
Note : No Solutions for chapter 1 and Chapter 2

Solutions to Problems in Chapter 3

3.1) 

We have x ( t )=u( t +1)- 2u( t )+u( t -1), where u( t ) is a unit step function. Using basic operations 

on signals, we have:

a)

g (t )= x (t )+ x (t -1)+ x (- t )=u (t +1) - 2u (t )+u (t -1)+u (t ) - 2u (t -1)+u (t - 2)+u (- t +1) - 2u (- t )+u (- t -1)= x ( t -1)

b) g (t )= dx (t )
dt

=δ (t +1) - 2δ (t )+δ (t -1)

Note that δ (t ) is a unit impulse function.

c) g (t )=∫ x (t )dt  = -|t|+1

d) g (t )= x (2 t )=u (2 t +1) - 2u (2 t +1)+u (2 t -1)

e) g (t )= x (2 t -1)=u (2 t ) - 2u (2 t -1)+u(2 t - 2)

Note that in part e), the precedence rule should be followed.

3.2)
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First of all, it is important to note that the differentiation and integration operations are both linear, 

and a trigonometric function is a nonlinear function of its argument. The first three systems are all 

linear since they satisfy the linearity requirement, as stated in (3.14). The reason lies in the fact  

that in all these three systems, the amplitude of the sinusoidal signal consists of the input or its 

integral or its derivative, whereas in the second three systems, it is the argument of the sinusoidal  

signal which has the input or its integral or its derivative, and thus do not meet the linearity 

requirement.

3.3)

a) f (t )=sin (6 πt )+cos (4 πt ). The period of a sum signal is the least common multiple of the 

periods of the two signals. The period of sin (6 πt ) is 
1
3

 and the period of cos (4 πt ) is 
1
2

. The 

period of f ( t ) is thus 1, as the least common multiple of 
1
3

 and 
1
2

 is 1.

b) f ( t )=1+cos( t ). 1 is a constant and does not impact the period of f ( t ). Since the period of 

cos( t ) is 2π , the period of f ( t ) is 2π .

c) f (t )=exp (-|t|)cos ⁡(2πt ). One of the requirements for a product signal to be periodic is that 

both signals be periodic. Since exp (-|t|) is not periodic, f ( t ) is not periodic.

d) f ( t )= (u (t ) -u (t -1))cos(7 πt ). One of the requirements for a product signal to be periodic is 

that neither signals be time-limited. Since u (t ) -u( t -1) is time-limited, f ( t ) is not periodic.

e) f ( t )=sin (√2πt )+cos(2 t ). The period of a sum signal is the least common multiple of the 

periods of the two signals. The period of sin (√2πt ) is √2 and the period of cos (2 t ) is π . The 

least  common multiple  of  these  two irrational  numbers  does  not  exist,  so  f ( t ) is  not 

periodic.

3.4)

In this problem, we use the results given in Table 3.1



a) It is a power signal, as we have:

P= lim
S→∞ ( 1

2S )∫- S
S

|g (t ) |2dt = lim
S→∞ ( 1

2S )∫- S
S

|A  exp ( j (2πt +θ ))|2
dt = lim

S→∞ ( 1
2S )∫- S

S

A2dt = A2 <∞

b) It is a power signal, as we have:

P= lim
S→∞ ( 1

2S )∫- S
S

|g (t ) |2dt = lim
S→∞ ( 1

2S )∫- S
S

| sgn( t ) |2dt = lim
S→∞ ( 1

2S )∫- S
S

dt =1<∞

c) It is an energy signal, as we have:

E=∫
-∞

∞

|g (t ) |2dt =∫
-∞

∞

| exp (- 2|t|) |2dt =∫
-∞

∞

exp (- 4|t|)dt =2∫
0

∞

exp (- 4 t )dt =
1
2

<∞  

d) It is neither an energy signal nor a power signal, as we have:

E=∫
-∞

∞

|g (t ) |2dt =∫
-∞

∞

| tu( t ) |2dt =∫
0

∞

t2dt =∞  

P= lim
S→∞ ( 1

2S )∫- S
S

|g (t ) |2dt = lim
S→∞ ( 1

2S )∫- S
S

| tu( t ) |2dt = lim
S→∞ ( 1

2S )∫0
∞

t2dt =∞

e) Since it is a periodic signal, it is a power signal. With a period of 2π , we have:

P=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

|g (t ) |2dt =( 1
2π )∫- π

π

|1+cos( t ) |2dt =
3
2

 <∞  

3.5)

In this problem, we use (3.14) to check the linearity property and (3.15) to check the time-

invariance property.



a) It is a linear and time-invariant system.

b) It is a linear and time-varying system.

c) It is a non-linear and time-varying system.

d) It is a non-linear and time-invariant system.

e) It is a linear and time-varying system.

3.6)

a) g( t )=cos( t )+sin ( t )+sin ( t )  cos( t )

We have g( t )≠ g( - t ) and also g (t )≠ - g( - t ), it is thus neither an even signal nor an odd 

signal, and we need to find the even and odd parts of g( t ). Using (3.12), we get:

ge (t )=0.5 (g (t )+ g (- t ))=0.5 (cos( t )+sin ( t )+sin ( t )  cos( t )+cos( - t )+sin ( - t )+sin ( - t )  cos( - t ))=cos( t )

and

go (t )=0.5 (g (t ) - g (- t ))=0.5 (cos (t )+sin (t )+sin (t )cos (t ) - cos (- t ) - sin (- t ) - sin ( - t )  cos( - t ))=sin ( t )+sin ( t )  cos( t )

b) g( t )= tu( t )

We have g( t )≠ g( - t ) and also g (t )≠ - g( - t ), it is thus neither an even signal nor an odd 

signal, and we need to find the even and odd parts of g( t ). Using (3.12), we get:

ge (t )=0.5 (g (t )+ g( - t ))=0.5 (tu (t ) - tu( - t ))=0.5 | t |

and



go (t )=0.5 (g (t ) - g( - t ))=0.5 (tu (t )+ tu( - t ))=0.5 t

c) g( t )=sin (4 πt + π /5 )

We have g( t )≠ g( - t ) and also g (t )≠ - g( - t ), it is thus neither an even signal nor an odd 

signal, and we need to find the even and odd parts of g( t ). Using (3.12), we get:

ge (t )=0.5 (g (t )+ g( - t ))=0.5 (sin (4 πt + π /5 )+sin (- 4 πt + π /5 ))=sin (π / 5 )cos (4 πt )

and

go (t )=0.5 (g (t ) - g( - t ))=0.5 (sin (4 πt + π /5 ) - sin (- 4 πt + π /5 ))=cos (π / 5 )sin (4 πt )

d) g( t )=exp (-|t|)sin (t ). It is an odd signal, as g (t )=- g( - t ).

e) g (t )=u (t +1) -u( t -1). It is an even signal, as g (t )= g( - t ).

3.7)

a)  It is a non-causal system with memory.

b) It is a causal system with no memory.

c) It is a causal system with no memory.

d) It is a non-causal system with no memory.

e) It is a causal system with memory.

3.8)

a) y ( t )= x ( t )



b) y ( t )= x ( t +1)

c) y ( t )= x (t )cos (t )

d) y (t )= x (t + 4 )cos (2 t )

e) y (t )= x2 (t )

f) y ( t )= x3( t + 9 )

g) y ( t )= x0.2 (t )cos (4 t )

h) y (t )= x-2 (t +1.5)cos (6 t )

3.9)

a)  The signals y ( t ) and z ( t ) are neither even nor odd. The signal y ( t ) can be thus decomposed 

into an even part ye (t ) and an odd part yo (t ), i.e., we have:

y (t )= ye (t )+ yo (t )

We then define z ( t ) in terms of y ( t ) as follows:

z (t )= y (- t )= ye (- t )+ yo (- t )= ye (t ) - yo (t )

Therefore, we have

y (t ) z (t )= ( ye (t )+ yo (t ))( ye (t ) - yo (t ))= ye (t ) ye (t ) - ye (t ) yo (t )+ yo (t ) ye (t ) - yo (t ) yo (t )= ye (t ) ye (t ) - yo (t ) yo (t )

Since the product of two even signals is even, the product of two odd signals is also even, 

and the difference between two even signals is even, y ( t ) z ( t ) is an even signal.



b) The signal  x ( t )=√2sin (t ) has unit power as half of the square of the amplitude of this 

sinusoid is one and a periodic sine wave with initial phase of zero is also an odd function.

c)  An even rectangular pulse p( t ) with duration T  and height 
1

√T  has unit power.

p (t )= 1

√T (u(t +
T
2 )-u(t -

T
2 ))

d)  Suppose the even part is cos( t ) function which is periodic and the odd part is t  which is 

nonperiodic, we thus have the following;

y (t )= ye (t )+ yo (t )=cos (t )+  t

3.10)

Using a trigonometric identity, we have

x (t )=cos (t )+sin (t )=√2cos(t -
π
4 )

Since x ( t ) is a sinusoidal function, it is periodic and its period T  in seconds is as follows:

t =
2πt
T

→T =2π

The fundamental frequency f  in Hertz is thus as follows:

f =
1
T

=
1

2π

Since x ( t ) is periodic, it is a power signal, and has the following finite power:



P=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

| x (t ) |2dt =P=( 1
2π )∫- π

π

(√2cos(t -
π
4 ))

2

dt =1

To determine the minimum and maximum values of x ( t ), we must first differentiate it with respect 

to time t  and then set it equal to zero, i.e., we have:

dx ( t )
dt

=
d (cos (t )+sin ⁡( t ))

dt
=- sin (t )+cos (t )=0→sin (t )=cos (t )→t =

π
4

+kπ ,     k =0 ,  1 ,  2 ,  3  …

At =
π
4

+kπ ,  k =0 ,  2 ,  4… , x ( t ) has its maximum value, which is as follows:

x( π4 +kπ)=√2

At =
π
4

+kπ ,  k =1 ,  3 ,  5… , x ( t ) has its maximum value, which is as follows:

x( π4 +kπ)=-√2

3.11)

The total energy of an energy signal g (t )= ge (t )+ g0 (t ), where ge (t ) and g0 (t ) are its even and odd 

parts, is as follows:

E=∫
-∞

∞

|g( t ) |2dt =∫
-∞

∞

(g (t ))2
dt =∫

-∞

∞

(ge (t )+ g0 (t ))2
dt =∫

-∞

∞

(ge (t ))
2
dt +∫

-∞

∞

(g0 (t ))2
dt +2∫

-∞

∞

ge (t )g0 (t )dt

Note that since  ge (t ) is an even function and  go (t ) is an odd function, their product is an odd 

function and since the limits of the definite integral  are symmetric with respect to zero,  the  

following term is zero:



∫
-∞

∞

ge (t )g0 (t )dt =0

We therefore have

E=Ee+Eo

3.12)

Using (3.37b), we have

cn=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 1
T 0

) ∫
-T 0 / 2

0

g (t )  exp(-
j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt

Substituting t  for – t  in the first integral, noting g( t )= g( - t ), and using (3.17), the Euler’s identity, 

we have

cn=( 1
T 0

)∫
0

T 0 / 2

g (- t )  exp( j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 1
T 0

)∫
0

T 0 / 2

g (t )  exp( j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 2
T 0

)∫
0

T 0 / 2

g (t )  cos(2πnt
T 0

)dt

cn is thus a pure real function (i.e., it has no imaginary part) and since cos(2πnt
T 0

) is an even 

function of n, cn is also an even function of n. Using (3.37b), we have

cn=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 1
T 0

) ∫
-T 0 / 2

0

g (t )  exp(-
j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt

Substituting t  for – t  in the first integral, noting g (t )=- g( - t ), and using (3.17), we have

cn=( 1
T 0

)∫
0

T 0 / 2

g (- t )  exp( j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 1
T 0

)∫
0

T 0 / 2

- g (t )  exp( j2πnt
T 0

)dt +( 1
T 0

)∫
0

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =(-
2 j
T 0

)∫
0

T 0 / 2

g (t )  sin(2πnt
T 0

)dt



cn is thus a pure imaginary function (i.e., it has no real part) and since sin(2πnt
T 0

) is an odd function 

of n, cn is also an odd function of n.

3.13)

For a real-valued periodic g( t ), the complex exponential Fourier series is as follows:

cn=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

g (t )  exp(- j2πnt
T 0

)dt =( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

g (t )  exp(+ j2π ( -n )t
T 0

)dt =c-n
*

where cn
* is the complex conjugate of cn. We therefore have

|cn|=|c-n
*|

and

∡ cn=-∡ cn

For a real-valued periodic signal, the amplitude spectrum is an even function of n and the phase 

spectrum is an odd function of n.

3.14)

As reflected in Table 3.1, the average power of the periodic signal g( t ) is as follows:

P=( 1
T 0

)∫
-
T 0

2

T 0

2

|g (t )|2
dt =( 1

T 0
)∫

-
T 0

2

T 0

2

g (t )g* (t )dt =( 1
T 0

)∫
-
T 0

2

T 0

2

g* (t )(∑n=-∞

∞

cnexp( j2πnt
T 0

))dt =  ( 1
T 0

)∑
n=-∞

∞

cn∫
-
T 0

2

T 0

2

g* (t )exp( j2πnt
T 0

)dt =  ( 1
T 0

)∑
n=-∞

∞

cn(cn
*T 0 )= ∑

n=-∞

∞

|cn|
2

As we replaced g (t ) by the complex exponential form of its Fourier series, interchanged the order 

of summation and integration, and used the definition of cn. The power of a periodic signal can 

thus be determined by the knowledge of the amplitude spectrum only. Note that in the calculation 

of power, phase plays no role.



3.15)

For the periodic signal  g (t )=exp (t ), 0< t <2π  with  g (t +2π )= g (t ),  the  complex exponential 

Fourier series coefficients are as follows:

cn=( 1
T 0

) ∫
-T 0 / 2

T 0 / 2

g (t )  exp(-
j2πnt
T 0

)dt =( 1
2π )∫- π

π

exp (t )exp (- jnt )dt =( 1
2π )∫- π

π

exp (t (1- jn ))dt ==( 1
2π )( 1

1- jn)(exp (π (1- jn )) - exp (π (-1+ jn )))= cos (nπ ) (eπ - e- π )
2π (1+n2)

(1+ jn ))

3.16)

We could either use the set of equations (3.34a) to (3.34d) or we could use Euler’s identity to get 

the following:

g (t )=1+sin (2πt )+cos2(2πt )=1+( exp ( j2πt ) - exp (- j2πt )
2 j )+( exp ( j2πt )+exp (- j2πt )

2 )
2

=1+( exp ( j2πt ) - exp (- j2πt )
2 j )+( exp ( j 4 πt )+exp (- j 4 πt )+2

4 )=1.5+0.25 exp (- j 4 πt )+0.5 j exp (- j2πt )+0.25 exp ( j 4 πt ) - 0.5 j exp ( j2πt )

We thus have

c0 =1.5

c-1 =- c1 =- 0.5 jc-2 =c2 =0.25

with all other coefficients equal to zero.

3.17)

When the limits of a definite integral are symmetric with respect to zero, say T 0 /2 and -T 0 /2, and 

the integrand is an odd function, then the value of the integral, i.e., the area under the function, is 

zero. Also, the product of an odd function and an even function is an odd function. In view of this, 

when g( t) is a periodic real and even signal and noting a sine function is an odd function, we then 

have

bn=( 2
T 0

) ∫
-T 0 /2

T 0 /2

g (t )sin(2πnt
T 0

)dt =0



when g( t) is a periodic real and odd signal and noting a cosine function is an even function, we 

then have

an=( 2
T 0

) ∫
-T 0 /2

T 0 /2

g (t )cos(2πnt
T 0

)dt =0

3.18)

In order to determine the quadrature (trigonometric) Fourier series coefficients of g( t ) , we must 

use the set of equations (3.34b), (3.34c) and (3.34d). To this effect, the dc value a0 =0 is zero, 

bn=0, as the signal is an even function, and an turns out to be as follows:

an=-(2 (1- cos (πn ))
πn )( L

πn)

However, we could also use the results obtained in Example 3.16, as the signal in this problem is 

the integral version of the signal in that example, where the integration constant is zero. We thus 

have the following:

g( t )=∫
- L

L

( ∑
n=1    
n=odd

∞

( 4
πn)  sin( πntL )  )dt =- ∑

n=1    
n=odd

∞

( 4 L

(πn )2)  cos( πntL )  

3.19)

A signal can be decomposed into real and imaginary parts, we thus have

g (t )= Re [g (t ) ]+ j Im [ g (t ) ]

g* (t )= Re [g (t ) ] - j Im [ g (t ) ]

where * represents the complex conjugate operation. From the above equations, the imaginary part 

can be found, and since g( t ) is a real-valued signal, the imaginary part is zero. We thus have:



Im [g (t ) ]=( 1
2 j )(g (t ) - g* (t ))=0→g (t )= g* (t )

Using the conjugate function property of the Fourier transform, we have

G ( f )=G* (- f )→|G ( f )|exp ( j∡ G ( f ))=  |G (- f )|exp (- j∡ G (- f ))

From the above, it becomes obvious that the amplitude (magnitude) response |G ( f )| is an even 

function, and the phase response ∡ G ( f ) is an odd function, that is, we have the following:

|G ( f )|=|G (- f )|

∡ G ( f )=-∡ G (- f )

3.20)

Assuming we have

g( t )↔G ( f )

Using time-shifting property, we then have

g( t + β )↔G ( f )exp ( j2πβf )

Using time scaling property, we then have

g (α t + β )↔ 1
α
G( fα )exp( j2πβ( fα ))

Using linearity property, we have



γ + μ  g (αt + β )↔γδ ( f )+
μ
α
G( fα )exp( j2πβ( fα ))

3.21)

A simple proof can be obtained by contradiction. Let’s assume that a signal g( t ) is simultaneously 

time-limited to T  seconds and band-limited to W  Hz. Since G ( f ) is band-limited, we could view 

it as the multiplication of G ( f ) and a signal P( f ) whose Fourier transform is rectangular and is 

also band-limited to W  Hz. Note that the inverse Fourier transform of P( f ) is p( t ) and p( t ) is a 

sinc  function which  is  not  time-limited.  Using the  time-convolution  property  of  the  Fourier  

transform, we know that multiplication in the frequency domain implies convolution in the time 

domain. The interval for which a convolution is non-zero is the sum of the intervals for which the 

two convoluted signals are non-zero. Since p( t ) is not time-limited, it is impossible to obtain a 

time-limited signal from the convolution of a time-limited signal with a non-time-limited signal.

3.22)

Using (3.42a), we have

G ( f )=∫
-∞

∞

g (t )e- j2 πft dt =∫
-∞

∞

g (t )cos (2πft )dt +  j∫
-∞

∞

g (t )sin (2πft )dt

If  g( t ) is  an  odd function,  then  the  first  integral,  which  is  the  real  part,  becomes zero,  as  

cos (2πft ) is an even function, its multiplication by g( t ) is also an odd function, and the limits of 

the definite integral is symmetric. G ( f )  is thus pure imaginary.

If g( t ) is an even function, then the second integral, which is the imaginary part, becomes zero, 

as sin (2πft ) is an odd function, its multiplication by g( t ) is also an odd function, and the limits of 

the definite integral is symmetric. G ( f ) is thus pure real.

3.23)

Multiplication in the time domain implies convolution in the frequency domain. We thus have

g2 (t )= g (t )g (t )=G ( f )*G ( f )=G2( f )



The width property of convolution states that the bandwidth of two convoluted signals is the sum 

of the bandwidths of the respective signals. The bandwidth of G2( f ) is 2W (=W +W ) Hz, as the 

bandwidth of G ( f ) is W  Hz. We apply the convolution property again, and thus have

g3( t )= g (t )g2 (t )= g (t )g (t )g (t )=G ( f )*G ( f )*G ( f )=G2 ( f )*G ( f )

The signal  g3 (t ) bandwidth  3W (=W +2W ). By mathematical induction, the bandwidth of the 

gn (t ) is thus nW , as we have

gn (t )= g (t )g (t )…g (t )=G ( f )*G ( f )*…*G ( f )

3.24)

Using (3.42a), as well as the linearity and time-shifting properties of the Fourier transform, we can 

find the Fourier transform of y ( t )

Y ( f )= A  X ( f )exp( - j2πfc )+B  X ( f )exp( - j2πfd )

We thus have

H ( f )=
Y ( f )
X ( f )

=
A  X ( f )exp( - j2πfc )+B  X ( f )exp( - j2πfd )

X ( f )
= A exp( - j2πfc )+B exp( - j2πfd )

3.25)

a) Using the definition of the Fourier transform, we have

G ( f )=∫
-∞

∞

g (t )e- j2 πft dt =∫
-∞

0

eat e- j2 πft dt +∫
0

∞

e-at e- j2 πft dt =
1

a - j2πf
+

1
a+ j2πf

=
2a

a2 + 4 π2 f 2 =

a

2π2

a2

4 π2 + f 2



By applying the duality property to the above result, we obtain the following Fourier transform 

pair:

k (t )=

a

2π2

a2

4 π2 + t2

↔K ( f )=e-a|f|

Using the scaling property, we get

1

a2

4 π2 + t2

↔(2π2

a )e-a|f|

Comparing k ( t )  to h( t ), we have b=
a

2π
 and thus a=2πb, using the above Fourier transform, 

after simplifying it, we get

1

b2 + t2 ↔( πb )e
- 2 πb|f|

b) Let’s differentiate g( t ) twice with respect to time t , we then get the following:

dg( t )
dt

=2 t (u (t +1) -u( t -1))→d2 g( t )
d t2 =2 (u (t +1) -u( t -1))

Note that the second derivative of g( t )  is the well-known rectangular pulse whose width is 2, and 

we thus have

d2 g( t )
d t2 =2 (u (t +1) -u( t -1))↔4  sinc (2 f )

Using the differentiation in the time domain property of the Fourier transform, we get



g( t )= t2 (u (t +1) -u (t -1))↔ ( j2πf )2 4 sinc (2 f )=- (4 πf )2 sinc (2 f )

3.26)

Taking Fourier transform of the relation given, we get

4Y ( f )+3 ( j2πfY ( f ))= X ( f )= 1
1+ j2πf

We thus get the Fourier transform of the output signal

Y ( f )= 1
1+ j2πf

×
1 / 3

4 / 3+ j2πf
=

1
1+ j2πf

-
1

4 / 3+ j2πf

Taking the inverse Fourier transform, we obtain the output signal y ( t )

y (t )=(e- t - e
-

4 t
3 )u( t )

3.27)

We have the following

y (t )= x (t )+ x2 (t )=m (t )cos (2π f c t )+(m (t )cos (2π f c t ))
2
=m (t )cos (2π f c t )+m

2 (t )(1+cos (4 π f c t )
2 )=0.5m2 (t )+m (t )cos (2π f c t )+0.5m2 (t )cos (4 π f c t )

The Fourier transform of y ( t ) is as follows:

Y ( f )=0.5M ( f )*M ( f )+0.5 (M ( f - f c )+M ( f + f c ))+0.25 (M ( f - 2 f c )*M ( f - 2 f c )+M ( f +2 f c )*M ( f +2 f c ))

Noting that m( t ) is band-limited to W  and centered around f =0, and  0.5m2 (t ) is band-limited to 

2W , Y ( f ) has three major components:



i)  The component  M ( f )*M ( f ) is a low-pass signal with bandwidth of  2W  Hz, occupying 

from f =0 to f =2W .

ii)  The component  M ( f - f c )+M ( f + f c ) is a band-pass signal with a bandwidth of  2W  Hz, 

occupying form f = f c -W  to f = f c+W .

iii)  The component M ( f - 2 f c )*M ( f - 2 f c )+M ( f +2 f c )*M ( f +2 f c ) is a band-pass signal with 

bandwidth of 4W  Hz, occupying from f =2 f c - 2W  to f =2 f c+2W .

We can retrieve m( t ) if we use a bandpass filter with a mid-frequency of f c and a bandwidth of 

2W , provided that there are no frequency overlapping, i.e., we have

2 f c - 2W > f c+W→f c>3W .

3.28)

In order for a signal g( t ) to have discrete components in its Fourier transform, it must be periodic. 

To have discrete components at multiples of 5 Hz, the fundamental frequency of the period signal 

must be 5 Hz or equivalently its period has to be 0.2 seconds. For instance, the following even 

pulse train satisfies the requirement:

g (t )={1 ,         - 0.05≤ t ≤0.05                                                 
¿0 ,         for  the  remainder  of  the  period  0.2  seconds

In order for a signal  h( t ) to  have continuous spectrum, it  must  be non-periodic.  To have a 

bandwidth of 5 Hz, the signal must be not be time-limited. For instance, the following sinc function 

satisfies the requirement:

h (t )=10 sinc (10 t ) .

3.29)

The output signal is the convolution of the two sinc functions, and determining this convolution in 

the time domain is very difficult in this case. There is an easier and more elegant way to get it, and 

it is as follows:



X ( f )=∫
-∞

∞

x (t )e- j2 πft dt =0.25 (u ( f - 2)+u( f +2))

and

H ( f )=∫
-∞

∞

h (t )e- j2 πft dt =0.5 (u ( f -1)+u( f +1))

Since we have

Y ( f )= X ( f )H ( f )=0.125 (u ( f -1)+u( f +1))

We can get

y (t )=∫
-∞

∞

Y ( f )e j2 πft df =∫
-1

1

0.125 (u ( f -1)+u ( f +1))e j2 πft df =0.25 sinc (2 t )

3.30)

Using (4.42a), we have

G ( f )=∫
-∞

∞

e- π t2

e- j2 πft dt

Differentiating both sides with respect to the frequency f  and using the integration by parts formula 

gives us the following:

dG ( f )
df

=- j∫
-∞

∞

(2πt )e- π t2

e- j2 πft dt = f∫
-∞

∞

e- π t2

e- j2 πft dt = fG( f )

We now rearrange the terms and integrate both sides to get G ( f ):



dG ( f )
G ( f )

= fdf → lnG ( f )= 1
2
f 2 +C→G ( f )=Ke- π f 2

In order to find the constant K , from the first equation we have G (0) as follows:

G (0 )=∫
-∞

∞

e- π t2

dt =1

as the area under the curve is unity, also note that to find the above integral, we used a change of 

variable. Noting that G (0 )=1, we can now find K  as follows:

G (0 )=K =1

We thus have

G ( f )=e- π f 2

We conclude therefore that the normalized Gaussian pulse is its own Fourier transform.

3.31)

In an LTI system, the Fourier transform of the output signal y ( t ) can be obtained as follows: 

Y ( f )= X ( f )H ( f )

where X ( f ) is the Fourier transform of the input signal x ( t ) and H ( f ) is the transfer function, 

using the frequency translation property of the Fourier transform and noting 1↔δ ( f ), we have:

X ( f )=∫
-∞

∞

x ( t )e- j2 πft dt =∫
-∞

∞

x0 exp ( j (2π f 0 t +θ0))e- j2 πft dt = x0 e
j θ0δ ( f - f 0)

We thus have



Y ( f )= x0 e
j θ0δ ( f - f 0)H ( f )= x0 e

j θ0 H ( f 0)

Noting that we have

H ( f )=|H ( f ) |e jφ( f )

where |H ( f ) | and φ ( f ) are the magnitude and phase of the transfer function H ( f ), Y ( f ) is thus as 

follows:

Y ( f )= x0 e
j θ0 H ( f 0)= x0 e

j θ0|H ( f 0)|e jφ( f 0 )= x0|H ( f 0)|e j (θ0 +φ( f 0))

We can thus conclude that  the  response of  an LTI system to the complex exponential  with 

frequency f 0 is a complex exponential with the same frequency. The amplitude of the response is 

the product of the input amplitude and |H ( f 0)| and its phase is the sum of the input phase and 

φ( f 0 ).

Complex exponentials are called the eigenfunctions of LTI systems, as they are inputs for which 

the output is a scaling of the input signal. This also highlights the fact that when the input is a 

complex exponential, i.e., a sinusoidal signal, the output is also a complex exponential, i.e., a 

sinusoidal signal with the same frequency.

3.32)

Assuming we have h (t )= tg (t ) and f (t )=
dg( t )
dt

, the Cauchy-Schwartz inequality states that 

(∫
-∞

∞

t2 g2( t )dt)(∫
-∞

∞

(dg( t )
dt )

2

dt)≥(∫
-∞

∞

tg (t ) dg
(t )

dt
dt)

2

=( 1
4 )(∫-∞

∞

t
d g2 (t )
dt

dt)
2



Integrating the right hand side of the inequality by parts and assuming that g (t )→0 faster than 

1

√t
→0, as t→±∞, the right hand side of the equality becomes as follows:

(∫
-∞

∞

t2 g2 (t )dt)(∫
-∞

∞

(dg (t )
dt )

2

dt)≥( 1
4 )(∫-∞

∞

g2 (t )dt)
2

By re-arranging the above inequality, we have

∫
-∞

∞

t2 g2 (t )dt

∫
-∞

∞

g2 (t )dt
×
∫
-∞

∞

g'2 (t )dt

∫
-∞

∞

g2 (t )dt
≥

1
4

Using the properties of the Fourier transform, we have

g' (t )= dg (t )
dt

↔ j2πfG ( f )

∫
-∞

∞

g2 (t )dt =∫
-∞

∞

|G ( f )|2
df

The above inequality then becomes as follows:

∫
-∞

∞

t2 g2 (t )dt

∫
-∞

∞

g2 (t )dt
×
∫
-∞

∞

(2πf )2G2 ( f )df

∫
-∞

∞

g2 (t )dt
≥

1
4
→

∫
-∞

∞

t2 g2 (t )dt

∫
-∞

∞

g2 (t )dt
×
∫
-∞

∞

f 2G2 ( f )df

∫
-∞

∞

g2 (t )dt
≥

1

16 π2

Using (3.67b) and (3.67c), we get



(T rms)
2 (  Brms)

2≥
1

16 π2 →T rms  Brms≥
1

4 π

3.33)

For the normalized Gaussian pulse g (t )=exp (- π t2), we have G ( f )=exp (- π f 2) . We thus have

∫
-∞

∞

|g( t )|2
dt =∫

-∞

∞

|G ( f )|2
df =

1

√2

and using integration by parts, we have

∫
-∞

∞

t2|g( t )|2
dt =∫

-∞

∞

f 2|G ( f )|2
df =

1
4 √2π

Using (3.67a) and (3.67b), we have

T rms=√ 1
4 √2π

1

√2

=
1

2√π

and

Brms=√ 1
4 √2π

1

√2

=
1

2√π

Using (3.67c), we have

T rmsBrms=
1

2√π
×

1
2√π

=
1

4 π



Not only does the normalized Gaussian signal have the interesting property that both its time and 

frequency descriptions are of the same functional form, but it has the lowest root-mean square 

bandwidth and time duration.

3.34)

From Rayleigh’s energy theorem, we have

∫
-∞

∞

|g( t )|2
dt =∫

-∞

∞

|G ( f )|2
df

We also know from time-average property of the Fourier transform that

∫
-∞

∞

g( t )dt =G (0 )

Using the above results as well as (3.69a) and (3.69b), (3.69c) becomes as follows:

T NEB  BNEB=
(∫

-∞

∞

|g (t ) |dt)
2

∫
-∞

∞

| g( t ) |2dt

×
∫
-∞

∞

|G ( f ) |2df

2|G (0 ) |2
=
(∫

-∞

∞

| g (t ) |dt)
2

2|∫
-∞

∞

g( t )dt|
2

Using Schwartz inequality, we have

∫
-∞

∞

|g (t )|dt ≥|∫
-∞

∞

g( t )dt|→∫
-∞

∞

|g (t )|dt

|∫
-∞

∞

g (t )dt|
≥1

The noise-equivalent bandwidth and time duration then becomes as follows:



T NEB  BNEB≥
1
2

3.35)

If the signal g( t ) is a positive or negative real-valued function of time t  for all values of t , then 

Schwartz inequality as reflected below turns into equality, that is

∫
-∞

∞

|g (t )|dt ≥|∫
-∞

∞

g (t )dt|→∫
-∞

∞

|g (t )|dt =|∫
-∞

∞

g( t )dt|
As such, we can then have

T NEB  BNEB=
1
2

3.36)

Assuming a rectangular pulse with a maximum height of g(0 ) and duration 2T AEB  whose area is 

the same as that of |g( t )|, we have the following:

2T AEB g (0 )=∫
-∞

∞

|g (t )|dt ≥∫
-∞

∞

g (t )dt =G (0 )→T AEB≥
G (0 )
2g(0 )

Assuming a rectangular pulse with a maximum height of G (0 ) and duration 2BAEB  whose area is 

the same as that of |G ( f )|, we have the following:

2BAEBG (0 )=∫
-∞

∞

|G ( f )|df ≥∫
-∞

∞

G ( f )df = g (0 )→BAEB≥
g(0 )

2G (0 )

We thus have

T AEBBAEB≥
1
4



3.37)

If the signal g( t ) is a positive or negative real-valued function of time t  for all values of t , and 

also its Fourier transform G ( f ) is a positive or negative real-valued function of frequency f  for all 

values of f , we then have 

∫
-∞

∞

|g (t )|dt =∫
-∞

∞

g (t )dt

and 

∫
-∞

∞

|G ( f )|df =∫
-∞

∞

G ( f )df

As such, we can then have

T AEB  BAEB=
1
4

3.38) 

The transfer function of this filter is real, as such it does not introduce any delay. This filter is a 

low-pass filter as its magnitude response is a decreasing function of the frequency  f , and its 

maximum value is 1, when f =0. The 3-dB bandwidth is the frequency for which the magnitude 

response is 
1

√2
 times the maximum of the magnitude response. We thus have

(1+( f
10000)

2

)
- 0.5

=
1

√2
×1→f =10,000

The Fourier transform of the sinusoidal input signal x ( t ), whose frequency is 20,000 Hz, is as 

follows:



X ( f )=3.5(e
jπ
4 δ ( f - 20000 )+e

-
jπ
4 δ ( f +20000 ))

We thus have the Fourier transform of the output signal as follows:

Y ( f )= X ( f )H ( f )=  3.5(e
jπ
4 δ ( f - 20000)+e

-
jπ
4 δ ( f +20000))(1+( f

10000)
2

)
- 0.5

=3.5(e
jπ
4 δ ( f - 20000)+e

-
jπ
4 δ ( f +20000))(1+(20000

10000)
2

)
- 0.5

=(3.5

√5 )(e
jπ
4 δ ( f - 20000)+e

-
jπ
4 δ ( f +20000))

By taking the inverse Fourier transform, we have:

y (t )= 7

√5
cos(40000 πt +

π
4 ).

Only the amplitude of the input signal has changed. This is an example that shows in an LTI 

system, we always have sinusoid in sinusoid out.

3.39)

Due to the linearity property and the convolution in the time domain property of the Fourier 

transform, we have

Y ( f )= X ( f )+ X ( f )* X ( f )

Due to the duality property, we also know that

X ( f )=∫
-∞

∞

2 sinc (2 t )e- j2 πft dt =U ( f +1) -U ( f -1)

where U ( f ) is a step function. We can now find the convolution of X ( f ) with itself:

X ( f )* X ( f )= (-|f|+2) (U ( f +2) -U ( f - 2))



Therefore, we have

Y ( f )= (U ( f +1) -U ( f -1))+((-|f|+2) (U ( f +2) -U ( f - 2)))

We have both out-of-band frequencies (outside the frequency range of the input signal), which can 

be easily filtered out and in-band frequencies (within the frequency range of the input signal) 

which cannot be filtered out, thus yielding distortion.

3.40)

Noting that for a Gaussian signal, we have 

e- π t2

↔e- π f 2

and using the scaling property of the Fourier transform, we have

exp(-
t2

2σ 2)↔2σ 2 exp (- 2σ 2 f 2)

The power spectral density of the nonperiodic power signal is as follows:

S ( f )=2σ 2 exp (- 2σ 2 f 2)

The average power content is as follows:

R (0 )=1

3.41)

Using (3.97), the autocorrelation function is as follows:

Rg (τ )=0.5 cos (10 πτ )+0.5 cos (20 πτ )



Using (3.98), we can get its power spectral density:

Sg ( f )=0.25 (δ ( f -5 )+δ ( f +5 )+δ ( f -10 )+δ ( f +10 ))

3.42)

Lack of full  carrier synchronization in a QAM system, i.e.,  an error in the phase and/or the  

frequency of the carrier in a QAM modulator, results in co-channel interference. In other words, 

the carrier in the demodulator has a phase offset θ.

The input to the upper low-pass filter is thus as follows:

2 s (t )cos (2π f c t +θ )=2(m1 (t )cos (2π f c t )+m2 (t )sin (2π f c t ))cos (2π f c t +θ )=m1 (t )cos (θ ) -m2 (t )sin (θ )+m1 (t )cos (4 π f c t +θ )+m2 (t )sin (4 π f c t +θ )

The output at the upper low-pass filter is then as follows:

m1 (t )cos (θ ) -m2 (t )sin (θ )

Since θ≠0, the signal in the in-phase channel has the scaled down version of both the desired 

signal m1 (t ) and the unwanted signal m2 (t ) . This is known as co-channel interference. A similar 

effect also occurs in the quadrature channel.

3.43)

Using Figure 3.41, we have

s (t )=m1 (t )cos (2π f c t )+m2 (t )sin (2π f c t )

Noting multiplication of a function by a sine wave or a cosine wave in the time-domain implies  

shifts in the frequency domain, we have

S ( f )= 1
2 (M 1 ( f - f c )+M 1 ( f + f c )) -

j
2 (M 2 ( f - f c ) -M 2 ( f + f c ))



The input to the upper LPF is as follows:

2 s (t )cos (2π f c t )=2m1 (t )cos (2π f c t )cos (2π f c t )+2m2 (t )sin (2π f c t )cos (2π f c t )=m1 (t )(1+cos (4 π f c t ))+m2 (t )(sin (4 π f c t ))=m1 (t )+m1 (t )cos (4 π f c t )+m2 (t )sin (4 π f c t )

The output of the upper LPF, whose cut-off frequency is much less than f c and greater than W 1, is 

then m1 (t ), as the LPF filters out both high-frequency components. The input to the lower LPF is 

as follows:

2 s (t )sin (2π f c t )=2m1 (t )cos (2π f c t )sin (2π f c t )+2m2 (t )sin (2π f c t )sin (2π f c t )=m1 (t )(sin (4 π f c t ))+m2 (t )(1- cos (4 π f c t ))=m1 (t )sin (4 π f c t )+m2 (t )cos (4 π f c t )+m2 (t )

The output of the lower LPF, whose cut-off frequency is much less than f c and greater than W 2, is 

then m2 (t ), as the LPF filters out both high-frequency components.

3.44)

MATLAB CODE:

clear all; close all; clc;

t = -6*pi:0.01:6*pi;

f = square(t);

plot(t,f,'LineWidth',3.5,'Color','Black')

xlabel('\it t');

ylabel('{\bf y}({\it t})');

%title('Finite Fourier Sum');

hold 

s1 = (4/pi)*sin(t);

s2 = (4/(3*pi))*sin(3*t) + s1;

s3 = (4/(5*pi))*sin(5*t) + s2;

s4 = (4/(7*pi))*sin(7*t) + s3;

plot(t,s1,'LineWidth',1.5);

plot(t,s2,'LineWidth',2);



plot(t,s3,'LineWidth',2.5);

plot(t,s4,'LineWidth',3);

grid on

xlim([0 2*pi])
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3.45)

MATLAB CODE:

clear all; close all; clc;

t = -5:0.01:5;

h = -1*sinc(t+1) + sinc(t) + sinc(t-1) - sinc(t-2) + sinc(t-3);

plot(t,h,'LineWidth',2.5)

k = -5:1:5;

number_to_eval = k/2;

h_at_k = -1*sinc(number_to_eval+1) + sinc(number_to_eval) + ...

sinc(number_to_eval-1) - sinc(number_to_eval-2) + sinc(number_to_eval-3);

hold on

% To plot the values of h(k/2) as "stars"



plot(number_to_eval,h_at_k,'o','LineWidth',2.5,'Color','Black')

%title('Plot of the Impulse Response, h(t)');

grid on;

xlabel('Time [s]');

ylabel('\it{y(t)}');

legendCell = cellstr(num2str(h_at_k', 'h(k/2)= %-d'))

text(-4.75,1.75,legendCell,'BackgroundColor','White')

ylim([-1.1 3])
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Time [s]

y(
t)

h(k/2)= 1.199748e-01
h(k/2)= 3.898172e-17
h(k/2)= -5.598212e-01
h(k/2)= -1
h(k/2)= -4.304762e-01
h(k/2)= 1
h(k/2)= 1.824977e+00
h(k/2)= 1
h(k/2)= -5.517371e-01
h(k/2)= -1
h(k/2)= 6.063045e-03

3.46)

MATLAB CODE:

lpFilt = designfilt('lowpassiir','FilterOrder',8, ...

         'PassbandFrequency',1e3,'PassbandRipple',0.2, ...

         'SampleRate',10e3);

impz(lpFilt,50) % Taking First 50 samples

hpFilt = designfilt('highpassiir','FilterOrder',8, ...

         'PassbandFrequency',1e3,'PassbandRipple',0.2, ...



         'SampleRate',10e3);

impz(hpFilt,50) % Taking First 50 samples

bpFilt = designfilt('bandpassiir','FilterOrder',20, ...

         'HalfPowerFrequency1',1000,'HalfPowerFrequency2',2000, ...

         'SampleRate',10e03);

impz(bpFilt,50) % Taking First 50 samples
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3.47)

MATLAB CODE:

clear all

close all; clc;

Fs = 100; % Sampling frequency

t = -.5:1/Fs:.5; 

% % User Input, if the student needs to use it.

% prompt = 'What is the value of Variance(\sigma^2)? ';

% variance = input(prompt)

variance = [0.1 0.01 0.001];

color = {'Black','Red','Blue'};

legendCell = cellstr(num2str(variance', 'Variance= %-d'));

for i = 1:length(variance)

    x = 1/(sqrt(2*pi*variance(i)))*(exp(-(t).^2/(2*variance(i))));

    nfft = 1024;

    X = fftshift(fft(x,nfft));

    % Take the magnitude of fft of x

    mx = abs(X);

    f = (-nfft/2:nfft/2-1)*Fs/nfft;

    % Generate the plot, title and labels.



    figure(1);

    plot(t,x,'LineWidth',2.5,'Color',color{i});

    grid on; hold on; legend(legendCell)

    title('Gaussian Pulse Signal');

    xlabel('Time [s]');

    ylabel('Amplitude');

    figure(2);

    plot(f,mx,'LineWidth',2.5,'Color',color{i});

    grid on; hold on; legend(legendCell)

    title('Power Spectrum of a Gaussian Pulse');

    xlabel('Frequency [Hz]');

    ylabel('Power');

end
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3.48)

MATLAB CODE:

Fs = 2; Ts = 1/Fs; % set sampling rate and interval

N = 2^9; k = 0:N-1; % set length of DT sequenc 

h =(sinc(k/Fs)).^2 ;

H = fft(h); % determine the 

H = fftshift(H); % shift the DFT coefficients

H = Ts*H; % scale DFT such that DFT = CTFT

w = -pi*Fs:2*pi*Fs/N:pi*Fs-2*pi*Fs/N; % compute CTFT frequencies

figure(1)

plot(linspace(-10,10),sinc(linspace(-10,10))+(sinc(linspace(-10,10))).^2 ...

,'LineWidth',1.5,'Color','Black'); grid on;

title('Output Y(t) - Time Domain')

xlabel('Time [s]');

ylabel('\it{Y(t)}')

figure(2)



plot(w,H,'LineWidth',1.5,'Color','Black')

grid on

title('Output |Y(\omega)| - Frequency Domain')

xlabel('\omega rads/s');

ylabel('\it{|Y(\omega)|}')
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3.49)

MATLAB CODE:

function [Rxx]=autom(x)

N=length(x);

Rxx=zeros(1,N);

for m=1: N+1

    for n=1: N-m+1

        Rxx(m)=Rxx(m)+x(n)*x(n+m-1);

    end;

end;

% The goal of this problem is to calculate the Autocorrelation function of

% a sinusoidal signal, and plot its Power Spectral Density.

N=2^12; f1=1; Fs=40; k=0:N-1;

x=2*cos(f1*k/Fs -2) + 3*sin(2*f1*k/Fs + 1);

t=[1:N]*(1/Fs);



figure(1)

plot(t,x,'LineWidth',1.5,'Color','Black');

title('Graph of the Time Domain Signal');

xlabel('Time, [s]');

ylabel('Amplitude');

grid on;

Rxx=autom(x);

figure(2)

plot(Rxx,'LineWidth',1.5,'Color','Black');

grid on;

title('Autocorrelation function of the sinewave');

xlabel('# of Samples Lagging');

ylabel('Autocorrelation');

%%% This Portion Calculates the Power Spectral Density 

Sx = fft(Rxx);

Sx = fftshift(Sx);

Sx = (1/Fs)*Sx; % scale DFT such that DFT = CTFT

w = -pi*Fs:2*pi*Fs/N:pi*Fs-2*pi*Fs/N; % compute CTFT frequencies

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%

figure(3);

plot(w,abs(Sx),'LineWidth',1.5,'Color','Black');

grid on;

axis([-10 10 min(abs(Sx)) max(abs(Sx))])

title('Power Spectral Density');

xlabel('\omega (rads/s)');



ylabel('|Sx(\omega)|');
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3.50)

MATLAB CODE:

clear all; close all; clc;

Fs = 2; Ts = 1/Fs; % set sampling rate and interval

N = 2^9; k = 0:N-1; % set length of DT sequenc 

h = sinc(k/Fs) + (sinc(k/Fs)).^2 ;

H = fft(h); 

H = fftshift(H); % shift the DFT coefficients, around 0

H = Ts*H; % scale DFT such that DFT = CTFT

w = -pi*Fs:2*pi*Fs/N:pi*Fs-2*pi*Fs/N; % compute CTFT frequencies

figure(1);

first = plot(linspace(-10,10),sinc(linspace(-10,10))+(sinc(linspace(-10,10))).^2 ...

,'LineWidth',1.5); grid on;

set(first,'Color','Black');

xlabel('Time [s]');

ylabel('\it{y(t)}')

title('Time Domain: y(t) = sinc(t) + (sinc(t))^2');

figure(2);

second = plot(w,H,'LineWidth',1.5); % plot CTFT magnitude spectrum

set(second,'Color','Black');

axis([-10 10 min(abs(H)) 1.5]); grid on;

title('Output |Y(\omega)| - Frequency Domain')

xlabel('\omega rads/s');

ylabel('\it{|Y(\omega)|}')

figure(3);

third = plot(w,angle(H),'LineWidth',1.5); % plot CTFT phase spectrum

set(third,'Color','Black');

xlabel('\omega rads/s'); grid on;

ylabel('Phase Angle [rad]');

title('Output phase(Y(\omega))');



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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3.51)

MATLAB CODE:

Fs = 48000;  % Sampling Frequency

 

Fpass = 1000;            % Passband Frequency

Fstop = 1100;            % Stopband Frequency

Dpass = 0.057501127785;  % Passband Ripple

Dstop = 0.01;          % Stopband Attenuation

dens  = 20;              % Density Factor

 

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]);

 

% Calculate the coefficients using the FIRPM function.

b  = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);

% To Determine it's impulse response.

impz(Hd)
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