
Solutions to Chapter 2 Problems
Introduction to Communication Systems, by Upamanyu Madhow

Problem 2.1 (a) We do this in two ways. The first is to directly show that y = x ∗ h for some
h, which shows that the system is LTI with impulse response h. We can rewrite

y(t) =

∫ ∞

−∞

e−(t−u)I{u≤t}x(u)du =

∫ ∞

−∞

e−(t−u)I{t−u≥0}x(u)du

We see that this is in the convolution form

y(t) =

∫ ∞

−∞

h(t− u)x(u)du

where h(t) = e−tIt≥0.

The second approach is to show that the system is LTI and then feed in an impulse to find
the impulse response. Linearity of y in x is clear, hence let us check for time invariance. Let
x1(t) = x(t− t0) be a delayed version of the input. The corresponding output is given by

y1(t) =

∫ t

−∞

eu−tx1(u)du =

∫ t

−∞

eu−tx(u− t0)du

Making the change of variables v = u− t0, we obtain that

y1(t) =

∫ t−t0

−∞

ev+t0−tx(v)dv =

∫ t−t0

−∞

ev−(t−t0)x(v)dv

Comparing with the original expression for y(t), it is clear that we have simply replaced t by
t − t0. That is, y1(t) = y(t − t0) and the system is time invariant. We now find the impulse
response by setting the input to an impulse:

h(t) =

∫ t

−∞

eu−tδ(u)du

The impulse at time zero falls into the integration interval only if t ≥ 0, in which case we select
the value of the integrant at u = 0. We therefore obtain h(t) = e−tI{t≥0} as before.
(b) It is easy to see that the Fourier transform of the impulse response is H(f) = 1

j2πf+1
, with

magnitude |H(f)| = 1√
4π2f2+1

. The plot is omitted, but it is clear that this is a sloppy lowpass

filter.
(c) We compute the energy in the frequency domain using Parseval’s identity. The input x(t) =
2sinc(2t) ↔ X(f) = I[−1,1](f), and the output Y (f) = H(f)X(f) = 1

j2πf+1
I[−1,1](f). The energy

is given by

Ey =

∫ ∞

−∞

|Y (f)|2df =

∫ 1

−1

1

4π2f 2 + 1
df

Making the standard substitution 2πf = tan θ, so that 2πdf = sec2 θ dθ and 4π2f 2 + 1 =
tan2 θ + 1 = sec2 θ, we obtain (the limits of the transformed integral are ± tan−1(2π) = ±1.413)

Ey =

∫ 1.413

−1.413

1

2π
dθ = 0.4498
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Figure 1: Convolution of a signal and its matched filter in 2.2(a).

Problem 2.2 (a) The signal x2(t) = x1(−t) is the matched filter for x1, and the convolution
output at time t is simply the correlation of x1 with itself, delayed by time t:

y(t) = (x1 ∗ x2)(t) =

∫

x1(u)x2(t− u)du =

∫

x1(u)x1(u− t)du

It is easy to check that y(t) = y(−t), so we only need to evaluate the convolution for t ≥ 0, as
follows (see Figure 1):

y(t) =

∫ ∞

t

e−ue−(u−t)du = et
∫ ∞

t

e−2udu = et
−e−2u

2
|∞t =

1

2
e−t

Since y(t) is symmetric, we can replace t by |t to obtain

y(t) =
1

2
e−|t|

sketched in Figure 1.
(b) A graphical solution is provided in Figure 2.
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Figure 2: Graphical solution of convolution in Problem 2.2(b).

Problem 2.3 (a) The signal u(t) and its derivative v(t) = du/dt are sketched in Figure 3. We
see that v(t) is the sum of two periodic impulse trains, each of period T = 0.5 microseconds,
with fundamental frequency f0 =

1
T
= 2 MHz. Its Fourier series is given by

v(t) =
∑

k

vke
j2πkf0t =

∑

k

vke
j4πkt
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Figure 3: The periodic signal u(t) in Problem 2.3, and its derivative v(t).

with v0 = 0 and

vk =
1

T
− 1

T
e−j2πkf0×0.1 = 2

(

1− e−j0.4πk
)

= , k 6= 0

(using the Fourier series for the impulse train.)
(b) We have

uk =
vk

j2πf0k
=

1− e−j0.4πk

j2πk
, k 6= 0

This can be rewritten as a sinc function. Noting that

1− e−j0.4πk = e−j0.2πk
(

ej0.2πk − e−j0.2πk
)

= e−j0.2πk 2j sin 0.2πk

we obtain that

uk =
e−j0.2πk 2j sin 0.2πk

j2πk
= 0.2e−j0.2πksinc0.2πk , k 6= 0 (1)

The DC coefficient is given by

u0 =
1

T

∫ T

0

u(t)dt = 0.1/0.5 = 0.2

Note that this is consistent with what we obtain when we set k = 0 in the expression (1) derived
for k 6= 0, since sinc0 = 1.
(c) Since the fundamental is at 2 MHz, an LPF of bandwidth 100 KHz passes only the DC
component, so the output is u0 = 0.2.
(d) Same answer as (c).

Problem 2.4 (a) The tent signal

u(t) = I[−0.5,0.5](t) ∗ I[−0.5,0.5](t) ↔ U(f) = sinc2f

(sketch omitted).
(b) We have sinc2t ↔ 1

2
I[−1,1](f) and sinc4t ↔ 1

4
I[−2,2](f), so that

v(t) = sinc2tsinc4t ↔ V (f) =
1

2
I[−1,1](f) ∗

1

4
I[−2,2](f)
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Figure 4: The Fourier transfer V (f) in Problem 2.4(b).
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Figure 5: The Fourier transfer S(f) in Problem 2.4(c). Frequency axis not to scale.

sketched in Figure 4.
(c) The spectrum is computed as

s(t) = v(t) cos 200πf ↔ S(f) =
1

2
V (f − 100) +

1

2
V (f + 100)

and is sketched in Figure 5, using the results of (b).
(d) While U(f) in (a) is not strictly bandlimited, its energy is concentrated around DC. The
signal V (f) in (b) is strictly bandlimited around DC. The signal S(f) in (c) is bandlimited, and
has energy concentrated away from DC. Thus, the signals in (a) and (b) are baseband, and the
signal in (c) is passband.

Problem 2.5 (a) Noting that s(t) = sinc2t ↔ S(f) = 1
2
I[−1,1](f), we have

∫ ∞

−∞

sinc22t dt =

∫ ∞

−∞

|s(t)|2 dt =

∫ ∞

−∞

|S(f)|2 df =

∫ 1

−1

1

4
df =

1

2

(b) Note that s1(t) = sinct ↔ S1(f) = I[−0.5,0.5](f) and s2(t) = sinc2t ↔ S2(f) =
1
2
I[−1,1](f), and

that the product of these two signals is even. Thus,

∫ ∞

0

sinct sinc2t dt =
1

2

∫ ∞

−∞

s1(t)s
∗
2(t) dt =

1

2

∫ ∞

−∞

S1(f) S
∗
2(f) df =

1

2

∫ 0.5

−0.5

1

2
df =

1

4

While the waveforms are real-valued in both time and frequency domains, we do put in conjugates
to highlight that we are applying Parseval’s identity in its correct form.

Problem 2.6 (a) We have u(t) = u1(t)u2(t), where u1(t) = sinc(t) ↔ U1(f) = I[− 1

2
, 1
2
](f) and

u2(t) = sinc(2t) ↔ U2(f) =
1
2
I[−1,1](f), so that U(f) = (U1 ∗ U2)(f) is a trapezoidal pulse shown

in Figure 6. Since the unit of time is microseconds, the unit of frequency is MHz.
(b) The signal s(t) = u(t) cos 200πt ↔ (U(f − 100) + U(f + 100))/2 is sketched in Figure 6.

Problem 2.7 The signal s(t) = sinc4t ↔ S(f) = 1
4
I[−2,2](f). We have p(t) = sinc2t ↔ P (f) =

(1 − |f |)I[−1,1](f) (tent in frequency domain), so that the filter impulse response and transfer

4
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Figure 6: Frequency domain plots for Problem 2.6.
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Figure 7: Frequency domain plots for Problem 2.7: filter input S(f) and transfer function H(f)
on one plot, and output Y (f) in the other. The amplitude scaling in the two plots is not the
same.
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Figure 8: Spectrum of the tent signal in Problem 2.8(a) is sinc2(f).
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function are given by h(t) = p(t) cos 4πt ↔ H(f) = 1
2
(P (f − 2) + P (f + 2)). We sketch S(f)

and H(f), which then yields Y (f) = S(f)H(f) as shown in Figure 7.

Problem 2.8 (a) The tent signal can be written as a convolution of two boxes s(t) = I[−1/2,1/2](t)∗
I[−1/2,1/2](t). Since I[−1/2,1/2](t) ↔ sinc(f), we have S(f) = sinc2(f), plotted in Figure 8.
(b) The 99% energy containment bandwidth W satisfies

∫ W

−W

|S(f)|2df = 2

∫ W

0

sinc4fdf = 0.99Es

where the energy is given by

Es =

∫ ∞

−∞

|S(f)|2df =

∫ ∞

−∞

|s(t)|2dt = 2

∫ 1

0

(1− t)2dt = 2/3

Using the symmetry of |S(f)|2 and plugging in its expression, we see that we need to numerically
solve the following equation for W :

∫ W

0

sinc4fdf = 0.33

We get W = 0.58. Since the unit of time is ms, the unit of frequency is KHz, so the 99%
bandwidth is 0.58 KHz.
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Figure 9: Sketch of signal and its matched filter for Problem 2.12(a).

Problem 2.9 (a) The cosine pulse

p(t) = cosπt I[−1/2,1/2](t) =
1

2

(

ejπt + e−jπt
)

I[−1/2,1/2](t)

We have I[−1/2,1/2](t) ↔ sincf , so that

ejπtI[−1/2,1/2](t) ↔ sinc(f − 1

2
) , e−jπtI[−1/2,1/2](t) ↔ sinc(f +

1

2
)

Plugging in, we have

P (f) =
1

2

(

sinc(f − 1

2
) + sinc(f +

1

2
)

)

We can now simplify further:

sinc(f − 1

2
) =

sin
(

π(f − 1
2
)
)

π(f − 1
2
)

=
sin

(

πf − π
2

)

π(f − 1
2
)

= − cosπf

π(f − 1
2
)

sinc(f +
1

2
) =

sin
(

π(f + 1
2
)
)

π(f + 1
2
)

=
sin

(

πf + π
2

)

π(f + 1
2
)

=
cosπf

π(f + 1
2
)
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so that

P (f) =
1

2

(

− cosπf

π(f − 1
2
)
+

cos πf

π(f + 1
2
)

)

which simplifies to the desired expression

P (f) =
2 cosπf

π(1− 4f 2)

(b) The sine pulse in Example 2.5.7 is given by u(t) = sin πtI[0,1](t) = p(t − 1
2
) (i.e., it is a

time-shifted version of the cosine pulse in (a)), so that

U(f) = P (f)ej2π(−
1

2
) = e−jπfP (f) = e−jπf 2 cosπf

π(1− 4f 2)

which is the expression in (2.63).

Problem 2.10 Solutions for the required numerical computations have been skipped.

2
s      (t) y(t) = (s*s      )(t)MF
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s(t)

t

1

0 2−2
t

MF

Figure 10: The signal, its matched filter and their convolution in Problem 2.11.

Problem 2.11 (a) The signal s(t) and its matched filter h(t) = sMF (t) = s(−t) are sketched in
the plot on the left in Figure 10.
(b) The convolution of two boxes of equal width gives a triangle, so the only issue is where
the triangle is centered. If each box is centered at the origin, then we get a triangle centered
at the origin. Now, s(t) = I[1,3](t) is delayed by 2 relative to a centered box I[−1,1](t), whereas
sMF (t) = I[−3,−1](t) is delayed by −2 (i.e., advanced by 2) relative to a centered box. Thus, when
we convolve them, the two delays cancel each other, and we get a tent signal centered at the
origin, as shown in the plot on the right in Figure 10. Of course, we would get the same answer
by directly convolving the two signals.
(c) Since sMF (t) = s∗(−t), we have SMF (f) = S∗(f). Thus,

y(t) = (s ∗ sMF )(t) ↔ Y (f) = S(f)SMF (f) = S(f)S∗(f) = |S(f)|2 ≥ 0 for all f

Problem 2.12 (a) The signal s(t) and its matched filter h(t) = smf (t) = s(−t) are sketched in
Figure 11.
(b) Let us break down the convolution into simpler parts: s(t) = a(t)+b(t), where a(t) = I[1,3](t)
and b(t) = −2I[2,5](t), so that h(t) = a(−t) + b(−t) and

y(t) = (s ∗ h)(t) = a(t) ∗ a(−t) + b(t) ∗ b(−t) + a(t) ∗ b(−t) + a(−t) ∗ b(t)

All of the terms above are convolutions between boxes. The first two terms give triangles centered
at the origin, while the third and fourth terms are trapezoids which are reflections of each other.
Figure 12 shows the 4 components of y(t) and then adds them up to obtain the final signal.

7



Matched filter

0 1 2 3 5

−2

−1

1

s(t)

t

−2

−1

1

−1−2−3−5

h(t)

t

Signal

Figure 11: The signal and its matched filter in Problem 2.12.
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Figure 12: Computing the convolution of the signal with its matched filter in Problem 2.12.
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The figure also shows the building blocks (convolution between boxes starting at zero) used to
obtain these 4 components (by translation and scaling of these building blocks). In adding up
the 4 components of y(t), we can use the simple observation that it is piecewise linear (since its
components are piecewise linear), and simply compute y(t) for t ≥ 0 at the end points of the
segments (t = 0, 1, 2, 3) and then join them by lines. The signal for t ≤ 0 can now be obtained
by reflection, noting that the convolution of a signal with its matched filter is symmetric (for
complex-valued signals, the matched filter is defined as smf (t) = s∗(−t), and the convolution is
conjugate symmetric).
(c) Since smf (t) = s∗(−t), we have Smf(f) = S∗(f). Thus,

y(t) = (s ∗ smf )(t) ↔ Y (f) = S(f)Smf (f) = S(f)S∗(f) = |S(f)|2

Clearly, Y (f) ≥ 0 for all f .
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Figure 13: Both magnitude and phase vary across frequency, with small magnitudes correspond-
ing to large phase variations.
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Figure 14: Fading with respect to nominal single path channel.

Problem 2.13(a) The delay spread is 2.2 − 0.1 = 2.1 microseconds. The coherence bandwidth
is 1/2.1 = 0.476 MHz or 476 KHz.

9



0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Averaging Bandwidth (normalized to coherence bandwidth)

F
re

qu
en

cy
−a

ve
ra

ge
d 

po
w

er
 g

ai
n

Figure 15: Fading with respect to nominal single path channel.

(b) Dropping the delay corresponding to the first path as in the text, the channel transfer function
is given by

H(f) = 2 + je−j2πf∆1 − 0.8e−j2πf∆2

where ∆1 = 0.54 microseconds and ∆2 = 2.1 microseconds are the delay differences for the sec-
ond and third paths with respect to the first. The magnitude and phase of the transfer function
are plotted in Figure 13. When the magnitude is small, small changes in the real and imaginary
parts can cause large changes in the angle. Thus, there are rapid phase changes around deep
fades.
(c) The fading with respect to the nominal single path channel is given by 20 log10

|H(f)|
2

dB, and
is plotted in Figure 14. We see fading depths in excess of 20 dB.
(d) The frequency-averaged power gain is plotted as a function of normalized bandwidth (nor-
malized by coherence bandwidth) in Figure 15. We see that the gain quickly exceeds the nominal
single path gain of 4 as the averaging bandwidth approaches the coherence bandwidth. It is left
as an exercise to argue that the asymptotic value for large bandwidths is 5.64.
Hint: The transfer function H(f) is comprised of a constant plus two frequency domain sinusoids.
What is the average power of |H(f)|2?

1/4

f
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U  (f)c

U  (f)cB(f) = 1/2

U(f)

f
−1/2 3/2
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f
3/2−3/2

1/2

Figure 16: Relevant spectra for Problem 2.14(a)-(c).

Problem 2.14 (a) We have a(t) = sinc(2t) ↔ A(f) = 1
2
I[−1,1](f). We can see that up(t) =

10



a(t) cos 200πt ↔ Up(f) = 1
2
(A(f − 100) + A(f + 100)). This occupies the band 99-101 MHz

(since the unit of time is microseconds, the unit of frequency is MHz).
Remark: At the risk of belaboring the obvious, recall that for physical (real-valued) signals,
we consider only positive frequencies in defining the band being occupied. Negative frequencies
carry no additional information, since the spectrum is constrained to be conjugate symmetric.
(b) The output b(t) = 1

2
uc(t), where uc is the I component of up with respect to the reference

199πt. We know that the complex envelope of up for reference 200πt is a(t). In order to
retard the reference phase by πt, we must advance the complex envelope’s phase by πt. Thus,
u(t) = a(t)ejπt. For completeness, we also provide the algebra behind this intuitive statement (it
is recommended that you do this until you are very familiar with complex baseband):

up(t) = Re
(

a(t)ej200πt
)

= Re
(

a(t)ejπtej199πt
)

from which we can read off that the complex envelope with respect to reference 199πt is a(t)ejπt.
We can now compute

b(t) =
1

2
uc(t) =

1

2
Re(u(t)) =

1

2
a(t) cosπt =

1

2
sinc(2t) cosπt

Thus, B(f) = 1
4

(

A(f − 1
2
) + A(f + 1

2
)
)

, with A(f) = 1
2
I[−1,1](f). The spectrum B(f) and the

other relevant spectra for this problem are shown in Figure 16. Another way in which we could
have found B(f) would have been to note that U(f) = A(f − 1

2
) and that the frequency domain

expression for the I component is given by Uc(f) = (U(f) + U∗(−f)) /2. This gives the same
result as before for B(f) = 1

2
Uc(f).

(c) This downconversion gives

c(t) = −1

2
us(t) = −1

2
Im(u(t)) = −1

2
a(t) sin πt = −1

2
sinc(2t) sin πt

We can now compute C(f) = − 1
4j

(

A(f − 1
2
)− A(f + 1

2
)
)

. Since A(f) is real-valued, we have

Re (C(f)) = 0 and Im (C(f)) = 1
4j

(

A(f − 1
2
)−A(f + 1

2
)
)

, which is also sketched in Figure 16.

(d) The complex envelope u(t) = uc(t) + jus(t) = 2 (b(t)− jc(t)). Since u(t) = a(t)ejπt, we have
a(t) = u(t)e−jπt = 2 (b(t)− jc(t)) (cosπt− j sin πt). Since a(t) is real-valued, the imaginary part
has to drop out (check!), and real part gives a(t) = 2 (b(t) cosπt− c(t) sin πt). The block diagram
is straightforward to draw, so we skip it.

u(t)

−1 1

1

−1

t

(a) Downconverter output in
2.15(a)

v(t)
2(2      )1/

−1 0 1 2
t

(b) Downconverter output in
2.15(b)

Figure 17: Sketches for Problem 2.15.

Problem 2.15 (a) This problem does not have subscripts denoting passband signals, but clearly,
s(t) is passband, and u(t) is the I component with respect to the 401πt reference. The complex
envelope with respect to the 400πt carrier reference is clearly s̃1(t) = I[−1,1](t). When we advance
the carrier reference by πt to 401πt, we must correspondingly retard the complex envelope by πt
to get s̃2(t) = I[−1,1](t)e

−jπt. We now have

u(t) = s̃2c(t) = Re
(

I[−1,1](t)e
−jπt

)

= I[−1,1](t) cosπt

11



which is sketched in Figure (a).
(b) When the passband signal s(t) is passed through the passband filter h(t), we get a passband
signal y(t). The output of the downconverter is v(t) = −ys(t), where ys is the Q component
of the filter output y, with respect to the carrier reference 400πt + π

4
. Let us therefore find the

complex envelope of y with respect to this reference, by finding the complex envelopes of s and
h with respect to the reference and then convolving them. The complex envelope of s(t) with
respect to the 400πt carrier reference is s̃1(t) = I[−1,1](t), so the complex envelope with respect

to the reference 400πt + π
4
is s̃3(t) = I[−1,1](t)e

−j π

4 . The complex envelope of h(t) with respect

to the 400πt + π
4
reference is h̃(t) = −jI[0,1](t) (we can read off from the expression for h that

hc = 0 and hs = −I[0,1](t)). The complex envelope of the filter output is therefore given by

ỹ =
1

2
s̃3 ∗ h̃ =

1

2

(

I[−1,1](t)e
−j π

4

)

∗
(

−jI[0,1](t)
)

=
1

2
p(t)e−j3π/4

where we have noted that −j = e−jπ/2, and where p(t) = I[−1,1] ∗ I[0,1] is a trapezoidal pulse. We
therefore obtain

v(t) = −ys(t) = −Im (ỹ(t)) =
1

2
p(t) sin 3π/4 =

1

2
√
2
p(t)

which is sketched in Figure (b).

2

p

Im(V   (f))p

30 32−30−32
f

31 3332

−31−33
f

1

Re(V   (f))

Figure 18: Spectrum of passband waveform in Problem 2.17 (frequency axis not to scale).

Problem 2.16 (a) The inner product is zero by I-Q orthogonality. Alternatively, let ũi denote
the complex envelope for the passband signals ui, i = 1, 2 with respect to the 100πt reference.
Then ũ1(t) = I[0,1](t) and ũ2(t) = −jI[0,1](t). The passband inner product is related to the
complex baseband inner product as follows: 〈u1, u2〉 = 1

2
Re (〈ũ1, ũ2〉) = 0, since

〈ũ1, ũ2〉 =
∫ ∞

−∞

ũ1(t)ũ
∗
2(t)dt = j

∫ 1

0

dt = j

(b) The complex envelope ỹ = 1
2
ũ1∗ũ2 = −j 1

2
s(t) = yc+jys, where s(t) = I[0,1]∗I[0,1] is a triangular

pulse over [0, 2]. Thus, the passband signal y(t) = 1
2
s(t) sin 100πt (yc = 0, ys = −1

2
s(t).

(c) Since Y (f) = 1
2
Ỹ (f − fc) +

1
2
Ỹ ∗(−f − fc), the magnitude spectrum is given by

|Y (f)| = 1

2
|Ỹ (f − fc)|+

1

2
|Ỹ (−f − fc)|

12



1
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1

1/2

Re(A(f)

Im(A(f)

f

f
3

Figure 19: Spectrum of downconverter output in Problem 2.17(b).

Im(V(f)

2 f

f
31

Re(V(f)

4

2

Figure 20: Complex envelope with respect to fc = 30 for Method 2 in Problem 2.17(b).
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Now plug in Ỹ (f) = 1
2
|S(f)| = 1

2
sinc2(f) (sketch omitted).

Problem 2.17(a) Since vp(t) is real-valued, Vp(f) is conjugate symmetric, hence Re (Vp(f)) is
symmetric and Im (Vp(f)) is antisymmetric. We use this, together with the given information,
to plot the spectrum in Figure 18.
(b) Denote the output by a(t) ↔ A(f). Let us do this in two ways.
Method 1: The first does not invoke the complex envelope, and uses the result that vp cos(60πt) ↔
1
2
(Vp(f − 30) + Vp(f + 30)), with the LPF rejecting the spectrum component around 2fc = 60.

The resulting spectrum A(f) is shown in Figure 19. We have Re(A(f)) ↔ 4sinc(4t), and
jIm(A(f)) ↔ j 1

2
sinc2t (ej4πt − e−j4πt) = −sinc2t sin 4πt. Adding up these two contributions,

we have Re(A(f)) + jIm(A(f)) ↔ a(t) = 4sinc(4t)− sinc2t sin 4πt.
Method 2: We recognize that a(t) = 1

2
vc(t) =

1
2
Re(v(t)) is the output of a downconversion opera-

tion, where v(t) is the complex envelope with respect to fc = 30, and vc(t) the I component. We
know that we can get V (f) from Vp(f) by throwing away the spectrum for negative frequencies,
and moving the spectrum for positive frequencies to the left by fc = 30 and doubling it. The re-
sult is shown in Figure 20. We see that Re(V (f)) ↔ 8sinc2tej2πt and jIm(V (f)) ↔ j2sinc2tej4πt

so that V (f) = Re(V (f)) + jIm(V (f)) ↔ v(t) = 8sinc2tej2πt + j2sinc2tej4πt. We can now take
the real part to find the I component as follows:

vc(t) = Re(v(t)) = 8sinc2t cos 2πt− 2sinc2t sin 4πt

Check that a(t) = 1
2
vc(t) matches the answer from Method 1. We can also find the I component

in the frequency domain directly from V (f): Vc(f) =
V (f)+V ∗(−f)

2
, which means that Re(Vc(f)) =

Re(V (f))+Re(V (−f))
2

and Im(Vc(f)) =
ImV (f))+Im(V (−f))

2
. Applying this to the spectrum in Figure 20,

check that the answer you get for A(f) = 1
2
Vc(f) matches Figure 19.

p(t)

3 1 2 41−1 0 −1

1 1 1

t t t
1/2 x * =

Figure 21: Computing the complex envelope of filter output in Problem 2.18.

Problem 2.18: We compute the complex envelope of the output first. With respect to the
ej100πt reference, the complex envelopes of the signal is ũ(t) = I[−1,1](t) (I component is I[−1,1](t))

and the complex envelope of the filter is h̃(t) = −jI[0,3](t) (Q component is −I[0,3](t)). The
complex envelope of the output is given by

ỹ =
1

2
ũ ∗ h̃ = −jp(t)

where p(t) = 1
2
I[−1,1](t)∗I[0,3](t) is a trapezoidal pulse obtained by convolving two boxes as shown

in Figure 21. The passband output is therefore given by y(t) = p(t) sin 100πt (Q component is
−p(t)).

Problem 2.19: Matlab problem, solution omitted.

Problem 2.20 (a) For a frequency reference of fc = 50, or a phase reference of 100πt, the
complex envelope of up(t) can be read off as u(t) = sinc(2t). The complex envelope of vp(t) with
respect to 101πt+ π

4
can be read off as ṽ(t) = −jsinct. Switching the reference to 100πt means

retarding it by πt+ π
4
, hence we must advance the complex envelope by that amount to get

v(t) = −jsinctej(πt+
π

4
) = sinctej(πt−

π

4
)

14



as the complex envelope with respect to 100πt.
(b) The bandwidth of the passband signal equals the two-sided bandwidth of the complex enve-
lope. We have U(f) = 1

2
I[−1,1](f), which has two-sided bandwidth 2, and V (f) = e−j π

4 I[0,1](f),
which has two-sided bandwidth 1. Thus, up has bandwidth 2 and vp has bandwidth 1.
(c) The passband inner product is related to the complex baseband inner product as follows:

〈up, vp〉 =
1

2
Re〈u, v〉

Since the complex envelopes are bandlimited, it is convenient to use Parseval’s identity to com-
pute the inner product in the frequency domain:

〈u, v〉 = 〈U, V 〉 =
∫

U(f)V ∗(f)df =

∫

1

2
I[−1,1](f)e

j π

4 I[0,1](f)df =
ej

π

4

2

We therefore obtain

〈up, vp〉 =
1

2
Re

(

ej
π

4

2

)

=
1

4
cos

π

4
=

1

4
√
2

Range R

t

hr

hr ht|    −    |

hr ht+

Transmitter

Virtual source

LOS path

Reflected path

Receiver

h

Figure 22: Geometry for computing delay spread in Problem 2.21.

Problem 2.21 (a) From Figure 22, we see that the length of the LOS path is given by
√

R2 + (hr − ht)2, and that the length of the reflected path, which equals that of the line joining

the virtual source to the receiver, is given by
√

R2 + (hr + ht)2. The difference in these lengths
is given by

∆L =
√

R2 + (ht + hr)2 −
√

R2 + (hr − ht)2 = R

(

1 +
(hr + ht)

2

R2

)
1

2

−R

(

1 +
(hr − hr)

2

R2

)
1

2

Using the approximation (1 + x)
1

2 ≈ 1 + 1
2
x, we obtain

∆L ≈ R

(

1 +
(hr + ht)

2

2R2

)

− R

(

1 +
(hr − ht)

2

2R2

)

= R

(

(hr + ht)
2 − (hr − ht)

2

2R2

)

=
2hthr

R

The corresponding delay spread is given by τd =
∆L
c

≈ 2hthr

Rc
.

(b) For R = 200m, ht = 2m, hr = 10m, we obtain a delay spread of 0.666 nanoseconds through

15



exact computation, and 0.667 nanoseconds through the approximation in (a). Thus, the approx-
imation is very accurate when R ≫ ht, hr.
(c) The coherence bandwidth is 1/τd, which evaluates to about 1.5 GHz.
(d) For R = 10m, ht = hr = 2m, modeling an indoor link, we obtain a delay spread of 2.57
nanoseconds (corresponding to coherence bandwidth 389 MHz) through exact computation, and
2.67 nanoseconds (corresponding to coherence bandwidth 375 MHz) using the approximation.
The approximation is not as good as for the larger range, but is still effective in giving a quick
estimate.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency (GHz)

M
ag

ni
tu

de
 o

f t
ra

ns
fe

r 
fu

nc
tio

n

(a) Transfer Function Magnitude

−5 −4 −3 −2 −1 0 1 2 3 4 5
−80

−60

−40

−20

0

20

40

60

80

Frequency (GHz)

P
ha

se
 o

f t
ra

ns
fe

r 
fu

nc
tio

n 
(d

eg
re

es
)

(b) Transfer Function Phase

Figure 23: Both magnitude and phase vary across frequency, with small magnitudes correspond-
ing to large phase variations.
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Figure 24: Fading with respect to nominal single path channel.

Problem 2.22(a) Normalizing the LOS path to unit magnitude and phase, the channel impulse
response is given by

h(t) = 1 + A2e
−j(2πfcτd+φ2)δ(t− τd)

We can now plug in A2 = 0.95, φ2 = π, and, τd ≈ 2/3 nanoseconds and the coherence bandwidth
is 1.5 GHz (from Problem 2.21(a)).
(b) The magnitude and phase of the channel transfer function are plotted in Figure 23.
(c) The fading gain in dB relative to a nominal LOS channel is plotted in Figure 24. The fading
depth is about 25 dB.
(d) The averaged gain is plotted in Figure 25. We see that it stabilizes at a little less than
one coherence bandwidth, which means that about 1-1.5 GHz suffices to average out frequency-
selective fading. Note that we can average out fading relatively easily because there are only two
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Figure 25: Fading with respect to nominal single path channel.

paths; when there are many paths, it may take a larger multiple of the coherence bandwidth to
provide effective averaging.
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