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Preface

This solutions manual is meant for the instructor of a course using the main
book as its text. The solutions found here are not the sort of solutions I would
expect from a student in my course, rather, these are terse but complete
solutions to help you steer the student in the right direction, should they have
any difficulty with any of these problems.

All errors in this solutions manual are my own. If you notice any errors or
typos, please feel free to contact me and I will be happy to fix them.

Dr. Corey Dunn
California State University, San Bernardino

April, 2016
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Sets, Functions, and Proofs

CONTENTS

Chapter 1
Section 1.1: Logic, and an Introduction to Proof.

1.1.1. Suppose a is even. Then a2 is the product of a with a, the product
of an even number with another even number. Therefore, a2 is even.

1.1.2. We prove the contrapositive: Suppose a is odd. Then a2 is the prod-
uct of a with a, the product of an odd number with another odd
number. Therefore a2 is odd.

1.1.3. If a is odd, then a2 as the product of an odd number with another
odd number is also odd. The converse is proven in Exercise 2.

1.1.4. The truth table appears below:

P Q ¬(P ∨Q) (¬P ) ∧ (¬Q)
T T F F

T F F F

F T F F

F F T T

1.1.5. ¬(P ⇒ Q) is true precisely when P ⇒ Q is false. This occurs
only when P is true and Q is false, so ¬(P ⇒ Q) is equivalent to
P ∧ (¬Q):

P Q P ⇒ Q ¬(P ⇒ Q) P ∧ (¬Q)

T T T F F

T F F T T
F T T F F

F F T F F

1.1.6. Suppose n is odd. Then 3n is also odd because it is the product of
two odd numbers. Then 3n+ 7 is also odd because it is the sum of
an odd number and another odd number.

1
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1.1.7. We prove both by contradiction. Suppose a
b + α = p

q , then α =
p
q −

a
b = pb−qa

qb is expressible as the quotient of whole numbers, a

contradiction. If a
bα = p

q , then α = pb
qa , the latter is well-defined

since q 6= 0, and because x 6= 0 implies a 6= 0. So, we again reach a
contradiction.

1.1.8. (a) We prove first that if a2 is a multiple of 3, then a is a multiple
of 3, and we do so by proving the contrapositive. Suppose a is not
a multiple of 3. Then a can be expressed as a multiple of 3, with
a remainder of either 1 or 2. So suppose that a = 3k + r, where k
is a whole number, and r = 1 or 2. Then a2 = (3k + r)(3k + r) =
9k2 + 6kr + r2 = 3(3k2 + 2kr) + r2. Thus a2 is a multiple of 3 plus
some remainder r2: if this remainder not divisible by 3 then a2 is
not divisible by 3, which would complete the proof. If r = 1 then
r2 is also 1, and if r = 2 then r2 = 4, and neither of these cases
therefore result in a2 being divisible by 3.

Now suppose that
√

3 = a
b for whole numbers a, b, where a and

b have no common factors: this can be done since if such whole
numbers existed, we could find possibly new whole numbers where
the above fraction has been reduced into lowest terms. Then 3b2 =
a2, so a2 is divisible by 3, and so by our previous argument, a is
divisible by 3. So there exists a whole number k with a = 3k. So
now 3b2 = a2 = (3k)2 = 9k2, so b2 = 3k2. But now b2 is a multiple
of 3, so it must be the case that b is a multiple of 3. But now both
a and b are multiples of 3, a contradiction to them not having any
factors in common.

(b) It is not the case that if a2 is a multiple of 4, then a is a multiple
of 4: consider a = 6 and a2 = 36. a2 = 36 is a multiple of 4, but
a = 6 is not.

Section 1.2: Sets and their Operations.

1.2.1. ∅ is a set that contains no elements, and {∅} is a set that contains
one element (that element happens to be the empty set).

1.2.2. Let s ∈ S. Then s ∈ {s}, and so s ∈ ∪x∈S{x}. Now let s ∈ ∪x∈S{x}.
Then s ∈ {x} for some x ∈ S, but this set contains only one element,
x. So x = s, and so since x ∈ S it follows that s ∈ S. We have proven
these sets are equal by double-inclusion.

1.2.3. Let x ∈ S1 ∩S2)c. Then x /∈ S1 ∩S2. Therefore x is either not in S1

or x is not in S2. So, x ∈ Sc1 or x ∈ Sc2, so that x ∈ Sc1 ∪ Sc2.

To prove the other inclusion, we let x ∈ Sc1 ∪ Sc2. Then x ∈ Sc1 or
x ∈ Sc2, and so x is either not in S1 or not in S2. So, x /∈ S1 ∩ S2,
and so x ∈ (S1 ∩ S2)c. We have proven these sets are equal by
double-inclusion.
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1.2.4. (a) Let x ∈ (∪α∈ASα)c. Then x /∈ ∪α∈ASα. So x /∈ Sα for every
α ∈ A, and so x ∈ ∩α∈AScα.

To prove the other inclusion, we let x ∈ ∩α∈AScα Then x ∈ Scα for
every α, and so x /∈ Sα for every α. Therefore x /∈ ∪α∈ASα, and so
x ∈ (∪α∈ASα)c.

(b) Let x ∈ (∩α∈ASα)c. Then x /∈ ∩α∈ASα. Then x /∈ Sα for some
α ∈ A, so x ∈ ∪α∈AScα.

To prove the other inclusion, let x ∈ ∪α∈AScα. Then x ∈ Scα for
some α ∈ A. Therefore x /∈ Sα for some α ∈ A, and so x /∈ ∩α∈ASα,
so x ∈ (∩α∈ASα)c.

1.2.5. We prove this by double-inclusion. Let x ∈ S×T . Then there exists
s ∈ S and t ∈ T with x = (s, t). Then x ∈ Ts, and so x ∈ ∪x∈STx.
Now let x ∈ ∪x∈STx. Then for some s ∈ S, x ∈ Ts, and so there is
some t for which x = (s, t). Therefore x ∈ S × T .

1.2.6. There are 8 elements in P(S):

∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

1.2.7. Suppose S ∈ S. Then S is a member of itself, and S is the set of all
sets which are not members of themselves. So S /∈ S. Now suppose
S /∈ S. S is therefore not a member of itself, and so S ∈ S.

1.2.8. This is a paradox: no one on the island may shave the barber. If the
barber shaves the barber, then it is the barber who shaves himself,
and the barber only shaves those who no not shave themselves. If
someone else on the island shaves the barber, then this is impos-
sible as well, since only the barber shaves those who do not shave
themselves, and this would be a situation where someone else on
the island shaves someone who is not shaving themself (even if the
person being shaved is the barber).

Section 1.3: Mathematical Induction.

1.3.1 The base case clearly holds: 2 = 2. If 2 + 4 + · · · + 2n = n(n + 1)
for some n, then

2 + 4 + · · ·+ 2n+ 2(n+ 1) = n(n+ 1) + 2(n+ 1) = (n+ 1)(n+ 2).

1.3.2 Since 12 = 1, the base case clearly holds. If the statement is true
for some n, then

12 + 22 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
(n+ 1)(n+ 2)(2n+ 3)

6
.
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1.3.3 If S has only one element, then the subsets of S are S itself and
the empty set. So there are 21 subsets in this case. If any set having
n elements has 2n subsets for some n, then suppose S has n + 1
elements. Let x ∈ S. Then the set S − {x} has n elements, and
has 2n subsets by our induction hypothesis. Place x in each of the
subsets of S − {x}: there are 2n of these as well. We have now
counted every subset of S: if x is not in such a subset, then we
counted these first. If x is in a subset, we counted these next. So
there are 2 · 2n = 2n+1 subsets of S.

1.3.4 When n = 1, there is nothing to prove, and when n = 2 the DeMor-
gan’s laws assert this is the case. Now suppose n ≥ 2. By grouping
the first n terms and using DeMorgan’s laws and the induction hy-
pothesis,

(∩n+1
k=1Sk)c = (∩nk=1Sk ∩ Sn+1)c = (∩nk=1Sk)c ∪ Scn+1 = ∪n+1

k=1S
c
k.

1.3.5 Suppose there exists a nonempty S ⊂ N that has no smallest el-
ement. We use Mathematical Induction to prove that S must be
empty by proving: k /∈ S for all k ≤ n, with k, n ∈ N. The first
statement reads 1 /∈ S. If this were not true and 1 ∈ S, then S would
have a smallest element. So, 1 /∈ S. Now suppose 1, 2, . . . , n /∈ S.
Could n+ 1 ∈ S? If so, then n+ 1 would be the smallest element of
S, and we assumed that S has no smallest element. So n+ 1 /∈ S.

1.3.6 The argument need not be valid when n = 2. A black dog and
a white dog satisfy the condition that when you remove one the
remaining set has the same color.

Section 1.4: Functions.

1.4.1 (a) f(S) = [1, 16]. (b) f−1(T ) = [−2, 2]. (c) f−1(T ) = ∅. (d) Yes.

1.4.2 (a) Let y ∈ f(S1) ∩ f(S2). Then y ∈ f(S1) and y ∈ f(S2). So there
exists and xi ∈ Si with f(xi) = y. But f is injective, so x1 = x2,
and this element must be in S1 ∩ S2. So, y ∈ f(S1 ∩ S2). (b) Let
f(x) = x2, and S1 = {−1} and S2 = {1}.

1.4.3 (a) Let y ∈ f(X−S). So there exists an x ∈ X−S with f(x) = y. So,
y ∈ f(X). If y ∈ f(S), then there exists an s ∈ S with f(s) = y, and
since f(x) = f(s) = y and f is injective, x = s. But x ∈ X − S and
s = x ∈ S, a contradiction. So y /∈ f(S), and so y ∈ f(X) − f(S).
(b) Let f(x) = x2, X = {−1, 1} and S = {−1}. f(X − S) = {1}
but f(X)− f(S) = {1} − {1} = ∅.

1.4.4 For any x ∈ D, if f(x) ≥ g(x), then max{f, g}(x) = f(x), and
min{f, g}(x) = g(x). Then |f(x) − g(x)| = f(x) − g(x), and the
formulas hold. A similar analysis demonstrates the formulas hold if
f(x) ≤ g(x).
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1.4.5 Let x ∈ f−1(T1 ∩ T2). Then f(x) ∈ T1 ∩ T2. So, f(x) is in both of
these sets, and as a result x ∈ f−1(T1) and x ∈ f−1(T2).

1.4.6 If x ∈ S, then f(x) ∈ f(S), and x is an element that maps to f(x),
so x ∈ f−1(f(S)). If f is injective, then x is the only element that
does this, so if x ∈ f−1(f(S)), f(x) ∈ f(S), and so x ∈ S.

1.4.7 Let y ∈ f(f−1(T )). There exists an x ∈ f−1(T ) with f(x) = y. Since
x ∈ f−1(T ), f(x) = y ∈ T . If f is surjective, and y ∈ T , then there
exists an x ∈ f−1(T ) with f(x) = y. So, f(x) = y ∈ f(f−1(T )).

1.4.8 Let z ∈ Z. Since g is surjective, there exists a y ∈ Y with g(y) = z.
Since f is surjective, there exists an x ∈ X with f(x) = y, so
(g ◦ f)(x) = z.

1.4.9 If g ◦ f is injective but f were not injective, there would exist
nonequal x1, x2 ∈ X with f(x1) = f(x2). Then (g ◦ f)(x1) =
(g ◦ f)(x2), which is a contradiction.

1.4.10 (a) f(x) = 1
x . (b) g(x) = x− 1. (c) As a composition of bijections,

use g ◦ f from parts (a) and (b).

1.4.11 Suppose an inverse exists. f is surjective since if y ∈ Y , g(y) ∈ X
with f(g(y)) = y. f is injective since if we consider f(x1) = f(x2),
then

g(f(x1)) = x1 = x2 = g(f(x2)).

If f is a bijection, for y ∈ Y , define g(y) to be the unique number
x ∈ X for which f(x) = y. Then g(y) = g(f(x)) = x by definition.
Also, for y ∈ Y , g(y) = x, where f(x) = y, so that f(g(y)) = f(x) =
y.

Section 1.5: Cardinality.

1.5.1 This is true by definition if S is countably infinite (g is a bijection).
If S = {a1, . . . , an} is finite then define the surjection g(k) = ak for
k = 1, . . . , n, and g(k) = an for k > n.

1.5.2 We first assume S and T are disjoint. There are bijections f :
{1, . . . , NS} → S and g : {1, . . . , NT }. Define h : {1, . . . , NS +
NT } → S ∪ T as h(x) = f(x) for x = 1, . . . , NS , and h(x) =
g(x−NS) for x = NS +1, . . . , NS +NT . If S and T are not disjoint,
replace every element in S ∩ T in T with a duplicate element (that
is a different element) and call this new set T̃ . Then S and T̃ are
disjoint, and both of them still finite, and S ∪ T ⊆ S ∪ T̃ . Now by
Proposition 1.44, S ∪ T is finite.

1.5.3 Define f(x) = x if x is not of the form 1
2k

for k = 0, 1, . . .. Then

define f( 1
2k

) = 1
2k+1 .

1.5.4 (a) False, {1} is not equivalent to {1, 2}. (b) False, Q is not equiv-
alent to R. (c) False, choose S to be finite and T to be countably
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infinite. (d) True, both are equivalent to N, and set equivalence is
an equivalence relation. (e) False, R is not equivalent to P(R), but
both are uncountable since R ⊆ P(R).

1.5.5 The bijection f(x) = (b − a)x + a shows [0, 1] ∼ [a, b], so [a, b] is
uncountable. Each of the following sets has a subset of the form
[c, d] for c < d, so each of these are uncountable by Proposition
1.51.

1.5.6 We can define the injection g(x) = {x}. Suppose there were a sur-
jection f : X → P(X). Define T = f(y) as suggested in the hint.
If y ∈ T , then since f(y) = T , we contradict the definition of T . If
y /∈ T , then by definition of T , y ∈ T , also a contradiction.

1.5.7 The false statement is that S and T are equivalent to N. It requires
some explanation that the cross product of two countable sets is
countable.

1.5.8 Since S and T are countable, there exists surjections f, g from N to S
and T , respectively, by Exercise 1. The function f×g : N×N→ S×T
defined by (f × g)(n,m) = (f(n), g(m)) is a surjection from the
countable N×N onto S×T . S×T is now countable by Proposition
1.53.

1.5.9 If they were countable, then R would be countable as the union of
the rationals and the irrationals.

1.5.10 It needn’t be. If Si = ∅, then such a cross product is empty. But if
infinitely many of the Si contain more than one element, the cross
product is uncountable. For example, if Si = {0, 1, . . . , 9}, then this
countable cross product is in bijection with the decimal expansions
in R occurring after a decimal point, which is [0, 1].


