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Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals
� Start using frameworks for describing and analyzing algorithms.
� Examine two algorithms for sorting: insertion sort and merge sort.
� See how to describe algorithms in pseudocode.
� Begin using asymptotic notation to express running-time analysis.
� Learn the technique of “divide and conquer” in the context ofmerge sort.

Insertion sort

The sorting problem

Input: A sequence ofn numbersha1; a2; : : : ; ani.
Output: A permutation (reordering)ha0

1; a0
2; : : : ; a0

ni of the input sequence such
thata0

1 � a0
2 � � � � � a0

n.

The sequences are typically stored in arrays.

We also refer to the numbers askeys. Along with each key may be additional
information, known assatellite data. [You might want to clarify that “satellite
data” does not necessarily come from a satellite.]

We will see several ways to solve the sorting problem. Each way will be expressed
as analgorithm: a well-defined computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output.

Expressing algorithms

We express algorithms in whatever way is the clearest and most concise.

English is sometimes the best way.

When issues of control need to be made perfectly clear, we often usepseudocode.
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� Pseudocode is similar to C, C++, Pascal, and Java. If you knowany of these
languages, you should be able to understand pseudocode.

� Pseudocode is designed forexpressing algorithms to humans. Software en-
gineering issues of data abstraction, modularity, and error handling are often
ignored.

� We sometimes embed English statements into pseudocode. Therefore, unlike
for “real” programming languages, we cannot create a compiler that translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.

It works the way you might sort a hand of playing cards:

� Start with an empty left hand and the cards face down on the table.
� Then remove one card at a time from the table, and insert it into the correct

position in the left hand.
� To find the correct position for a card, compare it with each ofthe cards already

in the hand, from right to left.
� At all times, the cards held in the left hand are sorted, and these cards were

originally the top cards of the pile on the table.

Pseudocode

We use a procedure INSERTION-SORT.

� Takes as parameters an arrayAŒ1 : : n� and the lengthn of the array.
� As in Pascal, we use “: :” to denote a range within an array.
� [We usually use 1-origin indexing, as we do here. There are a few places in

later chapters where we use 0-origin indexing instead. If you are translating
pseudocode to C, C++, or Java, which use 0-origin indexing, you need to be
careful to get the indices right. One option is to adjust all index calculations in
the C, C++, or Java code to compensate. An easier option is, when using an
arrayAŒ1 : : n�, to allocate the array to be one entry longer—AŒ0 : : n�—and just
don’t use the entry at index0.]

� [In the lecture notes, we indicate array lengths by parameters rather than by
using thelengthattribute that is used in the book. That saves us a line of pseu-
docode each time. The solutions continue to use thelengthattribute.]

� The arrayA is sortedin place: the numbers are rearranged within the array,
with at most a constant number outside the array at any time.
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INSERTION-SORT.A; n/ cost times

for j D 2 to n c1 n

keyD AŒj � c2 n � 1

// InsertAŒj � into the sorted sequenceAŒ1 : : j � 1�. 0 n � 1

i D j � 1 c4 n � 1

while i > 0 andAŒi� > key c5

Pn

j D2 tj

AŒi C 1� D AŒi� c6

Pn

j D2.tj � 1/

i D i � 1 c7

Pn

j D2.tj � 1/

AŒi C 1� D key c8 n � 1

[Leave this on the board, but show only the pseudocode for now. We’ll put in the
“cost” and “times” columns later.]

Example

1 2 3 4 5 6

5 2 4 6 1 3
1 2 3 4 5 6

2 5 4 6 1 3
1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3
1 2 3 4 5 6

2 4 5 61 3
1 2 3 4 5 6

2 4 5 61 3

j j j

j j

[Read this figure row by row. Each part shows what happens for aparticular itera-
tion with the value ofj indicated.j indexes the “current card” being inserted into
the hand. Elements to the left ofAŒj � that are greater thanAŒj � move one position
to the right, andAŒj � moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration works—AŒ1 : : j �—from the part
of the array that is unaffected by this iteration—AŒj C 1 : : n�. The last part of the
figure shows the final sorted array.]

Correctness

We often use aloop invariant to help us understand why an algorithm gives the
correct answer. Here’s the loop invariant for INSERTION-SORT:

Loop invariant: At the start of each iteration of the “outer”for loop—the
loop indexed byj —the subarrayAŒ1 : : j �1� consists of the elements orig-
inally in AŒ1 : : j � 1� but in sorted order.

To use a loop invariant to prove correctness, we must show three things about it:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant—usually along withthe
reason that the loop terminated—gives us a useful property that helps show that
the algorithm is correct.
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Using loop invariants is like mathematical induction:
� To prove that a property holds, you prove a base case and an inductive step.
� Showing that the invariant holds before the first iteration is like the base case.
� Showing that the invariant holds from iteration to iteration is like the inductive

step.
� The termination part differs from the usual use of mathematical induction, in

which the inductive step is used infinitely. We stop the “induction” when the
loop terminates.

� We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteration,j D 2. The subarrayAŒ1 : : j � 1�

is the single elementAŒ1�, which is the element originally inAŒ1�, and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop invariant
for the “inner” while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the innerwhile loop works by moving
AŒj � 1�, AŒj � 2�, AŒj � 3�, and so on, by one position to the right until the
proper position forkey(which has the value that started out inAŒj �) is found.
At that point, the value ofkeyis placed into this position.

Termination: The outerfor loop ends whenj > n, which occurs whenj D nC1.
Therefore,j � 1 D n. Pluggingn in for j � 1 in the loop invariant, the
subarrayAŒ1 : : n� consists of the elements originally inAŒ1 : : n� but in sorted
order. In other words, the entire array is sorted.

Pseudocode conventions

[Covering most, but not all, here. See book pages 20–22 for all conventions.]

� Indentation indicates block structure. Saves space and writing time.
� Looping constructs are like in C, C++, Pascal, and Java. We assume that the

loop variable in afor loop is still defined when the loop exits (unlike in Pascal).
� // indicates that the remainder of the line is a comment.
� Variables are local, unless otherwise specified.
� We often useobjects, which haveattributes. For an attributeattr of objectx, we

write x:attr. (This notation matchesx:attr in Java and is equivalent tox->attr
in C++.) Attributes can cascade, so that ifx:y is an object and this object has
attributeattr, thenx:y:attr indicates this object’s attribute. That is,x:y:attr is
implicitly parenthesized as.x:y/:attr.

� Objects are treated as references, like in Java. Ifx andy denote objects, then
the assignmenty D x makesx andy reference the same object. It does not
cause attributes of one object to be copied to another.

� Parameters are passed by value, as in Java and C (and the default mechanism in
Pascal and C++). When an object is passed by value, it is actually a reference
(or pointer) that is passed; changes to the reference itselfare not seen by the
caller, but changes to the object’s attributes are.
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� The boolean operators “and” and “or” areshort-circuiting: if after evaluating
the left-hand operand, we know the result of the expression,then we don’t
evaluate the right-hand operand. (Ifx is FALSE in “x andy” then we don’t
evaluatey. If x is TRUE in “x or y” then we don’t evaluatey.)

Analyzing algorithms

We want to predict the resources that the algorithm requires. Usually, running time.

In order to predict resource requirements, we need a computational model.

Random-access machine (RAM) model

� Instructions are executed one after another. No concurrentoperations.
� It’s too tedious to define each of the instructions and their associated time costs.
� Instead, we recognize that we’ll use instructions commonlyfound in real com-

puters:

� Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling). Also,
shift left/shift right (good for multiplying/dividing by2k).

� Data movement: load, store, copy.
� Control: conditional/unconditional branch, subroutine call and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

� We don’t worry about precision, although it is crucial in certain numerical ap-
plications.

� There is a limit on the word size: when working with inputs of size n, assume
that integers are represented byc lg n bits for some constantc � 1. (lg n is a
very frequently used shorthand for log2 n.)

� c � 1)we can hold the value ofn)we can index the individual elements.
� c is a constant) the word size cannot grow arbitrarily.

How do we analyze an algorithm’s running time?

The time taken by an algorithm depends on the input.

� Sorting 1000 numbers takes longer than sorting 3 numbers.
� A given sorting algorithm may even take differing amounts oftime on two

inputs of the same size.
� For example, we’ll see that insertion sort takes less time tosortn elements when

they are already sorted than when they are in reverse sorted order.
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Input size

Depends on the problem being studied.

� Usually, the number of items in the input. Like the sizen of the array being
sorted.

� But could be something else. If multiplying two integers, could be the total
number of bits in the two integers.

� Could be described by more than one number. For example, graph algorithm
running times are usually expressed in terms of the number ofvertices and the
number of edges in the input graph.

Running time

On a particular input, it is the number of primitive operations (steps) executed.

� Want to define steps to be machine-independent.
� Figure that each line of pseudocode requires a constant amount of time.
� One line may take a different amount of time than another, buteach execution

of line i takes the same amount of timeci .
� This is assuming that the line consists only of primitive operations.

� If the line is a subroutine call, then the actual call takes constant time, but the
execution of the subroutine being called might not.

� If the line specifies operations other than primitive ones, then it might take
more than constant time. Example: “sort the points byx-coordinate.”

Analysis of insertion sort

[Now add statement costs and number of times executed toINSERTION-SORT

pseudocode.]

� Assume that thei th line takes timeci , which is a constant. (Since the third line
is a comment, it takes no time.)

� For j D 2; 3; : : : ; n, let tj be the number of times that thewhile loop test is
executed for that value ofj .

� Note that when afor or while loop exits in the usual way—due to the test in the
loop header—the test is executed one time more than the loop body.

The running time of the algorithm is
X

all statements

.cost of statement/ � .number of times statement is executed/ :

Let T .n/ D running time of INSERTION-SORT.

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

n
X

j D2

tj C c6

n
X

j D2

.tj � 1/

C c7

n
X

j D2

.tj � 1/C c8.n � 1/ :

The running time depends on the values oftj . These vary according to the input.
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Best case

The array is already sorted.

� Always find thatAŒi� � keyupon the first time thewhile loop test is run (when
i D j � 1).

� All tj are1.
� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5.n � 1/C c8.n � 1/

D .c1 C c2 C c4 C c5 C c8/n � .c2 C c4 C c5 C c8/ :

� Can expressT .n/ asanCb for constantsa andb (that depend on the statement
costsci )) T .n/ is a linear functionof n.

Worst case

The array is in reverse sorted order.

� Always find thatAŒi� > keyin while loop test.
� Have to comparekeywith all elements to the left of thej th position) compare

with j � 1 elements.
� Since the while loop exits becausei reaches0, there’s one additional test after

thej � 1 tests) tj D j .

�

n
X

j D2

tj D
n
X

j D2

j and
n
X

j D2

.tj � 1/ D
n
X

j D2

.j � 1/.

�

n
X

j D1

j is known as anarithmetic series, and equation (A.1) shows that it equals

n.nC 1/

2
.

� Since
n
X

j D2

j D
 

n
X

j D1

j

!

� 1, it equals
n.nC 1/

2
� 1.

[The parentheses around the summation are not strictly necessary. They are
there for clarity, but it might be a good idea to remind the students that the
meaning of the expression would be the same even without the parentheses.]

� Letting k D j � 1, we see that
n
X

j D2

.j � 1/ D
n�1
X

kD1

k D n.n � 1/

2
.

� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

�
n.nC 1/

2
� 1

�

C c6

�
n.n � 1/

2

�

C c7

�
n.n � 1/

2

�

C c8.n � 1/

D
�c5

2
C c6

2
C c7

2

�

n2 C
�

c1 C c2 C c4 C
c5

2
� c6

2
� c7

2
C c8

�

n

� .c2 C c4 C c5 C c8/ :

� Can expressT .n/ asan2 C bnC c for constantsa; b; c (that again depend on
statement costs)) T .n/ is aquadratic functionof n.
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Worst-case and average-case analysis

We usually concentrate on finding theworst-case running time: the longest run-
ning time forany input of sizen.

Reasons
� The worst-case running time gives a guaranteed upper bound on the running

time for any input.
� For some algorithms, the worst case occurs often. For example, when search-

ing, the worst case often occurs when the item being searchedfor is not present,
and searches for absent items may be frequent.

� Why not analyze the average case? Because it’s often about asbad as the worst
case.

Example: Suppose that we randomly choosen numbers as the input to inser-
tion sort.

On average, the key inAŒj � is less than half the elements inAŒ1 : : j � 1� and
it’s greater than the other half.
) On average, thewhile loop has to look halfway through the sorted subarray
AŒ1 : : j � 1� to decide where to dropkey.
) tj � j=2.

Although the average-case running time is approximately half of the worst-case
running time, it’s still a quadratic function ofn.

Order of growth

Another abstraction to ease analysis and focus on the important features.

Look only at the leading term of the formula for running time.

� Drop lower-order terms.
� Ignore the constant coefficient in the leading term.

Example: For insertion sort, we already abstracted away the actual statement costs
to conclude that the worst-case running time isan2 C bnC c.
Drop lower-order terms) an2.
Ignore constant coefficient) n2.

But we cannot say that the worst-case running timeT .n/ equalsn2.

It grows liken2. But it doesn’tequaln2.

We say that the running time is‚.n2/ to capture the notion that theorder of growth
is n2.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a smaller order of growth.
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Designing algorithms

There are many ways to design algorithms.

For example, insertion sort isincremental: having sortedAŒ1 : : j � 1�, placeAŒj �

correctly, so thatAŒ1 : : j � is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively.
Base case:If the subproblems are small enough, just solve them by bruteforce.

[It would be a good idea to make sure that your students are comfortable with
recursion. If they are not, then they will have a hard time understanding divide
and conquer.]

Combine the subproblem solutions to give a solution to the original problem.

Merge sort

A sorting algorithm based on divide and conquer. Its worst-case running time has
a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state each subproblem as sorting a
subarrayAŒp : : r�. Initially, p D 1 and r D n, but these values change as we
recurse through subproblems.

To sortAŒp : : r�:

Divide by splitting into two subarraysAŒp : : q� andAŒq C 1 : : r�, whereq is the
halfway point ofAŒp : : r�.

Conquer by recursively sorting the two subarraysAŒp : : q� andAŒq C 1 : : r�.

Combineby merging the two sorted subarraysAŒp : : q� andAŒq C 1 : : r� to pro-
duce a single sorted subarrayAŒp : : r�. To accomplish this step, we’ll define a
procedure MERGE.A; p; q; r/.

The recursion bottoms out when the subarray has just1 element, so that it’s trivially
sorted.

MERGE-SORT.A; p; r/

if p < r // check for base case
q D b.p C r/=2c // divide
MERGE-SORT.A; p; q/ // conquer
MERGE-SORT.A; q C 1; r/ // conquer
MERGE.A; p; q; r/ // combine
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Initial call: MERGE-SORT.A; 1; n/

[It is astounding how often students forget how easy it is to compute the halfway
point of p andr as their average.p C r/=2. We of course have to take the floor
to ensure that we get an integer indexq. But it is common to see students perform
calculations likepC .r �p/=2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example

Bottom-up view forn D 8: [Heavy lines demarcate subarrays used in subprob-
lems.]

1 2 3 4 5 6 7 8

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

initial array

merge

2 4 5 7 1 2 3 6

merge

1 2 3 4 5 6 7

merge

sorted array

2
1 2 3 4 5 6 7 8

[Examples whenn is a power of2 are most straightforward, but students might
also want an example whenn is not a power of2.]

Bottom-up view forn D 11:

1 2 3 4 5 6 7 8

4 7 2 6 1 4 7 3

initial array

merge

merge

merge

sorted array

5 2 6

9 10 11

4 7 2 1 6 4 3 7 5 2 6

2 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 7
1 2 3 4 5 6 7 8 9 10 11

merge

[Here, at the next-to-last level of recursion, some of the subproblems have only1
element. The recursion bottoms out on these single-elementsubproblems.]
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Merging

What remains is the MERGEprocedure.

Input: Array A and indicesp; q; r such that
� p � q < r .
� SubarrayAŒp : : q� is sorted and subarrayAŒq C 1 : : r� is sorted. By the

restrictions onp; q; r , neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray inAŒp : : r�.

We implement it so that it takes‚.n/ time, wheren D r �pC 1 D the number of
elements being merged.

What isn? Until now, n has stood for the size of the original problem. But now
we’re using it as the size of a subproblem. We will use this technique when we
analyze recursive algorithms. Although we may denote the original problem size
by n, in generaln will be the size of a given subproblem.

Idea behind linear-time merging
Think of two piles of cards.
� Each pile is sorted and placed face-up on a table with the smallest cards on top.
� We will merge these into a single sorted pile, face-down on the table.
� A basic step:

� Choose the smaller of the two top cards.
� Remove it from its pile, thereby exposing a new top card.
� Place the chosen card face-down onto the output pile.

� Repeatedly perform basic steps until one input pile is empty.
� Once one input pile empties, just take the remaining input pile and place it

face-down onto the output pile.
� Each basic step should take constant time, since we check just the two top cards.
� There are� n basic steps, since each basic step removes one card from the

input piles, and we started withn cards in the input piles.
� Therefore, this procedure should take‚.n/ time.

We don’t actually need to check whether a pile is empty beforeeach basic step.
� Put on the bottom of each input pile a specialsentinelcard.
� It contains a special value that we use to simplify the code.
� We use1, since that’s guaranteed to “lose” to any other value.
� The only way that1 cannotlose is when both piles have1 exposed as their

top cards.
� But when that happens, all the nonsentinel cards have already been placed into

the output pile.
� We know in advance that there are exactlyr � pC 1 nonsentinel cards) stop

once we have performedr � p C 1 basic steps. Never a need to check for
sentinels, since they’ll always lose.

� Rather than even counting basic steps, just fill up the outputarray from indexp
up through and including indexr .
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Pseudocode

MERGE.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

for k D p to r

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

elseAŒk� D RŒj �

j D j C 1

[The book uses a loop invariant to establish thatMERGE works correctly. In a
lecture situation, it is probably better to use an example toshow that the procedure
works correctly.]

Example

A call of MERGE.9; 12; 16/
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A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7 1 2 3 6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

62 2 3 4 5

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

72 2 3 4 5

5
∞

5
∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

[Read this figure row by row. The first part shows the arrays at the start of the
“ for k D p to r” loop, whereAŒp : : q� is copied intoLŒ1 : : n1� andAŒqC1 : : r� is
copied intoRŒ1 : : n2�. Succeeding parts show the situation at the start of successive
iterations. Entries inA with slashes have had their values copied to eitherL or R

and have not had a value copied back in yet. Entries inL andR with slashes have
been copied back intoA. The last part shows that the subarrays are merged back
into AŒp : : r�, which is now sorted, and that only the sentinels (1) are exposed in
the arraysL andR.]
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Running time

The first twofor loops take‚.n1 C n2/ D ‚.n/ time. The lastfor loop makesn
iterations, each taking constant time, for‚.n/ time.
Total time:‚.n/.

Analyzing divide-and-conquer algorithms

Use arecurrence equation(more commonly, arecurrence) to describe the running
time of a divide-and-conquer algorithm.

Let T .n/ D running time on a problem of sizen.

� If the problem size is small enough (say,n � c for some constantc), we have a
base case. The brute-force solution takes constant time:‚.1/.

� Otherwise, suppose that we divide intoa subproblems, each1=b the size of the
original. (In merge sort,a D b D 2.)

� Let the time to divide a size-n problem beD.n/.
� Have a subproblems to solve, each of sizen=b ) each subproblem takes

T .n=b/ time to solve) we spendaT .n=b/ time solving subproblems.
� Let the time to combine solutions beC.n/.
� We get the recurrence

T .n/ D
(

‚.1/ if n � c ;

aT .n=b/CD.n/C C.n/ otherwise:

Analyzing merge sort

For simplicity, assume thatn is a power of2) each divide step yields two sub-
problems, both of size exactlyn=2.

The base case occurs whenn D 1.

Whenn � 2, time for merge sort steps:

Divide: Just computeq as the average ofp andr )D.n/ D ‚.1/.

Conquer: Recursively solve2 subproblems, each of sizen=2) 2T .n=2/.

Combine: MERGEon ann-element subarray takes‚.n/ time) C.n/ D ‚.n/.

SinceD.n/ D ‚.1/ andC.n/ D ‚.n/, summed together they give a function that
is linear inn: ‚.n/) recurrence for merge sort running time is

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :

Solving the merge-sort recurrence

By the master theorem in Chapter 4, we can show that this recurrence has the
solutionT .n/ D ‚.n lg n/. [Reminder:lg n stands forlog2 n.]

Compared to insertion sort (‚.n2/ worst-case time), merge sort is faster. Trading
a factor ofn for a factor of lgn is a good deal.
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On small inputs, insertion sort may be faster. But for large enough inputs, merge
sort will always be faster, because its running time grows more slowly than inser-
tion sort’s.

We can understand how to solve the merge-sort recurrence without the master the-
orem.

� Let c be a constant that describes the running time for the base case and also
is the time per array element for the divide and conquer steps. [Of course, we
cannot necessarily use the same constant for both. It’s not worth going into this
detail at this point.]

� We rewrite the recurrence as

T .n/ D
(

c if n D 1 ;

2T .n=2/C cn if n > 1 :

� Draw arecursion tree, which shows successive expansions of the recurrence.
� For the original problem, we have a cost ofcn, plus the two subproblems, each

costingT .n=2/:

cn

T(n/2) T(n/2)

� For each of the size-n=2 subproblems, we have a cost ofcn=2, plus two sub-
problems, each costingT .n=4/:

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

� Continue expanding until the problem sizes get down to1:
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cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

� Each level has costcn.

� The top level has costcn.
� The next level down has2 subproblems, each contributing costcn=2.
� The next level has4 subproblems, each contributing costcn=4.
� Each time we go down one level, the number of subproblems doubles but the

cost per subproblem halves) cost per level stays the same.

� There are lgnC 1 levels (height is lgn).

� Use induction.
� Base case:n D 1) 1 level, and lg1C 1 D 0C 1 D 1.
� Inductive hypothesis is that a tree for a problem size of2i has lg2iC1 D iC1

levels.
� Because we assume that the problem size is a power of2, the next problem

size up after2i is 2iC1.
� A tree for a problem size of2iC1 has one more level than the size-2i tree)

i C 2 levels.
� Since lg2iC1 C 1 D i C 2, we’re done with the inductive argument.

� Total cost is sum of costs at each level. Have lgn C 1 levels, each costingcn

) total cost iscn lg nC cn.
� Ignore low-order term ofcn and constant coefficientc) ‚.n lg n/.



Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2
This solution is also posted publicly

SELECTION-SORT.A/

n D A: length
for j D 1 to n � 1

smallestD j

for i D j C 1 to n

if AŒi� < AŒsmallest�
smallestD i

exchangeAŒj � with AŒsmallest�

The algorithm maintains the loop invariant that at the startof each iteration of the
outerfor loop, the subarrayAŒ1 : : j � 1� consists of thej � 1 smallest elements
in the arrayAŒ1 : : n�, and this subarray is in sorted order. After the firstn � 1

elements, the subarrayAŒ1 : : n � 1� contains the smallestn � 1 elements, sorted,
and therefore elementAŒn� must be the largest element.

The running time of the algorithm is‚.n2/ for all cases.

Solution to Exercise 2.2-4
This solution is also posted publicly

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is whenn D 2, and we haven lg n D 2 lg 2 D 2 � 1 D 2.
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For the inductive step, our inductive hypothesis is thatT .n=2/ D .n=2/ lg.n=2/.
Then

T .n/ D 2T .n=2/C n

D 2.n=2/ lg.n=2/C n

D n.lg n � 1/C n

D n lg n � nC n

D n lg n ;

which completes the inductive proof for exact powers of2.

Solution to Exercise 2.3-4

Since it takes‚.n/ time in the worst case to insertAŒn� into the sorted array
AŒ1 : : n � 1�, we get the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

T .n � 1/C‚.n/ if n > 1 :

Although the exercise does not ask you to solve this recurrence, its solution is
T .n/ D ‚.n2/.

Solution to Exercise 2.3-5
This solution is also posted publicly

Procedure BINARY-SEARCH takes a sorted arrayA, a value�, and a range
Œlow : : high� of the array, in which we search for the value�. The procedure com-
pares� to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indexi such thatAŒi� D �, or NIL if no entry of
AŒlow : : high� contains the value�. The initial call to either version should have
the parametersA; �; 1; n.

ITERATIVE-BINARY-SEARCH.A; �; low; high/

while low � high
mid D b.lowC high/=2c
if � == AŒmid�

return mid
elseif� > AŒmid�

low D midC 1

elsehigh D mid� 1

return NIL
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RECURSIVE-BINARY-SEARCH.A; �; low; high/

if low > high
return NIL

mid D b.lowC high/=2c
if � == AŒmid�

return mid
elseif� > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; �; midC 1; high/

else return RECURSIVE-BINARY-SEARCH.A; �; low; mid� 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the value� has been found. Based
on the comparison of� to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T .n/ D T .n=2/C‚.1/, whose solution isT .n/ D ‚.lg n/.

Solution to Exercise 2.3-6

The while loop of lines 5–7 of procedure INSERTION-SORT scans backward
through the sorted arrayAŒ1 : : j � 1� to find the appropriate place forAŒj �. The
hitch is that the loop not only searches for the proper place for AŒj �, but that it also
moves each of the array elements that are bigger thanAŒj � one position to the right
(line 6). These movements can take as much as‚.j / time, which occurs when all
thej � 1 elements precedingAŒj � are larger thanAŒj �. We can use binary search
to improve the running time of the search to‚.lg j /, but binary search will have no
effect on the running time of moving the elements. Therefore, binary search alone
cannot improve the worst-case running time of INSERTION-SORT to ‚.n lg n/.

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements inS .

2. Form the setS 0 D f´ W ´ D x � y for somey 2 Sg.
3. Sort the elements inS 0.

4. Merge the two sorted setsS andS 0.

5. There exist two elements inS whose sum is exactlyx if and only if the same
value appears in consecutive positions in the merged output.

To justify the claim in step 4, first observe that if any value appears twice in the
merged output, it must appear in consecutive positions. Thus, we can restate the
condition in step 5 as there exist two elements inS whose sum is exactlyx if and
only if the same value appears twice in the merged output.
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Suppose that some valuew appears twice. Thenw appeared once inS and once
in S 0. Becausew appeared inS 0, there exists somey 2 S such thatw D x � y, or
x D w C y. Sincew 2 S , the elementsw andy are inS and sum tox.

Conversely, suppose that there are valuesw; y 2 S such thatw C y D x. Then,
sincex � y D w, the valuew appears inS 0. Thus,w is in bothS andS 0, and so it
will appear twice in the merged output.

Steps 1 and 3 require‚.n lg n/ steps. Steps 2, 4, 5, and 6 requireO.n/ steps. Thus
the overall running time isO.n lg n/.

A reader submitted a simpler solution that also runs in‚.n lg n/ time. First, sort
the elements inS , taking‚.n lg n/ time. Then, for each elementy in S , perform a
binary search inS for x � y. Each binary search takesO.lg n/ time, and there are
are mostn of them, and so the time for all the binary searches isO.n lg n/. The
overall running time is‚.n lg n/.

Another reader pointed out that sinceS is a set, if the valuex=2 appears inS , it
appears inS just once, and sox=2 cannot be a solution.

Solution to Problem 2-1

[It may be better to assign this problem after covering asymptotic notation in Sec-
tion 3.1; otherwise part (c) may be too difficult.]

a. Insertion sort takes‚.k2/ time perk-element list in the worst case. Therefore,
sorting n=k lists of k elements each takes‚.k2n=k/ D ‚.nk/ worst-case
time.

b. Just extending the 2-list merge to merge all the lists at oncewould take
‚.n � .n=k// D ‚.n2=k/ time (n from copying each element once into the
result list,n=k from examiningn=k lists at each step to select next item for
result list).

To achieve‚.n lg.n=k//-time merging, we merge the lists pairwise, then merge
the resulting lists pairwise, and so on, until there’s just one list. The pairwise
merging requires‚.n/ work at each level, since we are still working onn el-
ements, even if they are partitioned among sublists. The number of levels,
starting withn=k lists (with k elements each) and finishing with1 list (with n

elements), isdlg.n=k/e. Therefore, the total running time for the merging is
‚.n lg.n=k//.

c. The modified algorithm has the same asymptotic running time as standard
merge sort when‚.nk C n lg.n=k// D ‚.n lg n/. The largest asymptotic
value ofk as a function ofn that satisfies this condition isk D ‚.lg n/.

To see why, first observe thatk cannot be more than‚.lg n/ (i.e., it can’t have
a higher-order term than lgn), for otherwise the left-hand expression wouldn’t
be‚.n lg n/ (because it would have a higher-order term thann lg n). So all we
need to do is verify thatk D ‚.lg n/ works, which we can do by plugging
k D lg n into ‚.nk C n lg.n=k// D ‚.nk C n lg n � n lg k/ to get
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‚.n lg nC n lg n � n lg lg n/ D ‚.2n lg n � n lg lg n/ ;

which, by taking just the high-order term and ignoring the constant coefficient,
equals‚.n lg n/.

d. In practice,k should be the largest list length on which insertion sort is faster
than merge sort.

Solution to Problem 2-2

a. We need to show that the elements ofA0 form a permutation of the elements
of A.

b. Loop invariant: At the start of each iteration of thefor loop of lines 2–4,
AŒj � D minfAŒk� W j � k � ng and the subarrayAŒj : : n� is a permuta-
tion of the values that were inAŒj : : n� at the time that the loop started.

Initialization: Initially, j D n, and the subarrayAŒj : : n� consists of single
elementAŒn�. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value ofj . By the loop in-
variant, AŒj � is the smallest value inAŒj : : n�. Lines 3–4 exchangeAŒj �

and AŒj � 1� if AŒj � is less thanAŒj � 1�, and soAŒj � 1� will be the
smallest value inAŒj � 1 : : n� afterward. Since the only change to the sub-
arrayAŒj � 1 : : n� is this possible exchange, and the subarrayAŒj : : n� is
a permutation of the values that were inAŒj : : n� at the time that the loop
started, we see thatAŒj � 1 : : n� is a permutation of the values that were in
AŒj � 1 : : n� at the time that the loop started. Decrementingj for the next
iteration maintains the invariant.

Termination: The loop terminates whenj reachesi . By the statement of the
loop invariant,AŒi� D minfAŒk� W i � k � ng andAŒi : : n� is a permutation
of the values that were inAŒi : : n� at the time that the loop started.

c. Loop invariant: At the start of each iteration of thefor loop of lines 1–4,
the subarrayAŒ1 : : i �1� consists of thei �1 smallest values originally in
AŒ1 : : n�, in sorted order, andAŒi : : n� consists of then� i C 1 remaining
values originally inAŒ1 : : n�.

Initialization: Before the first iteration of the loop,i D 1. The subarray
AŒ1 : : i � 1� is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given value ofi . By the loop invari-
ant,AŒ1 : : i � 1� consists of thei smallest values inAŒ1 : : n�, in sorted order.
Part (b) showed that after executing thefor loop of lines 2–4,AŒi� is the
smallest value inAŒi : : n�, and soAŒ1 : : i � is now thei smallest values orig-
inally in AŒ1 : : n�, in sorted order. Moreover, since thefor loop of lines 2–4
permutesAŒi : : n�, the subarrayAŒi C 1 : : n� consists of then� i remaining
values originally inAŒ1 : : n�.

Termination: Thefor loop of lines 1–4 terminates wheni D n, so thati �1 D
n � 1. By the statement of the loop invariant,AŒ1 : : i � 1� is the subarray
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AŒ1 : : n�1�, and it consists of then�1 smallest values originally inAŒ1 : : n�,
in sorted order. The remaining element must be the largest value inAŒ1 : : n�,
and it is inAŒn�. Therefore, the entire arrayAŒ1 : : n� is sorted.

Note: Tn the second edition, thefor loop of lines 1–4 had an upper bound
of A: length. The last iteration of the outerfor loop would then result in no
iterations of the innerfor loop of lines 1–4, but the termination argument would
simplify: AŒ1 : : i � 1� would be the entire arrayAŒ1 : : n�, which, by the loop
invariant, is sorted.

d. The running time depends on the number of iterations of thefor loop of
lines 2–4. For a given value ofi , this loop makesn � i iterations, andi takes
on the values1; 2; : : : ; n � 1. The total number of iterations, therefore, is
n�1
X

iD1

.n � i/ D
n�1
X

iD1

n �
n�1
X

iD1

i

D n.n� 1/ � n.n � 1/

2

D n.n� 1/

2

D n2

2
� n

2
:

Thus, the running time of bubblesort is‚.n2/ in all cases. The worst-case
running time is the same as that of insertion sort.

Solution to Problem 2-4
This solution is also posted publicly

a. The inversions are.1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements fromf1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all 1 � i < j � n, there is an inversion.i; j /.
The number of such inversions is

�
n

2

�

D n.n � 1/=2.

c. Suppose that the arrayA starts out with an inversion.k; j /. Thenk < j and
AŒk� > AŒj �. At the time that the outerfor loop of lines 1–8 setskeyD AŒj �,
the value that started inAŒk� is still somewhere to the left ofAŒj �. That is,
it’s in AŒi�, where1 � i < j , and so the inversion has become.i; j /. Some
iteration of thewhile loop of lines 5–7 movesAŒi� one position to the right.
Line 8 will eventually dropkey to the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that are greater thankey,
it moves only elements that correspond to inversions. In other words, each
iteration of thewhile loop of lines 5–7 corresponds to the elimination of one
inversion.

d. We follow the hint and modify merge sort to count the number ofinversions in
‚.n lg n/ time.
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To start, let us define amerge-inversionas a situation within the execution of
merge sort in which the MERGE procedure, after copyingAŒp : : q� to L and
AŒq C 1 : : r� to R, has valuesx in L andy in R such thatx > y. Consider
an inversion.i; j /, and letx D AŒi� andy D AŒj �, so thati < j andx > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within the MERGE procedure. More-
over, since MERGEkeeps elements withinL in the same relative order to each
other, and correspondingly forR, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear inL
and the lesser one to appear inR. Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of MERGE that involves bothx andy, they are in the
same sorted subarray and will therefore both appear inL or both appear inR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesx andy, wherex originally
wasAŒi� andy was originallyAŒj �. Since we have a merge-inversion,x > y.
And sincex is in L andy is in R, x must be within a subarray preceding the
subarray containingy. Thereforex started out in a positioni precedingy’s
original positionj , and so.i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingy in R. Let ´ be the smallest value inL
that is greater thany. At some point during the merging process,´ andy will
be the “exposed” values inL andR, i.e., we will havé D LŒi� andy D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involvingy

andLŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒn1�, and thesen1 � i C 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
that´ andy become exposed during the MERGE procedure and add the value
of n1 � i C 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as wehave just de-
scribed. It also sorts the arrayA.

COUNT-INVERSIONS.A; p; r/

in�ersionsD 0

if p < r

q D b.p C r/=2c
in�ersionsD in�ersionsC COUNT-INVERSIONS.A; p; q/

in�ersionsD in�ersionsC COUNT-INVERSIONS.A; q C 1; r/

in�ersionsD in�ersionsCMERGE-INVERSIONS.A; p; q; r/

return in�ersions
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MERGE-INVERSIONS.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

in�ersionsD 0

for k D p to r

if RŒj � < LŒi�

in�ersionsD in�ersionsC n1 � i C 1

AŒk� D RŒj �

j D j C 1

elseAŒk� D LŒi�

i D i C 1

return in�ersions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, wheneverRŒj � is exposed and a value greater than
RŒj � becomes exposed in theL array, we increasein�ersionsby the number
of remaining elements inL. Then becauseRŒj C 1� becomes exposed,RŒj �

can never be exposed again. We don’t have to worry about merge-inversions
involving the sentinel1 in R, since no value inL will be greater than1.

Since we have added only a constant amount of additional workto each pro-
cedure call and to each iteration of the lastfor loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
‚.n lg n/.


