
SOLUTIONS TO PROBLEMS

CHAPTER ONE

1. We write 275 as follows in Egyptian hieroglyphics (on the left) and Babylonian cuneiform
(on the right):

2.

1 5

′10 50 (multiply by 10)

2 10 (double first line)

4 20 (double third line)

′8 40 (double fourth line)

′2 2 2 (halve first line)

′10 2 (invert third line)

18 2 10 93

3.

1 7 2 4 8

2 15 2 4

′4 31 2

′8 63

′3 4 3 3 6 12

12 3 98 2 3 3 6 12
99 2 4
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4.
2 ÷ 11 1 11 2 ÷ 23 1 23

3 7 3 3 15 3

3 3 3 3 7 3

6 1 3 6
′

6 3 2 3

66 6
′

12 1 2 4 6
′

276 12
′

6 66 2

12 276 2

5.
5 ÷ 13 = (2 ÷ 13) + (3 ÷ 13) = 8 52 104 + 8 13 52 104 = 4 13 26 52

6 ÷ 13 = 2(3 ÷ 13) = 4 8 52 104 26 52 = 4 8 13 104

8 ÷ 13 = 2(4 ÷ 13) = 2 13 26

6. x + 1
7x = 19. Choose x = 7; then 7 + 1

7 · 7 = 8. Since 19 ÷ 8 = 23
8 , the correct answer is

23
8 × 7 = 165

8 .

7. (x + 2
3x) − 1

3(x + 2
3x) = 10. In this case, the “obvious” choice for x is x = 9. Then 9

added to 2/3 of itself is 15, while 1/3 of 15 is 5. When you subtract 5 from 15, you get
10. So in this case our “guess” is correct.

8. The equation here is (1 + 1
3 + 1

4)x = 2. Therefore. we can find the solution by dividing

2 by 1 + 1
3 + 1

4 . We set up that problem:

1 1 2 4

3 1 18

3 2 36

6 4 72

12 8 144

The sum of the numbers in the right hand column beneath the initial line is 1141
144 . So we

need to find multipliers giving us 3
144 = 144 72. But 1 3 4 times 144 is 228. It follows

that multiplying 1 3 4 by 228 gives 144 and multiplying by 114 gives 72. Thus, the
answer is 1 6 12 114 228.
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9. Since x must satisfy 100 : 10 = x : 45, we would get that x = 45×100
10 ; the scribe breaks

this up into a sum of two parts, 35×100
10 and 10×100

10 .

10. The ratio of the cross section area of a log of 5 handbreadths in diameter to one of 4
handbreadths diameter is 52 : 42 = 25 : 16 = 1 9

16 . Thus, 100 logs of 5 handbreadths

diameter are equivalent to 1 9
16 × 100 = 1561

4 logs of 4 handbreadths diameter.

12.
8 34 17 8 · · ·

7) 1 00 00 00 00 00
56
4 00
3 58

2 00
1 59

1 00
56
4 · · ·

13. Since 3 × 18 = 54, which is 6 less than 60, it follows that the reciprocal of 18 is 31
3 , or,

putting this in sexagesimal notation, 3,20. Since 60 is (17
8)× 32, and 7

8 can be expressed

as 52,30, the reciprocal of 32 is 1,52,30. Since 60 = 11
9 × 54, and 1

9 can be expressed as
1
10 + 1

90 = 6
60 + 40

3600 = 0; 06, 40, the reciprocal of 54 is 1, 06, 40. Also, because 60 = 15
16×64,

the reciprocal of 64 is 15
16 . Since 1

16 = 3, 45, we get that 15
16 = 56, 15. If the only prime

divisors of n are 2, 3, 5, then n is a regular sexagesimal.

14. 25 × 1, 04 = 1, 40 + 25, 00 = 26, 40. 18 × 1, 21 = 6, 18 + 18, 00 = 24, 18. 50 ÷ 18 =
50 × 0; 3, 20 = 2; 30 + 0; 16, 40 = 2; 46, 40. 1, 21 ÷ 32 = 1, 21 × 0; 01, 52, 30 = 1; 21 +
1; 10, 12 + 0; 00, 40, 30 = 2; 31, 52, 30.

15. Since the length of the circumference C is given by C = 4a, and because C = 6r, it follows
that r = 2

3a. The length T of the long transversal is then T = r
√

2 = (2
3a)(17

12) = 17
18a.

The length t of the short transversal is t = 2(r − t
2) = 2a(2

3 − 17
36) = 7

18a. The area A of
the barge is twice the difference between the area of a quarter circle and the area of the
right triangle formed by the long transversal and two perpendicular radii drawn from
the two ends of that line. Thus

A = 2

(
C2

48
− r2

2

)
= 2

(
a2

3
− 2a2

9

)
=

2

9
a2.

16. Since the length of the circumference C is given by C = 3a, and because C = 6r, it follows
that r = a

2 . The length T of the long transversal is then T = r
√

3 = (a
2 )(7

4) = 7
8a. The

length t of the short transversal is twice the distance from the midpoint of the arc to
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the center of the long transversal. If we set up our circle so that it is centered on the

origin, the midpoint of the arc has coordinates ( r
2 ,

√
3r
2 ) while the midpoint of the long

transversal has coordinates ( r
4 ,

√
3r
4 ). Thus the length of half of the short transversal is

r
2 and then t = r = a

2 . The area A of the bull’s eye is twice the difference between the
area of a third of a circle and the area of the triangle formed by the long transversal and
radii drawn from the two ends of that line. Thus

A = 2

(
C2

36
− 1

2

r

2
T

)
= 2

(
9a2

36
− 1

2

a

4

7a

8

)
= 2a2

(
1

4
− 7

64

)
=

9

32
a2.

17. The correct formula in the first case gives V = 56, while the Babylonian version gives
V = 1

2(22+42)6 = 60 for a percentage error of 7%. In the second case, the correct formula

gives 488/3 = 1622
3 , while the Babylonian formula gives V = 1

2(82 + 102)2 = 164, for an
error of 0.8%.

18. 1; 24, 51, 10 = 1+24
60+ 51

3600+ 10
216000 = 1+0.4+0.0141666666+0.0000462962 = 1.414212963.

On the other hand,
√

2 = 1.414213562. Thus the Babylonian value differs from the true
value by approximately 0.00004%.

19. Because (1; 25)2 = 2; 00, 25, we have

√
2 =

√
2; 00, 25− 0; 00, 25 ≈ 1; 25 − (0; 30)(0; 00, 25)(1/1; 25).

An approximation to the reciprocal of 1;25 is 0;42,21,11. The product of 0;30 by 0;00,25
by 0;42,21,11 is 0;00,08,49,25. The the approximation to

√
2 is 1; 25− 0; 00, 08, 49, 25 =

1; 24, 51, 10, 35, which, with the last term truncated, is the Babylonian value.

20.
√

3 =
√

22 − 1 ≈ 2 − 1
2 · 1 · 1

2 = 2 − 0; 15 = 1; 45. Since an approximate recipro-

cal of 1;45 is 0;34,17.09, we get further that
√

3 =
√

(1; 45)2 − 0; 03, 45 = 1; 45 −
(0; 30)(0; 03, 45)(0; 34, 17.09) = 1; 45 − 0; 01, 04, 17, 09 = 1; 43, 55, 42, 51, which we trun-
cate to 1;43,55,42 because we know this value is a slight over-approximation.

21. 12 3 15 24 32 = 12129
160 . (12129

160)2 = (12.80625)2 = 164.0000391 . . .

22. v + u = 1; 48 = 14
5 and v − u = 0; 33, 20 = 5

9 . So 2v = 2; 21, 20 and v = 1; 10, 40 = 106
90 .

Similarly, 2u = 1; 14, 40 and u = 0; 37, 20 = 56
90 . Multiplying by 90 gives x = 56, d = 106.

In the second part, v + u = 2; 05 = 2 1
12 and v − u = 0; 28, 48 = 12

25 . So 2v = 2; 33, 48

and v = 1; 16, 54 = 769
600 . Similarly, 2u = 1; 36, 12 and u = 0; 48, 06 = 481

600 . Multiplying by

600 gives x = 481, d = 769. Next, if v = 481
360 and u = 319

360 , then v + u = 22
9 = 2; 13, 20.

Finally, if v = 289
240 and u = 161

240 , then v + u = 17
8 = 1; 52, 30.
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23. The equations for u and v can be solved to give v = 1; 22, 08, 27 = 295707
216000 = 98569

72000 and

u = 0; 56, 05, 57 = 201957
216000 = 67319

72000 . Thus the associated Pythagorean triple is 67319,
72000, 98569.

24. The two equations are x2 + y2 = 1525; y = 2
3x + 5. If we substitute the second equation

into the first and simplify, we get 13x2 + 60x = 13500. The solution is then x = 30,
y = 25.

25. If we guess that the length of the rectangle is 60, then the width is 45 and the diagonal
is
√

602 + 452 = 75. Since this value is 17
8 times the given value of 40, the correct length

of the rectangle should be 60 ÷ 17
8 = 32. Then the width is 24.

26. One way to solve this is to let x and x − 600 be the areas of the two fields. Then the
equation is 2

3x+ 1
2(x−600) = 1100. This reduces to 7

6x = 1400, so x = 1200. The second
field then has area 600.

27. Let x be the weight of the stone. The equation to solve is then x− 1
7x− 1

13(x− 1
7x) = 60.

We do this using false position twice. First, set y = x − 1
7x. The equation in y is then

y − 1
13y = 60. We guess y = 13. Since 13 − 1

1313 = 12, instead of 60, we multiply our

guess by 5 to get y = 65. We then solve x− 1
7x = 65. Here we guess x = 7 and calculate

the value of the left side as 6. To get 65, we need to multiply our guess by 65
6 = 101

6 . So

our answer is x = 7 × 65
6 = 755

6 gin, or 1 mina 155
6 gin.

28. We do this in three steps, each using false position. First, set z = x − 1
7x + 1

11(x − 1
7x).

The equation for z is then z − 1
13z = 60. We guess 13 for z and calculate the value of

the left side to be 12, instead of 60. Thus we must multiply our original guess by 5 and
put z = 65. Then set y = x − 1

7x. The equation for y is y + 1
11y = 65. If we now guess

y = 11, the result on the left side is 12, instead of 65. So we must multiply our guess
by 65

12 to get y = 715
12 = 59 7

12 . We now solve x − 1
7x = 59 7

12 . If we guess x = 7, the

left side becomes 6 instead of 59 7
12 . So to get the correct value, we must multiply 7 by

715
12 /6 = 715

72 . Therefore, x = 7 × 715
72 = 5005

72 = 6937
72 gin = 1 mina 937

72 gin.

29.
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30. If we substitute the first equation into the second, the result is 30y − (30− y)2 = 500 or
y2 + 1400 = 90y. This equation has the two positive roots 20 and 70. If we subtract the
second equation from the square of the first equation, we get (x2 = 900)−(xy−(x−y)2 =
500), or (x − y)2 + x(x − y) = 400, or finally (x − y)2 + 30(x − y) = 400. This latter
equation has x − y = 10 as its only positive solution. Since we know that x = 30, we
also get that y = 20.

31. The equations can be rewritten in the form x+ y = 55
6 ; x+ y +xy = 14. By subtracting

the first equation from the second, we get the new equation xy = 81
6 . The standard

method then gives

x =
55

6

2
+

√√√√
(

55
6

2

)2

− 8
1

6
= 2

11

2
+

√

8
73

144
− 8

1

6
= 2

11

12
=

√
49

144
= 2

11

12
+

7

12
= 3

1

2
.

Similarly, y = 21
3 .
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CHAPTER TWO

1. Since AB = BC; since the two angles at B are equal; and since the angles at A and C are
both right angles, it follows by the angle-side-angle theorem that 4EBC is congruent
to 4SBA and therefore that SA = EC.

2. Because both angles at E are right angles; because AE is common to the two triangles;
and because the two angles CAE are equal to one another, it follows by the angle-side-
angle theorem that 4AET is congruent to 4AES. Therefore SE = ET .

3. Tn = 1 + 2 + · · · + n = n(n+1)
2 . Therefore the oblong number n(n + 1) is double the

triangular number Tn.

4. n2 = (n−1)n
2 + n(n+1)

2 , and the summands are the triangular numbers Tn−1 and Tn.

5. 8n(n+1)
2 + 1 = 4n2 + 4n + 1 = (2n + 1)2.

6. Examples using the first formula are (3,4,5), (5,12,13), (7,24,25), (9,40,41), (11,60,61).
Examples using the second formula are (8,15,17), (12,35,37), (16,63,65), (20,99,101),
(24,143,145).

7. Consider the right triangle ABC where AB has unit length and the hypotenuse BC
has length 2. Then the square on the leg AC is three times the square on the leg AB.
Assume the legs AB and AC are commensurable, so that each is represented by the
number of times it is measured by their greatest common measure, and assume further
that these numbers are relatively prime, for otherwise there would be a larger common
measure. Thus the squares on AC and AB are represented by square numbers, where
the former is three times the latter. It follows that leg AC is divisible by three and
therefore its square is divisible by nine. Since the square on AB is one third that on AC,
it is divisible by three, and hence the side AB itself is divisible by three, contradicting
the assumption that the numbers measuring the two legs are relatively prime.

9. Let ABC be the given triangle. Extend BC to D and draw CE parallel to AB. By I–29,
angles BAC and ACE are equal, as are angles ABC and ECD. Therefore angle ACD
equals the sum of the angles ABC and BAC. If we add angle ACB to each of these, we
get that the sum of the three interior angles of the triangle is equal to the straight angle
BCD. Because this latter angle equals two right angles, the theorem is proved.

10. Place the given rectangle BEFG so that BE is in a straight line with AB. Extend FG to
H so that AH is parallel to BG. Connect HB and extend it until it meets the extension
of FE at D. Through D draw DL parallel to FH and extend GB and HA so they meet
DL in M and L respectively. Then HD is the diagonal of the rectangle FDLH and
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so divides it into two equal triangles HFD and HLD. Because triangle BED is equal
to triangle BMD and also triangle BGH is equal to triangle BAH, it follows that the
remainders, namely rectangles BEFG and ABML are equal. Thus ABML has been
applied to AB and is equal to the given rectangle BEFG.

11. In this proof, we shall refer to certain propositions in Euclid’s Book I, all of which are
proved before Euclid first uses Postulate 5. (That occurs in proposition 29.) First,
assume Playfair’s axiom. Suppose line t crosses lines m and l and that the sum of the
two interior angles (angles 1 and 2 in the diagram) is less than two right angles. We
know that the sum of angles 1 and 3 is equal to two right angles. Therefore 6 2 < 6 3.
Now on line BB′ and point B′ construct line B′C ′ such that 6 C ′B′B = 6 3 (Proposition
23). Therefore, line B′C ′ is parallel to line l (Proposition 27). Therefore, by Playfair’s
axiom, line m is not parallel to line l. It therefore meets l. We must show that the two
lines meet on the same side as C ′. If the meeting point A is on the opposite side, then
6 2 is an exterior angle to triangle ABB′, yet it is smaller than 6 3, one of the interior
angles, contradicting proposition 16. We have therefore derived Euclid’s postulate 5.

Second, assume Euclid’s postulate 5. Let l be a given line and P a point outside the line.
Construct the line t perpendicular to l through P (Proposition 12). Next, construct the
line m perpendicular to line t at P (Proposition 11). Since the alternate interior angles
formed by line t crossing lines m and l are both right and therefore are equal, it follows
from Proposition 27 that m is parallel to l. Now suppose n is any other line through P .
We will show that n meets l and is therefore not parallel to l. Let 6 1 be the acute angle
that n makes with t. Then the sum of angle 1 and angle PQR is less than two right
angles. By postulate 5, the lines meet.

Note that in this proof, we have actually proved the equivalence of Euclid’s Postulate
5 to the statement that given a line l and a point P not on l, there is at most one line
through P which is parallel to l. The other part of Playfair’s Axiom was proved (in the

8



second part above) without use of postulate 5 and was not used at all in the first part.

12. One possibility: If the line has length a and is cut at a point with coordinate x, then
4ax + (a − x)2 = (a + x)2. This is a valid identity.

13. In the circle ABC, let the angle BEC be an angle at the center and the angle BAC be
an angle at the circumference which cuts off the same arc BC. Connect AE and continue
the line to F . Since EA = EB, 6 EAB = 6 EBA. Since 6 BEF equals the sum of those
two angles, 6 BEF is double 6 EAB. Similarly, 6 FEC is double 6 EAC. Therefore the
entire 6 BEC is double the entire 6 BAC. Note that this argument holds as long as line
EF is within 6 BEC. If it is not, an analogous argument by subtraction holds.

14. Let 6 BAC be an angle cutting off the diameter BC of the circle. Connect A to the
center E of the circle. Since EB = EA, it follows that 6 EBA = 6 EAB. Similarly,
6 ECA = 6 EAC. Therefore the sum of 6 EBA and 6 ECA is equal to 6 BAC. But the
sum of all three angles equals two right angles. Therefore, twice 6 BAC is equal to two
right angles, and angle BAC is itself a right angle.

15. In the circle, inscribe a side AC of an equilateral triangle and a side AB of an equilateral
pentagon. Then arc BC is the difference between one-third and one-fifth of the circum-
ference of the circle. That is, arc BC = 2

15 of the circumference. Thus, if we bisect that
arc at E, then lines BE and EC will each be a side of a regular 15-gon.

16. Let the triangle be ABC and draw DE parallel to BC cutting the side AB at D and the
side AC at E. Connect BE and CD. Then triangles BDE and CDE are equal in area,
having the same base and in the same parallels. Therefore, triangle BDE is to triangle
ADE and triangle CDE is to triangle ADE. But triangles withe the same altitude are
to one another as their bases. Thus triangle BDE is to triangle ADE as BD is to AD,
and triangle CDE is to triangle ADE and CE is to AE. It follows that BD is to AD
as CE is to AE, as desired.

17. Let ABC be the triangle, and let the angle at A be bisected by AD, where D lies on the
side BC. Now draw CE parallel to AD, meeting BA extended at E. Now angle CAD
is equal to angle BAD by hypothesis. But also angle CAD equals angle ACE and angle
BAD equals angle AEC, since in both cases we have a transversal falling across parallel
lines. It follows that angle AEC equals angle ACE, and therefore that AC = AE. By
proposition VI-2, we know that BD is to DC as BA is to AE. Therefore BD is to DC
as BA is to AC, as claimed.

18. Let a = s1b + r1, b = s2r1 + r2, . . ., rk−1 = sk+1rk. Then rk divides rk−1 and therefore
also rk−2, . . . , b, a. If there were a greater common divisor of a and b, it would divide
r1, r2, . . ., rk. Since it is impossible for a greater number to divide a smaller, we have
shown that rk is in fact the greatest common divisor of a and b.
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19.
963 = 1 · 657 + 306

657 = 2 · 306 + 45

306 = 6 · 45 + 36

45 = 1 · 36 + 9

36 = 4 · 9 + 0

Therefore, the greatest common divisor of 963 and 657 is 9.

20. Since 1 − x = x2, we have

1 = 1 · x + (1 − x) = 1 · x + x2

x = 1 · x2 + (x − x2) = 1 · x2 + x(1 − x) = 1 · x2 + x3

x2 = 1 · x3 + (x2 − x3) = 1 · x3 + x2(1 − x) = 1 · x3 + x4

· · ·

Thus 1 : x can be expressed in the form (1, 1, 1, . . .).

21.
46 = 7 · 6 + 4 23 = 7 · 3 + 2
6 = 1 · 4 + 2 3 = 1 · 2 + 1
4 = 2 · 2 2 = 2 · 1

Note that the multiples 7, 1, 2 in the first example equal the multiples 7, 1, 2 in the
second.

22. In Figure 2.16 (left), let AB = 7 and the area of the given figure be 10. The construction

described on p. 72 then determines x to be BS. This value is 7
2 −

√
49
4 − 10 = 7

2 −√
9
4 = 7

2 − 3
2 = 2. The second solution is BE + ES = AE + ES = AS. This value is

7
2 +

√
49
4 − 10 = 7

2 +
√

9
4 = 7

2 + 3
2 = 5.

23. In Figure 2.16 (right), let AB = 10 and the area of the given figure be 39. The con-

struction described on p. 72 then determines x to be BS. This value is
√

52 + 39− 5 =√
64 − 5 = 8 − 5 = 3.

24. Suppose m factors two different ways as a product of primes: m = pqr · · · s = p′q′r′ · · · s′.
Since p divides pqr · · · s, it must also divide p′q′r′ · · · s′. By VII–30, p must divide one
of the prime factors, say p′. But since both p and p′ are prime, we must have p = p′.
After canceling these two factors from their respective products, we can then repeat the
argument to show that each prime factor on the left is equal to a prime factor on the
right and conversely.
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25. One standard modern proof is as follows. Assume there are only finitely many prime
numbers p1, p2, p3, . . ., pn. Let N = p1p2p3 · · · pn + 1. There are then two possibilities.
Either N is prime or N is divisible by a prime other than the given ones, since division
by any of those leaves remainder 1. Both cases contradict the original hypothesis, which
therefore cannot be true.

26. We begin with a square inscribed in a circle of radius 1. If we divide the square into four
isosceles triangles, each with vertex angle a right angle, then the base of each triangle

has length b1 =
√

2 and height h1 =
√

2
2 . Then the area A1 of the square is equal to

4 · 1
2b1h1 = 2b1h1 = 2. If we next construct an octagon by bisecting the vertex angles of

each of these triangles and connecting the points on the circumference, the octagon is
formed of eight isosceles triangles. The base of each triangle has length

b2 =

√√√√
(

b1

2

)2

+ (1 − h1)2 =

√√√√
(

b1

2

)2

+ h2
1 − 2h1 + 1 =

√
2 − 2h1 =

√
2 −

√
2

and height

h2 =

√√√√1 −
(

b2

2

)2

=

√
2 +

√
2

2
.

Thus the octagon has area A2 = 8 · 1
2b2h2 = 4b2h2 = 2

√
2 = 2.828427. If we continue

in this way by always bisecting the vertex angles of the triangles to construct a new
polygon, we get that the area An of the nth polygon is given by the formula An =
2n+1 · 1

2bnhn = 2nbnhn, where

bn =

√√√√
(

bn−1

2

)2

+ (1 − hn−1)2 =

√√√√
(

bn−1

2

)2

+ h2
n−1 − 2hn−1 + 1 =

√
2 − 2hn−1

and

hn =

√√√√1 −
(

bn

2

)2

.

The next two results using this formula are A3 = 3.061467 and A4 = 3.121445.

27. Since BC is the side of a decagon, triangle EBC is a 36-72-72 triangle. Thus 6 ECD =
108◦. Since CD, the side of a hexagon, is equal to the radius CE, it follows that triangle
ECD is an isosceles triangle with base angles equal to 36◦. Thus triangle EBD is a
36-72-72 triangle and is similar to triangle EBC. Therefore BD : EC = EC : BC or
BD : CD = CD : BC and the point C divides the line segment BD in extreme and
mean ratio.

28. Let ABCDE be the pentagon inscribed in the circle with center F . Connect AF and
extend it to meet the circle at G. Draw FH perpendicular to AB and extend it to
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meet the circle at K. Connect AK. Then AK is a side of the decagon inscribed in
the circle, while BF = AF is the side of the hexagon inscribed in the circle. Draw FL
perpendicular to AK; let N be its intersection with AB and M be its intersection with
the circle. Connect KN . Now triangles ANK and AKB are isosceles triangles with a
common base angle at A. Therefore, the triangles are similar. So BA : AK = AK : AN ,
or AK2 = BA ·AN . Further, note that arc BKM has measure 54◦, while arc BCG has
measure 108◦. It follows that 6 BFN = 6 BAF . Since triangles BFN and BAF also
have angle FBA in common, the triangles are similar. Therefore, BA : BF = BF : BN ,
or BF 2 = BA · BN . We therefore have AK2 + BF 2 = BA · AN + BA · BN =
BA · (AN + BN) = BA2. That is, the sum of the squares on the side of the decagon
and the side of the hexagon is equal to the square on the side of the pentagon.

29. C = 360
7 1

5

· 5000 = 250, 000 stades. This value equals 129,175,000 feet or 24,465 miles.

The diameter then equals 7,787 miles.

12



CHAPTER THREE

1. Lemma 1: DA/DC = OA/OC by Elements VI–3. Therefore DA/OA = DC/OC =
(DC+DA)/(OC+OA) = AC/(CO+OA). Also, DO2 = OA2+DA2 by the Pythagorean
Theorem.

Lemma 2: AD/DB = BD/DE = AC/CE = AB/BE = (AB + AC)/(CE + BE) =
(AB + AC)/BC. Therefore, AD2/BD2 = (AB + AC)2/BC2. But AD2 = AB2 −BD2.
So (AB2 − BD2)/BD2 = (AB + AC)2/BC2 and AB2/BD2 = 1 + (AB + AC)2/BC2.

2. Set r = 1, ti and ui as in the text, and Pi the perimeter of the ith circumscribed polygon.
Then the first ten iterations of the algorithm give the following:

t1 = .577350269 u1 = 1.154700538 P1 = 3.464101615
t2 = .267949192 u2 = 1.03527618 P2 = 3.21539031
t3 = .131652497 u3 = 1.008628961 P3 = 3.159659943
t4 = .065543462 u4 = 1.002145671 P4 = 3.146086215
t5 = .03273661 u5 = 1.0005357 P5 = 3.1427146
t6 = .016363922 u6 = 1.00013388 P6 = 3.141873049
t7 = .0081814134 u7 = 1.000033467 P7 = 3.141662746
t8 = .004090638249 u8 = 1.000008367 P8 = 3.141610175
t9 = .002045310568 u9 = 1.000002092 P9 = 3.141597032
t10= .001022654214 u10= 1.000000523 P10= 3.141593746

3. Let d be the diameter of the circle, ti the length of one side of the regular inscribed
polygon of 3 ·2i sides, and ui the length of the other leg of the right triangle formed from
the diameter and the side of the polygon. Then

ti+1
2

d2
=

t2i
t2i + (d + ui)2

or

ti+1 =
dti√

t2i + (d + ui)2
ui+1 =

√
d2 − ti+1

2.

If Pi is the perimeter of the ith inscribed polygon, then Pi
d = 3·2iti

d . So let d = 1. Then

t1 = d
2 = 0.5 and u1 =

√
3d
2 = 0.8660254. Then repeated use of the algorithm gives us:

t1 = 0.500000000 u1 = 0.866025403 P1 = 3.000000000
t2 = 0.258819045 u2 = 0.965925826 P2 = 3.105828542
t3 = 0.130526194 u3 = 0.991444861 P3 = 3.132628656
t4 = 0.06540313 u4 = 0.997858923 P4 = 3.13935025
t5 = 0.032719083 u5 = 0.999464587 P5 = 3.141031999
t6 = 0.016361731 u6 = 0.999866137 P6 = 3.141452521
t7 = 0.008181140 u7 = 0.999966533 P7 = 3.141557658
t8 = 0.004090604 u8 = 0.999991633 P8 = 3.141583943
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t9 = 0.002045306 u9 = 0.999997908 P9 = 3.141590016

4. We can prove the inequality simply by squaring each side and noting that b < 2a+1. To
find the approximands to

√
3, begin with 2− 1

4 >
√

22 − 1 > 2− 1
3 , or 7

4 >
√

3 > 5
3 . Since√

3 = 1
3

√
52 + 2, we continue with 1

3(5 + 1
5) > 1

3

√
52 + 2 > 1

3(5 + 2
11), or 26

15 >
√

3 > 57
33 .

Again, since
√

3 = 1
15

√
262 − 1, we get 1

15(26 − 1
52) > 1

15

√
262 − 1 > 1

15(26 − 1
51), or

1351
780 >

√
3 > 1325

765 = 265
153 .

5. Let the equation of the parabola be y = −x2 +1. Then the tangent line at C = (1, 0) has
the equation y = −2x+2. Let the point O have coordinates (−a, 0). Then MO = 2a+2,
OP = −a2 +1, CA = 2, AO = −a+1. So MO : OP = (2a+2) : (1−a2) = 2 : (1−a) =
CA : AO.

6. a. Draw line AO. Then MS · SQ = CA · AS = AO2 = OS2 + AS2 = OS2 + SQ2.

b. Since HA = AC, we have HA : AS = MS : SQ = MS2 : MS · SQ = MS2 :
(OS2 +SQ2) = MN2 : (OP 2 +QR2). Since circles are to one another as the squares
on their diameters, the latter ratio equals that of the circle with diameter MN to
the sum of the circle with diameter OP and that with diameter QR.

c. Since then HA : AS = (circle in cylinder):(circle in sphere + circle in cone), it
follows that the circle placed where it is is in equilibrium about A with the circle in
the sphere together with the circle in the cone if the latter circles have their centers
at H.

d. Since the above result is true whatever line MN is taken, and since the circles make
up the three solids involved, Archimedes can conclude that the cylinder placed where
it is is in equilibrium about A with the sphere and cone together, if both of them
are placed with their center of gravity at H. Since K is the center of gravity of the
cylinder, it follows that HA : AK = (cylinder):(sphere + cone).

e. Since HA = 2AK, it follows that the cylinder is twice the sphere plus the cone AEF .
But we know that the cylinder is three times the cone AEF . Therefore the cone
AEF is twice the sphere. But the cone AEF is eight times the cone ABD, because
each of the dimensions of the former are double that of the latter. Therefore, the
sphere is four times the cone ABD.

7. Since BOAPC is a parabola, we have DA : AS = BD2 : OS2, or HA : AS = MS2 :
OS2. Thus HA : AS = (circle in cylinder):(circle in paraboloid). Thus the circle in
the cylinder, placed where it is, balances the circle in the paraboloid placed with its
center of gravity at H. Since the same is true whatever cross section line MN is taken,
Archimedes can conclude that the cylinder, placed where it is, balances the paraboloid,
placed with its center of gravity at H. If we let K be the midpoint of AD, then K
is the center of gravity of the cylinder. Thus HA : AK = cylinder:paraboloid. But
HA = 2AK. So the cylinder is double the paraboloid. But the cylinder is also triple the
volume of the cone ABC. Therefore, the volume of the paraboloid is 3/2 the volume of
the cone ABC which has the same base and same height.
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8. Let the parabola be given by y = a − bx2. Then the area A of the segment cut off by
the x axis is given by

A = 2
∫ √

a/b

0
(a − bx2) dx = 2

(
ax − 1

3
bx3

)∣∣∣∣

√
a/b

0

= 2a

√
a

b
− 2a

3

√
a

b
=

4a

3

√
a

b
.

Since the area of the inscribed triangle is a
√

a
b , the result is established.

9. Let the equation of the parabola be y = x2, and let the straight line defining the segment
be the line through the points (−a, a2) and (b, b2). Thus the equation of this line is
(a − b)x + y = ab, and its normal vector is N = (a − b, 1). Also, since the midpoint

of that line segment is B = ( b−a
2 , b2+a2

2 ), the x-coordinate of the vertex of the segment

is b−a
2 . If S = (x, x2) is an arbitrary point on the parabola, then the vector M from

(−a, a2) to S is given by (x + a, x2 − a2). The perpendicular distance from S to the line
is then the dot product of M with N , divided by the length of N . Since the length of N
is a constant, to maximize the distance it is only necessary to maximize this dot product.
The dot product is (x+a, x2−a2)·(a−b, 1) = ax−bx+a2−ab+x2−a2 = ax−bx+x2−ab.
The maximum of this function occurs when a − b + 2x = 0, or when x = b−a

2 . And, as
we have already noted, the point on the parabola with that x-coordinate is the vertex
of the segment. So the vertex is the point whose perpendicular distance to the base of
the segment is the greatest.

10. Let r be the radius of the sphere. Then we know from calculus that the volume of the
sphere is VS = 4

3πr3 and the surface area of the sphere is AS = 4πr2. The volume
of the cylinder whose base is a great circle in the sphere and whose height equals the
diameter has volume is VC = πr2(2r) = 2πr3, while the total surface area of the cylinder
is AC = (2πr)(2r) + 2πr2 = 6πr2. Therefore, VC = 3

2VS and AC = 3
2AS, as desired.

11. Suppose the cylinder P has diameter d and height h, and suppose the cylinder Q is
constructed with the same volume but with its height and diameter both equal to f . It
follows that d2 : f2 = f : h, or that f3 = d2h. It follows that one needs to construct the
cube root of the quantity d2h, and this can be done by finding two mean proportionals
between 1 and d2h, or, alternatively, two mean proportionals between d and h (where
the first one will be the desired diameter f).

12. The two equations are x2 = 4ay and y(3a − x) = ab. Pick easy values for a and b, say
a = 1, b = 1, and then the parabola and hyperbola may be sketched.

13. The focus of y2 = px is at (p
4 , 0). The length of the latus rectum is 2

√
pp

4 = p.
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14. The equation of the ellipse can be rewritten as p
2ax2−px+y2 = 0 or as x2−2ax+ 2a

p y2 = 0,

or finally as
(x − a)2

a2
+

y2

pa/2
= 1.

Therefore the center of the ellipse is at (a, 0) and b2 = pa
2 . The hyperbola can be treated

analogously.

15. Let the parabola be y2 = px and the point C = (x0, y0). Then the tangent line at C has
slope p

2y0
, and the equation of the tangent line is y = p

2y0
(x − x0) + y0. If we set y = 0,

we can solve this equation for x to get x = −x0.

16. a. Let the ellipse be given by the equation b2x2 + a2y2 = a2b2. Let P have coordinates

(x0, y0). Then the slope of the tangent line at P is − b2x0
a2y0

. Thus the equation of line DK

is y = − b2x0
a2y0

x. By solving this equation simultaneously with the equation of the ellipse,

we get the coordinates of the point D as (−ay0
b , bx0

a ). It follows that the slope of the

tangent line at D is b2ay0/b
a2bx0/a

= y0
x0

, which is the slope of the diameter PG, as desired.

b. Given that the coordinates of P are (x0, y0), it follows that tan θ = y0
x0

as before.

Similarly, since the coordinates of D are (−ay0
b , bx0

a ), it follows that tanα = − bx0/a
ay0/b =

− b2x0
a2y0

.

c. Take an arbitrary point S in the plane with rectangular coordinates (x, y) and oblique
coordinates (x′, y′). By drawing lines from S parallel to the two original axes and to
the two oblique axes, one can show that x = x′ cos θ − y′ cos(180 − α) = x′ cos θ +
y′ cos α and that y = x′ sin θ+y′ sin(180−α) = x′ sin θ+y′ sin α. If we replace x and y
in the equation of the ellipse by their values in terms of x′ and y′, we get the equation
specified in the problem, once we notice that b2 cos θ cos α + a2 sin θ sin α = 0, given
the values for tan θ and tan α found in part b.

d. Let y = (tan θ)x be the equation of the diameter PG. If we solve this equation
simultaneously with the original equation for the ellipse, we find the coordinates of
the point P to be

x =
ab√

b2 + a2 tan2 θ
, y =

ab tan θ√
b2 + a2 tan2 θ

.

It follows that

a′ =
√

x2 + y2 =
ab sec θ√

b2 + a2 tan2 θ
.

Similarly,

b′ =
ab tanα√

b2 + a2 tan2 α
.

Then

a′
2

=
a2b2 sec2 θ

b2 + a2 tan2 θ
=

a2b2

A
or A =

a2b2

a′2
.
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Similarly,

C =
a2b2

b′2
.

If we substitute these values for A and C into the equation of the ellipse given in

part (c), we get the equation x′2

a′2
+ y′

2

b′2
= 1, or

y′
2

= b′
2


a′2 − x′2

a′2


 =

b′2

a′2
(a′ − x′)(a′ + x′) =

b′2

a′2
x1

′x2
′

as desired.

e. Since PF = a′ sin(α − θ) and CD = b′, we have PF × CD = a′b′ sin(α − θ) =
a2b2 sin(α−θ)√

AC
. But since b2 cos θ cos α+a2 sin θ sin α = 0, it follows that (b2 cos θ cos α+

a2 sin θ sin α)2 = 0 and therefore that

AC = a2b2(sin α cos θ − cos α sin θ)2 = a2b2 sin2(α − θ).

Therefore,

PF × CD =
a2b2 sin(α − θ)

ab sin(α − θ)
= ab

as claimed.

17. By Conics II–8, if we pass a secant line through the hyperbola xy = 1 which goes
through points M and N on that curve and points T and U on the y-axis and x-axis
respectively (the asymptotes), then the segments TM and TN are equal. Thus, if we
let M approach N , then the secant line approaches the tangent line at N and therefore
the two line segments TN , NU between N and the asymptotes are equal. Therefore,
the triangles TSN and NRU are congruent. If the coordinates of N are (x0,

1
x0

), then

TS = NR = 1
x0

, and NS = x0. So the slope of the tangent line TNU is

TS

SN
= −1/x0

x0
= − 1

x2
0

.

18. Let the parabola have the equation y2 = px, with the focus at (p
4 , 0). Since the slope of

the tangent line at the point P = (x, y) is p
2y , it follows that the direction vector T of

the tangent line can be written in the form (2y, p). Similarly, the direction vector L of
the line parallel to the axis can be written as (1, 0) and the direction vector V of the line
from P to the focus can be written as (x − p

4 , y). Then the cosine of the angle between

T and L is 2y√
4y2+p2

. The cosine of the angle between T and V is given by

2y
(
x − p

4

)
+ py

√
4y2 + p2

√(
x − p

4

)2
+ y2

=
2xy + py

2√
4y2 + p2

√(
x + p

4

)2
=

2y
(
x + p

4

)

√
4y2 + p2

(
x + p

4

) =
2y√

4y2 + p2
.
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Since these two cosines are equal, so are the angles.

19. If the two parallel lines are x = 0 and x = k and the perpendicular line is the x-axis, then
the equation of the curve satisfying the problem is y2 = px(k − x) or y2 = kpx − px2.
This is the equation of a conic section.

20. Since the square of the distance between a point and a line is a quadratic function of the
coordinates x, y of the point, and since the same is true for the product of the distances
to two separate lines, the equation defining the locus in the three-line problem will be
a quadratic equation in x and y. Thus the locus will be a conic section, possibly a
degenerate one.

21. crd 120◦ =
√

4R2 − R2 =
√

3R = 103; 55, 23; crd 30◦ =
√

R(2R − crd 120◦) = 31; 03, 30;

crd 150◦ =
√

4R2 − crd230◦ = 115; 54, 40; crd 15◦ =
√

R(2R − crd 150◦) = 15; 39, 47.

Similarly, crd 165◦ = 118; 58, 25 and crd 71
2

◦
= 7; 50, 54.

22. Use a quadrilateral ABCD with AB = crd α, BC = crd (180 − (α + β)), CD = crd β,
AD = 120 (the diameter of the circle). The diagonals are then AC = crd (180 − β) and
BD = crd (180 − α). Then apply Ptolemy’s theorem.

23. 120 crd (72 − 60) = crd (72)crd (120) − crd (60)crd (108). So 120 crd(12) = 70; 32, 3 ×
103; 55, 23 − 60 × 97; 4, 56 = 1505; 11, 34. It follows that crd (12) = 12; 32, 36. Then

crd (168) =
√

4 × 602 − crd2(12) = 119; 20, 33. Then crd (6) =
√

60(2 × 60 − crd (168))

= 6; 16, 49. Similarly, crd (3) = 3; 8, 29; crd (11
2) = 1; 34, 15; and crd (3

4) = 0; 47, 7.

24. When λ = 90◦, then δ = 23◦51′ and α = 90◦. When λ = 45◦, we have sin δ =
sin(23◦51′) sin(45◦) and δ = 16◦37′. Also tanα = cos(23◦51′) tan(45◦), so α = 42◦27′.
By symmetry, the values for the declination at 270◦ and 315◦ are the negatives of the
values at 90◦ and 45◦, respectively.

25. To calculate ρ(60◦, 45◦), we note that if λ = 60◦, then δ = 20◦30′ and α = 57◦44′. Since
sin σ = tan δ tan 45◦, we have σ = 21◦57′ and ρ = α − σ = 35◦47′. If λ = 90◦, then
δ = 23◦51′ and α = 90◦. So σ = 26◦14′ and ρ = α − σ = 63◦46′.

27. Note that ε is the latitude where the sun is directly overhead at noon on the summer
solstice. The angular distance between the noon altitudes of the sun at the summer and
winter solstice is, given the assumption that at any given time the sun’s rays to every
point on the earth are parallel to each other, equal to the angle between the sun at noon
on the summer solstice and the sun at noon on the winter solstice, as viewed from the
center of the earth. And this angle, by Figure 3.34, is twice ε.
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28. L(λ, φ) = 180◦ + 2σ(λ, φ). When λ = 60◦ and φ = 36◦, we calculate that sin σ =
tan δ tan φ = tan(20◦30′) tan(36◦); so σ = 15◦46′ and L = 211; 32, which corresponds to
14 hours, 6 minutes. Therefore, sunrise is 7 hours, 3 minutes before noon, or 4:57 a.m.
and sunrise is at 7:03 p.m.

29. If the length of day is 15 hours when λ = 90◦, then 180◦ + 2σ(90◦, φ) = 225◦. Therefore

σ = 22◦30′ and, since sin σ = tan δ tanφ, we have tan φ = sin(22◦30′)
tan(23◦51′) , so φ = 40◦53′.

30. The expression tan δ tan φ will be greater than 1 for δ = 231
2

◦
when .4348 tanφ > 1, or

when tanφ > 2.2998, or when φ > 661
2

◦
. When that occurs, the formula for L no longer

makes sense. Since when tan δ tanφ = 1, we know that L = 360◦ or 24 hours, it follows
that the sun does not set at all on the summer solstice when the latitude is greater than
661

2

◦
.

31. If λ = 45◦, the δ = 16◦37′; so SZ = φ− δ = 45◦− 16◦37′ = 28◦23′. Similarly, if λ = 90◦,
then δ = 23◦51′ and SZ = 21◦9′.

32. The sun is directly overhead at noon at latitude 20◦ when δ = 20◦. Since sin λ = sin δ
sin 23.5◦ ,

we find that λ = 59◦. This value for the longitude of the sun occurs at approximately 60
days after the spring equinox and 60 days before the fall equinox, or at approximately
May 20 and July 21.

33. The maximal northerly sunrise point occurs when λ = 90◦ and therefore when δ = 23◦51′.

When φ = 36◦, we calculate that sin β = sin 23◦51′

sin 36◦ and β = 29◦59′ north of east.

34. When φ = 75◦, we need to find δ so that sin δ
sin 15◦ = 1. Clearly, δ = 15◦, and since

sin 15◦ = sin 23◦51′ sin λ, it follows that λ = 39◦48′. This value occurs approximately 40
days after the vernal equinox, or about April 30.
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CHAPTER FOUR

1. Let x = Diophantus’ age at death. Then x = 1
6x + 1

12x + 1
7x + 5 + 1

2x + 4. It follows
that 9x = 756 and x = 84.

2. To solve x+y = 20; xy = 96, we set x = 10+ z, y = 10− z. Then 100− z2 = 96; z2 = 4;
and z = 2. Thus x = 12 and y = 8.

3. To find two squares whose difference is 60, set x2 = smaller square and x2 + 60 = larger
square. Then x2 + 60 = (x + 3)2, where 3 is arbitrarily chosen. This equation reduces
to 6x = 51 and therefore x = 17

2 . The two squares are therefore 289
4 = 721

4 and 1321
4 . In

the general case, the two squares are x2 and x2 + b = (x + a)2, where a2 < b. It follows

that x = b−a2

2a and the two squares are found to be

(
b − a2

2a

)2

and

(
b + a2

2a

)2

.

4. Let x2 be the least square and (x + m)2 = x2 + 2mx + m2 be the middle square. The
difference is 2mx + m2. Therefore the largest square is x2 + 2mx + m2 + n(2mx +
m2) = x2 + (2m + 2mn)x + m2 + nm2 = (x + b)2 = x2 + 2bx + b2. Provided that
m2(1 + n) < b2 < m2(1 + n)2, the solution is

x =
b2 − m2 − nm2

2m + 2mn − 2b
.

5. To solve x − y = 10, x3 − y3 = 2170, set x = z + 5 and y = z − 5. It follows that
(z + 5)3 − (z − 5)3 = 2170. This equation reduces to 30z2 = 1920 or z2 = 64 or z = 8.
Thus x = 13 and y = 3. In the general case, if x − y = a and x3 − y3 = b, we set
x = z + a

2 and y = z − a
2 If we substitute for x and y in the second equation, we get as

equation in z which reduces to z2 = 4b−a3

12a . It follows that this latter expression must be
a square.

6. To solve x + y = 20, x3 + y3 = 140(x − y)2, set x = 10 + z, y = 10 − z. Then
(10 + z)3 + (10 − z)3 = 140(2z)2. This equation reduces to 2000 + 60z2 = 560z2 or
500z2 = 2000 or z2 = 4 or z = 2. Thus the solution is x = 12, y = 8. In general, if
x + y = a, x3 + y3 = b(x − y)2, we set x = a

2 + z, y = a
2 − z. On substituting into the

second equation, we get 2(a
2)3 + 6a

2z2 = b(2z)2, which reduces to a3

4 + 3az2 = 4bz2 or
a3

4 = (4b − 3a)z2. Thus z2 = a3

4(4b−3a) . This equation has a rational solution provided

that the right side is a square, and that condition is equivalent to Diophantus’ condition
that a3(b − 3

4a) is a square.
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