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Exercise 2-1:
Find the quotient and remainder when b = 13 is divided by a = 3.

Solution:
Since 13 = 4 · 3 + 1, the quotient is 4 and the remainder is 1.

Exercise 2-2:
Find the quotient and remainder when b = 3 is divided by a = 13.

Solution:
Since 3 = 0 · 13 + 3 the quotient is 0 and the remainder is 3.

Exercise 2-3:
Find the quotient and remainder when b = 7 is divided by a = 7.

Solution:
Since 7 = 1 · 7 + 0 the quotient is 1 and the remainder is 0.

Exercise 2-4:
Find the quotient and remainder when b = 0 is divided by a = 7.

Solution:
Since 0 = 0 · 7 + 0, the quotient is 0 and the remainder is 0.

Exercise 2-5:
Find the quotient and remainder when b = −12 is divided by a = 4.

Solution:
Since −12 = −3 · 4 + 0, the quotient is −3 and the remainder is 0.

Exercise 2-6:
Find the quotient and remainder when b = −10 is divided by a = 4.

Solution:
Since −10 = −3 · 4 + 2, the quotient is −3 and the remainder is 2.
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Exercise 2-7:
Find the quotient and remainder when b = −246 is divided by a = 11.

Solution:
Since −246 = −23 · 11 + 7, the quotient is −23 and the remainder is 7.

Exercise 2-8:
Find the quotient and remainder when b = −5 is divided by a = 17.

Solution:
Since −5 = −1(17) + 12, the quotient is −1 and the remainder is 12.

Exercise 2-9:
If 3p2 = q2 where p, q ∈ Z, show that 3 is a common divisor of p and q.

Solution 1:
Since 3|3p2, 3|q2. By Theorem 2.53 (or Proposition 2.28) 3|q. Let q = 3t,

with t ∈ Z. Then, 3p2 = 9t2. Since 3|3t2, 3|p2, and so 3|p.

Solution 2:
Since 3|3p2, 3|q2. But every prime factor of q appears an even number of

times as a factor q2. Thus 3|q. Let q = 3t, with t ∈ Z. Then, 3p2 = 9t2. Since
3|3t2, 3|p2, and so 3|p.

Exercise 2-10: If ac | bc and c 6= 0 prove that a|b

Solution:
Let ac | bc. This means there exists q ∈ Z such that bc = q · ac. Since c 6= 0,

we can divide by c, and obtain b = qa. Hence a|b.

Exercise 2-11: Prove that gcd(ad, bd) = |d| · gcd(a, b).

Solution:
If d = 0, then both sides of the equation are clearly equal to 0.
Suppose d > 0 and let e = gcd(a, b). Then the right side of the equation

equals de. We must show that gcd(ad, bd) = de. Since e | a, then a = qe for some
integer q. This tells us that ad = qde and so de | ad by definition. Similarly,
since e | b, then de | bd. Therefore, de is a common divisor of ad and bd.

Since e = gcd(a, b), by the Extended Euclidean Algorithm, there exist in-
tegers x and y so that ax + by = e. Multiplying through by d, we obtain
(ad)x + (bd)y = de. But de is a common divisor of ad and bd, so by the GCD
Characterization Theorem, de = gcd(ad, bd).

If d < 0, then set D = −d = |d|. Then gcd(ad, bd) = gcd(−ad,−bd) =
gcd(aD, bD) = D ·gcd(a, b) = |d| gcd(a, b) from the result for positive D above.
This concludes the proof.

Exercise 2-12: Find gcd(5280, 3600).

Solution:
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By the Euclidean Algorithm,

5280 = 1 · 3600 + 1680
3600 = 2 · 1680 + 240
1680 = 7 · 240 + 0 .

As the last nonzero remainder is 240, this is the gcd of 5280 and 3600.
Check: 5280 = 22 · 240, 3600 = 15 · 240 and gcd(22, 15) = 1.

Exercise 2-13: Find gcd(484, 451).

Solution:
By the Euclidean Algorithm,

484 = 1 · 451 + 33
451 = 13 · 33 + 22
33 = 1 · 22 + 11
22 = 2 · 11 + 0

As the last nonzero remainder is 11, this is the gcd of 484 and 451.
Check: 484 = 11 · 44, 451 = 11 · 41 and gcd(44, 41) = 1).

Exercise 2-14: Find gcd(616, 427).

Solution:
By the Euclidean Algorithm,

616 = 1 · 427 + 189
427 = 2 · 189 + 49
189 = 3 · 49 + 42
49 = 1 · 42 + 7
42 = 6 · 7 + 0.

As the last nonzero remainder is 7, this is the gcd of 616 and 427.
Check: 616 = 7 · 88, 427 = 7 · 61 and gcd(88, 61) = 1.

Exercise 2-15: Find gcd(1137,−419).

Solution:
1137 = 2(419) + 299
419 = 1(299) + 120
120 = 2(120) + 59
59 = 29(2) + 1
2 = 2(1) + 0 .

By the Euclidean Algorithm, gcd(1137,−419) = 1.

Exercise 2-16: Find gcd(19201, 3587).
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Solution: By the Euclidean Algorithm,

19201 = 5(3587) + 1266
3587 = 2(1266) + 1055
1266 = 1(1055) + 211
1055 = 5(211) + 0 .

Because 211 is the last nonzero remainder, then gcd(19201, 3587) = 211.
Check: 19201 = 211 · 91, 3587 = 211 · 17 and gcd(91, 17) = 1.

Exercise 2-17: Find gcd(2100, 1002)

Solution:
The prime factorization of 2100 is 2100, and of 1002 is (22 · 52) = 24 · 54. By

Theorem 2.57 the gcd(2100, 1002) = 2d1 · 5d2 where d1 = min(100, 4) = 4 and
d2 = min(0, 4) = 0. Hence, gcd(2100, 1002) = 24 = 16.

Exercise 2-18: Find gcd(10!, 310).

Solution:
We need only determine the power of 3 in 10!.

10! = 10.9.8.7.6.5.4.3.2.1 = 34(10.8.7.2.5.4.2.1) .

Therefore gcd(10!, 310) = 34 = 81.

Exercise 2-19:
If a = 484 and b = 451, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution:
Use the Extended Euclidean Algorithm.

484x +451y = r qi

1 0 484
0 1 451
1 −1 33 1

−13 14 22 13
14 −15 11 1

−41 44 0 2

Therefore 484(14) + 451(−15) = 11 = gcd(484, 451) = 14a− 15b.

Exercise 2-20:
If a = 5280 and b = 3600, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution:
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Use the Extended Euclidean Algorithm.

5280x +3600y = r qi

1 0 5280
0 1 3600
1 −1 1680 1

−2 3 240 2
15 −22 0 7

Therefore 5280(−2) + 3600(3) = 240 = gcd(5280, 3600) = −2a + 3b.

Exercise 2-21:
If a = 17 and b = 15, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution:
Use the Extended Euclidean Algorithm.

17x +15y = r qi

1 0 17
0 1 15
1 −1 2 1

−7 8 1 7
15 −17 0 2

Therefore 17(−7) + 15(8) = 1 = gcd(17, 15) = −7a + 8b.

Exercise 2-22:
If a = 5 and b = 13, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution:
By inspection 5(−5) + 13(2) = 1, therefore gcd(5, 13) = −5a + 2b.

Exercise 2-23:
If a = 100 and b = −35, write gcd(a, b) in the form ax + by where x, y ∈ Z.
Solution:

Use the Extended Euclidean Algorithm.

100x +35y = r qi

1 0 100
0 1 35
1 −2 30 2

−1 3 5 1
7 −20 0 6

Therefore 100(−1)− 35(−3) = 5 = gcd(100,−35) = −a− 3b.
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Exercise 2-24:
If a = 3953 and b = 1829, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution:
Use the Extended Euclidean Algorithm.

3953x +1829y = r qi

1 0 3953
0 1 1829
1 −2 295 2

−6 13 59 6
31 −67 0 5

Therefore 3953(−6) + 1829(13) = 59 = gcd(3953, 1829) = −6a + 13b.

Exercise 2-25:
If a = 51 and b = 17, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution: Since 51 = 3 · 17, gcd(51, 17) = 17 = b.

Exercise 2-26:
If a = 431 and b = 0, write gcd(a, b) in the form ax + by where x, y ∈ Z.

Solution: Since gcd(a, 0) = |a|, gcd(431, 0) = 431 = a.

Exercise 2-27:
Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1

Solution:
Use the contrapositive proof method to prove each implication, noting that

NOT gcd(a, c) = gcd(b, c) = 1 is equivalent to gcd(a, c) 6= 1 OR gcd(b, c) 6= 1.
First prove:

gcd(ab, c) 6= 1 =⇒ gcd(a, c) 6= 1 OR gcd(b, c) 6= 1.

If gcd(ab, c) 6= 1 there is a prime p such that p|ab and p|c. By Theorem 2.53,
either p|a or p|b. Hence either (p|a and p|c) or (p|b and p|c); that is, either
gcd(a, c) 6= 1 or gcd(b, c) 6= 1.

Now prove:

gcd(a, c) 6= 1 OR gcd(b, c) 6= 1 =⇒ gcd(ab, c) 6= 1.

If gcd(a, c) 6= 1 or gcd(b, c) 6= 1, there is a prime p such that (p|a and p|c) or
(p|b and p|c). In either case, p|ab and p|c; hence gcd(ab, c) 6= 1.

Exercise 2-28: Prove that any two consecutive integers are coprime.

Solution:
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Consider the consecutive integers n and n+1. Because n(−1)+(n+1)(1) = 1,
by Proposition 2.27 (i), gcd(n, n + 1) = 1 and the consecutive integers are
coprime.

Exercise 2-29: Simplify
95
646

+
40
391

.

Solution:
Using the Euclidean Algorithm we can find the gcd(95, 646) to simplify the

fractions.

646 = 6 · 95 + 76
95 = 1 · 76 + 19
76 = 4 · 19 + 0

Hence gcd(95, 646) = 19. So, we can simplify 95
646 into 5

34 . Taking common
denominator we get

5
34

+
40
391

=
3315
13294

To simplify the final answer we use again the Euclidean Algorithm to find
the gcd(3315, 13294).

13294 = 4 · 3315 + 34
3315 = 17 · 34 + 17

34 = 2 · 17 + 0

Hence gcd(3315, 13294) = 17. Dividing by 17 we get

3315
13294

=
195
782

.

Check:
Using a calculator: 95

646 + 40
391 ≈ 0.147 + 0.1023 ≈ 0.2494 and 195

782 ≈ 0.2494.

Exercise 2-30:
Gear A turns at 1 rev/min and is meshed into gear B. If A has 32 teeth and B
has 120 teeth, how often will both gears be simultaneously back in their starting
positions?

Solution:
One revolution of gear A gives 32/120 revs of B so n revolutions of gear A

give 32n
120 revolutions of B. We want the least integer n so that 32n

120 = 4n
15 will

be an integer. This is n = 15. Every 15 revolutions of A (15 minutes) give 4
revolutions of B.

Exercise 2-31:
Find one integer solution, if possible, to the following diophantine equation:
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21x + 35y = 7

Solution:
By inspection 21(2) + 35(−1) = 7. Therefore, a solution is x = 2 and

y = −1.

Exercise 2-32:
Find one integer solution, if possible, to the following Diophantine equation.

14x + 18y = 5

Solution:
Since the greatest common divisor of 14 and 18 is 2, and 2 - 5, it follows that

the Diophantine equation 14x + 18y = 5 does not have a solution.

Exercise 2-33:
Find one integer solution, if possible, to the following Diophantine equation.

x + 14y = 9

Solution:
By inspection 9 + 14(0) = 9 so x0 = 9 and y0 = 0 is a solution.

Exercise 2-34:
Find one integer solution, if possible, to the following Diophantine equation.

11x + 15y = 31

Solution:
By inspection 11(11) + 15(−8) = 1. Multiplying by 31 gives

11(341) + 15(−248) = 31.

So x0 = 341 and y0 = −248 is a particular solution.

Exercise 2-35:
Find one integer solution, if possible, to the following Diophantine equation.

143x + 253y = 156

Solution:
By the Euclidean Algorithm

253 = 1 · (143) + 110
143 = 1 · (110) + 33
110 = 3 · (33) + 11
33 = 3 · (11) + 0

Since gcd(253, 143) = 11 but 11 - 156, the Diophantine equation does not have
a solution.
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Exercise 2-36:
Find one integer solution, if possible, to the following Diophantine equation.

91x + 126y = 203

Solution:
We use the Extended Euclidean Algorithm to find the gcd(91, 126).

126y +91x = r qi

1 0 126
0 1 91
1 −1 35 1

−2 3 21 2
3 −4 14 1

−5 7 7 1
13 −18 0 2

Thus gcd(91, 126) = 7 and 91(7) + 126(−5) = 7. Since 203 = 7(29), then
91(29)(7) + 126(29)(−5) = 203. 91(203) + 126(−145) = 203. Therefore, a
solution is x0 = 203 and y0 = −145.
Check: 91 · 203− 126 · 145 = 18473− 18270 = 203.

Exercise 2-37: Find all the integer solutions of 7x + 9y = 1.

Solution:
Since gcd(7, 9) = 1 a solution exists. By inspection 7(−5) + 9(4) = 1.

Therefore, a particular solution is x = −5 and y = 4. Hence the general
solution is

x = −5 + 9n
y = 4− 7n

}
for all n ∈ Z.

Check: 7(−5 + 9n) + 9(4− 7n) = −35 + 63n + 36− 63n = 1.

Exercise 2-38: Find all the integer solutions of 212x + 37y = 1.

Solution:
We use the Extended Euclidean algorithm to find gcd(212, 37):

212x +37y = r qi

1 0 212
0 1 37
1 −5 27 5

−1 6 10 1
3 −17 7 2

−4 23 3 1
11 −63 1 2

−37 212 0 3
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Thus, gcd(212, 37) = 1 and 212(11) + 37(−63) = 1. Therefore, a particular
solution is x = 11 and y = −63. Hence the general solution is

x = 11 + 37n
y = −63− 212n

}
for all n ∈ Z.

Check: 212(11 + 37n) + 37(−63− 212n) = 2332 + 7844n− 2331− 7844n = 1.

Exercise 2-39: Find all the integer solutions of 15x− 24y = 9.

Solution:
Since gcd(15, 24) = 3 and 3|9 a solution exists. By inspection 15(−1) +

−24(−1) = 9. Therefore, a particular solution is x = −1 and y = −1. Hence
the general solution is

x = −1 + 8n
y = −1 + 5n

}
for all n ∈ Z.

Check: 15(−1 + 8n)− 24(−1 + 5n) = −15 + 120n + 24− 120n = 9.

Exercise 2-40: Find all the integer solutions of 16x + 44y = 20.

Solution:
The equation is equivalent to

4x + 11y = 5.

Clearly gcd(4, 11) = 1, and a combination of 4 and 11 giving 1 is:

4 · 3 + 11(−1) = 1 .

Multiply the above by 5, we get x0 = 15 , y0 = −5 as a particular solution to
the original Diophantine equation. Hence the general solution is

x = 15 + 11n
y = −5− 4n

}
for all n ∈ Z.

Check: 16(15 + 11n) + 44(−5− 4n) = 240 + 176n− 220− 176n = 20.

Exercise 2-41: Find all the integer solutions of 243x + 405y = 123.

Solution:
We use the Extended Euclidean Algorithm to find the gcd(243, 405).

243x +405y = r qi

1 0 243
0 1 405
1 0 243 0

−1 1 162 1
2 −1 81 1

−5 3 0 2
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Since gcd(243, 405) = 81, and 81 does not divide 123 (123 = 1 · 81 + 42), the
Diophantine equation 243x + 405y = 123 has no integer solution.

Exercise 2-42: Find all the integer solutions of 169x− 65y = 91.

Solution:
By the Extended Euclidean Algorithm,

169x +65y = r qi

1 0 169
0 1 65
1 −2 39 2

−1 3 26 1
2 −5 13 1

−5 13 0 2

Therefore, gcd(169,−65) = gcd(169, 65) = 13 and 169(2) − 65(5) = 13.
Notice that 91 = 13 · 7, so the Diophantine equation does have a solution.
Therefore, a particular solution to 169x−65y = 91 is x = 2·7 = 14, y = 5·7 = 35.
This tells us that the complete integer solution to 169x− 65y = 91 is

x = 14 +
(−65

13

)
n = 14− 5n

y = 35−
(

169
13

)
n = 35− 13n

}
for all n ∈ Z.

Check: 169(14− 5n)− 65(35− 13n) = 2366− 845n− 2275 + 845n = 91.

Exercise 2-43: Find all the non-negative integer solutions to the diophantine
equation 14x + 9y = 1000

Solution:
Since gcd(14, 9) = 1, a solution exists. By inspection 14(2) + 9(−3) = 1.

Multiplying by 1000 gives 14(2000) + 9(−3000) = 1000.
Therefore, a particular solution is x = 2000 and y = −3000. This tells us

that the general solution is

x = 2000 + 9n
y = −3000− 14n

}
for all n ∈ Z.

Since we want non-negative solutions, then x = 2000 + 9n ≥ 0 or n ≥ − 2000
9

or n ≥ −222 since n is an integer. Similarly, y = −3000− 14n ≥ 0 which yields
that n ≤ − 3000

14 or n ≤ −215. Therefore, n can take the values between −222
and −215. These give eight non-negative solutions

(x, y) = (2, 108), (11, 94), (20, 80), (29, 66), (38, 52), (47, 38), (56, 24), (65, 10).

Check: 14(65) + 9(10) = 910 + 90 = 1000.
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Exercise 2-44:
Find all the nonnegative integer solutions of 12x + 57y = 423.

Solution:
Clearly, gcd(12, 57) = 3 and 3 | 423, so integer solutions exist. To simplify

the problem, we can divide through by the gcd to reduce the size of the numbers.
This gives us the equation 4x + 19y = 141. By inspection 4(5) + 19(−1) = 1.
Multiplying by 141 gives 4(705)+19(−141) = 141. Thus, the complete solution
is

x = 705 + 19n
y = −141− 4n

}
for all n ∈ Z.

Since we want non-negative solutions, then x = 705 + 19n ≥ 0 or n ≥ − 705
19

or n ≥ −37, since n is an integer. Similarly, y = −141 − 4n ≥ 0 which yields
that n ≤ −36. Therefore, n can take the values −37, −36, which give the
non-negative solutions

(x, y) = (2, 7), (21, 3).

Check: 12(21) + 57(3) = 252 + 171 = 423.

Exercise 2-45: Find all the non-negative integer solutions to the diophantine
equation 38x + 34y = 200.

Solution:
Since gcd(34, 38) = 2 and 2|200 a solution exists. Dividing the equation by

2 gives and equivalent equation, 19x + 17y = 100.
We use the Extended Euclidean Algorithm to find a particular solution to

the Diophantine equation.

19x +17y = r qi

1 0 19
0 1 17
1 −1 2 1

−8 9 1 8
17 −19 0 2

We get 19(−8)+17(9) = 1. Multiplying by 100 gives 19(−800)+17(900) = 100.
Therefore, a particular solution is x = −800 and y = 900. This tells us that the
general solution is

x = −800 + 17n
y = 900− 19n

}
for all n ∈ Z.

Since we want non-negative solutions, x = −800 + 17n ≥ 0 or n ≥ 800
17 or

n ≥ 47.06. Similarly, y = 900−19n ≥ 0 which yields that n ≤ 900
19 or n ≤ 47.37.

There are no integers between 47.06 and 47.37, so there are no non-negative
solutions to the Diophantine equation 38x + 34y = 200.
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Exercise 2-46:
Find all the nonnegative integer solutions of 11x− 12y = 13.

Solution:
Since gcd(11, 12) = 1, and 11(−1) − 12(−1) = 1, it follows that x0 = −13

and y0 = −13 is a particular solution for 11x − 12y = 13. Hence the general
integer solution is

x = −13− 12n
y = −13− 11n

}
for all n ∈ Z.

For non-negative solutions −13 − 12n ≥ 0 and −13 − 11n ≥ 0, which implies
that n ≤ −2 and n ≤ −2. Thus the complete set of non-negative solutions is

x = −13− 12n
y = −13− 11n

}
for all integers n with n ≤ −2

Check: For n = −2, x = 11, y = 9, and 11(11)− 12(9) = 121− 108 = 13.

Exercise 2-47:
Can 1000 be expressed as the sum of two positive integers, one of which is
divisible by 11 and the other by 17?

Solution:
Solve the Diophantine equation 11x + 17y = 1000 The gcd(11, 17) = 1 so

there is a solution to the Diophantine equation. By inspection 11(−3)+17(2) =
1. Multiplying by 1000 gives 11(−3000) + 17(2000) = 1000.

Therefore, a particular solution is x = −3000 and y = 2000. This tells us
that the general solution is

x = −3000 + 17n
y = 2000− 11n

}
for all n ∈ Z.

Since we want positive integers, then x = −3000 + 17n > 0 or n > 3000
17 or

n ≥ 177 since n is an integer. Similarly, y = 2000 − 11n > 0 which yields that
n < 2000

11 or n ≤ 181. Therefore, n can take the values between 177 and 181.
These yields five solutions:

99 + 901 = 1000
286 + 714 = 1000
473 + 527 = 1000
660 + 340 = 1000
847 + 153 = 1000.

Exercise 2-48:
Can 120 be expressed as the sum of two positive integers, one of which is divisible
by 11 and the other by 17?
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Solution:

Solve the Diophantine equation 11x + 17y = 120
The gcd(11, 17) = 1 so there is a solution to the Diophantine equation. By
inspection 11(−3) + 17(2) = 1. Multiplying by 120 gives 11(−360) + 17(240) =
120.

Therefore, a particular solution is x = −360 and y = 240. This tells us that
the general solution is

x = −360 + 17n
y = 240− 11n

}
for all n ∈ Z.

Since we want positive integers, x = −360 + 17n > 0 or n > 360
17 or n ≥ 22

as n is an integer. Similarly, y = 240− 11n > 0 which yields n < 240
11 or n ≤ 21.

There is no integer satisfying n ≥ 22 and n ≤ 21, so there is no positive solution.
Therefore is it not possible to express 120 as the sum of a positive multiple of
11 and a positive multiple of 17.

Exercise 2-49:
Can 120 be expressed as the sum of two positive integers, one of which is divisible
by 14 and the other by 18?

Solution:
Solve the Diophantine equation 14x + 18y = 120
The gcd(14, 18) = 2 and 2|120, so there is a solution to the equation. By

inspection 14(4) + 18(−3) = 2. Multiplying by 60 gives 14(240) + 18(−180) =
120. Therefore, a particular solution is x = 240 and y = −180, and the general
solution is

x = 240 + 9n
y = −180− 7n

}
for all n ∈ Z.

Since we want positive integers, x = 240 + 9n > 0 or n > − 240
9 , or n ≥ −26,

as n is an integer. Similarly, y = −180 − 7n > 0 which yields n < − 180
7 or

n ≤ −26. Therefore, n = −26, and the only solution is x = 6 and y = 2.
Check: 14(6) + 18(2) = 84 + 36 = 120.

Exercise 2-50:
Find the smallest positive integer x so that 157x leaves remainder 10 when
divided by 24.

Solution:
Solve the Diophantine equation

157x− 24y = 10.
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Apply the Extended Euclidean Algorithm to 157 and 24:

157x + 24y = r qi

1 0 157
0 1 24
1 −6 13 6

−1 7 11 1
2 −13 2 1

−11 72 1 5
24 −157 0 2

Then gcd(24, 157) = 1 and 157(−11)+24(72) = 1. Multiplying the equation by
10 gives the particular solution x0 = −110 and y0 = 720. Therefore the general
solution to the Diophantine equation is

x = −110 + 24n
y = 720− 157n

}
for all n ∈ Z.

Now x is positive if −110 + 24n > 0, that is when n > 4.58. Hence the
smallest positive solution for x occurs when n = 5, and x = 10.
Check: 1570 = 65 · 24 + 10.

Exercise 2-51:
The nickel slot of a pay phone will not accept coins. Can a call costing 95 cents
be paid for exactly using only dimes and quarters? If so, in how many ways can
it be done?

Solution:
Solve the Diophantine equation 10x + 25y = 95
Where x represents the number of dimes and y the number of quarters. The

gcd(10, 25) = 5 and 5|95, so there is a solution to the equation. Dividing by 5
we obtain the equivalent equation 2x+5y = 19. By inspection 2(−2)+5(1) = 1.
Multiplying by 19 gives 2(−38) + 5(19) = 19.

Therefore, a particular solution is x = −38 and y = 19. This tells us that
the general solution is

x = −38 + 5n
y = 19− 2n

}
for all n ∈ Z.

Since we want a positive solution (to pay 95 cents exactly), x = −38+5n > 0
or n > 38

5 , or n ≥ 8 as n is an integer. Similarly, y = 19− 2n > 0 which yields
n < 19

2 or n ≤ 9. Therefore, n can take on two values 8 or 9. So the call can be
paid in two ways using only dimes and quarters:

for n = 8, x = 2 and y = 3
for n = 9, x = 7 and y = 1.

Hence use 2 dimes and 3 quarters, or 7 dimes and 1 quarter.
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Exercise 2-52: Convert (5613)7 to base 10.

Solution:

(5613)7 = 5 · 73 + 6 · 72 + 1 · 7 + 3 = 1715 + 294 + 7 + 3
= 2019 = (2019)10 .

Exercise 2-53: Convert (100110111)2 to base 10.

Solution:

(100110111)2 = 1 · 28 + 1 · 25 + 1 · 24 + 1 · 22 + 1 · 21 + 1
= 256 + 32 + 16 + 4 + 2 + 1 = 311 = (311)10 .

Exercise 2-54:
Convert (9A411)12 to base 10. Where A is the symbol for ten.

Solution:

(9A411)12 = 9(12)4 + 10(12)3 + 4(12)2 + 1 · 12 + 1
= 186624 + 17280 + 576 + 13
= 204493 = (204493)10 .

Exercise 2-55:
How many seconds are there in 4 hours 27 minutes and 13 seconds?

Solution:
The division of the hour and minute into 60 parts indicates that 4 hours

27 minutes and 13 seconds is a number in base 60. If A represents 27 and B
represents 13 then:

(4AB)60 = 4(60)2 + 27(60) + 13
= 14400 + 1620 + 13
= 16033 seconds.

Exercise 2-56: Convert 1157 to base 2.

Solution:
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We have
1157 = 2 · 578 + 1
578 = 2 · 289 + 0
289 = 2 · 144 + 1
144 = 2 · 72 + 0
72 = 2 · 36 + 0
36 = 2 · 18 + 0
18 = 2 · 9 + 0
9 = 2 · 4 + 1
4 = 2 · 2 + 0
2 = 2 · 1 + 0
1 = 0 · 2 + 1

and so 1157 = (10010000101)2.
Check: (10010000101)2 = 210 + 27 + 22 = 1157.

Exercise 2-57: Convert 1241 to base 9.

Solution:
By repeated use of the Division Algorithm we obtain

1241 = 137 · 9 + 8
137 = 15 · 9 + 2
15 = 1 · 9 + 6
1 = 0 · 9 + 1 .

Thus, 1241 = (1628)9.
Check: 1 · 93 + 6 · 92 + 2 · 9 + 8 = 729 + 486 + 18 + 8 = 1241.

Exercise 2-58: Convert 433 to base 5.

Solution:
433 = 86 · 5 + 3
86 = 17 · 5 + 1
17 = 3 · 3 + 2
3 = 0 · 5 + 3.

Hence 433 = (3213)5.
Check: (3213)5 = 3(53) + 2(52) + 1(5) + 3 = 433.

Exercise 2-59: Convert 30 to base 3.

Solution:
30 = 10 · 3 + 0
10 = 3 · 3 + 1
3 = 1 · 3 + 0
1 = 0 · 3 + 1.

Hence 30 = (1010)3.
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Check: (1010)3 = 1(33) + 1(31) = 30.

Exercise 2-60: Convert 5766 to base 12, writing A for ten and B for eleven.

Solution:
By repeated use of the Division Algorithm we obtain

5766 = 480 · 12 + 6
480 = 40 · 12 + 0
40 = 3 · 12 + 4
3 = 0 · 12 + 3 .

Hence 5766 = (3406)12.
Check: (3406)12 = 3 · 123 + 4 · 122 + 6 = 5766.

Exercise 2-61: Convert 40239 to base 60.

Solution:
By repeated use of the Division Algorithm we obtain

40239 = 670 · 60 + 39

670 = 11 · 60 + 10

11 = 0 · 60 + 11.

Letting A = 10, B = 11 and X = 39, the answer is (BAX)60.
Check: (BAX)60 = (11) · 602 + (10) · 601 + 39 = 40239.

Exercise 2-62: Add and multiply (1011)2 and (110110)2 together in base 2.

Solution:
The only nontrivial part of the base 2 addition and multiplication tables is

(1)2 + (1)2 = (10)2. Thus

(110110)2
+ (1011)2
(1000001)2

(110110)2
× (1011)2
(110110)2

(110110)2
(000000)2

(110110)2
(1001010010)2

Check:

(110110)2 = 25 + 24 + 22 + 2 = 54,

(1011)2 = 23 + 2 + 1 = 11
(1000001)2 = 26 + 1 = 65 = 54 + 11,

(1001010010)2 = 29 + 26 + 24 + 2 = 594 = 54× 11 .
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Exercise 2-63: Add and multiply (3130)4 and (103)4 together in base 4.

Solution:

Base 4 Addition Table
+ (1)4 (2)4 (3)4

(1)4 (2)4 (3)4 (10)4
(2)4 (3)4 (10)4 (11)4
(3)4 (10)4 (11)4 (12)4

Base 4 Multiplication Table
· (1)4 (2)4 (3)4

(1)4 (1)4 (2)4 (3)4
(2)4 (2)4 (10)4 (12)4
(3)4 (3)4 (12)4 (21)4

Thus

(3130)4
+ (103)4

(3233)4

(3130)4
× (103)4
(22110)4

+ (313000)4
(1001110)4

Check:

(3130)4 = 3(43) + 1(42) + 3(41) = 220
(103)4 = 1(42) + 3(40) = 19

(3233)4 = 3(43) + 2(42) + 3(41) + 3(40) = 239 = 220 + 19
(1001110)4 = 1(46) + 1(43) + 1(42) + 1(41) = 4180 = 220 · 19.

Exercise 2-64:
Write out the addition and multiplication tables for base 6 arithmetic, and then
multiply (4512)6 by (343)6 in base 6.

Solution:

Base 6 Addition Table
+ (1)6 (2)6 (3)6 (4)6 (5)6

(1)6 (2)6 (3)6 (4)6 (5)6 (10)6
(2)6 (3)6 (4)6 (5)6 (10)6 (11)6
(3)6 (4)6 (5)6 (10)6 (11)6 (12)6
(4)6 (5)6 (10)6 (11)6 (12)6 (13)6
(5)6 (10)6 (11)6 (12)6 (13)6 (14)6

Base 6 Multiplication Table
· (1)6 (2)6 (3)6 (4)6 (5)6

(1)6 (1)6 (2)6 (3)6 (4)6 (5)6
(2)6 (2)6 (4)6 (10)6 (12)6 (14)6
(3)6 (3)6 (10)6 (13)6 (20)6 (23)6
(4)6 (4)6 (12)6 (20)6 (24)6 (32)6
(5)6 (5)6 (14)6 (23)6 (32)6 (41)6
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Then
(4512)6

× (343)6
(22340)6

(31252)6
(22340)6
(3013300)6 = Ans.

Check: (4512)6 = 4 ·63+5 ·62+6+2 = 1052 and (343)6 = 3 ·62+4 ·6+3 = 135.
Now (3013300)6 = 3 · 66 + 1 · 64 + 3 · 63 + 3 · 62 = 142020 = 1052× 135.

Exercise 2-65:
Subtract (3321)4 from (10020)4 and check your answer by converting to base
10.

Solution: Mimic the algorithm used when subtracting in Base 10.

(10020)4
− (3321)4

(33)4

Check:

(10020)4 = 1(44) + 2(41) = 264
(3321)4 = 3(43) + 3(42) + 2(41) + 1(40) = 249

(33)4 = 3(41) + 3(40) = 15 = 264− 249.

Exercise 2-66:
If a = (342)8 and b = (173)8, find a− b without converting to base 10.

Solution:
Mimic the algorithm used when subtracting in Base 10.

(342)8
− (173)8

(147)8

Check:

(342)8 = 3(82) + 4(81) + 2(80) = 226
(173)8 = 1(82) + 7(81) + 3(80) = 123
(147)8 = 1(82) + 4(81) + 7(80) = 103 = 226− 123

Exercise 2-67: How many positive divisors does 12 have?
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Solution: The prime factorization of 12 is 12 = 22 · 31. By Proposition 2.56
the positive divisors of 12 are those integers of the form

d = 2d13d2 where 0 ≤ d1 ≤ 2 and 0 ≤ d2 ≤ 1.

Thus, d1 has three possible values {0, 1, 2} and d2 has two possible values {0, 1}.
So 12 has 3 · 2 = 6 divisors.

Exercise 2-68: How many positive divisors does 6696 have?

Solution:
The prime factorization of 6696 is:

6696 = 23 · 33 · 31.

The positive divisors of 6696 are all the numbers of the form 2a13a2 , 31a3 , where

0 ≤ a1 ≤ 3
0 ≤ a2 ≤ 3
0 ≤ a3 ≤ 1.

There are (3 + 1)(3 + 1)(1 + 1) = 32 different possibilities for the ordered triple
(a1, a2, a3). So 6696 has 32 positive divisors.

Exercise 2-69:
If we wish to add the fractions 1

132+ 4
9 , what is the smallest common denominator

we could choose?

Solution:
The common denominator of the fractions 1

132 and 4
9 is a multiple of 132 and

9. The smallest common denominator is therefore the least common multiple
of 132 and 9.

Because 132 = 22 · 3 · 11 and 9 = 20 · 32 · 110, by Theorem 2.58,

lcm(132, 9) = 3a1 · 2a2 · 11a3 ,

where a1 = max(2, 0) = 2, a2 = max(1, 2) = 2, and a3 = max(1, 0) = 1. Hence
lcm(132, 9) = 396.

Exercise 2-70:
Factor the following numbers into prime factors and calculate the greatest com-
mon divisor and least common multiple of each pair.

40 and 144.

Solution:
The prime factorizations of 40 and 144 are

40 = 23 · 5 = 23 · 30 · 51

144 = 24 · 32 = 24 · 32 · 50.
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Therefore

gcd(40, 144) = 23 · 30 · 50 = 8
lcm(40, 144) = 24 · 32 · 51 = 720.

Check: ab = gcd(a, b) · lcm(a, b), so 40 · 144 = 5760 = 8 · 720.

Exercise 2-71:
Factor the following numbers into prime factors and calculate the greatest com-
mon divisor and least common multiple of each pair.

5280 and 57800.

Solution:
The prime factorizations of 5280 and 57800 are

5280 = 25 · 3 · 5 · 11 · 170
57800 = 23 · 30 · 52 · 110 · 172.

Therefore

gcd(5280, 57800) = 23 · 5 = 40
lcm(5280, 57800) = 25 · 3 · 52 · 11 · 172 = 7629600.

Check: ab = gcd(a, b) · lcm(a, b) so 40 · 7629600 = 305184000 = 57800 · 5280.

Exercise 2-72: Find lcm(12827, 20099).

Solution:
We use the Euclidean Algorithm to find the gcd(12807, 20099):

20099 = 1(12827) + 7272
12827 = 1(7272) + 5555
7272 = 1(5555) + 1717
5555 = 4(1717) + 404
1717 = 4(404) + 101
404 = 4(101) + 0.

By the Euclidean Algorithm, gcd(12827, 20099) = 101. So, by Theorem 2.59,
and long division

lcm(12827, 20099) = (12827 · 20099)/101 = 2552573.

Problem 2-73: Prove that {ax + by | x, y ∈ Z} = {n · gcd(a, b) | n ∈ Z}.

Solution:
To show equality of two sets, show that each is a subset of the other.
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Let c ∈ {ax + by | x, y ∈ Z}. Then c = ax + by for some x, y ∈ Z. We know
that gcd(a, b) | a and b. Thus gcd(a, b) | ax+by = c. This means c = n ·gcd(a, b)
for n ∈ Z. That is c ∈ {n · gcd(a, b) | n ∈ Z}, and

{ax + by | x, y ∈ Z} ⊆ {n · gcd(a, b) | n ∈ Z}.

Now let c ∈ {n · gcd(a, b) | n ∈ Z}. Thus c = n · gcd(a, b) for some n. By the
Extended Euclidean algorithm there exist s, t ∈ Z such that gcd(a, b) = as + bt.
Therefore

c = n · gcd(a, b) = asn + btn

= ax + by

where x = sn, and y = t. That is c ∈ {ax + by | x, y ∈ Z}, and

{ax + by | x, y ∈ Z} ⊇ {n · gcd(a, b) | n ∈ Z}

which proves the result.

Problem 2-74:
Show that gcd(ab, c) = gcd(b, c) if gcd(a, c) = 1. Is it true in general that

gcd(ab, c) = gcd(a, c) · gcd(b, c) ?

Solution:
Let d = gcd(b, c). We must show that d = gcd(ab, c). Since d | b, then d | ab.

Also, d | c since d = gcd(b, c). Therefore, d is a common divisor of ab and c.
By the Extended Euclidean Algorithm, there exist integers u and v such that
au+ cv = 1 (since gcd(a, c) = 1). Hence abu+ cbv = b. If e is a common divisor
of ab and c then e|b. Because e is also a common divisor of b and c then |e| ≤ d.
It follows that d = gcd(ab, c).

In general it is not true that gcd(ab, c) = gcd(a, c) · gcd(b, c). For example
take a = b = c = 2. Then

gcd(ab, c) = 2 6= 2 · 2 = gcd(a, c) · gcd(b, c)

so the statement is not true in general.

Problem 2-75:
Show that the Diophantine equation ax2 + by2 = c does not have any integer
solutions unless gcd(a, b)|c. If gcd(a, b)|c, does the equation always have an
integer solution?

Solution:
If a = b = 0 then the equation only has solutions if c = 0, and then any pair

(x, y) ∈ Z will work. Otherwise suppose that the equation has a solution x0 and
y0. Then ax2

0 + by2
0 = c. Let d = gcd(a, b) 6= 0, so d|a and d|b. By Proposition

2.11(ii), d|ax2
0 + by2

0 , so d|c.
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The converse of this statement is not true, to see this let a = b = 1 and
c = 3. Then gcd(1, 1) = 1, which does divide 3. However, if x2 + y2 = 3, then
x2 ≤ 3, so |x| ≤ 1 and |y| ≤ 1. None of these integer values give solutions.

Problem 2-76:
For what values of a and b does the Diophantine equation ax + by = c have an
infinite number of positive solutions for x and y?

Solution:
In order to have any solutions we must have gcd(a, b)|c. Of course 0x+0y = 0

has infinitely many positive solutions. If a and b are nonzero, let d = gcd(a, b),
and suppose there is at least one integer solution x = x0, y = y0. The general
solution is x = x0 + n(b/d), y = y0 − n(a/d). Look at the four cases:

i) If a > 0 and b > 0, then for n sufficiently large the solutions will have
opposite signs. If −n is sufficiently large, the solutions will have opposite
signs. Therefore there will only be finitely many solutions.

ii) If a < 0 and b < 0 then, as above, there will be no solutions.

iii) If a > 0 and b < 0, then for −n sufficient large, all solutions will be
positive so we will have infinitely many positive solutions.

iv) If a < 0 and b < 0, then for n sufficiently large, all solutions will be
positive so we will have infinitely many positive solutions.

Hence there will be a infinite number of positive solutions if gcd(a, b)|c and a
and b have opposite signs, or a = b = c = 0.

If a is nonzero, b = 0, and a and c have the same sign, then there is one
positive solution for x, but an infinite number of positive solutions for y.

Problem 2-77:
For what values of c does 8x+5y = c have exactly one strictly positive solution?

Solution:
Let x0, y0 be a positive solution to 8x + 5y = c. The general solution is

given by
x = x0 + 5n
y = y0 − 8n

}
for all n ∈ Z .

If x0, y0 is to be the only positive solution, then n = 0 is the only value of n to
give a positive solution. Now, if n = 1, x0 +5n will still be positive, so we must
have y0−8 ≤ 0. Similarly, if n = −1, y0−8n will still be positive, so x0−5 ≤ 0.
Hence,

c ∈ {8x + 5y | 1 ≤ x ≤ 5, 1 ≤ y ≤ 8}.

This gives the 40 values, c = 13, 18, 21, 23, 26, 67, 70, 72, 75, 80 and all c in
the range 28 ≤ c ≤ 65 except 30, 32, 35, 40, 53, 58, 61 and 63.
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Problem 2-78:
An oil company has a contract to deliver 100000 liters of gasoline. Their tankers
can carry 2400 liters and they can attach one trailer carrying 2200 liters to each
tanker. All the tankers and trailers must be completely full on this contract,
otherwise the gas would slosh around too much when going over some rough
roads. Find the least number of tankers required to fulfill the contract. Each
trailer, if used, must be pulled by a full tanker.

Solution:
Let the number of tankers by x, and the number of trailers be y, where

y ≤ x. From the data given, we want to solve the equation

2400x + 2200y = 100 000.

Dividing through by 200, we obtain 12x + 11y = 500.
Clearly, gcd(12, 11) = 1, so this equation has an integer solution. Now

12(1) + 11(−1) = 1, so 12(500) + 11(−500) = 500, and the complete solution is

x = 500 + 11n
y = −500− 12n

}
for all n ∈ Z.

We want y to be non-negative, and x ≥ y. Hence y = −500 − 12n ≥ 0, and
500 + 11n ≥ −500 − 12n. That is, n ≤ −500

12 ≈ 41.67 and n ≥ −1000
23 ≈ 43.48.

Since n is an integer, −43 ≤ n ≤ −42 and the two possible solutions are

(x, y) = (27, 16), (38, 4).

Therefore the least number of tankers required is 27.
Check: 2400(27) + 2200(16) = 64 800 + 35 200 = 100 000.

Problem 2-79:
A trucking company has to move 844 refrigerators. It has two types of trucks
it can use, one carries 28 refrigerators and the other 34 refrigerators. If it only
sends out full trucks and all the trucks return empty, list the possible ways of
moving all the refrigerators.

Solution:
Let x be the number of trucks of the first type, and y be the number of

trucks of the second type. The problem asks to solve the Diophantine equation

28x + 34y = 844.

Using the Extended Euclidean algorithm.

34y +28x = r qi

1 0 34
0 1 28
1 −1 6 1

−4 5 4 4
5 −6 2 1

14 −17 0 2

2.25



Since gcd(28, 34) = 2 and 2|844 an integer solution to the equation exists, and
28(−6) + 34(5) = 2. Multiplying by 422 gives 28(−2532) + 34(2100) = 844.

Therefore, a particular solution is x = −2532 and y = 2100. This tells us
that the general solution is

x = −2532 + 17n
y = 2100− 14n

}
for all n ∈ Z.

Since we want non-negative integer number of trucks, x = −2532 + 17n ≥ 0 or
n ≥ 2532/17 ≈ 148.94; hence n ≥ 149. Similarly, y = 2100 − 14n ≥ 0, which
yields n ≤ 2100/14 = 150. Therefore, n can take the values 149 and 150, which
yield the solutions

for n = 149, x = 1 and y = 24
for n = 150, x = 18 and y = 10.

Thus, the refrigerators can be moved with 1 truck of the first type and 24 of
the second type, or 18 of the first type and 10 of the second type.

Problem 2-80:
Show how to measure exactly 2 liters of water from a river using a 27 liter jug
and a 16 liter jug. If you could not lift the larger jug when full, but could push
it over, could you still measure the 2 liters?
Solution:

Let the 27 ` jug be filled x times, while the 16 ` jug is filled y times. (If x or y
is negative, we treat this as emptying a full jug; and only useful way to empty
a jug is after having filled it from the other jug.) We require

27x + 16y = 2.

Solve this using the Extended Euclidean Algorithm.

27x +16y = r qi

1 0 27
0 1 16
1 −1 11 1

−1 2 5 1
3 −5 1 2

−16 27 0 5

Hence x = 3, y = −5 is one solution to 27x + 16y = 1, and x = 6, y = −10 is
one solution to 27x+16y = 2. Therefore fill the large jug from the river, pour it
into the small jug until the small jug is full, then empty the small jug onto the
ground. Empty the large jug into the small jug, and fill the large jug from the
river again. If we repeat this until the large jug has been filled 6 times (162 ` of
water) and the small jug has been emptied 10 times (160 ` of water, all of which
has come from the large jug), then there should be 2 liters left in the large jug
(assuming we haven’t spilt any water!).
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If the large jug cannot be lifted when full, then we must try to find a solution
to 27x + 16y = 2 with x negative and y positive. In this case, we can fill the
small jug from the river, and empty the large jug by tipping it over.

The general solution of the Linear Diophantine Equation 27x + 16y = 2 is
(x, y) = (6+16n,−10−27n), n ∈ Z. Taking n = −1 gives the solution x = −10,
y = 17, that corresponds to filling the small jug 17 times and emptying the large
jug 10 times.
Check: 27(−10) + 16(17) = −270 + 272 = 2.

Problem 2-81:
Let S be the complete solution set of the Diophantine equation ax + by = d. Is

cS = {(cx, cy) | (x, y) ∈ S}

the complete solution set of ax + by = cd?

Solution:
No, cS is not the complete solution set of ax + by = cd.
We are given that S is the complete solution set of the Diophantine equations

ax + by = d. Hence if a particular solution is (x0, y0) and e = gcd(a, b), then
the complete solution is (x, y) = {(x0 + (b/e)t , y0 − (a/e)t)} , t ∈ Z. Now it
follows that a particular solution for ax + by = cd is (cx0, cy0) and a general
solution is x = cx0 + (b/e)t , y = cy0 − (a/e)t. Comparing this with required
condition that cS = {(cx, cy)}, we must have cx = cx0 + cbt , cy = cy0 − cat,
and the statements are not the same unless c = 1.

Problem 2-82:
Four men and a monkey spend the day gathering coconuts on a tropical island.
After they have all gone to sleep at night, one of the men awakens and, not
trusting the others, decides to take his share. He divides the coconuts into four
equal piles, except for one remaining coconut, which he gives to the monkey.
He then hides his share, puts the other piles together and goes back to sleep.
Each of the other men awakens during the night and does likewise, and every
time there is one coconut left over for the monkey. In the morning all the men
awake, divide what’s left of the coconuts into four, and again there is one left
over that is given to the monkey. Find the minimum number of coconuts that
could have been in the original pile.

Solution:
Let m be the minimum number of coconuts. By the Division Algorithm,

there exists an integer q1 such that m = 4q1 + 1. The first man hides q1

coconuts, and leaves 3q1 coconuts, after giving one to the monkey. Similarly,
the other 3 men hide q2, q3, q4 coconuts respectively, where 3qi−1 = 4qi + 1 for
i = 2, 3, 4. This means that 3q4 coconuts remain to be divided in the morning.
When that is done, each man takes q5 more coconuts, where

3q4 = 4q5 + 1
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and the monkey receives that last of his 5 coconuts. So we have

m = 4q1 + 1
3q1 = 4q2 + 1
3q2 = 4q3 + 1
3q3 = 4q4 + 1
3q4 = 4q5 + 1

Then q4 = (4/3)q5 + 1/3. Substituting for q4 in the previous equation gives
q3 = (42/32)q5 + 7/32. Substituting again for q3 and solving for q2 gives q2 =
(43/33)q5 + 37/33. Repeating this again gives q1 = (44/34)q5 + 175/34. Then

m = 4q1 + 1 =
45

34
q5 +

175
34

+ 1 =
1024
81

q5 +
781
81

.

Hence m and q1 satisfy the Diophantine Equation

81m− 1024q5 = 781.

1024(−q5) + 81m = r qi

1 0 1024
0 1 81
1 −12 52 12

−1 13 29 1
2 −25 23 1

−3 38 6 1
11 −139 5 3

−14 177 1 1

By the Extended Euclidean algorithm, 81(177) − 1024(14) = 1. Multiplying
by 781 gives the particular solution m = 138237 and q5 = 10934. The general
solution to the Diophantine Equation is

m = 138237 + 1024n
q5 = 10934 + 81n

}
for all n ∈ Z.

We want the smallest positive value of m, such that q5 > 0 (because in the
morning there were still coconuts left). Hence n > −10934/81 ≈ −134.988;
that is n ≥ −134. The smallest value of m occurs when n = −134, with
m = 138237 + 1024(−134) = 1021 and q5 = 10934 + 81(−134) = 80.

Hence the minimum number of coconuts is 1021.
Check:

1021 = 4(255) + 1
3(255) = 764 = 4(191) + 1
3(191) = 573 = 4(143) + 1
3(143) = 429 = 4(107) + 1
3(107) = 321 = 4(80) + 1.
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Problem 2-83:
Let a, b, c be nonzero integers. Their greatest common divisor gcd(a, b, c) is the
largest positive integer that divides all of them. Prove that

gcd(a, b, c) = gcd(a, gcd(b, c)).

Solution:
Note that g = gcd(a, b, c) is non-negative. Let d = gcd(a, gcd(b, c)).
By definition, d|a and d| gcd(b, c). The latter implies that d|b and d|c. Thus

d is a common divisor of a, b and c, and d ≤ g.
Now g|a, g|b, and g|c. Because g|b and g|c, Proposition 2.29.(iii) implies

that g| gcd(b, c). As g|a, g is a common divisor of a and gcd(b, c), and so g ≤ d.
Hence gcd(a, b, c) = g = d = gcd(a, gcd(b, c)).

Problem 2-84:
Prove that the Diophantine equation ax+ by + cz = e has a solution if and only
if gcd(a, b, c)|e.

Solution:
We follow the outline of the proof of Theorem 2.31 (i). Let d = gcd(a, b, c).

(=⇒) Suppose that there are integers x, y, z for which ax + by + cz = e. By
definition of gcd d|a, d|b, and d|c. Therefore d|ax+by, and again, d|(ax+by)+cz,
i.e., d|e.
(⇐=) Suppose that d|e, so e = de1 for some e1 in Z. Let f = gcd(b, c). By
Problem 2-83, d = gcd(a, f). And by the Extended Euclidean Algorithm, there
exist integers x1 and y1 such that

ax1 + fy1 = d

By the Extended Euclidean Algorithm again, there exist integers y2 and z2 such
that

by2 + cz2 = f.

Substituting for f gives

ax1 + by2y1 + cz2y1 = d.

Multiplying each term by e1,

a(x1e1) + b(y2y1e1) + c(z2y1e1) = de1 = e.

Each product in parenthesis is an integer. So the given Diophantine equation
does have an integer solution.

Problem 2-85:
If gcd(a, b, c)|e, describe how to find one solution to the Diophantine equation
ax + by + cz = e.
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Solution:
By Problem 2-83 we know that gcd(a, b, c) = gcd(a, gcd(b, c)). Now,

by + cz = gcd(b, c)t for t ∈ Z.

So we have
ax + gcd(b, c)t = e.

Because gcd(a, gcd(b, c)) = gcd(a, b, c)|e, a solution can be found to this linear
Diophantine equation in the two variables x and t. If x0 and t0 is a particular
solution, we have ax0 + gcd(b, c)t0 = e.

We can also find y0, z0 ∈ Z such that by0 + cz0 = gcd(b, c). Substituting in
the previous equation gives

ax0 + by0t0 + cz0t0 = e

Then x0, y0t0 and z0t0 will give a solution to the original equation.

Problem 2-86:
Describe how to find all the solutions to the Diophantine equation

ax + by + cz = e.

Solution:
Every solution can be broken up as in Problem 2- 85, so that the equation is
equivalent to the pair of equations

ax + gcd(b, c)t = e

by + cz = gcd(b, c)t.

There is a solution if and only if gcd(a, b, c)|e as in Problem 2-84. The procedure
consists of finding the general solution of the first equation for x and t. For each
t, find the general solution of the second equation for y and z.

If x = x0, t = t0 is one solution to the first equation then the general solution
is

x = x0 + d1
d n

y = y0 − a
dn

}
for all n ∈ Z

where d = gcd(a, b, c) = gcd(a, gcd(b, c)) and d1 = gcd(b, c). Then the second
equation becomes

by + cz = d1t = d1t0 −
ad1

d
n

Treating n as fixed, we find one solution for y and z in the form

y = r1 + r2n

z = r3 + r4n
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satisfying br1 + cr3 = d1t0 and br2n + cr4n = ad1
d n. The general solution to the

original equation is then

x = x0 + d1
d n

y = r1 + r2n + c
d1

m

z = r3 + r4n + b
d1

m

 for all n, m ∈ Z

Note that there are two independent integer parameters n and m.

Problem 2-87:
Find one integer solution to the Diophantine equation 18x + 14y + 63z = 5.

Solution:
By Problem 2-84 we know that the equation has a solution if and only if

gcd(18, 14, 63)|5. Now gcd(18, 14, 63) = gcd(18, gcd(14, 63)) = gcd(18, 7) = 1.
So the equation has a solution.

Following the approach of Problem 2-85, we first solve the equation

18x + 7t = 5

By inspection 18(2) + 7(−5) = 1. Multiplying by 5 gives 18(10) + 7(−25) = 5.
Hence x0 = 10, t0 = −25 is a solution.

Now, we solve the equation 14y + 63z = 7(−25). Again by inspection
14(−4) + 63(1) = 7. Multiplying by −25 gives 14(100) + 63(−25) = 7(−25).
Hence y0 = 100, z0 = −25 is a solution.

Therefore the values x = 10, y = 100 and z = −25 give one solution to the
original equation.
Check: 18(10) + 14(100) + 63(−25) = 180 + 1400− 1575 = 5.

Problem 2-88:
Find all the ways that $1.67 worth of stamps can be put on a parcel, using 6
cents, 10 cents and 15 cents stamps.

Solution:
Let x be the number of 6 cent stamps, y the number of 10 cent stamps and

z the number of 15 cent stamps. We have

6x + 10y + 15z = 167.

We shall first find all the integral solutions to this equation and then determine
the nonnegative solutions.

Since gcd(10, 15) = 5, we can write

10y + 15z = 5t or 2y + 3z = t where t ∈ Z .

Solving 6x + 5t = 167 we see that, by inspection, one solution is x = 2, t = 31.
Hence the general integral solution is

x = 2 + 5k, t = 31− 6k for k ∈ Z.
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We now solve 2y+3z = t = 31−6k. One solution to the equation is y = 14, z =
1− 2k. The general solution is

x = 2 + 5k
y = 14− 3l
z = 1− 2k + 2l

 for all k, l ∈ Z.

Since x, y and z must be nonnegative, we require

2 + 5k ≥ 0, 14− 3l ≥ 0 and 1− 2k + 2l ≥ 0,

that is, k ≥ 0, l ≤ 4 and l ≥ k. That is, 0 ≤ k ≤ l ≤ 4.
The 15 possible solutions are listed in the following table.

k 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4
l 0 1 2 3 4 1 2 3 4 2 3 4 2 4 4
x 2 2 2 2 2 7 7 7 7 12 12 12 17 17 22
y 14 11 8 5 2 11 8 5 2 8 5 2 5 2 2
z 1 3 5 7 9 1 3 5 7 1 3 5 1 3 1

An alternative way of writing the solutions is

x = 2 + 5k, y = 14− 3l, z = 1− 2k + 2l where 0 ≤ k ≤ l ≤ 4.

Problem 2-89:
Given a balance and weights of 1, 2, 3, 5, and 10 grams, show that any integer
gram weight up to 21 grams can be weighed. If the weights were 1, 2, 4, 8
and 16 grams, show that any integer weight up to 31 grams could be weighed.
Solution:

For the first part, weights of 0 to 4 grams can be weighed with no weights or
with the weights 1, 2, 3, 3 and 1,. Including the weight of 5 grams to the first
four combinations allows weights 5 to 9. Notice that these combinations do not
use the 10 gram weight. So, including it to all the previous combinations will
allow weights 10 to 19. The combination 2, 3, 5, 10 weighs 20 grams, and all the
weights together, 1, 2, 3, 5, 10 weigh 21 grams. So any integer gram weight up
to 21 grams can be weighed.

For the second part. By Theorem 2.41 every non-negative integer w has a
unique base 2 representation using 0s and 1s. For w = 31 its base 2 represen-
tation is (1111)2 = 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 with four positions. Then every
non-negative integer between 0 and 31 has a base 2 representation of at most
four positions.

More formally, any integer w such that 0 ≤ w ≤ 31 has a unique base 2
representation

(b3b2b1b0)2, bi = 0 or 1

To weigh w grams with weights of 20, 21, 22, 23 grams you follow this algorithm
For 0 ≤ i ≤ 3,
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If bi = 1 include the 2i gram weight
If bi = 0 do not include the 2i gram weight.

This will produce a weight of b3 ·23+b2 ·22+b1 ·21+b0 ·20 = (b3b2b1b0)2 = w
grams.

Problem 2-90:
If weights could be put on either side of a balance, show that any integer weight
up to 121 grams could be weighed using weights of 1, 3, 9, 27 and 81 grams.

Solution:
Every nonnegative integer w has a base 3 representation using 0, 1, 2. The

integer w = 121 is represented as (11111)3: it uses five positions. Every w less
than 121 also uses at most five positions, exactly five if the representation is
filled out with 0’s to the left. We convert this to a base 3 representation using
0, 1, −1 in five positions, by the following Algorithm (with n in place of 5):

Given: Integer w in standard base 3 representation

(anan−1 . . . a1)3 ≤ (1 1 . . . 1)3,

Find: w in (0, 1,−1)-representation (bnbn−1 . . . b1)3, using the same n positions.
Let ci denote the carry to the i’th position. Start at position i = 1. The carry
to this initial position is c1 = 0.

(∗) (a) If ai + ci is 0 or 1, let bi be that same value, 0 or 1.
If i = n stop : the (0, 1,−1)-representation is complete.
Else i < n.
Let ci+1 = 0.

(b) If ai + ci = 2, let bi = −1 and ci+1 = 1.

(c) If ai + ci = 3, let bi = 0 and ci+1 = 1.

Return to (∗) with i + 1 in place of i.

Proposition: If an integer w is expressed in standard base 3 representation as
an n-digit number which is at most (1 1 . . . 1)3, then its (0, 1, −1)-representation
is also an n-digit number.

Proof: If the standard representation has no 2s, this is also its (0, 1,−1)-
representation. If it has a 2, then somewhere to the left of all 2’s is a 0, else
w > (1 1 . . . 1)3. In the first such position i, ai +ci = 1, for which the algorithm
gives ci+1 = 0. The rest of the (0, 1,−1)-representation agrees with the stan-
dard representation. Altogether, the (0, 1,−1)-representation uses the same n
positions as the standard representation.

Where to put the weights to balance a given weight w:

1. Put w in the left scale;
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2. Put weights corresponding to +1’s in the (0, 1,−1)-representation in the
right scale;

3. Put weights corresponding to −1’s in the left scale, i.e., with w.

Example: Take w = 17g. Expressed in standard base 3 representation,

17 = 1 · 32 + 2 · 3 + 2 · 1 = (1 2 2)3.

This uses three positions; put 0’s to the left to fill out the number to five
positions: (00122)3. Convert this to the equivalent (0, 1,−1)-number

17 = 1 · 33 − 1 · 32 − 1 = (0 1 − 1 0 − 1)3.

This gives the recipe for balance: put w in the left scale, the 27g weight in the
right scale, and the 9 and 1 g weights in the left, along with w. The resultant
balance verifies that w = 17.

Problem 2-91:
If numbers (in their decimal form) are written out in words, such as six hundreds,
four tens and three for 643, we require one word for each digit 0, 1, 2, . . . , 9, one
word for 10, one word for 102, etc. We can name all the integers below 1000
with twelve words. What base would use the least number of words to name all
the numbers below 1000? What base would use the least number of words to
name all the numbers below 106?

Solution:
Let b denote the base. Let us name all numbers less than br+1 using the

base b. We require b words for the digits in base b, plus r words for the numbers
b, b2, . . . , br, for a total of b + r words. Hence base b can describe numbers up
to 10s using b + r words if br+1 ≥ 10s.

Using Theorem 6.84. on logarithms, this happens if

r + 1 ≥ logb(10s) =
log10(10s)

log10 b
=

s

log10 b
.

Using bxc, the integral part of x, for each b, the minimum value of r is

−
⌊

(−s)
log10 b

⌋
− 1

and the corresponding minimum value of b + r is

b−
⌊

−s

log10 b

⌋
− 1.

If we put s = 3, for b ≥ 12 at least 12 words are needed to name the digits
1, 2, . . . , b−1 , which is not any better than the case for b = 10. Now, for b = 11,
112 = 121 < 1000, so at least 12 words are needed.
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The only cases left are for b = 2, 3, . . . 9. For each of these bases, we use the
above formula for s = 3. These cases are included in the following table.

b r br br+1 b + r
2 9 512 1024 11
3 6 729 2187 9
4 4 256 1024 8
5 4 625 3125 9
6 3 216 1296 9
7 3 343 2401 10
8 3 512 4096 11
9 3 729 6561 12

Thus, the minimum value of this expression is 8 and occurs when b = 4. Hence
eight words can name all integers below 100 using base 4.

If we put s = 6, then a similar table shows that the minimum value of the
expression is 13, and occurs when b = 4, 5 or 6. Hence thirteen words can name
all integers below one million using any of the bases 4, 5 or 6.

Problem 2-92:
Consider the set of all even integers 2Z = {2n|n ∈ Z}. We can add, subtract
and multiply elements of 2Z and the result will always be in 2Z, but we cannot
always divide. We can define divisibility and factorization in 2Z in a similar way
to that in Z. (For example, 2|4 in 2Z, but 2 6 |6 even though 6 = 2 · 3, because
3 /∈ 2Z.) A prime in 2Z is a positive even integer that cannot be factored into
the product of two even integers.

(a) Find all the primes in 2Z.

(b) Can every positive element of 2Z be expressed as a product of these
primes?

(c) If this factorization into primes can be accomplished, is it unique?

Solution:
(a) The primes in 2Z are c ∈ 2Z such that 4 6 | c.

If 4 6 | c and a, b ∈ Z are such that c = ab, then either a or b 6∈ 2Z. Otherwise
a = 2k and b = 2m for k, m ∈ Z. Then c = ab = (2k) · (2m) = 4km which is a
contradiction.

This shows that all such c are prime. To rule out any other number, let
c′ ∈ 2Z such that 4|c′. Then there exists a n ∈ Z such that c = 4n. For a = 2
and b = 2n, a, b ∈ 2Z and ab = 4n = c′. So c′ is not a prime in 2Z.

(b) Yes, every positive element of 2Z can be expressed as a product of these
primes.

To prove this assume that it is not true, and let N be the smallest element
of 2Z > 0 that cannot be written as a product of primes in 2Z. N cannot be
itself a prime in 2Z so we can write N = r · s where 0 < r ≤ s < N . By
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our hypothesis r and s can be written as a product of primes in 2Z. It follows
then that r · s = N can be also written as a product of primes in 2Z. So, our
assumption was wrong.

(c) No, the factorization into these primes is not unique. For example 2, 6, 10, 30
they are all elements of 2Z, and 4 6 | 2, 6, 10 or 30. By part (a) these numbers
are primes in 2Z. But

2 · 6 · 10 = 120, 22 · 30 = 120.

Thus 120 does not have a unique factorization in 2Z.

Problem 2-93:
Prove that the sum of two consecutive odd primes has at least three prime
divisors (not necessarily different).

Solution:
Let p and q be consecutive odd primes, and assume without loss of generality

that p < q. Since p and q are odd, the sum p + q is even, and so a = p+q
2 is an

integer.
Since p < q, we have

2p < p + q

and p + q < 2q.

Therefore p < p+q
2 < q.

But since a = p+q
2 is an integer lying strictly between p and q, it cannot be

prime (because p and q are consecutive primes). Therefore a has at least two
prime divisors, say u and v. So uv|a, and therefore 2uv|(p + q), which shows
that p + q has at least three prime divisors.

Problem 2-94:
How many zeros are there at the right end of 100! = 100 · 99 · 98 · 97 · · · 2 · 1?
Solution:

If 100! = 1 · 2 . . . · 100 has k zeros at its right end of its decimal representation
then

100! = 10k · a where 10 6 | a

= 2k · 5k · a.

Let 2c1 · 5c2 · pc3
3 . . . pcn

n be the prime factorization of a, where c1 or c2 could
be zero. Then c1 and c2 cannot both be nonzero, since 10 6 | a. Therefore if
2d1 · 5d2 · pd3

3 . . . pdn
n is the prime factorization of 100!, k = min(d1, d2).

Now we can count d1 and d2 by counting the number of appearances of
2, 22, 23, . . . and the appearances of 5, 52, 53, . . . in the prime factorizations of
the numbers 2, 3, . . . , 99, 100.
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All the multiples of 5 from 1 to a 100 have at least one 5 in their prime
factorizations. There are

⌊
100
5

⌋
multiples of 5 from 1 to 100 ( where bxc is the

integer part of x). Similarly, all the multiples of 52 from 1 to 100 have at least
52 in their prime factorizations. There are

⌊
100
25

⌋
of these. But because the

multiples of 52 are also multiples of 5, we have already counted one of the 5s, so
we only have to count the other. Then the multiples of 52 have

⌊
100
25

⌋
additional

5s in their prime factorizations. Finally, because 53 = 125 > 100 there are no
multiples of 53 from 1 to 100. So

d2 =
⌊

100
5

⌋
+

⌊
100
25

⌋
= 20 + 4

Doing a similar analysis for the number of 2s in the prime factorization of
100!, we get that there are

⌊
100
2

⌋
= 50 even numbers from 1 to 100. Hence there

are at least that number of 2s in the prime factorization of 100! and so d1 > d2.
Therefore k = min(d1, d2) = d2 = 24, and there are 24 zeros at the right end of
the decimal expansion of 100!

Problem 2-95:
Show that 1 + 1

2 + 1
3 + · · ·+ 1

n can never be an integer if n > 1.

Solution:
Let b = 1 + 1

2 + · · · + 1
n so that n!b is an integer. Write n! as a2l, where a

is odd, and let k be such that 2k ≤ n < 2k+1. We shall show that 2l−k+1 does
divide n!, but does not divide n!b. This will prove that b is not an integer.

If n > 1, then k ≥ 1, and so 2l−k+1 does divide n! = a2l.
Now

n!b =
(

n!
1

+ · · ·+ n!
2k − 1

+
n!

2k + 1
+ · · ·+ n!

n

)
+

n!
2k

.

Note that i is not divisible by 2k, for i = 1, . . . , 2k − 1, 2k + 1, . . . , n. Hence n!
i

is divisible by 2l−k+1. However, n!
2k is not divisible by 2l−k+1. Therefore n!b is

not divisible by 2l−k+1, as claimed.

Problem 2-96:
If bxc is the greatest integer less than or equal to x (that is, the integer part of
x), then for which values of n does b

√
nc divide n?

Solution:
If n = m2 for some integer m, then b

√
nc = m, and b

√
nc divides n.

If m2 < n < (m + 1)2 then m <
√

n < m + 1, and necessarily m = b
√

nc.
We must test when m = b

√
nc | n for n = m2 + 1, . . . ,m2 + m, . . . ,m2 + 2m,

since (m + 1)2 = m2 + 2m + 1. If m | m2 + q then m | q. Hence q = m or 2m.
Therefore, m divides only m2 + m and m2 + 2m in that range.

In summary, b
√

nc | n if and only if n is of the form m2, m2+m, or m2+2m.
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m 1 2 3 4 . . .
m2 1 4 9 16

n m2 + m 2 6 12 20
m2 + 2m 3 8 15 24

Problem 2-97:
Let a and b be integers greater than 1, and let e = lcm(a, b). Prove that

0 <
1
a

+
1
b
− 1

e
< 1.

Solution:
If d = gcd(a, b), then ab = de by Theorem 2.59, and so 1/e = d/ab. Hence

1
a

+
1
b
− 1

e
=

b + a− d

ab
.

By the definition of least common divisor, d ≤ a. Also, since b > 0,

b + a− d

ab
≥ b + 0

ab
> 0.

Now
ab− a− b + d = (a− 1)(b− 1) + d− 1 > 0

because a− 1 > 0, b− 1 > 0, and d− 1 ≥ 0. Since a and b are positive,

a + b− d < ab
b + a− d

ab
< 1,

which proves the other inequality.

Problem 2-98:
If a and b are odd positive integers, and the sum of the integers, less than a and
greater than b, is 1000, then find a and b.

Solution:
By the formula for the sum of an arithmetic progression, the sum of the

integers, b + 1, b + 2, . . . , a− 2, a− 1 is (a+b)(a−b−1)
2 .

If this sum is 1000 then

(a + b)(a− b− 1) = 2000 = 24 · 53.

Furthermore, since a and b are odd, then a + b is even and a− b− 1 is odd.
Hence, by the Unique Factorization Theorem, the only possible values for

the factors are as follows.

i) a + b = 24, a− b− 1 = 53
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ii) a + b = 24 · 5, a− b− 1 = 52

iii) a + b = 24 · 52, a− b− 1 = 5

iv) a + b = 24 · 53, a− b− 1 = 1

Solving the four cases we obtain the solutions:

i) a = 71, b = −55

ii) a = 53, b = 27

iii) a = 203, b = 197

iv) a = 1001, b = 999

The first case is impossible, so we obtain three possible solutions.
Either a = 53, b = 27, or a = 203, b = 197 or a = 1001, b = 999.

Problem 2-99:
Either prove the following statement about integers, or give a counterexample.

a2|b2 if and only if a|b

Solution: The statement is true.
(⇐=) Assume that a|b. Then b = qa for some integer q and b2 = q2a2. Now q2

is an integer, so a2|b2.
(=⇒) Assume a2|b2. Find prime factorizations of each of a and b:

a = pc1
1 pc2

2 . . . pcn
n

b = pd1
1 pd2

2 . . . pdn
n ,

where some exponents may be zero. Hence

a2 = p2c1
1 p2c2

2 . . . p2cn
n

b2 = p2d1
1 p2d2

2 . . . p2dn
n

Since a2|b2, it follows from Theorem 2.56 that 2ci ≤ 2di for each i = 1, . . . n
Therefore ci ≤ di for each i, and a|b.

Problem 2-100:
Either prove the following statement about integers, or give a counterexample.

gcd(a, b) = gcd(a + b, lcm(a,b))

Solution: The statement is true and we shall use a Lemma to prove it. Recall
from Theorem 2.59 that lcm(a,b) = ab/ gcd(a,b).
Lemma. If gcd(a, b) = 1 then gcd(a + b, ab) = 1.
Proof. Suppose gcd(a+b, ab) 6= 1 and p is a prime such that p|a+b and p|ab. By
Theorem 2.53, p|a or p|b. If p|a, then p|(a + b)− a so p|b, which is not possible
since gcd(a, b) = 1. Similarly p cannot divide b.
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This contradiction proves gcd(a + b, ab) = 1.
Let d = gcd(a, b). If d = 0 then a = b = 0 so gcd(a, lcm(a,b)) = 0 and the

result holds.
If gcd(a, b) = d = 1, then the right side reduces to gcd(a + b, ab) because

lcm(a,b) = ab/ gcd(a,b) = ab. The Lemma we have proved shows that the
result holds.

Now let d > 1. By Proposition 2.27 (ii), gcd
(

a
d , b

d

)
= 1 and the Lemma

implies
gcd

(
a
d + b

d , a
d ·

b
d

)
= 1.

Hence

gcd(a + b, lcm(a,b)) = gcd
(
d ·

(
a
d + b

d

)
, ab

d

)
= d · gcd

(
a
d + b

d , a
d ·

b
d

)
by Exercise 2-11

= d

= gcd(a, b).

Problem 2-101:
Either prove the following statement about integers, or give a counterexample.

lcm(gcd(a, b), gcd(a, c)) = gcd(a, lcm(b, c))

Solution: Let

a = pα1
1 · pα2

2 . . . pαn
n

b = pβ1
1 · pβ2

2 . . . pαn
n

c = pγ1
1 · pγ2

2 . . . pγn
n

where some exponents may be 0. By Theorem 2.58 we know that

gcd(a, b) = pe1
1 · pe2

2 . . . pen
n where ei = min(αi, βi)

gcd(a, c) = pf1
1 · pf2

2 . . . pfn
n where fi = min(αi, γi)

for 1 ≤ i ≤ n. And by Theorem 2.58 we also know that

lcm(gcd(a, b), gcd(a, c)) = pg1
1 · pg2

2 . . . pgn
n where gi = max(ei, fi).

for 1 ≤ i ≤ n. Similarly,

lcm(b, c) = ph1
1 · ph2

2 . . . phn
n where hi = max(βi, γi)

gcd(a, lcm(b, c)) = pj1
1 · pj2

2 . . . pjn
n where ji = min(αi,max(βi, γi))

for 1 ≤ i ≤ n.
Now for each i we consider two cases.
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Case 1. If min(αi, βi, γi) = αi, then

gi = max(ei, fi) = max
(
min(αi, βi), min(αi, γi)

)
= max(αi, αi) = αi,

and ji = min(αi,max(βi, γi)) = αi.

Case 2. If min(αi, βi, γi) 6= αi, then min(αi, βi, γi) is βi or γi. Because both
gi and ji are symmetric with respect to βi and γi, without loss of generality we
can let βi = min(αi, βi, γi). Then

gi = max(min(αi, βi),min(αi, γi)),
= max(βi,min(αi, γi)) = min(αi, γi),

and ji = min(αi,max(βi, γi)) = min(αi, γi).,

In either case gi = ji for each i = 1, . . . , n, so

lcm(gcd(a, b), gcd(a, c)) = pg1
1 · pg2

2 . . . pgn
n = pj1

1 · pj2
2 . . . pjn

n = gcd(a, lcm(b, c)).

Problem 2-102:
Either prove the following statement about integers, or give a counterexample.

If gcd(a, b) = 1 and ax + by = c has a positive integer solution then so does
ax + by = d when d > c.

Solution:
We shall show that this statement is false by giving one counterexample.
The Diophantine equation

4x + 5y = 9

clearly has the positive integer solution x = 1, y = 1. Now consider the equation

4x + 5y = 11.

One integer solution to this is x = −1, y = 3 so the general integer solution is

x = −1 + 5n
y = 3− 4n

}
for all n ∈ Z.

For positive solutions we require −1 + 5n > 0 and 3− 4n > 0, that is, n > 1/5
and n < 3/4. However, there are no integers between 1/5 and 3/4 so this
equation has no positive solutions.

Problem 2-103:
Write a computer program to test whether a given number is prime. Use your
program to find the smallest positive integer n for which the number n2−n+41
fails to be prime.

2.41



Solution:
A simple and crude method to test whether a given number k is prime is to

check if it is divisible by a number between 1 and including b
√

kc. By Theorem
2.55, we know that an integer k > 1 is either prime or contains a prime factor
≤
√

k, so such a test meets our needs. We include the pseudocode of such a
method.
PROCEDURE CheckIfPrime(k)
Title Finds first integer divisor of k or returns 0 if k is prime.
Argument k integer
Variables isPrime boolean True or False

m b
√

kc
n integer from 2 to b

√
kc

BEGIN
WHILE NOT isPrime AND n = 2 TO m

IF n | k
isPrime = False

END IF
END WHILE
IF isPrime

RETURN 0
ELSE

RETURN n
END IF

END

Using a computer program following this pseudocode, the smallest n for
which the number n2 − n + 41 is prime is n = 41.

Problem 2-104:
Using a computer, test whether F (4) = 224

+ 1 and F (5) = 225
+ 1 are prime.

Solution:
We use the computer program outlined in Problem 2-103.

PROCEDURE CheckIfPrime(k)
Title Finds first integer divisor of k or returns 0 if k is prime.
Argument k integer
Variables isPrime boolean True or False

m b
√

kc
n integer from 2 to b

√
kc

BEGIN
WHILE NOT isPrime AND n = 2 TO m

IF n | k
isPrime = False

END IF
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END WHILE
IF isPrime

RETURN 0
ELSE

RETURN n
END IF

END

This program confirms that F (4) = 224
+ 1 is prime. It also shows that

F (5) = 225
is not a prime because 641 divides it, confirming Euler’s result.

Problem 2-105:
Show that all the integers, Z, both positive and negative, can be represented in
the negative base −10 using the digits 0, 1, . . . , 9 without using a negative prefix.
For example, −1467 = (2673)−10 and 10 = (190)−10.

(a) What decimal numbers do (56)−10 and (164)−10 represent?

(b) Find the negative ten representations of the decimal numbers 1111 and
−209.

(c) Try adding and multiplying some numbers in the base negative ten. Then
try adding a number to its negative.

Solution:
The Division Algorithm holds even if the divisor is negative. That is, if b is

negative, there exist unique integers q and r such that

a = qb + r where 0 ≤ r < |b|.

So for any integer x, dividing by b = −10 according to this version of the
Division Algorithm, we obtain

x = q0(−10) + r0 where 0 ≤ r0 < 10
q0 = q1(−10) + r1 where 0 ≤ r1 < 10
q1 = q2(−10) + r2 where 0 ≤ r2 < 10

...
qi−1 = qi(−10) + ri where 0 ≤ ri < 10

...
qn−2 = qn−1(−10) + rn−1 where 0 ≤ rn−1 < 10
qn−1 = 0 · (−10) + rn where 0 < rn < 10.

We have to check that this algorithm terminates. Let x = q−1. The general
step of the algorithm implies that 0 ≤ qi−1 + 10qi ≤ 9.

If 0 ≤ qi−1 < 10, then the algorithm stops with qi = 0 and ri = qi−1.
If qi−1 ≥ 10, then qi < 0 and |qi−1| = qi−1 ≥ 10(−qi) > |qi|.
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If qi−1 < 0, then qi > 0 and |qi−1| = −qi−1 ≥ 10(qi) − 9 ≥ qi = |qi|. The
equality occurs only if qi = 1 and qi−1 = −1. In this case the algorithm becomes

−1 = 1(−10) + 9
1 = 0(−10) + 1

and so terminates.
Hence |x| ≥ |q0| ≥ |q1| ≥ · · ·, with at most one equality, and the absolute

value of the quotients form a decreasing sequence of nonnegative integers that
must eventually reach zero. Using the list of equations we can write

x = rn(−10)n + rn−1(−10)n−1 + · · ·+ r2(−10)2 + r1(−10) + r0,

just as we do with positive integers and positive bases. Hence x ∈ Z can be
represented in the negative base −10 as

x = (rnrn−1 . . . r1r0)−10.

where 0 ≤ ri < 10 for all 0 ≤ i ≤ n.
It can be shown that this representation is unique and it can be generalized

to any negative base b ≤ −2 using the digits 0, 1, 2, . . . , |b| − 1.

(a) (56)−10 = 5(−10) + 6 = −44, and (164)−10 = 1(−10)2 + 6(−10) + 4 =
100− 60 + 4 = 44.

(b) Using the algorithm depicted in the proof

1111 = (−111)(−10) + 1
−111 = (12)(−10) + 9

12 = (−1)(−10) + 2
−1 = 1(−10) + 9

1 = 0(−10) + 1.

−209 = 21(−10) + 1
21 = (−2)(−10) + 1
−2 = (1)(−10) + 8

1 = 0(−10) + 1.

So 1111 = (19291)−10 and −209 = (1811)−10.
Check: (19291)−10 = 10000 − 9000 + 200 − 90 + 1 = 1111 and (1811)−10 =
−1000 + 800− 10 + 1 = −209.

(c) If we add or multiply numbers in the base negative ten, we have to be careful
when we carry digits. For example, to add 8 and 4,

8 + 4 = 12 = 2− (1)(−10),

so we would carry −1 (which is (19)−10).
Bearing this in mind, we add −1467 = (2673)−10 and 10 = (190)−10, and

we multiply 1111 = (19291)−10 with (190)−10 to get,

(2673)−10

+ (190)−10

(2663)−10

(19291)−10

× (190)−10

(100190)−10

(1929100)−10

(29290)−10
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As a check, (2663)−10 = −2000 + 600 − 60 + 3 = −1457 = −1467 + 10,
(29260)4 = 20000− 9000 + 200− 90 = 11110 = (1111)(10).

Finally, we add 44 = (164)−10 and −44 = (56)−10.

(164)−10

+ (56)−10

(000)−10

Adding 4 and 6 in the units column, we have to carry −1. Then adding 6 and
5 and −1 in the next column, we obtain 0 and we have to carry −1. The left
column gives 1 plus −1, and we end up with (0)−10 as expected.

Problem 2-106:

(a) Find two consecutive primes that differ by at least 10.

(b) Prove that there are arbitrarily large gaps between consecutive primes.

Solution:
(a) The following is the complete list of pairs of consecutive primes which differ
by at least 10 and are less than 500:

(113, 127) (139, 149) (181, 191) (199, 211) (211, 223) (241, 251)
(283, 307) (317, 331) (337, 347) (409, 419) (421, 479)

(b) Let n be a positive integer and observe that i|n!+i for i = 2, . . . , n. Then the
integers n!+2, . . . , n!+n are n−1 consecutive composite numbers. Since n can
be chosen arbitrarily large there are arbitrarily large gaps between consecutive
primes.

[If we apply this method with n=10, then it proves that the numbers between
10! + 1 and 10! + 11 are all composite. Using a prime factorization program on
the Web, we see that 10! + 11 is prime, but 10! + 1 = 11 × 329891, is not. In
fact, 10! − 11 = 3628789 and 10! + 11 = 3628811 are consecutive primes that
differ by 22.]

Problem 2-107:
Let a < b < c, where a is a positive integer and b and c are odd primes. Prove
that if a | (3b + 2c) and a | (2b + 3c), then a = 1 or 5. Give examples to show
that both these values for a are possible.

Solution:
By Proposition 2.11(ii), a|2b + 3c − 3b − 2c = c − b. Again by Proposition

2.11(ii), a|3b + 2x− 2(c− b) = 5b and a|2b + 3c− 2(c− b) = 5c.
Because 5 and b are primes, the only divisors of 5b are 1, 5, b and 5b. Similarly

the only divisors of 5c are 1, 5, c and 5c. Since a is less than b and c, a is either
1 or 5.
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If a = 1, any two odd primes b and c will work. If a = 5, take b = 11 and
c = 31 so

5 | 3(11) + 2(31) = 95 and 5 | 2(11) + 3(31) = 115.

Problem 2-108:
An integer n is perfect if the sum of its divisors (including itself and 1) is 2n.
Show that if 2p − 1 is a prime number, then n = 2p−1(2p − 1) is perfect.

Solution:
Since 2p − 1 is prime, the divisors of n are:

1, 2, 22, . . . , 2p−1 and (2p − 1), 2(2p − 1), 22(2p − 1), . . . , 2p−1(2p − 1).

The sum of the divisors is:

S = 1 + 2 + 22 + · · ·+ 2p−1+
(2p − 1) + 2(2p − 1) + 22(2p − 1) + · · ·+ 2p−1(2p − 1)

= (1 + (2p − 1))[1 + 2 + 22 + · · ·+ 2p−1].

The bracketed summation is a geometric series having a common ratio of 2
that sums to

(2p − 1)/(2− 1) = 2p − 1.

Therefore,
S = (1 + (2p − 1))[2p − 1] = 2p(2p − 1) = 2n.

Hence n = 2p−1(2p − 1) is perfect.
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