/solution-manual-introduction-to-finite-elements-in-engineering-4e-chandrupatla

CHAPTER 2 MATRIX ALGEBRA AND GAUSSIAN ELIMINATION

2.1
$$\mathbf{A} = \begin{bmatrix} 8 & -2 & 0 \\ -2 & 4 & -3 \\ 0 & -3 & 3 \end{bmatrix} , \mathbf{d} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

(a)
$$\mathbf{I} - \mathbf{d} \mathbf{d}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 2 & -6 \\ 2 & 0 & 3 \\ -6 & 3 & -8 \end{bmatrix}$$

(b) det
$$\mathbf{A} = 8 \left[(4)(3) - (-3)(-3) \right] - (-2) \left[(-2)(3) - (0)(-3) \right] = 12$$

(c) The characteristic equation is det $(\mathbf{A} - \lambda \mathbf{I}) = 0$, or

$$\det\begin{bmatrix} 8-\lambda & -2 & 0\\ -2 & 4-\lambda & -3\\ 0 & -3 & 3-\lambda \end{bmatrix} = 0$$

which yields

$$\lambda^3 - 15\lambda^2 + 55\lambda - 12 = 0$$

Handbooks (e.g., CRC Mathematical Handbook) give explicit solutions to cubic equations. Here equations given in Chapter 9 are used, which give formulas for finding the eigenvalues of the (3x3) symmetric stress tensor. Referring to Section 9.3 in the text, we have

$$I_1 = A_{11} + A_{22} + A_{33} = 15, I_2 = 55, I_3 = 12$$

Thus,
$$a = 20$$
, $b = 13$, $c = 5.164$, $\theta = 37.4$ °

whence
$$\lambda_1 = 0.2325, \lambda_2 = 5.665, \lambda_3 = 9.103$$

Note: Since all $\lambda_i > 0$, **A** is positive definite.

Now, eigenvector \mathbf{y}^i corresponding to eigenvalue λ_i is obtained from

$$(\mathbf{a} - \lambda_i \mathbf{I}) \mathbf{y}^i = 0, i = 1,2,3$$

Thus, \mathbf{y}^1 is obtained as

$$\begin{bmatrix} 7.7675 & -2 & 0 \\ -2 & 3.7675 & -3 \\ 0 & -3 & 2.7675 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus,

$$7.7675 y_1 - 2 y_2 = 0$$

$$-2 y_1 + 3.7675 y_2 - 3 y_3 = 0$$

$$-3 y_2 + 2.7675 y_3 = 0$$

Only two of the above three equations are independent. We have

$$y_1 = 0.2575 \ y_2$$
$$y_2 = 0.922 \ y_3$$

Letting $y_3 = 1$, we get $\mathbf{y}^1 = [0.237, 0.922, 1]^T$

The length of the vector is $||y^{\scriptscriptstyle 1}|| = \sqrt{\mathbf{y}^{\scriptscriptstyle \mathrm{T}}\mathbf{y}} = 1.381$. Normalizing $\mathbf{y}^{\scriptscriptstyle 1}$ to be a unit vector yields

$$\mathbf{y}^1 = [0.172, 0.668, 0.724]^T.$$

Similarly,

$$\mathbf{y}^2 = [0.495, 0.577, -0.650]^T, \mathbf{y}^3 = [0.850, -0.470, 0.232]^T.$$

(d) Solution to A x = b using Algorithm 1 for general matrix:

$$n = 3$$

First Step (k = 1)

$$i = 2 (2^{nd} \text{ row})$$

$$\mathbf{A} = \begin{bmatrix} 8 & -2 & 0 \\ -2 & \mathbf{4} & -\mathbf{3} \\ 0 & -\mathbf{3} & \mathbf{3} \end{bmatrix}$$

$$c = a_{21} / a_{11} = -2/8 = -1/4$$

 $a_{22}^{(1)} = 4 - (-1/4)(-2) = 7/2, a_{23}^{(1)} = -3, d_2^{(1)} = -1 - (-1/4)(2) = -1/2$

$$i = 3 (3^{rd} \text{ row})$$

$$c = 0$$

$$a_{32}^{(1)} = -3$$
, $a_{33}^{(1)} = 3$, $d_3^{(1)} = 3$

Thus
$$\mathbf{A}^{(1)} = \begin{bmatrix} 8 & -2 & 0 \\ 0 & 7/2 & -3 \\ 0 & -3 & 3 \end{bmatrix}$$
, $\mathbf{d}^{(1)} = \begin{bmatrix} 2 \\ -1/2 \\ 3 \end{bmatrix}$

Second Step (k = 2)

$$i = 3 (3^{rd} \text{ row})$$

$$c = -6/7$$
, $a_{33}^{(2)} = 3 - (-6/7)(-3) = 3/7$, $d_3^{(2)} = 3 - (-6/7)(-1/2) = 18/7$

Thus
$$\mathbf{A}^{(2)} = \begin{bmatrix} 8 & -2 & 0 \\ 0 & 7/2 & -3 \\ 0 & 0 & 3/7 \end{bmatrix}$$
, $\mathbf{d}^{(1)} = \begin{bmatrix} 2 \\ -1/2 \\ 18/7 \end{bmatrix}$

Back-Substitution

$$\begin{bmatrix} 8 & -2 & 0 \\ 0 & -7/2 & -3 \\ 0 & 0 & 3/7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1/2 \\ 18/7 \end{bmatrix}$$

Third row gives: 3/7 $x_3 = 18/7$ whence $x_3 = 6$ 2^{nd} row then gives $x_2 = 5$, 1^{st} row gives $x_1 = 1.5$ Thus, solution is $\mathbf{x} = [1.5, 5, 6]^{\text{T}}$.

Solution to A x = b using Algorithm 2 for symmetric, banded matrix

A is stored as
$$\begin{bmatrix} 8 & -2 \\ 4 & -3 \\ 3 & 0 \end{bmatrix}$$
$$n = 3, nbw = 2$$

First Step
$$(k = 1)$$

 $nbk = min (3,2) = 2$
 $2^{nd} row (i = 2)$:
 $i1 = 2 c = a_{12}/a_{11} = -1/4$
 $j1 = 1 j2 = 2$
 $a_{21} = 4 - (-1/4)(-2) = 7/2$
Thus $\mathbf{A}^{(1)} = \begin{bmatrix} 8 & -2 \\ 7/2 & -3 \\ 3 & 0 \end{bmatrix}$

$$nbk = 2$$

$$3^{rd} \text{ row } (i = 3):$$

$$c = -6/7$$

$$j1 = 1 \quad j2 = 2$$

$$a_{31} = 3/7$$
Thus $\mathbf{A}^{(2)} = \begin{bmatrix} 8 & -2 \\ 7/2 & -3 \\ 3/7 & 0 \end{bmatrix}$

Second Step (k = 2)

 $\begin{bmatrix} 3/7 & 0 \end{bmatrix}$ reduction of right-hand-side vector **d** and back-substitution is same as in

Algorithm 1 above, resulting in the the same solution $\mathbf{x} = [1.5, 5, 6]^{T}$.

2.2 N =
$$\begin{bmatrix} \xi & 1 - \xi^2 \end{bmatrix}$$

(a)
$$\int_{-1}^{1} \mathbf{N} \, d\xi = \begin{bmatrix} 0 & \frac{4}{3} \end{bmatrix}$$

(b)
$$\int_{-1}^{1} \mathbf{N}^{\mathsf{T}} \ \mathbf{N} \ d\xi = \begin{bmatrix} \int \xi^{2} & \int \xi (1 - \xi^{2}) \\ \int \xi (1 - \xi^{2}) & \int (1 - \xi^{2})^{2} \end{bmatrix} = \begin{bmatrix} 2/3 & 0 \\ 0 & 16/15 \end{bmatrix} \blacksquare$$

2.3
$$q = x_1 - 6x_2 + 3x_1^2 + 5x_1x_2$$

$$= (x_1 \quad x_2) \begin{bmatrix} 3 & 2.5 \\ 2.5 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (1 \quad -6) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\equiv \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathrm{T}} \mathbf{x}$$

where

$$\mathbf{Q} = \begin{bmatrix} 3 & 2.5 \\ 2.5 & 0 \end{bmatrix}$$
 and $\mathbf{c} = \begin{pmatrix} 1 \\ -6 \end{pmatrix}$

- **2.4** The detailed algorithm is given in the text. This is an excercise in computer programming. The solutions are (a) (-2.25, -11.5, -10.5) (b) (1.55, 5.1, 6.1)
- 2.5 The minors are

$$M_{11} = \det \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} = -1$$

$$M_{12} = \det \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix} = -5$$

$$M_{13} = \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

$$M_{21} = 1$$
; $M_{22} = -7$; $M_{23} = -5$

$$M_{31} = 3$$
; $M_{32} = -3$; $M_{33} = -3$

Co factor

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Thus, the co-factor matrix is

$$A_c = \begin{bmatrix} -1 & 5 & -1 \\ -1 & -7 & -5 \\ 3 & 3 & -3 \end{bmatrix}$$

The inverse of matrix A

$$A^{-1} = \frac{1}{\det A} Ac^T \text{ yields}$$

$$\det (A) = (2-3) - 2(4-9) + 3(2-3) = 6$$

$$\therefore A^{-1} = \frac{1}{6} \begin{bmatrix} -1 & -1 & 3 \\ 5 & -7 & 3 \\ -1 & 5 & 3 \end{bmatrix}$$

2.6 Area =
$$\frac{1}{2} \det \begin{bmatrix} 1 & 2 & 2 \\ 1 & 7 & 8 \\ 1 & 11 & 12 \end{bmatrix}$$

= $\begin{bmatrix} 6 \end{bmatrix}$
= 6 square units.

2.7
$$A_{1} = \frac{1}{2} \det \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 1.5 \\ 1 & 2.5 & 5 \end{bmatrix} = 1.625$$

$$A_{2} = \frac{1}{2} \det \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2.5 & 5 \\ 1 & 1 & 1 \end{bmatrix} = 1.25$$

$$A_{3} = \frac{1}{2} \det \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2.5 & 5 \\ 1 & 1 & 1 \end{bmatrix} = 0.75$$

$$A = A_{1} + A_{2} + A_{3} = 3.625$$

$$A_{1} / A = 0.448, A_{2} / A = 0.345, A_{3} / A = 0.207$$

2.8
$$A_{i,j} = B_{i,j-i+1}$$
 for $j \ge i$
Thus, $A_{11,14}$ corresponds to $B_{11,4}$
and $B_{6,1}$ " " $A_{6,6}$

2.9 Full (10x10) matrix

BANDED

$$n = 10$$
, $nbw = 10$
No. of storage locations = (n) (nbw)
= 100

SKYLINE

No. of storage locations = no. of column entries
=
$$1 + 2 + 3 + ... + 10$$

= $(10)(10+1)/2$
= 55

2.10 Based on Eq. 2.2;

$$K = 1 (1^{st} \text{ row})$$

$$l_{11} = \sqrt{a_{11}} = \sqrt{4} = 2$$

$$K = 2 (2^{nd} \text{ row})$$

$$l_{21} = \frac{a_{21}}{l_{11}} = \frac{2}{2} = 1$$

$$l_{22} = \sqrt{a_{22} - l_{21}^2} = 3$$

$$K = 3 (3^{rd} row)$$

$$l_{31} = \frac{a_{31}}{l_{11}} = -3$$

$$l_{32} = \frac{a_{32} - l_{31}l_{21}}{l_{32}} = 4$$

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = 1$$

Thus

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -3 & 4 & 1 \end{bmatrix}$$

2.11 By expanding the matrix equations, we obtain a set of simultaneous equations for the

 ℓ and u coefficients, resulting in the solution

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \text{ and } \boldsymbol{U} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

2.12 The quadrilateral ABCD is divided in to two triangles with corners ABC and ACD. Area of triangle ABC

$$A_1 = \frac{1}{2} \det \begin{bmatrix} 1 & 1 & 1 \\ 1 & 7 & 2 \\ 1 & 6 & 6 \end{bmatrix} = 12.5$$

Area of triangle ACD

$$A_2 = \frac{1}{2} \det \begin{bmatrix} 1 & 1 & 1 \\ 1 & 6 & 6 \\ 1 & 3 & 7 \end{bmatrix} = 10$$

: Area of the quadrilateral ABCD

$$A = A_1 + A_2$$

A = 22.5 square unit.

2.13 Setting
$$\mathbf{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, it is easy to show that $\mathbf{T}\mathbf{T}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

2.14 a) The minors of the given matrix are:

$$M_{11} = 7$$
; $M_{12} = 4$; $M_{13} = -1$
 $M_{21} = 11$; $M_{22} = 17$; $M_{23} = 7$
 $M_{31} = 3$; $M_{32} = 6$; $M_{33} = 6$

b) The co factors of the given matrix are:

$$C_{11} = 7$$
; $C_{12} = -4$; $C_{13} = -1$
 $C_{21} = -11$; $C_{22} = 17$; $C_{33} = -7$
 $C_{31} = 3$; $C_{32} = -6$; $C_{33} = 6$

c) The adjoint matrix is

$$\begin{bmatrix} 7 & -11 & 3 \\ -4 & 17 & -6 \\ -1 & -7 & 6 \end{bmatrix}$$

- c) The determinant of the matrix is 15
- e) The inverse of the given matrix is

$$\frac{1}{15} \begin{bmatrix} 7 & -11 & 3 \\ -4 & 17 & -6 \\ -1 & -7 & 6 \end{bmatrix}$$