https://selldocx.com/products
/solution-manual-introduction-to-algorithms-3e-cormen

Contents

Chapter 2: Getting Started
Lecture Notes 2-1
Solutions 2-17

Chapter 3: Growth of Functions
Lecture Notes 3-1
Solutions 3-7

Chapter 4: Divide-and-Conquer
Lecture Notes 4-1
Solutions 4-17

Chapter 5: Probabilistic Analysis and Randomized Algorithms
Lecture Notes 5-1
Solutions 5-9

Chapter 6: Heapsort
Lecture Notes 6-1
Solutions 6-10

Chapter 7: Quicksort
Lecture Notes 7-1
Solutions 7-9

Chapter 8: Sorting in Linear Time
Lecture Notes 8-1
Solutions 8-10

Chapter 9: Medians and Order Statistics
Lecture Notes 9-1
Solutions 9-10

Chapter 11: Hash Tables
Lecture Notes 11-1
Solutions 11-16

Chapter 12: Binary Search Trees
Lecture Notes 12-1
Solutions 12-15

Chapter 13: Red-Black Trees
Lecture Notes 13-1
Solutions 13-13

Chapter 14: Augmenting Data Structures
Lecture Notes 14-1
Solutions 14-9

https://selldocx.com/products/solution-manual-introduction-to-algorithms-3e-cormen

Contents

Chapter 15: Dynamic Programming
Lecture Notes 15-1
Solutions 15-21

Chapter 16: Greedy Algorithms
Lecture Notes 16-1
Solutions 16-9

Chapter 17: Amortized Analysis
Lecture Notes 17-1
Solutions 17-14

Chapter 21: Data Structures for Disjoint Sets
Lecture Notes 21-1
Solutions 21-6

Chapter 22: Elementary Graph Algorithms
Lecture Notes 22-1
Solutions 22-13

Chapter 23: Minimum Spanning Trees
Lecture Notes 23-1
Solutions 23-8

Chapter 24: Single-Source Shortest Paths
Lecture Notes 24-1
Solutions 24-13

Chapter 25: All-Pairs Shortest Paths
Lecture Notes 25-1
Solutions 25-9

Chapter 26: Maximum Flow
Lecture Notes 26-1
Solutions 26-12

Chapter 27: Multithreaded Algorithms
Solutions 27-1

Index -1

Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals

» Start using frameworks for describing and analyzing athors.

* Examine two algorithms for sorting: insertion sort and neesgrt.

» See how to describe algorithms in pseudocode.

* Begin using asymptotic notation to express running-timayasis.

* Learn the technique of “divide and conquer” in the contextnefrge sort.

Insertion sort

The sorting problem

Input: A sequence of numbers(ay,a,,...,a,).

Output: A permutation (reorderingla’, a, ..., a,) of the input sequence such
thata} <a), <--- <a,,.

The sequences are typically stored in arrays.

We also refer to the numbers &sys Along with each key may be additional
information, known asatellite data [You might want to clarify that “satellite
data” does not necessarily come from a satellite.]

We will see several ways to solve the sorting problem. Eachwithbe expressed
as amlgorithm: a well-defined computational procedure that takes someyak
set of values, as input and produces some value, or set afs/ads output.

Expressing algorithms

We express algorithms in whatever way is the clearest and coosise.
English is sometimes the best way.
When issues of control need to be made perfectly clear, vea aitgpseudocode

Lecture Notes for Chapter 2: Getting Started

* Pseudocode is similar to C, C++, Pascal, and Java. If you kamgwof these
languages, you should be able to understand pseudocode.

* Pseudocode is designed fexpressing algorithms to humansoftware en-
gineering issues of data abstraction, modularity, andr drandling are often
ignored.

* We sometimes embed English statements into pseudocodeefditee unlike
for “real” programming languages, we cannot create a camffilat translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.
It works the way you might sort a hand of playing cards:

« Start with an empty left hand and the cards face down on the.tab

* Then remove one card at a time from the table, and insertattimt correct
position in the left hand.

* Tofind the correct position for a card, compare it with eacthefcards already
in the hand, from right to left.

* At all times, the cards held in the left hand are sorted, aeddlcards were
originally the top cards of the pile on the table.

Pseudocode
We use a procedure&lsERTION-SORT.

* Takes as parameters an arwyl . . n] and the lengthe of the array.
* Asin Pascal, we use :” to denote a range within an array.

+ [We usually use 1-origin indexing, as we do here. There amiadlaces in
later chapters where we use 0-origin indexing instead. Uf e translating
pseudocode to C, C++, or Java, which use 0-origin indexiog, need to be
careful to get the indices right. One option is to adjustradkix calculations in
the C, C++, or Java code to compensate. An easier option Bpnwhing an
arrayA[l . .n], to allocate the array to be one entry longet}6-. . n]—and just
don’t use the entry at index]

* [In the lecture notes, we indicate array lengths by pararsetgher than by
using thdengthattribute that is used in the book. That saves us a line of-pseu
docode each time. The solutions continue to uséethgth attribute.]

* The arrayA4 is sortedin place the numbers are rearranged within the array,
with at most a constant number outside the array at any time.

Lecture Notes for Chapter 2: Getting Started 2-3

INSERTION-SORT(A, n) cost times
for j =2ton ¢, n
key = A[/j] ¢, n-—1
/I InsertA[j] into the sorted sequencfl1..j —1]. O n—1
i=j—1 cqe n—1
whilei > 0 andA[i] > key cs Yol
Ali +1] = A[i] 6 Dt —1)
i=i—1 c7 Z;.'zz(tj -1)
Ali + 1] = key cg n—1

[Leave this on the board, but show only the pseudocode for Wail put in the
“cost” and “times” columns later.]

Example

1J23456 12]3456 123J456
[5]2]4] 6] 1] § [2]5][4[6[1] 3 [2]4]5]6] 1] 3
\YJ \YJ

1234J56 1234516 1 2 3 4 5 6
[2]4]5] 6] 1f 3 [2]2[4]5]6]3 [2]2[3]4]5]6]
Uudi YUy

[Read this figure row by row. Each part shows what happens fartcular itera-
tion with the value ofj indicated.;j indexes the “current card” being inserted into
the hand. Elements to the left af j] that are greater tha#i| j] move one position

to the right, andd[j] moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration work$i—. j|—from the part

of the array that is unaffected by this iteratiolF + 1..n]. The last part of the
figure shows the final sorted array.]

Correctness

We often use doop invariant to help us understand why an algorithm gives the
correct answer. Here's the loop invariant fOISERTION-SORT:

Loop invariant: At the start of each iteration of the “outeftr loop—the
loop indexed byj —the subarray[1 .. j — 1] consists of the elements orig-
inally in A[1..;j — 1] but in sorted order.

To use a loop invariant to prove correctness, we must shaee ttmings about it:

Initialization: It is true prior to the first iteration of the loop.
Maintenance: Ifitis true before an iteration of the loop, it remains trigfdre the
next iteration.

Termination: When the loop terminates, the invariant—usually along wuhith
reason that the loop terminated—agives us a useful progeatyhielps show that
the algorithm is correct.

2-4

Lecture Notes for Chapter 2: Getting Started

Using loop invariants is like mathematical induction:

* To prove that a property holds, you prove a base case and activel step.
» Showing that the invariant holds before the first iteratohke the base case.

» Showing that the invariant holds from iteration to iteratis like the inductive
step.

* The termination part differs from the usual use of mathetahinduction, in
which the inductive step is used infinitely. We stop the “iaiion” when the
loop terminates.

* We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteratiory, = 2. The subarrayd[l..; — 1]
is the single elemend[1], which is the element originally i[1], and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop intarian
for the “inner” while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the inmkile loop works by moving
Alj — 1], A[j — 2], A[j — 3], and so on, by one position to the right until the
proper position foikey (which has the value that started outdf;]) is found.

At that point, the value okeyis placed into this position.

Termination: The outeffor loop ends wheri > n, which occurs when = n+1.
Therefore,j — 1 = n. Pluggingn in for j — 1 in the loop invariant, the
subarrayA[l . .n] consists of the elements originally i1 ..n] but in sorted
order. In other words, the entire array is sorted.

Pseudocode conventions

[Covering most, but not all, here. See book pages 20-22 lfapaventions.]

* Indentation indicates block structure. Saves space arthgvtime.

* Looping constructs are like in C, C++, Pascal, and Java. \slenas that the
loop variable in dor loop is still defined when the loop exits (unlike in Pascal).

* // indicates that the remainder of the line is a comment.
* Variables are local, unless otherwise specified.

* We often us®bjects which haveattributes For an attributettr of objectx, we
write x.attr. (This notation matches. attr in Java and is equivalent to >attr
in C++.) Attributes can cascade, so thakify is an object and this object has
attributeattr, thenx.y.attr indicates this object’s attribute. That is,y. attr is
implicitly parenthesized ate.y). attr.

* Objects are treated as references, like in Java. dhd y denote objects, then
the assignmeny = x makesx andy reference the same object. It does not
cause attributes of one object to be copied to another.

* Parameters are passed by value, as in Java and C (and thk ihefaloanism in
Pascal and C++). When an object is passed by value, it islgctuseference
(or pointer) that is passed; changes to the reference éselhot seen by the
caller, but changes to the object’s attributes are.

Lecture Notes for Chapter 2: Getting Started 2-5

* The boolean operators “and” and “or” ashort-circuiting: if after evaluating
the left-hand operand, we know the result of the expresdioen we don't
evaluate the right-hand operand. fifis FALSE in “x and y” then we don't
evaluatey. If x is TRUEIn “x or y” then we don’t evaluate.)

Analyzing algorithms

We want to predict the resources that the algorithm requigssally, running time.
In order to predict resource requirements, we need a coftiqmaamodel.

Random-access machine (RAM) model

* Instructions are executed one after another. No concuogsariations.
* It's too tedious to define each of the instructions and thespaiated time costs.
* Instead, we recognize that we’ll use instructions commdmiynd in real com-
puters:
* Arithmetic: add, subtract, multiply, divide, remaindendt, ceiling). Also,
shift left/shift right (good for multiplying/dividing by*).
* Data movement: load, store, copy.
* Control: conditional/unconditional branch, subroutiradl and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

* We don’t worry about precision, although it is crucial integm numerical ap-
plications.

* There is a limit on the word size: when working with inputs @es:, assume
that integers are represented dlg n bits for some constant > 1. (Ign is a
very frequently used shorthand for lpg.)

* ¢ > 1= we can hold the value af = we can index the individual elements.
* ¢ is a constants the word size cannot grow arbitrarily.

How do we analyze an algorithm'’s running time?

The time taken by an algorithm depends on the input.

* Sorting 1000 numbers takes longer than sorting 3 numbers.
* A given sorting algorithm may even take differing amountstiofe on two
inputs of the same size.

* For example, we’ll see that insertion sort takes less tins®tt: elements when
they are already sorted than when they are in reverse saded o

2-6

Lecture Notes for Chapter 2: Getting Started

Input size

Depends on the problem being studied.

* Usually, the number of items in the input. Like the siz@f the array being
sorted.

* But could be something else. If multiplying two integersulcbbe the total
number of bits in the two integers.

* Could be described by more than one number. For exampleh glgprithm
running times are usually expressed in terms of the numbeentites and the
number of edges in the input graph.

Running time
On a particular input, it is the number of primitive operatqsteps) executed.

* Want to define steps to be machine-independent.
* Figure that each line of pseudocode requires a constantrarobtime.

* One line may take a different amount of time than anothergbhah execution
of line i takes the same amount of time

* This is assuming that the line consists only of primitive rgpiens.
 Ifthe line is a subroutine call, then the actual call takasstant time, but the
execution of the subroutine being called might not.

* If the line specifies operations other than primitive onkentit might take
more than constant time. Example: “sort the pointscbgoordinate.”

Analysis of insertion sort

[Now add statement costs and number of times executda$@RTION-SORT
pseudocode.]

* Assume that théth line takes time:;, which is a constant. (Since the third line
is a comment, it takes no time.)

 Forj = 2,3,...,n, lett; be the number of times that thehile loop test is
executed for that value qf.

* Note that when #or orwhile loop exits in the usual way—due to the test in the
loop header—the test is executed one time more than the lodyp b
The running time of the algorithm is

Z (cost of statememt (number of times statement is execyted
all statements

Let T(n) = running time of NSERTION-SORT.

T(n) = cntcm—1D)+cam—1)+csy ti+cy (1)

Jj=2 Jj=2

+C7Z(lj — 1) +Cg(n— 1) .

j=2
The running time depends on the values;ofThese vary according to the input.

Lecture Notes for Chapter 2: Getting Started 2-7

Best case
The array is already sorted.

Always find thatA[i] < keyupon the first time thavhile loop test is run (when
i=j—1).
All t; arel.
Running time is
T(n) = cin+ca(n—1)+csn—1)+cs(n—1)+cg(n—1)
= (c14+cr+tcs+ces+cg)n—(ca+ca+cs5s+cs).
Can expres§'(n) asan + b for constants: andb (that depend on the statement
costse;) = T'(n) is alinear functionof n.

Worst case
The array is in reverse sorted order.

Always find thatA[i] > keyin while loop test.

Have to compar&eywith all elements to the left of thgth position= compare
with j — 1 elements.

Since the while loop exits becauseeached), there’s one additional test after
thej — 1 tests= ¢, = j.
D= jand) (== (=1
j=2 j=2 j=2 j=2
n
Z j is known as ararithmetic seriesand equation (A.1) shows that it equals
j=1
n(n+1)
T

Since) ~j = (Z]) —1,it equals@ —1.

j=2 j=1

[The parentheses around the summation are not strictlyseage They are
there for clarity, but it might be a good idea to remind thedstuts that the
meaning of the expression would be the same even withoutatemntheses.]

n n—1
—1
Lettingk = j — 1, weseethad (j —1) =) k= }1(”72)
j=2 k=1
Running time is
1
T(n) = cin+c(n—1)+cs(n—1)4cs (@—1)

+ ¢s (@) + ¢7 (@) +cs(n—1)

C C C C C C
= (354-?64-37)}124-(C1+C2+C4+—5——6——7+C8)n

—(02+C4+C5+08).

Can expres§'(n) asan?® + bn + ¢ for constantst, b, ¢ (that again depend on
statement costsy T'(n) is aquadratic functiorof ».

2-8

Lecture Notes for Chapter 2: Getting Started

Worst-case and average-case analysis

We usually concentrate on finding tirst-case running time the longest run-
ning time foranyinput of sizen.

Reasons

* The worst-case running time gives a guaranteed upper boardeorunning
time for any input.

* For some algorithms, the worst case occurs often. For examyblen search-
ing, the worst case often occurs when the item being seafohéinot present,
and searches for absent items may be frequent.

* Why not analyze the average case? Because it's often abbatiass the worst
case.

Example: Suppose that we randomly choas@umbers as the input to inser-
tion sort.

On average, the key iA[j] is less than half the elements #jl .. — 1] and

it's greater than the other half.

= On average, thevhile loop has to look halfway through the sorted subarray
A[l..j — 1] to decide where to drokey.

= lj ~]/2

Although the average-case running time is approximatdfotfithe worst-case
running time, it's still a quadratic function af.

Order of growth

Another abstraction to ease analysis and focus on the iamtddatures.
Look only at the leading term of the formula for running time.

* Drop lower-order terms.

* Ignore the constant coefficient in the leading term.

Example: For insertion sort, we already abstracted away the actatdreent costs
to conclude that the worst-case running timeng + bn + c.

Drop lower-order terms> an?.
Ignore constant coefficient n2.

But we cannot say that the worst-case running tifite) equalsn?.

It grows liken?. But it doesn'tequaln?.

We say that the running time (n2) to capture the notion that tleeder of growth
is n2.

We usually consider one algorithm to be more efficient thasttaer if its worst-
case running time has a smaller order of growth.

Lecture Notes for Chapter 2: Getting Started 2-9

Designing algorithms

There are many ways to design algorithms.

For example, insertion sortiscrementat having sorted4[1.. j — 1], placeA[]
correctly, so thatd[1.. j] is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems that are smalléaniss of the
same problem.

Conguer the subproblems by solving them recursively.
Base caself the subproblems are small enough, just solve them by lioute.

[It would be a good idea to make sure that your students ardartable with
recursion. If they are not, then they will have a hard timearathnding divide
and conquer.]

Combine the subproblem solutions to give a solution to the origimabfem.

Merge sort

A sorting algorithm based on divide and conquer. Its woastecrunning time has
a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state eachakldpr as sorting a
subarrayA[p..r]. Initially, p = 1 andr = n, but these values change as we
recurse through subproblems.

TosortA[p..r]:

Divide by splitting into two subarrayd[p ..¢] andA[g + 1..r], whereq is the
halfway point ofA[p .. r].

Conquer by recursively sorting the two subarray$p .. ¢l andA[g + 1..r].

Combine by merging the two sorted subarrag$p . .¢] andA[g + 1..r] to pro-
duce a single sorted subarrdyp . .r]. To accomplish this step, we’ll define a
procedure MRGE(A, p,q,r).

The recursion bottoms out when the subarray had jakment, so that it's trivially
sorted.

MERGESORT(A4, p,r)

if p<r /I check for base case
qg = |(p+r)/2] /I divide
MERGESORT(A4, p,q) /I conquer
MERGESORT(A,q + 1,r) /I conquer

MERGE(A, p,q.r) /I combine

2-10

Lecture Notes for Chapter 2: Getting Started

Initial cal. MERGESORT(A, 1,n)

[It is astounding how often students forget how easy it isampute the halfway
point of p andr as their averagép + r)/2. We of course have to take the floor
to ensure that we get an integer indexBut it is common to see students perform
calculations likep + (r — p)/2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example

Bottom-up view forn = 8: [Heavy lines demarcate subarrays used in subprob-
lems.]

sorted array

1 2 3 4 5 6 7 8
|112/2[3[4]5] 67
/ \ merge

[2[4/5/7]1/2[3

ANWAY
[2[s]4[7]1/ 3] 2 9
1A 1Y e

1 2 3 8
initial array

[Examples whem is a power of2 are most straightforward, but students might
also want an example whenis not a power o0f.]

Bottom-up view forn = 11:

sorted array

1 2 3 4 5 6 7 8 9 10 1
[2[2[2]3] 4] 4 5] ¢8[7]7
/\ merge

|22[4[4]6 7] 2 35]6]7]

|/|\ 'E /I\ -
A WA
|

1 2 7 89 10 11
initial array

[Here, at the next-to-last level of recursion, some of tHgpsablems have only
element. The recursion bottoms out on these single-elegugmiroblems.]

Lecture Notes for Chapter 2: Getting Started 2-11

Merging

What remains is the MRGE procedure.

Input: Array A and indicesp, ¢, r such that

*p < q<r.
* SubarrayA[p..q] is sorted and subarrag|g + 1..r] is sorted. By the
restrictions orp, ¢, r, neither subarray is empty.

Output: The two subarrays are merged into a single sorted subartajpin. r].

We implement it so that it take®(n) time, wheren = r — p + 1 = the humber of
elements being merged.

What isn? Until now, n has stood for the size of the original problem. But now
we’re using it as the size of a subproblem. We will use thisinégue when we
analyze recursive algorithms. Although we may denote tigiral problem size
by n, in generak will be the size of a given subproblem.

Idea behind linear-time merging
Think of two piles of cards.

Each pile is sorted and placed face-up on a table with thelsshahrds on top.
We will merge these into a single sorted pile, face-down entdle.

A basic step:

* Choose the smaller of the two top cards.

* Remove it from its pile, thereby exposing a new top card.

* Place the chosen card face-down onto the output pile.

Repeatedly perform basic steps until one input pile is empty

Once one input pile empties, just take the remaining inplet @hd place it
face-down onto the output pile.

Each basic step should take constant time, since we chedkgusvo top cards.

There are< n basic steps, since each basic step removes one card from the
input piles, and we started withcards in the input piles.

Therefore, this procedure should takén) time.

We don't actually need to check whether a pile is empty bedach basic step.

Put on the bottom of each input pile a specahtinelcard.
It contains a special value that we use to simplify the code.
We useco, since that's guaranteed to “lose” to any other value.

The only way thato cannotlose is when both piles have exposed as their
top cards.

But when that happens, all the nonsentinel cards have gligseh placed into
the output pile.

We know in advance that there are exaetly p + 1 nonsentinel cards> stop
once we have performed— p + 1 basic steps. Never a need to check for
sentinels, since they’ll always lose.

Rather than even counting basic steps, just fill up the owtpay from indexp

up through and including index

2-12 Lecture Notes for Chapter 2: Getting Started

Pseudocode
MERGE(A, p,q,r)
n=q—p+1

Ny =r—gq
let L[1..n, + 1] andR[1..n, + 1] be new arrays
fori = 1ton,

Liil] =Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Liny + 1] = o0
R[n, + 1] = o0
i =1

j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
elseA[k] = R[J]
j=J+1

[The book uses a loop invariant to establish tN#RGE works correctly. In a
lecture situation, it is probably better to use an exampkhtow that the procedure
works correctly.]

Example
A call of MERGE(9, 12, 16)

Lecture Notes for Chapter 2: Getting Started 2-13

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A L2487 A A1 441128 %.
K k

1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45
L[2]4]s[7[=] R[12] 3 §] L[2]a]5]7]=] R[x]2]3]6]~]
J J

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A1 2] 5] 7 A .]1]2]2
K

1 1

2 3 45 1 2 3 45 1 2 3 45 2 3
JEEIEER Rﬂ?ﬂﬂﬂ LlAlals[7=] RIALZ)

]

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A ...\1|2|2|3|/1/ A ...\1|2|2|3|4
K k
1 5 1

CLLS[e] Rpalele] L[EDATS[e] R[XIE[ATe]
i J 1 J

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A...\1|2|2|3|4|5 A...\1|2|2|3|4|56

8 9 10 11 12 13 14 15 1617
A ...\1|2|2|3|4| 5 6|7\...
K

1 2 3 45 1 2
V.

LA AT RIELZEL]]

i j

[Read this figure row by row. The first part shows the arraysatstart of the

“for k = p tor”loop, whereA[p ..q] is copied intoL[1..n,] andA[g+1..r]is
copied intoR[1 . . n,]. Succeeding parts show the situation at the start of stiveess
iterations. Entries i with slashes have had their values copied to either R

and have not had a value copied back in yet. Entrids andR with slashes have
been copied back intd. The last part shows that the subarrays are merged back
into A[p ..r], which is now sorted, and that only the sentinets)(@are exposed in

the arrayd. andR.]

2-14

Lecture Notes for Chapter 2: Getting Started

Running time

The first twofor loops take®(n; + n,) = O(n) time. The lasfor loop makes:
iterations, each taking constant time, #@(n) time.
Total time: ®(n).

Analyzing divide-and-conquer algorithms

Use arecurrence equatior{more commonly, acurrence to describe the running
time of a divide-and-conquer algorithm.

Let T'(n) = running time on a problem of size

* If the problem size is small enough (say< ¢ for some constant), we have a
base case. The brute-force solution takes constant &ng).

* Otherwise, suppose that we divide int@ubproblems, eactyb the size of the
original. (In merge sory = b =2.)

* Letthe time to divide a size-problem beD (n).

* Have a subproblems to solve, each of siz¢gh = each subproblem takes
T (n/b) time to solve= we spend: T (n/b) time solving subproblems.

* Letthe time to combine solutions li&r).
* We get the recurrence

T(n) = e) ifn<c,
~ | aT(n/b) + D(n) + C(n) otherwise.

Analyzing merge sort

For simplicity, assume that is a power of2 = each divide step yields two sub-
problems, both of size exacthy/2.

The base case occurs when= 1.
Whenn > 2, time for merge sort steps:

Divide: Just compute as the average gf andr = D(n) = 6(1).
Conquer: Recursively solv@ subproblems, each of sizg2 = 27 (n/2).
Combine: MERGEON ann-element subarray takés(n) time = C(n) = O(n).

SinceD(n) = ©(1) andC(n) = ®(n), summed together they give a function that
is linear inn: ®(n) = recurrence for merge sort running time is

O(1) ifn=1,

Tn) =)
2T(n/2) +0Om) ifn>1.

Solving the merge-sort recurrence

By the master theorem in Chapter 4, we can show that this e has the
solutionT (n) = O(nlgn). [Reminder:g n stands fotog, n.]

Compared to insertion sor€(n?) worst-case time), merge sort is faster. Trading
a factor ofn for a factor of Ign is a good deal.

Lecture Notes for Chapter 2: Getting Started 2-15

On small inputs, insertion sort may be faster. But for largeugh inputs, merge
sort will always be faster, because its running time growsenstowly than inser-
tion sort’s.

We can understand how to solve the merge-sort recurrenbeuwtithe master the-
orem.

* Let ¢ be a constant that describes the running time for the basearasalso
is the time per array element for the divide and conquer stgp&course, we
cannot necessatrily use the same constant for both. It's aghwoing into this
detail at this point.]

* We rewrite the recurrence as

c ifn=1,

T = 0P 2y +en ifn>1.

* Draw arecursion tree which shows successive expansions of the recurrence.

* For the original problem, we have a costcaf, plus the two subproblems, each
costingT (n/2):

chn
T2) T(n/2)

* For each of the size/2 subproblems, we have a cost@f/2, plus two sub-
problems, each costinf(n /4):

cn
cn/2 cn/2
T(n/4) T(n/4) T(n/4) T(n/4)

* Continue expanding until the problem sizes get dowh:to

2-16

Lecture Notes for Chapter 2: Getting Started

Total:cnlgn+cn

Each level has cost:.

The top level has costn.
The next level down had subproblems, each contributing cost/2.
The next level hag subproblems, each contributing cost/4.

Each time we go down one level, the number of subproblemsldsiot the
cost per subproblem halves cost per level stays the same.

There are lg + 1 levels (height is Igz).

Use induction.
Basecaser =1=1level,andIgl +1=0+1=1.

Inductive hypothesis is that a tree for a problem siz& bfas Ig2' +1 = i +1
levels.

Because we assume that the problem size is a powzrtbé next problem
size up afteR’ is 2/ 1,

A tree for a problem size df *! has one more level than the sizetree=

i + 2 levels.

Since I2'*! + 1 =i + 2, we're done with the inductive argument.

Total cost is sum of costs at each level. Have lg 1 levels, each costingn
= total costiscnIgn + cn.

Ignore low-order term ofn and constant coefficient= ®(n Ign).

Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2
This solution is also posted publicly

SELECTION-SORT(A)

n = A.length
for j =1ton—1
smallest= j

fori = j+1ton
if A[i] < A[smalles}
smallest= i
exchanged[j] with A[smallest

The algorithm maintains the loop invariant that at the sthgach iteration of the
outerfor loop, the subarrayl[1.. j — 1] consists of thej — 1 smallest elements
in the arrayA[l..n], and this subarray is in sorted order. After the first 1
elements, the subarray|l..n — 1] contains the smallest — 1 elements, sorted,
and therefore element[n] must be the largest element.

The running time of the algorithm i®(n2) for all cases.

Solution to Exercise 2.2-4
This solution is also posted publicly

Modify the algorithm so it tests whether the input satisfiese special-case con-
dition and, if it does, output a pre-computed answer. Thétgse running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is when= 2, and we have lgn =2Ig2 =2-1= 2.

2-18

Solutions for Chapter 2: Getting Started

For the inductive step, our inductive hypothesis is thét/2) = (n/2)lg(n/2).
Then

T(n) = 2T(n/2)+n
= 2(n/2)lg(n/2) +n
= n(gn—1)+n
= nlgn—n+n
= nlgn,
which completes the inductive proof for exact powerg of

Solution to Exercise 2.3-4

Since it takes®(n) time in the worst case to insert[n] into the sorted array

A[l..n — 1], we get the recurrence
T(n) = O(1) ffn:l,
Tm—1)4+0m) ifn>1.

Although the exercise does not ask you to solve this recoereits solution is
T(n) = O(n?).

Solution to Exercise 2.3-5
This solution is also posted publicly

Procedure BNARY-SEARCH takes a sorted arrayl, a valuev, and a range
[low. . high|] of the array, in which we search for the valueThe procedure com-
paresy to the array entry at the midpoint of the range and decidelnnate half
the range from further consideration. We give both iteeatind recursive versions,
each of which returns either an indéxuch that4[i] = v, or NIL if no entry of
Allow. . high] contains the value. The initial call to either version should have
the parameterd, v, 1, n.

ITERATIVE-BINARY-SEARCH(A, v, low, high)

while low < high
mid = | (low + high)/2]
if v==A[mid]
return mid
elseifv > A[mid]
low = mid+ 1
elsehigh = mid—1
return NIL

Solutions for Chapter 2: Getting Started 2-19

RECURSIVEBINARY-SEARCH(A4, v, low, high)

if low > high
return NIL
mid = | (low + high)/2]
if v ==A[mid]
return mid
elseifv > A[mid]
return RECURSIVEBINARY-SEARCH(A, v, mid + 1, high)
else return RECURSIVEBINARY-SEARCH(A, v, low, mid — 1)

Both procedures terminate the search unsuccessfully wigerange is empty (i.e.,
low > high) and terminate it successfully if the valwehas been found. Based
on the comparison of to the middle element in the searched range, the search
continues with the range halved. The recurrence for theseedures is therefore
T(n) = T(n/2) + ©(1), whose solution i (n) = O(Ign).

Solution to Exercise 2.3-6

The while loop of lines 5-7 of procedureNBERTION-SORT scans backward
through the sorted arrax[1..j — 1] to find the appropriate place fot[j]. The
hitch is that the loop not only searches for the proper placef;], but that it also
moves each of the array elements that are bigger Aighone position to the right
(line 6). These movements can take as much® @g) time, which occurs when all
the j — 1 elements preceding|[;] are larger tham[;j]. We can use binary search
to improve the running time of the search@glg ;), but binary search will have no
effect on the running time of moving the elements. Therefoieary search alone
cannot improve the worst-case running time @EERTION-SORT to ®(n Ig n).

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements ifi.

Form the sef’ = {z : z = x — y for somey € S}.
Sort the elements i§'.

Merge the two sorted sefsandS’.

There exist two elements i$i whose sum is exactly if and only if the same
value appears in consecutive positions in the merged autput

a b~ wn

To justify the claim in step 4, first observe that if any valygears twice in the
merged output, it must appear in consecutive positions.s,Tiwe can restate the
condition in step 5 as there exist two elements iwhose sum is exactly if and
only if the same value appears twice in the merged output.

2-20

Solutions for Chapter 2: Getting Started

Suppose that some value appears twice. Thew appeared once if and once
in §’. Becausav appeared irf’, there exists some € S such thatv = x — y, or
x =w + y. Sincew € S, the elements andy are inS and sum tor.

Conversely, suppose that there are valwes € S such thatw + y = x. Then,
sincex — y = w, the valuew appears ir§’. Thus,w is in bothS andS’, and so it

will appear twice in the merged output.

Steps 1 and 3 requi®(n Ig n) steps. Steps 2, 4, 5, and 6 requi?é) steps. Thus
the overall running time i€ (n Ig n).

A reader submitted a simpler solution that also run®im Ign) time. First, sort

the elements i, taking®(n Ig n) time. Then, for each elementin S, perform a
binary search it for x — y. Each binary search takeéx(Ig n) time, and there are
are most: of them, and so the time for all the binary searche®is Ign). The
overall running time i (n Ign).

Another reader pointed out that sinfeis a set, if the value: /2 appears inS, it

appears ir just once, and s® /2 cannot be a solution.

Solution to Problem 2-1

[It may be better to assign this problem after covering asptitpnotation in Sec-
tion 3.1; otherwise part (c) may be too difficult.]

a. Insertion sort take® (k?) time perk-element list in the worst case. Therefore,
sortingn/k lists of k elements each takeé®(k?n/k) = O(nk) worst-case
time.

b. Just extending the 2-list merge to merge all the lists at omoald take
O -(n/k)) = ©(n?/k) time (» from copying each element once into the
result list,n/k from examiningn/k lists at each step to select next item for
result list).

To achieve®(n Ig(n/ k))-time merging, we merge the lists pairwise, then merge
the resulting lists pairwise, and so on, until there’s just ist. The pairwise
merging require®(n) work at each level, since we are still working earel-
ements, even if they are partitioned among sublists. Thebeurof levels,
starting withn / k lists (with £ elements each) and finishing witHist (with n
elements), idlg(n/k)]. Therefore, the total running time for the merging is

Omlg(n/k)).

c. The modified algorithm has the same asymptotic running tisiestandard
merge sort wher®(nk + nlg(n/k)) = ©(lgn). The largest asymptotic
value ofk as a function of: that satisfies this condition is= ©(Ign).

To see why, first observe thatcannot be more tha®(Ig») (i.e., it can't have

a higher-order term than lg), for otherwise the left-hand expression wouldn't
be®(n Ign) (because it would have a higher-order term thdgn). So all we
need to do is verify that = ©(Ignr) works, which we can do by plugging
k=Ilgninto®nk +nlgn/k)) = ®@mk +nlgn —nlgk) to get

Solutions for Chapter 2: Getting Started 2-21

Omlgn +nlgn —nlglgn) = ®2nlgn —nlglgn) ,

which, by taking just the high-order term and ignoring thastant coefficient,
equals®(n lgn).

d. In practice,k should be the largest list length on which insertion sorasdr
than merge sort.

Solution to Problem 2-2

a. We need to show that the elementsAifform a permutation of the elements
of A.

b. Loopinvariant: Atthe start of each iteration of tHer loop of lines 2—4,
A[j] = min{A[k] : j <k < n} and the subarray[; ..n] is a permuta-
tion of the values that were id[; .. n] at the time that the loop started.

Initialization: Initially, j = n, and the subarray|[; ..n] consists of single
elementA[r]. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value ¢f By the loop in-
variant, A[j] is the smallest value inl[j ..n]. Lines 3—4 exchangd[;]
and A[j — 1] if A[j] is less thand[; — 1], and soA[; — 1] will be the
smallest value iM[j — 1..n] afterward. Since the only change to the sub-
array A[j — 1..n] is this possible exchange, and the subardgy .. n] is
a permutation of the values that weredt; ..n] at the time that the loop
started, we see that[j; — 1..#n] is a permutation of the values that were in
A[j — 1..n] at the time that the loop started. Decrementjnfpr the next
iteration maintains the invariant.

Termination: The loop terminates whep reaches. By the statement of the
loop invariant,A[i] = min{A[k] :i <k <n}andA[i ..n]is a permutation
of the values that were id[i . . n] at the time that the loop started.

c. Loopinvariant: Atthe start of each iteration of tHer loop of lines 14,
the subarray[1..i — 1] consists of theé — 1 smallest values originally in
A[l..n], in sorted order, and|i ..n] consists of the —i + 1 remaining
values originally inA[1 . . n].

Initialization: Before the first iteration of the loop, = 1. The subarray
A[l..i — 1] is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given valueiofBy the loop invari-
ant,A[1..i — 1] consists of thé smallest values id[1. . r], in sorted order.
Part (b) showed that after executing tloe loop of lines 2—4,A4[i] is the
smallest value ird[i .. n], and soA[l ..i] is now thei smallest values orig-
inally in A[1..n], in sorted order. Moreover, since tfw loop of lines 2—4
permutesA[i .. n], the subarray[i + 1..n] consists of thes — i remaining
values originally inA[1 .. n].

Termination: Thefor loop of lines 1-4 terminates whén= n, sothat — 1 =
n — 1. By the statement of the loop invariamt]1..i — 1] is the subarray

2-22 Solutions for Chapter 2: Getting Started

A[l..n—1], and it consists of the—1 smallest values originally id[1 . . n],
in sorted order. The remaining element must be the largdst vaA[l . . n],
and it is inA[n]. Therefore, the entire array[1 .. n] is sorted.

Note: Tn the second edition, thier loop of lines 1-4 had an upper bound
of A.length The last iteration of the outdor loop would then result in no
iterations of the innefor loop of lines 1-4, but the termination argument would
simplify: A[l..i — 1] would be the entire array[1 .. n], which, by the loop
invariant, is sorted.

d. The running time depends on the number of iterations offtineloop of
lines 2—4. For a given value of this loop makes — i iterations, and takes

on the valued, 2, ...,n — 1. The total number of iterations, therefore, is
n—1 n—1 n—1
dm—iy = Y n=>i
i=1 i=1 i=1
nn—1)

= nn—1)— >

_ nn—1)

B 2

_ n?> n

Thus, the running time of bubblesort é&(n?) in all cases. The worst-case
running time is the same as that of insertion sort.

Solution to Problem 2-4
This solution is also posted publicly

a. Theinversions arél, 5), (2, 5), (3, 4), (3,5), (4,5). (Remember that inversions
are specified by indices rather than by the values in the .array

b. The array with elements fron{l,2,...,n} with the most inversions is
(n,n—1,n—2,...,2,1). Foralll <i < j < n, there is an inversio(, j).
The number of such inversions(f§) = n(n —1)/2.

C. Suppose that the array starts out with an inversiofk, j). Thenk < j and
Alk] > A[j]. At the time that the outefor loop of lines 1-8 setkey = A[/],
the value that started id[k] is still somewhere to the left ofl[j]. That is,
it's in A[i], wherel < i < j, and so the inversion has becotfiej). Some
iteration of thewhile loop of lines 5—7 movesi[i] one position to the right.
Line 8 will eventually dropkeyto the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that a&&teyr tharkey,
it moves only elements that correspond to inversions. lerotords, each
iteration of thewhile loop of lines 5-7 corresponds to the elimination of one
inversion.

d. We follow the hint and modify merge sort to count the numbeneérsions in
O lgn) time.

Solutions for Chapter 2: Getting Started 2-23

To start, let us define merge-inversionas a situation within the execution of
merge sort in which the MRGE procedure, after copyind|[p..q] to L and
Alg + 1..r]t0 R, has valuesc in L andy in R such thatx > y. Consider
an inversion(i, j), and letx = A[i] andy = A[j], so that < j andx > y.
We claim that if we were to run merge sort, there would be dyxacte merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within theR@E procedure. More-
over, since MERGE keeps elements withih in the same relative order to each
other, and correspondingly faR, the only way in which two elements can
change their ordering relative to each other is for the greate to appear ih
and the lesser one to appearRn Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of BRGE that involves bothe and y, they are in the
same sorted subarray and will therefore both appedr an both appear iR

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-irwerdn fact, the
correspondence between inversions and merge-inversamseito-one. Sup-
pose we have a merge-inversion involving valwesnd y, wherex originally
wasA[i] andy was originallyA[j]. Since we have a merge-inversion;> y.
And sincex isin L andy is in R, x must be within a subarray preceding the
subarray containing. Thereforex started out in a position precedingy’s
original position/, and sa(i, j) is an inversion.

Having shown a one-to-one correspondence between inasrsind merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingin R. Let z be the smallest value ih
that is greater tham. At some point during the merging processand y will

be the “exposed” values ih andR, i.e., we will havez = L[i] andy = R[]

in line 13 of MERGE At that time, there will be merge-inversions involvimg
andL[i], L[i +1],L[i +2],..., L[n,], and these, —i + 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
thatz andy become exposed during theBRGE procedure and add the value
of n; —i + 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works asawe just de-
scribed. It also sorts the arraly.

COUNT-INVERSIONS(A, p, 1)

inversions= 0
if p<r
q=[(p+r)/2]
inversions= inversions+ COUNT-INVERSIONS(4, p, q)
inversions= inversions+ COUNT-INVERSIONS(A,q + 1,r)
inversions= inversions+ MERGEINVERSIONS(4, p,q, 1)
return inversions

2-24

Solutions for Chapter 2: Getting Started

MERGEINVERSIONS(A4, p,q,r)

n=q—p-+1

Ny =r—q

let L[1..n, + 1] andR[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg +J]
Lin;+1] = o0
R[ny, + 1] = o0
i =1
j=1
inversions= 0
fork = ptor
if R[j] < LJi]
inversions= inversions+n, —i + 1
Alk] = R[/]
j=Jj+1
elseAlk] = LJi]
i =i+1
return inversions

The initial call is COUNT-INVERSIONS(A, 1, n).

In MERGEINVERSIONS wheneverR|[j] is exposed and a value greater than
R[j] becomes exposed in the array, we increaseversionsby the number
of remaining elements i.. Then becaus®[;j + 1] becomes expose®|;]
can never be exposed again. We don't have to worry about mirergesions
involving the sentinebo in R, since no value i will be greater thamo.

Since we have added only a constant amount of additional teodach pro-
cedure call and to each iteration of the l&st loop of the merging procedure,
the total running time of the above pseudocode is the samer asdrge sort:
O lgn).

