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Solution to Exercise 1.1

The �xed points are the solutions of

q(x) � x2 � 2x+ c = 0:

Evidently q(0) = c > 0, q(1) = c � 1 < 0, q(x) ! +1 as x ! 1,

showing that 0 < �1 < 1 < �2.

Now

xn+1 =
1
2 (x

2
n + c)

�1 =
1
2 (�

2
1 + c);

so by subtraction

xn+1 � �1 =
1
2 (x

2
n � �21) =

1
2 (xn + �1)(xn � �1):

It follows that if jxn + �1j < 2, then jxn+1 � �1j < jxn � �1j. Now

�1+�2 = 2, so if 0 � x0 < �2 then x0+�1 < 2, and evidently x0+�1 > 0.

Hence x1 is closer to �1 then was x0, so also 0 � x1 < �2. An induction

argument then shows that each xn satis�es 0 � xn < �2, and

jxn � �1j <
�
x0 + �1

2

�n
jx0 � �1j;

and xn ! �1.

Now xn+1 is independent of the sign of xn, and is therefore also in-

dependent of the sign of x0, and it follows that xn ! �1 for all x0 such

that ��2 < x0 < �2.

The same argument shows that if x0 > �2 then x1 > x0 > �2, and so

xn !1. As before this means also that xn !1 if x0 < ��2.
If x0 = �2 then of course xn = �2 for all n > 0. If x0 = ��2, then

x1 = �2, and again xn = �2 for all n > 0.
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Solution to Exercise 1.2

Since f 0(x) = ex � 1 and f 00(x) = ex, f 0(x) > 0 and f 00(x) > 0 for

all x > 0. It therefore follows from Theorem 1.9 that if x0 > 0 then

Newton's method converges to the positive root.

Similarly f 0(x) < 0 and f 00(x) > 0 in (�1; 0) and the same argument

shows that the method converges to the negative root if x0 < 0.

If x0 = 0 the method fails, as f 0(0) = 0, and x1 does not exist.

For this function f , Newton's method gives

xn+1 = xn � exp(xn)� xn � 2

exp(xn)� 1

= xn � 1� (xn + 2) exp(�xn)
1� exp(xn)

� xn � 1 n > 1:

In fact, e�100 is very small indeed.

In the same way, when x0 is large and negative, say x0 = �100,

xn+1 � xn � �xn � 2

�1 = �2:

Hence when x0 = 100, the �rst few members of the sequence are

100; 99; 98; : : :; after 98 iterations xn will get close to the positive root,

and convergence becomes quadratic and rapid. About 100 iterations are

required to give an accurate value for the root.

However, when x0 = �100, x1 is very close to �2, and is therefore

very close to the negative root. Three, or possibly four, iterations should

give the value of the root to six decimal places.
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Solution to Exercise 1.3

Newton's method is

xn+1 = xn � f(xn)

f 0(xn)
:

To avoid calculating the derivative we might consider approximating the

derivative by

f 0(xn) � f(xn + Æ)� f(xn)

Æ
;

where Æ is small. The given iteration uses this approximation, with

Æ = f(xn); if xn is close to a root then we might expect that f(xn) is

small.

If xn � � is small we can write

f(xn) = f(�) + (xn � �)f 0(�) + 1
2 (xn � �)2f 00(�) +O(xn � �)3

= �f 0 + 1
2�

2f 00 +O(�)3

where � = xn � �, and f 0 and f 00 are evaluated at x = �. Then

f(xn + f(xn))� f(xn) = f(� + � + �f 0 + 1
2�

2f 00)� f(� + �)

= �(f 0)2 + 1
2�

2[3f 0f 00 + (f 0)2f 00] +O(�)3:
Hence

xn+1 � � = xn � � � [f(xn)]
2

f(x+ n+ f(xn))� f(xn)

= � � �2[(f 0)2 + �f 0f 00]

�[(f 0)2 + 1
2�f

0(3 + f 0)f 00]
+O(�)3

= �2
f 00(1 + f 0)

f 0
+O(�)3:

This shows that if x0 � � is suÆciently small the iteration converges

quadratically. The analysis here requires that f 000 is continuous in a

neighbourhood of �, to justify the terms O(�3). A more careful analysis

might relax this to require only the continuity of f 00.

The leading term in xn+1 � � is very similar to that in Newton's

method, but with an additional term.

The convergence of this method, starting from a point close to a root,

is very similar to Newton's method. But if x0 is some way from the root

f(xn) will not be small, the approximation to the derivative f 0(xn) is

very poor, and the behaviour may be very di�erent. For the example

f(x) = ex � x� 2
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starting from x0 = 1; 10 and �10 we �nd

0 1.000000

1 1.205792

2 1.153859

3 1.146328

4 1.146193

5 1.146193

0 10.000000

1 10.000000

2 10.000000

3 10.000000

4 10.000000

5 10.000000

0 -10.000000

1 -1.862331

2 -1.841412

3 -1.841406

4 -1.841406

The convergence from x0 = 1 is satisfactory. Starting from x0 = �10
we get similar behaviour to Newton's method, an immediate step to x1
quite close to �2, and then rapid convergence to the negative root.

However, starting from x0 = 10 gives a quite di�erent result. This

time f(x0) is roughly 20000 (which is not small), and f(x0 + f(x0))

is about 109500; the di�erence between x0 and x1 is excessively small.

Although the iteration converges, the rate of convergence is so slow that

for any practical purpose it is virtually stationary. Even starting from

x0 = 3 many thousands of iterations are required for convergence.
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Solution to Exercise 1.4

The number of correct �gures in the approximation xn to the root �

is

Dn = integer part of f� log10 j� � xnjg:
From (1.24) for Newton's method we have

j� � xn+1j
j� � xnj2 ! jf 00(�)j

2jf 0(�)j :

Hence

Dn+1 � 2Dn �B;

where

B = log10
jf 00(�)j
2jf 0(�)j :

If B is small then Dn+1 is close to 2Dn, but if B is signi�cantly larger

than 1 then Dn+1 may be smaller than this.

In the example,

f(x) = ex � x� 1:0000000005

f 0(x) = ex � 1

f 00(x) = ex;

and � = 0:0001. Hence

B = log10
e0:0001

2(e0:0001 � 1)
= 3:7

and the number of signi�cant �gures in the next iteration is about 2k�4,
not 2k.

Starting from x0 = 0:0005 the results of Newton's method are

0 0.000500000000000 3

1 0.000260018333542 3

2 0.000149241714302 4

3 0.000108122910746 5

4 0.000100303597745 6

5 0.000099998797906 9

6 0.000099998333362 14

where the last column shows the number of correct decimal places.

The root is � = 0:000099998333361 to 15 decimal places.

The number of correct �gures increases by a factor quite close to 4.
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Solution to Exercise 1.5

From (1.23) we have

� � xn+1 = � (� � xn)
2f 00(�n)

2f 0(xn)
:

Now f 0(�) = 0, so by the Mean Value Theorem

f 0(xn)� f 0(�) = (xn � �)f 00(�n)

for some value of �n between � and xn. Hence

� � xn+1 =
(� � xn)f

00(�n)

2f 00(�n)
:

Now jf 00(�n)j < M and jf 00(�n)j > m, and so

j� � xn+1j < Kj� � xnj;
where

K =
M

2m
< 1:

Hence if x0 lies in the given interval, all xn lie in the interval, and xn ! �.

Then �n ! �, f 00(�n)! f 00(�) and f 00(�n)! f 00(�). This shows that

� � xn+1

� � xn
! 1

2

and convergence is linear, with asymptotic rate of convergence ln 2.

For the example f(x) = ex�1�x, f(0) = 0, f 0(0) = 0. Starting from

x0 = 1, Newton's method gives

0 1.000

1 0.582

2 0.319

3 0.168

4 0.086

5 0.044

6 0.022

7 0.011

8 0.006

9 0.003

10 0.001

showing � � x0 reducing by a factor close to 1
2 at each step.
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Solution to Exercise 1.6

When f(�) = f 0(�) = f 00(�) = 0 we get from the de�nition of Newton's

method, provided that f 000 is continuous in some neighbourhood of �,

� � xn+1 = � � xn +
f(xn)

f 0(xn)

= � � xn +
1
6 (xn � �)3f 000(�n)
1
2 (xn � �)2f 000(�n)

= (� � xn)

�
1� f 000(�n)

3f 000(�n)

�
:

If we now assume that in the neighbourhood [� � k; � + k] of the root

0 < m < jf 000(x)j < M; where M < 3m;

then

j� � xn+1j < Kj� � xnj;
where

K = 1� M

3m
< 1:

Hence if x0 is in this neighbourhood, all the xn lie in the neighbour-

hood, and Newton's method converges to �. Also,

j� � xn+1j
j� � xnj ! 2

3
;

so that convergence is linear, with asymptotic rate of convergence ln(3=2).
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Solution to Exercise 1.7

The proof follows closely the proof of Theorem 1.9.

From (1.23) it follows that xn+1 < �, provided that xn lies in the

interval I = [X; �]. Since f is monotonic increasing and f(�) = 0,

f(x) < 0 in I . Hence if x0 2 I the sequence (xn) lies in I , and is

monotonic increasing. As it is bounded above by �, it converges; since

� is the only root of f(x) = 0 in I , the sequence converges to �. Since

f 00 is continuous it follows that

� � xn+1

(� � xn)2
= � f 00(�n)

2f 0(xn)
! � f 00(�)

2f 0(�)
;

so that convergence is quadratic.
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Solution to Exercise 1.8

Neglecting terms of second order in " we get

x0 = 1 + "

x1 =�1 + "

x2 =
1
2"

x3 =�1� "

x4 =�1 + "

x5 =�1:
Although this value of x5 is not exact, it is clear that for suÆciently

small " the sequence converges to �1.
With x0 and x1 interchanged, the value of x2 is of course the same,

but x3 and subsequent values are di�erent:

x0 =�1 + "

x1 = 1 + "

x2 =
1
2"

x3 = 1� "

x4 = 1 + "

x5 = 1:
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Solution to Exercise 1.9

The function ' has the form

'(xn; xn�1) =
xnf(xn�1)� xn�1f(xn)� �(f(xn�1)� f(xn))

(xn � �)(xn�1 � �)(f(xn�1)� f(xn))

In the limit as xn ! � both numerator and denominator tend to zero,

so we apply l'Hopital's rule to give

lim
xn!�

'(xn; xn�1) = lim
f(xn�1)� xn�1f

0(xn) + �f 0(xn))

�f 0(xn)(xn � �)(xn�1 � �) + (f(xn�1)� f(xn))(xn�1 � �)

=
f(xn�1)� xn�1f

0(�) + �

(f(xn�1)� f(�))(xn�1 � �)

so that

 (xn�1) =
f(xn�1)� xn�1f

0(�) + �f 0(�)

(f(xn�1)� f(�))(xn�1 � �)
:

In the limit as xn�1 ! � the numerator and denominator of  (xn�1)

both tend to zero, so again we use l'Hopital's rule to give

lim
xn�1!�

 (xn�1) = lim
xn�1!�

f 0(xn�1)� f 0(�)

f 0(xn�1)(xn�1 � �) + (f(xn�1)� f(�))
:

We must now use l'Hopital's rule again, to give �nally

lim
xn�1!�

 (xn�1) = lim
f 00(xn�1)

f 00(xn�1)(xn�1 � �) + f 0(xn�1) + f 0(xn�1)

=
f 00(�)

2f 0(�)
:

Now the limit of ' does not depend on the way in which xn and xn�1
tend to �, so �nally we have

xn+1 � �

(xn � �)(xn�1 � �)
! f 00(�)

2f 0(�)
:

Now assume that
xn+1 � �

(xn � �)q
! A;

then
xn � �

(xn�1 � �)q
! A;

or

(xn � �)1=q

xn�1 � �
! A1=q ;
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and so
xn+1 � �

(xn � �)q�1=q(xn�1 � �)
! A1+1=q :

Comparing with the previous limit, we require

q � 1=q = 1; and A1+1=q =
f 00(�)

2f 0(�)
:

This gives a quadratic equation for q, and since we clearly require that

� is positive we obtain q = 1
2 (1 +

p
5), giving the required result.
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Solution to Exercise 1.10

Fig. 1.6 shows a typical situation with f 00(x) > 0, so the graph of f

lies below the line PQ. Here P and Q are the points corresponding to

un and vn. Also R is the point corresponding to �, so that f(�) < 0.

Hence in the next iteration un+1 = � and vn+1 = vn.

The same picture applies to the next step, and again vn+2 = vn+1,

and so on. Thus if f 00 > 0 in [uN ; vN ], and f(uN) < 0 < f(vN ) then

vn = vN for all n � N .

If on the other hand f(uN) > 0 and f(vN ) < 0 we see in the same

way that un = uN for all n � N .

Similar results are easily deduced if f 00 < 0 in [uN ; vN ]; it is only

necessary to replace f by the function �f .
Now returning to the situation in Fig. 1.6, the point vn remains �xed,

and the points un are monotonically increasing. Hence the sequence

(un) is monotonically increasing for n � N , and is bounded above by

vN , and is therefore convergent to the unique solution of f(x) = 0 in the

interval [uN ; vN ]. In the general situation, we see that one end of the

interval [un; vn] eventually remains �xed, and the other end converges

to the root.

Write un = � + Æ, and

un+1 � �

Æ
=

(� + Æ)f(vN )� vNf(� + Æ)� �(f(vN )� f(� + Æ))

Æ(f(vN )� f(� + Æ))
:

In the limit as Æ ! 0 the numerator and denominator both tend to zero,

so we apply l'Hopital's rule to give

lim
Æ!0

un+1 � �

Æ
= lim

Æ!0

f(vN )� vNf
0(� + Æ) + �f 0(� + Æ)

f(vn)� f(� + Æ)� Æf 0(� + Æ)

=
f(vN )� vNf

0(�) + �f 0(�)

f(vN )

Hence the sequence (un) converges linearly to �, and the asymptotic rate

of convergence is

� ln

�
1� (vN � �)f 0(�)

f(vN )

�

This may also be written

� ln

�
1� f 0(�)

f 0(�N )

�

for some �N lying between � and vN . Since f(�) = 0, it follows that
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�N > �. Evidently the closer vN is to the root �, the closer f 0(�N ) is to

f 0(�), and the more rapidly the iteration converges.

Asymptotically this method converges more slowly than the standard

secant method. Its advantage is that if f(u0) and f(v0) have opposite

signs the iteration is guaranteed to converge to a root lying in [u0; v0];

the method is therefore robust. However, it is easy to draw a situation

where v0 is far from �, and where the bisection method is likely to be

more eÆcient.
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Solution to Exercise 1.11

The sequence (xn) converges to the two-cycle a; b if x2n ! a and

x2n+1 ! b, or equivalently with a and b interchanged. So a and b are

�xed points of the composite iteration xn+1 = h(xn), where h(x) =

g(g(x)), and we de�ne a stable two-cycle to be one which corresponds

to a stable �xed point of h. Now

h0(x) = g0(g(x)) g0(x);

if h0(a) < 1 the �xed point a of h is stable; since g(a) = a it follows that

if jg0(a)g0(b)j < 1 then the two-cycle a; b is stable. In the same way, if

jg0(a)g0(b)j > 1 then the two-cycle is not stable.

For Newton's method

xn+1 = xn � f(xm)=f
0(xn);

and the corresponding function g is de�ned by

g(x) = x� f(x)=f 0(x):

In this case

g0(x) =
f(x)f 00(x)

[f 0(x)]2
:

Hence, if ����f(a)f 00(a)[f 0(a)]2

����
����f(b)f 00(b)[f 0(b)]2

���� < 1

the two-cycle is stable.

Newton's method for the solution of x3 � x = 0 has the two-cycle

a;�a if

�a= a� a3 � a

3a2 � 1

a=�a� �a3 + a

3a2 � 1
:

These equations have the solution

a =
1p
5
:

Here f 0(a) = 3a2 � 1 = �2=5 and f 00(a) = 6a = 6=
p
5. So����f(a)f 00(a)[f 0(a)]2

����
����f(b)f 00(b)[f 0(b)]2

���� = 36;

and the two-cycle is not stable.


