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Solution to Exercise 1.1
The fixed points are the solutions of
qgiz) =2 =224+ c=0.

Evidently ¢(0) = ¢ > 0, ¢(1) = ¢—1 < 0, g(x) = +o00 as x — o0,
showing that 0 < & <1 < &.
Now

T =12 +0)
&= %(ff + C):
so by subtraction
Tpy1 — & = %(mi -&) = %(mn + &) (@0 — &1).

It follows that if |z, + &1| < 2, then |z,11 — &| < |zn — &|. Now
&1+& =2,80if 0 < g < & then g+ & < 2, and evidently z¢o+&; > 0.
Hence z; is closer to & then was xg, so also 0 < z; < &. An induction
argument then shows that each x,, satisfies 0 < z,, < &, and

|zn — &1] < (:1:0 ;€1> lzo — &1l

and z, — &.

Now @41 is independent of the sign of z,, and is therefore also in-
dependent of the sign of zy, and it follows that x,, — & for all zy such
that —52 < xo < 52.

The same argument shows that if zy > & then 1 > g > &, and so
T — 00. As before this means also that z, — oo if g < —&;.

If zg = & then of course x, = & for all n > 0. If g = —&, then
x1 = &, and again x, = & for all n > 0.



Solution to Exercise 1.2

Since f'(xz) = e — 1 and f"(z) = ¢*, f'(x) > 0 and f"(z) > 0 for
all z > 0. It therefore follows from Theorem 1.9 that if g > 0 then
Newton’s method converges to the positive root.

Similarly f'(z) < 0 and f"(z) > 0 in (—00,0) and the same argument
shows that the method converges to the negative root if x¢ < 0.

If o = 0 the method fails, as f'(0) = 0, and 21 does not exist.

For this function f, Newton’s method gives
exp(zn) — T — 2

exp(zy) — 1

1— (zn +2) exp(—x,)

B 1 —exp(z,)
~r,—1 n>1.

Tn4+1 =Tp —

:"I,'n

In fact, e~ 1% is very small indeed.
In the same way, when x; is large and negative, say o = —100,
—Tp — 2
Tptl R Ty — +1 =-2.

Hence when xy = 100, the first few members of the sequence are
100,99, 98, .. ; after 98 iterations x,, will get close to the positive root,
and convergence becomes quadratic and rapid. About 100 iterations are
required to give an accurate value for the root.

However, when o = —100, z; is very close to —2, and is therefore
very close to the negative root. Three, or possibly four, iterations should
give the value of the root to six decimal places.



Solution to Exercise 1.3

Newton’s method is

Tptl = Tp — f’(il? )
n

To avoid calculating the derivative we might consider approximating the
derivative by

Tn+96)— f(z
where ¢ is small. The given iteration uses this approximation, with
0 = f(xyn); if x, is close to a root then we might expect that f(x,) is
small.

If x, — £ is small we can write
F@n) = F(&) + (@n — O F' (&) + §(xn — > f"(€) + Olap — &)°
=nf + 57 f" + On)°
where n =z, — &, and f' and f" are evaluated at © = £. Then

f@n+ f(2n) = flzn) = fE+n+nf +50°F") — f(E+n)
=n(f) + 3B "+ (f)2 "]+ On)®.

Hence
o o)l
Tn+1 E=an—¢§ f(x+n+f(mn))_f(m”)
Pl s ;
=n nl(f")? + %nf’(?)‘f‘f’)f”] +O)
TG DROTSCY

f

This shows that if xy — 7 is sufficiently small the iteration converges
quadratically. The analysis here requires that f"’ is continuous in a
neighbourhood of £, to justify the terms O(n3). A more careful analysis
might relax this to require only the continuity of f".

The leading term in z,+; — £ is very similar to that in Newton’s
method, but with an additional term.

The convergence of this method, starting from a point close to a root,
is very similar to Newton’s method. But if z( is some way from the root
f(z,) will not be small, the approximation to the derivative f'(z,) is
very poor, and the behaviour may be very different. For the example

flz)=e"—2—2
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starting from xp = 1, 10 and —10 we find

1.000000
1.205792
1.153859
1.146328
1.146193
1.146193

U W N~ O

10.000000
10.000000
10.000000
10.000000
10.000000
10.000000

U W N~ O

-10.000000
-1.862331
-1.841412
-1.841406
-1.841406

= W NN = O

The convergence from xg = 1 is satisfactory. Starting from zy = —10
we get similar behaviour to Newton’s method, an immediate step to x;
quite close to —2, and then rapid convergence to the negative root.

However, starting from zy = 10 gives a quite different result. This
time f(zg) is roughly 20000 (which is not small), and f(zo + f(z0))
is about 10%°%0; the difference between xy and z; is excessively small.
Although the iteration converges, the rate of convergence is so slow that
for any practical purpose it is virtually stationary. Even starting from
o = 3 many thousands of iterations are required for convergence.



Solution to Exercise 1.4

The number of correct figures in the approximation z,, to the root &
is
D,, = integer part of {—logyo |€ — z,|}.
From (1.24) for Newton’s method we have

€= 2nn|  1F"(©)
€=z 27

Hence
D,y1~2D, — B,
where
11" ()]
B =logy o5
2111(¢)]

If B is small then D41 is close to 2 Dy, but if B is significantly larger
than 1 then D, ;1 may be smaller than this.
In the example,

F(z) =e* — z — 1.0000000005

fe)=et -1
Jh(@) =e,
and & = 0.0001. Hence
0.0001
B =log1o 3rmmmor — 1y =37

and the number of significant figures in the next iteration is about 2k —4,
not 2k.
Starting from z, = 0.0005 the results of Newton’s method are

0.000500000000000
0.000260018333542
0.000149241714302
0.000108122910746
0.000100303597745
0.000099998797906
0.000099998333362 14

DU W N = O
© O U= W Ww

where the last column shows the number of correct decimal places.
The root is £ = 0.000099998333361 to 15 decimal places.
The number of correct figures increases by a factor quite close to 4.



Solution to Exercise 1.5
From (1.23) we have
(€ —2n)f"(nn)
2f'(zn)
Now f'(€) =0, so by the Mean Value Theorem
f'(@n) = f1(€) = (@n — O f"(xn)
for some value of y,, between ¢ and z,. Hence

(€ — @) f" (nn)
2f"(xn) ‘
Now |f"(nn)| < M and |f"(x»)| > m, and so

§—Tpp = —

f_mn+1 =

|f - mn+1| < K|f - mn|>
where

k=M 1
2m

Hence if xg lies in the given interval, all z,, lie in the interval, and x,, — £.
Then n, — &, f"(nn) = f"(€) and f"(xn) — f"(€). This shows that

§— Tpi1 1
6 —Tn 2
and convergence is linear, with asymptotic rate of convergence In 2.
For the example f(z) =e® —1—z, f(0) =0, f'(0) = 0. Starting from
xg = 1, Newton’s method gives

1.000
0.582
0.319
0.168
0.086
0.044
0.022
0.011
0.006
0.003
0.001

© 00 O Ui W N H+= O

[
o

showing & — z reducing by a factor close to % at each step.



Solution to Exercise 1.6

When f(€) = f'(€§) = f"(§) = 0 we get from the definition of Newton’s
method, provided that f"’ is continuous in some neighbourhood of &,

§(@n = ) f" (1)
:f_m”+§( 2flll(n

=<5—xn>{ J}':,',”“ }

If we now assume that in the neighbourhood [€ — k, & + k] of the root
0<m<|f"(x)| < M, where M < 3m,

then
1€ — Tpi1| < K[§ — ],

where

M
K=1-—<1.
3m

Hence if z( is in this neighbourhood, all the z,, lie in the neighbour-
hood, and Newton’s method converges to £. Also,

|€ — $n+1| 2

|§ — 24| 37

so that convergence is linear, with asymptotic rate of convergence In(3/2).



Solution to Exercise 1.7

The proof follows closely the proof of Theorem 1.9.

From (1.23) it follows that z,+1 < &, provided that z, lies in the
interval I = [X,&]. Since f is monotonic increasing and f(§) = 0,
f(z) < 0in I. Hence if zg € I the sequence (z,) lies in I, and is
monotonic increasing. As it is bounded above by &, it converges; since
¢ is the only root of f(x) = 0 in I, the sequence converges to £. Since
f" is continuous it follows that

E-run ) 1O
(£ —zn)? 2f'(zn) 2]“(5)7

so that convergence is quadratic.




Solution to Exercise 1.8

Neglecting terms of second order in € we get

To=1+¢
Ty =—-14¢
Ty = 3€
r3=—-1—¢
T =—14+¢
r5 = —1.

Although this value of x5 is not exact, it is clear that for sufficiently
small € the sequence converges to —1.

With zg and z; interchanged, the value of z2 is of course the same,
but z3 and subsequent values are different:

ro=—-1+4¢
r1=1+¢
Ty = ie

r3=1—¢
zs=14+¢

:E5:1.
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Solution to Exercise 1.9

The function ¢ has the form
Tnf(Tn1) = Tn 1 f(xn) = E(f(@n1) — f(zn))

O(Tn,Tn-1) = (n — &) (@n—1 — ) (f(Tpn-1) — f(xn))

In the limit as x,, — £ both numerator and denominator tend to zero,

so we apply I’Hopital’s rule to give
. — lim f(@n1) —@p-1f'(2n) + {f'(20))
Al o) = e = O n — ) + (F@a1) — F@)(n 1 —
— f(mnfl) _mnflf,(f) +€
(f(@n-1) = f(E)(@n-1 = &)

so that
flen 1) —za 1 f'(E) +Ef'(E)
(f(@n-1) = f(E))(@n-1 &)
In the limit as x,,—1 — £ the numerator and denominator of v (z,_1)
both tend to zero, so again we use I’'Hopital’s rule to give

. . £'(@n-) = £(6)
P V) = e )@t ) + ) — )
We must now use I’Hopital’s rule again, to give finally

f"(@n1)
xn—l)(xn—l - 5) + fl(xn—l) + fl(xn—l)

1/)(1%71) =

lim Ez/J(a:n,l) = lim il

Ty 1—>
_
2f'(&)
Now the limit of ¢ does not depend on the way in which z,, and z,,_1
tend to &, so finally we have

T — € £(€)
(@n =) (an1—€)  27(6)

Now assume that

anrl - 6
(@01
then
Tn _f
A.
@ -0t
or
(Q?n - 6)1/!1 N Al/q7

Tp—1 —
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and so
Tn41 _é- - A1+1/q'

(@ — 11/ 1(2n1 =€)

Comparing with the previous limit, we require

f"(©)
g—1/g=1, and A'fTYVe=212
/ 27/
This gives a quadratic equation for ¢, and since we clearly require that
f is positive we obtain ¢ = %(1 + /5), giving the required result.
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Solution to Exercise 1.10

Fig. 1.6 shows a typical situation with f"(x) > 0, so the graph of f
lies below the line PQ). Here P and @) are the points corresponding to
un and v,. Also R is the point corresponding to €, so that f(6) < 0.
Hence in the next iteration uyy1 = 6 and vy 41 = vy,

The same picture applies to the next step, and again vpy2 = vpt1,
and so on. Thus if f” > 0 in [uy,vn], and f(un) < 0 < f(vn) then
v, = vy foralln > N.

If on the other hand f(ux) > 0 and f(vxy) < 0 we see in the same
way that u, = uy for all n > N.

Similar results are easily deduced if f” < 0 in [un,vn]; it is only
necessary to replace f by the function —f.

Now returning to the situation in Fig. 1.6, the point v,, remains fixed,
and the points u, are monotonically increasing. Hence the sequence
(up,) is monotonically increasing for n > N, and is bounded above by
vn, and is therefore convergent to the unique solution of f(x) = 0 in the
interval [un,vn]. In the general situation, we see that one end of the
interval [u,,v,] eventually remains fixed, and the other end converges
to the root.

Write u,, = £ + 4§, and

unt1 —§ _ (€+0)f(vn) —unfF(E+9) — E(f(vn) — f(E+0))

5 6(f(uw) — F(E+0))
In the limit as § — 0 the numerator and denominator both tend to zero,
so we apply I’Hopital’s rule to give
g =& flon) —onfI(E+0) FEfI(E+S
O B 3 (e = e
_ Jlon) —un f'(§) +£F(€)
f(on)

Hence the sequence (u,) converges linearly to £, and the asymptotic rate

of convergence is
S fi- 0719}
f(ow)

- {1 - f{éfv))}

for some 7y lying between & and vy. Since f(§) = 0, it follows that

This may also be written
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nn > ¢ Evidently the closer vy is to the root &, the closer f'(ny) is to
f'(€), and the more rapidly the iteration converges.

Asymptotically this method converges more slowly than the standard
secant method. Its advantage is that if f(uo) and f(vo) have opposite
signs the iteration is guaranteed to converge to a root lying in [ug, vo];
the method is therefore robust. However, it is easy to draw a situation
where vg is far from ¢, and where the bisection method is likely to be
more efficient.
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Solution to Exercise 1.11

The sequence (z,) converges to the two-cycle a,b if z3, — a and
Zap+1 — b, or equivalently with a and b interchanged. So a and b are
fixed points of the composite iteration x,+1 = h(z,), where h(z) =
g(g(z)), and we define a stable two-cycle to be one which corresponds
to a stable fixed point of h. Now

W (x) =g'(9(x)) g'(2);

if h'(a) < 1 the fixed point a of h is stable; since g(a) = a it follows that
if |¢'(a)g'(b)| < 1 then the two-cycle a,b is stable. In the same way, if
lg'(a)g' (b)] > 1 then the two-cycle is not stable.

For Newton’s method

Tn+1 = Tnp — f(xm)/f’(xn)v

and the corresponding function g is defined by

g(a) =z — f(2)/f (z).

In this case

@)
9@ = Tpee
Hence, if
F@F"(@) | | F0) 1" (0)
‘ PP ‘ TA0E ‘“

the two-cycle is stable.
Newton’s method for the solution of 2> — 2 = 0 has the two-cycle
a, —a if
3

a’ —a
Te=aT gy
—a*+a
T T e
These equations have the solution
1
a = %

Here f'(a) = 3a*> — 1 = —2/5 and f"(a) = 6a = 6//5. So
s |0,
(@) | [fF(0))? ’

and the two-cycle is not stable.



