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Chapter 2

Solutions to Exercises

Exercise 2.1. 1. Let r(t) =
√

r2
0 + (vt)2 + 2r0vt cos(φ). Then,

Er(f, t, r(t), θ, ψ)) =
<[α(θ, ψ, f) exp{j2πf(1− r(t)/c)}]

r(t)
.

Moreover, if we assume that r0 À vt, then we get that r(t) ≈ r0 + vt cos(φ).
Thus, the doppler shift is fv cos(φ)/c.

2. Let (x, y, z) be the position of the mobile in Cartesian coordinates, and (r, ψ, θ)
the position in polar coordinates. Then

(x, y, z) = (r sin θ cos ψ, r sin θ sin ψ, r cos θ)

(r, ψ, θ) =
(√

x2 + y2 + z2, arctan(y/x), arccos(z/
√

x2 + y2 + z2)
)

ψ̇ =
xẏ − ẋy

x2 + y2

θ̇ = − żr − zṙ

r2
√

1− (z/r)2

We see that ψ̇ is small for large x2 + y2. Also θ̇ is small for |z/r| < 1 and r large.
If |r/z| = 1 then θ = 0 or θ = π and v <= r|θ̇| so v/r large assures that θ̇ is
small. If r is not very large then the variation of θ and ψ may not be negligible
within the time scale of interest even for moderate speeds v. Here large depends
on the time scale of interest.

Exercise 2.2.

Er(f, t) =
α cos [2πf (t− r(t)/c)]

2d− r(t)
+

2α [d− r(t)] cos [2πf (t− r(t)/c)]

r(t)[2d− r(t)]

−α cos [2πf (t + (r(t)− 2d)/c)]

2d− r(t)

2
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=
2α sin [2πf (t− d/c)] sin [2πf (r(t)− d) /c]

2d− r(t)
+

2α [d− r(t)] cos [2πf (t− r(t)/c)]

r(t)[2d− r(t)]

(2.1)

where we applied the identity

cos x− cos y = 2 sin

(
x + y

2

)
sin

(
y − x

2

)

We observe that the first term of (2.1) is similar in form to equation (2.13) in the
notes. The second term of (2.1) goes to 0 as r(t) → d and is due to the difference in
propagation losses in the 2 paths.

Exercise 2.3. If the wall is on the other side, both components arrive at the mobile
from the left and experience the same Doppler shift.

Er(f, t) =
<[α exp{j2π[f(1− v/c)t− fr0/c]}]

r0 + vt
−<[α exp{j2π[f(1− v/c)t− f(r0 + 2d)/c]}]

r0 + 2d + vt

We have the interaction of 2 sinusoidal waves of the same frequency and different
amplitude.

Over time, we observe the composition of these 2 waves into a single sinusoidal
signal of frequency f(1−v/c) and constant amplitude that depends on the attenuations
(r0 + vt) and (r0 + 2d + vt) and also on the phase difference f2d/c.

Over frequency, we observe that when f2d/c is an integer both waves interfere
destructively resulting in a small received signal. When f2d/c = (2k + 1)/2, k ∈ Z
these waves interfere constructively resulting in a larger received signal. So when f
is varied by c/4d the amplitude of the received signal varies from a minimum to a
maximum.

The variation over frequency is similar in nature to that of section 2.1.3, but since
the delay spread is different the coherence bandwidth is also different.

However there is no variation over time because the Doppler spread is zero.

Exercise 2.4. 1. i) With the given information we can compute the Doppler spread:

Ds = |f1 − f2| = fv

c
| cos θ1 − cos θ2|

from which we can compute the coherence time

Tc =
1

4Ds

=
c

4fv| cos θ1 − cos θ2|

ii) There is not enough information to compute the coherence bandwidth, as it
depends on the delay spread which is not given. We would need to know the
difference in path length to compute the delay spread Td and use it to compute
Wc.
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2. From part 1 we see that a larger angular range results in larger delay spread and
smaller coherence time. Then, in the richly scattered environment the channel
would show a smaller coherence time than in the environment where the reflectors
are clustered in a small angular range.

Exercise 2.5. 1.

r1 =
√

r2 + (hs − hr)2 = r
√

1 + (hs − hr)2/r2 ≈ r(1 +
(hs − hr)

2

2r2
)

r2 =
√

r2 + (hs + hr)2 = r
√

1 + (hs + hr)2/r2 ≈ r(1 +
(hs + hr)

2

2r2
)

r2 − r1 ≈ (hs + hr)
2 − (hs − hr)

2

2r
=

h2
s + h2

r + 2hshr − h2
s − h2

r + 2hshr

2r

=
2hshr

r

Therefore b = 2hshr.

2.

Er(f, t) ≈ Re[α[exp{j2π(ft− fr1/c)]− exp{j2π(ft− fr2/c)]]

r1

=
Re[α[exp{j2π(ft− fr1/c)][1− exp(j2πf(r1 − r2)/c)]

r1

≈ Re[α[exp{j2π(ft− fr1/c)][1− exp(j2πf/c ∗ b/r)]

r1

≈ Re[α[exp{j2π(ft− fr1/c)][1− (1− j2πf/c ∗ b/r)]

r1

=
2πf |α|b

cr2
<[j exp(j∠α) exp[j2π(ft− fr1/c)]]

= −2πf |α|b
cr2

sin[2π(ft− fr1/c) + ∠α]]

Therefore β = 2πf |α|b/c.
3.

1

r2

=
1

r1 + (r2 − r1)
=

1

r1[1 + (r2 − r1)/r1]
≈ 1

r1

(
1− r2 − r1

r1

)
≈ 1

r1

(
1− b

r2
1

)

Therefore if we don’t make the approximation of b) we get another term in
the expansion that decays as r−3. This term is negligible for large enough r as
compared to β/r2.
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Exercise 2.6. 1. Let f2 be the probability density of the distance from the origin
at which the photon is absorbed by exactly the 2nd obstacle that it hits. Let x
be the location of the first obstacle, then

f2(r) = P {photon absorbed by 2nd obstacle at r}
=

∫

x

P {absorbed by 2nd obstacle at r | not absorbed by 1st obstacle at x}
× P {not absorbed by 1st obstacle at x} dx

Since the obstacle are distributed according to poisson process which has mem-
oryless distances between consecutive points, the first term inside the integral is
f1(r − x). The second term is the probability that the first obstacle is at x and
the photon is not absorbed by it. Thus, it is given by (1− γ)q(x). Thus,

f2(r) =

∫ ∞

x=−∞
(1− γ)q(x)f1(r − x)dx

2. Similarly, we observe that fk+1(r) is given by

fk+1(r) =

∫

x

P {absorbed by (k + 1)th obst at r | not absorbed by 1st obst at x}
× P {not absorbed by 1st obstacle at x} dx

=

∫ ∞

x=−∞
(1− γ)q(x)fk(r − x)dx (2.2)

3. Summing up (2.2) for k = 1 to ∞, we get:

∞∑

k=2

fk(r) =

∫ ∞

x=−∞
(1− γ)q(x)

( ∞∑

k=1

fk(r − x)

)
dx
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Thus,

f(r)− f1(r) =

∫ ∞

x=−∞
(1− γ)q(x)f(r − x)dx,

or equivalently,

f(r) = γq(r) +

∫ ∞

x=−∞
(1− γ)q(x)f(r − x)dx (2.3)

4. Using (2.3), we get that

F (ω) = (1− γ)Q(ω) + F (ω)Q(ω), (2.4)

where F and Q denote the Fourier transform of f and q respectively. Since the
q(x) is known explicitly, its Fourier transform can be directly calculated and it
turns out to be:

Q(ω) =
η2

η2 + ω2
.

Substituting thin in (2.4), we get

F (ω) =
γη2

γη2 + ω2
.

Thus, F is of the same form as Q, except for a different parameter η. Thus,

f(r) =

√
γη

2
e−

√
γη|r|

5. Without any loss of generality we can assume that r is positive, then power
density at r is given by

∫ ∞

x=r

f(x)dx =

∫ ∞

x=r

√
γη

2
e−

√
γηxdx

=
1

2
e−

√
γηr.

A similar calculation for a negative r gives power density at distance r to be

e−
√

γη|r|

2
.

Exercise 2.7.
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Exercise 2.8. The block diagram for the (unmodified) system is:

w(t)

²²
Ak

// θ(t) //º¹¸·³´µ¶x // R[·] // h(t) // ÂÁÀ¿»¼½¾+ //º¹¸·³´µ¶x // θ(−t)
t=kT

/
// Bk

√
2ej2πfct

OO

√
2e−j2πfct

OO

1. Which filter should one redesign?
One should redesign the filter at the transmitter. Modifying the filter at the receiver

may cause {θ(t− kT )}k no longer to be an orthonormal set, resulting in noise on the
samples not to be i.i.d. By leaving {θ(t− kT )}k at the receiver as an orthonormal set,
we are assured the the noise on the samples is i.i.d.

Let the modified filter be g(t). The block diagram for the modified system is:

w(t)

²²
Ak

// g(t) //º¹¸·³´µ¶x // R[·] // h(t) // ÂÁÀ¿»¼½¾+ //º¹¸·³´µ¶x // θ(−t)
t=kT

/
// Bk

√
2ej2πfct

OO

√
2e−j2πfct

OO

(Solution to Part 3: Figure of the various filters at passband).
We want to find g(t) such that there is no ISI between samples. Before we continue

to find g(t), we depict the desired simplified block diagram for the system with no ISI:
Ak

// ÂÁÀ¿»¼½¾+ // Bk

wk

OO

For ease of manipulation, we transform the passband representation of the system
to a baseband representation

w(t)

²²
Ak

// g(t) // hb(t) // ÂÁÀ¿»¼½¾+ // θ(−t)
t=kT

/
// Bk

where Hb(f) =

{
H(f + fc) ∈ [−W

2
, W

2
]

0 otherwise

H(f) is assumed bandlimited between [fc − W
2
, fc + W

2
]

We let g(t) =
∑

k gkθ(t− kT ), and redraw the block diagram:
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w(t)

²²
Ak

// gk // θ(t) // hb(t) // ÂÁÀ¿»¼½¾+ // θ(−t)
t=kT

/
// Bk

We now convert the signals and filters from the continuous to discrete time domain:
wk

²²
Ak

// gk // h̃k
// ÂÁÀ¿»¼½¾+ // Bk

where h̃k = θ ∗ hb ∗ θ−|t=kT .

We justify interchanging the order of w(t) and θ(−t), since we know the noise on
the samples is i.i.d.

G(z) = H̃−1(z) gives the desired result.
In summary, g(t) =

∑
k gkθ(t− kT ) where gk is given by G(z) = H̃−1(z), and H̃(z)

is given by the Z-Transform of h̃k = θ ∗ hb ∗ θ−|t=kT

Exercise 2.9. Part 1)

Figure 2.1: Magnitude of taps, W = 10kHz, time = 1 sec. Two paths are completely
lumped together
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Figure 2.2: Magnitude of taps, W = 100kHz, time = 1 sec. Two paths are starting to
become resolved.

Figure 2.3: Magnitude of taps, W = 1MHz, time = 1 sec. Two paths are more resolved.



Tse and Viswanath: Fundamentals of Wireless Communication 10

Figure 2.4: Magnitude of taps, W = 3MHz, time = 1 sec. Two paths are clearly
resolved.
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Part 2) We see that the time variations have the same frequency in both cases
(flat fading in Figure 2.5 and frequency selective fading in Figure 2.7), but are much
more pronounced in the case of flat fading. This is because in frequency selective
fading (large W) each of the signal paths corresponds to a different tap, so they don’t
interfere significantly and the taps have small fluctuations. On the other hand in the
case of flat fading, we sample the channel impulse response with low resolution and
all the signal paths are lumped into the same tap. They interfere constructively and
destructively generating large fluctuations in the tap values. If the model included
more signal paths, then the number of paths contributing significantly to each tap
would vary as a function of the bandwidth W , so the frequency of the tap variations
would depend on the bandwidth, smaller bandwidth corresponding to larger Doppler
spread and faster fluctuations (smaller Tc). Finally we could analyze this effect in the
frequency domain. In frequency selective fading, the channel frequency response varies
within the bandwidth of interest. There is an averaging effect and the resulting signal
is never faded too much. This is an example of diversity over frequency.

Exercise 2.10. Consider the environment in Figure 2.9.
The shorter paths (dotted lines) contribute to the first tap and the longer paths

(dashed) contribute to the second tap. Then the delay spread for the first tap is given
by:

fv

c
| cos φ1 − cos φ2|,

and the delay spread for the second tap is given by:

fv

c
| cos θ1 − cos θ2|.

By appropriately choosing θ1, θ2, φ1 and φ2, we can construct examples where the
doppler spreads for both the taps are same or different.

Exercise 2.11. Let H(f) = 1 for |f | < W/2 and 0 otherwise. Then if h(t) ↔ H(f) it
follows that h(t) = W sinc(Wt). Then we can write:

<{w[m]} =
{

[w(t)
√

2 cos(2πfct)] ∗ h(t) |t=m/W

}

=

[∫ ∞

−∞
w(τ)

√
2W cos(2πfcτ)sinc(W (t− τ))dτ

]

t=m/W

=

∫ ∞

−∞
w(τ)

√
2W cos(2πfcτ)sinc(m−Wτ)dτ

=

∫ ∞

−∞
w(τ)ψm,1(τ)dτ
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Figure 2.5: Flat fading: time variation of magnitude of 1 tap. (x-axis is the time index
m).

Figure 2.6: Flat fading: time variation of phase of 1 tap. (x-axis is the time index m).
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Figure 2.7: Frequency selective fading: time variation of magnitude of 1 tap. Note:
scale of y-axis is much finer here than in the flat fading case. (x-axis displays time
with units of seconds. x-axis label of time index ’m’ is a typo. Should be ’time.’)

Figure 2.8: Frequency selective fading: time variation of phase of 1 tap. (x-axis displays
time with units of seconds. x-axis label of time index ’m’ is a typo. Should be ’time.’
)



Tse and Viswanath: Fundamentals of Wireless Communication 14

Rx
Tx

φ1

θ1

θ2

φ2 v

Figure 2.9: Location of reflectors, transmitter and receiver

where ψm,1(τ) =
√

2Wcos(2πfcτ)sinc(m−Wτ).
Similarly,

={w[m]} = −
{

[w(t)
√

2 sin(2πfct)] ∗ h(t) |t=m/W

}

= −
[∫ ∞

−∞
w(τ)

√
2W sin(2πfcτ)sinc(W (t− τ))dτ

]

t=m/W

= −
∫ ∞

−∞
w(τ)

√
2W sin(2πfcτ)sinc(m−Wτ)dτ

=

∫ ∞

−∞
w(τ)ψm,2(τ)dτ

where ψm,2(τ) = −√2Wsin(2πfcτ)sinc(m−Wτ).

Exercise 2.12. 1) Let θn(t) denote θ(t− nT ).
Show that if the waveforms {θn(t)}n form an orthogonal set, then the waveforms

{ψn,1, ψn, 2}n also form an orthogonal set, provided θ(t) is band-limited to [−fc, fc].
ψn,1, ψn, 2 are defined as

ψn,1(t) = θn(t) cos 2πfct (2.5)

ψn, 2(t) = θn(t) sin 2πfct

By definition {θn(t)}n forms an orthogonal set

⇐⇒ ∫∞
−∞ θ∗n(t)θm(t)dt = a δ[m− n] for some a ∈ R

⇐⇒ ∫∞
−∞ Θ∗

n(f)Θm(f)df = a δ[m− n] for some a ∈ R, by Parseval’s Theorem(2.6)

where Θn(f) is the Fourier Transform of θn(t).
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We would like to show
1) < ψn,1(t), ψm,1(t) > ∝ δ[m− n] ∀ m,n ∈ Z

waveforms modulated by cos 2πfct remain orthogonal to each other
2) < ψn, 2(t), ψm, 2(t) > ∝ δ[m− n] ∀ m,n ∈ Z

waveforms modulated by sin 2πfct remain orthogonal to each other
3) < ψn,1(t), ψm, 2(t) > = 0 ∀ m,n ∈ Z

waveforms modulated by cos 2πfct are orthog. to waveforms modulated by
sin 2πfct.

We will show these three cases individually:
Case 1)

< ψn,1(t), ψm,1(t) > =

∫ ∞

−∞
ψ∗n,1(t)ψm,1(t)dt

=

∫ ∞

−∞
Ψ∗

n,1(f)Ψm,1(f)df by Parseval’s (2.7)

where

Ψn,1(f) =

∫ ∞

−∞
ψn,1(t)e

−j2πftdt

=

∫ ∞

−∞
θn(t) cos(2πfct)e

−j2πftdt, from (2.5)

= Θn(f) ∗ (
1

2
δ(f − fc) +

1

2
δ(f + fc))

=
1

2
(Θn(f − fc) + Θn(f + fc))

Substituting into (3)

=
1

4

∫ ∞

−∞
[Θ∗

n(f − fc) + Θ∗
n(f + fc)][Θm(f − fc) + Θm(f + fc)]df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

+ Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

+Θ∗
n(f + fc)Θm(f + fc)df

The second and third terms equal zero since θ(t) is bandlimited to [−fc, fc] resulting
in no overlap in the region of support of Θ(f + fc) and Θ(f − fc), as seen in Figure
2.10(b).

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f + fc)Θm(f + fc)df
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=
1

4

∫ ∞

−∞
Θ∗

n(f)Θm(f) + Θ∗
n(f)Θm(f)df

since integrals from −∞ to ∞ are invariant to shifts of the integrand along the x-axis.

=
1

4
2

∫ ∞

−∞
Θ∗

n(f)Θm(f)df

=
a

2
δ[m− n], by equation (2.6) (2.8)

∝ δ[m− n]

Case 2)
< ψn, 2(t), ψm, 2(t) >

=

∫ ∞

−∞
ψ∗n, 2(t)ψm, 2(t)dt

=

∫ ∞

−∞
Ψ∗

n, 2(f)Ψm, 2(f)df by Parseval’s

=

∫ ∞

−∞
(

1

2j
)∗[Θ∗

n(f − fc)−Θ∗
n(f + fc)](

1

2j
)[Θm(f − fc)−Θm(f + fc)]df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

−Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

+Θ∗
n(f + fc)Θm(f + fc)df

=
1

4

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc) + Θ∗
n(f + fc)Θm(f + fc)df

=
1

4

∫ ∞

−∞
Θ∗

n(f)Θm(f) + Θ∗
n(f)Θm(f)df

=
1

4
2

∫ ∞

−∞
Θ∗

n(f)Θm(f)df

=
a

2
δ[m− n], by equation (2.6) (2.9)

∝ δ[m− n]

Case 3)
< ψn,1(t), ψm, 2(t) >

=

∫ ∞

−∞
ψ∗n,1(t)ψm, 2(t)dt

=

∫ ∞

−∞
Ψ∗

n,1(f)Ψm, 2(f)df by Parseval’s
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= (
1

4j
)

∫ ∞

−∞
[Θ∗

n(f − fc) + Θ∗
n(f + fc)][Θm(f − fc)−Θm(f + fc)]df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f − fc)Θm(f + fc)︸ ︷︷ ︸

=0

+

+ Θ∗
n(f + fc)Θm(f − fc)︸ ︷︷ ︸

=0

−Θ∗
n(f + fc)Θm(f + fc)df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f − fc)Θm(f − fc)−Θ∗
n(f + fc)Θm(f + fc)df

= (
1

4j
)

∫ ∞

−∞
Θ∗

n(f)Θm(f)−Θ∗
n(f)Θm(f)df

= 0 ∀ m,n ∈ Z
For ψ(t) to be orthonormal, set a

2
= 1 in (2.8) and (2.9), which implies a = 2. We

should scale θn(t) by
√

2.

Part 2) θ̃(t) = 4fcsinc(4fct) is an example θ(t) that is not band-limited to [−fc, fc].
See Figure 2.10(c). For this example, there will be an overlap in the region of support
of Θ̃(f + fc) and Θ̃(f − fc). See Figure 2.10(d). The cross terms Θ̃∗

n(f − fc)Θ̃m(f + fc)
and Θ̃∗

n(f + fc)Θ̃m(f − fc) will no longer = 0 and {ψn,1, ψn, 2}n will no longer by or-
thogonal.

2 take away messages:
1) The orthogonality property of a set of waveforms is unchanged if the waveforms
experience a frequency shift, or in other words are multiplied by ej2πfct.
2) WGN projected onto {ψn,1, ψn, 2}n will yield i.i.d. gaussian noise samples.

Exercise 2.13. Let F[·] denote the Fourier transform operator, ∗ denote convolution,
u(·) the unit step function and

H(f) =





1/j if f > 0
0 if f = 0

−1/j if f < 0

with h(t) ↔ H(f). Then we can write:

=[yb(t)e
j2πfct] =

1

2j
[yb(t)e

j2πfct − (yb(t)e
j2πfct)∗] =

1

2j
F−1[Yb(f − fc)− Y ∗

b (−f − fc)]

=

√
2

2j
F−1[Y (f)u(f)− Y (f)u(−f)] =

√
2

2
F−1[Y (f)H(f)] =

√
2

2
y(t) ∗ h(t)

=

√
2

2

∑
i

[ai(t)x(t− τi(t))] ∗ h(t)
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freq fc −fc 

(a) Frequency range of Θ(f) band-limited
from −fc, fc

fc −fc −2fc 2fc freq 

(b) Frequency range of Θ(f+fc) and Θ(f−
fc). Notice no overlap in region of support.

2fc −2fc freq 

(c) Frequency range of Θ̃(f) not band-
limited from −fc, fc

fc 3fc −fc −3fc freq 

overlapped region of support 

(d) Frequency range of Θ̃(f+fc) and Θ̃(f−
fc). Notice an overlap in region of support.

Figure 2.10: Frequency range of waveforms at baseband and passband.
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=

√
2

2

∑
i

{ai(t)
√

2<[xb(t− τi(t))e
j2πfc(t−τi(t))]} ∗ h(t)

=
1

2

∑
i

{ai(t)[xb(t− τi(t))e
j2πfc(t−τi(t)) + x∗b(t− τi(t))e

−j2πfc(t−τi(t))]} ∗ h(t)

=a
1

2j

∑
i

{ai(t)[xb(t− τi(t))e
j2πfc(t−τi(t)) − x∗b(t− τi(t))e

−j2πfc(t−τi(t))]}

=
∑

i

{ai(t)=[xb(t− τi(t))e
j2πfc(t−τi(t))]}

= =
{[∑

i

ai(t)xb(t− τi(t))e
−j2πfcτi(t)

]
ej2πfct

}

The equality (a) follows because the first term between the braces is zero for neg-
ative frequencies and the second term is zero for positive frequencies.

Yes. Both equations together allow to equate the complex arguments of the < and
= operators, thus allowing to obtain the baseband equivalent of the impulse response
of the channel.

Exercise 2.14.

Exercise 2.15. Effects that make the tap gains vary with time:

• Doppler shifts and Doppler spread: D = fcτ
′
i(t), Tc ∼ 1/D = 1/(fcτ

′
i(t)) The

coherence time is determined by the Doppler spread of the paths that contribute
to a given tap. As W increases the paths are sampled at higher resolution and
fewer paths contribute to each tap. Therefore the Doppler spread decreases for
increasing W and its influence on the variation of the tap gains decreases.

• Variation of {ai(t)}i with time. ai(t) changes slowly, with a time scale of varia-
tion much larger than the other effects discussed. However as W increases and
it becomes comparable to fc assuming that a single gain affects the correspond-
ing path equally across all frequencies may not be a good approximation. The
reflection coefficient of the scatterers may be frequency dependent and for very
large bandwidths we need to change the model.

• Movement of paths from tap to tap. τi(t) changes with t and the corresponding
path moves from one tap to another. As W increases fewer paths contribute to
each tap and the tap gains change significantly when a path moves from tap to
tap. A path moves from tap to tap when ∆τi(t)W = 1 or ∆τi(t)/∆t ·W = 1/∆t.
So this effect takes place in a time scale of ∆t ∼ 1/(Wτ ′i(t)). As W increases
this effect starts taking place in a small time scale and it becomes the dominant
cause of time variation in the channel tap gains.
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The third effect dominates when ∆t < Tc or equivalently when W > fc.

Exercise 2.16.

h`[m] =
N∑

i=1

ai(m/W )e−j2πfcτi(m/W )sinc(`− τi(m/W )W )

Let τ̄ = 1
N

∑N
i=1 τi(0) and ∆τi(m/W ) = τi(m/W )− τ̄ . Then,

h`[m] = e−j2πfcτ̄

N∑
i=1

ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )

Often in practice fcτ̄ ∼ fcr/c >> 1 1 so it is a reasonable assumption to model
e−j2πfcτ̄ = e−jθ where θ ∼ Uniform[0, 2π] and θ is independent of everything else.
Note that τ̄ does not depend on m so a particular realization of θ is the same for all
components of h. Since e−jθ has uniformly distributed phase, its distribution does not
change if we introduce an arbitrary phase shift φ. So ejφe−jθ ∼ e−jθ.

It follows that

ejφh = ejφe−jθ




∑N
i=1 ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )∑N

i=1 ai((m + 1)/W )e−j2πfc∆τi((m+1)/W )sinc(`− τ̄W −∆τi((m + 1)/W )W )
...∑N

i=1 ai((m + n)/W )e−j2πfc∆τi((m+n)/W )sinc(`− τ̄W −∆τi((m + n)/W )W )




=d e−jθ




∑N
i=1 ai(m/W )e−j2πfc∆τi(m/W )sinc(`− τ̄W −∆τi(m/W )W )∑N

i=1 ai((m + 1)/W )e−j2πfc∆τi((m+1)/W )sinc(`− τ̄W −∆τi((m + 1)/W )W )
...∑N

i=1 ai((m + n)/W )e−j2πfc∆τi((m+n)/W )sinc(`− τ̄W −∆τi((m + n)/W )W )




=d h

Since this is true for all φ, under the previous assumptions h is circularly symmetric.

Exercise 2.17. 1. h(τ, t) is the response of the channel to an impulse that occurs
at time t − τ , i.e., δ(t − (t − τ)). Replacing x(t) by δ(t − (t − τ)) in the given
expression we obtain:

h(τ, t) =
a√
K

K−1∑
i=0

δ(τ − τθi
(t)).

The projection of the velocity vector v onto the direction of the path at angle θ
has a magnitude:

vθ = |v| cos θ.

1r is the distance between transmit and receive antennas


