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Chapter 1__________________  
 
Section 1.1  
1.  
i. The answer is yes because any nonempty set of positive integers has a smallest member 

by the Well-Ordering Princip le. The smallest member is 1 because we can write 1 as 1 = 
139 ⋅ 397 –102 ⋅ 541.  

 

ii.  No. If m
n

 is in the set, then 
2
m
n

 is also in the set. So there is no smallest member. The 

Well-Ordering Princip le does not apply because the set in question is not a subset of the 
integers.  

2. Let P(n) be the statement that 1 + 3 + … + (2n – 1) = n2. Then P(1) is the statement that 1 = 
12, which is true.   Now suppose that P(n) is true. We prove that P(n + 1) is true, namely, that 
1 + 3 + … + (2n – 1) + (2n + 1)  = (n + 1).2 By our induction hypothesis, we can substitute n2 
for 1 + 3 + … + (2n – 1). So we are left to prove that n2 + (2n + 1) = (n + 1)2, which is clearly 
true.  

  
 

3. Let n =1. Then 
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4. Let n = 1. Then n3 + 2n = 3, which is a multiple of 3. Assume n3 + 2n is a multiple of 3. We 

must show that (n + 1)3+ 2(n + 1) is a multiple of 3. Now (n + 1)3+ 2(n + 1) = n3 + 3n2 +3n + 
1 + 2n + 2, which equals (n3 + 2n) + 3n2 +3n + 3. Since (n3 + 2n) is a multiple of three, and 
3n2 +3n + 3 = 3(n2 + n + 1), (n + 1)3+ 2(n + 1) is a multiple of 3. 

 
5. If there is one person in the room, there are 0 handshakes.  Assume that if n people are in the 

room, there are ( 1)
2

n n −  handshakes.  If an (n + 1)th person enters the room then n more 

handshakes will occur, making the total ( 1)
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6. Proof by induction: 

Base Case: A tree consisting of a single node has one node, which is an odd number of 
nodes. Assume that a binary tree with fewer then n nodes has an odd number of nodes. 
Let T be a tree with n nodes where n > 1 so that T has a root with two offspring.   Below 
the root node there are two trees, each with fewer than n nodes.  By induction, each of 
these trees has an odd number of nodes. So the number of nodes in the two sub trees 
combined is even. The additional root makes the number of nodes in the entire tree odd. 
 

7.   Reflexivity: For all pairs (x, y), 0 = 2 (x – x) = (y – y). So (x, y)R(x, y).   
 
 Symmetry: Assume (x, y) R (s, t).Then 2(x – s) = (y – t). So 2(s – x) = (t – y) and  

(s, t)R(x, y). 
   

Transitivity: Let (x, y) R (s, t) and (s, t) R (u, v). Then 2(x – s) = (y – t) and 2(s – u) = (t – v). 
Adding left and right sides, we get 2(x – u) = (y – v). Thus (x, y) R (u, v). 

 
The equivalence class [(1, 1)] consists of all points on the line (y – 1) = 2(x – 1).  

 
8. Suppose that (x, y)R(s, t)  and that (u, v)R(w, z).To show that [(x, y)] +[(u, v)] = [(s, t)] + [(w, 

z)], we must show  that (xv + yu, yv) R (sz + tw, tz) . So we need to show that (xv + yu)tz = 
yv(sz + tw) or, equivalently, that xvtz + yutz = szyv + twyv. From our assumptions, we can 
substitute  ys for  xt  and vw for uz in left side of latter equation to obtain equality.  

  
9. Reflexivity: x Rx because x is in the same member of C as itself.  Symmetry: If xRy, then yRx 

since y and x are in the same member of C. Transitivity: If xRy and yRz, then x and y are in 
the same set in C and also  y and z are in the same set in C. Since y is in exactly one subset of 
C,  x and z must be in the same subset. Therefore, xRz.  

 
10.  Let Σ be the set of integers greater than n0. Let T be the subset Σ of numbers not included in 

S. Assume that T is not the empty set. The Well-Ordering Principle tells us that if T is not 
empty, then T has a smallest member, say  x.  Note that x ≠ n0 by the definition of T. Now if x 
is the smallest natural number in T, then x – 1 is in S. But if (x – 1) ∈ S, then assumption ii 
insures that (x – 1) + 1 = x is a member of S, contradicting our assumption that x ∉ S.  Thus T 
must be empty and the set of integers greater than n0 is therefore contained in S.  

 
11.  Let P(n) be the statement, "If S ⊆  N contains any integer that is less than or equal to n,  then 

S has a smallest member."  By proving that P(n) is true for all n, we prove that every non-
empty set of natural numbers has a least element, which is the Well-Ordering Principle. 
Here's the proof by induction: P(1) is true because if a set contains the natural number 1, its 
smallest member is 1. Assume that P(n) is true for the integer n. Let S be a set that contains 
the integer n + 1. If S contains no integer less than n + 1, then n + 1 is its smallest member. If 
S does contain an integer less than n + 1, then it certainly contains an integer that is less than 
or equal to n. By the induction hypothesis, S has a least member.  
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12. i. Let  ε  > 0. By our assumption there is a natural number n such that  n > 
ε
1

. Taking 

reciprocals, we have  0 < 
n
1

< ε .  

ii.  Let ε   = y – x. From part i we can find n such that 1
n

< ε  .  By the premise of the 

problem, there is an integer m0  > 0 such that m0 > ny or, equivalently, 0m
n

> y.  

Let S be the set of integers {m : 
n
m

> y}. Since m0 ∈ S, S is not empty.   Since y > 0, 

every m ∈ S is positive.  Thus well ordering applies to S, and there is a smallest q in 

S such that  
n
q

> y.  So 
n

q 1−
is less than y. We now show that  x < 

n
q 1−

 < y. Since 

n
1

< ε , we have x < y -
n
1

 < 
n

q 1−
< y. Thus 

n
q 1−

 is a rational number between x 

and y.   
 

iii.  If x < 0, let q be any rational number greater than |x|. Let r be a rational number 
between the positive numbers x + q and y + q. Then r – q is a rational number 
between x and y.  

 
1.1 To the Teacher Tasks: 

1. The result of computing x p
y q

÷  must be a number m
n

 such that m p x
n q y

⋅ = . If we let m = xq 

and n = yp, we get the correct result: xq p x
yp q y

⋅ = .  Of course, now we should back up and 

explain why the process of multiplying fractions by multiplying numerators and 
denominators is reasonable. The job of the teacher is to make this process both 
comprehensible and routine.  

2.  
1 1 + 3 1 + 3 + 5 1 + 3 + 5 + 7  
*   
 
 
 

*    * 
*     * 

*  *  * 
*  *  * 
*   *  * 

*  *  *  * 
*  *  *  * 
*  *  *  * 
*   *  *  * 

 
 
Section 1.2  
1. Adding  –a to both sides, we obtain –a + (a + b) = –a +( a + c). By the associative law, this 

is equivalent to  (–a + a)+ b =(– a + a) + c.  Since –a  and a are additive inverses we have 0 
+ b = 0 + c. Since 0 is the additive identity, we obtain b = c.  

 
2. First note that 0 = 1 + (–1).  Thus, by Proposition 1, we  have 0 = a (1 + (–1)). Distributing, 

we obtain 0 = a + (–1)a.  By adding –a to both sides we obtain  –a = 0 + (–1)a and so –a = 
(–1)a .  
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3.   First note that –(–a) + (–a) = 0. Adding a to both sides we have  

(–(–a) + (–a)) + a = 0 + a = a.   
By associativity, we have –(–a) + ((–a)+ a)  = a and so    –(–a) + 0 = a. Thus –(–a) = a 

 
4. From Proposition 1, we know (a + (–a))b = 0.  Distributing, we have ab + (–a)b = 0.  

Adding –ab to both sides, we have  (–ab + ab) + (–a)b = –ab + 0. Thus 0 + (–a)b = –ab or 
(–a)b = –ab 

 
5. Assume that ab = ac  and that a ≠ 0. By subtracting ac from both sides, we obtain  

ab – ac = 0.  By distribution, we have a(b – c) = 0. Since a ≠ 0, b – c = 0. Adding c to 
both sides, we have b = c. Here we need the fact that for integers, if ab = 0, either a or b (or 
both) must be 0. 
 

6. Since a divides b and a divides c  we can find integers  q and p such that b = aq and c = 
ap. So (mb + nc) = (maq + nap) = a(mq + np). Thus a | (mb + nc). 

 
7. i. 335 = 19 ⋅ 17 + 12 
 ii.  –335 = (–20) ⋅ 17 + 5 

iii.  21 = 1 ⋅ 13 + 8 
iv.  13 = 1 ⋅ 8 + 5 

 
8. Let a | b and c| d. Then there exist integers p and q such that b = pa and d = cq. We can 

multiply to get acpq = bd . So bd is a multiple of ac. Thus ac divides bd.  
 

9. If a = qb + r, then –a = (–q – 1) b + (b – r).   (Note that 0 ≤ (b – r) < b.)  
 
10. The integers n, n +1, and n +2 are three consecutive integers. So one of them is a multiple of 

three. So the product is a multiple of 3. Note, this can also be proved by induction.  
 
11.  Proof by Induction: 
 Base Case: Let n = 0. Then we have 2n + 1  + 33n + 1 = 2 + 3 = 5 and 5 certainly divides 5. 

Assume that 5 divides 2n+1+ 33n+1so that there is an integer  q such that 5q = 2n+1+ 33n+1.  
Now consider 2n+2 + 33n+4. Note that 2n+2 + 33n+4 = 2 ⋅  2n+1 + 27 ⋅ 33n+1 = 2 ⋅ 2n+1 + 2 ⋅  33n+1  

+ 25 ⋅ 33n+1. This equals 2(2n+1 + 33n+1) + 25 ⋅  33n+1 = 2(5q) + 5 ⋅ 5 ⋅ 33n+1 = 5(2q + 5 
⋅ 33n+1). Thus 5 divides 2n+1+ 33n+1, which proves that 5 divides 2n + 1  + 33n + 1  for all n ≥ 0. 

 
1.2 To the Teacher Tasks: 
1. 42321=104 ⋅ 341+202 in base five.  In base 12, we let ten = T, and eleven = E.  Then 42321 = 

130 ⋅ 341 + 1E1.  
 
Section 1.3  
1. i. 2;  ii. 17;  iii. 1;  iv. 1 
 
2.  

i. Any integer x that divides both m and n divides both –m and –n and conversely. Thus 
the set of common divisors of m and n is identical to the set of common divisors of –
m and –n.  

ii.  Since  |n| is a divisor of n, and it is the gcd(n, n)  since no number larger than |n| can 
divide n.  

iii.  Since 1 divides any integer n, and no number greater than 1 divides 1,  gcd(n, 1) = 1.  
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3. By Theorem 1 we know that am + bn = gcd( a, b ). If x divides both a and b, it divides both 

summands on the left side and thus it divides their sum.  
 
4. Since gcd(a, c) = 1, we can find integer m and n such that 1 = ma + nc. Multplying through 

by b, we have b = mab + ncb. Now ac divides mab because c divides b. Also ac divides ncb 
because a divides b. Thus ac divides the sum b = mab + ncb. 

 
5. By Theorem 1, we can find integers s, t, p and q such that  1 = sx + tm and and 1 = py + qm. 

Then 1 = spxy + (pyt + tqm + sxq)m. Again by Theorem 1, gcd(xy, m) = 1.  
 
6. Since a divides a and since a divides b, we know that a is a common divisor of a and b. It is 

the greatest common divisor since no number larger than a divides a.  
 
7.  i. 23 = 1 ⋅ 13 + 10 
  13 = 1 ⋅ 10 + 3 
  10 = 3 ⋅ 3 + 1 
 

ii.  1234 = 10 ⋅ 123 + 4 
123 = 30 ⋅ 4 + 3 
4 = 1⋅ 3 + 1 
 

iii.  442 = 1 ⋅ 289 +  153 
289 = 1 ⋅ 153 + 136 
153 = 1 ⋅ 136 +  17 
136 = 8 ⋅ 17 + 0  

 
8.  i. 102102 

 ii. 3525 
 iii. 39617 

  
9. First note that if n is odd, both 3n and 3n + 2 are odd numbers. The first step of Euclid's 

Algorithm, applied to 3n + 2 and 3n is as follows.  
3n + 2 = 1⋅ 3n + 2.   

Thus gcd(3n + 2, 3n) is either 2 or 1. But it cannot be 2 since both 3n + 2 and 3n are odd.  
 
10.  i. No solutions 
 ii.  x = – 6 + 5⋅ t 
  y = 9 – 7⋅ t 
 iii.  x = – 8 + 19t 
  y = 20 – 47 ⋅ t 
 
11.  x = 5⋅ t for any positive integer t 

y = 18⋅ t – 3 
 
12. 
Let x denote the number of cocks,  y the number of hens and z the number of groups of 3 chicks. 
Then x + y + 3z = 100 and 5x + 3y + z = 100. Substitute 100 – 5x –  3y for z in the first expression 
to obtain the Diophantine equation 7x + 4y = 100. Its solutions are x = –100 + 4t and y = 200 – 7t. 
Substitute the solutions for x and y into100 – 5x –  3y =  z to find that  z = t.  Its only positive 
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solutions are for 25 ≤  t ≤  28. So (x, y, 3z) can equal (0, 25, 75) or (4, 78, 26) or (8, 11, 81) or 
(12, 4, 84). 
  
13.      i.  q2 = 1, q3 = 1 and q4 = 3. Thus s4 = 4 and t4 = -7. The sum 4⋅ 23 - 7 ⋅ 13 = 1.  

ii. q2 = 10, q3 = 30 and q4 = 1. Thus s4 = 31 and t4 = -311. The sum 31 ⋅ 1234 - 311 ⋅ 123 = 
1. 
iii.  q2 = 1, q3 = 1 and q4 = 1. Thus s4 = 2 and t4 = -3. The sum 2⋅ 442 - 3 ⋅ 289 = 17. 
 

1.3 To the Teacher  

1.  i. 1
6

; ii. 1
24

 

 
Answer for 2.and  3. : 

Suppose that a = s/t and b = u/v are positive rational numbers expressed in lowest terms 
and that c = lcm(t, v). Then we can find integers m and n such that a = m/c and b = n/c. 
As in the Division Algorithm, we can express a uniquely as m/c = qn/c + r/c where q is 
an integer, m = qn + r, and   0 ≤  r < n. Thus the number steps needed to carry out 
Euclid's Algorithm on a and b are exactly as many as needed for m and n. Thus the 
Algorithm halts. Iterating, we see that the algorithm halts when r = gcd(m, n) and the 
remainder is gcd(m, n)/r. Geometrically, we can think of lengths a and b as being 
multiples of a unit length 1/c. Euclid's Algorithm finds the largest integer multiple of 1 
that divides both m and m. So Euclid's Algorithm applied a and b finds the largest integer 
multiple of 1/c  of which both m/c  and n/c are integer multiples.  

 
Section 1.4  
1. 12347983 = 281 ⋅ 43943 and both factors are prime numbers.  
 
2. i.  Let ni be the minimum of mi and ki. Then gcd(a, b) = 1 2

1 2
nnn n

np p p⋅ ⋅…  
ii.  223271 

 
3. i.  Let ni be the maximum of mi and k i. Then lcm(a, b) = 1 2

1 2
nnn n

np p p⋅ ⋅…  
ii.  25355172112133 

 
4. Every prime above 2 is odd. So if a prime is of the form 3m + 1 then m must be an even 

number. If m is odd, then 3m is odd so 3m + 1 is even and hence not prime. If m is even, 
2m n= ⋅  for some integer n. Thus 3 1 3 2 1m n+ = ⋅ ⋅ +  which is in the form  6n + 1.  

 
5. i. Let n be a composite number and let p be a prime that divides n and let q be another prime 

that divides n. Suppose that p n>  and q n> . Then p q n n n⋅ > ⋅ =  so p q n⋅ >  
which is a contradiction. 

 
 

ii. 541 is indeed prime.  
 
6. The first multiple of n / 2 is n . So for / 2p n>  the multiples of p will be outside of the range 

of numbers that we are searching. 
 
7. 2 3 5 7 1 1 1 3 1 7 1 9 2 3 2 9 3 1 1 200560490131⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + =  
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8. Proof of Corollary 5. Suppose that x is a rational number and that x = m/n. Let d  = gcd(m, n) 
and  m = ds and n = dt for some integers s and t. By Proposition 3 of Section 1.3,  gcd(s, t) = 
1.  Note that m/n = s/t  because mt = dst =  dts = ns.  

 
9.       2 = 1 + 1  14 = 13 + 1  
 4 = 3 + 1  16 = 13 + 3 
 6 = 3 + 3  18 = 17 + 1 
 8 = 5 + 3  20 = 19 + 1 
 10 = 7 + 3  22 = 19 + 3 
 12 = 11 + 1   24 = 19 + 5 
  
10.  Let p(i) denote the ith  prime. Since p(1) = 2 and 2 ≤  

1 122
−

, the statement is true for n = 1. 
Suppose that p(k) < 

122
k−

 for  1 ≤  k ≤  n. Then 1 (1) (2) ( )p p p n+ L 0 1 12 2 21 2 2 ...2
n−

≤ + .   

Summing the exponents with the geometric formula, we have 1 (1) (2) ( )p p p n+ L 2 11 2
n −≤ +  

and we know that  2 11 2
n −+ 22

n

≤ . By the argument of Theorem 1, there must a prime between 

1 (1) (2) ( )p p p n+ L  and p(n). Thus  p(n + 1) 22
n

≤ .  
 

11.  Let p be any prime number. Since p is prime the only factors of p are 1 and itself. Suppose 

that p is rational. Then a
p

b
=   where a and b are relatively prime non-zero integers, and 

2

2

a
p

b
 

= 
 

 so 2 2a p b= ⋅ .  Since p divides the right side of the equation it must also divide the 

left-hand side of the equation, and since p is a prime it must divide a (Euclid’s Lemma) so we 
can rewrite a as p n⋅  which gives us the equation 2 2 2p n p b⋅ = ⋅ . Dividing both sides by p 
we get 2 2p n b⋅ = and so, by the same argument, p must divide b. Thus a and b are not 
relatively prime, which is a contradiction. 

 
1.4 To the Teacher Tasks  
Challenge  1: 419,431,461 
Challenge  2: [3, 197], [7, 193], [19, 181], [37, 163], [43, 157], [61, 139], [73, 127], [97, 103] 
 
Section 1.5 
Task 1.  
a. (In this problem, our indexing will be shifted.) Let Si be the number of ways to express i as 

the sum of 1's and 2's . If i = 1, there is one way and so S1 = 0 and if i = 2, there are2 ways, 
namely 2 = 1+1 and 2 = 2, so that S2 = 2. Now if i > 1, any expression of i as such a sum 
either terminates in 1 or 2 and the preceding summands sum to i – 1 and i – 2 respectively. 
The number of ways for the preceding summands to be expressed is Si–1  and Si–2  
respectively.  Thus Si  = Si – 1 +  Si – 2.  

b.  (In this problem, our indexing will be shifted.) Let Ei  be the number of ways the elf can 
jump i steps. Then E0 = 1 since there is exactly one way to jump no steps: Don't jump. There 
is exactly one way to jump to step 1 and so E1 = 1. Now if the elf in on step n, he was 
previously either on step n – 2 or on step n – 1. There are Ei – 2  and Ei – 1 ways respectively to 
get to steps n – 2 or n – 1. Thus Ei  = Ei – 2  + Ei – 1.  

c. (In this problem, our indexing will be shifted.) In the diagram below D stands for drone (or 
Dad) and M stands for mother.    When n = 0, the number of grandmothers is 1.  (She is seen 
two levels up from the root.) The mothers at any level i are either mother to a female (M) at 
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level i – 1 or a male (D) at level i – 1 because every bee has a mother. The males at level i – 1 
are, in turn, in one-to-one  correspondence with the mothers at level i – 2 because every 
female has a father.  Thus the number of mothers at level i is the sum of the number of  
mothers at level i – 1 and the number of mothers at level i – 2.  

 
 
 
 
 
 
 
 
 
Lemma 1.  
Proof. Suppose that b = nc. If d|a and d| c,  then d|(a + nc). Conversely, if d|(a + nc) and d| c, then 
d|((a + nc) – nc).  
 
Propos ition 3.   
Proof. Since F0 = 0, the proposition is true for n = 0. Assume that for all 0 ≤  i < n, that Fm + i =  
Fm – 1Fi + FmFi + 1. Then Fm+(n – 1) = Fm – 1Fn – 1  + FmFn  and  Fm+(n – 2) =  Fm – 1Fn – 2 + FmFn – 1. Adding,  
Fm + n  = Fm – 1 ( Fn – 1 + Fn – 2 ) + Fm( Fn + Fn – 1).  
 
Proposition 4.  
Proof.   It is clearly true for n = 1. Assume that Fmk is divisible by Fm. By Proposition 2, Fmk + m = 
Fmk – 1Fm + FmkFm+1. 
 
Proposition 5.  
Proof.    By proposition 2, Fqn + r = Fqn – 1Fr + FqnFr + 1. By proposition 3, Fn divides Fqn. By 
proposition 1, Fqn – 1 and Fqn  are relatively prime. Thus any common divisor of Fr and Fn is a 
divisor of Fqn – 1Fr + FqnFr + 1. Any common divisor of Fqn – 1Fr + FqnFr + 1 and Fn must divide Fqn – 

1Fr since Fn divides Fnq. Since Fqn – 1 and  Fqn are relatively prime, Fn and Fqn – 1  are relatively 
prime. Thus any common divisor of Fqn – 1Fr  and  Fn  must divide Fr.  
 
Theorem 6.  
Proof. We can iterate proposition 4, carrying out the division theorem on the subscripts on the Fi. 
As with Euclid's algorithm, we will terminate with gcd(Fm, Fn) = gcd(Fd, F0) where d = gcd(m, n). 
Since F0 = 0, gcd(Fd, F0) = Fd. Thus gcd(Fm, Fn) = Fd = Fgcd(m, n). 
 
 
Additional Identities:  
1. Use induction on n and note: 
  (Fn)2 – Fn + 1Fn – 1  = (Fn)2

  - (Fn + Fn – 1) Fn – 1 =  
 Fn(Fn – Fn – 1) – (Fn – 1)2 = FnFn – 2 – (Fn – 1 )2. 
 
2. If there are k 2s, then the number of addends of n is n – k. So the problem can be rephrased 

as, "How many ways can we place k  2s in a string of n – k  2s and 1's?" The answer is 
n k

k
− 

 
 

.  The sum results when we add all possible counts of 2s.    

In Pascal's Triangle we find the identity in adding the numbers in the ascending diagonals. One 
such diagonal is highlighted. Another is underlined. A third is italicized.  

D

M
M D

DM M

M D M D

M D M M D M

M

M D
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1  
1 1 
1 2 1 
1 3  3 1 
1 4 6 4 1 
1 5 10 10 5 1 
 
Section 1.6  

1. i. First express the numbers with a common denominator: 1
2

 = 3
6

and 1
3

= 2
6

. Then 

3 2 1
1

6 6 6
= ⋅ +  and 2 1

2 0
6 6

= ⋅ + . So the common measure of  1
2

and 1
3

is 1
6

. This means that 

both 1
2

 and 1
3

are integer multiples of 1
6

and that 1
6

is the largest such rational number. 

ii. 3
8

= 9
24

and 5
6

=  20
24

. Now 20 9 2
2

24 24 24
= ⋅ +  and 9 2 1

4
24 24 24

= ⋅ + . Thus 1
24

is the 

   largest common measure. 
 
2. For two fractions p/n and q/n expressed over a common denominator n, the algorithm takes 

exactly as many steps as when it is applied to p and q.  
 

3. i. {0; 1, 2, 3} =  7
10

 and {3; 1, 2, 1, 2, 1, 2} = 153
41

. 

4. We get1
2

, then 2
3

, then 3
5

. Continuing, we get the ratios of consecutive Fibonacci numbers.  

 
5. i . {0; 2, 1, 5, 2},  ii. {2; 11}, iii. { 1; 4, 1, 1, 1, 2} 
 
6. i.  {3; 7, 7}, ii. {3; 7, 16,11} 
 
7. {1;1, 1, 1, …} 
 
8. The continued fraction approximation for e with 10 terms is {2; 1,2,1,1,4,1,1,6,1}. This 

evaluates to 2.718283582. With the same number of places, the calculator's approximation to 

e is 2.718281828.  

9. For both i and ii, notice that 1
1
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Section 1.7  
1. No since 15 is divisible by 5. 
  
2. The sequence of remainders is {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7}. 
 
3. a12  = (a2)6 and by Fermat's Theorem , (a2)6 – 1 is divisible by 7. Similarly, (a3)4 – 1 is 

divisible by 5. Since 5 and 7 are relatively prime, a12 – 1 is divisible by 35.  
 



10   Solutions 

4.  3100 = (325)4 which has a remainder 1 after division by 5 by Fermat. Thus the final digit of 
3100 is either 1 or 6. Since 3100 is odd, the final digit is 1.  

 
5. Since 91 = 13 ⋅ 7 and 91 divides 390 – 1, we cannot use Fermat's Theorem to test for primes 

because there are non-prime values of p for which the conclusion holds for some values of a. 
But if there is any a for which the result does not hold, we are guaranteed that p is not prime.   

 
6. (aq – 1) (aq + 1) = ap – 1 – 1 which is divisible by p. By Euclid's Lemma, one of the factors 

must be divisible by p. By the Division Theorem, (aq + 1) = 1⋅ (aq – 1) + 2. So the gcd of (aq 
– 1) and (aq + 1) can only be 1 or 2. Since p is and odd prime greater than 2, it cannot divide 
both factors.  

 
7. 63504 

8. In ( )
d

c d∑ , each integer x between 1 and n is counted exactly once by c(d) where d = gcd(x, 

n). Thus ( )
d

c d n=∑ . Let d be a positive divisor of n. To see that c(d) = φ(n/d), first note that 

the multiples of d that divide n are of the form i ⋅ d for a subset of the values of i such that 1 

≤  i ≤  n
d

. Of these values of i, gcd( i⋅ d , n) = d if and only if gcd(i, n) = 1. Thus there are 

exactly φ(n/d) such values of  i.  
 
9. i. τ(2) = 2 and σ(2) = 3; τ(10) = 4 and σ(10) = 18; τ(28) = 6 and σ(28) = 56.  

ii.  The positive divisors of n are all of the form 1 2
1 2 ... qxx x

qp p p  , where  0 i ix n≤ ≤ . Thus 
there are ni + 1 possibilities for the exponent of pi.  

iii.  Proof by induction on the number q of distinct prime factors of n. If q = 1, then n = 
1np for some prime p and positive n1. Its divisors are 1, p, …, 1np . Their sum is 

1 11
1

np
p

+−
−

. Now suppose the assertion holds for numbers that factor into powers of   

q – 1 distinct primes and assume that n factors as 1 2
1 2 ... qnn n

qp p p . By the induction 

hypothesis, the sum of the factors of the form 20
1 2 ... qii

qp p p  = 
1

2
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−∏ .  Let S be 

the set of all factors of the form 20
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qp p p . Then σ(n) = 
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iv. τ(n) = 72; σ(n) = 191319912000  
 
 
10. If m and n are relatively prime, then the prime factors of mn are the disjoint union of the 

factors of m and the factors of n.  
 
11. Note that (2n – 1) and (2n–1) are relatively prime. Since (2n – 1) is prime, σ((2n – 1)) = 2n. Also 

σ(2n – 1 ) =  2n – 1. So σ((2n – 1)(2n–1)) = (2n – 1)(2n). The sum of the divisors strictly less than 


