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CHAPTER 2 - 9th Edition

2.1. Three positive point charges of equal magnitude g are located at x = =2, y =2, and y = —\/5. Find
the coordinates of a fourth positive charge, also of magnitude g, that will yield a zero net electric field
at the origin: The field at the origin that arises from the three charges can be expressed as

q 1 1 1 q
E = —_ + —_—— =
’  dre, [22 A < W22 2 ) ay] 167¢,

The magnitude of this field is
12 _ Vg

" l67e,

la, +a,)]

|Eo| = (Eo ' Eo)

To counter this field, the fourth charge must be positioned along a 45° line in the first quadrant. Its

distance from the origin along this line will be d = \/4/ \/5 =21/ 4\/5 = 1.68. This translates into
equal x and y coordinates of 2!/4 = 1.19. Therefore the fourth charge of positive magnitude g is
located at (1.19, 1.19)

2.2. Point charges of 1nC and -2nC are located at (0,0,0) and (1,1,1), respectively, in free space. Determine
the vector force acting on each charge.

First, the electric field intensity associated with the 1nC charge, evalutated at the -2nC charge
location is:

1 1
E, = m <%> (a, +a,+ a;) nC/m

in which the distance between charges is \/5 m. The force on the -2nC charge is then

=2 -1
Fpo=qE,=—"— (ax t+a,+ az) =

—(a,+a,+a nN
12\/§ﬂ'€0 10.471'6‘0 ( Y z)

The force on the 1nC charge at the origin is just the opposite of this result, or

+1

21=m(3x+ay+az) nN

2.3. Point charges of 50nC each are located at A(1,0,0), B(—1,0,0), C(0,1,0), and D(0,—1,0) in free
space. Find the total force on the charge at A.

The force will be:

F= (50x 107)% [ Rey Rpa Rpa ]

+
4re IRcal®  IRpalP  [Rpyl?
where R4 = a, —a,, Ry, =a, +a, and Ry, = 2a,. The magnitudes are [Rc4| = [Rpy| =
\/5, and |Rp 4| = 2. Substituting these leads to

50 x 1079)2
= 00X )[1 ! 3]ax=21.5axMN

+ +
47Z'€O 2\/5 2\/5 8

where distances are in meters.
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2.4. Eight identical point charges of Q C each are located at the corners of a cube of side length a, with
one charge at the origin, and with the three nearest charges at (a, 0, 0), (0, a, 0), and (0, 0, @). Find an
expression for the total vector force on the charge at P(a, a, a), assuming free space:

The total electric field at P(a, a, a) that produces a force on the charge there will be the sum of the
fields from the other seven charges. This is written below, where the charge locations associated
with each term are indicated:

E, . (a, a, a)
q a, + a, +a, a +a, a +a, a + a,
= + a + a,
2
e N R AN AN AN AN AN
— ) N — ] — (0,a,a) (a,0,a) (a,a,0)
(0.0,0) (a,0.0) (0..0) (0.0.0)

The force is now the product of this field and the charge at (a, a, a). Simplifying, we obtain

F(a,a,a) = qE,,(a,a,a)

2 2
1 ! L +—+1] (a,+a,+a,) = ﬂ(ax+ay+az)

4ﬂ€0a2 3v3 V2 dreya?

in which the magnitude is |F| = 3.29 ¢*/(4z¢eya®).

2.5. A point charge of 3nC is located at (1,1,1) in free space. What charge must be located at (1,3,2) to
cause the y component of E to be zero at the origin?

For two point charges, we may write:

q,(r — l‘i) g (r — l'é)
dreglr —ri|®  dzeglr — 1)}

where g¢; = 3nC, and where g, is to be found. With ¢, located at (1,1,1), r; =a,+a,+a, The
position vector for g, is then r; = a, + 3a, + 2a,. Because the observation point is at the origin, we
have r = 0. The field now becomes:
1 [-3G,+a,+a,) -—g(a,+3a,+2a,)
= +
drey | (12 4+ 12 + 12)3/2 (12 + 32 4 22)3/2

For a zero y component, we thus find g, = —(14)%/2/3%/2 = —10.1 nC.
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2.6. Two point charges of equal magnitude g are positioned at z = +d /2.

a) find the electric field everywhere on the z axis: For a point charge at any location, we have

o qr—1)
dreglr —r'|3

In the case of two charges, we would therefore have

= ‘I1(1'—1'1) + l]z(l’—rz) 0

dreglr — i3 dmeglr — )3

In the present case, we assign q; = ¢, = ¢, the observation point position vector as r = za,, and
the charge position vectors as r{ = (d/2)a,, and ré = —(d /2)a, Therefore

r—r|=[z-(@d/2la,, r-r}=[z+(d/2)a,,

then
r—rP=[z-(d/2P and |r-r,°=[z+d/2)]

Substitute these results into (1) to obtain:

q 1 1
E = 2
7= Ire, [[z—(d/2>]2+[z+(d/2>]2] 2 V/m @

b) find the electric field everywhere on the xy plane: We proceed as in part a, except that now r lies
in the xy plane. For simplicity, we can choose the x axis on which to evaluate the field, so that
r = xa,. Eq. (1) becomes

Er(x) = 3)

q xa, —(d/2)a, N xa, +(d/2)a, ]
4'71:60 |xax - (d/z)azl3 |xax + (d/z)azl3
where

Ixa, — (d/2)a,| = |xa, +(d/a,| = [x*+@d/2?]"

Therefore (3) becomes
2gxa,

4rey [x2+(d/2)?

This result can be generalized to apply anywhere in the xy plane by noting that the problem
exhibits cylindrical symmetry — any rotation of the x axis about the z axis will produce no change.
Therefore, we may use cylindrical coordinates, and replace the x variable by the radial variable
p, and use a,, instead of a,. The field then becomes:

Er(x) =

3/2

2qp a,
dzeq [p? + (/27

Er(p) =
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2.7. Two point charges of equal magnitude but of opposite sign are positioned with charge +q at z = d /2,
and charge —q at z = —d /2. The pair form an electric dipole.

a) Find the electric field intensity everywhere on the z axis: For the two charges we would write in

general:
o qr—r)) q(r —r’)
dzeylr —vi 3 dzelr — ! |3
wherer = za,, r! =+d/2a,, andr’ = —d/2a,. Using these substitutions, we find:
q [(z ~Da,  (z+ i)az]
E = 2%z 2
4re _ 43 4.3
o] lz=7I |z + 3|

b) Evaluate your part a result at the origin: We set z = 0 in the above result to obtain

—2qa, [2]2 _ —2qa,

E(z =0) = z -

ted
7 as expecte

471'60 ﬂ'€0
¢) Find the electric field intensity everywhere on the xy plane, expressing your result as a function
of radius p in cylindrical coordinates: This will begin with the same initial setup as in part a,

except now r = pa, describes the observation point in the xy plane. With this change, we have

_q pap—(d/2)aZ _ pa,,+(d/2)aZ ] B —qda,
T dzey [[02 4+ (d)22P2 [p2+(d/22P2] T dmeglp? + (d/2)23)2

d) Evaluate your part c result at the origin: Setting p = 0 in the part ¢ expression, we find:

a
E(p=0) = A% as in part b, — and as expected
ﬂ'€0d2

e) Simplify your part ¢ result for the case in which p >> d: With this requirement, we find

. —qda
E(p>> d) = 2%

meyp

2.8. A crude device for measuring charge consists of two small insulating spheres of radius a, one of which
is fixed in position. The other is movable along the x axis, and is subject to a restraining force kx,
where k is a spring constant. The uncharged spheres are centered at x = 0 and x = d, the latter fixed.
If the spheres are given equal and opposite charges of O coulombs:

a) Obtain the expression by which Q may be found as a function of x: The spheres will attract, and
so the movable sphere at x = 0 will move toward the other until the spring and Coulomb forces
balance. This will occur at location x for the movable sphere. With equal and opposite forces,
we have

Q2

S
drey(d — x)?

from which Q = 2(d — x)\/7meykx.
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2.8 b) Determine the maximum charge that can be measured in terms of ¢, k, and d, and state the
separation of the spheres then:

With increasing charge, the spheres move toward each other until they justtouchatx,,,, = d — 2a.

Using the part a result, we find the maximum measurable charge: Q,,,, = 4a\/mwexk(d — 2a).

Presumably some form of stop mechanism is placed at x = x, _ to prevent the spheres from
actually touching.

¢) What happens if a larger charge is applied? No further motion is possible, so nothing happens.

2.9. A 100 nC point charge is located at A(—1, 1, 3) in free space.

a) Find the locus of all points P(x, y, z) at which E, = 500 V/m: The total field at P will be:

_100x 107 Ryp
4zey IR, pl?

Ep

where R, p = (x+1)ax+(y—l)ay+(z—3)az,andwhere IR p| = [(x+1)2+(y—1)2+(z—3)2]1/2.
The x component of the field will be

_ 100 x 107 (x+1)

BT T |G- G-

X

=500 V/m

And so our condition becomes:

(x+1D)=056[(x+ 1)+ -1D>+(z-3)72""

b) Find y, if P(0, y;,3) lies on that locus: At point P, the condition of part a becomes
319 = [1 4+, - 1?]

from which (y; — 1)> = 0.47, or y; = 1.69 or 0.31

2.10. A configuration of point charges consists of a single charge of value —24 at the origin, and two charges
of value +q at locations z = —d and +d. The charges as positioned form an electric quadrupole,
equivalent to two dipoles of opposite orientation that are separated by distance d along the z axis.

a) Find the electric field intensity E everywhere in the xy plane, expressing your result as a function
of cylindrical radius p: We begin by applying the general formula for the point charge field, where
the three terms apply to the three charges:

!/ !/ —r!
= q(r — rlower) _ 2q(r - rmidalle) q(r rupper)
dregle —v) |3 dmeplr —rx! 13 drweg|r — rl’qmyer|3
The p.osi.tion vectors will be r = pa,, T e = —daz T, . =+da_andr, = 0. With these
substitutions, the field expression becomes:
_q pa,+da; 2pa, N pa,—da, g3, | 1
4,1-60 (,02 + d2)3/2 ,03 (pz + d2)3/2 2”€0p2 1+ d2/p2)3/2
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2.10 b) Specialize your part a result for large distances, p >> d: Under this condition, we may use the
expansion:

1

(I +d2/p) (1+a%/0%) " (1+d2/0?) " = (1= d2/p%) (1= d*/20°)

Carrying out the product and neglecting the term involving d*/p*, we find:

(1-d*/p*) (1-d*/2p*) =1- 34
2 p?
from which )
—qa 2 —3qgd-a
E(p >> d) = 2 [1—1+§d—]=—”
meyp? 2 p? dreypt

2.11. A charge Q located at the origin in free space produces a field for which E, = 1 kV/m at point
P(-2,1,-1).

a) Find Q: The field at P will be

0, [—2a,+a,—a,
EP =
47[60 61'5
Since the z component is of value 1 kV/m, we find Q, = —47¢,6' x 10° = —1.63 uC.
b) Find E at M (1, 6,5) in cartesian coordinates: This field will be:

a, +06a,+5a,
[1+36+25]15

_ -6
E, = 1.63 x 10

47T€0

or Ey = —30.11a, — 180.63a, — 150.53a,.

¢) Find E at M (1, 6,5) in cylindrical coordinates: At M, p = /1 +36 = 6.08, ¢ = tan‘1(6/1) =
80.54°, and z = 5. Now

E,=E, -a,=-30.11cos¢ — 180.63sin¢ = —183.12

Ey = E, - ay = —30.11(—sin¢) — 180.63 cos ¢ = 0 (as expected)
so that E), = —183.12a, — 150.53a,.

d) Find E at M (1, 6,5) in spherical coordinates: At M, r = \/1 + 36 +25 = 7.87, ¢ = 80.54° (as
before), and @ = cos™'(5/7.87) = 50.58°. Now, since the charge is at the origin, we expect to
obtain only a radial component of E,,. This will be:

E.=E;, -a.=-30.11sin6cos ¢ — 180.63 sin O sin ¢ — 150.53 cos & = =237.1
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2.12. Electrons are in random motion in a fixed region in space. During any 1us interval, the probability of
finding an electron in a subregion of volume 10~!3 m? is 0.27. What volume charge density, appropriate
for such time durations, should be assigned to that subregion?

The finite probabilty effectively reduces the net charge quantity by the probability fraction. With
e = —1.602 x 10~!° C, the density becomes

. 0.27x1.602x 107"
pU - 10_15

=—43.3 uC/m’

2.13. A uniform volume charge density of 0.2 4C/m?> is present throughout the spherical shell extending
fromr =3cmtor=>5cm.If p, = 0 elsewhere:

a) find the total charge present throughout the shell: This will be
2r V4 .05 7‘3 .05

0= / / / 022 sin0@drd0d¢g = [4%(0.2)?] =821x107 uC =82.1 pC

0 03 .03 -

b) find r; if half the total charge is located in the region 3cm < r < ry: If the integral over r in part
a is taken to r;, we would obtain

ry
[4n(0.2)’—] = 4.105% 1075
3 .03

Thus

B [3 X 4.105 x 1075
=

1/3
03)3 =424
02xar T ] ==

2.14. The electron beam in a certain cathode ray tube possesses cylindrical symmetry, and the charge den-
sity is represented by p, = —0.1/(p> + 1073) pC/m3 for 0 < p < 3 x 10™* m, and p, = O for
p>3%x107* m.

a) Find the total charge per meter along the length of the beam: We integrate the charge density
over the cylindrical volume having radius 3 x 10~* m, and length 1m.

2 £3x107
= dpdpdz
=[] e

From integral tables, this evaluates as

0—4

1 5 _gy |3¥1
g=-02x <§> In (p? + 1078) |0 = 0.171n(10) = —0.237 pC/m

b) if the electron velocity is 5x 107 m/s, and with one ampere defined as 1C/s, find the beam current:

Current = charge/mxv = —0.237 [pC/m]x5x10” [m/s] = —11.52x10° [pC/s] = —11.5z uA
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2.15. A spherical volume having a 2 ym radius contains a uniform volume charge density of 103 C/m>.

a) What total charge is enclosed in the spherical volume?
This will be Q = (4/3)7(2 x 1076)3 x 10° = 3.35 x 10~'2 C.

b) Now assume that a large region contains one of these little spheres at every corner of a cubical
grid 3mm on a side, and that there is no charge between spheres. What is the average volume
charge density throughout this large region? Each cube will contain the equivalent of one little
sphere. Neglecting the little sphere volume, the average density becomes

_335%x 10712

= =124%x107*C/m’
Puas = 0.003)3 /

2.16. Within a region of free space, charge density is given as p, = ( por/ a) cos @ C/m?, where p, and a are
constants. Find the total charge lying within:

a) the sphere, r < a: This will be

2r
o,= / //—coser sinfdrdfd¢ =0

It is the integral over 6, performed first, that gives the zero result.

b) thecone,r <a,0<60 <0.1x:

Pod

2 0.1z
0, = / / / =L cosr? sderdeqb—ﬂT [1 = cos*(0.17)] = 0.0247pya’

¢) theregion,r <a,0<6<0.17,0 < ¢ <0.2x.

027 0.1z 027
o, = / / / =L cosOr’sinfdrdodeg =0. 0247rp0a ( > > = 0.00247rpoa3
71' —_—

2.17. A length d of line charge lies on the z axis in free space. The charge density on the line is
pr =+pyC/m (0 < z<d/2)and p; = —p, C/m (—=d /2 < z < 0), where p, is a positive constant.

a) Find the electric field intensity E everywhere in the xy plane, expressing your result as a function
of cylindrical radius p: Begin by constructing the differential field at radius p in the xy plane that
arises from a point charge dq = p; dz on the z axis. To do this, use the general expression:

dq(r —r’
JE = 44 )
dregr —r'|3

where in this case, r = pa, and r’ = za,. With these substitutions, we find
+podz(pa, — za,)

4”60([,2 - Z2)3/2

where the positive sign applies to the region z > 0; the negative sign to z < 0. The total field at
radius p is then found by integrating dE over the total charge length:
- /0 —podz(pa, — za,) /+d/2 +podz(pa, — za,)
0 drey(p? — z2)3/2

dE =

—aj2 Ameyg(p? — 22)3/2
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2.17. a) (continued) Note that the radial component will integrate to zero through odd parity, leaving only
the z component, as would be expected. The integral simplifies to:

- 2/d/2 —pozadz Pod, /2 —poa, L - 1
0o Admey(p? + 2232 2mey(p* + 221210 2regp V1+(d/2p)?

b) Simplify your part a result for the case in which radius p >> d, and express this result in terms
of charge g = p,d /2: At large radii, we can use the binomial expansion to the first two terms:

2

1 . 1(d

S S N
V1+(d/2p)? 2 (2/))

with which

where g = pyd /2.

2.18. a) Find E in the plane z = 0 that is produced by a uniform line charge, p;, extending along the z
axis over the range —L < z < L in a cylindrical coordinate system: We find E through

E /L prdz(r —r’)
)L dmeglr — )3
where the observation point position vector is r = pa, (anywhere in the x-y plane), and where

the position vector that locates any differential charge element on the z axis is r’ = za,. So
r—r'=pa, —za, and |r —r'| = (p* + z2)1/2_ These relations are substituted into the integral

to yield:
E_/L pLdz(pap—zaz) B prap /L dz CEa
N R T A
Note that the second term in the left-hand integral (involving za,) has effectively vanished be-

cause it produces equal and opposite sign contributions when the integral is taken over symmetric
limits (odd parity). Evaluating the integral results in

oL L 1
 dre e m‘ 27r€op \/ 2412 " 2 L+ (p/L)?

Note that as L. — oo, the expression reduces to the expected field of the infinite line charge in
free space, p; /(2zweyp).

b) if the finite line charge is approximated by an infinite line charge (L — o), by what percentage
is E, in error if p = 0.5L? The percent error in this situation will be

1
V1+(@/L)?

For p = 0.5L, this becomes % error = 10.6 %

% error = [1 - ] x 100

c¢) repeat b with p = 0.1 L. For this value, obtain % error = 0.496 %.
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2.19. A line having charge density p,|z| C/m and of length ¢ is oriented along the z axisat —¢ /2 < z < £ /2.

a) Find the electric field intensity E everywhere in the xy plane, expressing your result in cylindrical
coordinates: As the problem exhibits cylindrical symmetry, we may write the position vector for
the observation point in the xy plane as r = pa,. Then, with r’ = za,, we may write

- /f/z pp(2)dz(r —r') _ /f/2 polzldz(pa, — za,)

—£/2 47Z'€0|l' - I"|3 —£/2 471'60(,02 + 22)3/2

Note that the second term in the integrand (the z component) is zero, because of odd parity.
We are left with

zpopa,,/‘”/2 |z|dz =2popa,,/f/2 zdz  _ ~PoP3, 1 /2
ep P APPR T dney Joo (PP 2mey (o2 + )20

47[6'0

Evaluating the limits the final result can be written as

7S O S
2reg /1 — (Z/2p)?

b) Evaluate your result of part a in the limit as £ (not z) approaches infinity: In this limit, the second
term in the bracket tends to zero, and we have

pOap

E(# - o) = V/m

TE

thus exhibiting no radial variation!

2.20. A line charge of uniform charge density p, C/m and of length Z, is oriented along the z axis at
—C/2<z<t/2.

a) Find the electric field strength, E, in magnitude and direction at any position along the x axis:
This follows the method in Problem 2.18. We find E through

212 podz(r — v’
E=/ Po ( )

—£/2 47L'€0|1' - l"l3

where the observation point position vector is r = xa, (anywhere on the x axis), and where
the position vector that locates any differential charge element on the z axis is r’ = za,. So
r—r’ =xa,—za,and |r — 1’| = (x*> + z2)!/2. These relations are substituted into the integral
to yield:

xax

- /f/2 podz(xa, —za,)  pyxa, /5/2 dz

—£/2 47T€0(x2 + Z2)3/2 - 47[60 vy (xz + 22)3/2 =

Note that the second term in the left-hand integral (involving za,) has effectively vanished be-
cause it produces equal and opposite sign contributions when the integral is taken over symmetric
limits (odd parity). Evaluating the integral results in

po X ¢/ £/2 Po 1

= 4;:50 2 ,—xz n 22| £/2 27zeox ,/xz + (f/Z)Z B 2n€0x 71+ (2x/z,”)2
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2.20.

2.21.

2.22,

b) with the given line charge in position, find the force acting on an identical line charge that is
oriented along the x axis at £/2 < x < 3£/2: The differential force on an element of the x-
directed line charge will be dF = dqE = (p, dx)E, where E is the field as determined in part
a. The net force is then the integral of the differential force over the length of the horizontal line

charge, or
3¢2/2 p2
F = / 0 ! dx a,
/2 2mE0X (/14 (2x/¢)?
This can be re-written and then evaluated using integral tables as
3¢/2
Fe pofa; [/ dx i N 2LE \Vx2+()2)? /
4ﬂ'€0 ¢/2 xa/x2 +(f/2)2 471'6'0 (f/2) X

_ —ppa, " (f/2)<1+ \/E) _ g a, . [3(1_,_\/5)] _ O.SSpéa N
2re 3(f/2)(1+\/§) 27y | 1+4/10 i

)2

27[60

A charged filament forms a circle of radius a in the xy plane with center at the origin. The filament
carries uniform line charge density +p, C/m for —z /2 < ¢ < /2, and —p, C/mfor z /2 < ¢ < 37 /2.
Find the electric field intensity at the origin:

The field at the origin arising from a differential length ad ¢ of charge on the ring will be

ipoﬂd(ﬁ
= a

dE, =
° dmeya® ’

where the positive sign applies to the negative charge contribution, the negative sign to the positive
charge contribution. Now the total field will be the piecewise integral of the differential field over the
two semi-circles. Using a , =cosga, + sin ¢ a, (as is required to include all ¢ dependence), we have

/2 _ d 3z/2 +ond

EO:/ Po ¢(cos¢ax+sinqbay)+/ Po ¢(cosqbax+sin¢ay)
—x2 4meya z2  4mepa

Noting that the two terms in the above expression are equal to each other, we may evaluate the first

integral and introduce a factor of 2:

= sin a_— cos a | = V/m
drega 1 ¢—7r/2 x ¢—7r/2 Y TEya /
—— N——
2 0

E

o

Two identical uniform sheet charges with p, = 100 nC/m? are located in free space at z = +2.0 cm.
What force per unit area does each sheet exert on the other?

The field from the top sheet is E = —p,/(2¢y)a, V/m. The differential force produced by this
field on the bottom sheet is the charge density on the bottom sheet times the differential area
there, multiplied by the electric field from the top sheet: dF = p,daE. The force per unit area is
then just F = p.E = (100 X 107?)(=100 x 107°)/(2¢) a, = —5.6 X 10~*a, N/m?.
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2.23. A disk of radius a in the xy plane carries surface charge of density p, = p,/p, where p is a constant.
Find the electric field strength, E, everywhere on the z axis.

/ / p.da(r —r’)

dreglr —r'|3
where the integral is taken over the surface of the disk, and where r = za_ and r’ = pa,. The
integral then becomes

We find the field through

_/2”/,, (po/p)pdpdd (za, — pa,)
0

drey(z2 + p?)3/2

In evaluating this integral, we need to introduce the ¢ dependence in a, by writing it as a, =
cos¢a, +sin¢a,, where a, and a, are invariant in their orientation as ¢ varies. So the integral
now simplifies to

Eo 2mpyza, /°° dp _ 2mpyza, ) ‘ _ 2rmapya,
Codmay Jo @R dmey |y g o dneozll+(a/2P)

2.24. a) Find the electric field on the z axis produced by an annular ring of uniform surface charge density
p, in free space. The ring occupies the region z = 0, a < p < b, 0 < ¢ < 27 in cylindrical

coordinates: We find the field through
/ / p,da(r —r’)
4rey|r — |3
where the integral is taken over the surface of the annular ring, and where r = za, andr’ = pa,.
The integral then becomes
/2”/ Py pdpdq’) za, — pa )
dmey(z% + p2)3/?

In evaluating this integral, we first note that the term involving pa, integrates to zero over the
¢ integration range of 0 to 2z. This is because we need to introduce the ¢ dependence in a,
by writing it as a, = cos¢pa, + sin¢a,, where a, and a, are invariant in their orientation as ¢
varies. So the integral now simplifies to

b
E_2ﬂpsza/ pdp  _ psza, —1
drey  Jo (Z2+p32 0 26 | \[225 2
a
Ps

1
aZ
26 [\/1 T@or A1 +(b/z)2]

b) from your part a result, obtain the field of an infinite uniform sheet charge by taking appropriate
limits. The infinite sheet is obtained by letting a — 0 and b — oo, in which case E — p,/(2¢;) a,
as expected.
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2.25. A disk of radius a in the xy plane carries surface charge of density p,; = +p,,/p C/m? for 0 < ¢ < =,
and p, = —p,o/p C/m? for & < ¢ < 2z, where p, is a constant.

a) Find the electric field intensity E everywhere on the
Z axis:

With the setup shown at right, the field can be found <
through the general relation

/ / p da(r —r’) . e
disk area 47F€0|I' - r,l3

where r = za, and r’ = pa,. Because the charge is
¢-dependent, we need to include the ¢ dependence Ps2 Psi

in all terms. This means that we must use a, = r\é)da Y
a, cos p+a, sin . Then, with [r—r'|* = (z2+p%)3/2

and with the positive and negative charges accounted

for, the integral is performed piecewise over the two X

halves of the disk:

" [+ (pg/p)lza, — pcos da, — psina,] pdpd

- / / 4rey(22 + p2)3/2

N /2” /“ —(ps0/p)lza, — pcos a, — psinga,] pdpd
drmey(z% + p?)3/?

Noting that the z components will cancel, and performing the ¢ integration first, we find:

X /a [-sing|7a, + cos p|Ta, + sinp|Z"a, — cos |2"a,| pdp

dre, @+ PP
_4psoay /a pdp _ _psoay -1 ¢ _ _pSan 1— 1
47[60 0 (22 + p2)3/2 7Z'€O (Zz + p2)3/2 0 7Z'€0Z A /1 + 02/22

b) Specialize your part a result for distances z >> a: With this condition we have (1+4?/2z2)!/? =
1 — a?/2z? and thus

. —pya
E(z>>a) = 0 y[1—1+a—
7[602

Note the inverse distance cubed dependence that is characteristic of a dipole field.
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226 a)

b)

Find the electric field intensity on the z axis produced by a cone surface that carries charge density
ps(r) = py/r C/m? in free space. The cone has its vertex at the origin and occupies the region
0 =a, 0 <r<a and0 < ¢ < 27z in spherical coordinates. Differential area in spherical
coordinates is given as da = rsin adrd¢: E is found using the general surface integral

// p,da(r —r’)
cone 477,'€0|I' - I‘,|3
where in this case r = za, and r’ = ra,.

Then [r —r/| = [(r —1/) - (r — r’)]l/2 = [(za, —ra,) - (za, — ra,)]l/2 =1/z2 — 2rzcos a + 12,
where a, - a, = cos « has been used. The integral now becomes:

- /2" @ (po/r)rsinadrdg(za, — ra,)
0 0

drey(z2 — 2rzcos a + r2)3/2

It is necessary to include the ¢ dependence in a,..

We substitute a, = sina cos ¢a, + sina sin ¢a, + cos aa,. The first two terms of this, involving
sin ¢ and cos ¢, will integrate to zero when taking ¢ from 0 to 2z. Only the z component survives,
and the integral becomes, after performing the ¢ integration:

@ posina(z —rcosa)dra,
E=2x
o0 4meg(z? —2rzcosa + r?)3/?

_ 2mpysinaa, /” zdr B rcosadr
4re, 0 1(z2=2rzcosa+1r2)32 (22 =2rzcosa +r2)3/2

The two integrals evaluate as

/a zdr _ (r—zcosa)z
0 (22=2rzcosa+r2)32  22sin? q(z2 — 2rzcos a + r2)1/210

/a rcosadr —(z —rcosa)zcosa
(22 =2rzcosa + 1132 z25in? (22 — 2rzcos a + r2)1/210

Combining these, cancelling terms, and rearranging, finally leads to

2rapysina a,

 4regz(z2 — 2azcos a + a?)!/?

Find the total charge on the cone: This will be

2z a
0, = / / p,da = / / @r sinadrd¢ = 2rapysina
cone 0 o T’

Specialize your result of part a to the case in which « = 90°, at which the cone flattens to a disk
in the xy plane. Compare this result to the answer to Problem 2.23.

When a = 90°, cos a = 0, and the field expression in part a can be expressed as:

2rappa,
dreyz?[1 + (afz)?]1/2

E(a=0) =

which is the same result as found in Problem 2.23.
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2.26 d) Show that your part a result becomes a point charge field when z >> a.
Using the expression for the total charge as found in part b, and rearranging terms, the field of
part a takes the form:

Qc a, - QC a,

= = zZ>>a
dreyz?[1 — (2a/z)cos a + (a/z)?]'/2 dreyz? ( )

where we recognize the second equality as the point charge field.
e) Show that your part a result becomes an inverse-z-dependent E field when z << a.
If z << a, we have [1 — (2a/z) cos a + (a/z)*]"/? = a/z and thus

QC az - QCaaZ

B 4reyz?[1 — (2a/z)cosa + (a/z)?]V/2 — 4meyz

2.27. Given the electric field E = (4x — 2y)a, — (2x + 4y)a,, find:

a) the equation of the streamline that passes through the point P(2, 3, —4): We write

dy _E, -Qx+4y

dx E, (4x-2y)
Thus
20xdy+ydx)=ydy—xdx
or | .
2d(xy) = = d(y*) — = d(x*
(xy) > ) > (x7)
So | |
C+2xy==y* — =x?
| T 2xy 7V T 5%
or

y2 - x? =4xy+C,
Evaluating at P(2, 3, —4), obtain:

9—4=24+C2, or C2 =—19
Finally, at P, the requested equation is

VY —x2=4xy—19

b) a unit vector specifying the direction of E at O(3, —2,5): Have Ey =[403) +2(2)]a, — [2(3) —
4(2)]a, = 16a, + 2a,. Then |[E| = V/ 1624+ 4 =16.12 So

3 16a, +2a,

= Y 0.99a. 4+ 0.12
o 1612 o7 t+0aa,
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2.28 An electric dipole (discussed in detail in Sec. 4.7) consists of two point charges of equal and opposite
magnitude +Q spaced by distance d. With the charges along the z axis at positions z = +d /2 (with
the positive charge at the positive z location), the electric field in spherical coordinates is given by
E(r,0) = [Qd / (47reor3)] [2 cos fa, + sin 039] , where r >> d. Using rectangular coordinates, deter-
mine expressions for the vector force on a point charge of magnitude g:

a) at (0,0, z): Here, § =0, a, = a,, and r = z. Therefore

qQOd a, N

F(0,0,2) =
meyz3

b) at (0, y,0): Here, § = 90°, a, = —a,, and r = y. The force is

—qQd a, N

F(@, y,0) =
©.7.0) dreyy’

2.29. If E = 20e7% (cos 5xa, — sin 5xa,), find:

a) |E| at P(x/6,0.1,2): Substituting this point, we obtain Ep = —10.6a, — 6.1a,, and so |Ep| =
12.2.

b) a unit vector in the direction of Ep: The unit vector associated with E is (cos S5xa, — sin 5xay),
which evaluated at P becomes ap = —0.87a, — 0.50a,,.

c) the equation of the direction line passing through P: Use

dy _ —sin5x
dx cos S5x

=—tan5x = dy=-—tanSxdx
Thus y = éln cos 5x + C. Evaluating at P, we find C = 0.13, and so

y= %lnc035x+0.13

2.30. For fields that do not vary with z in cylindrical coordinates, the equations of the streamlines are ob-
tained by solving the differential equation E,/E, = dp(pd¢). Find the equation of the line passing
through the point (2,30°,0) for the field E = pcos2¢a, — psin2¢pay:

E, dp —pcos2 d
oo dp _2pCS29 _ op = P _cot20ded
E, pd¢ psin2¢ P

Integrate to obtain

2lnp=1nsin2¢>+lnC=ln[ ] = pr= ¢

sin 2¢ sin2¢

At the given point, we have 4 = C/sin(60°) = C =4sin60° = 2\/5. Finally, the equation for
the streamline is p> = 21/3/ sin 2.
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