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CHAPTER 1

100*%10%%0.02 = 2*10° m°

1 acre-ft = 43,560 cubic feet

cubic meters*35.31 = cubic feet
(2*10%+35.31)/43,560 = 1,612.2 acre-ft

volume/volume per unit time = time
(500,000*%0.3)/(0.5) = 300,000 sec.
300,000/3,600 = 83.3 hours

(450 + 500)/2 - (500 + 530)/2 = avg. inflow - avg. outflow
the change in storage is thus - 40 cfs

-40*3600/43560 = -3.31, the change in storage in acre-ft.
The initial storage is thus depleted by 3.31 ac-ft
3.31*43,560/35.31 = 4,083 cubic meters

125/365 = 0.34 cm/day = 0.035 cm/day
0.34/2.54 = 0.13 in./day

volume = 5280*5280*0.5 = 13,939,220 cubic feet
V/Q =time
13,939,220*3600/12 = 1,161,600 sec, or 322.7 hr, or 13.4 days

ET=P-R
R = (140*3600*24*365)/(10,.000*1000%) =
0.44 m/yr or 44 cm/yr

ET =105 - 44 =61 cm/yr
This is a crude estimate.

equivalent depth = vol/area

inflow = 25*3600*24*365 = 788,400 cubic feet/yr
inflow/(3650*%43560) = 4.96 ft/yr

E =100*365/3650 = 10.0 ft/yr

Hence there is a drop in level of 5.04 ft

Iavg. - Oavg. = change in storage per unit time

(20 - 18)*3600 = 7,200 cubic meters

The storage is thus increased by 7,200 cubic meters
resulting in a final storage of 27,200 cubic meters



CHAPTER 2

Problems in this chapter are to be developed by the instructor.



CHAPTER 3

3.1-34 To be assigned by instructor.

3.5 For the James River rainfall:

Interval in. f xf P(x) F(x)
(36-37) 2 2 0.057 0.057
(38-39) 4 6 0.114 0.171
(40-41) 7 13 0.200 0.371
(42-43) 9 22 0.257 0.628
(44-45) 5 27 0.143 0.771
(46-47) 4 31 0.114 0.885
(48-49) 2 33 0.057 0.942
(50-51) 2 35 0.057 0.999 1.000

a) P(MAR 2> 40) =1.000 - 0.171 = 0.829 = 82.9%
b) P(MAR 2> 50)=0.057 =5.7%
c) P(40<MAR <£50)=0.942-0.171=0.771 =77.1%

3.6  Using the curve data for a standard normal curve (Table B.1) requires
standardization of the limits of the integral,

z= x-;=8—4 =2

S 2
From Table B.1, the integral is the area to the right of F(z = 2), or 0.5 - 0.4772 =

0.0228.
3.7 For the data given:

a) The area under the curve must be 1.0 to qualify as a probability density
function,
A= [fix)dx = b = 1.0
Jo 8
This givesb=2.0
b) This is the area between 0.0 and 0.5, or 0.5°/8 = 0.016

3.8 The histogram is symmetric, has zero skew, and mean = median = mode.



1 1

Sketch for Prob. 3.8
Since area to right of mode is 50%, F(mode) = 50% and T‘= 2yr.
39 Givenx=103, s=1.1, C,=0.11, n=20
S.E.(x) = sWn = 1.120 = 0.245
S.E.(s) = s"\2n = 1.1/V40 = 0.0174
S.E.(Cy)=CN14+2C?N2n = 0.11N1 + 2(.11)’440 =0.017
95%C.L.:z=+1.96
X +1.96 (SE,) =103 +048
= {10.78 t0 9.82}

3.10 Because the median divides the area in half, most of the area would be to the
right of the median. The distribution is probably skewed right.

3.11 Sketch:

| ')C (x) ' peak

ot |
' . >
mea..nj, N mode

Sketch of p.d.f. for Prob. 3.11



a) Left skewed
b) Negative because Pearson skew = (mean - mode)/sy
3.12 For the 30,000 cfs value:

T,= 60yrs = 20 yrs

3 times
3.13 Frequency analysis:

a) :
m Peak m
rank value F=10 T, =1/F
1 1000 1 10
2 900 2 5
3 800 3 3.33
4 700 4 2.5
5 600
6 500
7 400
8 300
9 200
10 100

By interpolation, 4-yr value is

800+ 4-3.33 (100)
5-3.33

= 840 cfs
b) Using Table B.1,
Quyr = Q +K sq =550 + .67(300) = 750 cfs
3.14 For an annual precipitation of 30 in.
a) P(x =2 30) = G(30)
z=(30 - 27.6)/6.06 = 0.396

F(z) = 0.15392



G(30) = 0.5 - 0.15392 = 0.346
b)  Riskin3years=1-(1-G(30)°
= 0.720
c)  P(all three years) = G(30)° = 0.041
3.15  P(E, UEy) =P(E,)) +P(Ey) - P(E; N E,)

a) IfE, and E; are independent, P(E,|E;) = P(E;)
and  P(E;NEp) =P(E)) x P(Ey)
P(E,UEy)=03+0.3-03x03=0.51

b) If dependent, with P(E;|Ey) = 0.1,

P(E;NEy) = 0.1x0.3= 0.03
and P(E, UE,) =0.3 + 0.3 - 0.03 = 0.57

3.16 P(A)=0.4,P(noA)=PA)=1-04=0.6
P(B) = 0.5, P(no B)=P(B)=1-0.5 = 0.5;
A and B independent
a) P(ANB) = PA)xPB)=04x0.5=020
b)  P(AnB)=P(A)x P(B)=0.6x0.5=0.30
3.17  P(EiE;)=0.9, P(Es|E;) = 0.2, P(E; N E») = 0.1
P(E)) = P(E; N Ey)/P(E4E;) = 0.1/0.2 = 0.5
P(E;) = P(E; N E,)/P(E|E;) = 0.1/0.9 = 0.111

3.18 Two random events that are:

a) Mutually exclusive:

A: Precipitation today exceeds 4 in.

B: Precipitation today does not exceed 3"
b) Dependent:

A: Precipitation today exceeds 4 in.

B: Runoff today exceeds 1 in.
) Mutually exclusive and dependent:

A: Precipitation today does not exceed 4 in.

B: Runoff today exceeds 6 in.
d) Neither mutually exclusive nor dependent:
A: Today's precipitation exceeds 4 in.



B: Groundwater pumpage this year will exceed 3 acre-feet
per acre

3.19  P(A)=04, P(B)=0.5
a) P(A ~ B)=P(A) P(B|A) =0.4(0.5) = 0.20
b) P(A N B)=0.6(0.5) = 0.30
c) P(A ~B)=P(A) P(B) = 0.6(0.5) = 0.30
3.20  For the given data:
a) Only if P(B|A) = P(B)
Now, P(B) = 0.6
P(B|A) = P(A and B)
P(A)

Since P(A and B) = 0.2 and P(A) = 0.4

P(BJA)= 0.2 = 0.5, Dependent

=

b) No, mutually exclusive if P(A and B)= 0, but P(A and B) = 0.2
¢) P(B)=0.6
d) P(A)=1-04=06
e) P(A and B) = P(BJA) P(A)
From data, P(both) = 0.2
Check: P(A and B) = 1 - P(E;) - P(E,)-P(Es)
Possibles: Warm Mar Cold Mar Warm Mar Cold Mar
AprFlood AprFlood AprDry  Apr Dry
P=0.2 P=04 P=02 P=02
f) P(B/A)=0.5

g) to make them independent,



P(B|A) = P(B)
Since P(B) = 0.6

P(BJA)=_P(Aand B) =02 =0.5
P(A) 0.4

Change P(B) to 0.5, without changing P(A and B)

3.21 A: Flood
B: Ice-jam

P(A and B) = P(A[B)P(B), thus P(A and B) < P(A|B)
and P(A and B) < P(A)

Also P(A or B) = P(A) + P(B) - P(A and B)
Also P(A) <P(A|B) because B < S

Ranking: Largest = P(A or B)

Second = P(A|B)

Third =P(A)

Fourth = P(A and B)

3.22  For the information given:

a) Both statements say the same thing when n=1 = T, years,

orT,=1yr
b) First:
1-D'=a-_1)"'=(2)=4 =0444
T 3 3 9

Second: P = Probability annual precipitation value will not be equaled or
exceeded in any single year,

P=1-F,=1-1= 2
3 3

\O

n  PY(@A-PY=_ 31 (2)V'a-2) =4
1! (nr!) ey 3 3

323  Forrisk =50%, R =0.5=1-(1 - 1/T)?
for 2 consecutive yr
Solution gives T =3.41 yr
For risk = 100%, R=1=1-(1-1/T)>, T=1yr

3.24  For the temporary cofferdam:



a) P(overtopping in any yr) =P(F) = 1/T =/20 = 0.05
b) P(non-exceed in yr 1 and non-exceed in yr 2 and exceed in yr 3) = P(F) x
P(F)xP(F)=0.95x0.95x0.5=0.451
c) Risk = 1-(1 - 1/T)"
1-(1 - 1/20)° = 0.226
d) P(non-exceed in 5 consecutive yr)
=(1-1/20)°=0.774

3.25 For N = 33, median = 17th largest flow.

Defining Q as the annual peak:
a) P(Q exceeds median) = 17/33 =0.515
b) T, =1/G(Q) = 1/0.515 = 1.94 yrs.
c) G(Q) =0.515 in any year.
d) 1-G(Q)=0.485
e) P(Q <median in all 10 yrs)
=P(QN QN QN Q..)=(0.485)"=0.00072
f) P(Q > median at least once in 10 years)
=1-(1-G(Q))"?=0.99928
2) P(Q, and Q; exceed median)
=P(Q1) P(Q2)
=G(Q) G(Q)=0.265
h) P(Q; exceeds median and Q, does not)
G(Q(1-G(Q)) = 0.250

3.26 For the temporary floodwall:

a) P(overtopping in any yr) = P(F) = 1/T = 1/20 = 0.05
b) P(non-exceed in 3 consecutive yr) = (1 - P(F))3

=P(F)’ = 0.95° = 0.857
c) Risk = 1-(1-1/T)N = 1-(1 - 1/20)* = 0.143
d) P(exceed in 1st yr only or exceed in 2nd yr
only or 3rd yr only)
= P(in 1st yr only) + P(in 2nd yr only)
+ P(in 3rd yr only)

= P(F) x P(F) x P(F) + P(F) x P(F) x P(F)
+P(F) x P(F) x P(F)

= (0.05)(0.95)(0.95) + (0.95)(0.05)(0.95)
+ (0.95)(0.95)(0.05) =0.135

e)  P(exceed in 3rd yr exactly) = P(F) x P(F)
x P(F) = (0.95)(0.95)(0.05) = 0.045



3.27 The owner's acceptance level is:

Risk =1-(1-1/T)"=025
Substitution of n = 20 gives T, = 70 yrs, thus the wall should be between
8.5 and 10.0 ft, or interpolating, 9.1 ft.

3.28 For Oak Creek:

a) Freq. = m/N = 3/60 = 0.05
b) P(F) = freq. = 0.05
c) T=1/P(F)=1/0.05=20 yr

d)  P(F)=1-PF)=1-0.05=095

e) P(non-exceed in two consecutive yr) = P(_l_:‘) X P(l:: )=0.95x
0.95=0.9025

f) P(one or more exceed in 20 yr)=Risk
=1-1-17N
=1-(1-0.05%=0.642

g) P(non-exceed in one yr and exceed in next yr)
=P(F) x P(F)
=0.95x 0.05=0.0475

h) Using Binomial Theorem, P(3 occurrences in 60 yr)
=P(x in n)
= [n!/x!(n-x)!1p"(1-p)™™
=[60!/3! 5717(0.05)*(0.95)°" = 0.230

1) Same as part f).
3.29 For Anniston, Alabama,

Mean rain = 57.2 in.
Standard deviation = 15.5 in.
100-yr X =57.2 +K (15.5)
From Appendix B, K for 0.01 = 2.326,
Xmo =932 1n.

The 1988 depth of 99 inches was the greatest depth of record. It has
an apparent recurrence interval of 23 years. If the rain is normally
distributed,

99 =57.2 + Koo (15.5)



3.30

331

332

3.33

3.34

3.35

K99 =2.697
The area to the right of 2.697 is .49647, giving a recurrence interval of

1/.00353 = 283 years.
P(u<x<p+o)=areafromz=0toz=1=0.3413=34.13%

P(u - 36 £ X < p+ 30) = area under standard normal from -3 to +3

From Appendix C.1:
P(p-36<x<p+30) = 2(.4987)=0.997 or =99.74 %

For Normal distribution of runoff:

x= X +1zs, s=V9=3

11=14+3z, z=-1.0, F(z)=0.3413

P(x £11)=0.5000-0.3413 = 0.1583 in any yr

P(x < 11 in 3 consecutive yrs) = 0.1588° = 0.004 =0.4%

From Table B.1, the standard variate, z, with area to the right of 0.330 is 0.44
(area left = F(z) = 0.5 - 0.33 =0.17). Thus,

x=;( +zs
=5+0.44(1.0) =544

Since p=0, o =1, then (2 f(z)dz= 2(0.4772) =0.9544
2

Given:
4:(90 D Z K//;j
L |
|
O 30

X = J—LL,\IJ Pr‘eci]o

Prob. 3.35 Definition Sketch

ptx = 30 in.



3.38

a) P(x <20 in.) = area left of 20 in. = 1/2bh = 0.1667

b) P (x>30in.) = area right of 30 in.
= ] - arealeft of 30 in.
=1-15/40= 0.625

The function is a triangle. For this shape,

a) P(X <20 in.) = area left of 20.0, or 20%/2400 = 0.167
b) P(X =30 in.) = area right of 30.0,
or 1.0 - area left of 30.0, = 1 - 30%/2400 = 0.625

Using Table B.1:

c.

.
0 3

d.
7

=

. 2
5

lb-l

prd
oo

a.
2
September precipitation statistics:
x=655° s = \39.3 = 627°
a) Approx. limits are x +s. F(z) = 0.33,
z=+0.9
X +2zs =65.5+0.97(6.27)=65.5 + 6.1

= {71.6 and 59.4}

b) Middle 95% = 47.5% either side of mean
F(z)=0.475, z=+1.96

X+5=65.5+1.96(6.27) = 65.5 + 12.3
= {77.8 and 53.2}

¢) F(z) = 0.80 - 0.50 = 0.30; z 0.84

Xg0 = X + 25 = 65.5 + 0.84(6.27)
=65.5+5.3=70.8°

d) 10-yr F(z)=0.50 - 0.10 = 0.40, z = 1.28
Xo0 = X + 25 =65.5 + 1.28(6.27) = 73.5°

100-yr F(z) = 0.50 - 0.01 = 0.49, z=2.33



Xoo =X +2zs = 65.5+2.33(6.27)= 8.01°
339  x=3275;s (computed) = 442, graphical est. at (Xga 1 - X159)/2

3.40 30-min intensity from 60 yrs record
45 values > 2.5 in./hr
5-yrs, none > 2.5 in./hr
a) T, of 2.5 in./hr by P-D series:
= 100 =100 = 100(61) =0.72 yrs
Fximbar ~ m/N+1 85

b) T; of 2.5 in./hr by annual series:
= 100=100(61) = 1.11 yrs
F 55

3.41 For the peaks given:

Annual Partial

Order Series Series T=

(m) Q Q) (n+1)m
1 800 800 11.0
2 700 700 5.50
3 400 700 3.67
4 300 400 2.75
5 100 300 2.20
6 80 100 1.83
7 80 90 1.57
8 60 . 90 1.37
9 40 90 1.22
10(=n) 30 80 1.10

Q100 (Annual Series): T=2.20 yrs
Qio0 (Partial Series): T = 1.83 yrs

3.42 For the data given:
a) Annual series:

Yr Value T, =N/m = 10/m
69 6" 10

71 5" 5

68 4" 333

66 3" 2.5

63 2" 2



Thus, 2" value has T, = 2 years

b) Partial-Duration series:
Value T, = 10/m

6 10

5 3.33

5 3.33

4 2.5

3 2

2 10/6

Thus, 2" value has Tr = 10/6 yrs = 1.67 yrs

c)
Value T
6" 10
5" 3.333

Interpolating, Xg = 6 in. — 2/6.67 (1 in.) = 5.70 in.

If interpolate by frequency:

X Fy
6" 1
X 125
5 3
Giving,
Xg = 5+0.175/0.2 (1) = 5.875 in.
(Either answer OK)

3.43 For the data given:

a) For partial series, the 30-min value was equaled or exceeded 85 times, thus
T=n+1/m=61/85=0.72

b) For annual series, m =55 and
T=61/55=1.109

3.44 The function would be linear on:

a) Probability (Normal) paper



3.46

3.47

b) Extreme-value (Gumbel) paper
) Rectangular coordinate paper (Y = 3X+4)
d) Log-probability paper (Lognormal)

e) Probability (A Pearson III with g = 0 is normal) paper

f) Log-Log (Q = 43 A%")

2) Log-probability paper (same as log-normal =

Log-Pearson III with gjoes = 0
h) None (Pearson III with g = 3)

345 Cs,=0.879 Csy =0.2775

Log normal Est. 50-yr 100-yr
K(Cs=0) 2054 2326

y=y+Ks, 3490 3.531
x=log'y 3171 cfs 3483 cfs

Log Pearson III

K(Cs=028) 2201 2530
y=y+Ks, 35119 3.5611

x=logly  3250cfs 3640 cfs

Gumbel
Kn=20)= 3179 3.836
x=x+KS,= 3453 cfs 3832 cfs
R=14in.
s=3in.

P(R <8 in. inyr 2 of 3 yrs)

=P(R >8 "R <8R > 8)=P(E) P(E) P(E)
PR <8in.)=F(R)

8in.= 14 in. + K(3in.)

K=(8-14)/3= -2.0

Thus F(8 in.) = P(E) = 0.5 -0.4772 = 0.0228

Thus P(2nd yr only) = (0.9772)(0.0228)(0.9772) = 0.022

Q=Q+Ks



3.48

3.49

3.50

32,000 = 30,000 + K(1,000)
K=20

Thus F(Q)=0.5+0.4772=0.9772
G(Q) =0.0228

T,=43.9 yrs

For the precipitation data given:

a)

b)

The graph would plot as a straight line on probability paper, with
the mean of 27.6 having a 50% exceedance probability. A
second point, or any number of points, can be generated from

XT=X+2ZrSs

Where zt is the standard normal variate (Table B.1)
corresponding to the value T = 1/G(x) where G(x) is the
exceedance probability. For example, an exceedance of G(x) =
0.33 corresponds to z = 0.44 from Table B.1. The corresponding
Tis 1/.33=3.03, and x = 27.6 + 0.44(6.06) = 30.27

Assuming the 1972 drought was the smallest value in 80 years, it
has an apparent frequency of 80/81 = 0.988. For a value of 14
in., the corresponding z is -2.24. From Table B.1, F(z) = 0.4875.
Thus the probability of exceedance is .4875 + 0.50 = 0.9875.

The apparent recurrence interval for the highest value is 81
years, using T = N+1/m, where m is the rank. The normal
distribution gives z = (42 - 27.6)/6.06 = 2.376. This gives F(z) =
0.49122, and G(x) = 0.00878. Because T =1/G(x), T=114
years.

For normal distribution, T=2 and P = 1/2 = 0.5 occurs at mean: X = 40,000 cfs

ForT=10and P=1/10=0.10, F(z) = 0.50 - 0.10 = 0.40: z=1.282

Therefore, X = X +7zs

52820 = 40000 + 1.28s, s = 10,000 cfs

For T=25and P =1/25=0.04, F(z) = 0.50 - 0.04 = 0.46, thus z=1.75

Xas = X + zs = 4000 + 1.75(10000) = 57,500 cfs

Find 25-yr flood:



