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PART
ORGANIZING A MODELING COURSE

ISSUES

Organizing a modeling course is a significant, educational challenge. A number of resource
materials must be gathered: an appropriate text, supplemental references both for students as
well as the instructor, sources and scenarios for student projects, and, possibly, computer
software. Furthermore, there are crucial pedagogical issues that must be resolved in designing
the course, including the following:

1. Course objectives
. Course prerequisites
. Course content
. Number and type of student projects
. Individual versus group projects
. The role of computation
. Grading considerations

0 N N B W

. Opportunities for follow-on modeling courses.

We believe that a textbook can only serve as a base for a modeling course, which must then
be tailored to meet the specific needs of students, as well as overall objectives in the
curriculum. Moreover, a modeling course needs to be flexible and dynamic to allow for each
individual instructor to take advantage of his or her particular mathematical expertise,
experiences, and modeling preferences.

OBJECTIVES

The overall goal of our course is to provide a thorough introduction to the entire modeling
process while affording students the opportunity to practice:

1. Creative and Empirical Model Construction: Given a real-world scenario, the student
must identify a problem, make assumptions and collect data, propose a model, test the
assumptions, refine the model as necessary, fit the model to data if appropriate, and analyze
the underlying mathematical structure of the model in order to appraise the sensitivity of
the conclusions in relation to the assumptions. Furthermore, the student should be able to
generalize the construction to related scenarios.

2. Model Analysis: Given a model, the student must work backward to uncover the implicit
underlying assumptions, assess critically how well the assumptions reflect the scenario at
hand, and estimate the sensitivity of the conclusions when the assumptions are not
precisely met.

3. Model Research: The student investigates an area of interest to gain knowledge,
understanding, and an ability to use what already has been created or discovered. Model
research provides for determining the ‘state of the art’ in a subject area.
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To accomplish our goals, we provide students with a diversity of scenarios for practicing
all three of these facets of modeling. In addition, normal and routine exercises are assigned to
test the student’s understanding of the instructional material we present. Thus, our textbook
provides expository material and a framework around which a diversity of additional materials
can be organized in support of a modeling course.

COURSE PREREQUISITES

There are strong arguments to require such courses as advanced calculus, linear algebra,
differential equations, probability, numerical analysis, and optimization as prerequisites to an
introductory modeling course. Certainly the level and sophistication of the mathematics that
students are capable of using increases significantly as more advanced courses are added to
their programs. However, our desire is to gain the modeling experience as early as possible in
the student’s career. Although some unfamiliar mathematical ideas are taught as part of the
modeling process, the emphasis is on using mathematics already known to the student after
completing high school. As outlined in the preface to the text, a course can be constructed
requiring only high school mathematics as a prerequisite. Some sections do require an
introductory calculus course as a prerequisite or corequisite, as detailed in the preface to the
text. In our modeling courses, we emphasize teaching students how to use mathematics they
already know in a context of significant applications with which they can readily identify. This
approach stimulates student interest in mathematics and motivates them to study more
advanced topics such as those mentioned above. Moreover, our students are eager to see
meaningful applications of the mathematics they have learned.

COURSE CONTENT

Many modeling courses select from an inventory of specific model types which can be
adapted to a variety of situations. Certainly model selection is a valid step in the
problem-solving process and it is important that students learn to use what already has been
created. However, our experience is that undergraduate students seldom comprehend the
assumptions inherent in type models. We want our students to realize the necessity of making
assumptions, the need to determine the appropriateness of the assumptions, and the importance
of investigating how sensitive the conclusions are to the assumptions. Consequently, while we
do discuss how to fit type models in the text, we have chosen to emphasize model construction,
leaving the study of type models for more advanced courses.

We feel that model construction promotes student creativity, demonstrates the artistic
nature of model building, and develops an appreciation for how mathematics can be used
effectively in various settings. Since the student needs practice in the first several steps of the
problem-solving process—identifying the problem, making assumptions, determining
interrelationships between the variables and submodels—it is tempting to compose an entire
course of creative model construction. However, there are serious difficulties with such a
course. Typically, students are very anxious, at least initially, because they don’t know how to
begin the modeling process. After all, they have probably never before attacked an open-ended
problem. When they are successful in constructing a model, they usually find the procedure
enjoyable and exhilarating. Nevertheless, they tend to “burn out” if an entire quarter or
semester is dedicated to creative model construction. Moreover, a course consisting entirely of
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creative model construction cannot address other important aspects of modeling, like
experimentation and simulation. Furthermore, there are difficulties with such a course for the
instructor. Preparation of the course requires enormous effort in researching and generating
scenarios to be modeled. Grading is difficult and tends to be subjective because each student
approaches each project in a different way, yet students need constant feedback on their work.
These difficulties then contribute to the anxieties of the student who is overly concerned about
being graded in class under a time constraint in an area perceived to be relatively subjective.
Under these conditions, success of the course becomes highly instructor dependent and
circumstantial.

For the above reasons, we have chosen to design a course consisting of a mixture of both
creative and empirical modeling projects, along with projects in model analysis and model
research. We begin by interactively constructing graphical models in class to engage students
immediately in model analysis, which is relatively familiar to them. The transition to creative
model construction commences with the students learning to make assumptions about a
real-world behavior and by providing them with data to check their assumptions (initially with
simple proportionality arguments). We then apply the modeling process to construct
interactively in class relatively simple submodels and models in a variety of settings covering
many disciplines. Students begin to see that situations arise where it may be very difficult or
impossible to construct an analytic model, yet predictive capabilities are highly desirable. This
perception motivates the study of empirical modeling. Students find empirical model
construction more procedural and reproducible than creative model construction, and we find
they welcome the mixture. In the text, some scenarios are modeled several ways creatively,

and several ways empirically, so students can experience the alternatives that may be available.

STUDENT PROJECTS

We have developed our modeling courses to promote progressive development in the

student’s modeling capabilities. To achieve our objectives, we require each student to complete
at least 6 significant problem assignments or projects to be handed-in for a grade. Each student
is assigned a mixture of problems/projects in creative and empirical model construction, model
analysis, and model research. We purposely select problems/projects which address scenarios
for which there are no unique solutions. Several of the projects include real data that the
student is either given or can readily collect.

If the course is taught early in the student’s program we recommend a combination of
individual and group projects. Individual work is essential if the student is to develop adequate
modeling skills. By way of contrast, group projects are exhilarating and allow for the
experience of the synergistic effect that takes place in a ‘brainstorming’ session. For example,
during the instruction of Chapter 2 on proportionality, we give a choice of 5 or 6 different
scenarios for which students individually create a model. During the instruction of the next
chapter on model fitting, teams are organized to test, refine, and fit these models to data. The
resulting group model is typically substantially superior to any of the individual models. A
similar procedure is followed during the instruction of the simulation chapter where students
are required to develop models individually followed by a team effort to refine the models and
implement them on the computer.
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Finally, we choose projects from a wide variety of disciplines including biology,
economics and the physical sciences. We make certain that these projects require little

overhead to be paid by the student in order to understand, and successfully attack, the problem.

We also allow students to choose a project that can be turned in at the end of the course.
Students are free to choose from a diversity of possibilities such as completing UMAP
modules, researching a model studied earlier, developing a model in a scenario of interest to

them, or analyzing a model presented in another subject they are studying. This chosen project

gives the student an opportunity to pursue a subject in some detail. Typically, our students
choose a project of interest from one of the Project sections in the text. We require that
students complete one of the following for their selected projects:

1. Model Construction: Develop a scenario of interest to the student and develop a model
to address the situation posed. For example, the student may pose a relevant economic
question and construct a graphical model to explain the behavior being studied.

2. Model Analysis: Analyze a model of interest by identifying the underlying assumptions
and discussing their applicability. Determine the mathematical conclusions of the model
and the sensitivity of the conclusions to the assumptions made. Finally, interpret the
mathematical conclusions for real-world scenarios.

3. Model Research: Research a model studied in class to determine the ‘state of the art’ in

that area. For example, many UMAP modules are available that treat scenarios discussed in
class in greater detail. The student may also study a section of the text not covered in class

and complete the problems from the corresponding problem set.

THE ROLE OF COMPUTATION

We emphasize that computing and programming capabilities are not required for our
modeling courses. However, beginning with Chapter One, Modeling Change, computation
does play a role of increasing importance. The use of computers can significantly enhance a
modeling course: in a demonstrational mode to facilitate student understanding of a concept
(such as a graphical solution of a linear program) or in a computational mode to reduce the
tediousness in carrying out certain numerical procedures. We have found the integration of a
computer in a supportive role adds significantly to student interest and to the realism of our
modeling course.

We provide our students with packaged software for making scatterplots, fitting models
according to various criteria, solving linear programs by the Simplex method, constructing
divided difference tables and cubic spline models, solving initial value problems by various
methods, and graphing functions.

A TYPICAL COURSE

In this edition, we have provided several options for organizing a course. We have detailed
the prerequisites in Figure 2 of the Preface. We incorporate lecture/discussion lessons, hour

exams, and computer workshop sessions as part of our modeling courses. Additionally, time is

provided for students to complete modeling projects. Detailed discussions of the various

lessons and suggestions on how many lessons to devote to each section appear in the Teaching

Suggestions portion of this Manual, arranged according to the chapters of our text.
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GRADING CONSIDERATIONS

The difficulty in grading a modeling course has dissuaded many instructors from teaching
modeling, and discouraged many students from taking the course as well. Given the objectives
of our course, both creative and technical skills are to be acquired by the student. We have
found it best to have the creative requirements accomplished outside the classroom, without
the added pressure of a fixed, short time constraint. We use the classroom exams strictly for
testing techniques we expect the student to master. These classroom exams test the
understanding of basic concepts or straightforward applications of particular techniques, such
as fitting a cubic spline (see the section on Sample Tests in this Manual). The more interpretive
applications of the modeling techniques are treated in problems and projects assigned for work
outside the classroom.

The classroom exams are similar to those in other mathematics courses and present no
added difficulty in grading. For most of the student projects we are able to establish a grading
scale that assigns weights to various parts of each problem. Homework is collected often,
principally for purposes of feedback but also for a grade. (Some homework is collected but not
graded, to assist students in allowing their minds to roam without fear of being ‘wrong’ while
at the same time providing some guidance and feedback.)

THE USE OF UMAP MODULES

We have found material provided by The Consortium For Mathematics and Its

Applications (COMAP) to be outstanding and particularly well suited to the course we
propose. COMAP started under a grant from the National Science Foundation and has as its
goal the production of instructional materials to introduce applications of mathematics into the
undergraduate curriculum.

The individual modules may be used in a variety of ways. First, they may be used as
instructional material to support several lessons. (We have incorporated several modules in the
text in precisely this manner.) In this mode a student completes the self-study module by
working through its exercises (the detailed solutions provided with the module can be removed
conveniently before it is issued). Another option is to put together a block of instruction
covering, for example, linear programming or difference equations, using as instructional
material one or more UMAP modules suggested in the projects sections of the text. The
modules also provide excellent sources for ‘model research’ since they cover a wide variety of
applications of mathematics in many fields. In this mode, a student is given an appropriate
module to be researched and is asked to complete and report on the module. Finally, the
modules are excellent resources for scenarios for which students can practice model
construction. In this mode the teacher writes a scenario for a student project based on an
application addressed in a particular module and uses the module as background material,
perhaps having the student complete the module at a later date. Information may be obtained
by contacting COMAP Inc., Suite 3B, 175 Middlesex Turnpike, Bedford, MA 01730,
800-722-6627.
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FOLLOW-ON MODELING COURSES

Many of our students express an interest in taking an additional modeling course. While we
have tailored many courses to the individual needs of the students’ programs, a very successful
and popular course is one which combines studies from various UMAP modules selected to fit
a student’s particular interests, coupled with significant advanced student projects. The
proportion of time devoted to the modules versus the student projects varies, depending on the
nature of the projects that are available.

We are fortunate to have real-world projects readily available at our schools and
appropriate to assign for advanced student work. There are, however, several other excellent
sources which can be used as background material for student projects The comprehensive
four-volume series Modules in Applied Mathematics, edited by William F. Lucas and
published by Springer-Verlag, provides important and realistic applications of mathematics
appropriate for undergraduates. The volumes treat differential equations models, political and
related models, discrete and system models, and life science models. Another book, Case
Studies in Mathematical Modelling, edited by D. J. James and J. J. McDonald and published by
Halsted Press, provides case studies explicitly designed to facilitate the development of
mathematical models. Finally, scenarios with an industrial flavor are contained in the excellent
modular series edited by J. L. Agnew and M. S. Keener of Oklahoma State University.

Frank R. Giordano
William P. Fox
Steven B. Horton
Maurice D. Weir
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PART II
TEACHING SUGGESTIONS
CHAPTER ONE
Modeling Change
SUGGESTED SYLLABUS
Class Hours Topic Text

1 Modeling Change with Difference Equations Sect 1.1
1 Approximating Change with Difference Equations Sect 1.2
1 Solutions to Dynamical Systems Sect 1.3
1 Systems of Difference Equations Sect 1.4

OBJECTIVES
The major objectives of this chapter are:

1. To build and solve models involving change that takes place in discrete intervals.

2. To prepare the students for modeling change taking place continuously in Chapters 11
and 12.

3. To introduce numerical solutions by iterating difference equations.

4. To extend the modeling process by modeling interactive systems early.

DISCUSSION

We have found that freshman students model dynamical systems quite naturally. Since they
can iterate the systems they build given an initial value, they gain intuition by graphing their
results and analyzing the long-term behavior. Further, by experimenting with different initial
values, they begin to appreciate the sensitivity of the model’s conclusions to the initial
conditions. Finally, the experience of this chapter prepares them for modeling with differential
equations and systems of differential equations, which students generally find more difficult.

We strongly suggest beginning with behavior that can be modeled exactly, such as the
accumulation of money in a savings account. Moving to annuities or mortgages retains student
interest while introducing more sophisticated models. Since the students can readily enumerate
these sequences even before building the model, they gain confidence in their work. Once the
students are confident with exactly modeling behavior, we move to approximating change with
discrete systems. Only an elementary notion of proportionality is needed for the scenarios in
this chapter. (The concepts of proportionality and geometric similarity are studied in more
detail in Chapter Two). A powerful advantage of studying discrete systems early is that the
resulting models can be iterated if starting values are known. We have found that students have
no difficulty iterating the systems. Finally, introducing systems of difference equations permits
the students to model interesting systems with rather elementary mathematics. Many of the
scenarios introduced here are revisited in Chapters 11 and 12.
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A spreadsheet is of great use to iterate and graph the models the students build. We have
found that even if the students have not used a spreadsheet before, they learn the few
commands they need for this chapter quickly. They do not have difficulties extending their
knowledge of spreadsheets to handle systems of difference equations in Section 1.4. We added
a new modeling example and problems on S/R models.

We add a few additional examples for nonlinear DDS here for the instructors use. We build
nonlinear discrete dynamical systems to describe the change in behavior of the quantities we
study. We also will study systems of DDS to describe the changes in various systems that act
together in some way or ways. We define a nonlinear DDS- If the function of a, involves
powers of a, (like a3), or a functional relationship (like ;=-), we will say that the discrete
dynamical system is nonlinear. A sequence is a function whose domain is the set of
non-negative integers (n = 0,1,2,...). We will restrict our model solution to the numerical and
graphical solutions. Analytical solutions may be studied in more advanced mathematics
courses.

Example 1.Growth of a Yeast Culture

We often model population growth by assuming that the change in population is directly
proportional to the current size of the given population. This produces a simple, first order
DDS similar to those seen earlier. It might appear reasonable at first examination, but the
long-term behavior of growth without bound is disturbing. Why would growth without bound
of a yeast culture in a jar (or controlled space) be alarming?

There are certain factors that affect population growth. Things include resources (food,
oxygen, space, etc.) These resources can support some maximum population. As this number is
approached, the change (or growth rate) should decrease and the population should never
exceed its resource supported amount.

Problem Identification: Predict the growth of yeast in a controlled environment as a

function of the resources available and the current population.
Assumptions and Variables:

We assume that the population size is best described by the weight of the biomass of
the culture. We define y, as the population size of the yeast culture after period n. There exists
a maximum carrying capacity, M, that is sustainable by the resources available. The yeast
culture is growing under the conditions established.

Model:
Yn+1 = Yn + k *Vn - (M_yn)
where
vyn 1s the population size after period n
n is the time period measured in hours
k 1s the growth (or decay) constant of proportionality
M is the carrying capacity of our system

In our experiment, we first plot y, versus » and find a stable equilibrium value of
approximately 665. Next, we plot y,.1 — y, versus y,(665 — y,)to find the slope, £; it is
approximately 0.00082 , With £ = 0.00082 and the carrying capacity in biomass is 665. This
analysis is currently in the textbook. The final model is

Vns1 = Yn +0.00082 « y, « (665 —y,)
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Again, this is nonlinear because of the y2 term obtained in the expansion. The solution is
iterated via technology (there is no closed form analytical solution for this equation) from an
initial condition, biomass, of 9. 6:

¢_9009‘00DOD0l0000

E004

500+ °
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2001

1007

o 's W 15 W 2% 30
Plot of DDS from growth of a yeast culture.

The model shows stability in that the population (biomass) of the yeast culture approaches
665 as n gets large. Thus, the population is eventually stable at approximately 665 units.
Example 2. Spread of a Contagious Disease
There are one thousand students in a college dormitory, and some students have been
diagnosed with meningitis, a highly contagious disease. The health center wants to build a
model to determine how fast the disease will spread.
Problem Identification: Predict the number of students affected with meningitis as a
function of time.

Assumptions and Variables: Let m(n) be the number of students affected with
meningitis after n days. We assume all students are susceptible to the disease. The possible
interactions of infected and susceptible students are proportional to their product (as an
interaction term).

The model is,
Mps1 = My +k » m, (1000 —m,)
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Two students returned from spring break with meningitis. The rate of spreading per day is
characterized by £ = 0.0090. It is assumed that a vaccine can be in place and students
vaccinated within 1-2 weeks.

Mue1 = my, +0.00090 « m, (1000 —m,)

We iterated with technology:

2, 3.7964, 7.200188612, 13.63369992, 25.73673985,
48.30366391, 89.67704188, 163.1486049, 286.0266287,
469.8204854, 694.0007626, 885.1280963, 976.6368108,
997.1724263, 999.7100470, 999.9709290, 999.9970921,
999.9997092, 999.9999709, 999.9999971, 999.9999997,
1000.000000, 1000.000000, 1000.000000, 1000.000000,
1000.000000, 1000.000000, 1000.000000, 1000.000000,
1000.000000, 1000.000000

We see that without treatment everyone will eventually get the disease.

1,000 . r

FEEIé .

EElElé R

2505 |
EI:|r|r|?|?|?|?||||||||||||||||||
o 5 10 15

Plot of DDS for the spread of a disease.

Interpretation: The results show that most students will be affected within 2 weeks. Since
only about 10% will be affected within one week, every effort must be made to get the
vaccination at the school and get the students vaccinated within one week.

We also add an additional example for systems here for the instructor’s use as needed. This
is a military model concerning insurgencies.
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Example 3. Modeling Military Interactions and Insurgencies

Insurgent forces have a strong foothold in the city of Urbania, a major metropolis in the
center of the country of Ibestan. Intelligence estimates they currently have a force of about
1000 fighters. The local police force has approximately 1300 officers, many of which have had
no formal training in law enforcement methods or modern tactics for addressing insurgent
activity. Based on data collected over the past year, approximately 8% of insurgents switch
sides and join the police each week, whereas about 11% of police switch sides and join the
insurgents. Intelligence also estimates that around 120 new insurgents arrive from the
neighboring country of Moronka each week. Recruiting efforts in Ibestan yield about 85 new
police recruits each week as well. In armed conflict with insurgent forces, the local police are
able to capture or kill approximately 10% of the insurgent force each week on average while
losing about 3% of their force.

Problem Statement: Build a mathematical model of this insurgency. Determine the
equilibrium state (if it exists) for this DDS.

We define the variables

P,=the number of police in the system after time period n.

I,,= the number of insurgents in the system after time period n.

n=20,1,2,3,...weeks

Model:

Py =P,—-0.03P,—-0.11P, +0.087, + 85,P9 = 1300

Iy =1,+0.11P, - 0.087, - 0.017, + 120,1p = 1000

Pl’l In
1300 1000
1283 1083

1275.02  1149.19
1273.452  1202.588
1276376 1246.202
1282.38  1282.287

1290.429  1312.537
1299.772  1338.228
1309.862  1360.322
1320.307  1379.549
1330.828  1396.464
1341229 1411.491
1351.377 1424958
1361.18  1437.117

1370.585  1448.166
1379.556  1458.26

1388.079  1467.525
1396.15  1476.059

1403.774  1483.945
1410961 149125

1417.726  1498.031
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Interpretation: In this insurgency model, we see that under the current conditions, that the
insurgency overtakes the government within 5 to 10 weeks. If this is unacceptable, then we
must modify conditions that affect the parameters in such a way to obtain a governmental
victory. You might ask the students to experiment with these parameters provided.

We highly recommend assigning projects for this chapter. Students can be given a wide
variety of scenarios to model and iterate. The problems and projects for this chapter can be
augmented by those in Chapters 11 and 12. Having the students discuss their projects in class
will demonstrate the power of dynamical systems to approximate a wide range of behaviors.

SUGGESTED PROBLEMS/PROJECTS

A spreadsheet is a useful companion for the following exercises:

Section 1.1: 1 — 6 and assign different students 7-10.

Section 1.2: 1 and 2. Assign different students a selection of the remaining problems.
Problems 3 through 10 will be revisited in Chapters 11 and 12.

Section 1.3: 1 — 4. Assign different students a selection of the remaining problems.
Section 1.4: Assign a mixture of all 7 problems to various students.
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CHAPTER TWO
The Modeling Process,
Proportionality, and Geometric Similarity
SUGGESTED SYLLABUS
Class hours Topic Text

1 Mathematical Models Sect 2.1

1 Proportionality Sect 2.2

1 Geometric Similarity  Sect 2.3

- Automobile Mileage  Sect 2.4
OBJECTIVES - Body Weight Sect 2.5

The major objectives of this chapter are:

The Modeling Process

1. To communicate to students that modeling is essentially a thinking process for tackling
difficult open-ended problems.

2. To provide students with a specific procedure to follow when attacking new problems.
Most students will personalize this procedure as they become increasingly familiar with the
process.

3. To give each student an opportunity to practice the first several steps of the modeling
process, both individually and in a group “brainstorming” session .

4. To introduce several of the scenarios for which models will be developed and tested
further on in the course.

Proportionality and Geometric Similarity

1. To introduce the concepts of proportionality, geometric similarity, characteristic
dimension, and shape factor(s).

2. To demonstrate the use of proportionality and geometric similarity in constructing
explicative mathematical models.

3. To use proportionality in graphical model fitting to assess the reasonableness of a model
and to ascertain how well it seems to fit a given set of data points.

4. To illustrate the importance of developing and testing submodels independently.

DISCUSSION: The Modeling Process

In this chapter we develop an overall picture of the modeling process and a structure for
organizing the various components of mathematical modeling. The text materials describe a
procedure that students may follow to formulate, validate, and use a mathematical model . We
have found it useful for students to attack a few seemingly “non mathematical” problems to
emphasize the thought process in mathematical modeling and to see how that process
generalizes to problems they encounter in everyday life situations. The problems in Section 2.1
are especially suited for student group “brainstorming” sessions. It is important that each
student realize that while certain steps of the modeling process are indeed artistic in nature,
scientific techniques are needed to appraise the adequacy of that artistry. The computer flow

© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
with a certain product or service or otherwise on a password-protected website for classroom use.

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.



© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

17

chart in section 2.1 (Figure 2.7) of the text emphasizes the iterative nature of the modeling proc
ess and shows the trade-offs between model simplification and refinement that blend of the
artistic and scientific aspects of modeling. The remainder of the book presents foundational
materials upon which follow-on quantitative courses can build (such as differential equations,
linear programming, probability and statistics, numerical analysis, and so forth).

Although the problems may appear easy at first glance, students often have a difficult time
getting started (which is reasonable since most of them have never attempted an open-ended
problem). Students find it helpful if we develop several scenarios in detail using the
methodology presented in the text. Consequently, we spend relatively little classroom time
discussing Section 2.1 (we assign the section as reading) and concentrate on interactively
developing in class one or more of the scenarios that appear in Section 2.1. Then having the
students work together in teams is especially beneficial for the 2.1 Problems. We have also
found it useful to develop a scenario that students have not seen before. (The most successful
scenarios seem to be those that relate to their everyday lives, such as “How should final exams
be scheduled?”, or scenarios for which historical solutions can be offered like “How did you or
the consultants approach this problem?”).

In choosing problems to address, we suggest a mix that will illustrate the various aspects of
the modeling process: some problems where many candidates are available for the problem
identification, some where the initial problem is so difficult it later becomes necessary to
restrict the problem that has been identified, and so forth. We have followed this strategy in
selecting the illustrative problems in the text.

During the classroom discussions developing the scenarios, students initially tend to be
overwhelmed by the number of variables associated with the problem. Typically they will try
for far too much detail. We often suggest they start with major submodels and then refine as
necessary. Subsequently, each submodel can be developed in telescopic fashion until the
desired level of detail is obtained. A good discussion of the scenario, problem identification,
classification of variables, and a discussion of major submodels is ample for the average
student on this first go around. Normally we choose scenarios for which the student may later
develop a proportionality model and, ultimately, test and fit it to collected data.

SUGGESTED PROBLEMS/PROJECTS

The problems and projects in this chapter are especially suited for group work. We
typically assign one or two problems to each group and ask the group to turn in a single written
report summarizing their conclusions.

It may also be very beneficial at this point to assign a project to individual students (since
each student needs practice). There are a number of challenging projects given in section 2.1.
The following are suggestions for additional scenarios:

1. How should final examinations be scheduled? What is the objective of the scheduling
procedure?

2. Design an auditorium for a physics lecture. Discuss the solution presented in the paper
“The Frank C. Wiley Lecture Halls: A new concept in the design of lecture auditoria,” by
A. A. Bartlett, American Journal of Physics, 41, 1973, 1233-1240.

3. How should the flow of water through a series of dams be controlled? How should

irrigation benefits versus flood risks be modeled? (As water is lowered in the reservoir the
capacity to store water increases, but the water supply for irrigation decreases.)
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4. What are the priorities and objectives for course registration and class changes in a
college or university? How can the scheduling operation be made more efficient?

5. How should insurance companies design screening tables for overweight people?

DISCUSSION: Modeling Using Proportionality

The concept of proportionality is used beginning with graphical model fitting and empirical
one-term model fitting to test the reasonableness and validity of a model. More immediately,
however, students now get an opportunity to actually build and test mathematical models using
proportionality and geometric similarity. We have found it helpful to provide students with
data to test their proportionality arguments in these early modeling attempts. Later on we
motivate model fitting by asking the students to assess how well the constructed model fits the
data. This assessment suggests that analytic techniques are needed to fit the model and that
different criteria might be used to measure the adequacy of the fit. The concepts of geometric
similarity, characteristic dimension, and shape factor(s) are needed in the study of dimensional
analysis and similitude in Chapter 9. If you have covered Chapter One, you may want to move
through the ideas of proportionality more quickly.

Proportionality: We have found it helpful to introduce the ideas of proportionality first.
Later, we discuss geometric similarity and characteristic dimension coupled with a geometric
interpretation of each concept. We then provide simple examples before proceeding to more
sophisticated modeling exercises. You may have difficulty convincing students that all straight
line graphs are not proportionality relationships. A good example for getting the point across is
that of loading students onto a canoe versus an aircraft carrier; in neither case is the total
volume of water displaced proportional to the number of students. However, proportionality is
a much better assumption in the case of the canoe.

Geometric Similarity: We develop the volume and surface area formulas for a few
regularly shaped objects before generalizing to irregularly shaped objects. We work with
several characteristic dimensions as well. A simple example is in the case of the area of a
circle: the area is proportional to the square of the radius, the diameter, the circumference, the
length of arc between two corresponding points on the circle, or any other convenient linear
measurement associated with the circle. Thus any of these measures can be chosen as a
characteristic dimension. Some students have trouble realizing that any surface area (such as
total surface area, cross-sectional area, or the surface area of a particular face of some surface)
is proportional to the square of a characteristic dimension for objects that are geometrically
similar, whatever characteristic dimension may have been chosen. All of these concepts are
fundamental and are used throughout the remainder of the course. Thus a thorough
understanding by students is essential.

ILLUSTRATIVE EXAMPLES

Vehicular Stopping Distance:
There are many assumptions in this model and it is probably worth developing in class. We
especially emphasize the idea of developing and testing submodels independently.

A Bass Fishing Derby:
The purpose of this model is to provide students with some practice using the concept of
geometric similarity in an example that is not too difficult. While students do seem to grasp the
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concept of geometric similarity for regularly shaped objects, they often have great difficulty
generalizing the idea to irregularly shaped objects. Before introducing irregularly shaped
objects, we have found it worthwhile to draw some circles on the blackboard and ask for the
area in terms of the radius, diameter, and circumference. Students then realize that the area is
proportional to the square of each of those measures so any of them may be chosen as a
characteristic dimension. For emphasis we ask our students to consider the plot of radius
versus diameter and radius versus circumference.

From the example of the circle, students can infer in the bass problem that the models
W oc (3 and W oc g3 coincide if the bass are in fact geometrically similar. We ask our students
to plot g versus ( to check this assumption. We also ask them which of the two dimensions is
increasing more rapidly. Next we consider the W oc g%0 model which assumes that the
transverse cross-sectional areas are geometrically similar. From the Mean Value Theorem for
integral calculus, it can be assumed that there is an average cross section which when
multiplied by the length of the bass gives its volume. Choosing the girth as the characteristic
dimension and assuming that the average cross section is proportional to the square of the girth
then gives the model. Finally, the model W oc g?( can be developed in a similar fashion by
assuming that the longitudinal cross sectional areas are geometrically similar.

USING A COMPUTER

Realism can be incorporated into the course by using mainframe computers, micro

computers, or hand-held calculators to ease the analysis of larger sets of data. However, we
emphasize that computers are not required for this course. The first several problems assigned
can be with small data sets to ensure that students know what to plot to test the model y oc x2,
for instance. They can then progress to larger data sets by using a computer (if one is available)
for scatterplots and transformed scatterplots. We have used various computational devices and
software in our courses and have even found it worthwhile to devote a class period during this
chapter to familiarize students with any software available for their use. See the CD and or the

website for technology information.

SUGGESTED PROBLEMS/PROJECTS

The problems and projects in this chapter provide the first opportunity for students to
engage in creative model construction. Our students typically have questions concerning
variables they may have overlooked, or they may be uncertain of adequate precision in their
problem identification. One technique we have used to ease their anxieties is to require them
first to submit a single problem or project addressing only the first several steps of the
modeling process. This procedure helps the student onto a productive track in his or her first
attempt at model construction. (We do not give a grade on this initial submission, only
constructive comments.) Once on the right track, the student can begin the task of relating the
variables for the various submodels, finally assembling them into a model.

Section 2.1: Assign a mix of problems to various students.

Section 2.2: Assign a mix of problems

Section 2.3: Assign a mix of problems to various students.

Projects: Ideas for projects appear in Sections 2.3 and the applications sections.
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CHAPTER THREE
Model Fitting
SUGGESTED SYLLABUS
Class hours Topic Text

1 Fitting Models to Data Graphically Sect 3.1

1 Analytic Methods of Model Fitting Sect 3.2

1 Applying the Least-Squares Criterion Sect 3.3

1 Choosing a Best Model Sect 3.4
OBJECTIVES

The major objectives of this chapter are:

1. To introduce the idea of fitting a selected model type (e.g., a quadratic curve) to a
collection of data.

2. To compare and contrast various criteria of “best-fit” including the least-squares and
Chebyshev criteria.

3. To develop and apply the least-squares criterion to specific model types including the
straight line, power curve, and quadratic function.

4. To distinguish between the least-squares fit for transformed data versus the original data.

A secondary objective is to motivate the eventual study of optimization (especially linear
programming), statistics, and numerical analysis.

DISCUSSION

Model fitting is an important subject that is often overlooked in modeling text books. If the
idea is addressed, it is only through the least-squares criterion as the sole method for fitting
models. Motivated by our desire to appeal as much as possible to the student’s geometric
intuition, we begin with fitting models visually, via a graph. Two criteria for fitting models that
appeal graphically are:

1. Minimizing the largest absolute deviation, and

2. Minimizing the sum of the absolute deviations.

Because these two criteria cannot be applied using only the methods of calculus, we leave
the presentation of their solution techniques to discuss later in the course. We also present the
idea of transformed least-squares and demonstrate how a transformation may distort the
distance concept. Depending on the background of your students and objectives of your
course, you can downplay the first two criteria (having students only formulate a problem or
two) and concentrate on applying the least-squares criterion. Or, if you have more advanced
students, you may want them actually to solve problems using the first two criteria as well,
including solving a linear program geometrically resulting from a Chebyshev fit (see Chapter 7
Discussion). Statistical indicators of goodness of fit, such as the coefficient of determination,
are purposely avoided because it is our experience that students tend to apply such measures
blindly. Instead, we have the student consider the various curve-fitting criteria, plot the
residuals, and then consider each model on its own merit.
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You will find the presentation in this chapter to be more like that of a standard mathematics
text. Typically we assign more problems to our students than we do in the previous chapters.
We begin with problems with small data sets and progress to larger ones where students can
take real advantage of using a calculator or computer. (At this point it can be very beneficial to
incorporate into the course a workshop on using various software that might be available for
curve-fitting.) We do not have our students solve the linear programs resulting from applying
the Chebyshev criterion in Section 3.2 so we move very quickly through that material and
simply formulate the model.

SECTION BY SECTION ANALYSIS

Fitting Models to Data Graphically:

The purpose of this section is to have the students gain an intuitive feel for the process of
fitting models to data before proceeding with analytic techniques. We begin by plotting some
scatterplots on the board that represent approximately

proportionality relationships, like these graphs:
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We then ask the students to fit straight lines to these graphs and ask them how they did it.
Most of them say they attempted to minimize the sum of deviations or the largest deviation (or
words to that effect). Since they cannot visualize the sum of the squared deviations
geometrically, no student ordinarily offers this criterion though some may be aware of it. Our
goal is to arrive at the least-squares criterion in a logical way as an alternative to the criteria
the students have verbalized, because applying the least-squares criterion requires only
calculus.

The most difficult concept for students in this section is that of the transformation. They
may have difficulties algebraically making the appropriate transformation. More importantly,
the concept of distorting distance via no-orthogonal transformations is difficult for many
students. In class you may want to emphasize the presentation in the text to ensure that
students understand that the parameters determined in the transformed space are only
approximations (perhaps bad ones) to their counterparts in the original space. In subsequent
sections, we develop some measures of goodness of fit. It is important for students to realize
that if measures are made to compare various models on the same data set, the measures must
be made in the same space.
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