Chapter 1

Solutions

An Introduction to Abstract Algebra
with
Notes to the Future Teacher
Complete Solutions

Section 1.1

1

The answer is yes because any nonempty set of positive integers has a smallest member
by the Well-Ordering Principle. The smallest member is 1 because we can write 1 as 1 =
139 x397 —102 »541.

No. If m isin the set, then Zﬂ is dso in the set. So there is no smallest member. The
n

n
Well-Ordering Principle does not apply because the set in question is not a subset of the
integers.

Let P(n) be the statement that 1 + 3 + ... + (2n — 1) = n°. Then P(1) is the statement that 1 =
12, which istrue. Now suppose that P(n) is true. We prove that P(n + 1) istrue, namely, that
1+3+...+(2n—-1)+ (X +1) =(n+ 1)? By our induction hypothesis, we can substitute n*
for 1+ 3+ ... + (2n—1). So we are l¢ft to prove that n* + (2n + 1) = (n + 1)%, which is clearly
true.
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Let n = 1. Then n® + 2n = 3, which isamultiple of 3. Assume n® + 2n isamultiple of 3. We
must show that (n + 1)+ 2(n+ 1) isamultiple of 3. Now (n + 1)+ 2(n + 1) =n+ 3n*+3n +
1+ 2n + 2, which equals (n® + 2n) + 3 +3n + 3. Since (n® + 2n) is amultiple of three, and
3n° +3n +3=3(n*+n+1), (n+ 1)+ 2(n+ 1) isamultiple of 3.

If there is one person in the room, there are 0 handshakes. Assumethat if n people are in the

room, there are n(n_21) handshakes. If an (1 + 1)™ person enters the room then n more

n(n- 1) n(n- 1) +n= n(n- 1)+@_

2 2

handshakes will occur, making the total + n. Now

n2-n+2n_n2+n_n(n+1)

2 2 2 2
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Proof by induction:
Base Case: A tree consisting of a single node has one node, which is an odd number of
nodes. Assume that a binary tree with fewer then n nodes has an odd number of nodes.
Let T beatree with n nodes where n > 1 so that T has aroot with two offspring. Below
the root node there are two trees, each with fewer than n nodes. By induction, each of
these trees has an odd number of nodes. So the number of nodes in the two sub trees
combined is even. The additional root makes the number of nodes in the entire tree odd.

Reflexivity: For al pairs(x, y), 0=2(x—X) = (y—Y). S0 (X, Y)RX, y).

Symmetry: Assume (X, y) R(s,t).Then 2(x—s) = (y—t). S0 2(s—x) = (t—y) and
(s, ORX, y).

Trangitivity: Let (X,y) R(s,t) and (s, t) R(u, V). Then2(x —s) = (y—t) and 2(s—u) = (t— V).
Adding left and right sides, we get 2(x—u) = (y—V). Thus (X, y) R (u, v).

The equivaence class [(1, 1)] consists of al points on theline (y — 1) = 2(x—1).

Suppose that (X, Y)R(s, t) and that (u, v)R(w, 2).To show that [(X, y)] +[(u, V)] = [(s, V)] + [(W,
2)], we must show that (xv + yu, yv) R(sz + tw, tz) . So we need to show that (xv + yu)tz=
yv(sz + tw) or, equivaently, that xvtz + yutz = szyv + twyv. From our assumptions, we can
subgtitute ysfor xt and vw for uzin left side of latter equation to obtain equality.

Reflexivity: x Rx because x isin the same member of C asitsalf. Symmetry: If xRy, then yRx
since y and x are in the same member of C. Trangtivity: If xRy and yRz, then xand y arein
thesamesetin Candaso y and zareinthesame setin C. Sincey isin exactly one subset of
C, x and zmust bein the same subset. Therefore, xRz

Let S be the set of integers greater than ng Let T be the subset S of numbers not included in
S. Assume that T is not the empty set. The Well-Ordering Principle tells us that if T is not
empty, then T has asmallest member, say x. Notethatx® n, by the definition of T. Now if x
is the smallest natural number in T, then x — 1isin S. But if (x—1) T S, then assumption i
insures that (x — 1) + 1 = x isamember of S, contradicting our assumptionthat x I S ThusT
must be empty and the set of integers greater than n, istherefore contained in S.

Let P(n) be the statement, "If S| N contains any integer that is less than or equal to n, then
S has a smallest member.” By proving that P(n) is true for al n, we prove that every non-
empty set of natural numbers has a least ement, which is the Well-Ordering Principle.
Here's the proof by induction: P(1) is true because if a set contains the natural number 1, its
smallest member is 1. Assume that P(n) is true for the integer n. Let S be a set that contains
theinteger n + 1. If Scontains no integer lessthan n + 1, then n + 1 isits smallest member. If
S does contain an integer less than n + 1, then it certainly contains an integer that is less than
or equd to n. By the induction hypothesis, S has aleast member.
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. : : 1 .
12.i. Let e > 0. By our assumption there is a natural number n such that n > —. Taking
e
. 1
reciprocas, wehave 0< —<e.
n

il. Lete = y—x. From part i we can find n such that 1< e . By the premise of the
n

problem, there is an integer m, > 0 such that m, > ny or, equivaently, M y.

n
Let S be the set of integers{m: m>y}. Sincemy I S, Sisnot empty. Sincey > 0,
n

every m| Sispostive. Thuswell ordering appliesto S, and thereisasmallest g in

S such that g>y. So q;1islessthan y. We now show that x < g-1 <y. Since
n n n

1< e, wehave x<y 1 < CI;1< y. Thus g-1 is arational number between x

n n n n

andy.

iii. If x <0, let q be any rationa number greater than k|. Let r be a rationa number
between the positive numbers x + gand y + q. Then r — g is a rationa humber
betweenxand y.

1.1 Tothe Teacher Tasks:

1. Theresult of computing 5, P must beanumber T suchthat <P =% 1f welet m= Xq
y q n nqy
and n = yp, we get the correct result: M P-X o course, now we should back up and
yoq 'y

explan why the process of multiplying fractions by multiplying numerators and
denominators is reasonable. The job of the teacher is to make this process both
comprehensible and routine.

2.
1 1+3 1+3+5 1+3+5+7
* * * * % % * * % %
* * * % * * % * *
* * * * * * *
* * * *
Section 1.2

1. Adding —a to both sides, we obtain —a + (a + b) = —-a +(a + c). By the associative law, this
isequivaentto (—a+ a)+ b=(—a+ a) + c. Since—a and a are additive inverses we have 0

+ b = 0+ c. Since 0 is the additive identity, we obtain b = c.

2. Firgt notethat 0 =1+ (-1). Thus, by Proposition 1, we have 0= a (1 + (-1)). Distributing,
weobtain 0 = a + (—1)a. By adding —a to both sides we obtain —a= 0+ (-1)aand so —-a=

(-Da.
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First note that -(—a) +(—a) = 0. Adding a to both sdes we have
(-a)+(a)+a=0+a=a.
By associativity, we have—(—a) + ((a)+ a) =aandso —(-a)+0=a. Thus—(-a)=a

From Proposition 1, we know @ + (—a))b = 0. Distributing, we have ab + (-a)b = 0.
Adding —ab to both sides, we have (—ab + ab) + ((a)b= -ab + 0. Thus0 + (-a)b = —ab or
(-a)b=-ab

Assumethat ab = ac andthat a! 0. By subtracting ac from both sides, we obtain
ab—ac=0. By distribution, we havea(b—c) =0. Sncea! 0, b—c =0. Adding cto
both sides, we have b = c. Here we need the fact that for integers, if ab = 0, either aor b (or
both) must be O.

Since adividesb and a dividesc we can find integers g and p suchthatb = agandc =
ap. So (mb + nc) = (maqg + nap) =a(mg + np). Thusa | (mb + nc).

. 335= 1917 + 12

i.  —335=(20)x17+5
ii.  21=1x13+8

iv. 13=1x8+5

Let a | b and c| d. Then there exist integers p and g such that b = pa and d = cq. Wecan
multiply to get acpg = bd. So bd isamultiple of ac. Thus ac divides bd.

Ifa=gb+r,thena=(-q-1b+({b-r). (Notethaa0 £(b-r)<b.)

Theintegersn, n +1, and n +2 are three consecutive integers. So one of them is a multiple of
three. So the product is a multiple of 3. Note, this can aso be proved by induction.

Proof by Induction:

Base Case: Letn= 0. Thenwehave 2" ' + 3" "' =2+ 3=5and 5 certainly divides5.
Assume that 5 divides 2"+ 3o that there is an integer g such that 5y = 2"+ 3™
Now consider 2%+ 3™, Note that 2"+ 3™ =2 x 2™ 4+ 27 >3 =2 52" + 2 x 3™
+25 x3 This equals 2(2"" + ") + 25 x 3" = 2(5q) + 5 5 x3" = 520+ 5
x3™1). Thus 5 divides 2™+ 3™, which provesthat 5 divides2'** + 3*** fordl n 3 0.

1.2 Tothe Teacher Tasks:

1

42321=104 x341+202 in base five. Inbase 12, weletten =T, and eleven = E. Then 42321 =
130341 + 1E1.

Section 1.3

1

2.

(2 T A T T M A VAR

i. Any integer x that dividesboth mand n divides both —-mand —n and conversely. Thus
the set of common divisors of mand n isidentica to the set of common divisors of —
mand —n.

il Since |n|isadivisor of n, and it is the gcd(n, n) since no number larger than |n| can
dividen.

iii. Since 1 divides any integer n, and no number greater than 1 divides 1, ged(n, 1) = 1.
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3. By Theorem 1 we know that am + bn = gcd( a, b). If x divides both a and b, it divides both
summands on the left side and thus it divides their sum.

4. Sincegcd(a, ¢) = 1, we can find integer mand n such that 1 = ma + nc. Multplying through
by b, we have b = mab + ncb. Now ac divides mab because c divides b. Also ac divides ncb
because a divides b. Thusac divides the sum b = mab + nch.

5. By Theorem 1, we can find integers s, t,pand q such that 1 =sx+tmandand 1= py + gm
Then 1 = spxy + (pyt + tgm+ sxg)m Again by Theorem 1, ged(xy, m) = 1.

6. Since a divides a and since a divides b, we know that a is a common divisor of aand b. Itis
the greatest common divisor since no number larger than a divides a.

7. i. 23=1x13+10
13=1x10+3
10=3x3+1

il. 1234 =10>123 + 4
123=30*4 +3
4=1x3+1

iii. 442 = 1>289 + 153
289 = 1x153 + 136
153=1x136+ 17
136 =8>17+0

8. i. 102102
ii. 3525
iii. 39617

9. Fird note that if n is odd, both 3 and 3 + 2 are odd numbers. The first step of Euclid's
Algorithm, applied to 3n + 2 and 3n isasfollows.
3N+2=1x3n+2.
Thus gcd(3n + 2, 3n) iseither 2 or 1. But it cannot be 2 since both 3n + 2 and 3n are odd.

10. i. No solutions

ii. X=—6+5x
y=9-7x

iii. X=—8+19t

y = 20— 47t

11 x = 5xt for any positive integer t
y=18%-3

12.

Let x denote the number of cocks, y the number of hens and z the number of groups of 3 chicks.
Thenx +y + 3z =100 and 5x + 3y + z=100. Substitute 100 — 5x— 3y for z in the first expression
to obtain the Diophantine equation 7x + 4y = 100. Its solutions are x=—100 + 4t and y = 200 — 7t.
Substitute the solutions for x and y intol00 — 5x — 3y = ztofind that z=t. Itsonly positive
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solutionsarefor 25 £ t £ 28. So (x,y, 3) can equa (0, 25, 75) or (4, 78, 26) or (8, 11, 81) or
(12, 4, 84).

13.

i. =1, g=1landqg, =3. Thuss;=4and t,=-7. Thesum 4x23 - 7x13 = 1.
ii.92=10,03=30and g, = 1. Thuss, = 31 and t, = -311. The sum 31 x1234 - 311 x123 =
1

iil. gp=1qgz=1andqg, =1 Thuss,=2and t; =-3. The sum 2x442 - 3x289 = 17.

1.3 Tothe Teacher
1. it L
6 24

Answer for 2.and 3.:

Suppose that a = s/t and b = ulv are positive rational numbers expressed in lowest terms
and that ¢ = lem(t, v). Then we can find integers mand n such that a = n/cand b = n/c.
As in the Divison Algorithm, we can express a uniquely as m/c = gn/c + r/c where q is
an integer, m=gn+r,and O £ r < n. Thus the number steps needed to carry out
Euclid's Algorithm on a and b are exactly as many as needed for mand n. Thus the
Algorithm halts. Iterating, we see that the agorithm halts when r = ged(m, n) and the
remainder is gcd(m n)/r. Geometrically, we can think of lengths a and b as being
multiples of a unit length 1/c. Euclid's Algorithm finds the largest integer multiple of 1
that divides both mand m So Euclid's Algorithm applied a and b finds the largest integer
multiple of /c of which both nYc and n/c are integer multiples.

Section 1.4
1. 12347983 = 281 43943 and both factors are prime numbers.

2.

Let n; be the minimum of m and k. Then gcd(a, b) = ppg x..xp>
23T

Let n; be the maximum of m and k;. Then lem(a, b) = ppp x..xp™

235'7711°13

Every prime above 2 is odd. So if a prime is of the form 3m + 1 then m must be an even
number. If mis odd, then 3mis odd so 3m+ 1 is even and hence not prime. If mis even,

m= 2> for someinteger n. Thus 3m+1=3> > +1 whichisintheform én+ 1.

i. Let n be acomposite number and let p be aprime that divides n and let g be another prime

that divides n. Suppose that p>+/n and g>+/n. Then pxq>v/nxh =n o pxq>n
which is a contradiction.

ii. 541 isindeed prime.

The first multipleof n/ 2isn . So for p>n/2 the multiples of p will be outside of the range
of numbers that we are searching.

2>8% X 1134749232981+ 1=200560490131
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Proof of Corallary 5. Suppose that x is arational number and that x=m/n. Let d = gcd(m, n)
and m= ds and n = dt for someintegers sand t. By Proposition 3 of Section 1.3, gcd(s,t) =
1. Notethat m/n = s/t becausemt = dst = dts= ns.

2=1+1 14=13+1
4=3+1 16=13+3
6=3+3 18=17+1
8=5+3 20=19+1
10=7+3 22=19+3
12=11+1 24=19+5

Let p(i) denote the ith prime. Since p(1) =2and2 £ 2°, the statement is true for n= 1.
Suppose that p(k) < 22 for 1 £ k £ n. Then 1+ p() p(2)--- p(n) £1+2227..27"

Summing the exponents with the geometric formula, we have 1+ p(1) p(2)--- p(n) £1+ 2%

and we know that 1+22"-* £ 22 . By the argument of Theorem 1, there must a prime between
1+ p() p(2)--- p(n) and p(n). Thus p(n+ 1) £27'.

Let p be any prime number. Since p is prime the only factors of p are 1 and itself. Suppose
thatJE isrational. Then \/E =% where aand b are relatively prime non-zero integers, and

2 s
f}%?: p s0 a2 = pb?. Since p divides the right side of the equation it must also divide the
el g
left-hand side of the equation, and since p is a prime it must divide a (Euclid's Lemma) so we
can rewrite a as p>n which gives us the equation p®>xn? = p *b?. Dividing both sides by p
we get pxn?=b?and so, by the same argument, p must divide b. Thus a and b are not
relatively prime, which is a contradiction.

1.4 Tothe Teacher Tasks
Challenge 1: 419,431,461
Chalenge 2:[3, 197],[7, 193],[19, 181], [37, 163], [43, 157], [61, 139], [73, 127], [97, 103]

Section 1.5
Task 1.

a

(In this problem, our indexing will be shifted.) Let S be the number of ways to express i as
thesumof 1'sand 2's. If i = 1, thereisoneway and so S, = 0O and if i = 2, there are2 ways,
namely 2 =1+1 and 2 = 2, so that S, = 2. Now if i > 1, any expression of i as such a sum
either terminates in 1 or 2 and the preceding summands sum to i — 1 and i — 2 respectively.
The number of ways for the preceding summands to be expressed is S; and S»
respectively. ThusS =S_;+ S_».

(In this problem, our indexing will be shifted.) Let E; be the number of ways the elf can
jumpi steps. Then E, = 1 since there is exactly one way to jump no steps:. Don't jump. There
is exactly one way to jump to step 1 and so E; = 1. Now if the éf in on step n, he was
previoudy either onstep n —2 oronstep n— 1. Thereare E;_, and E; _; ways respectively to
gettostepsn—2orn—1. Thuskg =E_, + E_;.

(In this problem, our indexing will be shifted.) In the diagram below D stands for drone (or
Dad) and M stands for mother.  When n = 0, the number of grandmothersis 1. (Sheisseen
two levels up from the root.) The mothers at any level i are either mother to afemale (M) at
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level i —1oramae (D) at level i — 1 because every bee hasamother. The malesat level i —1
are, in turn, in one-to-one correspondence with the mothers at level i — 2 because every
female has a father. Thus the number of mothers & level i is the sum of the number of
mothers at level i — 1 and the number of mothersat level i — 2.

M DMMD up M

Lemma 1.
Proof. Suppose that b =nc. If dla and d| ¢, thend|@@ + nc). Conversdly, if d|(a + nc) and d| c, then
d|((@ + nc) — nc).

Proposition 3.

Proof. Since F, = 0, the proposition istrue for n = 0. Assumethat foral 0 £ i <n, that F.; =
I:m—lFi + le:l +1: Then I:m+(n—1)= I:m—an—l + Fan md I:m+(r1— 2)= Fm—an 2%t Fan—l- Addlng,
I:m+n = I:m—l( I:n—l + Fn—Z) + I:m( I:n"' Fn—l)-

Proposition 4.
Proof. Itisclearly truefor n = 1. Assume that F. isdivisible by F,. By Proposition 2, Fry+ m =
ka—lFm + kaFm+l-

Proposition 5.

Proof. By proposition 2, Fqn + + = Fgn - 1F; + FonFr + 1. By proposition 3, F, divides Fq,. By
proposition 1, Fy, -1 and Fy, are relatively prime. Thus any common divisor of F, and F, isa
divisor of Fgn _1F + FqFy + 1. Any common divisor of Fq, _1F: + FqoF + 1 and F, must divide Fq, -
1Fr since F, divides F,q. Since Fq, -1 and Fq, are relatively prime, F, and Fq, -1 are relatively
prime. Thus any common divisor of Fq,_1F, and F, must divide F,.

Theorem 6.

Proof. We can iterate proposition 4, carrying out the division theorem on the subscripts on the F;.
Aswith Euclid's agorithm, we will terminate with gcd(F.,, F,) = gcd(F4, Fo) where d = ged(m, n).
Since Fo =0, ng(Fd, Fo) =F,. Thus ng(Fm, Fn) =k = Fgcd(m, n)-

Additional |dentities:

1. Useinduction on n and note:
(Fn)z_ I:n+1Fn—l = (Fn)2 - (Fn+ Fn—l) Fn—l =
I:n(Fn - I:n—l) - (Fn—l)2 = I:nFn—Z_ (Fn—l)2-

2. If there are k 2s, then the number of addends of n is n —k. So the problem can be rephrased
as, "How many ways can we place k 2sin a string of n — k 2s and 1's?" The answer is
?‘ k kS. The sum results when we add all possible counts of 2s.
@
In Pascal's Triangle we find the identity in adding the numbers in the ascending diagonas. One
such diagond is highlighted. Another is underlined. A third is italicized.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Section 1.6
- , : 1 3 1_ 2

1. i. First express the numbers with a common denominator: > = gan §= 5 Then
3 1 1 1 1

:1><g+— and E:2><—+0. So the common measure of —and =is l.This means that
6 6 6 6 6 2 3 6

both % and %are integer multiples of %and that %isthelargest such rational number.

i3 2 ad 2= D Now P=2x2 v 2 ad 224l L Thus Listhe
8 2% 2 2% 24 2424 V24 24

largest common measure.

2. For two fractions p/n and g/n expressed over a common denominator n, the agorithm takes
exactly as many steps aswhen it isapplied to p and qg.

3 {0123 = L ad{31,212172 =3
10 2

4. We get% : then% : theng . Continuing, we get the ratios of consecutive Fibonacci numbers.

5 i.{0;2 1,52}, ii.{2 11},iii. { 1,4, 1, 1, 1, 2}
6. i. {37 7,ii.{3,7 1611}
7. {1111, ..}

8. The continued fraction approximation for e with 10 terms is {2; 1,2,1,1,4,1,1,6,1}. This
evaluatesto 2.718283582. With the same number of places, the calculator's approximation to
€is2.718281828.

1

—-
(a, - l)+1

9. For both i and ii, notice that an_1+i = an_l+;=an_l+
3, (a,- D+1

Section 1.7
1. Nosince15isdivisble by 5.

2. The sequence of remaindersis{0, 4, 8,1,5, 9, 2, 6, 10, 3, 7}.

3 a" = @)° and by Fermat's Theorem , @°)° — 1 is divisible by 7. Similarly, @)* — 1 is
divisbleby 5. Since 5 and 7 are relatively prime, a'* — 1 isdivisible by 35.
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4. 3% = (3" which has a remainder 1 after division by 5 by Fermat. Thus the final digit of
3% isdther 1 or 6. Since 3 is odd, the final digit is 1.

5. Since 91 = 137 and 91 divides 3° — 1, we cannot use Fermat's Theorem to test for primes
because there are non-prime values of p for which the conclusion holds for some values of a.
But if thereisany a for which the result does not hold, we are guaranteed that p is not prime.

6. (@"-1) @ +1) =& '—1whichisdivisibleby p. By Euclid's Lemma, one of the factors
must be divisible by p. By the Division Theorem, (8 + 1) = 1x(@" — 1) + 2. So the ged of (a°
—1)and (@” + 1) can only be 1 or 2. Since p is and odd prime greater than 2, it cannot divide
both factors.

7. 63504
8 In é_ c(d), each integer x between 1 and n is counted exactly once by c(d) whered = ged(x,
d

n). Thus é_ c(d)=n. Let d be apostive divisor of n. To see that c(d) =f (n/d), first note that
the multi pijeﬁ of d that divide n are of the form i xd for a subset of the values of i such that 1
£i£ % Of these values of i, gcd( ixd , n) =d if and only if ged(i, n) = 1. Thus there are
exactly f (n/d) such values of 1.

9. i.t(2=2ands(2) =3;t(10) =4 and s(10) = 18; t (28) = 6 and s(28) = 56.
il The positive divisors of n are al of the form p* p,*. .pth where O£ x £n. Thus

there aren; + 1 possibilities for the exponent of p;.
iii. Proof by induction on the number q of distinct prime factors of n. If q =1, then n=

p™ for some prime p and positive n;. Its divisorsare 1, p, ..., p". Ther sum is
1-p
1-p

n,+1

. Now suppose the assertion holds for numbers that factor into powers of

g — 1 distinct primes and assume that n factors as p,* p2“2...pq”" . By the induction

. i 84 1- ptt
hypothesis, the sum of the factors of theform p,°p,=... pq"‘ =0 1 p

i=2 - pi

. Let She

aanpa =

a s

QJ%

the st of al factors of the form p1°p2‘2...pqi“. Then s(n) =

(-j a plnﬂo%l plr\+1 9 _ n‘+1
ploq a-= .
a lgalas 5 &1-p p&% 1P g Ol - P

iv.  t(n)= 72, s(n) = 191319912000

o
o

10. If mand n are relatively prime, then the prime factors of mn are the digoint union of the
factors of mand the factors of n.

11. Notethat (2"— 1) and (2") are relatively prime. Since (2'— 1) isprime, s((2"— 1)) = 2. Also
s(2"') = 2—1.S0s((2- 1)(2') = (2'- 1)(2). The sum of the divisors strictly less than



