveforms is unchanged if the waveforms
experience a frequency shift, or in other words are multiplied by e/?7/et,

2) WGN projected onto {1y, 1,1y, 2}, will yield i.i.d. gaussian noise samples.

EXERCISE 2.13. Let F[-] denote the Fourier transform operator, * denote convolution,
u(+) the unit step function and

1/j if f>0
H(f)={ 0 if f=0
~1/j if f<0
with h(t) <> H(f). Then we can write:
Sys(t)e*™] = Qij[yb(t)emfct = ()™ )] = Q%.F_I[Yb(f —fo) =Y (=f = [l
= R - YD) = E O] = S0« b
V2
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—fc fc freq

(a) Frequency range of O(f) band-limited
from _fw f(:

—2fc —fc fc 2fc freq

(b) Frequency range of ©(f+ fc¢) and ©(f —
fe). Notice no overlap in region of support.

—2fc 2fc freq

(¢) Frequency range of O(f) not band-
limited from —f., fe.

18
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= S ()Rt — ()T ()
= 3wl = ) g~ () O
_, % S et = 7)) it — (1)) 2O

= Y {a®)Saplt — 7i(t))e O]

7

= g { [Z a;(t)zy(t — Ti(t))e_j%fcn(t)] eﬂﬂfct}

i

The equality (a) follows because the first term between the braces is zero for neg-
ative frequencies and the second term is zero for positive frequencies.

Yes. Both equations together allow to equate the complex arguments of the ® and
& operators, thus allowing to obtain the baseband equivalent of the impulse response
of the channel.

EXERCISE 2.14.
EXERCISE 2.15. Effects that make the tap gains vary with time:

e Doppler shifts and Doppler spread: D = f.7/(t), T. ~ 1/D = 1/(f.7/(t)) The
coherence time is determined by the Doppler spread of the paths that contribute
to a given tap. As W increases the paths are sampled at higher resolution and
fewer paths contribute to each tap. Therefore the Doppler spread decreases for
increasing W and its influence on the variation of the tap gains decreases.

e Variation of {a;(¢)}; with time. a;(¢) changes slowly, with a time scale of varia-
tion much larger than the other effects discussed. However as W increases and
it becomes comparable to f. assuming that a single gain affects the correspond-
ing path equally across all frequencies may not be a good approximation. The
reflection coefficient of the scatterers may be frequency dependent and for very
large bandwidths we need to change the model.

e Movement of paths from tap to tap. 7;(t) changes with ¢ and the corresponding
path moves from one tap to another. As W increases fewer paths contribute to
each tap and the tap gains change significantly when a path moves from tap to
tap. A path moves from tap to tap when A7;(£)W =1 or Ar;(t)/At-W = 1/At.
So this effect takes place in a time scale of At ~ 1/(W/(t)). As W increases
this effect starts taking place in a small time scale and it becomes the dominant
cause of time variation in the channel tap gains.
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The third effect dominates when At < T, or equivalently when W > f..

EXERCISE 2.16.

N
Z a;(m/W)e 72 it/ Wgine (0 — 7;(m/W)W)
i=1

Let 7= 5 LS 7(0) and Ary(m/W) = 7;(m/W) — 7. Then,

=

hefm] = e jz”chZ (m)W)e 32 ebrim/Wigine (¢ — FW — A1 (m/W)W)

Often in practice f.7 ~ f.r/c >> 1! so0 it is a reasonable assumption to model
e 2meT = ¢73% where 0 ~ Uniform|0,27] and 6 is independent of everything else.
Note that 7 does not depend on m so a particular realization of € is the same for all
components of h. Since e™/? has uniformly distributed phase, its distribution does not
change if we introduce an arbitrary phase shift ¢. So e/®e™7¢ ~ ¢=99.

It follows that

SV ai(m) W )e 2T/ Wsing (0 — FW — Ay (m/W)W)
ion bt SV ai((m 4 1) /W )e 2rfeAm (i) Wgine (¢ — W — Azy((m + 1) /W)W)
e = % :
SOV ai((m A+ n) W )ed2mleAT(tntn) Wgine (0 — FW — Azy((m +n)/W)W)
SOV ai(m /W )e P2 AT Wsine (¢ — FW — Ay (m/W)W)

R SV ai((m A+ 1) /W )em 2 feAm(mt D/ Wgine (0 — FW — Ary((m + 1) /W)W)
Zf\il ai((m +n) /W )e 22 felnil(mtn)/Wgine (¢ — FW — Ary((m +n)/W)W)

Since this is true for all ¢, under the previous assumptions h is circularly symmetric.

EXERCISE 2.17. 1. h(7,t) is the response of the channel to an impulse that occurs
at time t — 7, i.e.,, §(t — (t — 7)). Replacing z(t) by d(t — (¢t — 7)) in the given
expression we obtain:

T

h(r,t) = O(T — 79, (t)).

\/_
The projection of the velocity vector v onto the direction of the path at angle 6
has a magnitude:

gM

vg = |v]|cosb.

Ir is the distance between transmit and receive antennas



