https://selldocx.com/products/solution-manual-intro-to-numerical-analysis-2e-atkinson

An Introduction to Numerical Analysis

Solutions to Exercises

Endre Süli and David F. Mayers

University of Oxford

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney

The fixed points are the solutions of

$$q(x) \equiv x^2 - 2x + c = 0.$$

Evidently q(0) = c > 0, q(1) = c - 1 < 0, $q(x) \to +\infty$ as $x \to \infty$, showing that $0 < \xi_1 < 1 < \xi_2$.

Now

$$x_{n+1} = \frac{1}{2}(x_n^2 + c)$$

$$\xi_1 = \frac{1}{2}(\xi_1^2 + c),$$

so by subtraction

$$x_{n+1} - \xi_1 = \frac{1}{2}(x_n^2 - \xi_1^2) = \frac{1}{2}(x_n + \xi_1)(x_n - \xi_1).$$

It follows that if $|x_n + \xi_1| < 2$, then $|x_{n+1} - \xi_1| < |x_n - \xi_1|$. Now $\xi_1 + \xi_2 = 2$, so if $0 \le x_0 < \xi_2$ then $x_0 + \xi_1 < 2$, and evidently $x_0 + \xi_1 > 0$. Hence x_1 is closer to ξ_1 then was x_0 , so also $0 \le x_1 < \xi_2$. An induction argument then shows that each x_n satisfies $0 \le x_n < \xi_2$, and

$$|x_n - \xi_1| < \left(\frac{x_0 + \xi_1}{2}\right)^n |x_0 - \xi_1|,$$

and $x_n \to \xi_1$.

Now x_{n+1} is independent of the sign of x_n , and is therefore also independent of the sign of x_0 , and it follows that $x_n \to \xi_1$ for all x_0 such that $-\xi_2 < x_0 < \xi_2$.

The same argument shows that if $x_0 > \xi_2$ then $x_1 > x_0 > \xi_2$, and so $x_n \to \infty$. As before this means also that $x_n \to \infty$ if $x_0 < -\xi_2$.

If $x_0 = \xi_2$ then of course $x_n = \xi_2$ for all n > 0. If $x_0 = -\xi_2$, then $x_1 = \xi_2$, and again $x_n = \xi_2$ for all n > 0.

Since $f'(x) = e^x - 1$ and $f''(x) = e^x$, f'(x) > 0 and f''(x) > 0 for all x > 0. It therefore follows from Theorem 1.9 that if $x_0 > 0$ then Newton's method converges to the positive root.

Similarly f'(x) < 0 and f''(x) > 0 in $(-\infty, 0)$ and the same argument shows that the method converges to the negative root if $x_0 < 0$.

If $x_0 = 0$ the method fails, as f'(0) = 0, and x_1 does not exist.

For this function f, Newton's method gives

$$x_{n+1} = x_n - \frac{\exp(x_n) - x_n - 2}{\exp(x_n) - 1}$$
$$= x_n - \frac{1 - (x_n + 2) \exp(-x_n)}{1 - \exp(x_n)}$$
$$\approx x_n - 1 \quad n > 1.$$

In fact, e^{-100} is very small indeed.

In the same way, when x_0 is large and negative, say $x_0 = -100$,

$$x_{n+1} \approx x_n - \frac{-x_n - 2}{-1} = -2.$$

Hence when $x_0 = 100$, the first few members of the sequence are $100, 99, 98, \ldots$; after 98 iterations x_n will get close to the positive root, and convergence becomes quadratic and rapid. About 100 iterations are required to give an accurate value for the root.

However, when $x_0 = -100$, x_1 is very close to -2, and is therefore very close to the negative root. Three, or possibly four, iterations should give the value of the root to six decimal places.

Newton's method is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

To avoid calculating the derivative we might consider approximating the derivative by

$$f'(x_n) \approx \frac{f(x_n + \delta) - f(x_n)}{\delta},$$

where δ is small. The given iteration uses this approximation, with $\delta = f(x_n)$; if x_n is close to a root then we might expect that $f(x_n)$ is small

If $x_n - \xi$ is small we can write

$$f(x_n) = f(\xi) + (x_n - \xi)f'(\xi) + \frac{1}{2}(x_n - \xi)^2 f''(\xi) + \mathcal{O}(x_n - \xi)^3$$

= $\eta f' + \frac{1}{2}\eta^2 f'' + \mathcal{O}(\eta)^3$

where $\eta = x_n - \xi$, and f' and f'' are evaluated at $x = \xi$. Then

$$f(x_n + f(x_n)) - f(x_n) = f(\xi + \eta + \eta f' + \frac{1}{2}\eta^2 f'') - f(\xi + \eta)$$
$$= \eta(f')^2 + \frac{1}{2}\eta^2 [3f'f'' + (f')^2 f''] + \mathcal{O}(\eta)^3.$$

Hence

$$x_{n+1} - \xi = x_n - \xi - \frac{[f(x_n)]^2}{f(x+n+f(x_n)) - f(x_n)}$$

$$= \eta - \frac{\eta^2 [(f')^2 + \eta f' f'']}{\eta [(f')^2 + \frac{1}{2} \eta f' (3+f') f'']} + \mathcal{O}(\eta)^3$$

$$= \eta^2 \frac{f''(1+f')}{f'} + \mathcal{O}(\eta)^3.$$

This shows that if $x_0 - \eta$ is sufficiently small the iteration converges quadratically. The analysis here requires that f''' is continuous in a neighbourhood of ξ , to justify the terms $\mathcal{O}(\eta^3)$. A more careful analysis might relax this to require only the continuity of f''.

The leading term in $x_{n+1} - \xi$ is very similar to that in Newton's method, but with an additional term.

The convergence of this method, starting from a point close to a root, is very similar to Newton's method. But if x_0 is some way from the root $f(x_n)$ will not be small, the approximation to the derivative $f'(x_n)$ is very poor, and the behaviour may be very different. For the example

$$f(x) = e^x - x - 2$$

starting from $x_0 = 1$, 10 and -10 we find

- 0 1.000000 1 1.205792 2 1.153859 3 1.146328
- 4 1.146193 5 1.146193
- 0 10.000000 1 10.000000
- $\begin{array}{ccc} 2 & 10.000000 \\ 3 & 10.000000 \end{array}$
- 4 10.000000 5 10.000000
- 0 -10.000000 1 -1.862331 2 -1.841412 3 -1.841406
- 4 -1.841406

The convergence from $x_0 = 1$ is satisfactory. Starting from $x_0 = -10$ we get similar behaviour to Newton's method, an immediate step to x_1 quite close to -2, and then rapid convergence to the negative root.

However, starting from $x_0 = 10$ gives a quite different result. This time $f(x_0)$ is roughly 20000 (which is not small), and $f(x_0 + f(x_0))$ is about 10^{9500} ; the difference between x_0 and x_1 is excessively small. Although the iteration converges, the rate of convergence is so slow that for any practical purpose it is virtually stationary. Even starting from $x_0 = 3$ many thousands of iterations are required for convergence.

The number of correct figures in the approximation x_n to the root ξ is

$$D_n = \text{integer part of } \{-\log_{10} |\xi - x_n|\}.$$

From (1.24) for Newton's method we have

$$\frac{|\xi - x_{n+1}|}{|\xi - x_n|^2} \to \frac{|f''(\xi)|}{2|f'(\xi)|}.$$

Hence

$$D_{n+1} \approx 2 D_n - B$$
,

where

$$B = \log_{10} \frac{|f''(\xi)|}{2|f'(\xi)|}.$$

If B is small then D_{n+1} is close to $2D_n$, but if B is significantly larger than 1 then D_{n+1} may be smaller than this.

In the example,

$$f(x) = e^{x} - x - 1.00000000005$$

$$f'(x) = e^{x} - 1$$

$$f''(x) = e^{x},$$

and $\xi = 0.0001$. Hence

$$B = \log_{10} \frac{e^{0.0001}}{2(e^{0.0001} - 1)} = 3.7$$

and the number of significant figures in the next iteration is about 2k-4, not 2k.

Starting from $x_0 = 0.0005$ the results of Newton's method are

0.00050000000000003 0 1 0.0002600183335423 2 0.0001492417143024 3 0.0001081229107465 0.0001003035977456 4 5 0.0000999987979069 6 0.00009999833336214

where the last column shows the number of correct decimal places.

The root is $\xi = 0.000099998333361$ to 15 decimal places.

The number of correct figures increases by a factor quite close to 4.

From (1.23) we have

$$\xi - x_{n+1} = -\frac{(\xi - x_n)^2 f''(\eta_n)}{2f'(x_n)}.$$

Now $f'(\xi) = 0$, so by the Mean Value Theorem

$$f'(x_n) - f'(\xi) = (x_n - \xi)f''(\chi_n)$$

for some value of χ_n between ξ and x_n . Hence

$$\xi - x_{n+1} = \frac{(\xi - x_n)f''(\eta_n)}{2f''(\chi_n)}.$$

Now $|f''(\eta_n)| < M$ and $|f''(\chi_n)| > m$, and so

$$|\xi - x_{n+1}| < K|\xi - x_n|,$$

where

$$K = \frac{M}{2m} < 1.$$

Hence if x_0 lies in the given interval, all x_n lie in the interval, and $x_n \to \xi$. Then $\eta_n \to \xi$, $f''(\eta_n) \to f''(\xi)$ and $f''(\chi_n) \to f''(\xi)$. This shows that

$$\frac{\xi - x_{n+1}}{\xi - x_n} \to \frac{1}{2}$$

and convergence is linear, with asymptotic rate of convergence ln 2.

For the example $f(x) = e^x - 1 - x$, f(0) = 0, f'(0) = 0. Starting from $x_0 = 1$, Newton's method gives

- 0 1.000
- 1 0.582
- 2 0.319
- 3 0.168
- 4 0.086
- 5 0.044
- 6 0.022
- 7 0.011
- 8 0.006
- 9 0.003
- 10 0.001

showing $\xi - x_0$ reducing by a factor close to $\frac{1}{2}$ at each step.

When $f(\xi) = f'(\xi) = f''(\xi) = 0$ we get from the definition of Newton's method, provided that f''' is continuous in some neighbourhood of ξ ,

$$\xi - x_{n+1} = \xi - x_n + \frac{f(x_n)}{f'(x_n)}$$

$$= \xi - x_n + \frac{\frac{1}{6}(x_n - \xi)^3 f'''(\eta_n)}{\frac{1}{2}(x_n - \xi)^2 f'''(\chi_n)}$$

$$= (\xi - x_n) \left\{ 1 - \frac{f'''(\eta_n)}{3f'''(\chi_n)} \right\}.$$

If we now assume that in the neighbourhood $[\xi-k,\xi+k]$ of the root

$$0 < m < |f'''(x)| < M$$
, where $M < 3m$,

then

$$|\xi - x_{n+1}| < K|\xi - x_n|,$$

where

$$K = 1 - \frac{M}{3m} < 1.$$

Hence if x_0 is in this neighbourhood, all the x_n lie in the neighbourhood, and Newton's method converges to ξ . Also,

$$\frac{|\xi - x_{n+1}|}{|\xi - x_n|} \to \frac{2}{3},$$

so that convergence is linear, with asymptotic rate of convergence $\ln(3/2)$.

The proof follows closely the proof of Theorem 1.9.

From (1.23) it follows that $x_{n+1} < \xi$, provided that x_n lies in the interval $I = [X, \xi]$. Since f is monotonic increasing and $f(\xi) = 0$, f(x) < 0 in I. Hence if $x_0 \in I$ the sequence (x_n) lies in I, and is monotonic increasing. As it is bounded above by ξ , it converges; since ξ is the only root of f(x) = 0 in I, the sequence converges to ξ . Since f'' is continuous it follows that

$$\frac{\xi - x_{n+1}}{(\xi - x_n)^2} = -\frac{f''(\eta_n)}{2f'(x_n)} \to -\frac{f''(\xi)}{2f'(\xi)},$$

so that convergence is quadratic.

Neglecting terms of second order in ε we get

$$x_0 = 1 + \varepsilon$$

$$x_1 = -1 + \varepsilon$$

$$x_2 = \frac{1}{2}\varepsilon$$

$$x_3 = -1 - \varepsilon$$

$$x_4 = -1 + \varepsilon$$

$$x_5 = -1$$

Although this value of x_5 is not exact, it is clear that for sufficiently small ε the sequence converges to -1.

With x_0 and x_1 interchanged, the value of x_2 is of course the same, but x_3 and subsequent values are different:

$$x_0 = -1 + \varepsilon$$

$$x_1 = 1 + \varepsilon$$

$$x_2 = \frac{1}{2}\varepsilon$$

$$x_3 = 1 - \varepsilon$$

$$x_4 = 1 + \varepsilon$$

$$x_5 = 1$$

The function φ has the form

$$\varphi(x_n, x_{n-1}) = \frac{x_n f(x_{n-1}) - x_{n-1} f(x_n) - \xi(f(x_{n-1}) - f(x_n))}{(x_n - \xi)(x_{n-1} - \xi)(f(x_{n-1}) - f(x_n))}$$

In the limit as $x_n \to \xi$ both numerator and denominator tend to zero, so we apply l'Hopital's rule to give

$$\begin{split} \lim_{x_n \to \xi} \varphi(x_n, x_{n-1}) &= \lim \frac{f(x_{n-1}) - x_{n-1} f'(x_n) + \xi f'(x_n))}{-f'(x_n)(x_n - \xi)(x_{n-1} - \xi) + (f(x_{n-1}) - f(x_n))(x_{n-1} - \xi)} \\ &= \frac{f(x_{n-1}) - x_{n-1} f'(\xi) + \xi}{(f(x_{n-1}) - f(\xi))(x_{n-1} - \xi)} \end{split}$$

so that

$$\psi(x_{n-1}) = \frac{f(x_{n-1}) - x_{n-1}f'(\xi) + \xi f'(\xi)}{(f(x_{n-1}) - f(\xi))(x_{n-1} - \xi)}.$$

In the limit as $x_{n-1} \to \xi$ the numerator and denominator of $\psi(x_{n-1})$ both tend to zero, so again we use l'Hopital's rule to give

$$\lim_{x_{n-1} \to \xi} \psi(x_{n-1}) = \lim_{x_{n-1} \to \xi} \frac{f'(x_{n-1}) - f'(\xi)}{f'(x_{n-1})(x_{n-1} - \xi) + (f(x_{n-1}) - f(\xi))}.$$

We must now use l'Hopital's rule again, to give finally

$$\lim_{x_{n-1}\to\xi} \psi(x_{n-1}) = \lim \frac{f''(x_{n-1})}{f''(x_{n-1})(x_{n-1}-\xi) + f'(x_{n-1}) + f'(x_{n-1})}$$
$$= \frac{f''(\xi)}{2f'(\xi)}.$$

Now the limit of φ does not depend on the way in which x_n and x_{n-1} tend to ξ , so finally we have

$$\frac{x_{n+1} - \xi}{(x_n - \xi)(x_{n-1} - \xi)} \to \frac{f''(\xi)}{2f'(\xi)}.$$

Now assume that

$$\frac{x_{n+1} - \xi}{(x_n - \xi)^q} \to A;$$

then

$$\frac{x_n - \xi}{(x_{n-1} - \xi)^q} \to A;$$

or

$$\frac{(x_n - \xi)^{1/q}}{x_{n-1} - \xi} \to A^{1/q},$$

and so

$$\frac{x_{n+1} - \xi}{(x_n - \xi)^{q-1/q} (x_{n-1} - \xi)} \to A^{1+1/q}.$$

Comparing with the previous limit, we require

$$q - 1/q = 1$$
, and $A^{1+1/q} = \frac{f''(\xi)}{2f'(\xi)}$.

This gives a quadratic equation for q, and since we clearly require that θ is positive we obtain $q = \frac{1}{2}(1 + \sqrt{5})$, giving the required result.

Fig. 1.6 shows a typical situation with f''(x) > 0, so the graph of f lies below the line PQ. Here P and Q are the points corresponding to u_n and v_n . Also R is the point corresponding to θ , so that $f(\theta) < 0$. Hence in the next iteration $u_{n+1} = \theta$ and $v_{n+1} = v_n$.

The same picture applies to the next step, and again $v_{n+2} = v_{n+1}$, and so on. Thus if f'' > 0 in $[u_N, v_N]$, and $f(u_N) < 0 < f(v_N)$ then $v_n = v_N$ for all n > N.

If on the other hand $f(u_N) > 0$ and $f(v_N) < 0$ we see in the same way that $u_n = u_N$ for all $n \ge N$.

Similar results are easily deduced if f'' < 0 in $[u_N, v_N]$; it is only necessary to replace f by the function -f.

Now returning to the situation in Fig. 1.6, the point v_n remains fixed, and the points u_n are monotonically increasing. Hence the sequence (u_n) is monotonically increasing for $n \geq N$, and is bounded above by v_N , and is therefore convergent to the unique solution of f(x) = 0 in the interval $[u_N, v_N]$. In the general situation, we see that one end of the interval $[u_n, v_n]$ eventually remains fixed, and the other end converges to the root.

Write $u_n = \xi + \delta$, and

$$\frac{u_{n+1} - \xi}{\delta} = \frac{(\xi + \delta)f(v_N) - v_N f(\xi + \delta) - \xi(f(v_N) - f(\xi + \delta))}{\delta(f(v_N) - f(\xi + \delta))}.$$

In the limit as $\delta \to 0$ the numerator and denominator both tend to zero, so we apply l'Hopital's rule to give

$$\lim_{\delta \to 0} \frac{u_{n+1} - \xi}{\delta} = \lim_{\delta \to 0} \frac{f(v_N) - v_N f'(\xi + \delta) + \xi f'(\xi + \delta)}{f(v_n) - f(\xi + \delta) - \delta f'(\xi + \delta)}$$
$$= \frac{f(v_N) - v_N f'(\xi) + \xi f'(\xi)}{f(v_N)}$$

Hence the sequence (u_n) converges linearly to ξ , and the asymptotic rate of convergence is

$$-\ln\left\{1 - \frac{(v_N - \xi)f'(\xi)}{f(v_N)}\right\}$$

This may also be written

$$-\ln\left\{1-\frac{f'(\xi)}{f'(\eta_N)}\right\}$$

for some η_N lying between ξ and v_N . Since $f(\xi) = 0$, it follows that

 $\eta_N > \xi$. Evidently the closer v_N is to the root ξ , the closer $f'(\eta_N)$ is to $f'(\xi)$, and the more rapidly the iteration converges.

Asymptotically this method converges more slowly than the standard secant method. Its advantage is that if $f(u_0)$ and $f(v_0)$ have opposite signs the iteration is guaranteed to converge to a root lying in $[u_0, v_0]$; the method is therefore robust. However, it is easy to draw a situation where v_0 is far from ξ , and where the bisection method is likely to be more efficient.

The sequence (x_n) converges to the two-cycle a, b if $x_{2n} \to a$ and $x_{2n+1} \to b$, or equivalently with a and b interchanged. So a and b are fixed points of the composite iteration $x_{n+1} = h(x_n)$, where h(x) = g(g(x)), and we define a stable two-cycle to be one which corresponds to a stable fixed point of b. Now

$$h'(x) = g'(g(x)) g'(x);$$

if h'(a) < 1 the fixed point a of h is stable; since g(a) = a it follows that if |g'(a)g'(b)| < 1 then the two-cycle a, b is stable. In the same way, if |g'(a)g'(b)| > 1 then the two-cycle is not stable.

For Newton's method

$$x_{n+1} = x_n - f(x_m)/f'(x_n),$$

and the corresponding function g is defined by

$$g(x) = x - f(x)/f'(x).$$

In this case

$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}.$$

Hence, if

$$\left| \frac{f(a)f''(a)}{[f'(a)]^2} \right| \left| \frac{f(b)f''(b)}{[f'(b)]^2} \right| < 1$$

the two-cycle is stable.

Newton's method for the solution of $x^3-x=0$ has the two-cycle a,-a if

$$-a = a - \frac{a^3 - a}{3a^2 - 1}$$
$$a = -a - \frac{-a^3 + a}{3a^2 - 1}.$$

These equations have the solution

$$a = \frac{1}{\sqrt{5}}$$
.

Here $f'(a) = 3a^2 - 1 = -2/5$ and $f''(a) = 6a = 6/\sqrt{5}$. So

$$\left| \frac{f(a)f''(a)}{[f'(a)]^2} \right| \left| \frac{f(b)f''(b)}{[f'(b)]^2} \right| = 36,$$

and the two-cycle is not stable.