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Chapter 1 Topics in Linear Algebra

Chapter 1 in the main text covers a few key topics in linear algebra that are often not treated in standard 
undergraduate courses in mathematics for economists. Some topics are especially important in understanding 
parts of the later chapters devoted to second-order conditions for the maximum or minimum of a function of  
several variables. 

The chapter begins in Section 1.1 with a brief review of elementary linear algebra for easy reference. 
An important topic concerns linear independence, discussed in Section 1.2. A set of vectors is linearly  

dependent iff at least one of them can be expressed as a linear combination of the others. Otherwise the set is 
linearly independent. More customary definitions of linear dependence and independence then follow and are 
shown to be equivalent to these possibly more intuitive definitions. Actually, experience suggests that some 
students have difficulties in understanding these definitions, so it is important to be quite precise and explain  
them carefully. The diagrams illustrating the difference between linear dependence and independence for sets 
of vectors in 2 and 3 helps the students in getting an intuitive understanding of the concepts. 

Next, Section 1.3 defines the rank of a matrix as the maximum number of linearly independent columns  
(or zero, if all columns are zero). It follows that a square matrix of order n has rank n iff its determinant is 
nonzero. Furthermore, the minors of a matrix are defined, and it is argued that the rank is equal to the order   
of the largest nonzero minor. This implies that the rank of a matrix is equal to the rank of its transpose, so the  
rank is also equal to the maximum number of linearly independent rows. However, in most cases the most  
efficient way of finding the rank of a matrix is to apply elementary operations. 

Linear systems of equations receive more extensive discussion in Section 1.4. One key result is Theorem 
1.4.1, which says that a necessary and sufficient condition for a linear system of equations to have a solution is 
that the rank of the coefficient matrix does not increase when the vector of right-hand sides of the equations is 
added as an extra column. Of course, this is rather obviously equivalent to the requirement that the right-hand 
side vector can be expressed as a linear combination of the columns of the coefficient matrix—i.e., that there 
is a solution to the system of equations. The next result is Theorem 1.4.2, stating that if the rank  k of the 
coefficient matrix is less than the number of equations m, and if any solution exists at all, then m − k of the 
equations are superfluous because any solution of the remaining k equations will automatically solve all m 
equations. Also, if the rank k of the coefficient matrix is less than the number of unknowns n, and if there is any 
solution to the system of equations, then there are n−k degrees of freedom because there exist n−k unknowns 
whose values can be chosen arbitrarily. The remaining k variables will then be uniquely determined. 

Section 1.5 defines eigenvalues and eigenvectors. It is shown that the standard definition implies that the 
eigenvalues are the roots of a so-called characteristic (polynomial) equation. 

Diagonal matrices have many advantages, of course. Section 1.6 turns to the question of when an  n × n 
matrix A can be diagonalized in the sense that A = P−1DP for some matrix P and diagonal matrix D. Theorem 
1.6.1 claims that this is possible if and only if A has n linearly independent eigenvectors—a remarkably, 
perhaps deceptively, simple and powerful result. Where n linearly independent eigenvectors can be found, 
they can be used as the columns of the matrix P, which is immensely useful. In fact, one can prove that if  A 
is known to have n distinct eigenvalues, there will always exist a linearly independent set of n eigenvectors, 
so that the matrix is diagonalizable. However, an n × n matrix can be diagonalizable even if it does not have 
n distinct eigenvalues.  For example, the identity matrix has λ = 1 as the only eigenvalue, with the three 
standard unit vectors as eigenvectors. 

The “spectral” Theorem 1.6.2 extends to symmetric n × n matrices the result shown for symmetric 2 × 2 
matrices in Section 1.5—namely, that they have only real eigenvalues. Moreover, eigenvectors associated 
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with distinct eigenvalues must be orthogonal. It follows that the matrix P of eigenvectors considered can be 
made orthogonal (i.e. P′ = P−1) by rescaling the eigenvectors so that each has length 1. 

We go on to consider quadratic forms, and whether they are definite or not. Section 1.7 gives the basic 
definitions and results, starting with the case of two variables. Testing for the definiteness of a quadratic 
form is actually quite hard in general. That is one reason for carefully studying the 2 × 2 case first. Theorem 
1.7.1 gives the general result, but for a full proof we refer to the literature. (Many texts get the semidefinite  
case wrong, we might add.) Theorem 1.7.2 gives the elegant and easy to remember tests for definiteness and  
semidefiniteness based on eigenvalues. The necessity part of each test is very easy to prove. But proving  
sufficiency relies on being able to diagonalize the matrix, and even then the proof is quite subtle. 

Section 1.8 deals with quadratic forms subject to linear constraints. (One cannot drop the assumption  
in the main Theorem 1.8.1 that the first m columns in the matrix (bij ) are linearly independent. To see why, 
consider Q = x2

1 +x2 −x3,whichispositivedefinitesubjecttox3 =  0, but (5) fails. 
This  is  overlooked  in 
many texts.) 

Finally, Section 1.9 treats partitioned matrices and their inverses, which often arise in econometrics.

⎛
1

⎞ ⎛ ⎞ ⎞
2

⎛
0 

Problem 1-01 Prove that the vectors ⎝ 0⎠, ⎝1⎠, and ⎝ 1⎠ are linearly independent.

Problem 1-02

1

⎛
1

0 1

⎞ ⎛ ⎞ ⎞
1

⎛
3

For  which  value  of t are  the  three  vectors ⎝ −1⎠, ⎝ 
1

Problem 1-03

1⎠,  and ⎝1⎠ linearly  independent? 
−1 t

⎛
1 ⎞ ⎛ ⎞ ⎞

t
⎛
0 

For which value of t are the three vectors ⎝ 8⎠, ⎝−2⎠, and ⎝ 4⎠ linearly dependent?
1 1 1

Problem 1-04 

Given three linearly independent vectors a, b, and c inn. 

(a)  Are a − 2b, b − c and a − 2c linearly dependent? 

(b)  Let d = 4a − b − c. Is it possible to find numbers x, y and z such that 

x(a − b) + y(b − c) + z(a − c) = d ? 

Problem 1-05 

Determine the ranks of the following matrices for all values of t :

(

(a) t 2
−1 −2

⎛ ⎞
) 3 4 1+t

(b) ⎝ 5 4+t 1+t ⎠
t−1 t−1 0 



3 | P a g e



4 | P a g e

Problem 1-06 ⎛

⎜ 
Discuss the rank of the matrix At = ⎜

t 0 0
0 2 t
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⎞
1
3⎟

⎟

Problem 1-07
⎛

⎝
 1 −2

2t 1

1 2 0 3

t 0⎠.
0 3

⎞

(a)  Find the rank of A = ⎜1 1 2 0⎟
⎜ ⎟ 
⎝0 −1 2 −3⎠.

1 0 −2 0

(b)  For what values of x, y and z are the three vectors (x, 1, 0, 1), (2, y, −1, 0) and (0, 2, 2x, z) linearly
independent?

Problem 1-08 ⎛
1 2s 1 1

⎞

(a)  Consider the matrix D(s) = ⎜−2 1 −2 3s ⎟
⎜ ⎟ 
⎝ 1 1−s −1 5 ⎠.

−1 2 s −3
Find a necessary and sufficient condition for D(s) to have rank 4. What is the rank if s = 1? 

(b)  Determine the number of degrees of freedom for the equation system 

x + 2y + z + w = 0 

−2x +  y − 2z + 3w = 0 

x − z + 5w = 0

−x + 2y +  z − 3w = 0 

Problem 1-09 

(a)  Consider the 3 × 5 equation system 

a11x1 + a12x2 + ··· + a15x5 = c1 

a21x1 + a22x2 + ··· + a25x5 = c2 (∗)

a31x1 + a32x2 + ··· + a35x5 = c3 

where the coefficient matrix has rank 3 and x1, . . . , x5 are the unknowns. Does (∗) always have a solution? 
And if so, how many degrees of freedom are there? 

(b)  Add the fourth equation a41x1 + · · · + a45x5 + a46x6  = c4 to system (∗), where x6 is an additional 
unknown. Describe possible solutions, including the degrees of freedom, in the new system. (Explicit 
solutions are not required.) 
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Problem 1-10
)

(a)  Let the matrix A be defined by A =
(
1 2
3 0

. Compute A2 and A3. 

(b)  Find the eigenvalues of A and corresponding eigenvectors.
( ) ( )

(c)  Let P = 2 1
−3 1

−2 0
. Compute P−1, and show that A = P P−1.

0 3 

Problem 1-11 ⎛
Verify that the matrix B = ⎝
Problem 1-12

5 4
4 5

−2 −2

⎞ ⎛ 
−2
−2⎠has  the  eigenvector ⎝ 

2

⎛ ⎞

⎞
2
2⎠and  find  the  associated  eigenvalue. 

−1 

2a 0 0
(a)  Find the eigenvalues of the matrix Aa = ⎝ 0 0 −a ⎠,  a ≤ 1

2−a 1 2
(b)  Find corresponding eigenvectors in the case a = 1. 

Problem 1-13 
)

Let A be the matrix A =
(
1 2
2 1 

(a)  Find the eigenvalues and a set of corresponding eigenvectors of A. 

(b)  Let x0, x1, x2, . . .  be a sequence of vectors given by

x0 =
(
1
2

) 

and  xt+1 = Axt    for t = 0, 1, 2, . . . 

Show that x0 can be written as a linear combination of eigenvectors of A, and then find xt for all t. 

Problem 1-14 ⎛
2

(a)  Find the eigenvalues and the eigenvectors of A = ⎝ 1 
0

(b)  Find the eigenvalues of A2.

Problem 1-15 ⎞

⎞
1 1
2 1⎠.
0 1 

⎛
a 1 1

Find the eigenvalues of A = ⎝ 0 a 4⎠.
0 1 a
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Problem 1-16 ⎛
a 0

(a)  Let A = ⎝ 0 b
0 0
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⎞
0
0⎠wherea,b,  and c are  different  from 0.  Find A−1. 
c 

(b)  Let B any 3 × 3 matrix whose column vectors b1, b2, and b3 are mutually orthogonal and different from
the zero vector. Put C = B′B and show that C is a diagonal matrix.

(c)  Find B−1 expressed in terms of C = B′B and B.⎛ ⎞
1

(d)  Prove that the columns of P = ⎝ −8 
4

Problem 1-17

−8 4
1 4⎠ are mutually orthogonal. Find P−1.
4 7

⎛ 3 −1 1 ⎞ 
Consider the matrix A = ⎝ −1 3 1⎠.

1 1 3

(a)  Show that the characteristic polynomial of A can be written as (4 − λ)(λ2 + aλ + b) for suitable constants
a and b. Find the eigenvalues of A.⎞ ⎛ √ ⎞ ⎛ √ ⎞⎛

 1/
√
2 1/ 6 1/ 3

(b)  Show that ⎝ 0 ⎠, ⎝−2/√6⎠, and ⎝ √
1/ 3⎠ are eigenvectors of A. 

√ √ √
1/ 2 −1/ 6 −1/ 3

Let C be the matrix with the three vectors from part (b) as columns. 
(c)  Show that CC′  = I3 (the identity matrix of order 3), and use this to find the inverse of C. Compute 

C−1AC. (This will be a diagonal matrix.) 

(d)  Let D = diag(d1, d2, d3) be a diagonal matrix, and let B = CDC−1. Show that B2 = CD2C−1, and that 

B2 = A for suitable values of d1, d2, and d3.

Problem 1-18 

Consider the matrix A = (
1 1 1
1 2 3

) 

(a)  Find the rank of A, show that (AA′)−1 exists, and find this inverse. 

(b)  Compute the matrix C = A′(AA′)−1, and show that ACb = b for every 2 × 1 matrix (2-dimensional 
column vector) b. 

(c)  Use the results above to find a solution of the system of equations 

x1 + x2 + x3 = 1 
x1 + 2x2 + 3x3 = 1 

(d)  Consider in general a linear system of equations 

Ax = b,   where A is an m × n matrix with m ≤ n (∗)

It can be shown that if r(A) = m, then r(AA′) = m. Why does this imply that (AA′)−1 exists? Put C =  
A′(AA′)−1, and show that if v is an arbitrary m × 1 vector, then ACv = v. Use this to show that x = Cb  
must be a solution of (∗). 
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Problem 1-19 ⎛
a 0 1

⎞ 
Define the matrix Aa for all real numbers a by Aa = ⎝ a   a 1⎠.

1 1 1
(a)  Compute the rank of Aa for all values of a. 

(b)  Find all eigenvalues and eigenvectors of A0. (NB! Here a = 0.) Show that eigenvectors corresponding 
to different eigenvalues are mutually orthogonal. 

(c)  When is the rank of the matrix product Aa Ab equal to 3? 

(d) (Difficult) Discuss the rank of the matrix product Aa Ab for all values of a and b.

Problem 1-20 ⎛
a  b  b

⎞ ⎞⎛
1 1 1 

Given the matrices A = ⎝ b  a   b⎠ and E = ⎝ 1 1 1⎠.
b  b  a 1 1 1

(a)  Find the eigenvalues and eigenvectors of E. 

(b)  Find numbers p and q such that A = pI3 + qE. 

(c)  Show that if x0 is an eigenvector of E, then x0 is also an eigenvector of A. 

(d)  Find the eigenvalues of A. 

Problem 1-21 ⎛
 −a2b

(a)  Find the eigenvalues of the matrix A = ⎝ 0
−ab

⎞
0 ab
c 0 ⎠.

0 b 
(b)  Let H be a 3 × 3 matrix with eigenvalues λ1, λ2 and λ3, and let α be a number = 0. Show that αλ1, αλ2

and αλ3 are eigenvalues of the matrix K = αH.⎛ ⎞
(c)  Find the eigenvalues of B = 1 ⎝

1−a2

−4a2 0 4a
0 1−a2 0 ⎠, a = ±1.

−4a 0 4⎛
0 0

(d)  Find a matrix P such that P−1BP = ⎝ 0 1
0 0

⎞
0
0⎠=D,whereB is  the matrix in (c).  Then find a matrix 
4 

C such that C2  = B. (Hint: Find a diagonal matrix E such that E2  = D, and then use the formula
PE2P−1 = PEP−1PEP−1 to find C expressed in terms of E and P.)

Problem 1-22 ⎛
1 0 2 0

⎞
(a)  Consider the matrix C = ⎜0 2 0 1⎟⎜ ⎟ ⎝2 0 1 0⎠.

0 1 0 2
Find the characteristic polynoial p(λ) of C, and show that (λ − 3)2 is a factor in p(λ). 

(b)  Find the eigenvalues and eigenvectors of C. 

(c)  For which values of x are the vectors (x, 1, −1), (1, x, 1), and (x, 1, 3) linearly independent? 
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Problem 1-23 

Let A, B, and C be n × n matrices, where A and C are invertible. Solve the following matrix equation for X:  
CB + CXA−1 = A−1. 

Problem 1-24 

(a)  Let A be a symmetric n × n matrix with |A| = 0, let B be a 1 × n matrix, and let X be an n × 1 matrix. 
Show that the expression 

(X +1
2A−1B′)′A(X+2A−1B′)−4BA−1B′ (∗)

is equal to X′AX + BX. 

(b)  Suppose that A is symmetric and positive definite (i.e. Y′AY > 0 for all n × 1 matrices Y = 0). Using 
(∗), find the matrix X that minimizes the expression X′AX + BX. 

Problem 1-25 

Investigate the (semi)definiteness of (a) Q = 3x21 −8x1x2 +8x2 (b) Q = 25x21 −20x1x2 +4x2. 

Problem 1-26 

(a)  Write Q(x1, x2, x3) = 3x21 +2x1x2 +x2 +2x2x3 +3x3 
inmatrixformwithAsymmetric. 
(b)  Determine the definiteness of

 Q(x1, x2, x3) by studying the signs of the (leading) principal minors of A. 

(c)  Confirm your result in (b) by finding the eigenvalues of A. 

Problem 1-27 

Classify the quadratic form Q = 3x2
1 + 4x1x2 + 2x2

2 +4x2x3 + x2
3 

bycomputingtheeigenvaluesofthe
associated symmetric matrix. (Look for integer eigenvalues.)

Problem 1-28

Examine the definiteness of x2 − 2xy + xz − y2 + 2z2  subject to

Problem 1-29

Find a necessary and sufficient condition for the quadratic form

∑
L′′

ij (
x1,

x2,
x3)

h
i hj

i=1 j =1

{ x+ y+z=0 

2x − 2y + z = 0 

to be positive definite subject to g′
1(x

∗
1,x2,x3)h1 +g2(x1,x2,x3)h2 +g3(x1,x2,x3)h3 = 0, 

assuming that
not all the three partials g′

1(x
∗
1,x2,x3),g2(x1,x2,x3),g3(x1,x2,x3)are 0.
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