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the three numbers are distinct and none of them is a 4. So #4°B =5-4-3 = 60.
Then #AB = #B — #A°B = 120 — 60 = 60 and

P(AB) 2% 1
pap) =240 e L
P(B) %g 2
2.66. Let
. . . n\ 1\2,5\n—2  n(n—1)5""2
fn = P(n die rolls give exactly two sixes) = o (g) (g) =2
Next,
—1 5n—2 1 5n—1
In <for1 = nn—1) <(n+ Jn < 6(n—1)<5(n+1)

2.-6M 2. 6ntl
— n<l1l1.

By reversing the inequalities we get the equivalence
fn>for1 <= n>1L
By complementing the two equivalences, we get

fn:fn+1 = fann—i—l and fngfn—o—l
< n>11 and n<11 <= n=11.

Putting all these facts together we conclude that the probability of two sixes is
maximized by n = 11 and n = 12 and for these two values of n, that probability is
11-10-5°

2. 611
2.67. Since {X =n+k} C {X > n} for k > 1, we have

P(X = k. X P(X = k 1 — p)ntk-1
P(X =n+k|lX >n) = X=n+kX>n) PX=n+k) (1-p) p

~ 0.2961.

P(X >mn) P(X >mn) P(X >mn)
Evaluate the denominator:
PX>n)= Y PX=k= Y (1-p*'p
k=n-+1 k=n-+1
= 1
=p(1—=p)" ) (1-p)f=pl—p" ——=(1—-p"
(=9 0= == = = ()

Thus,

L—p™*tp  (Q—p)"**p
P(X >n) (1-p)

=1-p)f'p=P(X =k).

P(X=n+klX >n)=

2.68. For k > 1, the assumed memoryless property gives

P(X =k+1)

POX =) = PX = b+ 1] X > 1) = =5y
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which we convert into P(X =k +1 P(X > 1)P(X = k). Now let m > 2, and
apply this repeatedy to k=m —1,m —2,...,2:

P(X=m)=PX>1)P(X=m—1)=P(X >1)?P(X =m —2)
= =PX>1"'P(X=1).

)

Set p = P(X = 1). Then it follows that P(X = m) = (1 — p)™~!p for all m > 1
(m = 1 by definition of p, m > 2 by the calculation above). In other words, X ~
Geom(p).

2.69. We assume that the successive flips of a given coin are independent. This
gives us the conditional independence:

P(A1A2 | F) = P(A1 | F) P(A2 | F), P(A1A2|M) = P(A| M) P(A2 | M),
The solution comes by the law of total probability:
P(A1As) = P(A1A2 | F) P(F) + P(A1A2 | M) P(M) + P(A1A2 | H) P(H)
= P(A1|F)P(Ay | F)P(F) 4+ P(Ay | B)P(Ay | B)P(B)

—1.1.9 3.3, 9 L9 9 1 _ 255
T2 2 100 5 5 100 10 10 100 ~ 10,000°

Now 120?5’050 (1501030) which says that P(A;As) # P(A1)P(As). In other words,
A; and Aj are not independent without the conditioning on the type of coin. The
intuitive reason is that the first flip gives us information about the coin we hold,
and thereby alters our expectations about the second flip.

2.70. The relevant probabilities: P(A) = P(B) = 2p(1 — p) and
P(AB) = P{(T,H,T), {,T,H)} = p*(1 — p) + p(1 —p)* = p(1 — p).
Thus A and B are independent if and only if
2
20(1=p) =p(l-p) = 9’1 -p)°’-p(l-p) =0
<= p(l-p)(p(l—p)—-1)=0
<~ p=0or 1—-p=0or 4p(l—-p) —1=0 < pe{0,3,1}.

Note that cancelling p(1 — p) from the very first equation misses the solutions p = 0
and p = 1.

2.71. Let F' = {coin is fair}, B = {coin is biased} and A, = {kth flip is tails}.
We assume that conditionally on F', the events Aj are independent, and similarly
conditionally on B. Let D, = A1 N AaN---N A, = {the first n flips are all tails}.

(a)

_ P(D,|B)P(B) B (@)L
PBID) = 55, B)PB) + PO EIPE) ~ (35t + (e
O

NOETOR

In particular, P(B|D;) = & and P(B|D;) = 55.
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(2)*
5
-2 =~ (.898
@ + 90
while
(2)
55 N 0.914,

B +9(3)
so 25 flips are needed.

P(Ay i1 |Dy) = PIEDHl) _ P(Dy11|B)P(B) + P(Dy11|F)P(F)

(D,)  P(D,|B)P(B)+ P(D,|F)P(F)
(@ + ()

D5+ g

(d) Intuitively speaking, an unending sequence of tails would push the probability

of a biased coin to 1, and hence the probability of the next tails is 3/5. For a

rigorous calculation we take the limit of the previous answer:

3\n+1 1 1\n+1 9 3 9/5\n+1

lim P(Ap4+1|Dyn) = lim (5)3 110 Jr(%) 5 10 — ljm % = §

n— 00 n— 00 (5)nﬁ+(§)nﬁ n—00 1+9(6)” 5
2.72. The sample space for n trials is the same, regardless of the probabilities,
namely the space of ordered n-tuples of zeros and ones:

Q={w=1(s1,...,8n) : each s; equals 0 or 1}.

By independence, the probability of a sample point w = (s1,. .., $,) is obtained by
multiplying together a factor p; for each s; = 1 and 1 — p; for each s; = 0. We can
express this in a single formula as follows:

n

P{(s1,. -0} = [[ (05 (1 = i)' —).

i=1
2.73. Let X be the number of blond customers at the pancake place. The popula-
tion of the town is 500, and 100 of them are blond. We may assume that the visitors
are chosen randomly from the population, which means that we take a sample of
size 14 without replacement from the population. X denotes the number of blonds
among this sample. This is exactly the setup for the hypergeometric distribution
and X ~ Hypergeom(500, 100, 14). (Because the total population size is N = 500,
the number of blonds is N4 = 100 and we take a sample of n = 14.) We can now
use the probability mass function of the hypergeometric distribution to answer the
two questions.

(a)

100) (400

P(exactly 10 blonds) = P(X = 10) = (1(2500)4) ~ 0.00003122.
14
(b)
2 2 (
P(at most 2 blonds) = P(X <2)=> P(X =k) =y ~Fm=he
k=0 k=0 ( 14 )

~ (0.4458.
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2.74. Define events: D = {Steve is a drug user}, A; = {Steve fails the first drug test}
and Ay = {Steve fails the second drug test}. Assume that Steve is no more or less
likely to be a drug user than a random person from the company, so P(D) =
0.01. The data about the reliability of the tests tells us that P(A;|D) = 0.99
and P(A;|D°) = 0.02 for ¢ = 1,2, and conditional independence P(A;Az|D) =
P(A1|D)P(A3|D) and also the same under conditioning on D°.

(a)
P(D|A) = P(A,|D)P(D) ___amws 1
P(A1|D)P(D) + P(Ay|D¢)P(D¢) ~ 2. 1oy 2. 997 3
(b)
Plagiay) = PA1A2) _ P(A1AID)P(D) + P(A1 43| D) P(D")
V= TP P(A{|D)P(D) + P(A;|D¢)P(De)
2 2
()t (5) b 103
— 55 T 5 59 = 300 ~ (0.3433.
100 “ 100 T 100 ~ 100
(c)

P(A1A2|D)P(D)
(A1 42| D)P(D) + P(A1A2| D) P(D¢)
100

2
_ (%) ‘1

P(D|A1A2) = -

1
99
TV S = o3 ~ 09612,
(106) - 16 + (150) 100
2.75. We introduce the following events:
A = {the store gets its phones from factory IT},
B; = {the ith phone is defective}, i=1,2.
Then A€ is the event that the phone is from factory I. We know that

2 3 1 1
S P(A9=06=2, P(BilA)=02=_, P(Bi|A9)=01=—.
S, PA)=06="1, P(BlA)=02=, P(B|A)=0.1=

We need to compute P(A|B1Bs). By Bayes’ theorem,

P(B1B;|A) - P(A)
P(B1By|A)P(A) + P(By Ba|A¢)P(A°)

P(A) =04 =

P(A|B1B,) =

We may assume that conditionally on A the events B; and By are independent. This
means that given that the store gets its phones from factory II, the defectiveness of
the phones stocked there are independent. We may also assume that conditionally
on A€ the events By and By are independent. Then

P(B1B3|A) = P(B1|A)P(B3|A) = (£)?, P(B1B3|A°) = P(B1|A°)P(B3|A%) = ({5)?

and

P(A|B1By) =

8
= — ~0.7273.
11 0.7273
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2.76. Let As be the event that the second test comes back positive. Take now
P(D) = 5 ~0.194 as the prior. Then

P(A2|D)P(D)

P(D|Ay) =
(PI42) = BA,IDYP(D) + P(A:| D) (D7)
= 100 161 — 200 09205
96 96 2 398 . :
700 " 104 + 100 " do1 2903

2.77. By definition P(A|B) = 532 Since AB C B, we have P(AB) < P(B) and
thus P(A|B) = PP(?BB)) < 1. Furthermore, P(A|B) = PFS?BE;) > 0 because P(B) > 0
and P(AB) > 0. The property 0 < P(A|B) < 1.

To check P(2| B) = 1 note that N B = B, and so

_P@QnB) _PB) _
PQIB) = =55 = g =

Similarly, @ N B = &, thus
P(nB) P(w) 0
P(o|B)= = = =0.
@B =5 = m) T P
Finally, if we have a pairwise disjoint sequence {A;} then {BA;} are also pairwise
disjoint, and their union is (U2, A;) N B. This gives
P((UZ.4) N B)) _ P (U, A:B))
P(B) - P(B)
Y1 P(AiB)) <~ P(AB) -
===——"—"""=% ———~ =% P(A4]B).
PB) X PB)

2.78. Define events D = {A happens before B} and

P(UZ,4i|B) =

=1

D,, = {neither A nor B happens in trials 1,...,n — 1,
and A happens in trial n}.

Then D is the union of the pairwise disjoint events {D,, }1<p<oo. This statement
uses the assumption that A and B are disjoint. Without that assumption we would
have to add to D,, the condition that B¢ happens in trial n.

P(D) = i P(D,) = i (1— P(AUB))" "' P(A)
P(A)
= PAUB) P(A|AUB).

2.79. Following the text, we consider
Q= {(xl,...,$23) 1x; € {17,365}}7

which is the set of possible birthday combinations for 23 people. Note that #Q =
36523, Next, note that there are exactly

21
365364 (365 —21) - 22 =22 - [ [ (365 — k)
k=0
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ways to choose the first 22 birthdays to be all different and the twenty-third to be
one of the first 22. Thus, the desired probability is

22 TT3L, (365 — )

36523
2.80. Assume that birth months of distinct people are independent and that for
any particular person each month is equally likely. Then we are asking that a

sample of seven items with replacement from a set of 12 produces no repetitions.
The probability is

=~ 0.0316.

12-11-10---6 385
127 T 3456

2.81. Let A,, be the event that there is a match among the birthdays of the chosen
n Martians. Then

~ 0.1114.

669 - 668 --- (669 — (n —1
P(A,) =1 — P(all n birthdays are distinct) =1 — ( (n=1))

669"
To estimate the product we use 1 —x ~ e~" to get
n—1 n—1
669-668~~~(669—(n71)):1—[ l—i ~ .
669" 669
k=0 k=0
= eifB}W ZZ;S k_ e*ﬁ n(n2_l) ~ e*%

71,2
Thus P(A,) ~ 1 — e zew. Now solving the inequality P(A,) > 0.9:
2

n2
l—e 260 >0.9 < >—-In(1-09) < n>+v2:-669In10 ~ 55.5.

2-669 —
This would suggest n = 56.

In fact this is correct: the actual numerical values are P(Asg) ~ 0.9064 and






Solutions to Chapter 3

3.1. (a) The random variable X takes the values 1,2,3,4 and 5. Collecting the
probabilities corresponding to the values that are at most 3 we get

P(X <8) = P(X = D+P(X = 2+P(X = 3) = px (1)4px (2)+px(8) = 24—+

B ARVERVES

(b) Now we have to collect the probabilities corresponding to the values which are
less than 3:

P(X <3) = P(X = 1)+ P(X =2) = px (1) + px(2) = = + = = =

(c) First we use the definition of conditional probability to get
P(X <4.12 and X > 1.638)
P(X > 1.638)

We have P(X < 4.12 and X > 1.638) = P(1.638 < X < 4.12). The possible values
of X between 1.638 and 4.12 are 2,3 and 4. Thus

P(X <4.12| X > 1.638) =

P(X <4.12 and X > 1.638) = px(2) + px(3) + px(4) = 1 + 3 + 2_ %
4 17T
Similarly,
P(X > 1.638) = px (2) + px(3) + px(4) - px(5) = — + =+ 2+ 2 = 2.
u 7T

From this we get

P(X <4.12| X > 1.638) =

ESISNESTES
I

3.2. (a) We must have that the probability mass function sums to one. Hence, we
require
6
1= pk)=c(1+2+3+4+5+6) =2lc.
k=1

- 1
Thus, ¢ = 5.

3

-
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(b) The probability that X is odd is

1 9 3
P(X €{1,3,5}) =p(1) +pB3) +p(5) = -=(1+3+5) = = = ~.
21 21 7
3.3. (a) We need to check that f is non-negative and that it integrates to 1 on R.
The non-negativity follows from the definition. For the integral we can compute

/_OO f(z)dx = /OOO 3e 3% dr = —e 73 zzgo = lim (—e™3*) = (=e") =0—(~1) = 1.

Tr—r00

In the first step we used the formula for f(x), and the fact that it is equal to 0 for
xz <0.
(b) Using the definition of the probability density function we get

1 1
P(-1<X<1)= / f(x)de = / 3e 3 dy = —e73" iz; =1-e3
-1 0

(c) Using the definition of the probability density function again we get

(d) From the definition of conditional probability

P2< X <4and X <5)

P2< X <4]|X <5b)= PX <5)

We have P(2 < X <4 and X <5) = P(2 < X <4). Similar to the previous parts:

4 4
P2<X<4)= / fz)dx = / 3e 3dy = 7673I|m:4 =e 0 e
2 2

=2
Using the result of part (c):

P2<X<4) eb—e15
P2<X<4|X<5b)= PX <5) =1

3.4. (a) The density of X is  on [4,10] and zero otherwise. Hence,

-4 1
P(X<6):P(4<X<6):6T:§.
(b)
PIX -7>1)=P(X -7>1)+P(X -7<—1)=P(X >8)+ P(X < 6)
_lo-8 12
6 3 3

(¢) For 4 <t <6 we have

_P(X<t,X<6) PX<t) _ t—4 t—4
P(X<t|X<6)= PX <0) = 1A =3 =5
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3.5. The possible values of a discrete random variable are exactly the values where
the c.d.f. jumps. In this case these are the values 1,4/3,3/2 and 9/5. The corre-
sponding probabilities are equal to the size of corresponding jumps:

px(1)=35-0=3,
px(4/3) = % - % = %7
px(3/2) =% -5=1
px(9/5) =1-3=1.
3.6. For the random variable in Exercise [3.1} we may use . For s € (—o0, 00),
0, s<l1
1, 1<s<2
F(s)=P(X <) = i 25s<3
L, 3<s<4
%, 4<s<b
1, 5<s.

For the random variable in Exercise we may use (3.15). For s <0 we have

that
P(X <s)=0,
whereas for s > 0 we have
P(X <s)= / 3¢ 3dy =1 — 3%,
0

3.7. () f P(a < X <b) =1 then F(y) =0for y < a and F(y) =1 for y > b.
From the definition of F we see that a = v/2 and b = v/3 gives the smallest such

interval.
(b) Since X is continuous, P(X = 1.6) = 0. We can also see this directly from F":

P(X =16) = F(16) = lim F(x) = F(1.6) = F(1.6-),

z—1.6—

Since F'(x) is continuous at x = 1.6 (actually, it is continuous everywhere), we have
F(1.6—) = F(1.6) and this gives P(X = 1.6) = 0 again.

(¢) Because X is continuous, we have P(1 < X < 3/2) = P(1 < X < 3/2). We
also have

P1<X<3/2)=P(1<X<3/2)=P(X<3/2)—P(X<1)
= F3/2) - F) = (3 -2 0= -2=1,
We used 1 < v/2 < 3/2 < /3 when we evaluated F(3/2) — F(1).

(d) Since F is continuous, and it is differentiable apart from finitely many points
(\/5 and \/g)7 we can just differentiate it to get the probability density function:

2t ifV2<z<+3

0 otherwise.

f($)=F’(x)={

We chose 0 for the value of f at V2 and \/3, but the actual values are not important.
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3.8. (a) We have

5
1 1 3 2 2 7
X]=> kpx(k) =1: 2 +20 #3445 2=
(b) We have
3 2 2 25
[|X —2[] -2 - — 11 z L2
£l I = Elk lpx (k +0 14+ TR R

3.9. (a) Since X is continuous, we can compute its mean as
o oo
E[X] = / af(z)dx = / x - 3e 3 d.
—oo 0

Using integration by parts we can evaluate the last integral to get E[X] = %
(b) €2X is a function of X, and X is continuous, so we can compute E[e?

follows:
E[e*X] = / e* f(x)dx = / e* . 3e 3 dr = / e *dr = 3.
0 0

— 00

X] as

3.10. (a) The random variable | X| takes values 0 and 1 with probabilities
P(|X|=0)=P(X=0)=4% and P(|X|=1)=P(X=1)+PX=-1)=2.
Then the definition of expectation gives
EIX[[=0-P(X[=0)+1-P(X|=1)=3
(b) Applying formula :
E[|X|] = ENMP 1-P(X=-1)+0-P(X=0)+1-P(X =1)

=§+6=*
3.11. By (3.25) we have
By - 12) = |

—00

oo

ol

2
(x —1)*f(x)dex = / (x—1)* 2zdr =
1
The interval of integration changed from (—oo,00) to [1,2] since f(z) = 0 outside
[1,2].
3.12. The expectation is

- 61 6 =1
= P X = = —_—— = — —
Srceem=Sa S-S5

which is infinite by the conclusion of Example (using v = 1 in that example).

3.13. (a) We need to find an m for which P(X >m) > 1/2 and P(X <m) > 1/2.
For X from Exercise [3.1] we have

P(X<3)=3 PX<4)=2 PX<5) =

and

P(X>3)=41 PX>4)= P(X>5)=2

)

~lw
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From this we get that m = 4 works as the median, but any number that is larger
or smaller than 4 is not a median.

For X from Exercise 3.3 we have
P(X <m)=1-¢3" and P(X >m) =e ™" if m>0

and P(X <m) =0, P(X >m) =1 for m < 0. From this we get that the median
m satisfies e73™ = 1/2, which leads to m = In(2)/3.
(b) We need P(X < ¢q) > 0.9 and P(X > ¢) > 0.1. Since X is continuous, we
must have P(X < ¢) + P(X > ¢q) = 1 and hence P(X < ¢) = 0.9 and P(X >
q) = 0.1. Using the calculations from part (a) we see that e=3™ = 0.1 from which
q =In(10)/3.
3.14. The mean of the random variable X from Exercise B.1] is

1 3 2 2 7

5

5
1
BIX] =D kpx(k) =12 +2 43 +4- - 45 =
k=1

The second moment is
3 2 _ 107

5
1 1 2
EXQZE Epv(k) =12. - 492, — 132, 2 4 42.2 52 2
X 2 px(k) R VR VIR A A V!

Therefore, the variance is

Var(X) = B[X?] — (E[X))? =~ - (;) -3

Now let X be the random variable from Exercise B.3l The mean is

EIX] = /_‘X’ xf(z)dr = /0003; .33 dp — %,

which follows from an application of integration by parts. The second moment is

E[X? = / 22 f(x)dx = / 2?3 3dx = %,
—00 0

where the integral is calculated using two rounds of integration by parts. Thus, the
variance is

2 2
Var(X) = E[X?] — (E[X])? = 5" () =_.

3.15. (a) We have
EBX +2] =3E[X]+2=3-3+2=11.
(b) We know that Var(X) = E[X?] — E[X]?. Rearranging the terms gives
E[X?) = Var(X) + E[X]? =4+ 3% =13.
(¢) Expanding the square gives
E[(2X +3)%] = E4X? +12X +9] = 4B[X?]+ 12E[X] +9=4-13+12-3+9 = 97,

where we also used the result of part (b).
(d) We have Var(4X — 2) = 42 Var(X) = 4% - 4 = 64.
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3.16. The expectation of 7 is

e 2 7
1 3 1 4-1 3 49-25 75
E[Z]:/ zfz(z)dzz/l z-§dz—|—/5 z~?dz:?- 5 —&-?- 5 =11

The second moment is

o 2 1 7 3
E[ZQ]:/ zzfz(z)dzz/ z2~?dz+/ z2~?dz
—oo 1 5
1. 8-1 3 73—53_661
T3 T3 T

Hence, the variance is

Var(Z) = E[Z°] — (E[Z])* = % - (fl) - %

3.17. If X ~ N(u,0?) then Z = X;“ is a standard normal random variable. We
will reduce each question to a probability involving the standard normal random
variable Z. Recall that P(Z < z) = ®(z) and P(Z > z) = 1—®(z). The numerical
values of ® can be looked up using the table in Appendix [E]
(a)

X—p 35—
P(X>3.5):P< £ “)

ag g
=P(Z > 57;):1—@(57;)
~1— 3(2.08) ~ 1 — 0.9812 = 0.0188.
(b)
21-p X—p 19—
P(—2.1<X<—1.9):P< poAop 219 ’“‘)
g (o g
_ —0.1 0.1 0.1 0.1
*P(7<Z< ﬁ)*@(ﬁ)*q’(*ﬁ)
= B(01) — (1- 9(%h) = 20(%4) — 1
~ 20(0.04) — 1 ~2-0.516 — 1 = 0.032.
(c)
X—p 2-
P(X<2):P< £ < ”)
ag ag
=Pz < &)= o)
~ ®(1.51) ~ 0.9345.
(d)

X — —10 —
P(X<—19)=P( s “)
g g
—P(Z< B =0~ %) =1-a(-3)
~1— 3(3.02) ~ 1 — 0.9987 = 0.0013.
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(e)

P(X>4)=P<X_”>4_”>

g g

=P(Z>3-)=1-3(%)
~1—®(2.27) ~ 1 —0.9884 = 0.0116.

3.18. If X ~ N (i, 0?) then Z = X;“ is a standard normal random variable. Recall
that the values P(Z < z) = ®(z) can be looked up using the table in Appendix [E]

(a)

P2<X<6)=P
=P

2-3 X-3 6-3\_ _ 5
(2 <=5 <3 )P(2<Z<2)

(Z < 1.5) — P(Z < —.5) = ®(1.5) — ®(—0.5)
B(1.5) — (1 — ®(0.5)) = 0.9332 — (1 — 0.6915) = .6247.

(b) We need ¢ so that

0.33_P(X>c)_P(X3>03>_1@(63).

2 2 2

Hence, we need c satisfying ® (653) = 0.67. Checking the table in Appendix

we conclude that ®(z) = 0.67 is solved by z = 0.44. Hence,
c—3

5 = 0.44 <= c=3.88.

(¢) We have that
E[X?] = Var(X) + (E[X])? =4+ 3% = 13.
3.19. From the definition of the c.d.f. we have
F(2)=P(Z<2)=P(Z=0)+P(Z=1)+P(Z=2)
-()wer (Do) e e

210 4 10-29 +45.28
_2 310+ ~ 0.299.

The solution for F(8) can be done the same way:

P -rzes=> (V)@@

- 2
=0

There is another way which involves fewer terms:

so=1-rzzo=1-((F) @@+ (o) 0" @)

21
=1~ 555 ~ 0.9996.

g
&
Il
v
N
N
)
I
W=
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3.20. We must show that Y ~ Unif[0, ¢]. We find the cumulative function. For any
t € (—o0,00) we have

0, t<0
Fy(t)=P(Y <t)=P(c—-X<t)=Plc—t<X)={ == Lt g<t<e
1, c<t.

which is the cumulative distribution function for a Unif[0, ¢] random variable.

3.21. (a) The number of heads out of 2 coin flips can be 0, 1 or 2. These are the pos-
sible values of X. The possible outcomes of the experiment are {HH, HT,TH,TT},
and each one of these has a probability i. We can compute the probability mass
function of X by identifying the events {X = 0}, {X = 1}, {X = 2} and computing
the corresponding probabilities:

px(0)=P(X =0)=P{TT}) = %
px(1)=P(X =1)=P({HT,TH}) =2 =1
px(2) = P(X =2) = PUHH}) = §.

(b) Using the probability mass function from (a):
P(X >1)=P(X =1)+ P(X =2) = px (1) + px(2) = §

and
P(X >1)=P(X =2)=px(2)=1.

(c) Since X is a discrete random variable, we can compute the expectation as

EIX] = kax(k) =0-px(0) +1px(1) +2-px(2) =5 +2- 5 =1.
%

For the variance we need to compute E[X?]:

EX?Y =" kKpx(k) =0 px(0) + 1px(1) +4 px(2) =4 +4- 1 = 2.
k

This gives
Var(X) = E[X?] - (E[X])* =3 -1=1.
3.22. (a) The random variable X is binomially distributed with parameters n = 3
and p = L. Thus, the possible values of X are {0,1,2,3} and the probability
mass function is

1 1 1 1
(b) We have
1
P(XZ1):P(X:1)+P(X:2)+P(X:3):73+z+ :g,
and
3+1 1

PX>1)=P(X=2)+P(X=3)="—+="-.
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(¢) The mean is

The second moment is
1
E[X]:02~§+12-

Hence, the variance is

Var(X) = E[X?] — (E[X])? =3 — ()2 =-.

3.23. (a) The possible values for the profit (in dollars) are 0 — 1 = —1,2 — 1 =
1,100 — 1 = 99 and 7000 — 1 = 6999. The probability mass function can be
computed as follows:

10000 — 100 99
P(X = —1) = P(the randomly chosen player was not a winner) = ———— =

10000 100’
80 1
P(X =1 h ly ch | f th h =——=—
( ) = P(the randomly chosen player was one of the 80 who won $2) = 10000 — 195’
1
P(X =99) = P(the randomly chosen player was one of the 19 who won $100) = ﬁ,
1
P(X =6999) = P(the randomly chosen player was the one who won $7000) = 10000"
(b) '
P(X >100) = P(X = =——.
(X >100) ( 6999) 10000
(c) Since X is discrete, we can find its expectation as
Zk;PX F) = 1 o 1. 09— 46999 - — 0,004
N 100 125 10000 10000 77
For the variance we need E[X?]:
99 1 19 1
PP(X =k)=1——41-—+99* — 7. =4918.22.
Z 100Jr 125+99 10000+6999 10000 o18

From this we get
Var(X) = E[X?] — (B[X])? =~ 4918.21.
3.24. (a) We have
P(X>2)=P(X=2)+P(X=3)=
(b) We have

(L y_ 1 1,1 2 1 4_1
1+X) 141 7 142 7 143 7 47
3.25. (a) If f is a pdf then [~ f(z)dz = 1. We have

= ’ =3 94
1= f(af)dxz/ (2% — b)dx = 2°/3 — bz _3_21)
e )

x=1
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This gives b = 26—3. However, x2 — % is negative for 1 < z < \/26E ~ 1.96 which
shows that the function f cannot be a pdf.

(b) We need b > 0, otherwise the function is zero everywhere. The cosz function
is non-negative on [—7/2,7/2], but then it goes below 0. Thus if g is a pdf then
b < /2. Computing the integral of g on (—o0, 00) we get

/OO g(x)dx = /b cos(z)dx = 2sin(b).

—oo —b
There is exactly one solution for 2sin(b) = 1 in the interval (0,7/2], this is b =
arcsin(1/2) = w/6. For this choice of b the function g is a pdf.

3.26. (a) We require that the probability mass function sum to one. Hence,

1= k=S — .
;px kzzlk(kﬂ)

The sum can be computed in the following way:

w1)

M
c c 1
Z;kw+1) Mfgggkw+4) TEEN < k1
TR -
M~ M+1

=c lim 1—}4-1—14-1 1
B 2 2 3 3 4

. 1
C]\/}gnoo<1M—‘r1>

Combining the above shows that ¢ = 1.

M—o0

(b) Turning to the expectation,

> 1

by the conclusion of Example [D
3.27. (a) By collecting the possible values of X that are at least 2 we get
P(X>2)=P(X=2)+P(X=3)+P(X=4)=1+14+1=3
(b) We have

P(X <3and X >2) P(2<X <3)
P(X22) - P(X>2)

We already computed P(X > 2) = 2 in (a). Similarly,

P(2§X§3):P(X:2)+P(X 3) =2,

P(X <3|X>2) =

and

P(X§3|X22)_P(Ii(§é§)3)_§g_§.

(c) We need to compute E[X] and E[XQ]. Since X is discrete:
Z kP(X 242443 Lpq L=
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and
E[XQ]=Zk2P(X=k‘)=1-3+4-1+9-1+16-%:ﬂ.
k
This leads to
Var(X) = E[X?] — (E[X])* = 3

25°

3.28. (a) The possible values of X are 1, 2, and 3. Since there are three boxes with
nice prizes, we have

Next, for X = 2, we must first choose a box that does not have a good prize
(two choices) followed by one that does (three choices). Hence,

2-3 3
P(X=2)=2"2=2,
( ) 5-4 10
Similarly,
2-1-3 1
P(X =3)= =—
( ) 5-4-3 10
(b) The expectation is
3 3 1 3
ElX|=1.2419.°2 L
X 5Jr 10+3 10 2
(¢) The second moment is
3 3 1 27
EX* =1 -+2°. —43%. —=—.
X7 5+ 10+ 10 10

Hence, the variance is
27 (3\° 9
X)=EX? |- (EX])*P==-(5) ==
Var(x) = B[X? - (B[X)* = 35 - (5) = o
(d) Let W be the gain or loss in this game. Then
100, if X =1
W =100(2 — X) = 200 — 100X = { 0, if X =2
—100, if X =3.
Thus, by Fact
3
E[W] = E[200 — 100X] = 200 — 100E[X] = 200 — 100 - 3= 50.
3.29. The possible values of X are the possible class sizes: 17,21, 24,28. We can

compute the corresponding probabilities by computing the probability of choosing
a student from that class:

px(17) = . px(21) = B = . px (20) = 3 = . px(28) = B = 3.

From this we can compute E[X]:
EX]=) kP(X=k)=17-41+21- 5 +24- & +28- 12 =20
k

For the variance we need E[X?]:

EX?| =) KP(X =k)=17"- LT +217 - L 424> L +28° . 12 = 555,
k
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Then the variance is
1274
=<
3.30. (a) The probability mass function is found by utilizing Fact We have

Var(X) = E[X?] — (E[X])?

P(X =0) = P(hit on first shot) = =
P(X =1) = P(miss on first, then hit)
11 1
= P(hit on second|miss on first) P(miss on first) = 3'5=%
Continuing,
1 21 1
P(X=2)=--2.> -
( ) 2 3 4 12
1 2 31 1
P(X = = _.-.-.Z -
( 3) 2 3 4 5 20
1 2 3 4 1
P(X=4)==-.2.2.2 - -
( ) 2 3 45 5
(b) The expected value of X, the number of misses, is
1 1 1 1 1 77
BX]=0->41->42 — +3. -~ +4.- =",
IX] 02+ 6+ 12+3 20+ 5 60
3.31. (a) We must have 1 = [*_ f(z)dz. So, we solve:
1= / crdde =
1 3
which gives ¢ = 3.
(b) We have
1 1
PO5< X <1)= f(z)dx = / 0dx = 0.
0.5 0.5
(c) We have
2 2 2 1 7
PO5< X <2)= flz)dx = / 3r 4dy = —273 =1—-=-=-.
0.5 1 a=1 8 8
(d) We have
4 4
1 1 7
P2< X <4)= _ gy — g3 1 1 _ T
( ) /2 fla)de / ! ., 8 64 o4
(e) For z < 1 we have Fx(x) = = 0. For x > 1 we have
.|° 1
F(z) = P(X <2) / gy =¥ =1L
x
y=1
(f) We have
[eS) [ 356‘72 LT=00
E(X)—/ xf(a:)dx:/ z -3z tde = 5 =3/2,
—o0 1 - =1
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and
oo 00 31 =00
E(X?) = / zf (x)de = / 2?3z 4 dx = : —3.
> 1 - =1
From this we get
Var(X) = B(X?) — (B(X))? =3 — % _3/4.
(g) We have
E[BX2+3X] :/ (522+32) f (z)dx :/ (522+32)-3z4dx = 9 _ @
—oo 1 222 x|, 2

(h) We . .
E[X"] = / x" f(x)dx = /1 z" - 3xYda.

— 00
Evaluating this integral for integer values of n we get

>
3 nS 2.
3.32. (a) We have
P(X>10):/Oo lx—3/2dx:_m—1/2{00 :L
0 2 =10~ TG
(b) For ¢ < 1, we have that Fx(t) = P(X <t) =0. For ¢t > 1 we have
t
1 t 1
P(X <t)= — 73y = —x7V/? =1—-—.
x<n=][3 1=

(¢c) We have
E[X]:/ x-fx_3/2dw:f/ 27V dr = .
1 2 2

This last equality can be seen as follows:

o0 b
/ 2 dz = lim 2% dz =2 lim x1/2’$i} =2 lim (Vb — 1) = .
1

b—oo Jq b— oo = b—o0

(d) We have
E[X1/4] _ - 1x1/4x_3/2d$ — 1 = A [ 1 .x—1/4‘°°_ =2.
1 2 2 Jy 2 o

3.33. (a) A probability density function must be nonnegative, and it has to inte-
grate to 1. Thus ¢ > 0 and we must have

1:/ f(a:)d:c:/ fda?Jr/ cdr = =+ 2¢.

This gives ¢ = %.
(b) Since X has a probability density function we can compute the probability in
question by integrating f(z) on the interval [2, 4]:

4 2 4 4 11
P2 <X <4)= f(x)dac:/ de—i—/ Cd$:§'1+1'02
3/2 3/2 3
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(¢) We can compute the expectation using the formula E[X] = [ zf(z)dx and
evaluating the integral using he definition of f.

E[X]:/_O;xf(x)dx:/12xidx+/:x-cdx

2 P41 %25 2.9 27

r=2
6332

2

3 8 8 2 2 8
3.34. (a) Since X is discrete, we can compute E[g(X)] using the following formula:

Blo(X)] = Y7 P(X = K)g(k) = 59(1) + 39(2) + 29(5)
k

8

=1

Thus we will certainly have E[g(X)] = $In2 + $In5 if g(1) = 0, g(2) =
In2, g(5) = In5. The function g(z) = Inz satisfies these requirements, thus
En(X)] =12+ 5.

(b) Based on the solution of part (a) there is a function g for which g(1) = €
g(2) = 2¢%, g(5) = 5e® then

Elg(X)] = e’ + 2% + 2e™.
The function g(z) = we®® satisfies the requirements, so
E[Xetx} _ %et + %6215 + %65t.

(¢) We need to find a function g for which

)

Elg(X)] = Lo(1) + Lo@) + Lg() =2,

There are lots of functions that satisfy this requirement. The simplest choice
is the constant function g(x) = 2, but for example the function g(x) = z also

works.
3.35.
EX* =) K'P(X =k)=(-2)'P(X = -2)+ 0*P(X =0) + 4'P(X = 4)
k
1 7
=16 — + 256 - — = 29.
6+ 75 +256- o7 =29

3.36. Since X is continuous, we can compute E[X*] as follows:
oo 2 2 3
2 22° 2= 14
E[X4]:/ x4f(x)da:=/ x4-—2dx:/ 22%dy = — x:i:—.
o 1 x 1 3 3

3.37. (a) The cumulative distribution function F'(x) is continuous everywhere (even
at © = 0) and it is differentiable everywhere except at £ = 0. Thus we can get the
probability density function by differentiating F'.

f(I)ZF’(w)Z{

(1+2)"% >0
0 z < 0.
(b) We have

P2<X<3)=F3)—F(2) =
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We could also compute this probability by evaluating the integral f23 f(x)dx.
(c) Using the probability density function we can write

E[(1+ X)% %] = /000 f@)(1+z)%e *dz

(o) (o)
= / (1+x)%e (1 + ) %de = / e *dx
0 0

1
= ——e¢

e 1

—2z

=0

3.38. (a) Since Z is continuous and the pd.f. is given, we can compute its expec-

tation as
[eS) 1 z=1
E[Z] = / zf(z)dz = / z- 520y = 220 = 0.
—oo -1 z=—1
(b) We have
1/2 1/2 z=1/2 5
PO<Z<1/2)= (2)dz = / sde=15 =1 =2
0 0 2=0

(c) We have

P(Z<gzand Z>0) P0O<Z<1/2)
P(Z > 0) ~ P(Z>0)

P{Z<L|Z>0}=

The numerator is é. The denominator is

z=1
—1/2.
z=0

5

00 1
P(Z>O):/O f(z)dZZ/O gz4dz:%

Thus,

& 1
P{Z<YZ>0)="52 =,
{Z2<312>04 1/2 32

(d) Since Z is continuous and the pd.f. is given, we can compute E[Z"] for n > 1
as follows

[e%s} 1 1
E[Z”]:/ z"f(z)dz:/ z”~gz4dz:/ %Z"Hdz
oo 1 -1

z=1

n+5 n+5 n+5

Pl = e (0 (1))
n+5

= 72(n5+5) (1= (=1)").

_ 5
= 25~

Note that (—1)"™® =1 if n is odd and (—1)"*® =1 if n is even. Thus

5 . .
B[z = {n+5, if n is odd

0, if n is even.

3.39. (a) One possible example:
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ﬂ®=ﬂX§D=HX=D+HX:m:%
and
F(3)=P(X <3)=P(X=1)+P(X +2)+ P(X =3) = 1.

(b) There are a number of possible solutions. Here is one that can be checked easily
using part (a):

3 0<z<1

5

= l<ax <2
fla) =41

0 otherwise.

3.40. Here is a continuous example: let f(z) = m% for > 1 and 0 otherwise. This
is a nonnegative function with ffooo f(z)dxz = 1, thus there is a random variable X
with p.d.f. f. Then the cumulative distribution function of X is given by

ifz<l1

r 0
F(z) = dy=< ",
(@) [mf(y)y {fl y—lzdyzl—l/m, if x> 1.
In particular, F(n) =1 — % for each positive integer n.

3.41. We begin by deriving the probability F(s) = P(X < s) using the law of total
probability. For s € (3,4),

6 3 6
1 1
H@:P@g@:}jﬂXgﬂY:MHY:@:z$+§:%6
k=1 k=1 k=4
_ 1, 37
2360

We can find the density function f on the interval (3,4) by differentiating this.

Thus
f(s)=F'(s) =25 forse(3,4).

3.42. (a) Note that 0 < X < 1so Fx(z)=1for x > 1 and Fx(z) =0 for < 0.
For 0 < 2 < 1 the event {X < x} is the same as the event that the chosen
point is in the trapezoid D, with vertices (0,0), (x,0), (z,2 — z), (0,2). The
area of this trapezoid is 1 (2 + 2 — x)z, while the area of D is % = 2. Thus

area(D,)  3(2+2—z)x  4dx  2?

P(X <z)= _ dr "
(X <) area(D) 3 3 3
Thus
1, if x> 1
Fy(z)={ % 2 fo<z<l1
0, if x <0.

To find Fy we first note that 0 <Y < 2so Fy(y) =1fory > 2 and Fy(y) =0
for y < 0.
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For 0 <y < 1 the event {Y < y} is the same as the event that the chosen
point is in the rectangle with vertices (0,0), (0,y), (1,y), (1,0). The area of
2y

this rectangle is y, so in that case P(Y <y) = § = 3.

If 1 <y < 2 then the event {Y < y} is the same as the event that the
chosen point in the region D,, with vertices (0,0), (0,y), (2—y,v), (1,1), (1,0).
The area of this region can be computed for example by subtracting the area of
the triangle with vertices (2,0), (0,y), (2 — y,y) from the area of D, this gives

2
%7%:%;7%7%. ThuSP(YSy):%:é(Zly—yzfl)
Thus we have ’

1, ify>2
1 .
Fy(y) = §(4y—y2—1), if1<y<?2
LG B if0<y<l
0, itz <0.

(b) Both cumulative distribution functions found in part (a) are continuous ev-
erywhere, and differentiable everywhere apart from maybe a couple of points.
Thus we can find fx and fy by differentiating F'xy and Fy:

i_ 2z ifo<z<l1
— 3 37 1 —
fx(@) {0, otherwise.
$(4-2y), if1<y<?2
fry) =13 if0<y<1
0, otherwise.

3.43. If (a,b) is a point in the square [0,1]? then the distances from the four sides
are a,b,1—a,1—0b and the minimal distance is the minimum of these four numbers.
Since min(a,1 — a) < 1/2, this minimal distance is at most 1/2 (which can be
achieved at (a,b) = (1/2,1/2)), and at least 0. Thus the possible values of X are
from the interval [0,1/2].

(a) We would like to compute F'(z) = P(X < z) for all . Because 0 < X < 1/2,
we have F'(z) =0 for x <0 and F(z) =1 for z > 1/2.

Denote the coordinates of the randomly chosen point by A and B. If 0 < z <
1/2 then the set {X < z}° = {X > z} is the same as the set
{r<Ajz<l-Az<Bl—-z<B}={x<A<l-z,2<B<1l-—z}.
This is the same as the point (A4, B) being in the square (z,1 — x)? which has
probability (1 — 2z)2. Hence, for 0 < z < 1/2 we have
Fz)=P(X<z)=1-P(X >2)=1—(1-22)? = 4z — 42°.

(b) Since the cumulative distribution function F'(z) that we found in part (a) is
continuous, and it is differentiable apart from x = 0, we can find f(z) just by
differentiating F'(x). This means that f(z) = 4 — 8z for 0 < = < 1/2 and 0
otherwise.

3.44. (a) Let s be a real number. Let o = arctan(r) € (—n/2,7/2) be the angle
corresponding to the slope s, this is the number « € (—7/2, 7/2) with tan(a) =
s. The event that {S < s} is the same as the event that the uniformly chosen
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point is in the circular sector corresponding to the angles —7/2 and « and
radius 1. The area of this circular sector is a + 7/2, while the area of the half
disk is 7. Thus
a+7/2 1 arctan(s)
- =4y 7

s 2 T

Fs(s) = P(S < s) =

(b) The c.d.f. found in part (a) is differentiable everywhere, hence the p.d.f. is equal

to its derivative:
1 arctan(s))’ 1
fs(s) = <2 * i > (1 +s2)

3.45. Let (X,Y) be the uniformly chosen point, then S = % We can disregard
the case X = 0, as the probability of this is 0.
(a) We need to compute F(s) = P(S < s) for all s.

The slope S can be any nonnegative number, but it cannot be negative. Thus
Fs(s)=P(S<s)=0if s <0.

If 0 < s < 1 then the points (z,y) € [0,1]? with y/x < s are exactly the points
in the triangle with vertices (0,0), (1,0), (1,s). The area of this triangle is s/2,
hence for 0 < s < 1 we have Fs(s) = s/2

If 1 < s then the points (z,y) € [0,1]? with y/z < s are either in the triangle
with vertices (0,0), (1,0), (1,1) or in the triangle with vertices (0,0), (1,1), (1/s,1).
The area of the union of these triangles is 1/2 + (1 — 1/s) = 1 — 5, hence for
1 < s we have Fg(s) =1— o.

To summarize:

0 5<0
F(s) =4 3s 0<s<1.
—+ 1<s

2s
(b) Since F(s) is continuous everywhere and it is differentiable apart from s = 0,
we can get the probability density function f(s) just by differentiating F. This
gives

fls) =

0<s<1.
1<s

0 5<0
1
2
1
252
3.46. (a) The smaller piece cannot be larger than ¢/2, hence 0 < X < ¢/2. Thus
Fx(z)=0for x < 0and Fx(z) =1 for x > ¢/2.

For 0 < z < £/2 the event {X < z} is the same as the event that the chosen
point where we break the stick in two is within x of one of the end points. The
set of possible locations is thus the union of two intervals of length x, hence
the probability of the uniformly chosen point to be in this set is <£. Hence for
0 <z < ¢/2 we have Fx(z) = 2-.

To summarize

1 for x > £/2
Fx(r)=( % for0<axz<{/2
0 for x < 0.
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(b) The c.d.f. found in part (a) is continuous everywhere, and differentiable apart
from x = £/2. Hence we can find the p.d.f. by differentiating it, which gives

2 for0 <z < (/2
z)=<"* -
Ix(@) {O otherwise.

3.47. (a) We need to find F(z) = P(X < z) for all z. The X coordinate of a point
in the triangle must be between 0 and 30, so F/(z) =0 for x < 0 and F(x) =1 for
x > 30.

For 0 < z < 30 then the set of points in the triangle with X < z is the triangle
with vertices (0,0), (z,0) and (z, 2x). The area of this triangle is $22, while the
area of the original triangle is @ = 300. This means that if 0 < 2 < 30 then

F(x) = E L U

300 900 *
0 <0
Flz)={ & 0<z<30.
1 x > 30

(b) Since F(x) is continuous everywhere, and it is differentiable everywhere apart
from x = 30 we can get the probability density function as F'(z). This gives

(@) = ﬁ 0§$<30'
0 otherwise

(c) Since X is absolutely continuous, we can compute F[X] as

Using the solution from part (b):

oo 30 T
EX]= dr = —dzx = 20.
[X] /_ooxf(a:)x /0 T

3.48. Denote the distance by R. The distance from the y-axis for a point in the
triangle is at most 2, hence 0 < R < 2. We first compute the c.d.f. of R. For
0 < r < 2 the event {R < r} is the same as the event that the chosen point is in
the trapezoid with vertices (0,0), (r,0), (r,1 —r/2), (0,1). The probability of this
event can be computed by taking ratios of areas:
r(1+1-7/2) 2

2

Fa(r) = P(R < 1) area(trapezoid) _ _,

,
area(triangle) 21 4

For r > 2 we have Fg(r) = P(R <r) =1 and for » < 0 we have Fr(r) = P(R <
r) = 0. The found c.d.f. is continuous everywhere and differentiable apart from
r = 0. Thus we can find the probability density function by differentiation:

fr(r) = (Fr(r)) =1-r/2, ifo<r<2,

and fr(r) = 0 otherwise.
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Thus R is a continuous random variable, and we can compute its expectation
by evaluating the appropriate integral:

e’} 2
2

B[R] = / rfr(R)dr :/ (1~ r/2)dr = -,

—0o0 0

3.49. (a) The set of possible values for X is the interval [0,4]. Thus F'(z) = P(X <
x) is 0 for z < 0 and equal to 1 for z > 4. If 0 < 2 < 4 then the set of points
(X,Y) in the triangle with X < z is the quadrilateral formed by the vertices
(0,0), (0,2), (z,z/4), (z,2 —x/4). This is actually a trapezoid, and its area can

w =2 — 2 (Another way is to integrate the

be readily computed as T
function 2 — s/2 on (0,7).) The area of the triangle is Z* = 4 which means that

2
Pz <z)=jx— gz for 0 <o <4

This gives the continuous cdf

0 z <0
Flz) = to—La? 0<z<4.
1 T >4

Differentiating this gives f:

L_ly 0<z<4
z)=142" 8" )
1(@) {O otherwise

(b) Our goal now is to compute f(x) directly. Since X takes values from [0, 4], we
can assume 0 < 2 < 4. We would like to compute the probability P(X € (x,x+¢))
for a small e. The set of points (X,Y) in the triangle with z < X < x + ¢ is the
trapezoid formed by the points (z,z/4), (z,2 —z/4), (x+¢, 22), (x +¢,2 — £=).
For ¢ small the area of this trapezoid will be close to ¢ - (2 — 5) (as the trapezoid
is close to a rectangle with sides € and 2 — §). The area of the original triangle is
4, thus, for 0 < z < 4 we have

9
4

—%x. For z < 0 and > 4 we have

[N

P(X e (z,z+e)~e-

which means that in this case f(z) = 3

fz) = 0.
We can now compute the cumulative distribution function F(z) using the for-
mula F(z) = [*_ f(y)dy.
For x < 0 we have F(z) = [

x

f(y)dy = 0. For x > 4 we have

T 4
F(ﬂf)=/ f(y)dyz/ 3 — sydy = 1.
—0o0 0
Finally, for 0 < x < 4 we have
F(z) = / fy)dy = / 3 — tydy = 1o — La?
—00 0

3.50. (a) For e <t <9 the event {t —e < R < t} is the event that the dart lands
in the annulus (or ring) with radii ¢t — € and ¢. The area of this annulus is
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7r(1f2 — (t — 5)2), thus the corresponding probability is

7r(t2 - (t - 5)2) 1 5 9 9 2 g2

—_— L = —(t* —t° 4+ 2et — = —¢et — —.
02, 81( 5 € ) €

Taking the limit of e 'P(t—¢ < R < t) as € — 0 gives 2¢ for 0 < ¢ < 9. This is
the probability density in (0,9), and since R cannot be negatlve or larger than
9, the p.d.f. is 0 otherwise.

(b) The argument is similar to the one presented in part (a). If e <t < 9 — ¢ then
T((t+e)? — (t—e)?)  4te

81m i
Hence (2¢) "' P(t—e < R < t+¢) = 2 (we don’ t even need to take a limit here).
Thus the probability density functlon of R is 8—1 n (0,9) and zero otherwise.

3.51. We have

Pt—e<R<t)=

Pt—e<R<t+e) =

o] ook
B RIS 5 SeeL

k=1 k=1j=1

In the last sum we are summing for k, 5 with 1 < j < k. If we reverse the order of
summation, then k will go from j to oo, while j goes from 1 to oo:

ii(l—p P Z p.

k=1 j=1 j=1k=j

For a given positive integer 7 we have

— 1 j—1 1 -1
> (1 =p)tp=p(-p)J- Zl— =p(1—p) mz(l—p) :

k=j
where we introduced k = j + ¢ and evaluated the geometric sum. This gives

oo oo

. 1
E(X)=) (1-py'=) (1-p'=-.
=1 i=0 p
J
3.52. Using the hint we write
Y PX>k) =) Y P(X=i).
k=1 k=11i=k

Note that in the double sum we have 1 < k < 4. If we switch the order of the two
summations (which is allowed, since each term is nonnegative) then k goes from 1
to i, and i goes from 1 to oo:

Since P(X = i) does not depend on k, we have 22:1 P(X =14) =4P(X =1) and

hence
oo
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Because X takes only nonnegative integers we have E[X]| = > iP(X = i), and
since the i = 0 term is equal to zero we have E[X]| = >~ iP(X = i). This proves

EIX] =32, P(X 2 k).
3.53. (a) Since X is discrete, taking values from 0,1,2,..., we can compute its
expectation as follows:

S RS PO S RIS BCIL
k=1

The infinite sum may be computed using the identity Y -, xk’ = m (which
holds for |z| < 1, and follows from >~ 2% = = by differentiation):

Zk(%)k = %Zk'(%)k_l = %712 =0

k=1 k=1 (1-3) 4
which gives E[X] =33 =3

Another way to arrive to this solution would be to apply the approach outlined
in Exercise B.511
(b) To compute Var(X) we need E[X?]. Tt turns out that E[X?—X]| = E[X (X —1)]
is easier to compute:

E[X(Xfl)]:ik(kfl) Zk —1)- 1 (k.

k=0

Next we can use that for |z| < 1 we have Y o, k(k — 1)zF72 = =il (This

k

follows from Y -, 2% = % by differentiating twice.)

S k-0 b = 4GRSk ) (= s =
k=2 3
Thus E[X (X —1)] = 2 and hence
E[X?|=E[X(X -1)+ X] = E[X(X —1)] + E[X] = g + 2 = Z
and
Var(X) = B[X?] - (E[X])? = 3/4— (3/8) = 2.

3.54. (a) We have P(X > k) = (1 —p)*~!. We can compute this by evaluating the
geometric series

P(X > k) ZP :ipqlil.
=k

An easier way is to note that 1f X is the number of trials needed for the first
success then {X > k} is the event that the first £ — 1 trials are all failures,
which has probability (1 — p)*~1.

(b) By Exercise we have

N _ Y N S
X}—;P(XZk)—Z(l e T

k=1
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3.55. We first find the probability mass function of Y. The possible values are
1,2,3,.... Peter wins the game if Y is an odd number, and Mary wins the game if
it is even. If n > 0 then

P(Y =2n+1)
= P(Peter misses n times, Mary misses n times, Peter hits bullseye next)
=1 =p)"(1—r)"p.
Similarly, for n > 1:
P(Y =2n)
= P(Peter misses n times, Mary misses n — 1 times, Mary hits bullseye next)

= (=p =

Then
EY]=) kP(Y =k =) @2n+1)(1—p)"(1—r)"p+ > _2n(l—p)"(L—r)""'r.
k=1 n=0 n=1

The evaluation of these sums is a bit lengthy, but in the end one just has to use
the identities Y~ z% = 2= and Y 7, kot~ = ﬁ, which holds for |z| < 1.
To simplify notations a little bit, we introduce s = (1 — p)(1 —r).

Z(Qn +1DA-p)"Q—r)"p= Z(Zn +1)s"p = Z 2ns™p + Z s"p
n=0 n=0 n=0 n=0
(oo} oo
= 2spZn5"71 +pz s"
n=1 n=0
2sp p _ p(l+s)

+

(1-5)2% 1-s (1-—s)%

Z 2n(1 —p)"(1 — )" tr =2(1 —p)r Z n(l—p)" 11 —r)n !

— (1—9)2
This gives
_p(14s5)+2(1 —p)r
ElY] = 1= 52 .
Substituting back s = (1 —r)(1 —p)=1—p—1r+ pr:
py) =PI U=pU=n)+20=pr  @=plptr—p) _2-p
(p+r—pr)? (p+r—pr)? p+r—pr

For r = p the random variable Y has geometric distribution with parameter p, and

. 2 .
our formula gives 2p7§2 = %, as it should.
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3.56. Using the hint we compute E[X (X — 1)] first. Using the formula for the
expectation of a function of a discrete random variable we get

EX(X-1)]=> k(k—1)pg" " =pg» k(k—1)¢">=pg ) _ k(k—1)¢">
k=1 k=1 k=0

(We used that k(k — 1) = 0 for k = 0.) Note that k(k — 1)¢*=2 = (¢*)" for k > 2,
and the formula also works for £ = 0 and 1.

The identity -1~ = 377 ¥ holds for |z| < 1, and differentiating both sides

we get
1 " " 00
(1—a:> - (1—z)3 (Z“T) :Zk(k—l)xk_2
k=0

(We are allowed to differentiate the series term by term for |z| < 1.) Thus for
|z| < 1 we have Y ;2 k(k — 1)aF=2 = ﬁ and thus

ELX(X = 1) = pa 3 (k= 102 = pg- s = 2.

where we used p+q = 1.
Then

1 29 p+2q 1+4¢
E[IX? | = EX|+E[X(X -1)]=-+4+2 = =

where we used p 4+ ¢ = 1 again.

3.57. We have P(X = k) = p(1 — p)*~! for k > 1. Hence we can compute E[+]
using the following formula:

p(1

Eod e

oo
k=1

In order to evaluate the infinite sum, we start with the identity ﬁ = > e, x”
which holds for |z| < 1, and then integrate both sides from 0 to y with |y| < 1:

On the left side we have foy
by term to get

1—z

kd_ooykﬂ_ooyn
/Okzox Y Z:%kﬂ_n;?

This gives the identity
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for |y| < 1. Using this with y =1 — p:

-y

k=1

_\k
P (1-p)"® p In(%)

B[ p(l—p)kt=

=
g ==

1—pk:1 k 1—p

3.58. Using the formula for the expected value of a function of a discrete random
variable we get

Bx1 = o () -

k=0

We have

1 n 1 n! n!
k:+1(k:> TEk+1k(n—k)!  (k+Dl(n—k)!
1 (n+1)!
n+1(k+D((n+1)—(k+1)

_ 1 n+1
S n+1\k+1)
where we used (k+1) -kl = (k+ 1)
Then

=
R
I
3
—_
A~
> 3
+
—_
~
=
kol

\
=
3

=

Adding and removing the £ = 0 term to the sum and using the binomial theorem
yields

n+1
#l ]:p(n1+1) = (n:;l)pi(l_ e
— 1 &= n+1 (4 n+1-2£ n+1
s <H< st
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3.59. (a) Using the solution for Example we see that the following function
works:

10 if 0<r<1,
5 if 1<r<3,

glr)y=142 if 3<r<6,
1 if 6<r<9,
0 otherwise.

Since 0 < R < 9 we could have defined g any way we like it outside [0,9]. (b) The
probability mass function for X is given by

1 8 27 45
px(10) = 37’ px(5) = 37 px(2) = 37 px(1) = 31
Thus the expectation is
1 27 45 149
E[X]=10- g—i-’f) 8—1+2 81+1-8—1—ﬁ

( ) Using the result of Example [3.19 we see that the probability density fr(r) of R
81 = for 0 << r <9 and zero otherwise. We can now compute the expectation of
X = g(R) as follows:

BIX] = Elg(R)] = / o(r) fr(r)dr
1 3 6 9
2r 2r 2r 2r
= [ 10 -ZLa Lar iy 1214
/0081T+/1581 +/3 81 +/ s1e"
_ 119
81

3.60. (a) Let px be the probability mass function of X. Then

Elu(X pr +o(k)) =Y px(k)uk) + ) px(k)o(k
k k

= E[ (X)) + E[v(X)].

The first step is the expectation of a function of a discrete random variable.
In the second step we broke the sum into two parts. (This actually requires
care in case of infinitely many terms. It is a valid step in this case because u
and v are bounded and hence all the sums involved are finite.) In the last step
we again used the formula for the expected value of a function of a discrete
random variable.

(b) Suppose that the probability density function of X is f. Then

Elu(X / f(z )+ v(x dx—/ flx )da:—&—/c: f(z)v(zx)dx

w(X)] + Efo(X)].

The first step is the formula for the expectation of a function of a continuous
random variable. In the second step we rewrote the integral of a sum as the
sum of the integrals. (This is a valid step because u and v are bounded and
thus all the integrals involved are finite.) In the last step we again used the
formula for the expected value of a function of a continuous random variable.
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3.61. (a) Note that the range of X is [0, M]. Thus, we know that
Fx(s)=0if s <0,

and F(s)=1ifs> M.
Next, for s € [0, M] we have

(b) We have

v_lx if X €0, M/2]
S\ M2 i X e (M/2,M]

(¢) For y < M/2 we have that {Y <y} = {X <y} and so,
2y
PY <y)=PX <y)=Fx(y) =
Since {Y = M/2} = {X > M/2} we have
PY=M/2)=P(X >M/2)=1-P(X < M/2)
—1- P(X < M/2)

1 Fe(My2) =1 [P0 (/2

M M?

IR

4 4
Since Y is at most M/2, for y > M/2 we have

P(Y <y)=P(Y < M/2) = 1.
Putting this all together yields

0 y <0
Fy(y) = %—Ay% 0<y<M/2.
1 y>M/2

(d) We have

3
PlY <M/2)= lim Fy(y)=-.
M~ 4
y— 4
Another way to see this is by noticing that

PY < M/2)=1—P(Y > M/2) =1— P(Y = M/2) =1+ =3

44
(e) Y cannot be continuous, as P(Y = M/2) = 1 > 0. But it cannot be discrete

either, as there are no other values which Y takes with positive probability.
Thus there is no density, nor is there a probability mass function.

3.62. From the set-up we know F(s) = 0 for s < 0 because negative values have no
probability and F(s) = 1 for s > 3/4 because the boy is sure to be inside by time

85
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3/4. For values 0 < s < 3/4 the probability P(X < s) comes from the uniform
distribution and hence equals s, the length of the interval [0, s]. To summarize,

0, s<0
F(s)=<(s, 0<s<3/4
1, s>3/4.

In particular, we have a jump in F' that gives the probability for the value 3/4:

PX =3 =FE)-F(-)=1-3=1}

This reflects the fact that, left to his own devices, the boy would come in after time

3/4 with probability 1/4. This option is removed by the mother’s call and so all
this probability concentrates on the value 3/4.

3.63. (a) We have E[X] = >, kpx (k). Because X is symmetric, we must have
P(X =k) = P(X = —k) for all k. Thus we can write the sum as

ElX] = Z kpx (k) = O'PX(O)-FZ kpx (k)+(=k)px (—k) = Z k(px (k)—px(=k)) =0
k k>0 k>0

since each term is 0.
(b) The solution is similar in the continuous case. We have

E[X]:/Oo xf(x)dx:/ooxf(ac)dm—l—/o xf(z)dx

—o00 0 —0o0

_ /Ow xf(x)d:v—i—/ooo o f(—)da
= [ ats@) - -z =o

3.64. For the continuous random variable first recall that floo

andflooidarzﬁ<ooifa>1.

2 ifr>1
ﬂwz{ﬁ’ il

0 otherwise.

I%dx:ooifagl,

Now set

Since f(z) > 0 and [*° f(x)dz = 2 [[° Zda = 1, the function f is a probability
density function. Let X be a continuous random variable with probability density
function equal to f. Then

3

e €T
EX*) = [ 2*f(a)de= | 2*Zde=3[ —do=oc0.
— 00 1 IB 1 X

For the discrete example recall that Y p- | 2 < ocoif a>1land Y ;7 & =
for « < 1. Consider the discrete random variable X with probability mass function

P(X:k):%, E=1,2,...
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with C = ﬁ Since 0 < 22021 k% < o0, this is indeed a probability mass
= 3

function. Moreover, we have

E[X] :ZkP(X:k):Zk-ﬁ:CZﬁ < 0.

k=1

and
E[X?] = ikQP(X =k) = ikQ Lo Cil = oc.
k3 k

k=1 k=1
3.65. (a) We have Var(2X + 1) = 22 Var(X) =4-3 = 12.
(b) We have

E[(3X —4)?] = E[9X? — 24X + 16] = 9E[X?] — 24E[X] + 16.

We know that Var(X) = E[X?] - E[X]?, so E[X?] = Var(X)+ E[X]> =3+2% =T.
Thus

E[(3X —4)?] =9E[X? — 24E[X] +16=9-7—24-2 4+ 16 = 31.
3.66. We can express X as X = /3Y + 8 where Y ~ A(0,1). Then

0.15= P(X > a) = P(V3Y +8>a) = P(Y > “%) = 1 — ®(23%).
Using the table in Appendix |E| we get that if @(a—\/’f) = 0.85 then a—\/’; ~ 1.04.

From this we get
o~ V31.04+8~98.

3.67. (a) We have

oo o 1 rc2
E[Z3 :/ 2o dx:/ 2 ——e T du.
[Z7] - o(z) -

Note that the function g(z) = x3\/%e’x7 is odd: g(x) = g(—x). Thus if the
integral is finite then it must be equal to 0, as the values on the positive and

negative half lines cancel each other out. The fact that the integral is finite follows

v

H‘2 .
from the fact that 2® grows a lot slower than e > . (Or you can evaluate the integral
on the positive and negative half lines separately by integration by parts.)
(b) We can express X as X = oY + pu where Y ~ A(0,1). Then

E[X®] = E[(cY 4 p)®] = E[0®Y? + 302uY? + 301°Y + p?]
= 3EY3) 4 302uE[Y?) + 30> E[Y] + 3.
We have E[Y] = E[Y?] =0 and E[Y?] = 1. Thus
E[X?] = c*E[Y?) 4+ 30°uE[Y?| 4+ 30p*E[Y] + 1 = 30 + pi®

2

3.68. (a) Since the p.d.f. of Z is p(z) = ﬁe’%, we have

E[ZY] :/OO Lp(x)x4dx:/oo \;e_ém‘lda&

o —oo V2T
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22

We can evaluate the integral using integration by parts noting that e” 2z =
22
(—em =)
1

[e%S) a2 A /oo 1 2 5
ez axidxr = e zx-x’dr
[oo \/27T —00 21

o0 1 _—,;2
=3 ——e zaidr =
/—oo V2
We used that rli)Holo ) (and the same for z — —o0), and that [ \/%e_%xzdx =
E[Z%] = 1.
Hence E[Z%] = 3.
(b) We can express X as X = oY + p where Y ~ N(0,1). Then
EIXY] = B[ + )"
= E[o*Y* +46°uY? + 602 12Y? + 4oV 1% + p]
=o' E[Y* + 403 uE[Y®] + 60° 2 E[Y?) + dop* E[Y] + p*.
We know that E[Y] = 0, E[Y?] = 1. By part (a) we have E[Y*] = 3 and by

the previous problem we have E[Y3] = 0. Substituting these in the previous
expression we get

E[X* = 30" 4+ 602u? + p*.
3.69. Denote the nth moment E[Z"] by m,,. It can be computed as

oo oo 1 2
My, = 2" o(x)dr = " ——e” T dx
/—oo 90( ) [m V2T
We have seen that m; = E[Z] = 0 and mo = E[Z?] = 1.

Suppose first that n = 2k + 1 is an odd number. Then the function z?**+! is
odd and hence the function z2¥*1p(x) is odd as well. If the integral is finite then
the contribution of the positive and negative half lines in ffooo 22k +1p(z)dr cancel
each other out and thus mog1 = 0. The fact that the integral is finite follows from

22
the fact that for any fixed n ™ grows a lot slower than e’z .

For n = 2k > 2 we see that 2™ p(x) is even, and thus (if the integrals are finite)
we have

Mok :/ 2 o(x)dr = 2/ 22 p(x)dx
0

—0o0
Using integration by parts with the functions 22*~1 and zp(z) = (—
(—p(x))" we get

T=00

o0 1 P
2k 2k—1 -z
T z)dr = —x e 2

/0 o() or

=(2k-1) /000 2o (z)da.

—|—/ (2k — 1)z*2p(z)dx
x=0 0
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12
Here the boundary term at co disappears because z"e~"z — 0 for any n > 0 as
x — oo. The integration by parts reduced the exponent of z by 2, and multiplying
both sides by 2 gives

maok = (2k — 1)mag_o.
Repeating this step we get
mop = (Qk — 1)m2k_2 = (2]{7 — 1)(2k — S)mgk_4 == (Qk — ].)(Qk — 3) ce 3m2
=2k-1)(2k—-3)---1.

The final answer is the product of positive odd numbers not larger than 2k, which
is sometimes denoted by (2k — 1)!l. It can also be computed as

2% (2k—1)-(2k—2)---2-1 (2k)! (2Kk)!
(2k—-1)(2k=3)---1= (2k)(2k — 2)---2 T2k k(k—1)---1 2Rk
Thus we get

0, ifn=2k+1
mn:E[Zn]: 2k)!
e if n = 2k.

3.70. We assume a # 0, otherwise Y is not random.

We have seen in (3.42)) that if X ~ AN(u,0?) then Fx(z) = P(X < ) =
®(*£). Let us compute the cumulative distribution function of Y = aX +b. We
have

Fy(y) = P(Y <y)=PaX +b<y).
If @ > 0 then

@ o

IW@ZPWVM<w=PM<‘ﬂ:Fﬂﬁﬂz@(ﬁL“>

We have

thus Fy (y) = @ (%) By (3.42) this is exactly the c.d.f. of a N (apu+b, a?0?)
distributed random variable, so Y ~ N(au + b, a?c?).
If a < 0 then

g

”@:P@””SM=HXZ%%zuﬁmt%:L@<%“”>

Using 1 — ®(x) = ®(—=x) and the computation above we get

= (“) =0 (17) = o (i)

g

This is exactly the c.d.f. of a N(ap + b, a®0?) distributed random variable, so
Y ~ N(ap + b, a®c?) in this case as well.
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3.71. We define noon to be time zero. Let X ~ N(0,36) model the arrival time of
the bus in minutes (since the standard deviation is 6). Thus, X = 6Z where Z ~
N(0,1). The question is then:

P(X >5)=P(6Z >5)=P(Z > 5/6)
=1-®(0.83) ~ 1 — 0.7967 = 0.2033.

3.72. Define the random variable X as the number of points made on one swing of

an axe. Note that X is a discrete random variable taking values {0,5,10,15} and
its expected value can be computed as

E[X] =) kP(X =k)=0P(X =0)+5P(X =5)+10P(X = 10)+15P(X = 15).
k

From the point system given in the problem we have
P(X=5)=P(-20<Y <-10)+ P(10 <Y <20)=2P(10 <Y < 20)
P(X=10)=P(-10<Y <-3)+ P(3<Y <10)=2P(3<Y <10)
P(X=15)=P(-3<Y <3)=2P(0<Y <3).

Y

Since Y ~ N(0,100) the random variable Z = = 15 has standard normal

distribution. Hence
P(X =5)=2P(1 < Z <2) =2(3(2) — B(1)) ~ 2(.9772 — .8413) ~ 0.2718

P(X =10) =2P(0.3 < Z < 1) = 2(®(1) — ®(0.3)) ~ 2(.8413 — 0.6179)  0.4468

P(X =15) =2P(0 < Z < 0.3) = 26(0.3) — 1 ~ 2(0.6179) — 1 ~ 0.2358.
Thus the expected value of X is

E[X] =0P(X = 0) +5P(X = 5) + 10P(X = 10) 4 15P(X = 15)
~25(0.2718) + 10(0.4468) + 15(0.2358) = 9.364.

3.73. The answer is no. Although zfy () is an odd function, which suggests that
ElY] = [ afy(z)dz = 0, this is incorrect. The problem is that [° 2 fy (z)dz =

oo and fi)oo xfy (x)dx = —oo and hence the integral on (—oo, 00) is not defined.

3
o

3.74. There are lots of ways to construct such a random variable. Here we will use
the fact that floo w%dm =0 if @ <1, and ffo z%dx = ﬁ <ooifa>1.

Now let
f@) = {’““ o2 1,

0 otherwise.

Since f(z) > 0 and [~ f(z)dz = (k+1) [~ £t da =1, the function f is a prob-
ability density function. Let X be a continuous random variable with probability
density function equal to f. Then

E[Xk]:/ zkf(a:)da::/l xkxk+2dx=(k+1)/1 ﬁdx:k+1<oo

o0

= > k1 > 1
k+17 _ k+1 _ k+1 _ _
E[X"‘]_/_Oox'f‘f(x)dx—‘/l s J;]H_de—(k-l-l)/l de_oo,
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4.1. Let S be the number of students born in January. Then S is distributed as
Bin(1200, p), where p is the probability of a birthday being in January. We use the
normal approximation for P(S > 130):

S —1200 - p 1301200-p>N - (1301200‘;))

P(5>130) =P <\/1200p(1 —p)  V/1200p(1 - p) 1200p(1 =)

(a) Here p = -, and we get

130 — 1200 -
P(S>130)~1 -0 | =P ) ~ 1 $(3.13) ~ 0.0009.
1200p(1 — p)
(b) Here p = %, and we get
130 — 1200 - p

P(S>130)~1—® ( ) ~1— ®(2.91) ~ 0.0018.

1200p(1 — p)
4.2. Let S be the number of hands with a single pair that are observed in 1000
poker hands. Then S ~ Bin(n,p) where n = 1000 and p is the probability of
getting a single pair in a poker hand of 5 cards. We take p = 0.42, which is the
approximate success probability given in the exercise.

To approximate P(S > 450) we use the normal approximation. With p = 0.42,
np(l — p) = 243.6 so we can feel confident about using this method.

We have E[S] = np = 420 and /Var(S) = v/243.6. Then

P(S>450):P(S_420 S 450—420)

V243.6 — /243.6

~ P (S — 420 > 1.92) ~ P(Z >1.92),
V/243.6
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where Z ~ N(0,1). Hence,
P(S > 450) ~ P(Z > 1.92) = 1 — ®(1.92) ~ 1 — 0.9726 = 0.0274

4.3. Let S be the number of die rolls that are multiples of 3, that is, 3 or 6. Then

S ~ Bin(n,p) with n = 300 and p = 5. We need to approximate P(S = 100) for

which we use the normal approximation with continuity correction.

05 < S —100 < 0.5
V/200/3 © 4/200/3 ~ /200/3

P(S = 100) = P(99.5 < S < 100.5) = P (

0.5 0.5 0.5
e |- =2 =20 =2 | -1
<\/200/3> < \/200/3> <\/200/3>
~ 23(0.06) — 1 ~ 0.0478.
4.4. Let S,, be the number of times the roll is 3, 4, 5 or 6 in the first n rolls. Then
X, =28, + (n—58,) = S, +nand S, ~ Bin(n, 2). We have E(Sg) = 60 and
Var(Sgg) =90 - 2 - + = 20. Then normal approximation gives

Soo — 60 7060> (59060 )
P(Xoo > 160) = P(Sgg > 70) = P > =P _—=>5
(90—)(90—)(\@—@ g

~1—®(2.24) ~1—0.9875 = 0.0125.

4.5. X, =25, 4+ (n—S,) = S, + n and S, ~ Bin(n, %).
(a) Use below the inequality 2 — 0.6 > 0.05.
lim P(X,, > 1.6n) = P(S, > 0.6n) = P(S, — §n > —(§ — 0.6)n)
> P(S, — 2n > —0.05n) > P(|S, — 2n| < 0.05n) — 1
where the last limit is from the LLN.
(b) This time use 0.7 — 2 > 0.03.
lim P(X,, > 1.7n) = P(S, > 0.7n) = P(S, — 2n> (0.7 2)n)
< P(S, — 2n > 0.03n) < P(|S, — 2n| > 0.03n) — 0.
The last limit comes from taking complements in the LLN.

4.6. Let n be the size of the sample and S,, the number of positive answers in the
sample. Then p = = and we need P(|p — p| < 0.02) > 0.95.

We have seen in Section |4.3|that P(]p — p| > €) can be approximated as

P(lp —p <5):P(—€<ﬁ—p<5):P(_5<w<s)
— p(_ evn Sn —np evn
- V-0 Vi) \/p(l—p))
%2@(\/%),

Moreover, since 1/p(1 — p) < 1/2, we have the bound
P(lp—p| < &) > 20(2ev/n) — 1.
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Here we have ¢ = 0.02 and need 2®(2zy/n) — 1 > 0.95. This leads to ®(2e/n) >
0.975 which, by the table of ®-values, is satisfied if 2ev/n > 1.96. Solving this
inequality gives

2
1967 _ 2401.

4e2
Thus the size of the sample should be at least 2401.

n >

4.7. Now n = 1,000 and take S,, ~ Bin(n,p), where p is unknown. We estimate p
with p = S,,/1000 = 457/1000 = .457. For the 95% confidence interval we need to
find € > 0 such that

P(lp—p| <e) > 0.95.
Then the confidence interval is (0.457 — &,0.457 + ¢).

Repeating again the normal approximation procedure: gives

P(\ﬁ—p|<€)=P(—€<ﬁ—p<s)=P(_3< w <e)
_ o EYn Sp —np evn
TP S Vevii-n Vi —
~2D(—2 ) — 1.

Vp(1-p)
Note that /p(1 — p) < 1/2 on the interval [0, 1], from which we conclude that

2B(—Y ) 1 > 25(2 -1
(m) = (5\/ﬁ) s

and so

P(|p —pl <e) =2 20(2ev/n) — 1.

Hence, we just need to find € > 0 satisfying

20 (2ey/n) — 1 = 0.95 = B(2ey/n) = 0.975 —> 2e/n ~ 1.96.

Thus, take

1.96
€= ~ 0.031
24/1000

and the confidence interval is
(0.457 — 0.031,0.457 + 0.031).

4.8. We have n =1,000,000 trials with an unknown success probability p. To find a
99.9% confidence interval we need an € > 0 so that P(|p — p| < &) > 0.999, where p
is the fraction of positive outcomes. We have seen in Section [4.3|that P(|p—p| < ¢)
can be estimated using the normal approximation as
P(lp—p| < &) ~ 20( f ) = 1> 20(2ev/n) — 1.
p(1-p
We need 29(2e4/n) — 1 > 0.999 which means ®(2¢/n) > 0.9995 and so approxi-

mately 2e4/n > 3.32. (Since 0.9995 appears several times in our table, other values
instead of 3.32 are also acceptable.) This gives

3.32
> 22 < 0.00166
M N
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with n =1,000,000. We had 180,000 positive outcomes, so p = 0.18. Thus our
confidence interval is (0.18 — 0.00166,0.18 + 0.00166) = (0.17834,0.18166).

If we choose 3.28 from the table for the solution of ®(z) = 0.9995 then we get
(0.17836,0.18164) instead.

4.9. If X ~ Poisson(A) with A = 10 then

6 6
)\k
P(X>T)=1-Y P(X=k =1-) Zze =~ 08699,
k=0 k=0
and
P(X <13and X >7) 18 Ahe—A
P(X<13|X>7)= = = = NP\
P(XZ’?) 1_Zk:O He‘
0.7343
~ ~ 0.844
0.8600 ~ 0®

4.10. It is reasonable to assume that the hockey player has a number of scoring
chances per game, but only a few of them result in goals. Hence the number
of goals in a given game corresponds to counting rare events, which means that
it is reasonable to approximate this random number with a Poisson()) distributed
random variable. Then the probability of scoring at least one goal would be 1 —e™*
(since e~ is the probability of no goals). Using the setup of the problem we have
1 — e =~ 0.5 which gives A ~ In(2) ~ 0.6931. We estimate the probability that
the player scores exactly 3 goals. Using the Poisson probability mass function and
our estimate on \ gives

)\3
P(exactly 3 goals) = ye_’\ ~ 0.028.

Thus we would expect the player to get a hat-trick in about 2.8% of his games.

Equally valid is the answer where we estimate the probability of scoring at least
3 goals:

2

A
P(at least 3 goals) = 1 — P(at most 2 goals) =1 —e ™ — \e™ — ie"\

=1-1(14+In2+ 1(In2)%) ~ 0.033.
Both calculations give the answer of roughly 3 percent.

4.11. We assume that typos are rare events that do not strongly depend on each
other. Hence the number of typos on a given page should be well-approximated by
a Poisson random variable with parameter A = 6, since that is the average number
of typos per page.

Let X be the number of errors on page 301. We now have
3
66"

P(X>4)=1-P(X<3)m1-)» e o7 = 0.8488.
k=0
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4.12. The probability density function fr(z) of T is Ae™** for > 0 and 0 other-
wise. Thus E[T®] can be evaluated as

E[T?] :/ fT(x)xgdxz/ e d.
—oo 0

To compute the integral we use integration by parts with Ae ¥ = (—e=)":

=00 [e'e] oo
—/ 3x2(—e_)‘m)da:=/ 3z%e M dx.
0 0

o0
/ Aele M dr = —gle "
0 2=0

Note that —z3e=?® |mi°°
=0

we can integrate by parts twice more, or we can quote equation (4.18]) from the
text to get

. — oo —
=0 because lim x3e ** = 0. To evaluate [;° 3z%e **dx
Tr—r00

i 3 [ 3 2 6
2 _—Ax 2 -z
/0 3z‘e d:vfx/o T°)\e dxfx~—)\2f—/\3.
Thus E[T?%] = &.

1
4.13. The probability density function of T is fr(z) = %67§z for 12 0, and zero
otherwise. The cumulative distribution function is Fr(z) =1 — e~ 37 for x > 0,
and zero otherwise. From this we can compute
P(T>3)=1-Fr(3) ="},
P(1<T <8) =Fp(8) — Fp(1) =e /3 —¢78/3,
PT>4and T >1) P(T>4)
P(T>4|T>1)= =

(T>4]T>1) PT>1) PT>1)

1 Fr(4) e ¥/

= = e

C1-Fr(1) e 1/3

P(T > 4|T > 1) can also be computed using the memoryless property of the
exponential:

P(T>4|T>1)=P(T>3)=1-Fr(3)=e".

4.14. (a) Denote the lifetime of the lightbulb by T'. Since T' is exponentially dis-
tributed with expected value 1000 we have T ~ Exp()\) with A = 1gos. The
cumulative distribution function of T is then Fr(t) = 1 — e~ for t > 0 and 0
otherwise. Hence

P(T > 2000) = 1 — P(T < 2000) = 1 — F(2000) = ¢~ 2000% — ¢=2,

(b) We need to compute P(T > 2000|T > 500) where we used the notation of part
(a). By the memoryless property P(T > 2000|T > 500) = P(T > 1500). Using
the steps in part (a) we get

oo

P(T > 1500) = 1 — Fp(1500) = e~ 1°00% — ¢ 2,

4.15. Let N be the Poisson process of arrival times of meteors. Let 11 PM corre-
spond to the origin on the time line.
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(a) Using the fact that N([0,1]), the number of meteors within the first hour, has
Poisson(4) distribution, we get

P(N([0,1]) > 2) _1—ZP ([0,1] = k)

k=0
4 k
=1- Ze o F ~ 0.7619.

(b) Using the independent increment property we get that N([0,1]) and N([1,4])
are independent. Moreover, N ([0, 1]) ~ Poisson(4) and N([1,4]) ~ Poisson(3 -
4), which gives
P(N([0,1]) = 0, N([1,4]) = 10) = P(N([0,1]) = 0) - P(N([1,4]) = 10)
— P(N([0,1]) = 0) - (1 — P(N([1,4]) < 10))

~ 0.01388.

(¢) Using the independent increment property again:

PN([0,1]) = 0 | N([0,4]) = 13) =

et e 121213 /13!
e—161613 /131

()

~ (0.02376.

4.16. (a) Denote by S the number of random numbers starting with the digit 1.
Note that a number in the interval [1.5,4.8] starts with 1 if and only if it is in
the interval [1.5,2). The probability that a uniformly chosen number from the
interval [1.5,4.8] is in [1.5,2) is equal to p = 4_80;51'5 = ;—3 Assuming that the
500 numbers are chosen independently, the distribution of S is binomial with
parameters n = 500 and p.

To estimate P(S < 65) we use normal approximation. Note that E[S] =

np = 500 - & ~ 75.7576 and Var(S) = np(1 — p) ~ 64.2792. Hence

(S — 75.7576 _ 65 — 75.7576) N (S — 75.7576 1 34>
V/64.2792 V/64.2792 \/64.2792 '
~ ®(—1.34) = 1 — ®(1.34) = 1 — 0.9099 = 0.0901.

Note that P(S < 65) = P(S < 64). Using 64 instead of 65 in the calculation
above gives 1 — ®(1.47) ~ 0.0708. If we use the continuity correction then we

P(S < 65) =P
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need to use 64.5 instead of 65 which gives 1 — ®(1.4) ~ 0.0808. The actual
probability (evaluated numerically) is 0.0778.

(b) We proceed similarly as in part (a). The probability that a given uniformly
chosen number from [1.5,4.8] starts with 3 is ¢ = 35 = 33. If we denote
the number of such numbers among the 500 random numbers by 7" then 7" ~
Bin(n, ¢) with n = 500.

Then

T 160 — T
P(T > 160) = ( na 00 — ng > ~P (("q) > 0.83>
T

Vng(l—q) \/nqlfq q(1—¢q
~1— ®(0.83) ~ 1 — 0.7967 = 0.2033.

Again, since P(T' > 160) = P(T > 161), we could have done the compu-
tation with 161 instead of 160, which would give 1 — ®(0.92) ~ 0.1788. If we
use the continuity correction then we replace 160 with 160.5 in the calculation
above which leads to 1 — ®(0.87) a2 0.1922. The actual probability (evaluated
numerically) is 0.1906.

4.17. The probability of rolling two ones is % Denote the number of snake eyes
out of 10,000 rolls by X. Then X ~ Bin(n,p) with n =10,000 and p = 3. The
expectation and variance are

2500 _ 21,875

np=—g— ~ 277.78, np(l —p) = <1 =~ 270.06.

Using the normal approximation:

P(280 < X < 300)

2500 2500 2500
280 — X — 300 - =5
21 875 21 875 - \/21,875

81

X 25900 3
5\ﬁ 21 875 \ﬁ

~O(F) - <1>(5\ﬁ) ~ ©(1.35) — ®(0.135)

~ 0.9115 — 0.5537 = 0.3578

(For ®(0.135) we used the average of ®(0.13) and $(0.14).)

With continuity correction:

P(279.5 < X < 300.5) =

2500 2500 2500
279.5 — 250 X—T 300.5 —
/21,875 /21,875 /217875
81 81 81

_ 2500
= P<0.105 <= 9 < 1.38)

/21,875

81

~ ®(1.38) — ®(0.105) ~ 0.9162 — 0.5418
= 0.3744.
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The exact probability can be computed using a computer:

22 /10,000
P(280 < X < 300) = § < ’k )(3}6)k(3§)10’000’“ ~ 0.3699.
k=280

4.18. The probability of hitting the bullseye with a given dart is p = %; =
Denoting the number of bullseyes among the 2000 throws by S we get S ~ Bin(n
with n = 2000.

Using the normal approximation,

S —np 100 — np S —np 20
P(S =P =P
(52 100) <\/np(1—p) - \/np(l—p)) < np(1—p) =3 6/5>

L
25°
P

)

Y el
Vvnp(l —p)
~1— ®(2.28) ~ 1 — 0.9887 = 0.0113

With continuity correction we need to replace 100 with 99.5 in the calculation
above. This way we get 1 — ®(2.225) ~ 0.01305 (using linear approximation for
®(2.225)). The actual probability (evaluated numerically) is 0.0153.

4.19. Let X be number of people in the sample who prefer cereal A. We may
approximate the distribution of X with a Bin(n,p) distribution with n = 100, p =
0.2. (This is an approximation, because the true distribution is hypergeometric.)
The expectation and variance are np = 20 and np(1 —p) = 16. Since the variance is
large enough, it is reasonable to use the normal approximation to estimate P(X >
25):

P(X225)—P<X_20 - 25—20)

V16— V16
~ P(Z>1.25)=1-—®(1.25) ~ 1 —0.8944 = 0.1056,

If we use the continuity correction then we get

X —-20 _ 245 — 20>
>

Vi6 ~ V16
~ P(Z >1.125) =1 — ®(1.125) ~ 1 — 0.8697 = 0.1303.

P(X >25) = P(X >245)= P (

(We approximated ®(1.125) as the average of ®(1.12) and ®(1.13).
Using a computer one can also compute the exact probability

100 /100
P(X >25) = 2)%(0.8)190% ~ 0.1313.
(X > 25) Z(k)(m) (0.8) 0.1313
k=25
4.20. Let X be the number of heads. Then 10,000—X is the number of tails and
|X — (10,000 — X)| = |2X — 10,000] is the difference between the number of heads
and number of tails. We need to estimate

P(|2X — 10,000 < 100) = P(4950 < X < 5050).
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Since X ~ Bin(10,000, %), we may use normal approximation to do that:

P(4950 < X < 5050)

(4950 10,0004 _ X 10,0004 _ 5050 — 10,000
/10,0001 - 1 \/10000 % /10,000 £
X —10,000- %
Y P A |
1

\/10,000 - 5 - &

~ 2®(1) — 1 ~ 0.6826.

4.21. Let X, be the number of games won out of the first n games. Then X,, ~
Bin(n,p) with p = %. The amount of money won in the first n games is then

W, =10X,, — (n — X,,) = 11X,, — n. We have

P(W, > —100) = P(11X,, —n > —100) = P(X,, > 251%).

We apply the normal approximation to this probability.

For n = 200 (using the continuity correction):

P(W200 > —100) = P(X200 > 100) P(X200 > 10)

= P(Xa00 > 9.5) = P(X%\%10 —23)

~1—®(—0.16) = ®(0.16) ~ 0.5636.

For n = 300 (using the continuity correction):

P(W300 > —100) = P(X500 > 22) = P(X500 > 19)

= P(Xaoo > 18.5) = PR > 2

~1—®(0.93) ~ 0.1762.

Note that the variance in the n = 200 case is 9.5, which is slightly below 10, so
the normal approximation is not fully justified. In this case np? = 1/2, so the Pois-

son approximation is not guaranteed to work either. The Poisson approximation
is

9
10
P(Wago > —100) = P(Xa00 > 1) = P(Xa00 > 10) & 1= » e '° — ~0.5421,
k=0 ’
The true probability (computed using binomial distribution) is approximately 0.5453,
so the Poisson approximation is actually pretty good.
4.22. Let S be the number of times we flipped heads among the first 400 steps.
Then S ~ Bin(400, 1) and the position of the game piece on the board is ¥ =

S — (400 — S) = 25 — 400. We need to estimate

P([Y| <10) = P(|25—400] < 10) = P(—10 < 25—400 < 10) = P(195 < § < 205).
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[lIsing the normal approximation (with E[S] = 400 = 200 and Var(S) =400- 1 -
P(195 < § < 205) = P(1%5=200 < 5=200 £ 205200y _ p(_
~P(-1<Z<1)=20(1/2) —1~2-0.6915 — 1 = 0.383.

With the continuity correction we get
P(195 < S <205) = P(194.5 < S < 205.5) ~ P(—0.55 < Z < 0.55)
=2P(0.55) — 1~ 2-0.7088 — 1 = 0.4176.
4.23. Let X ~ A(1200,10,000) be the lifetime of a single car battery. With Z ~
N(0,1), X has the same distribution as 1200 + 100Z. Then
P(X <1100) = P(1200 + 100Z < 1100)
=PZ<-1)=1-—®(1)~1—0.8413 = 0.1587.
Now let W be the number of car batteries, in a batch of 100, whose lifetimes are less

than 1100 hours. Note that W ~ Bin(100,0.1587) with an approximate variance
of 100 - 0.1587 - 0.8413 = 13.35. Using a normal approximation, we have

W —100-0.1587 S 20 — 100 - 0.1587
V100 - 0.1587 - 0.8413 — /100 - 0.1587 - 0.8413
=1-®(1.13) =1 —0.8708
= 0.1292.

P(W220):P( )%P(Zzl.l?))

4.24. (a) Let S, ;,i = 1,2,...,6 be the number of times we rolled the number ¢
among the first n rolls. The probability of each number between 1 and 6 is 1/6,
so the law of large numbers states that for any € > 0 we have

; Spa _ 1 —
Jim P(|5 =5 <e) =1.

Using € = 11—070 . % = ﬁ and taking complements we get

lim P(|%24 1| >¢)=0.

n—00 n

But

P(’Sn_A _ %| > 8) > P(% > %—Fé‘) :P(Sn,A > 1770)7

. S, n,
thus if P(|= mt > 15,
(b) Let By ;,i =1,...,6 be the event that after n rolls the frequency of the number
i is between 16% and 17%. Then A, = N?_, B, ;. Note that A = US_ B ,,

and

0 =

— £] > €) converges to zero then so does P(

6
(%) P(A}) = P(U?:1Brcl,z‘) < ZP(Brclz>

(Exercise [L.43] proved this subadditivity relation.) We would like to show that
for large enough n we have P(A,) > 0.999. This is equivalent to P(AS) < 0.001.
If we could show that there is a K so that for n > K we have P(By, ;) < 9.001
for each 1 < ¢ < 6, then the bound implies P(AS) < 0.001 and thereby

P(A,) > 0.999.
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Begin again with the statement given by the law of large numbers: for any
e>0and 1 <17 <6 we have

. S, 1
lim P(|=2 — x| <¢e)=1.
n—00 ( n 6| )
17 1 1
Take € = {55 — 5 = 305 Lhen we have

P(%—%|<e):P(%—s<%<%+e)
_ 49 Sn,i 17
= P(555 < = < 100)
Sn i
SP(%< n <%):P(Bn,i)-

Since P(IST — &| < ) converges to 1, so does P(B,) for each 1 < i < 6.
By this convergence there exists K > 0 so that P(B,;) > 1 — % for each
1<i<6andalln> K. This gives P(BS ;) =1 — P(By,;) < %% for each

1 <4 < 6. As argued above, this implies that P(A,) > 0.999 for all n > K.

4.25. Let S,, be the number of interviewed people that prefer cereal to bagels
for breakfast. If the population is large, we can assume that sampling from the
population with replacement or without replacement does not make a big difference,
therefore we assume S,, ~Bin(n, p). In this case, n = 81. As usual, the estimate of
p will be

S
p=—
n
We want to find ¢ € [0,1] such that
Sn
P(lp—pl <0.05) =P ( — —p’ < 0.05) >q

If Z ~ N(0,1), we have that
P(‘in_p‘ <o.05> :P< 005/ _ Su—np__ 0.05\/ﬁ>

Cp(l=p) " /mp(i—p) p(1—p)
~ P ( 0.05y/n ez < 0.05\/5)
p(1—p) p(1—p)

> P(—2-0.05y/n < Z < 2-0.05y/n)

= ®(2-0.05y/n) — ®(—2-0.05y/n) = 2®(2-0.05v/n) — 1

=29(0.9) —1~2-0.8159 — 1 = 0.6318.
Therefore, the true p lies in the interval (p —0.05, p 4 0.05) with probability greater
than or equal to 0.6318. Note that this is not a very high confidence level.
4.26. Let S be the number of interviewed people that prefer whole milk to skim
milk. Then S ~ Bin(n,p) with n = 100. Our estimate for p is p = % The event
p€ (p—0.1,p+0.1) is the same as \% —p| < 0.1. To estimate the probability of

this event we use normal approximation:

N _ __0.1vn S—np 0.1y/n
P(IS/n = pl <0.1) = P( V/p(1-p) < \/np(1-p) < \/p(l—p))

~23(-2VR ) 1> 98(0.2v/n) — 1

where we used p(1 — p) < 1/4 in the last step.
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Since n = 100 we have
20(0.2vn) — 1 = 28(2) — 1 ~ 2-0.9772 — 1 = 0.9544.
Thus the interval (p — 0.1, p+ 0.1) corresponds to 95.44% confidence.
4.27. We need to find n so that

Using normal approximation:
_l X 1 _ NAD X —np Vv
Pl =5 —p<1) = Pl 104/p(1-p) = \/np(1-p) = 10\/19(1—17))
~20(— )1

104/p(1—p)
We need
20(— Y ) 1>09e d(—L ) >0.
(10\/17(1*17)) 209 (10\/17(1717)) 2095
which holds if
V" > 1.645
104/p(1-p) —

(using linear interpolation in the table). This yields
n > 1.645% - 100p(1 — p).

We know that p(1 — p) < 1/4, so if n > 1.645% - 100 - i = 67.65 then our inequality
will hold. Thus n should be at least 68.

4.28. For p = 1 the maximum is at n (since the p.m.f. is 1 there), and for p = 0 it
is not (as the p.m.f. is 0 there). From this point we will assume 0 < p < 1.

Denote by f(k) the p.m.f. of the Bin(n, p) distribution at k. Then for 0 < k <
n — 1 we have

n n—k— ! n—k—
f(k+1) (k+1)pk+1(1_p) o _ mpkﬂ(l_p) o

f(k) (R)pk (1 —p)n=k WPk (L —p)*

(n—k)p
(k+1)(1—-p)

Then f(k+1) > f(k) if and only if (n — k)p > (k + 1)(1 — p), which is equivalent

to k < p(n + 1) — 1. This means that if n —1 < p(n + 1) — 1 then we have

J(0) < (1) <+ < fln—1) < f(n). ln—1>p(n+1)—1 then f(n—1) > f(n).
1

Thus the maximum is at n if n —1 < p(n+1) —1 which is equivalent to p > 1— 2.

To summarize: the p.m.f. of the Bin(n,p) distribution has its maximum at n if
p=1-

1

1
4.29. If P(S,, = k) > 0 then |k| cannot be bigger than n, and the parity of n and k
must be the same. (Otherwise the random walker cannot get from 0 to & in exactly
n steps.)

Assume now that |k| < n and that n — k = 2a with a being an integer. The
random walker ends up at k = n — 2a after n steps exactly if it takes n — a up steps
and a down steps. The probability of this is the same that a Bin(n,p) random
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Variable is equal to n — a, which is (" )p" (1 — p)*. Since n —a = # and

n—k

“5%, we get that for |k| <n and n — k even we have

.
n—k
P(S, = k) = (’;)p SNt

2

otherwise P(S,, = k) is zero.

4.30. Let f(k) be the probability mass function of a Poisson(\) random variable
at k. Then for £ > 0 we have

ARFL )
fk+1) _ kD T A
f(k) ATe* k+1

This means that f(k+1) > f(k) exactly if A > k+1or A—1 > k, and f(k+1) < f(k)
exactly if A —1 < k.

If X is not an integer then let k* = |A] be the integer part of A (the largest
integer smaller than \). By the arguments above we have

fO) < fQ)<--- < f(K")> f(E"+1)> f(k*+2) >

If A is a positive integer then

fFO)<f) < <fA=1)=fN)>fA+1)>f(A+2)>

In both cases f is increasing and then decreasing.

4.31. We have
1 B uk+1
7:, I
{Hx} z : z T

I

We introduced ¢ =k + 1 and used _,2, e’“%ﬁ =1—-eH
4.32. (a) We can compute E[g(Y)] with the formula Y ;- g(k)P(Y = k). Thus

1
EY([Y —1)---(Y —n+1)] Zk: —-1) —n—l—l)ge 3
Note that k(k—1)---(k—n+1)=0for k=0,1,...,n—1. Thus we can start
the sum at k = n:

k

EY(Y =1)- (Y —n+1)] Zk: ~1) —n—l—l)%e "

Moreover, for k > n the product k(k—1)---(k—n+ 1) is exactly the product
of the first n factors in k! = k(k — 1)(k —2) - - - 1, hence

EY(Y -1 (Y -n+1)]=Y -~ e
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Introducing ¢ = k —n we can rewrite the sum as

& k 0 l+n e l
[P « U R o

(The last step follows from Y ,2 %e‘“ = 1.) Thus the nth factorial moment
of Yis p™.

(b) We can compute E[Y 3] by expressing it in terms of factorial moments of Y and
then using part (a). We have

Y =yly—1)(y—2)+3y> -2y
=yly— Dy —2)+3yly—1) +y.
Thus
37 S 3pH”
EY =)k et
k=0
o] ,uk o] ,uk o ,Uk
_ _ = K _ = =K = ,—n
= k(k—1)(k 2) e +3) k(k 1)y +Zkk'e
k=0 k=0 k=0
= u® + 3% + p.

4.33. Let X denote the number of calls on a given day. According to our assumption
this is a Poisson(\A) random variable with some parameter A, and our goal is to find
A. (Since the parameter is the same as the expected value.) We are given that
P(X =0) = 0.005, which gives e=* = 0.005 and A\ = —1log(0.005) ~ 5.298.

4.34. We can assume that each taxi has a small probability of getting into an
accident on a given day, independently of the others. Since there are a large number
of taxis, the number of accidents on a given week could be well approximated with
a Poisson(u) distributed random variable. There are on average 3 accidents a week,
thus it is reasonable to choose p = 3. Then the probability of having 2 accidents
next week is given by ge_?’ = %e_?’.

4.35. The probability of getting all heads or all tails after flipping a coin ten times
is p =279, The distribution of X is Bin(n, p) with n = 365.

(a)

P(X>1)=1-P(X=0)-P(X=1)=1—(1-2")3% _365.279(1 — 279)304,

(b) Since np = 365 - 272 &~ 0.7129 and np? < 0.0014, the Poisson approximation is
appropriate.

PX>1)=1-P(X=0)—P(X=1)~1-e%"29 _0.71¢7%729 x (.1603.

4.36. Assume that we invite n guests and let X denote the number of guests with
the same birth day as mine. We need to find n so that P(X > 1) > 2/3. If
we disregard leap years, and assume that the birth days are chosen uniformly and

independently, then X has binomial distribution with parameters n and p = %.

We have P(X >1)=1-P(X =0)=1—(1— 55=)". Solving 1 — (1 — 5=)" >2/3

gives n > l(iL?’)l ~ 400.444 which means that we should invite at least 401
365

guests.
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Note that we can approximate the Bin(n, 3 3¢=) distribution with a Poisson ()
distributed random variable Y. Then PX>1)=PY>1)=1-PY =0) =
1—e7365. To get 1 —e 365 > 2/3 we need n > 3651n 3 ~ 400.993 which also gives
n > 401.

4.37. Since there are lots of scoring chances, but only a few of them result goals,
it is reasonable to model the number of goals in a given game by a Poisson(\)
random variable. Then the percentage of games with no goals should be close to
the probability of this Poisson()\) random variable being zero, which is e=*. Thus

00816 =e* ~» A= —1log(0.0816) ~ 2.506

The percentage of games where exactly one goal was scored should be close to
Ae™* = 0.2045 or 20.45%.

(Note: in reality 77 of the 380 games ended with one goal which gives 20.26%.
The Poisson approximation gives an extremely precise estimate!)

4.38. Note that X is a Bernoulli random variable with success probability p, and
Y ~ Poisson(p). We need to show that for any subset A of {0,1,...} we have

|P(X € A) — P(Y € A)| <p*.
This looks hard, as there are lots of subsets of {0,1,...}. Let us start with the
subsets {0} and {1}. In these cases
1—p—eP, ifk=0

P(XEA)P(YGA)P(Xk)P(Yk){p_pe—l) if k=1

We have 1 —p < e™P. This can be shown by noting that the function e~ is convex,
and hence its tangent line at z = 0 (the line 1 —z) must always be below the graph.
Integrating this inequality on [0, p] and then rearranging it gives 0 < e " P+p—1 < %
We also get 0 < p—pe P =p(1 — e P) < p
This gives
P2

—ESP(X:O)—P(Y:O)go, 0<P(X=1)—-PY =1)<p

Now consider a general subset A of {0,1,...}. We consider four cases.
Case 1: A does not contain 0 or 1. In this case P(X € A) =0 and

PYeA)<PY>2)=1-PY=0-PY=1)=1—eP1+p).
Hence P(X € A)— P(Y € A)=—-P(Y € A) and
[P(X € A) = P(Y €A)|<1-eP(1+p)<1-(1-p)(1+p)=p
Case 2: A contains both 0 and 1. In this case P(X € A) =1 and
1>PYeA)>PY <1)=eP1+Dp).
Hence P(X € A)— P(Y € A)=—-P(Y € A) and
IP(X € A)—P(Y € A)|<1—eP(1+p)<1—(1—-p)(1+p) =7p>
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Case 3: A contains 0 but not 1. In this case P(X € A) =1 — p and
PYeA)>PY=0)=eP?
PYeA)<PY=0+PY>2)=1-PY =1)=1—pe .

This gives

1-p—(1—-pe ) <PXeA)-PYeA)<l—p—ecP.
‘We have seen that —% <1—p—e7P <0 and we also have
L—p—(1—pe?)=—p(l—e?)>—p
Thus
P <P(X €A -PYecA<—p?)2
and |[P(X € A) — P(Y € A)| < p?. Case 4: A contains 1 but not 0. This case

can be handled similarly as Case 3. Or we could note that A¢ contains 0 but not
1, and thus by Case 3 we have |[P(X € A¢) — P(Y € A°)| < p?. But

|IP(X € A)—P(Y € A)| =|(1-P(X € A°))—(1-P(Y € A°)| = |P(X € A°)—P(Y € A°)]
hence we get |[P(X € A) — P(Y € A)| < p? in this case as well.

We checked all possible cases, and we have shown that Fact holds forn =1
every time.

4.39. Let X be the number of wheat cents among Cassandra’s
(a) We have X ~ Bin(n, p) with n =400 and p = z35. Thus
400 399
P(X>2)=1-P(X=0)-P(X =1)=1—(322)" - 400 555 - (333)
We could also write this as
400
400\ 1 \k 3497400k
Pz =Y () @R 68)
k=2
(b) Since np? is small, the Poisson approximation is appropriate with parameter

w=mnp= %. Then

8 8
P(X>2)=1-P(X=0)-P(X=1)~1-¢7-387~0.3166

4.40. Let X denote the number of times the number one appears in the sample.
Then X ~ Bin(111, %0) We need to approximate P(X < 3). Using normal ap-
proximation gives

1 1
X —111- 3 3—-111- 55

P(X<3)=P < 10
1 9 1 9
11 &3 11 %3
X —111-+&
~ " 10 < _956
1 9
11 & - =%

~ B(—2.56) = 1 — B(2.56) ~ 1 — 0.9948 = 0.0052.

If we use the continuity correction then we have to repeat the calculation above
starting from P(X < 3) = P(X < 2.5) which gives the approximation ®(—2.72) ~
0.0033.
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For the Poisson approximation we approximate X with a random variable ¥ ~
Poisson(4H). Then

10
PX<3)~PY<3)=PY=0+PY=1)+PY =2)+P(Y =3)
1112 1113
=e M1+ 111+ 5+ ) & 0.004559.
The variance of X is % which is almost 10, hence it is not that surprising that the

normal approximation is pretty accurate (especially with continuity correction).

Since np? = 111 - (1—10)2 = 1.11 is not very small, we cannot expect the Poisson
approximation to be very precise, although it is still quite accurate.

4.41. Let X be the number of sixes. Then X ~ Bin(n,p) with n = 72 and p = 1/6.

72

P(X =3)= (3 ) (1)%(2)% ~ 0.00095.

The Poisson approximation would compare X with a Poisson(u) random variable
with = np = 12:
123
P(X=3)=~e ETe 0.0018.

For the normal approximation we need the continuity correction:

— — _ 2.5—12 X—12 3.5—12
P(X_S)_P(2.5§X§3.5)_P( 512 < Xol2 o 85 )

~ B(—2.69) — D(—3.0) = $(3.0) — B(2.69) ~ 0.9987 — 0.9964 = 0.0023.

4.42. (a) Let X be the number of mildly defective gadgets in the box. Then X ~
Bin(n, p) with n =100 and p = 0.2 = 1. We have

14
P(A)=P(X <15) = Z <100> (1/5)k(4/5)100—k.

k=0 k

(b) We have np(1 — p) = 16 > 10 and np? = 4. This suggests that the normal
approximation is more appropriate than the Poisson approximation in this case.
Using normal approximation we get

PX < 15) = P X -100-1 15—100-+
- \/100 1.4 \/100 1.4
5 5 5 5
X —100-1 5
=P 75<_,
4

~ ®(—1.25) =1 — ®(1.25) ~ 1 — 0.8944 = 0.1056.

With continuity correction we would get ®(—1.375) = 1 — ®(1.375) =~ 0.08455
(using linear interpolation to get ®(1.375)).
The actual value is 0.0804437 (calculated with a computer).

4.43. We first consider the probability P(X > 48). Note that X ~ Binomial(400,0.1).
Note also that the mean of X is 40 and the variance is 400 % 0.1 * 0.9 = 36, which
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is large enough for a normal approximation to work. So, letting Z ~ N(0,1) and
using the correction for continuity, we have

P{X >48} = P(X > 47.5) =P (X —40, 475 40)

6 ~ 6
~ P(Z>1.25)=1-®(1.25) = 1 — 0.8944 = 0.1056.

Next we turn to approximating P(Y > 2). Note that ¥ ~ Binomial(400,0.0025),
and since 400 - 0.0025 = 1 and 400 - 0.0025% = 0.0025 is small, it is clear that only
a Poisson approximation is appropriate in this case. Letting N ~ Poisson(1), we
have

PY>2)~P(N>2)=1-P(N=0)-P(N=1)=1—-¢"'—e! =0.2642.

4.44. (a) Let X denote the number of defective watches in the box. Then X ~
Bin(n, p) with n = 400 and p = 1/2. We are interested in the probability that
at least 215 of the 400 watches are defective, this is the event {X > 215}. The
exact probability is

400
400\ 1
P(X >215)= Y ( I )2400
k=215

215—-400-

— /400 L.

X —400:
P(X >215)=P
(X > 215) <\/400-§-

[l | T

(b) We have np(1 — p) = 100 > 10 and np? = 100. Thus it is more reasonable to

use the normal approximation:
_ X —400- 3
=P (./400;.; Z 2)
~1—®(1.5) ~ 1—0.9332 = 0.0668.

If we use continuity correction then we start with P(X > 215) = P(X > 214.5)
which leads to the approximation 1 — ®(1.45) ~ 0.0735.
The actual probability is 0.07348 (calculated with a computer).

N ol (S

1165 -
number of four of a kinds we see in 10,000 poker hands. Then X ~ Bin(n,p) with
n = 10,000. Since np? is tiny, we can approximate X with a Poisson(u) random
variable with © = np. Then

4.45. The probability of a four of a kind is p = 1(3;'%8 = 2. Denote by X the

1
P(X =0) ~ e '9%%765 ~ 0.0907.
4.46. The probability that we get 5 tails when we flip a coin 5 times is 2 = =

25 32"
Thus X ~ Bin(n,p) with n = 30 and p = 35. Since np(1 — p) = 255 < 1, the
normal approximation is not appropriate. On the other hand, np? = 5% ~ 0.029

is small, so the Poisson approximation should work. For this we approximate the
distribution of X using a random variable Y ~ Poisson(\) with A = np = % to get

o

o

A2 15\
P(X=2)m~P(Y =2)= "= <12> e T &~ 0.1721.

2

The actual probability is 0.1746 (calculated with a computer).
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4.47. (a) Let X be the number of times in a year that he needed more than 10
coin flips. Then X ~ Bin(365, p) with

1
p = P(more than 10 coin flips needed) = P(first 10 coin flips are tails) = 210
Since np(1 — p) is small (and np? is even smaller), we can use the Poisson

approximation here with A = np = % = 0.356. Then

)\2
P(X>3)=1-P(X=0)—-P(X=1)-PX=2)= l—e_’\(l—H\—i—?) ~ 0.00579.
(b) Denote the number of times that he needed exactly 3 coin flips by Y. This has

a Bin(365,r) distribution with success probability 7 = 55 = §. (The value of

r is the probability that a Geom(1/2) random variable is equal to 3.) Since

nr(1—r) = 39.92 > 10, we can use normal approximation. The expectation of
Y is E[Y] = nr = 45.625.

X —45.625 _ 50 — 45.625) _ P(X —45.625

>
V/39.92 V/39.92 V/39.92
~1—®(0.69) = 1 — 0.7549 = 0.2451.

4.48. Let A ={X € [0,1]} and B = {X € [a,2]}. We need to find a < 1 so that
P(AB) = P(A)P(B).
If a <0 then AB = A, and then P(A)P(B) # P(AB). Thus we must have

0 <a <1 and hence AB = {X € [a,1]}. The c.d.f. of X is 1 — e~ 2® for z > 0 and
0 otherwise. From this we can compute

PA=PO0<X<1)=1—-¢?
P(B)y=Pa<X<2)=e 2 —¢*
P(AB)=Pa< X <1)=e 20 —¢72
Thus P(AB) = P(A)P(B) is equivalent to
(1— 6—2)(6—2(1 _ 6—4) o202

Solving this we get e™2¢ =e 4 +1—e 2 and a = —3In(1 — e 2 + e—4) ~ 0.0622.

P(X > 50) = P( > 0.69)

4.49. Let T ~ Exp(1/10) be the lifetime of a particular stove. Let r > 0 and let X
be the amount of money you earn on a particular extended warranty of length r.
We see that
P { C if T >r
C—-800 ifT<r

We have P(T > r) = e~ (/107 and so
E[X] = CP(X = C) + (C — 800)P(X = C — 800)
— CP(T > 1)+ (C — 800)P(T < r)
= Ce /10 4 (C = 800)(1 — e™/10).

Thus, the pairs of numbers (C,r) will give an expected profit of zero are those
satisfying:
0=Ce /10 4 (C —800)(1 — e~ "/10),
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4.50. By the memoryless property of the exponential distribution for any « > 0 we
have

PT>x+7T>7) =P(T>x).
Thus the conditional probability of waiting at least 3 more hours is P(T" > 3) =

3 = e7!, and the conditional probability of waiting at least > 0 more hours
is P(T > ) = e”3°.

1
e 3’

4.51. We know from the condition that 0 < T} < ¢, so P(T} < s|N; =1) =0 if
s<O0and P(Ty <s|Ny=1)=1if s > ¢.

If 0 < s <t we have
P(T1 SS,Nt:].)
P(N;,=1)

Since the arrival is a Poisson process with intensity A, we have P(N; = 1) = Ae™*.
Also,

P(Ty < 5, Ny = 1) = PN([0, s]) = 1, N([0,)) = 1) = P(N([0, 5]) = 1, N ([s,#)) = 0)
= P(N([0, s]) = 1)P(N([s,t]) = 0) = Ase ™ . e~ Ai=9)

P(Ty <s|N;=1) =

= Ase .
Then N
P(Ty <s,N;=1) JAse”
P(Ty <s|N;=1) = = = s.
(Mi<slM=1) P(N, = 1) e 7
Collecting all cases:
0, s<0
P(Th<s|[Ny=1)=4qs, 0<s<t
1, s>t.

This means that the conditional distribution is uniform on [0, ¢].
4.52. (a) By definition T'(r) = [ 2" ‘e da forr > 0. ThenT'(r+1) = [~ a"e "dx.
Using integration by parts with (—e™*)" = e™* we get

L(r+1)= / x"e”dx
0

xr(—eﬂ")ﬁigo—/o ra" " (—e ") dx

7"/ " le %y = rI'(r).
0

The two terms in x’”(—e’x)|zigo disappear because r > 0 and lim z"e™* = 0.
- Tr—r00

(b) We use induction to prove the identity. For n = 1 the statement is true as

o0
ra) = / e Fdx=1=0L
0

Assume that the statement is true for some positive integer n: I'(n) = (n — 1)1
we need to show that it also holds for n + 1. But this is true because by part
(a) we have

F(n+1)=nl'(n)=n-(n-1)!=nl,
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where we used the induction hypothesis and the definition of n!.

4.53. We have
/OO zf(x)dx = /00 x /\Txrile*)‘””d:r
—o0 B 0 F(T) .

We can modify the integrand so that we the probability density function of a
Gamma(r + 1, \) appears:

L T(r41) [ At
X =50 /0 T(r+1)

Since the probability density function of a Gamma(r 4+ 1, \) integrates to 1 this
leads to

E[X]

e M.

ElX] = I(r+1) _ rI(r) _r
AT (r) AL(r) A
In the last step we used I'(r + 1) = rT'(r). We can use the same trick to compute
the second moment:

[e’e) r r—1 F 2 oo yr+2,..r+1
E[X?] = / z” N e Mdx = (r+2) / N e Mdx
0 0

I'(r) A2T(r) I'(r+2)
T(r+2)  (r+1)l(r)  (r+1)r
CON(r) AT(r) A2

Then the variance is

B _r(r+1) T2 T
Var(X) = B[x?*] - B[X] = Z5— - (3) = 55
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5.1. We have M(t) = E[e!], and since X is discrete we have E[e!X] =Y, P(X =
k)et*. Using the given probability mass function we get
M(t)=P(X = —6)e % + P(X = —2)e ' + P(X = 0) + P(X = 3)e**
_ 367675_’_%67%_'_%_’_%6&

5.2. (a) We have

M/(t):*%€74t+%65t, M//(t):§€74t+%€5t.
Hence E(X) = M'(0) = —4 +2g =1, E§X2)37: M"0) =¥+ =%=1,

and Var(X) = E(X?) — (E[X])? =2 — 1 = 3L,

(b) From the moment generating function we see that X is discrete, the possible
values are —4,0 and 5. The corresponding probabilities can be read off from
the coefficients of the appropriate exponential terms:

p(0) =3, p(—4) =3, p() =%
From this we get
B(X)=§-(-4)+§-5=1,
E(X*)=2%-16+1-25=55 =1
2 2
Var(X) = BE(X?) — (E[X])? =2 - 1 =

37

4
5.3. The probability density function of X is f(z) = 1 for = € [0, 1] and 0 otherwise.
The moment generating function can be computed as

M(t) = Ele"¥] = [ o; F2)e=dz = A |

If t = 0 then M(t) = [, dz = 1. If t # 0 then

et —1

1
M(t)z/o edx = -

113
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5.4. (a) In Example we have seen that the moment generating function of a
N (u,0?%) random variable is e“ it Thus if X ~ N(0,12) then Mg (t) = 8
and M4 (t) = Mx(t) for |¢t| < 2. But then by Fact the distribution of X is the
same as the distribution of X.

(b) In Example we computed the moment generating function of an Exp(\)
distribution, and it was ﬁ for t < A and oo otherwise. Thus My (¢) has the same
moment generating function as an Exp(2) distribution in the interval (—1/2,1/2),
hence by Fact we have Y ~ Exp(2).

(c) We cannot identify the distribution of Z, as there are many random variables
with moment generating functions that are infinite for ¢ > 5. For example, all
Exp(A) distributions with A < 5 have this property.

(d) We cannot identify the distribution of W, as there are many random variables

where the moment generating function is equal to 2 at ¢ = 2. Here are two examples:
if Wy ~ N(0,0?) with 02 = 2 then

In2 52
5242 2 (22)

Mw,(2)=e 2 =e 2 —en2 =2

If Wy ~ Poisson(\) with A = 22 then

e

In 2

Mw,(2) = M- B (D 2 g

5.5. We can recognize Mx(t) = 3 =1 as the moment generating function of a
Poisson(3) random variable. Hence P(X = 4) = 6*3%.

5.6. Then possible values of ¥ = (X — 1)? are 1,4 and 9. The corresponding
probabilities are

P(X-12=1)=P(X=00r X =2)=P(X =0)+ P(X =2)

1,3 2
mtuT7
P((X 12 =4)= P(X = 1) = 1,
P((X ~ 1) =9) = P(X =4) = 3.

5.7. The cumulative distribution function of X is Fx(x) =1 —e™** for > 0 and
0 otherwise. Note that X > 0 with probability one, and In(X) can take values from
the whole R.

We have
Fy(y)=P(Y <y)=PIn(X)<y)=P(X <e¥)=1—e
where we used e¥ > (. From this we get

Fr(y) = C%FY(?J) = (1 - e_)‘ey>/ W

for all y € R.

5.8. We first compute the cumulative distribution function of Y. Since —1 < X < 2,
we have 0 < X2 < 4, thus Fy(y) =1 for y > 4 and Fy(y) =0 for y < 0.
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For 0 <y < 4 we have

Fy(y)=P(Y <y) = P(X* <y) = P(-Vy < X <) = Fx(Vy) = Fx(=V/y)-

Differentiating this we get the probability density function:

fry) =Fy(y) = 7fx(f) 7fx( VY):

The probability density of X is fx(z) = & for -1 < < 2 and zero otherwise. For
0 <y < 1 then both fx(y/¥) and fx(—/y) is equal to 1 3, and for 1 <y < 4 we
have fx(,/y) = % and fx(—/y) =0.

From this we get

ﬁ for0<y<1,
Iy(y) = ﬁ for 1 <y <4,
0 otherwise.

5.9. (a) Using the probability mass function of the binomial distribution, and the

binomial theorem:
i( ) n k tk:

k=0
— - 1_ )n—k
;( Jewtacr
=(e'p+1-p)
(b) We have
E[X] = M'(0) = npe' (pet—p+1)n71|t=o:np

E[X?] = M"(0) = (n — )np?e® (pe' —p+1)""" +npe’ (pe' —p+1)""" l,—o
= (n — 1)np® 4 np.
From these we get Var(X) = E[X?]—(E[X])? = (n—1)np? +np—n?p? = np(1—p).

5.10. Using the Binomial Theorem we get

14 N3 3% /30N 74\ F 1) 30—k
M(t)==+=-€) = —] €M (= .
0-(5) -2 () 6)
k=0
Since this is the sum of terms of the form pye'*, we see that X is discrete. The

possible values can be identified with the exponents: these are 0,1,2,..., 30. The
coefficients are the corresponding probabilities:

roc-= (M) () () ko

We can recognize this as the probability mass function of a binomial distribution
with n =30 and p = %.
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5.11. (a) The moment generating function is

Mx(t) = /jo f(z)et™ = /000 ze~ DTy,

If t —1 < 0 then the integral is infinite. If ¢ — 1 > 0 then we can compute the
integral by writing

—(t—1)z — t—1 7(t71)md —
/0 xe dx 1/ x( )e x =12

where in the last step we recognized the integral to be the expectation of an Exp(t—
1) random variable. (One can also compute the integral by integrating by parts.)

Hence Mx(t) = ﬁ for t < 1, and Mx (t) = oo otherwise.

(b) Differentiating repeatedly:
2 2.3 2.3.4

M) = G M= g M0 = T

Using mathematical induction one can show the general expression

w_ 2:3--(n+1)  (n+1)!
M()_ (17t)n+2 _(17t)n+2’

from which we get
E[X"™] = M™(0)(n + 1)\.
5.12. We have

R T A

If t > 1 then e*=1* > 1 for 2 > 0 and M(t) > fooo %xzdac =o00. If t < 1 then

e 1 o0 1 2 1
1.2 (t—1z — 2 1—¢ 7(17t)xd — . — )
/O ave dr 2(1—t)/0 v (1-t)e T A0z (1-1t)

The integral can be computed using integration by parts, or by recognizing it as
the second moment of an Exp(1 — ¢) distributed random variable.

Thus we get
1
M(t) _ J a3 fort <1
o0, otherwise.
5.13. We can get E[Y] by computing Mj,(0):
1 1 1 121
M/t:—34'7_34t_5'*_5t 3.73t 100_7100t
v () 16° s T2 100 T an0”

and
E[Y] = M, (0) = 27.53.

Since My (t) is of the form Y, pye'®, we see that Y is discrete, the possible
values are the numbers k for which pg # 0 and py gives the probability P(Y = k).
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Hence the probability mass function of Y is

1 1
PY=0)=1/2, P(Y¥=-31)=—, P(Y=-5=c,
1 121
PY=3)=— PlYy =1 = —.
( 3) 100’ ( 00) 400

From this
EY]=0-P(Y=0)+(-34)- P(Y =-34) 4+ (-=5) - P(Y = —5)
+3-P(Y =3)+100- P(Y = 100) = 27.53.
5.14. The probability mass function of X is

1 1
px (k) = <k>24 k=0,1,...,4.

The possible values of X are k = 0,1,...,4, which means that the possible values
of Y are 0,1,4. We have

P(Y:O):P((X—2)2:2):P(X:2):(;)214:2

PY=1)=P(X-22=1)=P(X=3,or X=1)=P(X =1)+ P(X =3)

4\ 1 N1 1
<1>24+<3)242
PY=4)=P(X—-22=4)=P(X =4, or X =0)=P(X =0)+ P(X =4)
1

1 1 3 2
_ otk —at —t ¢
Mx(t) =) P(X =k)e = ¢ s gt e
(b) The possible values of X are {—2,—1,0, 1}, so the possible values of Y = | X +1|
are {0,1,2}. We get

P(Y =0)=P(X = 1) = -

0
1 3 2

P(Y =1) = P(X = -2) TR

+
_2
=

5.16. (a) We have E[X"] = fol " dr = n%_l

(b) In Exercise we have seen that the moment generating function of X is given
by the case defined function

1 t=0
Mx(t)—{eé
e, t#0.
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ootk

k
We have ¢ = 37 ) &5, hence ef —1 =372 77 and

et—1 1tk St &
M t = = — _——= _— -
x(®) t t’;k! ! ;(n+1)!

for t # 0. In fact, this formula works for ¢ = 0 as well, as the constant term of the
series is equal to 1. Now we can read off the nth derivative at zero by taking the
coefficient of t” and multiplying by n!:

1 1
E[X" =M™ (0) =n!- = :
X (0) =n (n+1! n+1

This agrees with the result we got for part (a).
5.17. (a) Mx(0) = 1. For ¢ # 0 integrate by parts.

o) 2
Mx (t) = E[e*X] :/ e f(x)dx = %/ re' dx
0

x=2 =2
s G- [ e =a - )]
2te? — e 41
- 212
To summarize,
1 for t =0,
Mx(t) = 2te?t — e2t 41

572 for t #£ 0.

(b) For t # 0 we insert the exponential series into Mx(¢) found in part (a) and
then cancel terms:

Mx(t)zzte%—thH 1 (i(Qt)kJrl _inFl)

212 o2 ] k!
k=0 k=0
1 & 1 1 2, ok+l 4k
:ztzz(%)k(w_wm): T w
k=2 ’ ’ k=0

from which we read off E(X*) = M®*)(0) = .
(c)

E(XF¥) = 1/2$k+1 dx = 2k+1.
2/, k+2

5.18. (a) Using the definition of a moment generating function we have

Mx(t) = E[eX] =Y *P(X = k)= ()1 —p)*"p
k=1 k=1
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Note that the sum converges to a finite number if and only if ef(1 — p) < 1, which

holds if and only if ¢t < In (ilp) In this case we have

1
Mx(t) =pet ———M—.
X =pey —e'(1-p)
Overall, we find:
’Zet t<In(-
MX(t) — 1—et(1-p) IP

BIX) = My (0) = e p)? o
_ pe’
T
_p 1
TP p

For the variance we need the second moment,

pe' (1 —e'(1 —p))* = 2pe'(1 — €' (1 = p))(=€'(1 = p))

E[X2] = M%(O) = (1 _ et(l _ p))4 —0
_p(1—(1—p)*—2p(1 - (1 —p))(=(1—p))
p4
PP -2t +2p2 2 1
I

Finally the variance is

2 1 1 1 1
Var(X) = E[X?] - (E[X])’== - = - — = = — =,
(X) = BX - (BX]) = 5 -~ =2 5
5.19. (a) Since X is discrete, we get
Mx(t):iP(X:k)etk:zﬁ—li 3 ketk:2+li §et ’
P 5 5k:1 4 5 5k:1 4 '

The geometric series is finite exactly if 2e’ < 1, which holds for ¢ < In(4/3). In

that case

o] k 3t t

2 1 3 2 1 3e 8 — 3e
My@==2+25(2et) =242, 15 = _
x(®) 5+5k_1<46) 575 1-3a 20— Ioer

Hence
MX(t) _ {1:;!_52;0’ t < ln(4/3)

00 else.
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(b) Differentiating Mx (¢) from part (a) we get

1 t _ t t 12
EIX] = M(0) = BB =3) 3¢ _ 12
(20 — 15¢t) 20 — 15et |, _, 5

FX?] = M"(0) = 15et (8 — 3et)  450e% (8 — 3et) 3et 90e%t _ 8

(20 — 15¢t)> (20 — 15¢t)> 20— 15" (20— 15¢t)? |,y
From this we get

276

B4 _ 12, 276
25 °

Var(X) = BIX?] - (BIX)? - & - (<

5.20. (a) From the definition we have

> 1 1 o0 1 0
Mx(t) = / et o 1ml gy = ,/ e~ (=2 g0 4 7/ DT o
2 2 Jo 2

—0o0 — 00

After the change of variables x — —z for the integral on (—o0, 0] we get

1 [~ 1 [
Mx (t) = f/ e~ =07y 4 f/ e~ DT gy,
2 Jo 2 Jo
We have seen that the integral of fooo e~ “dx is % if ¢ > 0 and oo otherwise. Thus
Mx(t) is finite if 1 —¢ > 0and 1 +¢ > 0 (or —1 < ¢ < 1) and oo otherwise.
Moreover, if it is finite it is equal to
1 1

11 1
Mx(t)== — 4+ =. = .
xO =5 7513 14 2(1 — 2)

Thus Mx (t) is 2(17;2) for |t| < 1, and oo otherwise.
(b) We could try to differentiate Mx (t) to get the moments, but it is simpler to
take the Taylor expansion at ¢ = 0. If [t| < 1 then 2z = >3 t?*, hence

o0

L o
Mx(t) =) 5t*".
k=0
The nth moment is the coefficient of t™ multiplied by n!. There are no odd exponent
terms in the expansion, so all odd moments of X are zero. The term t2* has a
coefficient 3, so the (2k)th moment is @

5.21. We have
My(t) — E[etY] — E[et(aXer)] — E[ebtJratX] — 6th[eatX] — €thx(at).

5.22. By the definition of the moment generating function and the properties of
expectation we get

My(t) — E[etY] — E[e(3X—2)t] _ E[e?)tXe—Qt} _ e—QtE[eStX}'

Note that E[e3'X] is exactly the moment generating function Mx (t) of X evaluated
at 3t. The moment generating function of X ~ Exp(}) is ﬁ for t < A and oo
[€34X]

otherwise, thus E = ﬁ for t < A/3 and oo otherwise. This gives

—H A ift <A/3
My(t)—{e x5t it <A/

00, otherwise.
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5.23. We can notice that My (t) looks very similar to the moment generating func-
tion of a Poisson random variable. If X ~ Poisson(2), then Mx (t) = eX¢ =1 and

My (t) = Mx(2t). From Exercise we see that Y has the same moment gener-
ating function as 2X, which means that they have the same distribution. Hence

P(Y=4)=P2X=4)=P(X=2)=¢" o =272,

5.24. (a) Since Y = X > 0, we have Fy (t) =0 for ¢t < 0. For ¢t <0,
Fy(t)=P(Y <t)=P(eX <t)=0,
since e* > 0 for all z € R. Next, for any ¢ > 0
Fy(t)=P(Y <t) = P(eX <t) = P(X <Int) = &(Int).
Differentiating this gives the probability density function for ¢ > 0:

fy(t) = @’(lnt)% = %@(lnt) = \/;T?exp <_(ln(2t))> '

For ¢ < 0 the probability density function is 0.
(b) From the definition of Y we get that E[Y"] = E[(e¥)"] = E[e"X]. Note that
E[e"X] = Mx(n) is the moment generating function of X evaluated at n.

We computed the moment generating function for X ~ A(0,1) and it is given
by Mx(t) = et"/2. Thus we have

E[Y"] = e .

5.25. We start by expressing the cumulative distribution function Fy (y) of ¥ in
terms of Fx. Since Y = |X — 1| > 0, we can concentrate on y > 0.

Fy(y) =P(Y <y)=P(IX -1 <y)=P(-y< X -1<y)
=Pl-y<X<l+4y) =Fx(1+y)—Fx(1-y).
(In the last step we used P(X =1 —y) = 0.) Differentiating the final expression:

fr) = Fy(y) = d% (Fx(14+y) — Fx(1—9)) = fx(L+) + fx(1—y).

We have fx(x) = % if —2 < z < 3 and zero otherwise. Considering the various
cases we get

2,
fry) =43 2<y<3
0 otherwise.

5.26. The function g(z) = x(x—3) is non-positive in [0, 3] (as 0 < z and z—3 < 0).
It is a simple calculus exercise to show that the function g(z)) takes its minimum
at = 3/2 inside [0, 3], and the minimum value is —%. Thus ¥ = g(X) will take
values from the interval [f%, 0] and the probability density function fy (y) is 0 for
v é¢[-300

We will determine the cumulative distribution function Fy (y) for y € [-2,0].
We have

Fy(y) = P(Y <y) = P(X(X -3) <y).
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Next we solve the inequality z(x — 3) < y for 2. Since x(z — 3) is a parabola facing
up, the solution will be an interval and the endpoints are exactly the solutions of
z(x — 3) = y. The solutions of this equation are

3—v9+4 3+V9+14
oy = ST VITW A gy = 2 VI
2 2
thus for —% <y <0 we get
— 4 4
fwwHxawgwp(3”f+ygxg3“f+y)
_ FX(3+\/29+4y) _ FX(37\/§+4y).
Differentiating with respect to y gives
1 1
— _ 3+v9+4y Iy (32Y9F4yy
fy(y) = Fy(y) 9Jr4yfx( )+ CE x(—5—)

Using the fact that fx(z) = %x for 0 < z < 3 we obtain

1 3 (VIR | L 2, (3=yOTy

M) = e 2 NCEE TR
2
99+ 4y
Thus
2
- - if —2<y<0
fY(y) 9\/@ 1 1Y

and 0 otherwise.
Finding the probability density via the Fact[5.27
By Fact we have

KMy = Y. fxl@)
z:g(x)=y,9'(z)#0
with g(x) = x(z — 3). As we have seen before, if 0 < 2 < 3 then —% <g(z) <O0.
We also have ¢'(z) = 2z — 3. For —% < y < 0 we have to possible x values with
g(z) =y, these are the solutions z1, x5 found above. Then the formula gives

P () = x(EREE) oy i (B

2 VI+4y 2 VI+4y
_ 2 (3y/OE 1 42 (3O 1
o2 9+4y °? 2 9+ 4y
2
99+ 4y

For y outside [—%,0] the probability density is 0 (and we can set it equal to zero

for y = —2 as well).

5.27. We start by expressing the cumulative distribution function Fy (y) of ¥ in
terms of F. Because Y = eX > 1, we may assume y > 1.

Fy(y) = P(Y <y) = P(eX <y) = P(X <Iny) = Fx(Iny).
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Differentiating this we get

fr(y) = U (y) = dinx (In(y)) = fx(lny)i

The probability density function of X is Ae
y > 1 then Iny > 0, hence in this case

—Az for £ > 0 and zero otherwise. If

1
fr(y) = AeTAV o = dym L,

For y =1 we can set fy (1) =0, so we get

)\y—()\—&-l)’ y > 1

0 else.

Iy (y) :{

5.28. We have fx(z) = 3 for =1 < z < 2 and 0 otherwise. ¥ = X* takes values
from [0, 16], thus fy (y) = 0 outside this interval. For 0 < y < 16 we have
Fy(y) = P(Y <y) = P(X* <y) = P(~y/y < X < {fy) = Fx (V) — Fx (=)
Differentiating this gives
1 _ 1 _
Fr() =Fy () = 7o~ x(Y9) + v x (= ).

Note that for 0 < y < 1 both ¥y and —/y are in (—1,2), hence Ix(¥/y) and
Jx(—</y) are both equal to % This gives

1 11
=92y 3A. = Sy if 1.
fr(y) 1Y =gV HO<y<
If 1 <y <16 then ¢y € (—1,2), but — ¢y # (—1,2) which gives

1 11 .
fry) =y o=y if1<y<16.

4 3 12
Collecting everything
Ly=3/4 ifo<y<1
fr(y) =1 &y, if 1 <y<16
0, otherwise.

5.29. Y =1|Z| > 0. For y > 0 we get
Fy(y)=P(Y <y)=P(Z]<y) =Py < Z <y)=2(y) - 2(-y) =22(y) — 1.

Hence for y > 0 we have

fr(y) =F'(y) = 20(y) — 1) =2¢(y) = e 7,

and fy (y) = 0 otherwise.

5.30. We present two approaches for the solution.
Finding the probability density via the cumulative distribution function.

The probability density function of X is fx(z) = 5= on [—m,27] and 0 otherwise.

The sin(x) function takes values between —1 and 1, and it will take all these
values on [—m,27]. Thus the set of possible values of Y are the interval [—1,1].
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We will compute the cumulative distribution function of ¥ for —1 < y < 1. By
definition,
Fy(y) = P(Y <y) = P(sin(X) < y).

In the next step we have to solve the inequality {sin(X) < y} for X. Note that
sin(x) is not one-to-one on [—m,27]. In order to solve the inequality, it helps to
consider two cases: 0 <y <1l and —1 <y < 0. If 0 <y < 1 then the solution of
the inequality is

{m —arcsin(y) < X <27} U{—7 < X < arcsin(y)}
and we get

Fy(y) = P(Y <y) = P(sin(X) < y)

= P(—7m < X < arcsin(y)) + P(m — arcsin(y) < X < 2m)

= Fx(arcsin(y)) + (1 — Fx (m — arcsin(y))
Differentiating this (recall that (arcsin(z))’ = \/1177) we get

1 2

1 . B
\/17_7 + fX(7T — arcsm(y)) \/@ = 37‘—\/@

(Note that arcsin(y) and = — arcsin(y) are both in [—m, 27].)

fy(y) = fx(arcsin(y))

If —1 < y < 0 then the solution of the inequality is
{=m —arcsin(y) < X < arcsin(y)} U {m — arcsin(y) < X < 27 + arcsin(y)}
and we get
Fy(y) = P(Y <) = P(sin(X) < )
= P(—m — arcsin(y) < X < arcsin(y)) + P(w — arcsin(y) < X < 27 + arcsin(y))

= Fx(arcsin(y)) — Fx(—n — arcsin(y)) + Fx (27 + arcsin(y)) — Fx (7 — arcsin(y))

Differentiating this (and again using (arcsin(x))’ = ﬁ) we get

1 1

Fr(y) = fx(arcsin(y) ——— + fx(—m — arcsin(y)) ———
V1 —192 1—y2
+ fx(2r + avesin(y))——— + fx (m — arcsin(y))——
m + arcsin(y) ) ———— 7 — arcsin(y) ) ————
X Y 1, X Y 1— 2
- 4
3my/1 — y?
This gives
4 _
P 1<y<0
_ 2
fY(y) 37\'\/@’ 0<y<l1
0, ly| =1

Finding the probability density via the Fact[5.27
By Fact we have

Ay = > fx@

z:g(x)=y,9’ (z)#0
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where g(z) = sin(z). Again, we only need to worry about the case —1 < y < 1,
since Y can only take values from here. With a little bit of trigonometry you can
check that the solutions of sin(z) = y for |y| < 1 are exactly the numbers

A, = {arcsin(y) + 2wk, k € Z} N {7 — arcsin(y) + 27k, k € Z}.
Note that ¢'(z) = cos(z) and for any integer k
1 1 1

|cos(arcsin(y) + 2mk)| | cos(rm — arcsin(y) + 27k)| /1 — y2

Since the density fx(z) is constant 3% on [—, 27], we just need to check how many
of the solutions from the set A, are in this interval. It can be checked that there
will be two solutions if 0 < y < 1 and four solution for —1 < y < 0. (Sketching a
graph of the sin function would help to visualize this.) Each one of these solutions

will give a term 3% to the sum, so we get the case-defined function found wit
m/1-y
the first approach.

5.31. We have Y = e% >1. Fory > 1:

U U Iny Iny

Fy(y) = P(Y <y) = P(e™™7 <y) = P(-—— <Iny) = P(U <

- *lny—|—1)_

where we used U ~ Unif|0, 1] and 0 < mh;j’_l < 1. For y > 1 we have

fr(y) = Fy(y) = m,
and fy (y) = 0 otherwise.

5.32. The set of possible values of X is (0, 1), hence the set of possible values for
Y is the interval [1,00). Thus, for t < 1, fy(¢t) = 0. For t > 1,

PY<t)=P(x <t)=P(X >} =1-

o=

Differentiating now shows that fy (t) = ;& when ¢ > 1.

5.33. The following function will work:

1 it 0<u<1/7
glu) =44 if 1/7<u<3/7
9 if 3/T<u<l.

5.34. We can see from the conditions that

1 1 1
PA<X<3)=PA<X<+PX=2=P2<X<3=z+z+3=1
hence we will need to find a function g that maps (0,1) to (1,3). The conditions
show that inside the intervals (1,2) and (2,3) the random variable X ‘behaves’
like a random variable with probability density function % there, but it also takes
the value 2 with probability % (so it actually cannot have a probability density

function). We get P(g(U) = 2) = % if the function g is constant 2 on an interval

Clny+1’
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of length % inside (0,1). To get the behavior in (1,2) and (2,3) we can have linear
functions there with slope 3. This leads to the following construction:

1+ 3z, fo<a<g
2+43(x—3), if 2 <z<1.

We can define g any way we want it to outside (1, 3).
To check that this function works note that

PloU)=2) =P <U<3) =1,
for 1 < a < 2 we have
P(1<g(U)<a)=P1+3U<a)=PU< 3(a—1))=1(a—1),
and for 2 < b < 3 we have
P(b<g(U)<3)=Pb<2+3(U-2))=P(E(b-2)+2 <U) = 1-L(b-2) = 1(3-b).

5.35. Note that Y = | X | is an integer, and hence Y is discrete. Moreover, for an
integer k we have | X | =k if and only if £ < X < 1. Thus

P(X|=k)=Pk<X <k+1).

Since X ~ Exp()), we have P(k < X <k+1)=0if ¥ < —1, and for & > 0:
k+1
Pk<X<k+1)= / e My = e — AL — =Mk (] _ o=y
k
5.36. Note that X > 0 and thus the possible values of | X | are 0,1,2,.... To find
the probability mass function, we have to compute P(|X | = k) for all nonnegative
integer k. Note that | X | =k if and only if K < X < k+1. Thus for k € {0,1,...}
we have
k+1

P(|X|=k)=Pk<X<k+1) =/ e M dt
k
t=k+1
— e — oM AR+
t=k

= e*’\k(l - e*’\) = (e*’\)k(l - e*/\).
Note that this implies the random variable | X | + 1 is geometric with a parameter
of e™ .
5.37. Since Y = {X}, we have 0 <Y < 1. For 0 < y < 1 we have
Fy(y) =P <y)=P({X} <y).
If {x} <y then k <z < k + y for some integer k. Thus

PUX}<y) =D Pk<X <k+y) = (Fx(k+y) — Fx(k)).
k k

Since X ~ Exp()), we have Fx(x) = 1 — e ** for z > 0 and 0 otherwise. This
gives

Fr(y) =Y (1= e —(1— 7)) = 3 e M —e M) = T——.
k=0 k=0
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Differentiating this gives

de— 2 0<y<l1
fr(y) = { =Y

0, otherwise.

5.38. The cumulative distribution function of X can be computed from the prob-
ability density:
1

Fx(w):/j fx(y)dy = {(1)_””7

xz>1,
rz < 1.

We will look for a strictly increasing continuous function g. The probability
density function of X is positive on (1, 00), thus the function g must map (1, 00) to
(0,1).

If g(X) is uniform on [0, 1] then for any 0 < y < 1 we have P(g(X) <y) =y. If
g is strictly increasing and continuous then there is a well-defined inverse function
¢~ ! and we have

y=Pg(X) <y)=P(X < g ' ()
Since g maps (1,00) to (0,1), g~! maps (0,1) to (—1,00), which means g=!(y) > 1

and
1

y:P(X Sg_l(y)) =1- g,1(y)'

This gives y = 1 — g_%(y). By substituting y = g(z) and we get g(z) =1 — % for
1 < 2. We can define g any way we want for x < 1.
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6.1. (a) We just need to compute the row sums to get P(X = 1) = 0.3, P(X =
2) =0.5, and P(X =3) =0.2.

(b) The possible values for Z = XY are {0,1,2,3,4,6,9} and the probability mass
function is

P(Z=0)=P(Y =0)=0.35
P(Z=1)=P(X=1,Y=1)=0.15
P(Z=2)=P(X=1,Y=2)+P(X =2,Y =1) = 0.05
P(Z=3)=P(X=1,Y =3)+ P(X =3,Y =1) = 0.05
P(Z=4)=P(X=2Y =2)=0.05

P(Z=6)=P(X=2Y =3)+P(X=3Y=2=024+01=0.3
P(Z=9)=P(X =3,Y =3) = 0.05.

(¢) We can compute the expectation as follows:

E[XeY] = Z ery

z=1y=0
=e" 01+e-015+€%-04¢€>-0.05
+2e%-0.2 4 2¢e' - 0.05 + 2¢% - 0.05 4 2¢3 - 0.2
+3e%-0.05 + 3! - 04 3¢%- 0.1+ 3¢>-0.05
~ 16.3365

6.2. (a) The marginal probability mass function of X is found by computing the
row sums,

129
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Computing the column sums gives the probability mass function of Y,

1 1 1 4

PY=0=—-, PY=1)=—-, PY=2)=-, PY=3)=—.

¥ =0)=, P )= P )=3, P =3)=4

(b) First we find the combinations of X and Y where X + Y2 < 2. These are

(1,0),(1,1), and (2,0). So we have

P(X+Y?*<2)=P(X=1.LY=0+P(X=1LY=1)+P(X=2Y=0)
1 1 1 7
115100 30
6.3. (a) Let (Xw, Xy, Xp) denote the number of times the professor chooses white,
yellow and purple chalks, respectively. Choosing the color of the chalk can be
considered a trial with three possible outcomes (the three colors), and since the
choices are independent the random vector (Xw, Xy, Xp) has multinomial distri-
bution with parameters n = 10, r = 3 and pw = 0.5 = 1/2, py = 0.4 = 2/5 and
pp = 0.1 =1/10. We can now compute the probability in question using the joint
probability mass function of the multinomial:
10! w1
= s (2" (3)(55)" = 555 = 0.1008.
(b) Using the same notations as in part (a) we need to compute P(Xy =9). The
marginal distribution of Xy is Bin(10,1/2), since it counts the number of times in
10 trials we got a specific outcome (getting yellow chalk). Thus

10
9

6.4. (X,Y,Z, W) has a multinomial distribution with parameters n = 5, r = 4,

pL = pa = p3 = %, and py = g. Hence, the joint probability mass function of

(X,Y,Z,W) is

5! N /1N\Y /1\® /5\"
rec=ny=pz==w=w=rn (5) () (5) ()

5! 5%
zlyl 2lw!  Srtytatw’

63
P(Xw =5 Xy =4, Xp =1)

5
P(Xw =9) = ( )(;)10 = 75 ~ 0-009766.

for those integers x, ¥y, z, w > 0 satisfying x + y + z + w = 5, and zero otherwise.

Let W be the number of times some sandwich other than salami, falafel, or
veggie is chosen. Then (X, Y, Z, W) has a multinomial distribution with parameters
n=>5r=4,p =p,=ps=g,and py = 2.

6.5. (a)

<% 1 1 1
//f(x,y)dl’dy:¥ (/ (fvy+y2)dw>dy172 (3y+y*) dy
0 0 0

—00 —O0
_12(1 4 1\ _
=7(G+3) =1
Since f > 0 by its definition and integrates to 1, it passes the test.

(b) Since 0 < X,Y < 1, the marginal density functions fx and fy both vanish
outside [0, 1].
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For0<z <1,

1
— [ Hewdy=2 [ @y it)dy = Rlho+ Hy = o+ 4.

For0 <y <1,

1
= /f(axy)dw:lff/o (wy +y*) de = 2 (zy + ") dy = Fy* + Ly.

()

1 Y 1
P(X<Y):/ f(x,y)dxdy:lf/(/ (zy + %) dx)d Lf/gy?’dy
0 0 0

<y
_12.3_ 9
7 87 14

(e’ (e’ 1 1
E[XQY]=/ / xzyf(aay)dxdy:/ / 2’y 2 (zy + y*) de dy
oo o o Jo

11
= 172/0 /0 (@°y? +a?y’) dedy = 2 (5 -
6.6. (a) The marginal of X is
fx(x) = / ze 1Y) dy = xe*I/ e Wdy =e™ ",
0 0

for x > 0 and zero otherwise. The marginal of Y is

o0 1
— —z(14Y) Jp —
fY(y) /0 re z (1+y)2a

for y > 0 and zero otherwise (use integration by parts).
(b) The expectation is

E[XY] = / / xy - f(z,y dxdy—/ / 22ye ) dy dx
1
—/ xQe_’c/ chyclydﬂc—/ ze m-—de:/ e “dr=1.
0 0 0 T 0

(¢) The expectation is

E {X} :/00 /00 T pee(+) dz:dyz/ooi/C>o 22e 1Y) dg dy
1+Y o Jo 14y o 1+ylJo
<1

2 o 1 2
= d —2/ — _dy==.
/o Ty 0+ "), G+9* ™73

6.7. (a) The area of the triangle is 1/2, thus the joint density f(z,y) is
inside the triangle and 0 outside.

_|_

W=
Wl
PN
S~—
I
IS

1
=2

12
The triangle is the set {(z,y) : 0 < 2,0 <
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y,x +y < 1}, so we can also write

2, f0<z,0<y,z+y<1
flay) = .
0, otherwise.

We can compute the marginal density of X by evaluating the integral fx(z) =
ffooo f(z,y)dy. If (x,y) is in the triangle then we must have 0 < z < 1, so for values
outside this interval fx(z) = 0. If 0 <z < 1 then f(z,y) =2for0<y<1—=zx
and thus in this case we have

fX(ac):/_Oo f(amy)dy:/o _w2dy:2(2—x).

Thus

0, otherwise.

fx(@) = {2“—9«‘% ifo<z<1

Similar computation shows that

fy(y):{Q(l—y), ifo<y<1

0, otherwise.

(b) The expectation of X can be computed using the marginal density:

s} 1 x=1
E[X]:/ :L’fx(:z:)dx:/o x2(1fx)dx:x2—¥ :é

—co =0

Similar computation gives E[Y] = 1.

(¢) To compute F[XY] we need to integrate the function xyf(x,y) on the whole
plane, which in our case is the same as integrating 2xy on our triangle. We can
write this double integral as two single variable integrals: for a given 0 < z <1 the
possible y values are 0 <y <1 — x hence

1 pl-z 1 s 1
/ / 2zydydr = / (J:yQ‘y:O ) dr = / (1 — z)%dx
o Jo 0 v= 0

_x4 2x3+x2
T4 3 2

6.8. (a) X and Y from Exercise are not independent. For example, note that
P(X=3)>0and P(Y =2) >0, but P(X =3,Y =2)=0.

(b) The marginals for X and Y from Exercise are:
For0<z <1,

E[XY]

=1 1
|rc:0 = ﬁ

o0 1
fx(z) = /f(x,y)dy=172/ (zy+y*)dy =23z + 3)dy = Sx+ 1.
0
For 0 <y <1,

o 1
fr(y) = /f(x,y) do = 72/ (ay + 1) de = 2(Ly + ) dy = 247 + 8y,
0
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Thus, fx(z)fy(y) # f(z,y) and they are not independent For example,
J;X(i) =15 and fy(5) = 2i so that fx(1)fy (%) = . However, f(%,1) =
ﬂ.

(¢) The marginal of X is

0 0

for > 0 and zero otherwise. The marginal of Y is
e 1
W=, e

for y > 0 and zero otherwise. Hence, f(z,y) is not the product of the marginals
and X and Y are not independent.

(d) X and Y are not independent. For example, choose any point (x,y) contained
in the square {(u,v) : 0 < w < 1, 0 < v < 1}, but not contained in the
triangle with vertices (0,0), (1,0), (0,1). Then fx(z) > 0, fy(y) > 0, and
so fx(x)fy(y) > 0. However, f(z,y) = 0 (because the point is outside the
triangle).

6.9. X is binomial with parameters 3 and 1/2, thus its probability mass function is
px(a) = (})% for a = 0,1,2,3 and zero otherwise. The probability mass function
of Yis py(b) = % for b=1,2,3,4,5,6. Since X and Y are independent, the joint
probability mass function is just the product of the individual probability mass
functions which means that

px.y(a,b) = px(a)py (b) = (Z) =, fora€{0,1,2,3} and b € {1,2,3,4,5,6}.
6.10. The marginals of X and Y are
_ L xe(0,1) _ L ye(0)
fx(z) = {07 v é (0,1)] fr(y) = {0’ yé (0,1),

and because they are independent the joint density is their product

1, 0<z<l,andO<y<1
0, else.

Fxy (@) = fx(@)fv(y) = {

Therefore,

P(X<Y) // nymydxdy—//ldxdy—/ydy—f
0

6.11. Because Y is uniform on (1,2), the marginal density for Yis
1 ye(1,2)
fy(y) =
0 else

By independence, the joint distribution of (X,Y") is therefore

2r O<zr<l,l<y<?2
0 else

fX,Y(X,Y)_{
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The required probability is
P(Y — X > 3) =//  Dxr@y) dedy
235

/ / 2x dy dzx,
z+2 5

where you should draw a picture of the region to see why this is the case. Calculating
the double integral yields:

I 2 1/2
P(Y—XZ%):/ /+32xdydx:/0 2¢(3 — x) dov = 5.

6.12. fx(z)=0ifxz <O0andifz >0

(oo}
/ flz,y)dy = / 2e~(#F2Y) gy — e_‘”/ 2e Wy =e ",
0

Jy(y) =0if y <0 and for y > 0,

= / flz,y)dz = / 2¢~(@+2) (g = 26_2y/ e~ ®dr =2e" %,
—00 0 0

Now note that f(z,y) is the product of fx and fy.

6.13. In Example we computed the probability density functions fx and fy,
and these functions were positive on (—rg, 7). If X and Y were independent then
the joint density would be f(z,y) = fx(z)fy (y), a function that is positive on the
square (—rg,79)%. But f(x,y) is zero outside the disk D, which means that X and
Y are not independent.

6.14. (a) Flr,y) = max (min(a, z),0) -bmax(min(b, y),O).

a
(b) If (z,y) is not in the rectangle, then F(x,y) =0 and f(z,y) = 0. When (z,y)
is in the interior of the rectangle, (so that 0 < z < a and 0 < y < b)

Fla.y) = max (min(a, z),0) - max(min(b, y),0) _ max(z,0) - max(y,0) axy
DY = ab B ab ab’

Hence, ,
0 ab
MF(%?J) =
6.15. We can express X and Y in terms of Z and W as X = g(Z, W), Y = h(Z,W)
with g(z,w) = z and h(z,w) = pz + mw. Solving the equations
r=2 y=pz++1-p2w
for z,w gives the inverse of the function (g(z,w), h(z,w)). The solution is
Yy — pz
Vi-p?
thus the inverse of (g(z,w), h(z,w)) is the function (q(z,y),r(z,y)) with
y—pz

q(z,y) = =, r(z,y) = \/ﬁ

z=x, w=
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The Jacobian of (¢(x,y),r(z,y)) with respect to x,y is

1 0 1
J('Ta y) = det __ P 1 = .
Vi-p®  /1-p? 1—p?

Using Fact we get the joint density of X and Y:

— pT 1

Ixy(@,y) = fzw | =, vy_P : :
Vi=p?) 1-p?

z2+w

Since Z and W are independent standard normals, we have fz w(z,w) = %e‘ 2
Thus

2
m2+ y—px
V1—p2

2

1

r,Yy) = ———e
fX,Y( y) QWM

We can simplify the exponent of the exponential as follows:

2
1.2+ Y—pT
Vi) (= pP+p°) Y’ —2pxy 2 +yP - 2pxy
2 2(1-p?) 2(1-p?)

This shows that the joint probability density of X,Y is indeed the same as given
in (6.28)), and thus the pair (X,Y") has standard bivariate normal distribution with
parameter p.

6.16. In terms of the polar coordinates (r,60) the Cartesian coordinates (z,y) are
expressed as

x = rcos(d) and y = rsin(0).
These equations give the coordinate functions of the inverse function G~(r,#).
The Jacobian is

Oz Oz 0) —rsin(0
J(r,0) = det Or 00— det CQS( ) —rsin(@)) rcos?f +rsin? 6 =r.
% % sin(d)  rcos(f)

The joint density function of X, Y is fx,y(z,y) = = in D and 0 outside. Formula
0

(6.32) gives
fro(r,0) = fxy(rcos(d),rsin(9))|J(r,0)| = ﬂ%r for (r,0) € L.

To
This is exactly the joint density function obtained earlier in (6.26)) of Example[6.37]

6.17. We can express (X,Y) as (¢g(U, V), h(U,V)) where g(u,v) = wv and h(u,v) =
(1 — uw)v. We can find the inverse of the function (g(u,v), h(u,v)) by solving the
system of equations

T = uv, y=(1—-u)v
%ﬂ’
is the function (¢(z,y),r(z,y)) with

for u and v. The solution is u = v =z +y, so the inverse of (g(u,v), h(u,v))

x,Y) = s rir,y) =z +y.
q(@y) = — ; (z,9) y
The Jacobian of (¢(x,y),r(z,y)) with respect to x,y is

vy o _ T Y+ 1

J =det | (=+v)? (z4+y)? | = = .
(Iay) € 1 1 (-’L'+y)2 $+y
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Using Fact we get the joint density of X and Y

x 1
x,y) = ——z+y]- .
fxy(@,y) = fov <x+y y) Tty
The joint density of (U, V) is given by

fov(u,v) = fuu)fy(v) = N2ve™, for0 <u<1,0<v

and zero otherwise. This gives
1
, _ )\2 x4 e*/\(ery) .
fxy(z,y) ( Y) Tty
for 0 < %= < 1 and 0 < x + y, zero otherwise. This condition is equivalent to

0 <z, 0 <y, and the found joint density can be factorized as

Fxy(z,y) = Xe™7 e ™.

_ )\267)\(a:+y)

This shows that X and Y are independent exponentials with parameter .
6.18. (a) The probability mass function can be visualized in tabular form

X\Y 2
0
8

= N = —

| 16 |

F‘»—‘S‘HO{J\H%M—‘ —
-

F‘HE‘H o|lo|w

F\H olo|o|

T
T
2
T
The terms are nonnegative and add to 1, which shows that px y is a probability

mass function.
(b) Adding the rows and columns gives the marginals. The marginal of X is
P(X=1)=1% PX=2=1 PX=3)=1 PX=4)=1,
whereas the marginal of Y is
PY=1)=2 PY=2=3 PY=3=4% PY=4)=5%
()
P(X=Y+1)

PX=2Y=1)4+PX=3Y=2)+P(X=4Y =3)

_ 1.1 1 _ 13

=5 Tt T i
6.19. (a) By adding the probabilities in the respective rows we get px(0) = %,
px(1) = % By adding them in the appropriate columns we get the marginal
probability mass function of Y: py (0) = &, py (1) = 3, py (2) = 3.
(b) We have pz w(z,w) = pz(z)pw (w) by the independence of Z and W. Using
the probability mass functions from part (a) we get

3

W= o= DD

N

[en}
O ;‘»—‘
OIN | Ol || =




Solutions to Chapter 6 137

6.20. Note that the random variable X7 + X5 counts the number of times that out-
comes 1 or 2 occurred. This event has a probability of % Hence, and similar to the
argument made at the end of Example (X1+ X9, X3, X4) ~ Mult(n, 3, %, %, %)
Therefore, for any pair of integers (k,¢) with k +¢ <n

P(Xs=kXs=0=P(X;+ Xy =n—k—{,Xs =k X4 =1)

n'

OV 3" E @)

6.21. They are not independent. Both X; and X5 can take the value n with positive
probability. However, they cannot take it the same time, as X; + X5 < n. Thus

0<P(X1:n)P(ngn)yéP(Xl:n,ngn):O

which shows that X; and X, are not independent.

6.22. The random variable X; + X5 counts the number of times that outcomes
1 or 2 occurred. This event has a probability of p; + ps. Therefore, X; + X5 ~
Bin(n, p1 + p2).

6.23. Let X, X,, X, be the number of times we see a green ball, red ball, and
yellow ball, respectively. Then, (X4, X, X,) ~ Mult(4,3,1/3,1/3,1/3). We want
the following probability,

PX,=2X,=1,X,=1)+PX,=1,X,=2,X,=1)+P(X,=1,X,=1,X, =2)
41 /13211 41 /13211 41 /13211
= 211111(5) 33+ 211111(5) 33+ 211111(5) 33
4

R

6.24. The number of green balls chosen is binomially distributed with parameters
n=3and p= i. Hence, the probability that exactly two balls are green and one

is not green is
3\ (1?3 9
2)\4) 4 64

The same argument goes for seeing exactly two red balls, two yellow balls, or two
white balls. Hence, the probability that exactly two balls are of the same color is

9 9
4.674_176.

6.25. (a) The possible values for X and Y are 0,1,2. For each possible pair we
compute the probability of the corresponding event, For example,

P(X =0,Y =0)=P{(T,T,T)} =272
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Similarly
P(X=0Y=1)=P{(T,T,H)}) =273
P(X=0,Y=2)=0
P(X =1,Y =0) = P({(H,T,T)}) =27
PX=1Y=1)=P{(HT,H),(T,H,T)})=2x23=2"7
P(X =1,Y =2) = P({(T, H,H)}) = 27
P(X=2Y=1)=P{(H,HT)}) =273
P(X =2,Y =2) = P({(H,H,H)}) =27

and zero for every other value of X and Y.

(b)

The discrete random variable XY can take values {0,1,2,4}. The probability

mass function is found by considering the possible coin flip sequences for each value:

P(XY=0)=P(X=0,Y=0+P(X=0Y=1)+P(X=1,Y=0)=32
P(XY=1)=P(X=1Y=1)=3
P(XY=2)=P(X=1Y=2+P(X=2Y=1)=1

P(XY =4)=P(X =2,Y =2) = {.

6.26. (a) By the setup of the experiment, X 4 is uniformly distributed over {0, 1, 2}

(b)

whereas Xp is uniformly distributed over {1,2,...,6}. Moreover, X4 and Xp
are independent. Hence, (X 4, Xp) is uniformly distributed over Q = {(k,¥) :
0<k<2/1<¢<6}. That is, for (k,¢) € Q,

P((Xa,X5) = (k,0)) = 55
The set of possible values of Y7 is {0,1,2,3,4,5,6,8,10,12} and the set of

possible values of Y5 is {1,2,3,4,5,6}. The joint distribution can be given in
tabular form

Vi\Y2[1]2]3]4]57]6
0 T T[T T[T X
18 18 18 18 18 18
1 [lo]JofJofofo
2 0l&]lo0]Jofo0]oO
3 0fof[x[ofoTo
1 1
4 0[]0k [O0]O
5 oJojJofo[x]oO
1 1
6 oJof[k[o]o][&
8 ojJoJo[L[o0]oO
10 JoJofJofJo[sx]0O
12 [oJoJoJo]o]£&

For example,

P(Y1=2Y=2)=P(Xa=1,Xp=2)+P(Xa=2Xp=1)= & + &
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(¢) The marginals are found by summing along the rows and columns:

(Yl_())_lg, PY,=1)=4, PY,=2) =2

18 18
P(Y1=3) = 18» PYVi=4)=2%, Pi=5)=%
P(Y; =6) = 18, Pvi=8)=L%, PY1=10)=%
P(Y1=12) = 5,
and
PYa=1)=%, PY2=2) =4, P(Ya=3)=3
PYo=4)=3% PY,=5) =25, PYa=6)=3.

The random variables Y7 and Y5 are not independent. For example,
P(Y1=2,Y2=6)=0 whereas P(Y; =2)>0and P(Y>=6)>0.

6.27. The possible values of Y are —1, 1, which is the same as X5. Thus, we need
to show four things:

P(X,=1Y =1) (Xo=1)PY =1)
P(X;=-1Y =1)=P(X, = -1)P(Y = 1)
P(Xo=1Y = —1) = P(Xo = )P(Y = —1)
P(X;=-1,Y =-1) (Xo=-1)P(Y =-1).
To check the first one
PX2=1,Y=1)=P(X2=1,XX1=1)=P(X3=1,X;=1) = P(Xo =1)P(X;
Also,
P(Y =1)= P(X; = L,Xs = )+ P(X; = —L, Xo = —1) = B+ 1-(1—p) = 4,
and so,
P(Xo=1)P(Y =1)=pi =P(X,=1Y =1).
All the other terms are handled similarly, using P(Y = 1) = P(Y = —1) = 1/2 and
P(X3=a,Y =b) = P(X; =b/a,Xs = a).

6.28. To help with notation we will use ¢ = 1 — p. For the joint probability mass
function we need to compute P(V =k, W =) for all k > 1,£=0,1,2. We have

P(V=kW=0)=PmnX,Y) =k X <Y)=P(X =kk<Y)
=P(X =kP(k<Y)=pd" " ¢ =pg* ",

where we used the independence of X and Y in the third equality. We get P(V =
k,W =2) = pg**~! in exactly the same way. Finally,

P(V=kEW=1)=Pmin(X,Y)=k X =Y)=P(X =k Y =k) = p?¢** 2

This gives us the joint probability mass function of V' and W for the independence
we need to check if this is the product of the marginals.

By Example we have V ~ Geom(1 — ¢?) so for any k € {1,2,...} we get
PV =k =01-1-¢)""1-¢") =1~
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The probability mass function of W is also easy to compute. By symmetry we must
have

PW=0)=PX<Y)=PY <X)=P(W=2).

Also, by the independence of X and Y,

PW=1)=P(X=Y)=>» P(X=FkY =k =Y P(X=FkP(Y =k)
k=1 k=1
= pd g =) (A = "
k=1 k=0
__P
=5

Combining the above with the fact that P(W =0)+ P(W =1)+ P(W =2) =1
gives

PW=0)=PW=2)=11-PW=1))=—.

Now we can check the independence of V' and W. First note that
P(V=k)P(W =0)=¢*?(1-¢")3=L, PV =kW =0)=pg" ",
. _ 2
and since Efqp =1-q9)(1+ q)llfq = p, we have
The same computation shows P(V = k)P(W = 2) = P(V =k, W = 2). Finally,

P(V=kKPW=1)= q2k—2(1 _ (12)2%}7 P(V=kW=1)= p2g?F?

1—q2
2—p

and using = p again we get

P(V=kPW=1)=PV =k W =1).

We showed that P(V = k,W =¢) = P(V = k)P(W = {) for all relevant k, ¢,
and this shows that V' and W are independent.

6.29. Because of the independence, the joint probability mass function of X and
Y is the product of the individual probability mass functions:

P(X =a,Y =b)=P(X =a)P(Y =b) =p(1 —p)* 'r(1l —r)~ 1 a,b> 1.
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We can break up the P(X < Y) as the sum of probabilities of events {X = a,Y = b}
with b > a:

P(X <Y)=> P(X (Y:b):iiP(X:a)P(Y:b)
a<b a=1b=a-+1
ZZP(X:(L) or ZP P(Y > a)

:ZP Y1 —r)e 1—ri p) (1 —r)ot
a=1

__ p(l-r) _ _p—pr
1-Q-p)(1=r) pt+r—pr
6.30. Note the typo in the problem, it should say P(X =Y +1), not P(X+1=Y).

For k > 1 and ¢ > 0 the joint probability mass function of X and Y is

_ _ ¢
PX=kY=0=1-p)" 'p-e?a.

Breaking up {X =Y + 1} into the disjoint union of smaller events {X =Y +1} =
UR {X =k+1Y =k} Thus

PX=Y+1)=Y P(X=k+1Y=k=> (1- e AL
k=0 k=0
0 k
_ - A -p)
=re )
k=1
— pe P M1P) — pepA

For P(X +1=Y) we need a couple of more steps to compute the answer. We
start with {X +1 =Y} =U2 ,{X =k, Y =k +1}. Then

[e%e} [e'] B B i1
P(X+1=Y)=) PX=kY=k+1)=> (1-p)"'p-e g
k=1 k=1
e A =p)Et e A= p))
1-p2Pe R Z Kl
k=1 k=2
[ (A =p))*
1-—p2 P (Z %l —1-A(1-p)
k=0
e (201300 )
_ p —Ap b Y pA -
= e - e " — e
(1-p)? (1-p)? (I-p)

6.31. We have X7 + Xo + X3 = 8, and 0 < X; for ¢ = 1,2,3. Thus we have to
find the probability P(X; = a, Xo = b, X3 = ¢) for nonnegative integers a, b, ¢ with
a + b+ ¢ = 8. Imagining that all 45 balls are different (e.g. by numbering them)

we get (1) equally likely outcomes. Out of these (*%)(%?)(*°) outcomes produce a
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red, b green and c yellow balls. Thus the joint probability mass function is

10\ (15Y (20
P(X1 —_ a7X2 —_ b,Xg :C) _ (a)(4b5)(c)
(5)
for0<a,0<b,0<canda+b+ c=38, and zero otherwise.
6.32. Note that N is geometrically distributed with p = %. Thus, for n > 1,

P(N =n)=(3)"'Z.

We turn to finding the joint probability mass function of N and Y. First, note
that

P(Y =1,N =n) = P((n — 1) white balls followed by a green ball)

Similarly,

P(Y=2,N=n)=(3)""'3

We can use the above to find the marginal of Y.

o0

n=1

n=1

e

Similarly,
P(Y =2)=3.
We see that Y and N are independent:
P(Y =1)P(N=n)= 4. ()" 1T = ()" "4 = P(Y = 1,N = )
P(Y =2)P(N =n) = 2yn-13

ESTSIENTES

The distribution of Y can be understood by noting that there are a total of 7
balls colored green or yellow, and the selection of one of the 4 green balls, condi-

tioned on one of these 7 being chosen, is %.

6.33. Since f(z,y) is positive only if 0 < y < 1, we have fy(y) = 0if y <0 or
y>1. For 0 <y <1, f(z,y) is positive only if y < 2 < 2 — y, and so

Fr = [ Z F ) da = / T ey de = / sy a)de

r=2—y
= byzx — %ya:Q = 6y — 6y°.
z=y
Thus
_ 6y — 6y° ifo<y<1
Fr(y) = {0 otherwise.

The joint density function is positive on the triangle

{(z,y):0<y<ly<z<2—y}.
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To calculate the probability that X +Y < 1, we combine the restriction x +y <1
with the description of the triangle to find the region of integration. Some trial and
error may be necessary to discover the easiest way to integrate.

PX+Y <1)= // f(x7y)dxdy:/01/2</yl_y3y(2—x)dx>dy

z+y<1

1/2
:/O (5y—99*) dy = 1.

6.34. (a) The area of D is 2, and hence the joint p.d.f. is

0, (z,y)¢D.

The line segment from (1,1) to (2,0) that forms part of the boundary of D
obeys the equation y = 2 — z. The marginal density functions are derived as
follows. First for X.

Fxy(a,y) = {§ (z,y) € D

For z <0and z > 2, fx(z)=0.

For0<z <1, fx(z / fxy(z,y)d /

Forl<z<2, fx(z / fxy(z,y)d / w%dy:%f%z.
Let us check that this is a density function:

/ fx(x dmf/o 2dx+/2(

so indeed it is.
Next the marginal density function of Y:

wm
Wi
&
=8
8
I
=

Fory<Oandy>1, fy(y)=0

2—y
ForO0<y<1, fy(y / fxy(z,y)d / %dng_%y,

E[X]:/ xfx(x)dx:/o 3xdx+/1 (32— 22%)do = 1.

E[Y]:/Oo yfy(y)dy:/O (3y— 2yH)dy = 4.

(¢) X and Y are not independent. Their joint density is not a product of the

marginal densities. Also, a picture of D shows that P(X > 2, Y > %) =0
because all points in D satisfy x +y < 2. However, the marginal densities show
that P(X > 3)- P(Y > 1) > 0 so the probability of the intersection does not

equal the product of the probabilities.
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6.35. (a) Since fxy is non-negative, we just need to prove that the integral of fxy

is 1:
1 I
[rsvpdsty= [ Saepdedy =g [ ([ @ da)dy
0<z<y<2 0 0
1 (%3,

(b) We calculate the probability using the joint density function:

1 2 Y1
P{Y<2X}:/ —(x+y)da:dy=/ (/ —(z 4 y)dz)dy
0§m§y§2,y<2m4 0 y 4
1 /23, 5, 7%, 78 7
4/0(2y V=5 [ v =531
(¢) According to the definition, when 0 <y < 2:
v1 13 3
frt) = [ Fevtede = [+ nde = 167 -0 = 202
0

Otherwise, the density function fxy (x,y) = 0. Thus:

fr(y) = {ng velb2

0 else

6.36. (a) We need to find c so that [~ [*  f(z,y)dedy = 1. For this we need to

compute
0 [e'¢) 2 2
_z?_(z—y)
/ / e 2 2 dxdy
— 00 — 00

We can decide whether we should integrate with respect to x or y first, and
choosing y gives a slightly easier path.

%) 5 2 5 %) 2
_z2_ (z—y) _ oz _(z—y)
/ e 2 2 dy=-e 2 / e” 2 dy
— 00 —0o0

_z2 > 1 _(z—y)? 22
= V2me 2 \/76 2 dy =V2me 7.
—oo V2T

In the last step we could recognize the integral of the pdf of a A (z, 1) distributed
random variable. From this we get

b b 22 _ (z—y)? > z2
/ / e 272 dydx = / V2me 2 dx
—o0 J —0o0 0

/OO 1 z2d
=97 e 2 dxr = 2m.
0 \/27‘(’

In the last step we integrated the pdf of the standard normal. Hence, ¢ = %

(b) We have basically computed fx (without the constant ¢) in part (a) already.

>~ 1 22 _ (z—y)?
N A=
oo 2T

]. 7% /OO ]. 7(1‘/—2.1/)2d ]. 7%
= (A —€ = e .
V21 o V2T YT Vo
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Now we compute fy:

() /OO 1 -gtep?, 1 /oo 1 a2 o
— —e p xr = (& p p X.
v [e'e] 21 vV 2 — 00 \/27T

We can complete the square in the exponent of the exponential:

foM:f(gg

5 5 —ay— 3y°) = —(z —y/2)* — y*/4,

and we can now compute the integral:

1 22 (z—y)?

1 o _ (z=y)?
fY(y):\/T—ﬂ_/_oo me dx

1 < 1 22
- = o (@—y/2) "=y /4y
= e T
V2T [00 v 21
1 2/4 >* 1 —(z—y/2) 1 24
= ——eY —e TV dy = —=e7Y /7,
VAT oo VT VAT

In the last step we used the fact that ﬁe*(“”y/Q)Z is the pdf of a N (y/2,1)
distributed random variable. It follows that Y ~ A(0,2).
Thus X ~ N(0,1) and Y ~ N(0,2).

(¢) X and Y are not independent since there joint density function is not the same
as the product of the marginal densities.

6.37. We want to find fx(z) for which P(c < X < d) = fcd fx(z)dz for all ¢ < d.
Because the z-coordinate of any point in D is in (a, b), we can assume that a < ¢ <
d < b. In this case

A={c< X <d}={(z,y) :c<ax<d, 0<y<h(z)}.

area(A)
area(D) "

Because we chose (X,Y) uniformly from D, we get P(A) =
compute the areas by integration:

We can

7 fcd foh(m) dydr fcd h(z)dz

¢ =P(4) = - .
P( < X< d) P( ) fab foh(ac) dydz f; h(x)dl’

We can rewrite the last expression as

P(C<X<d)/dfb};fé))dsdx

which shows that

h(z) .
) = TTh(s)ds’ ifa<x<b
0, otherwise.
6.38. The marginal of Y is
o 1
= ze 0y = ——

for y > 0 and zero otherwise (use integration by parts). Hence,

_ [Ty .
E[Y]ffo (1+y)2dyf .
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6.39. F(p,q) is the probability corresponding to the quarter plane {(z,y) : = <
P,y < q}. (Because X,Y are jointly continuous it does not matter whether we
write < or <.) Our goal is to get the probability of (X,Y") being in the rectangle
{(z,y) : a < x < b,c <y < d} using quarter planes probabilities. We start with
the probability F'(b,d), this is the probability corresponding to the quarter plane
with corner (b,d). If we subtract F(a,d) + F(b,c) from this then we remove the
probabilities of the quarter planes corresponding to (a,d) and (b, c), and we have
exactly the rectangle (a,b) x (c,d) left. However, the probability corresponding to
the quarter plane with corner (a,c) was subtracted twice (instead of once), so we
have to add it back. This gives

Pla<X <bc<Y <d)=F(bd) — F(b,c)— F(a,d) + F(a,b).

6.40. First note that the relevant set of values is s € [0,2] since 0 < X +Y < 2.
The joint density function is positive on the triangle

{(z,y):0<y<ly<z<2—y}

To calculate the probability that X +Y < s, for 0 < s < 2, we combine the
restriction = + y < s with the description of the triangle to find the region of
integration. (A picture could help.)

PX+Y <s) = // f(x,y)dxdy:/08/2(/ysy3y(2—:z:)da:)dy

z+y<s

s/2
:/ (=2 s®y+3sy” +6sy —12y%) dy
0

(3s—12)s* N (-2 s2+6s) s>

24 8
Differentiating to give the density yields
3 1
f(s) = 152 - 133 for 0 < s < 2, and zero elsewhere.

6.41. Let A be the intersection of the ball with radius r centered at the origin and
D. Because r < h, this is just the ‘top’ half of the ball. We need to compute
P((X,Y,Z) € A), and because (X,Y, Z) is chosen uniformly from D this is just the
ratio of volumes of D and A. The volume of D is r?hm while the volume of A is

2 3 ey . . . ET s _ &
sr°m, so the probability in question is 25— = 5.

6.42. Drawing a picture is key to understanding the solution as there are multiple
cases requiring the computation of the areas of relevant regions.

Note that 0 < X <2 and 0 < Z = X + Y < 5. This means that for z < 0 or
z < 0 we have

FX72(I72’) = P(X < x,Z < Z) =0.

If 2 and z are both nonnegative then we can compute P(X < z,7Z < z) = P(X <
z,X +Y < z) by integrating the joint density of X,Y on the region A4, , = {(s,?) :
s <z,s+1t < z}. This is just the area of the intersection of A, . and D divided by
the area of D (which is 6). The rest of the solution boils down to identifying the
region A, . N D in various cases and finding the corresponding area.

If 0 <x <2 and z is nonnegative then we need to consider four cases:
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e If 0 < z <z then A, ., N D is the triangle with vertices (0,0), (z,0), (0, 2),

. 2
with area %

o If v <z <3then A, ;N D is a trapezoid with vertices (0,0), (x,0), (0, z) and
(z,z — x). Its area is @

o If 3 < 2z < 3+ x then A, , N D is a pentagon with vertices (0,0), (z,0),
(z,z —x), (z — 3,3) and (0, 3). Its area is 3z — M

o If 3+ z < z then A, , N D is the rectangle with vertices (0,0), (z,0), (z,3)
and (0, 3), with area 3.

We get the corresponding probabilities by dividing the area of A, . N D with 6.
Thus for 0 < 2 < 2 we have

0, if z<0

%, ifo<z<zx
Fx z(w,2) = { 220, if o <2<3

%—%, if3<z<3+=z

5 if3+x<z.

For 2 < z we get P(X <z,Z < 2z)=P(X <2,Z<2z) = Fx z(2,2z). Using the
previous results, in this case we get

0, if z<0
=, if0<z<2
F(z,z) = { &2 if2<2<3
1 622 if3<z<5
1, if 5 < 2.

6.43. Following the reasoning of Example
Jrv(u,v) = fxy(u,v) + fxy(v,u).

Substituting in the definition of fxy gives the answer

20+ VU +20%u+ Vu if0<u<ov<l
0 else.

frv(u,v) = {

6.44. Drawing a picture of the cone would help with this problem. The joint density
of the uniform distribution in the teepee is

1 .
Fxyz(x,y, z) = § xereene) t (z,9,2) € Cane
Y 7 0 else .

The volume of the cone is 7r2h/3. Thus the joint density is,

Py g(Eys) = {mf’;h if (z,y,2) € Cone

0 else .
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To find the joint density of (X,Y’) we must integrate out the Z variable. To do so,
we switch to cylindrical variables. Let (R, 0, Z) be the distance from the center of
the teepee, angle, and height where the fly dies. The height that we must integrate
depends where we are on the floor. That is, if we are in the middle of the teepee
R = 0, we must integrate Z from z = 0 to z = h. If we are near the edge of the
teepee, we only integrate a small amount, for example z = 0 to 2 = €. For an
arbitrary radius R’, the height we must integrate to is ' = (1 — %)h.

Then the integral we must compute is

(1=-Ph 3 3(1—
fé’e(r’ 0)= /0 wr2h dz = w2

SIS
—

We can check that this integrates to one. Recall that we are integrating with respect
to cylindrical coordinates and thus

2m 1_f)
// fxv(z,y) dxdy—/ / 7de77d0
circle

Thus, switching back to rectangular coordinates,

. . 3(1 B \/$j+y2)
fxy(@y) = fre(Va? +y2,0) = ——5——
for z2 4+ y? < r2.
For the marginal in Z, consider the height to be z. Then we must integrate
over the circle with radius r’ = 7(1 — ). Thus, in cylindrical coordinates,

27 pr(l—z/h) 3
0 0 wr2h

)= [ - 1-5)
6.45. We first note that
Fy(v) = P(V <v) =Pmax(X,Y) <v) = P(X <v,Y <w)
= P(X <v)P(Y <wv) = Fx(v)Fy(v).
Differentiating this we get the p.d.f. of V:
d

fr(v) = %Fv( v) = (Fx(v)Fy(v)) = fx(v)Fy (v) + Fx (v) fy (v).

For the minimum we use
P(T>z)=Pmin(X,Y)>z2)=P(X >2Y >z)=P(X >2)PY > z2),
then

which yields,

Fr(z)=PT <z2)=1-P(T>z2)=1-PX >2)PY >=z2)
=1-(1-Fx(2)(1 - Fy(2)),
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and

fr(z) = [1 = (1 = Fx(2))(1 = Fy(2))]’
= Ix(2)(1 = Fy(2)) + fy (2)(1 = Fx(2)).

We computed the probabilities of the events {max(X,Y) < v} and {min(X,Y) > z}
because these events can be written as intersections to take advantage of indepen-
dence.

6.46. We know from (6.31) and the independence of X and Y that
frv(t,v) = fx(t) fy (v) + fx () fy (1),

if t < v and zero otherwise. The marginal of T'= min(X,Y) is found by integrating
the v variable:

h@zl%hwmmclmhth+h@hww
— F (O = Fy (8) + fy (1 = Fx (1)),

Turning to V = max(X,Y’), we integrate away the ¢ variable:

o) = [ gttt = [ e+ e d
= fy (v)Fx (v) + fx (v)Fy (v).
6.47. (a) We will write Fix for F' to avoid confusion. We need
Fz(2) = P(min(Xy,...,X,) < 2).

We would like to write this in terms of the intersections of independent events, so
we consider the complement:

1— P(min(Xy,...,X,) <z) = P(min(Xy,...,X,) > z2).

The minimum of a group of numbers is larger than z if and only if every number is
larger than z:

Pmin(Xy,...,Xp)>2)=P(X;1 > 2,...,Xp >2)=P(Xy1 > 2)--- P(X, > 2)
=(1=-PX1<2)--(1-P(X, <2)) = (1-Fx(2)"
Thus
Fz(z) =1-(1-Fx(2))"
For the cumulative distribution of the maximum we need
Fw (w) = P(max(X1, Xs, ..., X,) < w).

The maximum of some numbers is at most w if and only if every number is at most
w:
P(max(X1,Xa,...,Xpn) <w)=P(X; <w,..., X, <w)
=P(X; <w) - P(X, <w)=Fx(w)".
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(b) We can find the density functions by differentiation (using the chain rule):

Fa(2) = L Fp(z) = (1= (1= Fx(:))") = nfx(@)(1 — Fx(x)" ",
d

i () = - By (1) = - Foc ()" = m ) Fx ()"

6.48. Let t > 0. We will show that P(Y > t) = e~ (M1t +2)t Using the indepen-
dence of the random variables we have

P(Y >t) = P(min(Xy, X, ..., X)) > t) = P(Xy > 6, Xy > t,..., X, > 1)

= H P(X;>t)= He‘A“"
i=1 i=1
— e~ utdAn)t

Hence, Y is exponentially distributed with parameter \; + --- + A,.

6.49. In the setting of Fact let G(z,y) = (min(x,y), max(x,y)) and L =
{(t,v) : t < v}. When = # y this function G is two-to-one. Hence we define
two separate regions K1 = {(z,y) : « < y} and Ky = {(z,y) : * > y}, so that
G is one-to-one and onto L from both K7 and K5. The inverse functions are as
follows: from L onto Kj it is (q1(t,v),r1(¢,v)) = (t,v) and from L onto K it is
(g2(t,v),r2(t,v)) = (v,t). Their Jacobians are

1 0 01
Ji(t,v) = det {0 1] =1 and Jo(t,v) =det [1 0} =—1.

Let again w be an arbitrary function whose expectation we wish to compute.

w(U, V)] / / mln x,y), max(:r,y)) fxy(z,y)dedy

// w(z,y) fxr (2 y)dxdy"'//n (v, x) fx,v(z,y) dzdy
- //L w(t,v) fxy(qu(t,0),ri(t,0)) [Nt 0)] dt dv

+//L w(t,v) fxy(q(t,v), r2(t,v)) |J2(t,v)| dt dv
= //t | w(t,v) (fx,y(t,v) + fx,y(v,t)) dtd.

Since the diagonal {(z,y) : # = y} has zero area it was legitimate to drop it from
the first double integral. From the last line we can read off the joint density function
fT’V(t,’U) = fX’y(t,’U) + fX’y(i),t) for t < w.
6.50. (a) Since X ~ Gamma(r, \) and Y ~ Gamma(s, \) are independent, we have
xr71>\r \ ysfl 28 N
- - —Az Ay
fX,Y(‘Tvy) fX(x)fY(y) F(T) € F(S) €

for > 0,y > 0, and fx,y(x,y) = 0 otherwise.




Solutions to Chapter 6 151

In the setting of Fact for x,y € (0,00) we are using the change of
variables
x

Tty
The inverse functions are

u=g(z,y) = € (0,1), v=h(z,y)=x+ye (0,00).

q(u,v) =uwv € (0,00), 7r(u,v)=v(l—u) € (0,00).

The relevant Jacobian is

dq dq
_ | 22 (u,v)  Fr(u,v) | _| v U -
J(u,v) = ?LZ(UW) g—;(u,v) “ o l—u .
From this we get
fB.c(u,v) = fx(w)fy (v(1 —u))v

N (o) T A= w)P T s
G O I
_ F(r—i—s) r— _ )51, 1 r+s, (r+s)—1_—Av
BN O S v L

for u € (0,1),v € (0,00), and 0 otherwise. We can recognize that this is exactly
the product of a Beta(r, s) probability density (in u) and a Gamma(r + s, \)
probability density (in v), hence B ~ Beta(r,s), G ~ Gamma(r + s, \), and
they are independent.

(b) The transformation described is the inverse of that found in part (a). Therefore,

X and Y are independent with X ~ Gamma(r, \) and Y ~ Gamma(s, \).
For the detailed solution note that

fo.0b0) = T G

for b € (0,1),g € (0,00) and it is zero otherwise.
We use the change of variables

)\rJrs (r+s)7lefx\g

br71(1 o b)571 . g

r=b-g, y=(1-5)-g.

The inverse function is

b= = .
- +ya g=z+y
The Jacobian is
Ty = | Tor TG |2 L
LY = 1 1 Cz4vy
From this we get
L(r+s) = 1 1 L 1
— _x T _ _m ys—1 ATt (r4s)—1,—A(z+y)
fX7Y(l‘7y) F(T)F(S)(m+y) ( z+y) F(T‘+s) ($+y) e Tty
r—1yr s—1ys
_z A 6_/\$y A "
L'(r) I'(s)

for x > 0,y > 0 (and zero otherwise). This shows that indeed X and Y are
independent with X ~ Gamma(r, A) and Y ~ Gamma(s, \).
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6.51. (a) Apply the two-variable expectation formula to the function h(z,y)
g(x). Then

Elg(X)]

=3 hkOP(X = kY =) =Y g(k)P(X
ke k

=> g(k)Y P(X =kY =20
k 4

(b) Similarly with integrals:

Elg(X)] = Eh(X,Y)] // ¥) Frey (@) dody

_ / o ([ ) dy) o= [ g(o) fxte) ds

— 00
6.52. For any t1,...,t. € R we have

=&Y =0

|
n
E [ethlJf"'”"'X"'] } : etikitett ok, Ky

7. 1 DY
ol kPP
ki+kat-+kr=n "

n! k kn

_ Z k,.“k,(metl)1"'(797’6”)
S T

= (e 4+ pre)",

where the final step follows from the multinomial theorem

6.53.
PX1, X (Ks oo ki) = P(Xq =k, Xy = kom)
S PXi=ki o Xy =k, X1 = b1, X = )
Lint1y-esbn
= D pxi XX (K Ly ).
ém##la“'vzn
6.54. Let Xi,...,

X, be jointly continuous random variables with joint density

function f. Then for any 1 < m < n the joint density function fx,,. . x,, of random
variables X1,..., X, is

le,m,Xm ($17 -

oo oo
,.’Iim):/ / f(x1a7xm,ym+la7yn)dym+ldy'n
— 00 — 0o

Proof. One way to prove this is with the infinitesimal method. For e > 0 we have

P(X; € (z1,21 +¢€), € (T, Tin +€))

T1+e T+
/ / / / fy17"'ayn>dy1 d
T T
%(/ / f(xlaaxm7ym+17ayn)dym+1dyn>5m

The result is shown by an application of Fact [6.39]
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Another possible proof would be to express the joint cumulative distribution
function of X7,...,X,, as a multiple integral, and to read off the joint probability
density function from that.

6.55. Consider the table for the joint probability mass function:

Xp
| o | 1 |
0 0 a
Xp
1 b l1—a—->

We set P(Xp = Xp = 0) = 0 to make sure that a call comes. a and b are unknowns
that have to satisfy a > 0, b > 0 and a + b < 1, in order for the table to represent
a legitimate joint probability mass function.

(a) The given marginal p.m.f.s force the following solution:

Xp
0 1
0 0 107
XB
110201

(b) There is still a solution when P(Xp = 1) = 0.7 but no longer when P(Xp =
1) = 0.6.

6.56. Pick an « for which P(X = z) > 0. Then,

0<P(X=2)=)» PX=xY=y)=) a(@)by) =alz))_by).

Hence, >, b(y) # 0 and

Combining the above we have

P(X =Y =y) = a(z)b(y) =

However, the denominator is equal to 1:

1=Y P(X =2,V =y) = 3 al@)hly) = Y ale) 3 by),

x,y x

and so the result is shown.
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6.57. We can assume that n > 2. (If n =1 then Z = W = X; and there is no joint
density.)

Since all X; are in [0, 1], this will be true for Z and W as well. We also know
that the maximum is at least as large as the minimum: P(Z < W) = 1. We start by
computing the probability P(z < Z < W < w) for 0 < z < w < 1. The maximum
and minimum are between z and w if and only if all the numbers are between z
and w. Thus

Pz<Z<W<w)=Plz< X1 <w,...,2< X, <w)
=Pz<X;<w)---Plz< X, <w)
= (w—2)".
We would like to find the joint cumulative distribution function Fyzw (z,w) =
P(Z < 2,W <w). Because 0 < Z < W < 1, it is enough to focus on 0 < z < w <
1. Note that
Plz< Z<W<w)=PW<w)—P(Z<z,W<w)
hence for 0 < z < w < 1 we have
Fzw(z,w)=P(W <w)—(w—2)"

(This also holds for w = z, because then P(Z < w, W < w) = P(W < w).) Taking
the mixed partial derivatives gives the joint density (note that the P(W < w)
disappears when we differentiate with respect to z):

o (esw) = 5o Fyaw () = 5o (POV < w) = (w = 2)")
=n(n—1)(w—2)""2

Thus fzw(z,w) =n(n—1)(w—2)""2if 0 < z < w < 1 and zero otherwise.
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7.1. We have
P(Z=3)=P(X+Y =3)=) P(X=kPY =3-k).
k

Since X is Poisson, P(X = k) = 0 for k < 0. The random variable Y is geometric,
hence P(Y =3 —k)=01if 3 — k < 0. Thus P(X = k)P(Y = 3 — k) is nonzero for
k=0,1and 2 and we get

P(Z=3)=P(X=0PY =3)+P(X=1)PY =2)+ P(X=2)P(Y =1)
50 _,
?76 .
7.2. The possible values for both X and Y are 0 and 1, hence X + Y can take the

values 0,1 and 2. If X +Y = 0 then we must have X = 0 and Y = 0 and by
independence we get

PX+Y=0=PX=0Y=0)=PX=0PY=0)=(1-p)(1-r).
Similarly, if X +Y = 2 then we must have X =1 and Y = 1:
PX+Y=2)=PX=LY=1)=PX+1)PY =1)=pr

=22 (1)\2 -22 1 22 22 _
=e5-(3) 7 +275 5+ 5e 5=

We can now compute P(X +Y) =1 by considering the complement:
P(X+Y =1)=1-P(X+Y =0)-P(X+Y =2) = 1-(1—p)(1—r)—pr = p+r—2pr.

We have computed the probability mass function of X + Y which identifies its
distribution.

7.3. Let X; and Xs be the change in price tomorrow and the day after tomorrow.
We know that X; and X5 are independent, they have probability mass functions
given by the table. We need to compute P(X; + Xy = 2), which is given by

P(X1+X;=2)=)Y P(X1 =k)P(Xy=2—-k).
k

155
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Going through the possible values of k for which P(X; = k) > 0, and keeping only
the terms for which P(X, = 2 — k) is also positive:

P(X1 4+ Xy =2) = P(X; = -1)P(Xy = 3) + P(X1 = 0)P(X; = 2)
+ P(X1 =3)P(Xy = -1)

1 1 1 1 1 1
=61 To1 166 el T8
7.4. We have
e AT, ifx>0 pe HY ify >0
xTr) = =
Jx(@) {0, otherwise, Fr(v) {O, otherwise.

Since X and Y are both positive, X +Y > 0 with probability one, and fx1y(z) =0
for z < 0. For z > 0, using the convolution formula

frev@) = [ Ix@fv(e-opds = [ a1,
—oo 0
In the second step we used that fx(z)fy(z —x) # 0 if and only if + > 0 and

z — 2 > 0 which means that 0 < z < z.

Returning to the integral

Ix+v(2) :/ )\eﬂmuef“('z*x)dx = )\Me*MZ/ L=z .
0 0

r=z

(p—=XN)z _ 1 Az _ ,—pz
_ )\,uefﬂze _ >\N6 e
=0 = A

Note that we used A # p when we integrated e(#=2)=,

w—A

Hence the probability density function of X + Y is

e imett ifz>0
Sxav(®) = {O,M "~ otherwise.
7.5. (a) By Fact [7.9|the distribution of W is normal, with
ww =2y —4py +pz = =7, ofy = 0% + 160% + 0% = 25.
Thus W ~ N(-7,25).

(b) Using part (a) we know that WET is a standard normal. Thus

Vi
W47 247
P(W>—2):P( ; > 5+ ):1—@(1)%1—0.8413:0.1587.

7.6. By exchangeability
P(3rd card is a king, 5th card is the ace of spades)
= P(1st card is the ace of spades, 2nd card is king).

The second probability can now be computed by counting favorable outcomes within
the first two picks:

N

1- 2

(7) 663

P(1st card is the ace of spades, 2nd card is king) =
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7.7. By exchangeability

P(Xj5 is the second largest) = P(X; is the second largest)
for any i = 1,2,4. Because the X; are jointly continuous the probability that any
two are equal is zero. Thus

4
1= Z P(X; is the second largest) = 4P(X3 is the second largest)
i=1

and P(X3 is the second largest) = 1.

7.8. Let X}, denote the color of the kth pick. Since the random variables X1, ..., X1q
are exchangeable, we have

P(X3 = green, X5 = yellow)
P(X5 = yellow)
P(X; = green,X; = yellow)
P(X; = yellow)

P(X3 = green|Xs = yellow)

2
= P(X5 = green|X; = yellow) = =

The fact that P(X3 = green|Xs = yellow) = & = 2 follows by counting favorable
outcomes, or noting that given that the first pick is yellow there are 6 out of the

21 balls left are green.

7.9. (a) The waiting time W5 between the 4th and 5th call has Exp(6) distribution
(with hours as units). Thus

1
P(Ws<10min)=P(Ws < 1) =1-e6C=1-¢"1.

(b) The waiting time between the 9th and 7th call is Wg + Wy where W; is the
waiting time between the (¢ — 1)th and ith calls. These are independent ex-
ponentials with parameter 6. The sum of two independent Exp(6) distributed
random variables has Gamma(2, 6) distribution (see Example and the dis-
cussion before that). Thus

1
4 5
P(Wg + Wy < 15 min) = P(Wg + Wy < %) = / 62te Stdt = 1 — 56*3/2,
0
The final computation comes from the pdf of the gamma random variable
and integration by parts. Alternatively, you can use the explicit cdf of the
Gamma(2, \) distribution that we derived in Example [£.36]

7.10. By the memoryless property of the exponential distribution the waiting time
until the first bulb replacement has distribution Exp(§) (where we use months as
units). The waiting time from the first bulb replacement until the second one has
the same Exp(%) distribution, and we can assume that it is independent of the first
wait time. The same holds for the waiting time between the kth and (k+ 1)st bulb
replacements. This means that the replacement times form a Poisson process with
intensity §. Denoting the number of points in [0,¢) for the process by N([0,])
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we need to compute P(N([0,3]) = 3). But N ([0, 3]) has Poisson distribution with
parameter 3 - % = %, hence

P(exactly 3 bulbs are replaced before the end of March)

3 1
(1/2) 3 e
3! 48

N

= P(N([0,3]) = 3) =

7.11. (a) Let X be the number of trials you perform and let Y be the number
of trials I perform. Then, using that X and Y are independent Geom(p) and
Geom(r) distributed random variables

P(X =Y) :iP(X:Y:k) :iP(X:k)P(Y:k)
k=1

=Y p(1—=p) (1 —r)k" —prz [(1=p)(1 =)

1 pr
ol 7" el .
T =pi-r r+p—1p

(b) We have Z = X + Y. Thus, the range of Z is {2,3,...} and the probability
mass function can be computed as

n—1
:ZP(X:i) Y =n—1) Zpl— Y e (1 — )it
i=1
n71 . . . .
=pr Z(l =) T A=) = Z(l —p) (L)
‘ i=0

o2 ' nal = [(1=p)/(1 —r)"
rL=) ZL—J pr =) T ) - )

_ et 1-[Q-p)/@—m)" (t—r"t-(0-p"

i-n-(1-p " p—r

7.12. The probability mass function of Z is pz(0) =1 — p, pz(1) = p. The proba-
bility mass function of W is

n

pw (k) = (k>pk(1—p)"’“, k=0,1,...,n

The possible values of Z 4+ W are 0,1,...,n+ 1. Using the convolution formula we
get

pziw (k) =Y pz(Opw(k —0).
14
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We only need to evaluate this for £ = 0,1,...,n + 1. Since pz(¢) is nonzero only
for{=0and £ =1:

pz+w (k) = pz(0)pw (k) + pz(pw (k — 1)
=(1-p)- <Z)p’“(1 —p)" " +p- (k " 1)17’”(1 —p) T

()

In the last formula we used the convention that (Z) =0ifa<0ora>n. The
final formula looks very similar to the probability mass function of a Bin(n + 1, p)
distribution. In fact, it is exactly the same, as by Exercise we have (”Zl) =
(M) + (,",). Thus Z + W ~ Bin(n + 1,p).

Once we find (or conjecture) the answer, we can find a simpler argument. We
can represent a Bin(n,p) distributed random variable as the number of successes
among n independent trials with success probability p. Now imagine that we have
n+1 independent trials with success probability p. Denote the number of successes
among the first n trials by W and denote the outcome of the last trial by Z.
Then Z ~ Ber(p), W ~ Bin(n, p) and these are independent (since the last trial
is independent of the first n). But Z + W counts the number of successes among
the n + 1 trials, so its distribution is Bin(n + 1,p). This shows that the sum of a
Ber(p) and and independent Bin(n, p) distributed random variable is distributed as
Bin(n + 1,p).

7.13. We could use the convolution formula, but it is easier to use the way we
introduced the negative binomial distribution. (See the discussion before Definition
7.6l) If Z1,Z,,... are independent Geom(p) random variables, then adding n of
them gives a Negbin(n, p) distributed random variable. In particular, Z+- - -+ 7, ~
Negbin(k, p) and Zgy1+- -+ Z, ~ Negbin(m, p) and these are independent. Thus
X +Y has the same distribution as Zy + - - - + Z,;,4+, which has Negbin(k 4+ m, p)
distribution. Thus X + Y has possible values £ +m,k +m + 1,... and pmf

n—1

>pk+m(1 —p)nhmm forn > k+ m.
7.14. Using the same notation as in Example [7.7] we get that

P(Xk)(kl

3 )p‘*(lp)“, k=4,5,6,7.

Evaluating P(X = 6) for the various values of p gives the following numerical
values:
p | 040 | 035 | 030 |

P(Brewers win in 6) | 0.09216 | 0.06340 | 0.03969

We also get

7 7
P(Brewers win) = ZP(X =k)= Z (k ; 1)]94(1 - P)k_4'
k=4
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Evaluating this sum for the various values of p gives the following numerical values:
p | 040 | 035 | 0.30 |
P(Brewers win) | 0.2898 | 0.1998 | 0.1260

7.15. We have the following probability mass functions for X and Y:
1 1
px(k)=—, forl1<k<n, and py(k)=—, forl<k<m.
m

Both functions can be extended to all integers by setting them equal to zero outside
the given domain. The domain of X +Y is the set {2,3,...,n+m}. The pmf can
be computed using the convolution formula:

pxtv(a) =Y px(k)py(a—k).
k

The value of px (k)py (a — k) is either zero or -1~ so we just have to compute the
number of nonzero terms in the sum for a given 2 < a < n + m. In order for
px (k)py (a — k) to be nonzero we need 1 <k <mn and 1 < a—k < m. The second
inequality gives a—m < k < a—1. Solving the system of inequalities by considering
the ‘worse’ of the upper and lower bounds we get

max(1l,a —m) < k < min(n,a — 1).

There are min(n,a — 1) — max(1,a — m) + 1 integer solutions to this inequality, so
1
px+y(a) = — (min(n,a — 1) —max(l,a—m) + 1), for2<a<n+m.
mn

By considering the cases 2 <a<n,n+1<a<m+landm+2<a<m+n
separately, we can simplify the answer to get the following function:

o=l 2<a<n,

mn - -
pxyv(a) =4 & n+l1<a<m+1,

"1'*'77;721_“ m+2<a<m-+n.

7.16. The probability mass function of X is

)\k —A
pX(k)ZFe7 k=0,1,2,...

while the probability mass function of Y is py(0) = 1 — p, py (1) = p. Using the
convolution formula we get

px+y(n) =Y px(k)py(n— k).
k

The possible values of X +Y are 0,1,2,..., so we only need to deal with n > 0.
We only have py(n—k) #0ifn—k=0o0rn—k =1 so we get

px+v(n) =px(n)py (0) + px(n — 1)py(1).
If n =0 then px(n—1) =0, so

px+v(0) = px (0)py (0) = (1 — ple™ .



Solutions to Chapter 7 161

For n > 0 we get
)\n A\ 1
pxyy () = px(n)py (0) + px(n = Dpy (1) = (1 =p)—re™* + P 1)
(A1 —p) +1p)
n! ’
Thus the probability mass function of X +Y is

_ )\nfl

(1—ple?, ifn =0,

An—1 Q=P tnp) ) itn> 1.

n!

px+y(n) =

7.17. Let X be the the number of trials needed until we reach k successes, then
X ~ Negbin(k,p). The event that the number of successes reaches k before the
number of failures reaches ¢ is the same as {X < k+ ¢}. Moreover this event is the
same as having at least k successes within the first £ 4+ ¢ — 1 trials. Thus

/-1 . k+e—1
k4 , E+¢-1\ , “1-a
P(X<k+€)z<k_i>p’“(lpy > ( . )p (1—p)Fti-t-e,

7=0 a=k

7.18. Both X and Y have probability densities that are zero for negative values,
this will hold for X + Y as well. Using the convolution formula, for z > 0 we get

fror(@) = [ Ix@frc-ade = [ fe@)f(c - a)da
= / 2e 24 (z — x)e 2 dx = /z 8(z — x)e **dx
0 0

= 86_22/ (z — x)dr = 42%e 2%
0

Thus
422722 if z >0,
0, otherwise.

fxiv(2) = {

7.19. (a) We need to compute

PY > X >2) // ) fy (y) de dy = / / T Ydydx
>z>2
= e 2 dy = Le ™.
s Le

(b) The density of f_y is given by f_y(y) = fy(—y). Then from the convolution
formula we get

fX y / fX f_ (Z — t dt = / fX f_ (Z 775 dt = / fX fy(t — Z)

Note that fx(t)fy(t —z) > 0if t > 0 and ¢t — z > 0, which is the same as
t > max(z,0). Thus

oo

frv(@) = [ T heOf -2t = [ e gm0,

max(z,0) max(z,0)
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If z > 0 then this gives %e‘Qmax(z’O)"’z = %e‘z. If z < 0 then %6_2“"“"(2’0)“‘2 =
1

5€¢°. We can summarize these two cases with the formula fx_y(z) = %e"'z'.

7.20. (a) Since X and Y are independent, we have fxy(z,vy) = fx(z)fy (y) where
2w, if0<z<l1
fx(z) = { fr(y) = {

0, otherwise

1, ifl<y<2
0, otherwise
To compute P(Y — X > 2) we need to integrate fx y(z,y) on the set {(z,y) :
y—x > %} Since fx y(x,y) is positive only if 0 < < 1 and 1 < y < 2, it is
enough to consider the intersection

{(y):y—2>21n{(z,y):0<z< 1,1 <y<2}

By sketching this region (or solving the inequalities) we get the region is the same
as {(z,y) : 0 <2 <1/2,3/24+ 2 <y < 2}.Thus we get

1/2 2
PY-X>3)= // fx v (z,y)dedy = / / 2zdydx
y—2>3/2 o J3j24e

1/2 1
:/0 (1/2—x)2xdx=ﬂ.

(b) Note that X takes values in (0,1), Y takes values in (1,2) so X + Y will take
values in (1, 3). For a given z € (1, 3) the convolution formula gives

fev) = [ T @)y (= — a)de = / Fx () fy (= — z)d,

where we used the fact that fx(z) = 0 outside (0,1). For a given 1 < z < 3 the
function fy(z — ) is nonzero if and only if 1 < z — 2 < 2, which is equivalent to
z—2 <z < z-—1. Since we must have 0 < < 1 for fx(x) to be nonzero, this
means that fx(z)fy(z — ) is nonzero only if max(0,z — 2) < < min(1, z — 1).
Thus

1 min(1,z—1)
Fxay(2) = / fx (@) fy (= — 2)dz = / 2rds

max(0,z—2)
= min(1,z — 1)? — max(0, z — 2)%.

Considering the 1 < z < 2 and 2 < z < 3 cases separately:

(z—1)2, if1<z<2,
Ixqv(z) = 1—(2—-2)? if2<2z<3,
0, otherwise.

7.21. (a) By Fact the distribution of W is normal, with
pw = 3p + dpy = 10, oty = 90% + 1603 = 59.
Thus W ~ N (9,57).
(b) Using part (a) we know that W\/%O is a standard normal. Thus

=1-®(2=)~1-P(0.66) ~ 0.2578.

-1 15—-1
P(W>15):P(W 0.5 O)

NN
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7.22. Using Fact we have 2X ~ N (2u,40?). From Fact [7.9) by the indepen-
dence of X and Y we get X +Y ~ N(2u,202). Since 02 > 0, the two distributions
can never be the same.

7.23. By Fact|7.9 X — Y ~ N(0,2) and thus X\;iy ~ N(0,1). From this we get

P(X >Y +2) = P(X2X > V2) = 1 - 9(V2) ~ 1 — &(1.41) ~ 0.0793.

7.24. Suppose that the variances of X, Y and Z are 0%, 0% and 0%. Using Fact|7.9
we have that X +2Y —3Z ~ N (0,0% +40% +90%), and —AE2E3Z L (0, 1).
\/0X+40'f,+902z
This gives
X+2Y -37
Vo + 403 + 90
7.25. We have fx(z) = 1 for 0 < x < 1 and zero otherwise. For Y we have
fr(y) = % for 8 < y < 10 and zero otherwise. Note that 8 < X +Y < 11.

The density of X + Y is given by

[xiv(z) = /_OC fx () fy(z —t)dt.

P(X+2Y—3Z>O):P< >o>:1—¢>(0):;.

The product fx (t)fy(z—t)is 3 if 0 <t < 1and 8 < z—t < 10, and zero otherwise.
The second inequality is equivalent to z — 10 < ¢ < z — 8. The the solution of the
inequality system is max(0,z — 10) < ¢t < min(1, z — 8). Hence, for 8 < z < 11 we
have
oo
fxiv(z) = / fx@) fy(z —t)dt = =(min(1, z — 8) — max(0, z — 10)).
—0o0

Evaluating the formula on (8, 9), [9, 10) and
function:

— N =

10, 11) we get the following case defined

=8 8<z<9

1
= 9<2z2<10
z) =14 2 .
Tx+v(2) Loz 10<2z<1l,
0 otherwise

7.26. The probability density functions of X and Y are

1
) =142
Fx(@) { 0, otherwise

ifl<z<3 1, if9<y<10
. fr(y) =
0, otherwise

Since 1 < X <3and 9 <Y < 10 we must have 10 < X +Y < 13. For a z € [10, 13]
the convolution formula gives

ferv() = [ T @)y (z - 2)de = | axt@) etz - ajaa,

We must have 9 < z —x < 10 for fy(z — ) to be nonzero, and this means
z—10 <z < z—9. Combining this with the inequality 1 < z < 3 we get that
fx(z)fy(z — z) is nonzero if

max(1,z —10) <z < min(3,z —9).
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Thus

3 min(3,2—9)
Fxay(2) = / Fx(@) fy (2 — z)de = / L

max(1,z—10) 2

1, .
3 (min(3, z — 9) — max(1, z — 10)).

Evaluating these expressions for 10 < z < 11, 11 < 2z < 12 and 12 < z < 13 we get
the following case defined function:

1(z—10) if 10 <z < 11

1 if11<z<12

2) =<2 - .

fxav (2) (13— 2) if12 <z < 13
0 otherwise.

7.27. Using the convolution formula:
frov) = [ FOM (e s)as

We have fy(t —s) = 1for 0 < t —s < 1 and zero otherwise. The inequality
0<t—s<1lisequivalent tot—1< s <t. Thus

fev®= [ some-sds= [ fas

t—1

7.28. Because X7, Xs, X3 are jointly continuous, the probability that any two of
them are equal is 0. This means that P(X;, X5, X3 are all different) = 1. By the
exchangeability of X, X5, X5 we have

P(X1 <X2 <X3) :P(X2 <X1 <X3) ZP(Xl <X3 <X2)
:P(X3 < X5 <X1) :P(XQ < X3 <X1) :P(Xg < X3 <X2),

where we listed all six possible orderings of X7, X5, X3. Since the sum of the six
probabilities is P(X1, X2, X3 are all different), we get that P(X; < X5 < X3) = %.

7.29. By exchangeability, each X;, 1 <1 < 100 has the same probability to be the
50th largest. Since the X; are jointly continuous, the probability of any two being
equal is 0. Hence

100

1= Z P(X; is the 50th largest number) = 100P(Xs is the 50th largest number)
i=1

and the probability in question must be ﬁ.

7.30. (a) By exchangeability

4-4 4
P(2nd card is A, 4th card is K) = P(1st card is A, 2nd card is K) = —— = —
(2nd card is A, card is K) (1st card is A, 2nd card is K) 55 El = 663’
where the final probability comes from counting the favorable outcomes for the first
two picks.
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(b) Again, by exchangeability and counting the favorable outcomes within the first
two picks:

13
1
P(1st card is #, 5th card is &) = P(1st card is #, 2nd card is &) = @ = —.

(¢c) Using the same arguments:

P(2nd card is K, last two cards are aces)

P(2nd card is K|last two cards are aces) = Pllast © d )
ast two cards are aces

P(3rd card is K, first two cards are aces)

P(first two cards are aces)
= P(3rd card is K]|first two cards are aces)
42
=5~ %
The final probability comes either from counting favorable outcomes for the first

three picks, or by noting that if we choose two aces for the first two picks then we
always have 50 cards left with 4 of them being kings.

7.31. By exchangeability the probability that the 3rd, 10th and 23rd picks are
of different colors is the same as the probability of the first three picks being of
different color. For this event the order of the first three picks does not matter, so
we can assume that we choose the three balls without order, and we just need the
probability that these are of different colors. Thus the probability is
20-10-15 100
P(we choose one of each color) = ———— = —.
(v . r) ) 473
7.32. Denote by X} the numerical value of the kth pick. By exchangeability of
X1,...,Xo3 we get

P(Xg <5,X14 <5,X91 <5)=P(X; <5,Xy <5, X3 <5H).

5
The probability that the first three picks are from {1,2,3,4,5} is % = %.

7.33. Denote the color of the kth chip by Xj. By exchangeability

4 2
P(X5 =black|X3 = Xj9 = red) = P(X3 = black|X; = Xy =red) = 3 =11
where the last step follows from the fact that if the first two choices were red then
there are 4 out of the remaining 22 chops are black.

7.34. By Fact [7.17 we have to show that the joint probability mass function of
X1,...,X4 is a symmetric function.

We will compute P(X; = a1,Xe = as,X3 = a3, X4 = a4) for all choices
of ay,as,a3,a4 € {0,1}. For a given choice of aj,as,as,a4 € {0,1} we know
which aces were chosen and which were not. We can compute P(X; = a1, X5 =
a2, X3 = as, X4 = a4) by counting the favorable outcomes among the (552) choices
of unordered samples of 5. Since we know which aces are in the sample, and which
are not, we just have to count the number of ways we can choose the remaining
non-aces. This is given by (54_8k), where k = ay + az + a3z + a4 is the number of aces
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among the 5 cards. (48 is the total number of non-ace cards, 5 — k is the number
of non-ace cards among the 5.)

Thus

(5= (ar 4ota)
5—(a1+-+aq)
(%)
5
ifay,aq,as, a4 € {0,1}. But this is a symmetric function of a1, as, as, a4 (as the sum
does not change when we permute these numbers), which shows that the random
variables X1, Xo, X3, X4 are indeed exchangeable.

P(X)=a1,Xs=0a2, X3 =03, X4 =a4) =

7.35. By exchangeability, it is enough to compute the probability that the values of

first three picks are increasing. By using exchangeability again, any of the possible

3! = 6 order for the first three picks are equally likely. Hence the probability in
1

question 1s 7.

7.36. (a) The waiting times between replacements are independent exponentials

with parameter 1/2 (with years as the time units). This means that the replace-

ments form a Poisson process with parameter 1/2. Then the number of replacements

within the next year is Poisson distributed with parameter 1/2, and hence
P(have to replace a light bulb during the year)

= 1 — P(no replacements within the year) =1 — e 12,

(b) The number of points in two non-overlapping intervals are independent for a
Poisson process. Thus the conditional probability is the same as the unconditional
one, and using the same approach as in part (b) we get

1/9)2 ~1/2
P(two replacements in the year) = %6_1/2 = eT.
7.37. The joint probability mass function of g(X1), g(X2), g(X3) can be expressed

in terms of the joint probability mass function p(x1,xs,x3) of X1, X, X3:

P(g(X1) = a1,9(X2) = az,9(X3) =az) = > p(a1,72,73).
bi:g(b1)=a1
ba:g(b2)=as
b3:g(b3):a3
Similarly, for any permutation (k1, ke, k3) of (1,2,3) we can write
P(g(Xk,) = a1,9(Xk,) = a2, 9(Xk,) = a3) = Z P(Xg, = a1, X, = a3, X, = a3).
bl:g(bl):al
ba:g(b2)=a2
bg:g(bg):a3
Since X7, X5, X3 are exchangeable, we have
P(Xy, = a1, Xy, = a3, Xp, = a3) = P(X1 = a1, X2 = a3, X3 = a3) = p(x1, 2, 73)
which means that
P(g(X/ﬂ) = al:.g(sz) = 0'279(Xk3) = a3) = P(g(Xl) = alvg(XQ) = CLQ,Q(X3) = CL3).

This proves that g(X1),9(X2),g(X3) are exchangeable.
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8.1. From the information given and properties of the random variables we deduce

1 2
EX=-, B(x¥)=°22

5 EY =nr, BE(Y?) =n(n—1)r? +nr.
p p

(a) By linearity of expectation, E[X +Y]=EX + EY = 1% + nr.
(b) We cannot calculate E[XY] without knowing something about the joint distri-

bution of (X,Y’). But no such information is given.

(c) By linearity of expectation, E[X?+Y?] = E[X?|+ E[Y?] = 22 +n(n—1)r? +
nr.

(d) E[(X +Y)?] = E[X? +2XY +Y?]| = E[X?] + 2E[XY] + E[Y?]. Again we
would need E[XY] which we cannot calculate.

8.2. Let X be the number showing on the k-sided die. We need E[X4+ X¢+ X12].
By linearity of expectation

E[X,+ X + X12] = E[X4] + E[X¢] + E[X12].

We can compute the expectation of X by taking the average of the numbers
1,2,...,k:

1 k(1) k41
BXd=2 7 3= (2k: - >
j=1

This gives

4+1+6+1 12+1 25
2 2 2 27
8.3. Introduce indicator variables Xp, X¢, Xp so that X = Xp + X¢ + Xp, by

defining X = 1 if Ben calls and zero otherwise, and similarly for X and Xp. Then
E[X]|=FE[Xp+ X¢c+ Xp|=E[Xp|+ E[Xc]+ E[Xp]=03+04+0.7=1.4.

167

E[Xy + X6+ X12] =
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8.4. Let I; be the indicator of the event that the number 4 is showing on the k-sided
die. Then Z = I + Ig + I12. For each k > 4 we have

1
E[I;] = P(the number 4 is showing on the k-sided die) = T

Hence, by linearity of expectation
B[] = BIL] + BlIs] + Bl = g+ 5 + 35 = 5.
4 6 12 2
8.5. We have E[X]| = % =3 and E[Y] = A = 4 from the given distributions. The

perimeter of the rectangle is given by 2(X +Y + 1) and the area is X (Y +1). The
expectation of the perimeter is

ER2(X+Y +1)]=FE@2X +2Y +2]=2E[X]+2E[Y]|+2=2-3+2-44+2=16,
where we used the linearity of expectation.

The expectation of the area is
EX(Y+1)])=FEXY+X]|=FE[XY]|+FE[X]|=E[X]E[Y]+E[X]=3-4+3=15.
We used the linearity of expectation, and also that because of the independence of
X and Y we have E[XY] = E[X]|E[Y].

8.6. The answer to parts (a) and (c) do not change. However, we can now com-
pute E[XY] and E[(X + Y)?] using the additional information that X and Y are
independent. Using the facts from the solution of Exercise about the first and
second moments of X and Y, and the independence of these random variables we
get

E[XY]=E[X]E]Y] =
and

E[(X+Y)]=EX?*+2XY +Y?] = E[X? +2E[XY] + E[Y?
= 2;p +@+n(n—1)r2+nr.
p p

8.7. The mean of X is given by the solution of Exercise As in the solution of
Exercise [B.3] introduce indicators so that X = Xp + X¢ + Xp. Using the assumed
independence,
Var(X) = Var(Xp + X¢ + Xp) = Var(Xg) + Var(X¢) + Var(Xp)
=03-0.74+04-0.6+4+0.7-0.3 =0.66.

8.8. Let X be the arrival time of the plumber and T the time needed to complete
the project. Then X ~ Unif[1,7] and T ~ Exp(2) (with hours as units), and these
are independent. The parameter of the exponential comes from the fact that an
Exp(A) distributed random variable has expectation 1/A.

We need to compute E[X + T and Var(X + T'). Using the distributions of X
and T we get

1+7 62 1 1 1
_ ittty Var(X) =2 =3, E[f]=3, Va(T)=5 =7

ElX
[] 2 ’ 22 4
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By linearity we get

1 9
BX +T) = E[X] + E[[] =4+ 5 = o
From the independence
1 13
Var(X + T) = Var(X) + Var(T) = 3 + 1T

8.9. (a) We have
E[BX —2Y + 7 =3E[X] - 2E[Y]+7=3-3-2-5+7=6,

where we used the linearity of expectation.
(b) Using the independence of X and Y

Var(3X —2Y +7) =9 Var(X) +4 - Var(Y) = 92 + 43 = 30.
(¢) From the definition of the variance
Var(XY) = E[(XY)?] — E[XY]*.
By independence we have E[XY] = E[X]|E[Y] and E[(XY)?] = E[X?|E[Y?], thus
Var(XY) = E[X?E[Y?] — E[X]?E[Y]?
= E[X?|E[Y?] — 925 = E[X?|E[Y?] — 225,
To compute the second moments we use the variance:
2 = Var(X) = E[X? - E[X]? = E[X?] -9
hence E[X?] = 9+2 = 11. Similarly, E[Y?] = E[Y]>+ Var(Y) = 25+3 = 28. Thus
Var(XY) = 11-28 — 225 = 83.

8.10. The moment generating function of X7 is given by

1 1, 1
Mx,(t) = E[e"X] =Y e*"P(X; = k) = 5+ ge’f + Eth.
k

The moment generating function of X5 is the same. Since X; and X, are inde-
pendent, we can compute the moemnt generating function of S = X; + Xo as
follows:

1 1 1 2
Ms(t) = My, (t) M, (t) = (2 T 662t> .

Expanding the square we get
1 1 5 1 1
Mol(t) = = 4 2ot o 22t 28t 1 a4t
s =339+ 35¢ Tg¢ T gg°

We can read off the probability mass function of S from this by identifying the
coeflicients of the exponential terms:

P(S=0)=1%, PS=1)=1% PS=2=3 PE=3)=4§ PS=4)=;.
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8.11. Introduce indicator variables Xpg, X¢c, Xp so that X = Xp 4+ X¢ + Xp,
by defining Xp = 1 if Ben calls and zero otherwise, and similarly for X& and
Xp. These are independent Bernoulli random variables with parameters 0.3, 0.4
and 0.7, respectively. By the independence, the moment generating function of
X = Xg+ X¢ + Xp can be written as
Mx (t) = Mx , () Mx, (t) Mx (t)-
The generating function of a parameter p Bernoulli random variable is pe! + 1 — p,
which means that
Mx (t) = (0.3¢" +0.7)(0.4e" 4-0.6) (0.7e' +0.3) = 0.126+0.432¢" +0.358¢% +0.084¢>".
8.12. (a) We need to compute
Myz(t) = E(et?) = / e fz(2)dz = / e N2z M dz = /\2/ ze~ A7z,
0 0

— 00

oo

If A —t < 0 then this integral is at least as large as A2 fooo zdz which is infinite.
If A—t¢ > 0 then we can compute the integral using integration by parts, or by
noting that fooo 2\ —t)e”AD2dy = 1= as the integral is the expectation of
an Exp(\ — t) distributed random variable. This gives

. if t <A
My (t) = { B0 1
z(t) {oo, i3> A
(b) We have seen in Example [5.6| that
A .
== ift <A
Mx(t) = My (t) =4 *V
x(t) = My (1) {oo, if > A

Since X and Y are independent, we have Mx v (t) = Mx (t)My (t). Comparing
with part (a) we see that X +Y has the same moment generating function as Z,
which means that they must have a the same distribution. (Since the moment
generating function is finite in a neighborhood of 0.)

8.13. We first find a random variable that has the moment generating function
1e7t+ 2 4 Le'/2. Reading off the coefficients of the e~*, e*/? and also considering
the constant term we get that if X has probability mass function

(-1 =35 p0)=% »;)=15
then Mx (t) = %eft—l—%—}—l—loet/z. Now take independent random variables X7, ..., X34
with the same distribution as X. By independence, the sum X; + --- 4+ X3¢ has a
moment generating function which is the product of the individual moment gener-
ating functions, which is exactly (fe~' + 2 + %et/z)36 = My(t). Hence Z has the
same distribution as X7 + - -+ + X3.

8.14. We need to compute E[X], E[Y], E[X?], E[Y?], E[XY]. All of these can be
computed using the joint probability mass function given in the table. For example,
EX]=1(+gt+2+5)+2 (F+H5+it+5)+3 (5+5+0+5)
11
6
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and
EXY]=1-0-%1-1-%+1-2- 2413 +2-0-5+2-1- 75
+2-2-2+42.3. L43.0-L+3.1-L+3.3- %
A
15
Similarly,
5 23 59
ElY]=<, E[X?’===, E[Y?==.
Then

Cov(X,Y) = E[XY] - E[X]E[Y] = — — — -

For the correlation we first compute the variances:

Var(X) = E[X?] — (B[X])? = 2 - (11) _w

6 \6 36
59 (5\° 52
Y)=E[Y? — (E[Y)? =22 (2) =22,
var(y) = BV - () = 32 - (5) =
From this we have
Comn(X,v) = —XY) T 053

V/Var(X) Var(Y) 21105
8.15. We first compute the joint probability density of (X,Y’). The quadrilateral
D is composed of a unit square and a triangle which is half of the unit square, thus
the area of D is % Thus the joint density function is
2
fxy(@y) = gl{@yeny-
To calculate the covariance we need to calculate

E[XY], E[X], E[Y].

1 27y 2 1 2
E[XY] =/ / 3y du dy:/ Gv2—y)dy
0 0 0

1

We have

24, 44 1 2 11 11
:6(2y_3y+4y> T6 1236
/-/Qdexd —/122—
o 6
<4yy +1y>12 -7
6 2 3 v 6 3 9

2y )
// fydwdy—/ 32—y dy
0
2 15\
s(y -3)

4
=9

2.2
s 3 3
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By the definition of covariance, we get

11 7 4 13

The fact that X and Y are negatively correlated could have been guessed from the
shape of D: as Y gets smaller, the value of X tend to get larger on average.

8.16. We have
Cov(X,2X 4+Y —3)=2Cov(X, X) + Cov(X,Y) = 2Var(X) + Cov(X,Y).
The variance of X can be computed as follows:
Var(X) = E[X?] — (E[X])* =312 =2.
The covariance can be calculated as
Cov(X,Y)=E[XY]-E[X|E[Y]=-4—-1-2=—6.
Thus
Cov(X,2X 4+Y —3)=2Var(X)+ Cov(X,Y)=2-2—-6= -2
8.17. We need E[X?] and E[X]. By linearity:
E[X|=E[Is+ 1] = E[la] + E[Ig] = P(A) + P(B) = 0.7.
Similarly:
E[X?| = E[(Ia+1Ip)?]| = E[I] + I}, + 21a15],
= E[I3] + E[I3] + 2E[Ialp].
We have I3 = I4, I3 = Ip and I4lp = I4p, hence
E[X?] = E[I3] + E[I3] + 2E[1415]
= P(A)+ P(B) 4+ 2P(AB) = 0.9.
Then
Var(X) = E[X?] — E[X]* = 0.9 — 0.7° = 0.41.
8.18. By the discussion in Section if X,Y are independent standard normals
and A is a 2 x 2 matrix then the coordinates of the random vector A[X,Y]T are
distributed as a bivariate normal with expectation vector [0,0]7 and covariance

matrix AAT. Choosing A = % [ } _11 } we get A[X,Y]" = [U,V]T. Since

AAT we get that the variance of U and V are both 1, and the covariance

_ 0
1001
of U and V is 0. Hence U and V are indeed independent standard normals.

Here is another solution using the Jacobian technique of Section [6.4] We have
U=¢(X,Y), V=~nX,Y) with

(x+y).

Sl

1
Z, = —|\T — s h X, =
9(z,y) ﬁ( y) (x,y)
Then the inverse of these functions is given by

L (u+v), r(u,v) =

Q(uv U) = ﬁ
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and the Jacobian is

1
J(u,v) = det l_\&l \?] =1.

V2 V2
Now using Fact we get that the joint density of U,V is given by

2 w2
fuv(u,v) = fX,Y(“JFU L) - QLB*%( =) -4 (%

2

The final result shows that U and V are independent standard normals.
8.19. This is the same problem as Exercise [6.15

8.20. By linearity, E[Xg + X10 + X22] = E[Xg] + E[Xlo] + E[XQQ] The random

variables X1, ..., X3 are exchangeable, thus E[X}] = E[X;] for all 1 < k < 30.
This gives

E[Xg + X0 + XQQ] = SE[Xl]

The value of the first pick is equally likely to be any of the first 30 positive integers,
hence

30
1 30-31 31
X ;;1 30 2-30 2
and
93
E[Xg + X0 —|—X22] e SE[Xﬂ e ?

8.21. Label the coins from 1 to 10, for example so that coins 1-5 are the dimes, coins
6-8 are the quarters, and coins 9-10 are the pennies. Let aj be the value of coin k

and let I be the indicator variable that is 1 if coin k is chosen, for k£ =1,...,10.
Then
10

X = Zakfk = 10([1 + -+ 1I5) +25(I(5 + I +Ig) + Iy + L.
k=1
The probability that any particular coin is chosen is

() _ s

E(Ii) = P(coin k chosen) = -

(o)~
Hence

10

EX =) apB(I)=10-5-3+25-3- 3 +2- 3 =381 (cents).

k=1
8.22. There are several ways to approach this problem. One possibility that gives
the answer without doing complicated computations is as follows. For each 1 < j <
89 let I; be the indicator of the event that both j and j + 1 are chosen among the

five numbers. Then X = Z?il I;, since if j and j + 1 are both chosen then they
will be next to each other in the ordered sample. By linearity

89 89
E[X] = E[Z L] = ZE[Ij]
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We can compute E[I;] directly by counting favorable outcomes:

88
E[I;] = P(both j and j + 1 are chosen) = EQZ’O; = %
Thus
2 20

801 89
Note that we could have expressed X differently as a sum of indicators, e.g. by
considering the indicator that the jth and (j + 1)st number among the chosen
numbers have a difference of 1. However, this would lead to indicators that are not
exchangeable, and the corresponding probabilities would be hard to compute.

E[X] = 89

8.23. (a) Let Y; denote the color of the i*" pick (i.e. Y; € {red, green}). Then
Y1, ..., Y50 are exchangeable so

P(Yag # Yag) = P(Yog = red, Yog = green) + P(Ya9 = red, Yo = green)
20-30 24
50-49 49

et I, be the indicator that Y; iy1foryg=1,...,49. en X =11 +---+1y9
b) Let I; be the indi hat Y; # Y1 forj =1 49. Then X =1 L
and by linearity

=2P(Y; = red, Y, = green) =2——

49 49
X]=Y E[L] =) P(Yi#Yi)
=1

i=1
By the exchangeability of the Y; random variables and part (a) we get

49

:ZP(Yi7’5Yi+1):49P(Y17éY2)_49@ 24.
i—1

Another (bit more complicated) solution for part (b):

Introduce labels for the 20 red balls (from 1 to 20). Let J;,1 < i < 20 be the
indicator that the i*” red ball has a green ball right after it, and K; be the indicator
that the i*" red ball has a green ball right before it. Then

20

X =3 (Ji+ K,

i=1

and by the linearity of expectation and exchangeability we have
ZE + ZE ] = 20E[J;] + 20E[K,]

Using exchangeability again:
49
P(Ji=1)= Z P(red ball # 1 is picked at position ¢ and a green ball is picked at ¢ + 1)
i=1
= 49P(red ball # 1 is picked at position 1 and a green ball is picked at 2)

:491-30 :i
50-49 5
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Same way we get P(K; = 1) = 2. Putting everything together:

E[X] =20E[J;]+20E[K;]=2-20- g = 24.
8.24. Let I; be the indicator of the event that Jane’s jth pick has the same color
as Sam’s jth pick. Imagine that we write down the picked colors as they appear,
all 80 of them. Then I; depends on the color of the (2j — 1)st and 2jth pick, and
since the colors are exchangeable, the I; random variables will be exchangeable as
well. We have N = 2?0:1 I;, and by linearity of expectation and exchangeability
we get

40 40
E[N] = E[Y_Ij] = E[I;] = 40E[L].
j=1 i=1
But
30 50
+ 83
E[I] = P(first two colors are the same color) = w =—,
(%) 158
by counting favorable outcomes within the first two pick. This gives
83 1660
E[N] =40- — = —— =~ 21.0127.
V] 158 79

8.25. (a) Let Y; denote the number of the ith pick. Then (Y7,Ys,...,Y10) is ex-
changeable, and hence

PYs>Y,)=PY1 >Ys)=P(Y,>Y)=1/2
In the last step we used that the numbers are different and this P(Y; > Y2)+P(Y2 >
Y1) =1.
(b) Let I be the indicator of the event that the number on the jth ball is larger
than the number on the (j — 1)st. (For j =2,3,...,10.) Then

X=L+I3+-+Io

and
10
EX|=FE[L+1Is+ - -+ I = Z P(jth number is larger than the (5 — 1)st).
j=2

Using part (a) we get that
P(jth number is larger than the (5 — 1)st) = 1/2
for all 2 < j < 10, which means that E[X] = 2;22 1=4
8.26. (a) Let I; be the indicator that the jth ball is green and the (j + 1)st ball is
yellow. Then X, = Z?:_ll I;. By linearity

n—1 n—1
BE[X,]=E[>_L]=Y_ E[L].
j=1 j=1
Because we draw with replacement, the colors of different picks are independent:
E[I;] = P(jth ball is green and the (j 4 1)st ball is yellow)

= P(jth ball is green) P((j + 1)st ball is yellow) =

O
Ol w
|
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This gives

4 4n-1)

= 27 27

(b) We will see a different (maybe more straightforward) technique in Chapter
but here we will give a solution using the indicator method. Let Ji denote the
indicator that the kth ball is green and there are no white balls among the first
k—1. ThenY = > 77, Ji. (In the sum a term is equal to 1 if the corresponding
ball is green and came before the first white.) Using linearity

E[Xn] =

EY]=E[Y_ Ji] = E[J]
k=1 k=1

o

P(kth ball is green, no white balls among the first £k — 1).

>
Il

1

(We can exchange the expectation and the infinite sum here as each term is
nonnegative.) Using independence we can compute the probability in question
for each k:

P(kth ball is green, no white balls among the first k¥ — 1)
= P(kth ball is green)P(first & — 1 balls are all green or yellow)

k-1
RO

This gives

- k—1

BYI=3 4 () =4y =2
k=1
Here is an intuitive explanation for the result that we got. The yellow draws

are irrelevant in this problem: the only thing that matters is the position of
the first white, and the number of green choices before that. Imagine that
we remove the yellow balls from the urn, and we repeat the same experiment
(sampling with replacement), stopping at the first white ball. Then the number
of picks is a geometric random variable with parameter % = % The expectation
of this geometric random variable is 3. Moreover, the number of total picks is
equal to the number of green balls chosen before the first white plus the 1 (the
first white). This explains why the expectation of Y is 3 —1 = 2.

8.27. For 1 <i < j < nlet I; ; be the indicator of the event that a; = a;. We need
to compute the expected value of the random variable X =3 _ ;1ij- By linearity
E[X] =3, Elli;]. Using the exchangeability of the sample (a1,...,a,) we get
for all ¢ < j that E[l; ;] = E[l12] = P(a1 = a2). Counting favorable outcomes (or
by conditioning on the first pick) we get P(a; = as) = % This gives

ElX] =Y Ell,] = (Z)P(al = ap) = (;‘) = z ) L

i<j

8.28. Imagine that we take the sample with order and for each 1 < k < 10 let
I be the indicator that we got a yellow marble for the kth pick, and Ji be the
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indicator that we got a green pick. Then X = 2]1@-0:1 Iy, Y = 2]14;0:] Jyand X -Y =
]160:1(1 r — Ji). Using the linearity of expectation we get

10 10

E[X -Y]=E[Y_(Ix = Jo)] = Y_(E[l] - E[Jy]).
k=1 k=1
Using the exchangeability of Iy,..., I1g, and Jp, ..., Jio:
10
EX-Y]= Z(E[Ik] — EJ;]) = 10E[I;] — 10E[J1].
k=1

By counting favorable outcomes:

Lo 25 5
E[I,] = P(first pick is yellow) = E =19
Lo 30 6
E[J;] = P(first pick is green) = %= 19
which leads to . 6 10
EX-Y]=10- 2 —10- — = ——.
[ ] 0 19 0 19 19

8.29. Let I; be the indicator that the cards flipped at j,j + 1 and j + 2 are all
number cards. (Here 1 < j <50.) Then X = 250:1 I; and E[X] = Z?il E[I;]. By
exchangeability we have

50
E[X] = Z E[I;] = 50E[I1] = 50P(the first three cards flipped are number cards).
j=1

Counting favorable outcomes (noting that there are 4 -9 = 36 number cards in the
deck) gives

36
21
P(the first three cards flipped are number cards) = 2532; =%
3
and 21 210
E[X]=50-—=—.
[X] =50 65 13

8.30. Let X be the number of the kth chosen ball and let I, be the indicator of
the event that X > X3_1. Then

N=I5L+1I3+ -+ I,

and using linearity and exchangeability

20 20
E[N] = E[> I =) E[l] = 19E[L,].
k=2 k=2

We also have
E[I;] = P(X1 < X3) = P(first number is smaller than the second).

One could compute the probability P(X; < X3) by counting favorable outcomes
for the first two picks. Another way is to notice that

1=P(X1<X2)+P(X1>X2)—|—P(X1=X2):2P(X1<X2)—|—P(X1=X2),
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where we used exchangeability again. By conditioning on the first outcome we see

that P(X; = X;) = {5, which gives

1-P(X;=X 9
2P(X1<X2): (21 2) :Tg

and E[N] = 19P(X; < X,) = 9.

8.31. Write the uniformly chosen number with exactly 4 digits (by putting zeros at
the beginning if needed), and denote the four digits by X7, X5, X3, X4. (Thus for
128 we have X1 =0, X5 =1, X3 =2, X4 = 8.) Then each digit will be uniform on
the set {0,...,9} (you can check this by counting), hence E[X;] = 1240 — 5
We have X = X; + X5 + X3 4+ X4 and hence

EX =E[X;+Xo+ X3+ Xy =4EX; =4-9/2 =18.
8.32. (a) We have
Iau = I(acnpeye =1 = Taepe =1 —Ipelpe =1 — (1 — I4)(1 — Ip).
Expanding the last expression gives
Taop=1-(1—-140)1-Ip)=1—-(1—=Is—Ig+1Ialp)=1a+1p—Islp.

The identity now follows by noting that I4Ip = 4.

Another approach would be to note that AB U AB° U A°B U A°B€ gives
a partition of €2, so any w € € will be a member of exactly one of AB, AB¢,
A°B or A°B°. For each of these four cases we can evaluate Iaug,Ia,IB,IaB
and check that the two sides of the equation are equal.

(b) This is immediate after taking expectation in the identity proved in part (a).
We have
Ellaup] = P(AUB)
and using linearity
ElIa+Ip — Ianp| = E[la] + ElIp] — E[lang| = P(A) + P(B) — P(AB).
Since the two expectations agree by part (a), we get P(AUB) = P(A)+ P(B)—
P(AB).
(¢) Let A, B, C be events on the same sample space. Then
Livpue = I(A°BSCC)® =1 — Lyepece
=1 Iyelpelce =1— (1—I4)(1—Ig)(1—Ic).
Expanding the product
Tavpue =1-(1—-14)(1-1p)(1 - Ic)
=1—-(1—Ia—Ip—Ic+Ialp+Ialc+Iglc —Ialglc)
=Ia+1Ip+1Ic—1alp—Islc —Iplc + Ialplc.
Using Iplg = Ipg repeatedly:
Tavpuc =Ia+1Ip+1Ic —Ialp —Ialc — Iplc + Ialglc
=Ia+Ip+1lc—1Iap—1Iac —Ipc+ IaBc.
Taking expectations of both sides now gives
P(AUBUC)=P(A)+ P(B)+ P(C)— P(AB) — P(AC) — P(BC) + P(ABC).



Solutions to Chapter 8 179

8.33. (a) For each 1 < a < 10 let I, be the indicator of the event that the ath
player won exactly 2 matches. Then we need
10
E[Z Ii] = Z P(the ath player won exactly 2 matches).
k=1
By exchangeability the probability is the same for each a. Since the outcomes of
the matches are independent and a player plays 9 matches, we have

9
P(the first player won exactly 2 matches) = (2) 279,

Thus the expectation is 10 - ( )2 9= 62
(b) Foreach 1 < a < b < ¢ <101let J, 4 be the indicator that the players numbered

a,b and c form a 3-cycle. We need E[Y 0, .. Jap.c] = > acvce ElJap,c]- There are

(130) such triples, and the expectation is the same for each one, so it is enough to

find

E[J1,2,3] = P(Players 1, 2 and 3 form a 3-cycle).
Players 1, 2 and 3 form a 3-cycle if 1 beats 2, 2 beats 3, 3 beats 1 (this has probability
1/8) or if 1 beats 3, 3 beats 2 and 2 beats 1 (this also has probability 1/8). Thus
ElJi23] =1/8+1/8 = 1, and the expectation in question is (130)7 = 30.
(¢) We use the indicator method again. For each possible sequence of different
players aq,as,...,a; we set up an indicator that this sequence is a k-path. The
number of such indicators is (17) - k! = ﬁ (we choose the k players, then
their order). The probability that a given indicator is 1 is the probability that a;
beats as, as beats as, ..., ar_1 beats ax which is 2=(k=1)  Thus the expectation is
(-
8.34. We show the proof for n = 2, the general case can be done similarly. Assume
that the joint probability density function of X1, X5 is f(x1,22). Then

Bln(0) + 92(X2)) = [ [ (o) + galaa)) flar, aa)drdos
oo o0
Using the linearity of the integral we can write this as

/ / g1(z1) f(z1, 22)dx1dxo +/ / g2(x2) f(x1, 2)dx1dxs.

Integrating out x5 in the first integral gives

/_i /_Z g1(z1) f(z1, 2)d21d2s = /_Z g1(r1) </_O:o f(xl,:rz)dx2> dxy.

Note that [*_ f(z1,z2)dws is equal to fx,(21), the marginal probability density
of X1. Hence

| o) ( | f(xl,xz)dﬂ«“z) dnr = [ g0 on)de: = Bl (50)

— 0o — 00 — 00

Similar computation shows that

/Z /Z g2(x2) f(x1, x2)dxrdus = Elga(X2)].

Thus Elg1(X1) + g2(X2)] = E[g1(X1)] + Elg2(X2)].
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8.35. (a) We may assume that the choices we made each day are independent. Let
Ji. be the indicator for the event that the sweater k is worn at least once in the 5
days. Then X = J; 4+ Js + J3 + J4. By linearity and exchangeability

4
E[X]=ElJi + Ja+ Js+ Ja] = Y E[Jy] = 4E[J1]
k=1
= 4P(the first sweater was worn at least once).

Considering the complement of the event in the last line:
P(the first sweater was worn at least once) = 1 — P(the first sweater was not worn at all)
5
(),
4
where we used the independence assumption. This gives
5
1
Bix]=af1-(2) ) =L
4 256
(b) We use the notation introduced in part (a). For the variance of X we need
E[X?]. Using linearity and exchangeability:
E[X?] = E[(Ji + o+ Js + Jo)°| = E[Y R +2)_ JiJi]
k=1 k<t

=4E[J}] +2 (3) E[J1J2] = AE[J?] + 12E[J1 ]3]

4

Since J; is one or zero, we have J? = J; and by part (a)
781

AE[J? = 4E[J;] = E[X] = ——.
2] = 4BLA] = BIX) = 22
We also have

E[JyJ2] = P(both the first and second sweater were worn at least once).

Let Ag denote the event that the kth sweater was not worn at all during the week.
Then

P(both the first and second sweater were worn at least once) = P(AJAS)
=1-P((A743)°) =1 - P(A1 U Ag)
=1—(P(A1) + P(A2) — P(A1A2)).
From part (a) we get P(A;) = P(A43) = (2)5, and similarly
P(A;A5) = P(neither the first nor the second sweater was worn) = (2)°.

Thus
E[J1J2] =1— P(A;) — P(A2) + P(A142) =1 —2(3)° + (3)°
and 2491
EX? = —+12(1-2(3)°+(3)°) = 256
Finally,

Var(X) = E[X?] — E[X]* = 22 — (I81)® ~ 0.4232.
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8.36. (a) Let Ij be the indicator of the event that the number k& appears at least
once among the four die rolls. Then X = I; +--- + I and we get

EX|=FE[L+---+1Ig] = E[L]+ -+ E[Ig] = 6E[1],
where the last step comes from exchangeability. We have
E[I,] = P(the number 1 shows up) = 1—P(none of the rolls are equal to 1) = 1—(%)4
which gives
BIX]=6(1-(3)").
(b) We need to compute the second moment of X. Using the notation of part (a):

EX?) = E[(Ii + -+ 1s)*] = ka+2211k
J1<k<6

6
=Y E[I}]+2 > E[LI].
k=1

J<k<6

Since I}, is either 0 or 1, we have [ ,3 = I;. Using exchangeability

E[X?) = Z (I} +2 > ElLIL]

j<k<6
6
Z Ik+2z E[I; 1]
k=1 j<k<6

— 6E[11] + 30E[I,I5).

We computed 6E[I7] in part (a), it is exactly E[X] = 6 (1 - (%)4> To com-

pute E[[1I5] we first note that I1I5 is the indicator of the event that both
the numbers 1 and 2 show up at least once. Taking complements and using
inclusion-exclusion:

E[I,I5] = P(both 1 and 2 show up at least once)
=1 — P(none of the rolls are equal to 1 or none of the rolls are equal to 2)
=1 — (P(the number 1 shows up) + P(the number 2 shows up)
— P(neither 1 nor 2 shows up))

=1 (@@ - @) = @) -2 ()

Collecting everything:

and

Var(X) = E[X?] — E[X]?
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8.37. (a) Let Ji be the indicator for the event that the toy k is in at least one of
the 4 boxes. Then X = J; 4+ Jo + - -- + J1p. By linearity and exchangeability
10

10
E[X]=E[Y_ Ji] =) ElJ] = 10E[J]
k=1 k=1
= 10P(the first toy was in one of the boxes).
Let Aj be the event that the kth toy was not in any of the four boxes. Then
E[X] =10P(Af) =10(1 — P(Ay)).

We may assume that the toys in the boxes are chosen independently of each other,
and hence

4
9
P(A;) = P(first box does not contain the first toy)* = (((120))) =(3)*
and 738
- — () = 22
Elx] =10 (1- (1)") = 5.

(b) We need E[X?] which can be expressed using the introduced indicators as

10 10
EX? =E[)_ )Y =ED_Ji+2Y  JiJi
k=1 k=1 i<k
10

=> E[J{]+2) E[J;Ji]

k=1 i<k
) 10
= 10E[Jf] +2( , | ElJ11o]
= 10E[J1] + 90E[J, J5)].

We used linearity, exchangeability and J; = Jf. Note that 10E[J;] = E[X] = 32
by part (a). Recalling the definition of Ay from part (a) we get

E[J1J2] = P(ATA3).
By taking complements,
PASAS) = 1— P((ASAS)) = 1 — P(Ay U Ay) = 1 — (P(Ay) + P(As) — P(A; Ay)).

As we have seen in part (a):

Py = Pa) =

and a similar computation gives

P(A1A2)::<é%3

This gives

E[J1Jo]=1- 2(%)4 + (;2)4

and

E[X?) = %ﬁ +90 (1 —2(3)* +(2)),
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which leads to

Var(X) = E[X?] — E[X]?
= I ro0 (1 - 208 + () - ()2
~ 0.8092.

8.38. Counsider the coupon collector’s problem with n = 6 (see Example .
Then we have one of 6 possible toys in each box of cereal, each with probability
1/6, independently of the others. Thus we can imagine that the toy in a given box
is chosen as the result of a die roll. Then finding all 6 toys means that we see all
6 numbers as outcomes among the die rolls. Hence the answer to our question is
given by the solution of the coupon collector’s problems with n = 6, by Example
the mean is 6(1+ 3 + & +  + £ + §) = 14.7 and the variance is

Cl+i+5+5+25) —6(L+5+3+5+1) =389

8.39. Let J; = 1 if a boy is chosen with the ith selection, and zero otherwise. Note
that E[J;] = P{X; = 1} = 17/40. Then X = Zl 1 Ji and using linearity and
exchangeability

17 51

15
=Y P{Ji=1}=15x — = —.
;{J b=15x 5=

Using the formula for the variance of the sum (together with exchangeability) gives

Var(X) = Var (Z J) Z Var(J;) + 2 Z Cov(J;, Ji)

i<k

= 15Var(J1) +15-14 COV(Jl, JQ),

Finding the variance of J; is easy since Jj is a Bernoulli random variable:

17 23
To find the covariance, we have
COV(Jl, Jg) = E[Jng] — E[Jl]E[JQ] [JlJQ] (40)2.

To find E[J;J3] note that J;J; = 1 only if a boy is called upon twice to start, and
zero otherwise. Thus, by counting favorable outcomes we get

(17) 34
E[WJo] = 255~ = —.
(%)~ 195
Collecting everything:
17 23 1955
V; =15 = +15-14- N3 = —.
ar(X) 0 10" (s~ (®)%) = 32

8.40. (a) We use the method of indicators. Let Jj be the indicator for the event
that the number £ is drawn in at least one of the 4 weeks. Then X = J; + Jo +
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-+« + Jgg. Then by the linearity of expectation and exchangeability we get

90 90
EX]=E|Y Jk] = ElJ]
k=1 k=1
— 90E[J1].
We have
E[J;] = P(1 is drawn at least one of the 4 weeks)
=1— P(1 is not drawn in any of the 4 weeks))
., _(89-88-87-86-85\" 85\
B 90-89-88-87-86) 90/ °
From this

E[X] = 90E[J;] = 90 (1 - (gg)j ~ 18.394.

(b) We first compute the second moment of X. Using the notation from part (b)

we have
90 2 90
EXY=E (ZJk> =E Y +2 > T
k=1 k=1 1<k<£<90
90
=Y E[J}]+2 > E[LJ]
k=1 1<k<€<90
) 90
= 90E[J?] +2- ( ) >E[J1J2],

where we used exchangeability again in the last step. Since Jy is either zero or
one, we have JZ = J;. Thus the term 90E[J?] is the same as 90E[J;] which is
equal to E[X]. The second term can be computed as follows:

E[J1J2] = P(both 1 and 2 are drawn at least once within the 4 weeks)
=1 — P(at least one of 1 and 2 is not drawn within of the 4 weeks))
=1— (P(1 is not drawn in any of the 4 weeks)
+ P(2 is not drawn in any of the 4 weeks)
+ P(neither 1 nor 2 is drawn in any of the 4 weeks)),

where we used inclusion-exclusion in the last step. We have

P(1 is not drawn in any of the 4 weeks)

4
85
= P(2 is not drawn in any of the 4 weeks) = (9()) ,
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and

88 .87-86-85-84\"
90 - 89 - 88 - 87 - 86

85-84\"
90-89 )

P(neither 1 nor 2 is drawn in any of the 4 weeks) = <

Putting everything together:
4 4 4
85 85 85 -84
E[X? = JRE - 1-2- (= —
[X~] 90( <90)>+90 89( <90> +<90~89)>
~ 339.59.
Now we can compute the variance:

Var(X) = E[X?] — E[X]? ~ 339.59 — (18.394)% ~ 1.25.

8.41. We have

EX))=E

(X“LnJ’X”f)] - %E {(Xl +oe +Xn)3} .

By expanding the cube of the sum and using linearity and exchangeability
_ 1 i
31 _ 3 X 2
ElX;]=—E S OXPH6 D XiX; X, +3) X7 X
k=1 i<j<k j#k
1 n
== STEXY+6 Y E[XiX;Xi]+3) E[X;X]
k=1

i<j<k Jj#k

1
=~ nE[X}] + 6(2) E[X1X,Xs] + 3n(n — 1) E[X?X,].
n

By independence
E[X1X5X3] = E[X1]E[X2]E[X3] =0, and E[X?X,] = E[X?]E[X,] =0,

hence

8.42. We have

E[X}=E
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By expanding the fourth power of the sum and using linearity and exchangeability

. 1
EB[X! = E{ZX,NLM > XX XiXe
= i<j<k<l
+12 ) XkaX@+62X§X,§+4ZX§Xk]
k<t i<k j#k
J#k,j#L

1 n
—42 (X} +24 Z E[X:X; Xy X/
k=1 i<j<k<l
+12 > EIXIXe X +6> EXIX[]+4>  E[X)X;]
k<t i<k j#k
J#k,j#L

1
= S E[X{]+24 (Z) E[X1 X2 X3X4]

+12-- <§) EIX2X,X3) + 6 (Z) EIX2X2] + 4n(n — 1) E[X3X,).

By independence

E[X1X2X3X4] = E[X1]E[Xo] E[X3]E[X4] =0, E[X{X,X3] = E[X{]E[X5]E[X3]
B[X{X2] = B[XT]E[X2] =0,  BE[X7X3] = B[X{]E[X3] = B[X7]”.

Hence

3n(n—1 ¢ 3(n-1)a?

) 212
n? B :ﬁ—'_ n3

- 1
BIX{] = —BIX{] +
8.43. (a) Note that E[Z2] = E[Z?] — E[Z;]? = Var(Z;) = 1, because E[Z;] = 0.
Therefore by linearity we have
E[Y] =) E[Z}] = nE[Z{] =
i=1
For the variance, by independence, using independence

Var(Y ZVar (Z%) = nVar(Z3).
i=1
We have
Var(Z3) = E[Z{] - B[Z}]*.
The fourth moment of a standard normal random variable in Exercisem E[Z{] =
3. Thus,
Var(Y) = nVar(Z7) = n(3 — 1) = 2n.

(b) The moment generating function of Y is
My(t) _ E[etY] _ E[et(leJngJr---JrZi)].

By the independence of Z; we can write the right hand side as a product of the
individual moment generating functions, and using the fact that the Z; are i.i.d. we
get

My (t) = M2 t)".

:0,
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We compute the moment generating function of Z? by computing the expectation
E[e!??]. We have

(2t l)z

1 > 2 2
E[etzf] = et e /2 d dz.
V2T J_so \/27r

This integral convergences only for ¢ < 1/2 (otherwise we integrate a function
that is always at least 1). Moreover, we can write this using the integral of the
probability density function of an N(0, 57) random variable:

(2t l)z

1
dz = ———.
\/2t = / /%% 2 — 1

el

Therefore,

=2ty fort<1/2
MY(t)_{ 00 for t > 1/2.

Using the moment generating function we calculate the mean to be
E[Y] = M{(0) = n.
For the variance, we first calculate the second moment,
E[Y? = M{(0) = n(n — 2) = n(n — 2).
From this the variance is
Var(Y) = E[Y?] — E[Y]? =n® — 2n —n® = 2n.
8.44. (a) From the definition

1 1 1
Mx (t) = ZPX = *et + 4€2t + §e3t

and similarly,
1 2 4
My(t) = ?€2t —+ ?€3t —+ ?6
(b) Since X and Y are independent, we have Mx vy (t) = Mx (t)My (t). Using the

result of part (a) we get

Mx iy (t) = Mx(t)My (t) = (3¢ + 3e* + £e¥) (2e* + 2e* + 2e™) .

4t

Expanding the product gives

eSt 3e4t 26515 26615 26715
M t=—4+—+—+—+ —.
xwwl=ggtogt 7+ +73
We can identify the possible values of X +Y by looking at the exponents. The

probability mass function at k is just the coefficient of e**. This gives

1 3 2 2 2
px+y(3) = 2%’ Px+y(4) = 2’ Px+y (D) = 7 px+y(6) = 7 px+v(7) = 7



188 Solutions to Chapter 8

8.45. Using the joint probability mass function we can compute

E[XY] =1-1 -pX,y(l, 1) +1-2 'pX7y(1,2) +2- 0~pX7y(2,O)

16
+2-1-pxy(2,1)+3-1-pxy(3,1)+3-2-pxy(3,2) = 9

E[X] =1 'pX,Y(L 1) +1 'pX’y(1,2) + 2 'px$y(2,0)
+2-pxy(2,1) +3-pxyv(3,1) +3 - pxy(3,2) =2,
E[Y] =1 -px7y(17 1) + 2 'pX7y(1,2) +0 'pX,y(Q,O)

8

+1-pxy(2,1)+ 1 pxy(3,1) +2-pxy(3,2) = 9
Then Cov(X,Y) = E[XY] — E[X]|E[Y] = ¥ — 2.8 = 0, which means that
Corr(X,Y) =0 as well.

8.46. The first five and last five draws together will give all the draws, thus X+Y =
6 and Y =6 — X. Then

Cov(X,Y) = Cov(X,6 — X) = — Cov(X, X) = — Var(X).
The number of red balls in the first five draws has a hypergeometric distribution
with Ny =6, Ng =4, N =10, n = 5. In Example we computed the variance of

such a random variable to get

N-—n Na Np 10-5 5 6 4 2
N-1 N N 10-1 10 10 3’

Var(X) =

This leads to Cov(X,Y) = — Var(X) = —

wln

8.47. The mean of X is given by the solution of Exercise As in the solution
of Exercise introduce indicators so that X = Xp + X¢ + Xp. Assumption (i)
of the problem implies that Cov(Xp, Xp) = Cov(X¢, Xp) = 0. Assumption (ii) of
the problem implies that

COV(XB,Xc) = E[XBXC] — E[XB]E[Xc]
—P(Xp=1,Xc=1)—P(Xg=1)P(Xc=1)
=P(Xc=1Xp=1)P(Xg=1)—P(Xg =1)P(Xc =1)
=08-0.3-03-04=0.12.

Then

Var(X) = Var(XB + Xco + XD) = Var(XB) + Var(Xc) + Var(XD)
+ Q[COV(XB, Xc) + COV(XB, XD) + COV(Xc, XD)]
=03-074+04-064+0.7-03+2-0.12=0.9



Solutions to Chapter 8 189

8.48. The joint probability mass function of the random variables (X,Y) can be
represented by the following table.

Y
o1 ]2]
13100

X
2| 55 | 15 | 0
30 0 |1

Hence, the marginal distribution are:
px(1) = 155, px(2) = 15, px(3) = 15
pY(O): %7 pY(l):%7 pY(Q): 100"
From these we can compute the following expectations:

ElX] =, EY]= . BEXY]=&

and so

Cov(X,Y)=E[XY] - EX]|E[Y] =& - 8. 1L - 18

8.49. We need E[X], E[Y], E[XY]. The joint density of X, Y is f(z,y) = 1((z,y) €
D)) (the area is 1) and the bounding lines of D are y =1, y = z, y = —x. We get

BIX) = [[ aftepindy - / 1 / wdrdy = / W2 (—y) /2y =0,

(z,y)eD
1 Yy 1 2
ElY] = // yf(fay)dmdy:/ / ydxdy:/ 2y2dy=§7
0 —1, 0
(z,y)eD Y
1 Yy 1
EXY] = // xyf(z,y)dydx :/ / xydxdy :/ (y*/2 — y(—y)*/2)dy = 0.
0 — 0
(#,y)eD Y
This gives

Cov(X,Y) = E[XY] - E[X]E[Y] = 0.
Solution without computation:
By symmetry we see that (X, Y") has the same distribution as (—X,Y"). This implies
E[X] = E|-X] = —E[X] yielding E[X] = 0. It also implies E[XY] = E[-XY] =
—E[XY] which gives E[XY] = 0. This immediately shows that

Cov(X,Y) = E[XY] — E[X]E[Y] = 0.

8.50. Note that if (z,y) is on the union of the line segments AB and AC' then
either x or y is equal to zero. This means that XY = 0, and Cov(X,Y) = E[XY]—
E[X|E]Y] = —E[X]E[Y].

To compute E[X] and E[Y] is a little bit tricky, since X and Y are neither
continuous, nor discrete. However, we can write both of them as a function of a
continuous random variable. Imagine that we rotate AC 90 degrees about (0,0) so
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that it C' is rotated into (—1,0). Let Z be a uniformly chosen point on the line
segment connecting (—1,0) and (1,0). We can get (X,Y) as the following function

of Z:
z,0), if2>0
gz = { &0 |
(0, —2z), if z < 0.
In other words: we ‘fold out’ the union of AB and AC so that it becomes the line

segment connecting (—1,0) and (1,0), choose a point Z on it uniformly, and then
‘fold’ it back into the original AB U AC.

The density function of Z is £ on (—1,1), and zero otherwise and X = h(Z) =
max(z,0). Thus

"1 ! 1
E[X]:/ imax(z,O)dz:/O gdz:z

-1

Similarly,
' 02 1
B = [ Gmax(-zo0)de == [ o= 7
This gives Cov(X,Y) = —E[X]E[Y] = _%_

8.51. We start by computing the second moment:
E[(X +2Y +2)?| = E[X? +4Y? + Z? + 4XY +2XZ + 4Y 7]
= E[X?| +4E[Y? + E[Z%] + 4E[XY] + 2B[X Z]| + 4E[Y Z]
=2+4-124+12+4-2+2-4+4-9
= 114.
Then the variance is given by
Var(X+2Y +Z) = E[(X+2Y +2)?|—(E[X +2Y +Z])? = 114—(1+2-3+3)? = 114—100 = 14
One could also compute all the variances and pairwise covariances first and use
Var(X+2Y+Z2) = Var(X)+4 Var(Y)+Var(Z)+4 Cov(X,Y)+2 Cov(X, Z)+4 Cov(Y, Z).
8.52. For the correlation we need Cov(X,Y’), Var(X) and Var(Y). Both X and Y
have Bin(20, 1) distribution, thus
11
'3 = 5.
Denote by Z; the number of heads among the coin flips 10(4 — 1) + 1,10(¢ — 1) +
2,...,10i. Then Zi, Zs, Z3 are independent, they all have Bin(10, 1) distribution,

and we have X = Z; + Z; and Y = Zs 4+ Z3. Using the properties of the covariance
and the independence of Z1, Zs, Z3:
COV(X, Y) = COV(Zl + ZQ, Z2 + Zg)
= COV(Zl, Zg) + COV(ZQ, ZQ) + COV(Zl, Zg) + COV(ZQ7 Zg)
5

1 1
= COV(Z2722) = Var(Zg) =10- § . 5 — 5

Var(X) = Var(Y) = 20

Now we can compute the correlation:
X,Y : 1
Corr(X,Y) = Cov(X,V) =—2_ =,
Var(X)Var(Y) v5-5 2
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Here is another way to compute the covariance. Let I; be the indicator of the event
that the jth flip is heads. These are independent Ber(1/2) distributed random

variables. We have X = Ziozl I and Y = 220:21 Ik, and using the properties of
covariance and the independence we get

20 30
Cov(X,Y) = Cov(> Ir, Y _ I))
k=1 j=11
30

20
=>" Y Cov(Iy,I;)

h=1j—=11
- = 11
— Z COV(Ik,Ik) = Z Var([k) =10- 5 . 5
k=11 k=11

8.53. (a) We have Cov(3X +2,2Y —3) =3-2Cov(X,Y). Also:
Cov(X,Y) = E[XY] - E[X]E[Y] = -1—1-2=—3.

Thus Cov(3X +2,2Y —3)=3-2-(-3) = —18.
(b) We have

Var(X) = E[X?|-E[X]?=3-12=2, Var(Y)=E[Y?]-E[Y]? =13-2?=09.
Using that Cov(X,Y) = —3 we get

Corr(X,Y) = Cov(X,Y) =3 1

Var(X) Var(Y) V2-9 V2
8.54. (a) We have
Var(X) = E[X?| - (E[X))?=5-22=1
Var(Y) = E[Y?] - (E[Y])’=10-1>=9
Cov(X,Y)=E[XY] - E[X|E[Y]=1-2-1=—1.

Then
Cov(X,Y) -1 1
Corr(X,Y) = = ———
mY) = V) Vis 3
(b) We have

Cov(X, X +¢Y) =Var(X) +cCov(X,Y)=1—-¢(-1)=1+c.
Thus for ¢ = —1 the random variables X and X + cY are uncorrelated.
8.55. Note that [4c =1 — 14 and Igc = 1 — Ig. Then from Theorem [8.36| we have
Corr(Igc,Ipe) = Corr(1—I4,1—-Ip) = (—1)-Corr(14,1—Ip) = (—1)-(—1)-Corr(I4,IB).
8.56. From the properties of variance and covariance:
Var(aX + ¢) = a* Var(X)

Var(bY + d) = b* Var(Y)
Cov(aX +¢,bY +d) = abCov(X,Y).
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Then

Corr(aX 4 ¢,bY +d) = Cov(aX + ¢,bY +d)
7 V/Var(aX + ¢) Var(bY + d)

B abCov(X,Y)
B \/a2b? Var(X) Var(Y)
ab Cov(X,Y) ab

" lal - [b \/Var(X) Var(Y) _ lal - [b]

The coefficient ﬁﬁb' islifab>0and —1if ab < 0.

Corr(X,Y).

8.57. Assume that there are random variables satisfying the listed conditions. Then
Var(X) = E[X?| - E[X]?=3-12=2, Var(Y)=E[Y) - E[Y]?=5-2*=1
and
Cov(X,Y)=FE[XY]-E[X]|E[Y]=-1-1-2=-3.
From this the correlation is

Cov(X,Y) -3 3

- v/ Var(X) Var(Y) B V21 B _ﬁ.

But f% < —1, and we know that the correlation must be in [—1,1]. The found

Corr(X,Y)

contradiction shows that we cannot find such random variables.

8.58. By the discussion in Section[8.5if Z and W are independent standard normals
then with

X =0ox7Z+ ux, Y =0ypZ+oyvV1—pP>W+py

the random variables (X,Y’) have bivariate normal distribution with marginals
X ~ N(ux,0%) and Y ~ N(uy,o%) and correlation Corr(X,Y) = p. Then we
have

U:2X+Y:(20)(+0yp)Z+Jy\/1—p2W+2ux+uy
V=X-Y=(ox—oyp)Z —oy\/1—pP*W+pux — py.

We can turn this system of equations into a single vector valued equation:
[U] B 20x +oyp  oy\1—p? [Z} n {2/@(—1—/13/]
1% ox —Oyp —0Oy /1_p2 w Ux — By

In Section it was shown that if Z, W are independent standard normals, A is a
2 x 2 matrix and g is an R? valued vector then A[Z, W]T + p is a bivariate normal
with mean vector p and covariance matrix AAT. Thus (U, V) is a bivariate normal

and we just have to identify the individual means, variances and the correlation of
U and V.
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Using the properties of mean, variance and covariance together gives

ElU] = ER2X +Y] = 2ux + py

E[V} = E[X —Y] = uUx — Uy
Var(U) = Var(2X +Y) = 4 Var(X) + Var(Y) + 4 Cov(X,Y) = 40% + 0% +4doxoyp
Var(V) = Var(X —Y) = Var(X) + Var(Y) — 2Cov(X,Y) = 0% + 0% — 20x0yp
)

= Cov(2X +Y, X —Y) = 2 Var(X) + Cov(X,Y) — 2Cov(X,Y) — Var(Y,Y)
=20% — 0% — 20x0yp.
We also used the fact that Cov(X,Y) = Corr(X,Y)y/Var(X) Var(Y).
Finally,
_ Cov(X,Y) _ 20% — 0% —20x0yp
VVar(U) Var(V)  \/(40% + 0% +4doxoyp)(ok + 0% —20x0yp)

Thus (U, V') has bivariate normal distribution with the parameters identified above.

Corr(U,V)

Remark: the joint density of U,V can also be identified by considering the joint
probability density of (X,Y") from (8.32)) and using the Jacobian technique of Sec-
tion to derive the joint density function of (U, V) =(2X +Y,X -Y).

8.59. We can express X and Y in terms of Z and W as X = g(Z, W), Y = h(Z,W)
with g(z,w) = oxz + pux and h(z,w) = oypz + oy/1 — p?w + py. Solving the
equations

r=oxz+ux, y=oypz+toyy1—piw+py
for z,w gives the inverse of the function (g(z,w), h(z,w)). The solution is

Z:w’ w = (y_NY)UX—(I—/Lx)pUY’

ox V1—pPoxoy

thus the inverse of (g(z,w), h(z,w)) is the function (q(z,y),r(z,y)) with

T — px (y — py)ox — (x — px)poy
q(z,y) = @) = = :
ox V31— poxoy
The Jacobian of (¢(x,y),r(z,y)) with respect to z,y is
1/0’X 0
P 1
ox\/1-p%  oy\/1-p?
Using Fact [6.41] we get the joint density of X and Y:
xr— ux — Uy )0x —\T — Ux )pPoy 1
fx,y(x,y)zfz,w( px (Y= my) (z — px)p ) _
Ox0y 1-— 14

ox maxo’y 2
1 22-;'“12

Since Z and W are independent standard normals, we have fz w (z,w) = 5-e
Thus

1

UXo'y\/l —p2'

J(x,y) = det [ _

fxy(@,y)= ! exp 1 (Jf—ux> 1 (y—py)ox — (z — px)poy
o 2noxoy/1-p? 2 ox 2 V1-ploxoy
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Rearranging the terms in the exponent shows that the found joint density is the
same as the one given in (8.32). This shows that the distribution of (X,Y) is
bivariate normal with parameters pux,ox, py, oy, p.

8.60. The number of ways in which toys can be chosen so that new toys appear at
times 1,1 +a1,14+ay4+ag,...,1+a1+ -+ ap_1is

n—1
n1m 7 (n=1)2%2 7 (n=2)-3% " (n=3) .- 2:(n—1)* "1 = - [ [ (n—k)-k*
k=1

The total number of sequences of 1 + aj + -+ + a,_1 toys is ntt@+ - Fan-1 The
probability is

n—1 ar—1 n—1 ap—1
B B onc s (n—k) kT n—k (k
P(Wl —0117...7Wn—1 —Cln—l) - n1+a1+___+an71 —kli[l n E

n—1

H P(Wk = ak).

k=1

where in the last‘step we used the fact that Wy, Ws, ..., Wy_1 are independent with
Wj ~ Geom(™-2).

8.61. (a) Since f(z) = % is a decreasing function, by the bounds shown in Figure

D3] we get
U] " 1

< Zde <y -

kZ_Qk—/l PP B,

k=1

Since ;" Ldx =Inn this gives

k=2 k=1
and
n—1 1 n 1
1 < - < -
ey
k=1 k=1
which together give 0 < >} | + —Inn < 1.

(¢) In Example we have shown that E[T,] =n)_;_; 1. Using the bounds in
part (a) we have

nlnn < nE[T,) <n(lnn+1)

from which lim,, % =1 follows.

‘We have also shown

n—1 n—1

1 1
Var(T,,) = n? SN =

= =

and hence

Var(T,) "f 1 181

Y 52 n

" =t =
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Since E;il ]% = %2 we have lim,, .o Z?:_ll ]% = %2. We also have 0 < E;:ll % <
Inn by part (a), and we know that lim,, e 22 = 0, thus lim,_, e %Z;L;l % —o.

2
But this means that lim,, ., Y2xTn) —

n2 6 °
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9.1. (a) The expected value of Y is E[Y] = %
use Markov’s inequality to get the bound P(Y > 16) < EV] _ 6 _3

16 16 — 8°
b) The variance of Y is Var(Y) = 4 = & = 30. Using Chebyshev’s inequality we
P
get

= 6. Since Y is nonnegative, we can

5

@
Q‘H‘m\c

Var(Y) 30 3
PY>16)=P(Y—-FEY]|>210)<P(lY-EY]|>10) L ——F = — = —.
(v > 16)= P(Y - E[Y] > 10) < P(Y - B[y]| 210) < Vo) _ X0 _ 3

(c) The exact value of P(Y > 16) can be computed for example by treating Y as
the number trials needed for the first success in a sequence of independent trials
with success probability p. Then

P(Y > 16) = P(first 15 trials all failed) = ¢'° = (5/6)'5 ~ 0.0649.

We can see that the estimates in (a) and (b) are valid, although they are not very
close to the truth.

9.2. (a) We have E[X] = 1+ =2 and X > 0. By Markov’s inequality

P(X>6)§%:é

(b) We have E[X] = § = 2, Var[X] = 35 = 4. By Chebyshev’s inequality

Var(X 4 1
P(X >6) = P(X — E[X] >4) < P(|X — E[X]| > 4) < % -5=7
9.3. Let X; be the price change between day ¢ — 1 and day ¢ (with day 0 being
today). Then C,, — Cy = X1 + Xa + -+ + X,,. The expectation of X; (for each 1)
is given by E[X;] = F[X;] =045-140.5-(—2)+0.05- (10) = —0.05. We can also

197
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check that the variance is finite. We have

P(Cp > Co) =P(C, —Co>0)=P()_X;>0)=P(L> X;>0)
=1 1=1

=p(L Zn:Xi — E[X,] > 0.05).

i=1
By the law of large numbers (Theorem we have

p(L Zn:Xi — E[X1] > 0.05) < P(| zn:Xi — E[X3]] > 0.05) = 0

i=1 i=1
as n — oo. Thus lim,_, . P(C, > Cp) = 0.

9.4. In each round Ben wins $1 with probability 12 and loses $1 with probability
21,)—2. Let Xj, be Ben’s net winnings in the kth round, we may assume that X, Xo, ...
are independent. We have p = E[X;] = 22 — 22 = —L_ If we denote by S the
total net winnings within the first £ rounds then Sy = X7 +- -+ Xj. By the law of
large numbers “%" will be close to p = —3—17 with high probability. More precisely,

for any € > 0 we the probability P( Sn + 3—17{ < 5) converges to 1 as n — oo.

This means that for large n with high probability Ben will lose many after n
rounds.

9.5. (a) Using Markov’s inequality:

E 1 2
P(x>15) < X 102
15 15 3
(b) Using Chebyshev’s inequality:
Var(X) 3

P(X>15)=P(X—-10>5) < = —

(c) Let S = Ef’gﬂ Y;. Use the general version of the Central Limit Theorem to esti-
mate P(S > 3030), by first standardizing the sum, then replacing the standardized
sum with a standard normal:

S —300-10 _ 3030 — 30010
P(S > 3030) =P >
( ) ( V3300 V3300 )

_P(S—300-10 >1)
V3300
~1—0(1)=1—0.8413 = 0.1587
9.6. Let X} denote the time needed in seconds to it the kth hot dog, and denote by
S,, the sum X7 +---+ X,,. Since 15 minutes is 900 seconds, we need to estimate the
probability P(Sgs < 900). By the CLT the standardized random variable SMT/%?
is close to a standard normal. Thus

Ses—64-15 900 — 64 - 15)
P(Ses < 900) = P <
(Sea ) ( V64 - 52 V64 - 42
900 — 64 - 15
~ ® () = §(—1.875) = 1 — B(1.875)
V61 - 42
~ 0.0304,
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where we used linear interpolation to approximate ®(1.875) using the table in the
Appendix.

9.7. Let X; be the size of the claim made by the ith policyholder. Let m be the
premium they charge. We desire a premium m for which

2,500
P (Z X; < 2,500 - m> > (0.999.
i=1
We first use Chebyshev’s inequality to estimate the probability of the complement.
Recall that p = E[X;] = 1000 and o = y/Var(X;) = 900. Using the notation
S =322 X, we have
E[S] = 2500p,  Var(S) = 250002
By Chebyshev’s inequality (assuming m > u)
P(5>2,500-m)=P(S—2500u > 2,500 (m—u))
Var(S) 2500900 324
= 25002 - (m —p)2 25002 - (m —p)2  (m— 1000)2"
We need this probability to be at most 1—0.999 = 0.001, which leads to % <
0.001 and

m > 1000 + ~ 1569.21.

18
+/0.001
Note that we assumed m > p which was natural: for m < u we can use Chebyshev’s
inequality that the probability in question cannot be at least 0.999.

1=

Now let us see how we can estimate P (22 100 X,; <2,500 - m) using the cen-

tral limit theorem. We have

S —2,500-1,000 _ 2,500 -m — 2,500 - 1,000
P(S§2500~m):P( ’ ’ N ’ )

<
v/2,500-900 v/2,500 - 900

g [ 2500(m 1,000)\ o (™ 1,000
- V2,500-900 ) 18

We would like this probability to be at most 0.999. Using the table in Appendix [E]

we get that @ (2=5%0) > 0.999 if 2=1%%0 > 3.1 which leads to m > 1055.8.

9.8. (a) This is just the area of the quarter of the unit disk, multiplied by 4.
(b) We have

11
/ / 4-I(2* 4+ y* < 1)dxdy = E[g(Uy,Us)]
o Jo

where Uy, Uy are independent Unif[0, 1] random variables and g(z,y) = 4-1(22+
y* < 1).

(c) We need to generate n = 10° independent samples of the random variable
g(U1,Us). If i is the sample mean and s2 is the sample variance then the

appropriate confidence interval is (i — 1'?%5" ,h+ 1'?%5” ).

9.9. (a) Using Markov’s inequality we have

P{X > 17,000} < _2
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(b) Using Chebyshev’s inequality we have

4,500 9
P{X > 7,000} = P(X — 5,000 > 2,000) < - = —— =0.001125.
{X 27,000} ( ’ 2 2,000) < 20002 8000

(¢) We want n so that
Sn
P (’ — 57000’ > 50) < 0.05.
n

Using Chebyshev’s inequality we have that
Var(S,/n) nVar(Xi) 4,500 9

P (’E;: —5,000’ > 50) <

502 02502 n-502 n-5
Hence, it is sufficient to choose an n so that
9 1 9-20
— <0.05=— >——=9-4=36.
n-5*005 20=>n7 5 9 36

9.10. We have

Var(Xy + -+ X,) = > Var(X;)+2 Y Cov(X;, X;).
=1

i<j<n
. _ P _ Cov(X;,X;)
Since we have Var(X;) = 4500, this gives Corr(X;, X;) = —z:5~>. Hence
0.5 - 4500 ifj=i+1
Cov(Xi, X;) = LT
0, ifj—i>2.

There are n — 1 pairs of the form 4,7 4+ 1 in the sum above, which gives
Var(X; + - -+ + X,,) = 4500n + 4500(n — 1) = 9000n — 4500.
Using the outline given in Exercise [9.9(|c) we get

Sh Var(S,/n)  9000n — 4500
_—— > < = .
5’000‘ = 50) =502 122500

r(|%

‘We need % < 0.05 which leads to n > 72.

9.11. (a) We have
My (t)=2-2(1—2t)7%/2 = 3(1 - 2t)~>/2

Thus,
M%(0) = E[X] = 3.
We may now use Markov’s inequality to conclude that

E[X] 3
— = — = 0.375.
8 8

(b) In order to use Chebyshev’s inequality, we must find the variance of X. So,
differentiating again yields

P(X >8) <

MY (t) = 15(1 — 2t)"7/2,

and so,
M"(0) = E[X? =15 = Var(X)=15-9=6.
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Thus, Chebyshev’s inequality yields

Var(X) 6
P(X =P(X — < —"2t=—=0.24.
(X >38) ( 3>5)< =2 9% 0
9.12. (a) We have F[X] = 2 and E[Y] = 1/2 which gives F[X + Y] = 5/2. Since
X +Y >0, we may use Markov’s inequality to get

E[X +Y] 5 1
< _ = = —.
P(X+Y >10) < 10 50 = 1
(b) We have Var(X) = 2 and Var(Y) = %, and by independence Var(X +Y) = %
Using Chebyshev’s inequality:
PX+Y>10)=P(X+Y -2>10-2)<P(|X+Y - 3| > 1)

Var(X +Y) % 1

STEr e
9.13. We have
10 1 2 20
F|X|=— Var(X)=10-= .2 ===
X]=%.  Va(x)=10-;-2=%
1
ElY] = 3 Var(Y) = =
From this we get
10 1 20 1 7
EX-Y]= 3—5:3, Var(X —Y) = Var(X) + Var(Y) = 5—1—5:5.

Now we can apply Chebyshev’s inequality:

PX—Y <—1)=P(X—Y -3<—4) < P(IX—Y —3| >4 < Y& =V)_ 7

42 48
9.14. To get a meaningful bounds we consider only ¢ > 2.
Markov’s inequality gives the bound
Im¥>ﬂ§EBﬂ:g.
t t
Chebyshev’s inequality (for ¢ > 2) yields
Var(X) 9

P(X>t)=P(X-FE[X]>t-2)<P(|X-E[X]|>t-2) < (t —2)2 = (t—2)2

Solving the inequality % < ﬁ gives 1/2 < t < 8, and since ¢ > 2, this leads to

2<t<8.

9.15. Let X; and Y; the number of customers coming to Omar’s and Cheryl’s truck
on the ith day, respectively. We need to estimate P(>",_, X; > >__, Yi) as n gets
larger. This is the same as the probability
n 1 n
PO (Xi—Y)>0)=P|-S(X;-Y) >0

The random variables Z; = X; — Y; are independent, have mean E[Z;] = E[X;] —
E[Y;] = 10 and a finite variance. By the law of large numbers the average of these
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random variables will converge to 10, in particular

1o 1

P (n Y (Xi-Yi) < 0) =P (n > (Zi - E[Z]) < —10)
k=1 k=1

will converge to 0 by Theorem But this means that the probability of the

complement will converge to 1, in other words P(}_;_, X; > >"}_, Yi) converges

to 1 as n gets larger and larger.

9.16. Let U; be the waiting time for number 5 on morning ¢, and V; the waiting time
for number 8 on morning ¢. From the problem, U; ~ Exp(l—lo) and V; ~ Exp(%).
The actual waiting time on morning ¢ is X; = min(U;, V;). Let Y; be the Bernoulli
variable that records 1 if I take the number 5 on morning . Then from properties
of exponential variables (from Examples and

1

10 20

Since S, =Y i, X; and T, = Y., Y;, we can answer the questions by the LLN.

(a)

nh_}rr;o P(S, <7Tn) = nll)rr;o P(S, —nE(X1) < in)
. Sn _
> lim P( |%2 —E(X))|<3) =1

lim P(T, > 0.6n) = lim P(T,, —nE(Y1) > —=n)

n— oo n— oo

> lim P(

n—oo

5
T oEM)| <) =1

9.17. (a) Using Markov’s inequality we have

(b) Using Chebyshev’s inequality we have
Var(X) 100 1
P(X >1200=P(X -1 0 < —F = — =,
(X'>120) = P(X 100> 20) < 5= = 355 = 1

(c) We have that X = Zjﬂ? X; where the X; are i.i.d. Poisson random variables
with a parameter of one (hence, they all have mean 1 and variance 1). Thus,

P(X >120)=P (% X; > 120) =P (%(Xi —1)> 20)

i=1

P(E:E%/(l%_l)>2>zp(z>2),

where Z is a standard normal random variable and we have applied the CLT in the
last line. Hence,

P(X >120) ~ 1 — ®(2) = 1 — 0.9772 = 0.0228.
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9.18. (a) From Example[8.13| we have E[X] = 100 - + = 300. Hence by Markov’s

W=

inequality we get

E[X] 300 3
P(X < BlAL_ 3003
(X'>500) = 65" = 500 = 5

1—

col=

o = 600. Then from

(b) Again, from Example [8.13[ we have Var[X] = 100 -

—
ol

Chebyshev’s inequality:

P(X > 500) = P(X — E[X] > 500 — 300)
Var(X) 600 3
=_—— = =0015.
=000~ 2002 200 U

(¢) By the CLT the distribution of the standardized version of X is close to that
of a standard normal. The standardized version is =29 hence

V600 *
P(X > 500) = P (% > %%00) ~1-@(22) & 1 B(8.16) < 0.0002.

(In fact 1 — ®(8.16) is way smaller than 0.0002, it is approximately 2.2-10716.)

(d) We need more than 500 trials for the 100th success exactly if there are at most
99 successes within the first 500 trials. Thus denoting by S the number of
successes within the first 500 trials we have P(X > 500) = P(S < 99). Since
S ~ Bin(500, %), we may use normal approximation to get

g 500 o 500 99 500

P(S<99) =P 3 <273 | ~o 225 | ~ a(—6.42) < 0.002
\/500% \/500% \/500-2

(Again, the real value of ®(—6.42) is a lot smaller than 0.0002, it is approxi-
mately 6.8 -10711)

9.19. Let X; be the amount of time it takes the child to spin around on his ith
revolution. Then the total time it will take to spin around 100 times is

S100 = X1+ -+ + X100

We assume that the X; are independent with mean 1/2 and standard deviation
1/3. Then E[S199] = 50 and Var(Sig) = 1%. Using Chebyshev’s inequality:
V&I‘(Smo) 100 4

P(Xi 4+ X — P(Xy 4+ X100 — < _ _Z
(X1 + -+ X100 > 55) (X1 4+ X100 — 50 > 5) < 52 995 9

If we use the CLT then

Xi+ -+ Xigo — 50 55 — 50
P(X1+-~-+X100>55):P< ! 100 )

VI00-(1/3) V100 (1/3)
5

10- (1/3)

— P(Z>15)=1-P(Z < 15)

~ P(Z >

=1-0.9332 = 0.0668.
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9.20. (a) We can use the law of large numbers:
lim P(S, > 0.0ln) = lim P(S, —nE[X;] > 0.01n)
n—oo n—oo
< lim P(]2= — E[X;]| > 0.01) = 0.
n—roo

Hence the limit is 0.

(b) Here the central limit theorem will be helpful:

lim P(S, >0) = lim P(f}% >0)=1-®(0) = 5.
The limit is 3.
(¢c) We can use the law of large numbers:
nh_{r;o P(S, > —-0.01n) = nh_{rgo P(S, —nE[X;] > —0.01n)
> lim. P(|%2 — E[X4]| £0.01) = 1.
Hence the limit is 1.
9.21. Let Z; = X; — Y;. Then
E[Z] = E[Xi]-E[Y;] =2-2=0,

Var(Z;) = Var(X,;-Y;) = Var(X;)+Var(Y;) = 342 = 5.
We have

500 500 500
P(ZXZ->ZY;+50> :P<ZZZ->50>.
i=1 i=1 i=1

Applying the central limit theorem we get

500 500
00 7.
P(ZZi>5O>P<Zz_1 > o >
=1

V5005~ v/500-5

20
rl-P| ——= | =1-2(1
(\/500~5> M)
~1—0.8413 = 0.1587.

9.22. If we can generate a Unif[0, 1] distributed random variable, then by Example
we can also generate an Exp(1) random variable by plugging it into In(1 — z).
Then we can produce a sample of n = 10° independent copies of the Y random
variable given in the exercise. If fi is the sample mean and s2 is the sample variance

from this sample then the 95% confidence interval for the integral is (i— %\/7'—5", o+
1.?%5" ).
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10.1. (a) By summing the probabilities in the appropriate columns we get the
marginal probability mass function of Y:

We can now compute the conditional probability mass function px |y (z[y) for y =
0,1,2 using the formula px |y (z]y) = pxy(@y) Yy get

py (Y)
px|v(2[0) =1,
pxy() =1, pxy@D =3 pxpB)=1
pxy(22) =1, pxpy(32) =1

(b) The conditional expectations can be computed using the conditional probability
mass functions:
EIX|Y = 0] = 2pxy(210) = 2
EIX|Y =1] = Ipxpy (1]1) + 2px)y (2[1) + 3px )y 3[1) = 1 +2- 3 + 3
EX|)Y =2]= 2pX|Y(2|2) + 3px\y(3|2) =2 % +3- % = %

10.2. (i) Given X =1, Y is uniformly distributed. This implies px y(1,1) = é.
(ii) pxy(0]0) = % This implies that

,_pxv(0.0) _ pxy(00) _ pxy(0,0)

3 py(0)  pxy(0,0) +pxy(1,0)  px,y(0,0)+ 1

which implies px y(0,0) = %.

205
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(iii) E(Y|X =0) = 2. This implies
2 =0-pyx(0[0) + 1 py|x(1]0) + 2 py|x(2/0)
PXY(O 1) +2pxy(0,2) px,v(0,1) + 2px v (0,2)
px (0) ~ pxv(0,0) + pxy(0,1) + pxy(0,2)

_ pxy(0,1) + 2(2 — px,v(0,1))
2+ pxy(0,1)+ 2 —pxy(0,1)

With the previously known values of the table, the fact that probabilities sum
to 1 gives 2 + px y(0,1) 4+ px,y(0,2) = 1 and we can replace px,y (0,2) with
§ — px,v(0,1). From the equation above we deduce px y(0,1) = % and then
pX v(0,2) = §.

The final table is

3

ool | ool || DD

X 0
1

ool | colNo
ool—| ool || =

10.3. Given Y = y, the random variable X is binomial with parameters y and 1/2.
Hence, for x between 0 and 6, we have

px(x ZPX\Y zly)py (y Z( >2y %

y=1 =

where (¥) =0 if y < « (as usual).

For the expectation, we have

6 6
BIX) = 3 EIXIY =ulr () = 3§
y=1 y=1

10.4. (a) Directly from the description of the problem we get that

w\cr:
oﬂ»—‘

px|n(kn) = (Z)(é)" for 0 < k <n <100.

(b) From knowing the mean of the binomial, E[X|N = n] = n/2 for 0 < n < 100.

()

100 100
E[X]=) E[X|N =n]pn(n) anpN =1E[N]=13-100-1 =2,
n=0

Above we used the fact that N is binomial.
10.5. (a) The conditional probability density function is given by the formula:

j}(ﬁ’(ray)

Ixy(zly) = @)
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if fy(y) > 0. Since the joint density is only nonzero for 0 < y < 1, the Y variable
will have a density which is only nonzero in 0 < y < 1. In that case we have

o'} 1
frt) = [ pevwadu= [ Zue-w=yd

12 0, 1.5 1 L, 12,0 1 1. 8
=g wioge gy =S -5 - =5
Thus, for 0 < y < 1 we have

Ixy(zly) = Fr2 -z —y) _ Gz(2—a— y)

(b) We have

1 3 3 ler(2—z—3
P> 3 =3 = [ partely == [ EE g,

: ;o 4-%

24 (1 5 245, 1,1 245 1 5 1
2 _2)d (S - 22, = S_-_Z 4=

7 %x(4 De=7(Gr’ —z’); =G -3 -5 T 3p)

247 11, 2417 17

3 Lo6x(s — ) 24 (1 5 24 5 1 41
EX|Y =-|= 4 de = == 22 _ Ddr = 9.3+, 4
X1 | /ox Zm 7 ), T g T odr =gt = 70l
_Al _4
76 T

10.6. (a) Begin by finding the marginal density function of Y. For 0 < y < 2,

> Yy
fy(y):/ f(xvy)dl’:i/ (z+y)de = 342
oo 0
Then for0 <z <y < 2

frly) 3 w2
(b) For y =1 the conditional density function of X is

Ixy(zly) =

fxpy(@|l) = 2(z+1) for 0 <z <1 and zero otherwise.

We compute the conditional probabilities with the conditional density function

1/2 1/2
P(X <3|y =1)= fx|y(.’)3|1)d$:§/ (x+1)de =
o 0

Sler

and

3/2 1
P(X <3|y =1)= fX|y(x|1)dx=§/ (@ + 1) de = 1.
o] 0

Note that integrating all the way to 3/2 would be wrong in the last integral
above because conditioning on Y = 1 restricts X to 0 < X < 1.
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oo

(¢) The conditional expectation: for 0 < y < 2,
rry de = Ty2.

Yy
BIX?)Y =] = / 2 ey (aly) dy = 2 / o2 4

— 00
For 0 < = < 2, the marginal density function of X can be obtained either
from

oo 2
i@ = [ Sy =1 [@rpdy =3+ do- 3,

or equivalently from

oo 2
fx(x):L fX\y<x|y)fy(y)dy:i/ (xty)dy=1+ Lo 322

With the marginal density function we calculate E[XQ];
o 2
o) = [ = [ - gt 3
oo 0

We can get the same answer by averaging the conditional expectation:

o0

/_ EX?Y =ylfy()dy=1% | v*fr(y)dy=5E[Y?]

2
SR
10.7. (a) Directly by multiplying, fxy(=,y) = fx)y(z|y)fy(y) = 62 for 0 <z <
y <1
(b)
L ox 2
fx(x) = ?~3y dy = 6z2(1 — x), 0<z<l

_fxy(@y) 1
fY\X(y|$) - fX(m) - 11—’

Thus given X = z, Y is uniform on the interval (z,1). Valid for 0 < z < 1.

O<r<y<l.

10.8. (a) From the description of the problem,
¢ m —-m
py|x (m|l) = (m) (B3 for 0 <m < 4.
From knowing the mean of a binomial, E[Y|X = (] = /. Thus E[Y|X] = §X.
(b) X ~ Geom(g), and so E(X) = 6. For the mean of Y,
EIY] = BIE(Y|X)] = 4B[X] = § -6 = %,
10.9. (a) We have

fr(y) = /:’0 flz,y)dz = /OOO éeﬂc/ye*ydw — eV

if 0 < y and zero otherwise. We can evaluate the last integral without computation
if we recognize that %e*‘”/ Y is the probability density function of an Exp(1/y)
distribution and hence its integral on [0, c0) is equal to 1.
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From the found probability density fy (y) we see that ¥ ~ Exp(1) and hence
E[Y] =1. We also get
f(xa y) 1efz/y

fX|Y($|Z/) = Fr(y) :i

if0<x,0<y,

and zero otherwise.

(b) The conditional probability density function fx|y (x|y) found in part (a) shows
that given Y = y > 0 the conditional distribution of X is Exp(1/y). Hence
E[X|Y =y]=4+ =yand E[X|Y] =Y.

(c) We can come)ute E[X] by conditioning on Y and then averaging the conditional
expectation:

E[X] = E[EX|Y]] = E[Y] =1,
where in the last step we used part (a).

10.10. (a)

n _
px|n(k|n) = (k)pk(l—p)" k for 0 <k <n.

From knowing the expectation of a binomial, E(X | N = n) = np and then
E(X|N) = pN.
(b) E[X] = E[E(X|N)] = pE[N] = pA.
(¢) We use formula (10.36) to compute the expectation of the product:
E[NX]= E[E(NX|N)| = E[N E(X|N)] = E[N - pN] = pE[N?] = p(A\® + \).
In the last step we used E[N] = Var[N] = X and E[N?] = (E[N])? + Var[N].

The calculation above can be done without formula (10.36) also, by manipu-
lating the sums involved:

E[XN] =Y knpxn(k,n) =D knpxn(k|n)py(n)
k,n k,n

= anN(n)kaX‘N(Mn) = anN(n) E(X|N =n)
n k n
=pY_n’pn(n) =pE[N?] = p(\* + ).

Now for the covariance:
Cov(N,X) = E[NX]— EN -EX =p(A2 4+ X) — XA -p\ = pA.

10.11. The expected value of a Poisson(y) random variable is y, and the second
moment is y + y%. Thus

EIX|Y =yl=y,  E[X’)Y =yl=y¢"+y,
and E[X|Y] =Y, E[X?|]Y] = Y2 +Y. Now taking expectations and using the the

moments of the exponential distribution gives

E[X] = EIEX|Y]] = E[Y] = +

> =

and

E[E[X?|Y]|= E[Y?+Y] = % - %
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This gives
2 1 1 1 1
_ 2 2 _ _
Var(X) = E[X%] - BIXP = 2 41 - =L d
10.12. (a) This question is for Wald’s identity.

1y1 L
ElSn] = EIN]- BRG] =p=" - A7 = <.

(b) We derive the moment generating function of Sy by conditioning on N. Let
t € R. First the conditional moment generating function. As in equation
and in the proof of Wald’s identity, conditioning on N = n turns Sy
into S,,. Then we use independence and identical distribution of the terms Xj;.

E[etSN ‘N _ n] _ E[etSn] — E|: ﬁetX¢:| — ﬁE[etXw]
i=1 i=1
00 ift > A,

= )\ n
— if t <A
<)\—t) 1t <

Above we took the moment generating function of the exponential distribution
from Example [5.6
Next, for t < A, we take expectations over the conditioning variable N:

E[e'5V] = E[E(e'¥|N)] = Y E[e"¥|N = n]px(n)

n=1
oo A n - p)\ o] )\(1—]?) n—1
_ A 1— n—1 _
2 () o= (4
A
=
_17)\17p)_pA7t

With ¢ < A the geometric series above converges if and only if

A1 —
% < 1 if and only if ¢ < pA.
The outcome of the calculation is
00 if t > pA,
E[etSN] = p)\
if ¢t < pA.
pA—t ! b

Comparison with Example shows that Sy ~ Exp(p)).

This problem can be solved without calculation by appeal to the properties of
the Poisson process in Section [7.3]and Example[10.14] Namely, start with a Poisson
process of rate \ of customers that arrive at my store. By Fact [7.26] the interarrival
times of the customers are ii.d. Exp(\) random variables that we call X7, X,
X3, etc. Suppose each customer independently buys something with probability p.
Then the first customer who buys something is the Nth customer for a Geom(p)
random variable N. This customer’s arrival time is Sy.
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On the other hand, according to the thinning property of Example the
process of arrival times of buying customers is a Poisson process of rate pA. Hence
again by Fact the time of arrival of the first buying customer has Exp(p))
distribution. Thus we conclude that Sy ~ Exp(pA). From this, E[Sy]| = 1/(p)).

10.13. The price should be the expected value of X. The expectation of a Poisson(\)
distributed random variable is A, hence we have E[X|U = u] = v and E[X|U] =U.
Taking expectations again:

E[X] = E[E[X|U]]=E[U]=5
since U ~ Unif[0, 10].

10.14. Given the vector (t1,...,t,) of zeroes and ones, let m be the number of ones
among t1,...,t,. Permutation does not alter the number of ones in the vector and
so m is also the number of ones among ¢, , ..., tr, . Consequently

P(Xy=t,Xo=t2,..., X, =ty)

1
:/ P(Xl :tl,XQZtQ,...,Xn:tn|§:p)dp
0

1
= / p" (1 —p)" " dp
0
and similarly

P(Xy =tr,, Xo =tgyy ..., Xn =tg,)

1
:/ P(X1 :tk17X2:tkz,---aXn:tkn|§:p)dp
0

1
_ / pm(l _p)n—m dp
0
The two probabilities agree.

10.15. (a) This is very similar to Example and can be solved similarly. Let
N be the number of claims in one day. We know that N ~ Poisson(12). Let N4 be
the number of claims from A policies in one day, and Ng be the number of claims
from B policies in one day. We assume that each claim comes independently from
policy A or policy B. Hence, given N = n, N4 is distributed as a binomial random
variable with parameters n and 1/4. Therefore, for any nonnegative k,

P(Noa=k)=Y_ P(No=kN =n)P(N =n)

n=0

S (M () (B) e
= \k)\4 4 n!

1 /1\" = 1 3 ok
= — (=) 12k 12 .12

k! <4) c ; (n—k)! <4 >

_ 1 k-lzoogj_l ko120 33"
—E3e ;ﬁ—gi’)e e’ =e .
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Hence, N4 ~ Poisson(3), and we can use this to calculate P(N4 > 5):

4 4
P(Ns>5)=1-Y P(Ns= Ze —~01847
k=0 '

=0
(b) As in part (a), we can show that Np ~ Poisson(9), which gives

k

4
09
P(Np>5)=1-Y P(Ng=k)=1-) e 7~ 0.9450.
k=0

9 9 k
P(N>10)=1-) P(N=k)=1- Ze—”% ~ 0.7576.
k=0 k=0
10.16. There are several ways to approach this problem. We begin with an ap-
proach of direct calculation. The total number of claims is N ~ Poisson(12).
Consider any particular claim. Let A be the event that this claim is from policy
A, B the event that this claim is from policy B, and C' the event that this claim is
greater than $100,000. By the law of total probability

P(C) = P(CIA)P(A) + P(CIB)P(B) =3 - { + 1§ = 5.

Let X denote the number of claims that are greater than $100,000. We must
assume that each claim is greater than $100,000 independently of the other claims.
It follows then that given N = n, X is conditionally Bin(n We can deduce the
p-m.f. of X. For k > 0,

= ZP( =k|N =n)P(N =n) = Z (Z)(Qz))k(ég)”—ke—um

720)

n!
n=~k

_ (%)k —-12 12 (%)n—k12n—k _ (%)ke—mli (3??)]

T (n—k)! Kl £ )1

n=~k 7=0
s a ()
k,—12

=(E) e e =y

We found that X ~ Pmsson(%) From this we answer the questions.

_ 21

(a) EX]= 5.
21 21

(b) P(X<2)=e 5 (1+ 2 +1(2)?)=¢5 2 ~0.2L

We can arrive at the distribution of X also without calculation, and then solve
the problem as above. From the solution to Exercise N4 ~ Poisson(3)
and Np ~ Poisson(9). These two variables are independent by the same kind of
calculation that was done in Example Let X 4 be the number of claims from
policy A that are greater than $100,000 and let X5 be the number of claims from
policy B that are greater than $100,000. The situation is exactly as in Problem
and in Example [10.13] and we conclude that X4 and Xp are independent
Wlth distributions N4 ~ P01sson(12) and N ~ Poisson(2). Consequently X =

5 5
Xa+ Xp ~ Poisson(2).
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10.17. (a) Let B be the event that the coin lands on heads. Then the conditional
distribution of X given B is binomial with parameters 3 and %, while the
conditional distribution of X given B¢ is Bin(5, %) From this we can write down

the conditional probability mass functions, and using the unconditional

one:

P(X = k) = P(X = k|B)P(B) + P(X = k|B°)P(B°)

I CAYEANEA R B A YA AN AT

- \k/\6 6 2 \k/\6 6 2"
The set of possible values of X are {0,1,...,5}, and the formula makes sense
for all k if we define (‘;) as 0if b > a.

(b) We could use the probability mass function to compute the expectation of
X, but it is much easier to use the conditional expectations. Because the
conditional distributions are binomial, the conditional expectation of X given
Bis E[X|B] = 3- ¢ = 3 and the conditional expectation of X given B® is
E[X|B°]|=5-%=2. Thus,

c c 1 1 5. 1 2
E[X] = E[X|BIP(B) + EIX|BIP(B) = 1-14+3.1 =2,

10.18. Let N be the number of trials needed for seeing the first outcome s, and Y’

the number of outcomes ¢ in the first N — 1 trials.

(a) For the equally likely outcomes case P(N = n) = (=2)""11 for n > 1. The
joint distribution is, for 0 < m < n,

P(Y =m,N =n) = P(m outcomes ¢t and no outcomes s

in the first n — 1 trials, outcome s in trial n)

- (" hereEyT

m

The conditional probability mass function of Y given N = n is therefore

Thus given N = n, the conditional distribution of ¥ is Bin(n — 1, -15). From

knowing the mean of a binomial,

E[Y|N =n] = 2=,

r—1

Hence E(Y | N) = Y=L and then

EY]=EE[Y|N]| = E[f5] = ;5 (EIN| - 1) = 5 (r-1) =1

r—1



214 Solutions to Chapter 10

(b) In this case P(N =n) = (1 — ps)" !ps for n > 1. The joint distribution is, for
0<m<n,

P(Y =m,N =n) = P(m outcomes ¢ and no outcomes s

in the first n — 1 trials, outcome s in trial n)

n—1 1
- < m >pl”(1 —ps— )" s
The conditional probability mass function of Y given N = n is therefore

_PY=m,N=n) ("1 —ps—p)" ' "ps
prin(min) = =5y = (1= ps)"~1ps

- (nml)(lf;’s)m(l 15;)5)“7177%’ 0<m<n-—1

Thus given N = n, the conditional distribution of Y is Bin(n — 1, 1_”; ). From

knowing the mean of a binomial,
-1
EIY|N =n = 0= 1),
1- Ps
Hence E(Y | N) = 248D 4nd then

1-ps

E[Y]:E[E[Y|N}]:E[ — —

pe(N — 1)] _ p(EIN]-1)
:pt(Ps_l_l) _ bt
1- Ps Ps ’
10.19. (a) We know that X; ~ Bin(n,p1) and (X1, X2, X3) ~ Mult(n, 3, p1, p2, p3)-
Using the probability mass function of X; and the joint probability mass function
of (X7, Xo, X3) we get that if K+ ¢+ m =n and 0 < k, ¢, m then

P(Xo =k X3 ={] X, =
P(Xo = b, Xy = 0| Xy = m) = DX =k X = (] Xy = m)

P(X1 = m)
m koL n! m
_ (k,me)pl b2p3 _ W;n! P p5ps
(m)pT"(p2 +p3)n—™ (n—?n!)!m! Py (p2 +p3)n
:(n_m)! pl2€ pg — k—|—€ ( P2 )k(l— P2 )e
k'f' (p2 + pg)k’ (p2 + p3)‘e k p2+ps3 p2+Dp3 :

(b) The conditional probability mass function found in (a) is binomial with param-
eters k+{¢ =n —m and p;’fpg. Thus conditioned upon X; = m, the distribution
of X5 is Bin(n —m, —£2—).

P2+p3

10.20. (a) Let n > 1 and 0 < k < n so that P(S, = k) > 0 and conditioning on
the event {S,, = k} is sensible. By the definition of conditional probability,
P(X1 :al,XQZ(ZQ,...7Xn :an|Sn :k)
P(Xl = (Ll,XQ = GQ,...,Xn = an,Sn = k)
P(S, =k) '
Unless the vector (aq,...,a,) has exactly k ones, the numerator above equals
zero. Hence assume that (ay,...,a,) has exactly k ones. Then the condition
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S, = k is superfluous in the numerator and can be dropped. The ratio above

equals
P(X1:a1,X2:a2,...,Xn:an) _ pk(l_p)n—k :L
Pl =) WP =+~ ()
Summarize this as a formula: for 0 < k < mn,
1. n
Iy if Zi:l a; =k
P(Xl:al,X2:a2,...7Xn:an|Sn:k): (k)
0 otherwise.

(b) The equation above shows that the conditional probability P(X; = a1, Xs =

ag,..., Xn = a, | S, = k) depends only on the number of ones in the vector
(a1,...,ay). A permutation of (aq,...,a,) does not change the number of ones.
Hence for any permutation (ay,,...,as, ) of (a1,...,an),

P(X1 Zal,XQ :CLQ,...7Xn :an|Sn=k)
:P(Xl :agl,XQ :agz,...,Xn = Qy, ISn :k)
This shows that, given S, = k, X;,..., X, are exchangeable.

We show that independence fails for any n > 2 and 0 < k < n. First
deduce for a fixed index j € {1,...,n} that

PX; = 1|8y = k) = L = LSa = k)

P(S,=k)
_ P(X; = 1,exactly k — 1 successes among X; for i # j)
N P(S, =k)
Oy ey
(w)pk(L —p)n=k n
Thus
P(X,=1|S,=k)-P(Xy=0]S, =k) = w

To complete the proof that independence fails we show that the product
above does not agree with P(X; =1,X2 =0]|S, = k), as long as 0 < k < n.
P(X;1=1,X2=0,5,=k)

P(X;=1,Xo=0|S, =k) =

P(S, =k)
_ P(X; =1,X,=0,exactly k — 1 successes among X; for i > 3)
B P(S, =k)
_ P =p) - GIP TN k(n— k)
(R)p" (1 —p)n=F n(n—1)

The condition 0 < k < n guarantees that the numerators of ‘“(’;L;’“) and ZEZ:’;%
agree and do not vanish. Hence the disagreement of the denominators forces
k(n—k) ?é k(n—k)

n? n(n—1)"
10.21. (a) We have for 1 <m <n
P(S,=0S,=k) P(Sn=405,—S,=k—1{)
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We know that S, ~ Bin(n, p) and Si ~ Bin(k, p) as these random variables count
the number of successes within the first n and k trials. The random variable S,, — S},
counts the number of successes within the trials k+1, k42, ..., n, so its distribution
is Bin(n — k,p). Moreover, S,, — S, is independent of Sy, since Sy depends on the
outcome of the first k, and S,, — Sy depends on the next n — k trials. Thus

P(S, = k) P(S, =k)
(Mp' (@ =)™t ()P — p) (= (kD)
(Z)pk<1 _ p)n—k

(7) (7)
(%)

This means that the conditional distribution of S, given S,, = k is hypergeomet-
ric with parameters n,k,m. Intuitively, the conditional distribution of S, given
S,n = k is identical to the distribution of the number of successes that occur by
sampling m times without replacement from a set containing k successes and n — k
failures.

(b) From Example we know that the expectation of a Hypgeom(n,k, m) dis-
tributed random variable is £, Hence E[S,,|S, = k] = £ and E[S,,|Sn] = S, 2.

10.22. (a) Start by observing that either X =1 and Y > 2 (when the first trial is
a success) or X > 2 and Y = 1 (when the first trial is a failure). Thus when
Y =1 we have, for m > 2,

px,y(m,1)  P(first m — 1 trials fail, mth trial succeeds)
pxjy(m|1) = = L
py (1) P(first trial fails)
(1-p)"'p

= YT (1 —p)m 2y,
T (L=p)""p

In the other case when ¥ = £ > 2 we must have X = 1, and the calculation
also verifies this:

px,y(1,¢)  P(first £ — 1 trials succeed, ¢th trial fails)

110) = =
px|y (1}€) py (0) P(first trial succeeds)
— p(1-p) -1
pé—l(l _ p)

We can summarize the answer in the following pair of formulas that capture
all the possible values of both X and Y:

0, m=1
(1 - p)m—2p7 m Z 2a

pX|Y(m|1) = {

and for £ > 2,
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(b) We reason as in Example Let B be the event that the first trial is a
success. Then

Emax(X,Y)] = pEmax(X,Y) | B] + (1 — p) E[max(X,Y) | BY]
=pE[Y |B] + (1 - p)E[X | B ] =pE[Y +1] + (1 - p) E[X + 1]

=p(1+1>+(1—p)<1+1> e

p—1 P p(1—p)

10.23. (a) The distribution of Y is negative binomial with parameters 3 and 1/6
and the probability mass function is

1\ 1 /5\V?

To find the conditional probability P(X = z|Y = y) = % we just need to
compute the joint probability mass function of X,Y. Note that X +2 <Y (since
we need at least two more rolls to get the third six after the first six). For 1 < z,
x4 2 <y the event {X =2, Y = y} is exactly the same as getting no sixes within
the first = — 1 rolls, six on the zth roll, exactly one six from x4+ 1 to y — 1 and a six

on the yth roll. These can be written as intersection of independent events, thus

P(X =z,Y = y) = P(no sixes within the first  — 1 rolls) P(xth roll is a six)
- P(exactly one six from z 4+ 1 to y — 1) P(yth roll is a six)

JOREHGESONE
=@y—-z-2) (2)y3 : 6*13-

This leads to

PO —nY =) ()
AR i e L I
y—x—2 2y —xz—1)

T —Dw-2) (4 _ —9)°
=llv=2)  (y - 1)(y - 2)

if 1 <z, x+ 2 <y and zero otherwise.
(b) For a given y > 3 the possible values of X are 1,2,...,y — 2. Using the result
of part(a) we get

L2 oy-—z-1
E[X|Y =y] = Zx(y(yn(yg))

r=1
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To evaluate the sum ZZ;? 2z(y — x — 1) we separate it in parts and then use the

identities and (D.7):

2 y—2

x—22x2
1 x

y—2 _
d 2u(y—w—1)=2@y—1)

:2@_1)(9*2)2(@/*1) _2(y*2)(y*1)6(2(y*2)+1)
_ =2y -1y

Y

This gives

— ] = - _Y
EIX|Y =y) =Y a - w_y

=1
and E[X|Y] = X.

10.24. (a) Given {Y =y} the distribution of X is Bin(y, ). Thus

pxy(z|y) = @)(é)m(g)“, 0<z<y<I10.

Since Y ~ Bin(10, ) we have py (y) = (1y0)(%)10 and then

>(§)1°, 0<z<y<10.
Yy

The unconditional probability mass function of X can be computed as

e = S par el = S =3 (1) 070 ()

Yy=x

= 10! e
-y @
= 2!y — z)1(10 — y)!
10—z

1 10 — z)!
Y o m

k=0 ’

(et = ()@

100 e
= m(é) (

[ SIS

T T

The conditional expectation E[X|Y = y] for a fixed y is just the expected value
of Bin(y, ¢) which is 4. This means that E(X|Y) = % and

B[X] = E[E(X|Y)] = E[§] =

(@[S4

)

since Y ~ Bin(10, ).
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(b) A closer inspection of the joint probability mass function shows that (X,Y —
X,10 = Y) has a multinomial distribution with parameters (10, 15, 3, 3):

PX=z,Y-X=y—-2,10-Y=10—-y)=P(X =2,Y =y)

Yy @5\ (=) (10
- ()& @ ()b
—x 10—
~ s ()" ()" ()

This implies again that X is just a Bin(10, 75) random variable.

To see the joint distribution without computation, imagine that after we flip
the 10 coins, we roll 10 dice, but only count the sixes if the corresponding coin
showed heads. This is the same experiment because the number of ‘counted’
sixes has the same distribution as X. This is the number of successes for 10
identical experiments where success for the kth experiment means that the
kth coin shows heads and the kth die shows six. The probability of success is

1.1 % Moreover, (X,Y — X,10 —Y) gives the number of outcomes where

2°6
we have heads and a six, heads and not a six, and tails. This explains why the
the joint distribution is multinomial with probabilities (%, 1—52, %)

10.25. (a) The conditional distribution of Y given X = z is a negative binomial
with parameters z, 1/2: so we have

y—1)\ 1
P(Yy|Xx)($_1)2y, 1<z <y.

(b) We have P(X =) = (5/6)*~1(1/6) and X <Y so

We can recognize this as the probability mass function of the geometric distri-

bution with parameter %

(¢c) We have for 1 <z <y:

P(X=xzY =y ()(/6"1/6)
P(Y =y) N L (-1

(VY (s ye-16y o
= (1T

Thus the conditional distribution of X — 1 given Y =y is Bin(y — 1, ).

PX=z|Y =y) =
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10.26. Let B be the event that the first trial is a success. Recall that E[N] = p~!.

E(N?) = EIN?|B|P(B) + E[N?|B|\P(B) =1 -p+ E[(N + 1)*] - (1 - p)
—pt(1— p)(EN? + 2E[N] + 1) =p+ (1 —p)(2p~" + 1)+ (1 — p)E[N?
— 270 (1 BN,

From the equation above we solve

2—-p

From this,

2 — 1 1-—
V() = V] - (BN = 252 L 1

10.27. Utilize again the temporary notation E[X|Y] = v(Y") from Definition [10.23

and identity (10.11)):

E[EX|Y]] = Ep(Y)] =Y v@py(y) =Y _ EX[Y =ylpy (y) = B(X).

Yy Yy

10.28. We reason as in Example First deduction of the joint p.m.f. Let
ki,kay. ..,k € {0,1,2,...} and set k = k; + ko + -+ + k,. In the first equality
below we can add the condition X = k into the probability because the event
{X1 =k1,Xo=ko,..., X, =k} is a subset of the event {X = k}.

P(X1 =k, Xs=ka,..., X, = k)
=P(X1 =k, Xo=ks,.... X} =k, X =k)
=P(X =k)P(Xy =ki,Xo=Fko,..., X, =k | X = k)
(A) o 67)‘)\]“ ) k! ki, ks .k
TR Rkl kP P2 P
e PPN e P A ()b e A (p AR
eyl oo! gl

P

In the passage from line 3 to line 4 we used the conditional joint probability
mass function of (X7, Xs, ..., X,), given that X = k, namely

k! k1, k k
TRICE I

P(Xl:k1;X2:k27~--aXr:kr|X:k):W

which came from the description of the problem. In the last equality of we
cancelled k! and then used both k =k + ko +- -+ k, and p; +po +---+p, = 1.
From the joint p.m.f. we deduce the marginal p.m.f.s by summing away the

other variables. Let 1 < j < r and ¢ > 0. In the second equality below substitute
in the last line from (A)). Then observe that each sum over the entire Poisson p.m.f.
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evaluates to 1.

P(X; =10) = Z P(X1=ki,....,Xj_1 =kj_q,

Xj:£7Xj+1: j+1,--~7Xr:k’r‘)

ie_pl)\<pl)\)kl i e Pi= A (p;_1 \)Fi-1\ e Pir(p;A)*
ky! . kj_q! 14

I
7N
b
2
Il
o

51=0
o0 e—Pj+1)\(pj+1/\)k.1+1 > €_p"'>\(pr)‘)kr
kj%;o kjr! ) ( kgo M)
I '

This gives us X; ~ Poisson(p;\) for each j. Together with the earlier calculation
we now know that X, X, ..., X, are independent with Poisson marginals X; ~
Poisson(p;\).

10.29. For 0 < ¢ < n,
p(0) = prj(Elm) par(m)
m={

n
m! _ n! m e
=y T rf(1 =)t ———p™(1 - p)

3
1L

n!

= m(p?")e((l —r)p+1-— p)"fe = (Z) (p?“)é(l 7pr)n7£.

In other words, L ~ Bin(n, pr).

Here is a way to get the distribution of L without calculation. Imagine that
we allow everybody to write the second test (even those applicants who fail the
first one). For a given applicant the probability of passing both tests is pr by
independence. Since L is the number of applicants passing both tests out of the n
applicants, we immediately get L ~ Bin(n, pr).

10.30. First deduction of the joint p.m.f. Let k, ¢ € {0,1,2,...}.
PX1=kXo=0)=P(X1=k, Xo=4, X =k+)
—P(X=k+0)P(Xi=k Xo=0|X =k+1)

k+40)!
( k!é!) a*(1—a)t.

=(1—p)tip-
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To find the marginal p.m.f. we manipulate the series into a form where we can

apply identity (10.52)). Let k& > 0.

P(X1=k)= iP(Xl =k X,=/()= i(l —p)tip- (k+£)!0<k(1 —a)f

—~ ~ ke
= a1 -y R (- - o)
a3 DD R (e
=0

oo

-y () Capa - )
=0

— (1 =p)* p-(1=(1=p)(1—a)) "

_ ( a(l—p) ) . P
p+a(l—p)) p+a(l-p)
Same reasoning (or simply replacing « with 1 — ) gives for £ >0

o (_-oa-p) \" P
P(X2—€)—(p+(1a)(1p)) pt(l—a)l-p)

Thus marginally X; and X5 are shifted geometric random variables. However, the
conditional p.m.f. of X5, given that X; = k, is of a different form and furthermore
depends on k:

Cpxy(k0)  (1—p)tip. %ak(l —a)t
pyix(fk) = (k) a(l—p) \k "
(p+a(1*p)) " pra(i-p)

= (p+a(l —p)Ft U+ (& +€2!) (k40 (1—p)(1—a))".

We conclude in particular that X; and X5 are not independent.
10.31. We have
pxjrp(x|1) = P(X = z[Ip =1) = P(X = 2| B) = px|p(x),

and
px|15(2|0) = P(X =2 |Ip=0) = P(X =2| B :pX|Bc(x).

10.32. From Exercise [6.34] we record the joint and marginal density functions:

2 (r,y)eD
fX,Y(xay): 3 ' ’
0 (z,y)¢D,
0 r<0orz>2, 0 <0 -1
yxvory=1,
fx(z)=144% 0<z <1, fY(y)_{4_2 Ocuy<l
1.2 1<az<?, 37sY TeVSS

From these we deduce the conditional densities. Note that the line segment
from (1,1) to (2,0) that forms part of the boundary of D obeys the equation
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y = 2 — x and consequently all points of D (excluding boundary points) satisfy
r>0,0<y<l,and x +y < 2.

_ fxy(z,y) _ %

fxiy (zly) = IO

1
3= 5o for0<z<2—yand 0<y<1.
3y y
This shows that given Y = y € (0,1), X is uniform on the interval (0,2 —y). Since
the mean of a uniform random variable is the midpoint of the interval,

EX)Y=yl=1-% forO<y<lLl

4
3

2
3= for0<y<landO<z<1
Ixy(z,y 2 -
fYX(y|:E)f((x)) 32
X i = for 0<y<2-zandl<uz<2.

Thus given X = z € (0, 1], Y is uniform on the interval (0, 1), while given X =z €
(1,2), Y is uniform on the interval (0,2 — z). Hence
0<x <,

1
CE ST
: :

We combine the answers in the formulas for the conditional expectations as
random variables:

1 if X <1
EX[Y]=1-1Y and E[Y|X]={2 [ 1 °=7

(Note that not all bounds are needed explicitly in the cases above because with
probability one we have 0 <Y <1 and 0 < X < 2.)

Last, we calculate the expectations of the conditional expectations.

EM?=HEMHN=EU—%H=1—%HH=1—%Ay%—%w@

=1—-

Ol
RelBN|

(SIS

B = BIE(Y(X)) = [ BIYIX = o] fxo) do

1 2
~ [ 4-3ae+ [a-go
0 1

10.33. (a) By formula (10.15),
1/2

PX<3|Y =y = fxy(z]y)de.

—00

SV

2 1 1_ 4
—sx)dr=35+5=3.

To find the correct limits of integration, look at and check where the
integrand fx|y (z|y) is nonzero on the integration interval (—oo, 1]. There are
three cases, depending on whether the right endpoint % is to the left of, in the
middle of, or to the right of the interval [1—y, 2—2y]. We get these three cases.
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()y<3: P(X<3|Y=y) =0

1/2 1 y_l
i) 1 <y<3: P(X <1 Y:y:/ de = 2,
()2— 4 ( —2| ) 17y1_y 1_y
2—2y 1
(iii)yZ%:P(Xﬁ%\Y:y):/ dr = 1.
11—y 1_y

(b) From Figure[6.4]or from the formula for fx in Example we deduce P(X <
1

3) = %. Then integrate the conditional probability from part (a) to find

/_OO P(X < LY =y) fy(y)dy

3/4y_7 1
=/ 1 (2—2y)dy+/ (2-2y)dy = g.
12 1= /4

3
10.34. The discrete case, utilizing px|y (z|y)py (v) = px,v (z,y):
EY -E(X|V)| =Y yEX|Y =y)py(y) = > _y>_zpxy(@ly) py(y)
y y @

= Zwpr\Y($|y)pY(y) = Zﬂfypx,Y(l‘ay) = E[XY].

T,y T,y

The jointly continuous case, utilizing fx |y (x|y)fy (v) = fx,y(z,y):

Bl B0y = [ T YEXIY =) fr () dy

— /_Z y (/_fox|y(x|y) dx) fy(y)dy

- /Z /Z zy fxy («ly) fy (y) de dy
— /_Z /_O:O zy fxy(z,y)dzdy = E[XY].

10.35. (a) We first find the joint density of (X,S). Using the same idea as in
Example([10.22] we write an expression for the joint cumulative distribution function
FX’S(SL', S).

Fxs(z,s)=P(X <z,S<s)=P(X <z,X+4+Y <5s)

= // fxv(u,v)dudv = // v) du dv

ulz,ut+v<s ulz,v<s—u

/ / B dudv—/x (1) B (s — u)du.

— 00

We can get the joint density of (X, S) by taking the mixed partial derivative, and
we will do that by taking the z-derivative first:

fxs(z,s) = ;;Fxs(x s) = i(@i/x @(u)@(SU)du)
= 2 (pla)s — ) = plalols — a) = 5o F
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Since S is the sum of two independent standard normals, we have S ~ A(0,2) and
.2
fs(s) = s2=e~T. Then

2y
12+(57z)2
fX,S(‘r7s) ie_ 2 1 —(ﬁ—sa:—i-aﬁ) 1 —(z—%)?
= = = — 4 = — 2 .
Fasel) =S5y T T /7

We can recognize the final result as the probability density function of the N (3, %)
distribution.
(b) Since the conditional distribution of X given S = s is N'(£, 1), we get

1
EIX|S=s) =3, and EIX?S =3 = 5 +(3)%

from which E[X|S] = g, E[X?(S] =1+ S;_

Taking expectations again:

E[EIX|S]] = E[S/2] =0,  E[EX?S]=EL+5]=1+2=1,

where we used S ~ N(0,2). The final answers agree with the fact that X is
standard normal.

10.36. To find the joint density function of (X, .S), we change variables in an integral
that calculates the expectation of a function g(X, S).

a—m? _ (y—w?

1 RO (e )
Blo(X.8)] = By X+ V) = o2 [ [ gwa g5 dy o

0 0 €T — 2 S—T — 2
- / / g(x s)ef( S dsda
, :
— 00 — 00

2mo?

From this we read off
1 (@=w? _ (s—a—w)?
fxs(x,8) = s—e 2?2 for z,y € R.
' 2mo?
From the properties of sums of normals we know that S ~ AN'(2u,20?) and hence

s(s) = ——se™ “TH"
S S) = ——¢€ 4o
VAaro?

From these ingredients we write down the conditional density function of X, given
that § = s:

2 — s—x— s—
fX|S(1:|S) — fX‘}.S((‘T?;S) _ me_(m%ﬁ)?_( 2$U2u)2+( 4025)2 '
S(s

2mo?

After some algebra and cancellation in the exponent, this turns into

1 (z—5) }
Tls) = ————=expy ———5—— ;.
fristele) = s exp{ -8
The conclusion is that given S = s, X ~ N (s/2,02/2). Knowledge of the normal
expectation gives F(X|S = s) = s/2, from which E[X|S] = 15.

10.37. Let A be the event {Z > 0}. Random variable Y has the same distribution
as Z conditioned on the event A. Hence the density function fy (y) is the same as
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the conditional probability density function fz 4 (y). This conditional density will
be 0 for y <0, so we can focus on y > 0. The conditional density will satisfy

b
Pla<Z <b|Z >0) =/ fy1a(y)dy

for any 0 < a < b. But if 0 < a < b then

<Z< <Z<
P(a§Z§b|Z>O):P(a_Z_baz>0):P(G_Z_b)

P(Z >0) P(Z >0)
b b
_ Jo o)y f%)dy =/ 2¢(y)dy.

Thus fy(y) = fz14(y) = 2¢(y) for y > 0 and 0 otherwise.
10.38. (a) The problem statement gives us these density functions for x,y > 0:
fr(y)=e¥ and fxy(z|ly) =ye .
Then the joint density function is given by
Ixy(z,y) = fx)y(ly) fr(y) = ye_y(x'H) forz >0, y > 0.

(b) Once we observe X = z, the distribution of Y should be conditioned on X = x.
First find the marginal density function of X for x > 0.

fx(x) = / fxy (@, y)dy = / ye VD dy =
—00 0
Then, again for x > 0 and y > 0,

fxy(z,y)

fx (@)
The conclusion is that, given X = z, ¥ ~ Gamma(2,2 + 1). The gamma
distribution was defined in Definition

(1+z)>

frix(ylz) = — y(1 4 2)%e v+,

10.39. From the problem we get that the conditional distribution of Y given X =z
is uniform on [z, 1]. From this we get that fyx(y|z) is defined for every 0 <z < 1
and is equal to

L ife<y<l1

frix (yle) = {1‘”

0 otherwise.

By averaging out « we can get the unconditional probability density function of Y,
for any 0 < y <1 we have

fY(y)Z/O fY|X(y\9U)fX(9C)d$

v s
= -202°(1 — z)dx
o 1—=x

Yy $4
= 20/ 22dx = 20—
0 4

Y
0

4

If y <0 or y > 1 then we have fy(y) =0, thus

Fr(y) = 5y ifo<y<1
Y\ = 0 otherwise.
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10.40. The conditional density function of Y given X = z is

fY|X(Z/|33) = {

(a) Conditional on X =z, Y < 1/x. Hence P(Y > 2|X =z) =0if 1/z < 2 which
is equivalent to > 1/2. For 0 < z < 1/2 we have

z, O<y<l/x
0, y<0 or y>1/x.

1/z 1
P(Y>2|X=x):/ xdy:x(f—Q)zl—Qx.
2 l’
In summary,

PY 52X =a)= " ifo=1/2
=) =
1—22, f0<z<1/2

(b) Since the expectation of a uniform random variable is the midpoint of the
interval, E[Y|X = z] = 5- and from this E[Y|X] = 1/(2X). Finally,

1 S R B e
E[Y]_E[E[Y\X]]_E[ﬁ]_/o 5 e dx—i/o edr =L

10.41. Let X be the length of the stick after two stick-breaking steps. From Ex-
ample [10.26| we have fx(x) = —Inx for 0 < x < 1 and zero elsewhere, and from
the problem description fz|x(z|r) = l for 0 <z<ax<1. Thusfor 0 <z <1,

1
/ fz1x(2]7) fx (2 / lnx Z—%/z %(lnx)2dx

:—5((ln1) (lnz) ):%(lnz

As already computed in Example E(Z|X)=1X and E(Z?|X) = £ X?. Next
compute

E(Z) = E[E(Z|X)] = 3B(X) =

ool

and

BE(Z%) = EIBE(Z*|X)] = 3E(X?) = 3.

Finally, Var(Z) = E(Z%) — (E[Z])? = 5= — &5 = 1o ~ 0.021.

10.42. We introduce several random variables to get to X. First let U ~ Unif(0, 1)
and then Y = min(U,1 — U). Then Y is the length of the shorter piece after the
first stick breaking. Let us deduce the density function fy (y) by differentiating the
c.d.f. of Y. Y cannot be larger than 1/2, and hence we can restrict to 0 < y < 1/2.
Exclusion of one point makes no difference to the density function so we can restrict
to 0 < y < 1/2. This is convenient because for 0 < y < 1/2 the events {U < y}
and {U > 1 — y} are disjoint. This makes the addition of probabilities in the next
calculation legitimate.

Fy(y) =PY <y)=PU<y)+PU=1-y)=y+1-(1-y) =2y
From this fy(y) = Fy(y) =2 for 0 <y < 1/2.

Next, given Y = y, let V' ~ Unif(0, y) and then X = min(V,Y — V). Now X is
the length of the shorter piece after the second stick breaking. We apply the same
strategy to find the conditional density function fx|y (x|y), namely, we differentiate
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the conditional c.d.f. Since X < Y/2, when conditioning on ¥ = y we discard the
value y/2 and restrict to 0 < z < y/2:

PX <zlY =y) =PV <zl =y)+ P(V 2y —z|Y =y)
—(y— 2
_r y-(-2) 2o

Y Y Y

From this,

d 2
Ixpy(zly) = %P(X <zlY =y) = ; for0<z<y/2and 0 <y <1/2.
From these ingredients we find the density function fx(z). Concerning the
range, the inequalities 0 < 2 < /2 and 0 < y < 1/2 combine to give 0 < z < 1/4.

For such z,

1/2

(A) Ix(x) = /jo Ixiy (zly) fy (y) dy = /2 S -2dy = —4In4z.

x

Alternative. Instead of the two separate calculations above for finding fy
and fx|y, we can do a single calculation for a stick of general length. Let Z be the
length of the shorter piece when a stick of length £ is broken at a uniformly random
position. Let U ~ Unif(0, £). Then as above, for 0 < z < /2,

{—(¢— 2
FZ(z):P(Zgz):P(ng)JrP(Uze—z):%Jr#:?z
from which fz(z) = Fy(z) = 2/£ for 0 < z < £/2. We apply this first with ¢ =1
to get fy(y) =2 for 0 < y < 1/2 and then with £ = y to get fx|v(z|y) = 2/y for

0 < 2 < y/2. The solution is then completed with as above.

10.43. (a) Since 0 < Y < 2 we can assume that 0 < y < 2. The area of the triangle
is 2, thus the joint density fx y(z,y) is % inside the triangle, and 0 outside. Note
that the points (z,y) in the triangle are the points satisfying 0 < 2,0 < y and
x4y <2 For 0<y< 2 we have

e3¢} 2
fY(y):/_ fX,Y(xay)dx:/ ydo = 23¥

and fy (y) = 0 otherwise. Thus

fXY(x7y)
Ixiy(@ly) = ——=—
xiy (#ly) fy(y)
—gz—;y ifr<2—y
= p)
0 otherwise.

This shows that the conditional distribution of X given Y =y is Uniformly, 2].
(b) From part (a) we have E[X|Y = y] = “I2 and E[X|Y] = ¥}2.

10.44. The calculation below begins with the averaging principle. Conditioning
on Y = y permits us to replace Y with y inside the probability, and then the
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conditioning can be dropped because X and Y are independent. Manipulation of
the integrals then gives us the convolution formula.

P(X+YSZ):/:>O PX+Y <z|Y =y) fyy)dy
=/_°o P(X<z—y|Y =) fyr(y)dy
=[x sz-pnwa= [ </2_yfx(w)dW> Fo(y) dy

/O;(/;fx(xy)dx) fY(y)dy/;</o; fX(:vy)fY(y)dy> dz.

10.45. (a) We have the joint density fx y(a,y) given in (8.32). The distribution of
 (w—ny)?

Y is N(py,0%) and thus the marginal density is fy (y) = \/Tl e 2°v . Then
oy
_ Ifxy(zy)

Ixy(zly) = =515~ To help with the notation let us introduce = L and

7y = 77’;5” Then

1 %2)(524»@272;)5@) fY (y) _

- _@?
e 20-p , 2

fxy(z,y) = Woroms

2o xoy+/1—p2
and

1 e*m(i%ﬂf*?ﬁf@)

2mox oy y/1—p2 1 —22-225p49%p%

fx‘y($|y) = ; po = \/27\/17 =—¢ 2(1—p2)
-Z T plox

2moy

1 _@E—yp)?
= = e 201-p?)
V2my/1—p20x

Substituting back & = £ and § = Y75 we see that the conditional distribution
of X given Y = y is normal distribution with mean % p(y — py) + px and variance
o3 (1= p?).
(b) The conditional expectation of X given ¥ = y is the mean of the normal
distribution we found: ZXp(y — py) + px. Thus

ox

g
EX|Y] = ﬁp(Y — py) + px.

Note that this is just a linear function of Y.

10.46. The definitions of conditional p.m.f.s and density functions use a ratio
of a joint probability or density function over a marginal. Following the same
joint /marginal pattern, a sensible suggestion would be

F@lY € B) = e [ 1w dy

A conditional probability of X should come by integrating the conditional density,
and so we would expect

P(XeA|YeB):/fX(:c|YeB)dx.
A
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We can check that the formula given above for fx(x|Y € B) satisfies this identity.
By the definition of conditional probability,

P(XeAYeB) //
P(Xe€eA|YeB)= P(Y € B) YGB n f(z,y)dedy

:P(YIEB)/A(/Bf(a:,y)dy>da::/AfX(x|YeB)dx
10.47.

BLCOIY =3 = ZmPOX) =m|Y =) = m 3 POXC=k[Y =)

m k:g(k)=m

= Z mP(X =k|Y =y)=)_ Z X =k|Y =y)

m kig(k)= m k:g(k)=
=Y gk)P(X = k|Y =y).
k

10.48.

EIX+Z|Y=yl=> mP(X+Z=m|Y =y)

dom > P(X=kZ=L]Y=y)

m kl: k+4=m

= ) mPX=kZ=L]Y=y)
k,4,m: k+f=m

=Y (k+OP(X =k, Z=L(]Y =y)
k.l

=Y kP(X =k, Z=L|Y =y)+ Y (P(X =k Z=L|Y =y)
k.0

=Y k> P(X=kZ=L|Y=y)+» (> P(X=kZ=L]Y =y)
k 4 0 k

=Y kP(X =k|Y =y)+ Y (P(Z=L]Y =y)
k 4

=EX|Y =y +E[Z]Y =y

10.49. (a) If it takes me more than one time unit to complete the job I'm simply
paid 1 dollar, so for t > 1, pxr(1]t) = 1. For 0 <t < 1 we get either 1 or 2 dollars
with probability 1/2 — 1/2, so the conditional probability mass function is

pxir(1t) =% and pxr(2t) =3

(b) From part (a) we get that

1-i4+2.1=2 ifo<t<l1
EX|T=1={ 2"%27% 0 <
1-1=1 it1<t.
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We can compute F[X] by averaging E[X|T = t] using the probability density fr(t)
of T. Since T ~ Exp()), we have fr(t) = Ae™* for ¢ > 0 and 0 otherwise. Thus

o) 1 o)
BIX] = [ BT = dpr0dy = [ e as [ var
0 0 1

1
:g(lfe*A)Jre*’\:%f -

2 2"
10.50. For 0 < k < n we have
1 n 1 B
Pis, =t = [ P.=kle=nta=(}) [ #a-prtap
0 0

We use integration by parts on the right-hand side to show that P(S,, = k) =
P(S, =k+1).

1
n _
P, =1 =) [ #a-prra
0
k+1 p=1 1
n p n—k n—k k+1 n—k—1
1-— 1-— d
<k){k+1( ) p_0+k+1/0p (1-p) p

m\n—k (! k+1 —k—1
= 1—p)" d
<k>k+1/0p (1-p) p

1

_(n k11 _ o yn—k—1 7. _ _

(1) [ rra-prta = P, =k
10.51. (a) By independence we have

P(Z € [-1,1],X =3) = P(Z € [-1,1))P(X = 3)
= (@(1) — 2(-1) ()51 - )" = (220 - 10 -
(b) We have P(Y < 1|X = 3) = P=p2=% and
PY<1,X=3=P(X+Z<1,X=3)=PB+Z<1,X=3)
= P(Z<-2,X=3)=P(Z < -2)P(X =3).

Thus
. P(Y<1,X=3) P(Z<-2)P(X=3)
PY<IX=3="Fx "3 = px-3

=P(Z < -2) = 9(-2).
(¢) We can condition on X to get

P(Y <2)=> P(Y <z|X = k) (Z)pk(l —p)yn k.
k=0

Using the same argument as in part (b) we get

. PZ+X<2,X=k) PZ<z-k)
PY <z|X=k)= X =) = PX =)

=P(Z<z—k)=d(x—k).
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Thus

10.52. (a)

(lk) = Pxx () pxpy (kly) py (y)
Py |x\Y px (k) pxv (K0) py (0) + pxjy (k1) py (1)

%'672% B 2ke—2 o
%.6722?’;_;[_%.67?)%_2k672+3k673’ ¥y=
%.6*3% B 3ke—3 _,
%~e*2%+%~e*3%_2’66*2—1—3’“6*3’ y==<
(b)
3k€—3

li 1|k) = lim —————— = lim —— =
Jm Py () = i e ke = I e 1

Since Y = 1 makes X typically larger than Y = 0 does, a very large X makes
Y =1 overwhelmingly likelier than Y = 0.

10.53. To see that X5 and X3 are not independent, observe the following. Both
X, and X3 can take the value (0, 1) with positive probability, but

P(X2 = (07 1)7X3 = (07 1)) =0 7& P(XZ = (07 1))P(X3 = (07 1)) > 0.

Now we show that X5, X3, X4,... is a Markov chain. Suppose that we have
a sequence o, Is, ..., T, from the set {(0,0),(0,1),(1,0),(1,1)} so that P(Xs =
29, X3 = x3,....X,, = x,) > 0. Denote the two coordinates of x; by a; and b;.
Then we must have by, = apy1 for £ =2,3,...,n—1 and

P(Xy =29, X3 =23,... X, =2,) =P(Y1 =a1,Y2 =ay,..., Y1 = an_1,Y, = by).

Let
xn+1 = (an+17 anrl) S {(07 0)7 (07 1)7 (17 0)7 (17 1)}
Then

P(Xn+1 - xn+1|Xn = xn) = P(Xn+1 = (an+17bn+1)‘Xn = (arubn)))
P(Xn+1 = (an+labn+1)7Xn = (anvbn))
P(Xpn = (an,by))
P(Yn = an+17Yn+1 = bn+17Yn—1 =an, Y, = bn)
P(Ynfl = anyyn = bn)

_ {P(Yn+1 = but1), if dpi1 = by

07 if Ap41 75 bn
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Now consider the conditional distribution of X, 11 with respect to the full past:
P(Xn+1 = Tp+1 |X2 = .’EQ,...,Xn = .’En)
P(Xy=x2,...,Xp = Tn, Xpt1 = Tpi1)
P(Xo =22,...,Xn = xp)

PYi=a1,Yo=as,....Yn 1 =an_1,Yn =b,,Y, = any1,Yni1 = bpg1)

P(Y1:a1>Y2:a2w-~aYn71:anflaYn:bn) '
This ratio is zero if b, # apn+1, and if b, = a1 then it becomes P(Y;,41 = bpy1)
by the independence of the Y;. Thus

P(Xpi1 = tp1|Xn =) = P(Xpp1 = Tpg1 | Xo =22, X,y = )

which shows that the process is a Markov chain.
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Appendix B.
B.1.

(a) We want to collect the elements which are either (in A and in B, but not in

(), or (in A and in C, but not in B), or (in B and in C, but not in A).

The elements described by the first parentheses are given by the set ABC*
(or equivalently AN BN C¢). The set in the second parentheses is AC B¢ while
the third is BC'A¢. By taking the union of these sets we have exactly the
elements of D:

D = ABC°UACB°UBCA".

This is similar to part (a), but now we should also include the elements that
are in all three sets. These are exactly the elements of ABC' = ANBNC, so by
taking the union of this set with the answer of (a) we get the required result.

D =ABC°UBCA“UACB°U ABC.
Alternately, we can write simply
D=ABUACUBC=(ANnB)U(AnC)u(BnO).

In this last expression there can be overlap between the members of the union
but it is still a legitimate way to express the set D.

B.2. (a) ANBNC

(b)
(c)
d

(e
(

a

)

)
B.3.

)

AN (BUC)® which can also be written as AN BN C*°.
(AUB)N (AN B)°

AnBnNCe

ANn(BUC)°

B\ A = {15,25,35,45,51, 53,55, 57,59, 65, 75, 85, 95}..

235
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(b) AN BNCe = {50,52,54,56,58} N C° = {50, 52, 56, 58}.

(c) Observe that a two-digit number 10a + b is a multiple of 3 if and only if a4 b is
a multiple of 3: 10a +b =3k <= a+b = 3(k — 3a). Thus C N D = & because
the sum of the digits cannot be both 10 and a multiple of 3. Consequently
(AA\D)uB)Nn(CND)=g2.

B.4. We have w € < N Ai> if and only if w ¢ ( N A,) An element w is not

in the intersection of the sets A; if and only if there is at least one ¢ with w ¢ A;,
which is the same as w € AS. But w € A§ for one of the 7 if and only if w € |J; AS.
This proves the identity.

B.5. (a) The elements in AAB are either elements of A, but not B or elements of
B, but not A. Thus we have AAB = AB°U A°B.
(b) First note that for any two sets F, F' C 2 we have

QO=FEFUE‘FUFEF°UE‘F°
where the four sets on the right are disjoint. From this and part (a) it follows that
(EAF) = (EF° U E°F)¢ = EF U E°F©.

This gives
AN(BAC) = A(BAC)° U A°(BAC)
= A(BC U B°C°)U A°(BC*°U B°C)
= ABCUABC°UA“BC°U A°B°C.
and

(AAB)AC = (AAB)C°U (AAB)°C
= (AB°UA°B)C°U(ABU A°B°)C
= AB°CUA“BC“UABCUA°B°C
which shows that the two sets are the same.

B.6. (a) We have w € E = AN B if and only if w € A and w € B. Similarly,
we E=AnNBC¢if and only if w € A and w € B¢. This shows that we cannot
have w € E and w € F the same time: this would imply w € B and w € B¢
the same time, which cannot happen. Thus the intersection of E and F' must
be the empty set.

(b) We first show that if w € A then either w € E or w € F, this shows that
w € FEUF. We either have w € B or w € B¢. If w € B then w is an element
of both A and B, and hence an element of E = AN B. If w € B° then w is an
element of A and B¢, and hence F' = A N B¢. This proves that if w € A then
weFEUF.

On the other hand, if w € EU F then we must have either w € E=ANB
orw e F'= AN B¢ In both cases w € A. Thus w € EU F implies w € A.

This proves that the elements of A are exactly the elements of F U F', and
thus A= FEUF.

B.7. (a) Yes. One possibility is D = C'B°.
(b) Note that whenever 2 appears in one of the sets (A or B) then 6 is there as
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well, and vice versa. This means that we cannot separate these two elements with
the set operations, whatever set expression we come up with, the result will either
have both 2 and 6 or neither. Thus we cannot get {2,4} as the result.

Appendix C.

C.1. We can construct all allowed license plates using the following procedure: we
choose one of the 26 letters to be the first letter, then one of the remaining 25
letters to be the 2nd, and then one of the remaining 24 letters to be the third
letter. Similarly, we choose one of the 10 digits to be the first digit, then choose
the second and third digits (with 9 and 8 possible choices). By the multiplication
principle this gives us 26 - 25-24-10-9 -8 = 11,232,000 different license plates.

C.2. There are 26 choices for each of the three letters. Further, there are 10 choices
for each of the digits. Thus, there are a total of 263 - 103 ways to construct license
plates when any combination is allowed. However, there are 263 - 13 ways to con-
struct license plates with three zeros (we have 26 choices for each of the three letters,
and exactly one choice for each number). Subtracting those off gives a solution of

263(10% — 1) = 17,558,424.

Another way to get the same answer is as follows: we have 262 choices for the three
letters and 999 choices for the three digits (103 minus the three zero case) which
gives again 263 - 999 = 17,558,424.

C.3. There are 25 license plates that differ from UW U144 only at the first position
(as there are 25 other letters we can choose there), the same is true for the second
and third positions. There are 9 license plates that differ from UW U144 only at
the fourth position (there are 9 other possible digits), and the same is true for the
5th and 6th positions. This gives 3 - 25 + 3 - 9 = 102 possibilities.

C.4. We can arrange the 6 letters in 6! = 120 different orders, so the answer is 120.

C.5. Imagine that we differentiate between the two Ps: there is a P; and a Ps.
Then we could order the five letters 5! =5-4-3-2-1 = 120 different ways. Each
ordering of the letters gives a word, but we counted each word twice (as the two Ps
can be in two different orders). Thus we can construct 1—50 = 60 different words.

C.6. (a) This is the choice of a subset of size 5 from a set of size 90, hence we have
(950) = 43,949, 268 outcomes.

If you want to first choose the numbers in order, then first you produce an

ordered list of 5 numbers: 90 - 89 - 88 - 87 - 86 outcomes. But now each set of

5 numbers is counted 5! times (in each of its orderings). Thus the answer is

again
90 -89 -88-87-86 90
5 = < 5 > = 43,949, 268.

(b) If 1 is forced into the set, then we choose the remaining 4 winning numbers
from the 89 numbers {2,3,...,90}. We can do that (849) = 2,441,626 different
ways, this is the number of outcomes with 1 appearing among the five numbers.

(c) These outcomes can be produced by first picking 2 numbers from the set
{1,2,...,49} and 3 numbers from {61,62,...,90}. By the multiplication prin-

ciple of counting there are (%) (%)) = 4,774,560 ways we can do that, so that
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is the number of outcomes. Note: It does not matter in what order the steps
are performed, or you can imagine them performed simultaneously.

(d) Here are two possible ways of solving this problem:
(i) First choose a set of 5 distinct second digits from the set {0,1,2,...,9}:
(150) choices. The for each last digit in turn, choose a first digit. There
are always 9 choices: if the last digit is 0, then the choices for the first
digit are {1,2,...,9}, while if the last digit is in the range 1 — 9 then the
choices for the first digit are {0, 1,...,8}. By the multiplication principle
of counting there are (150) 9° = 14, 880, 348 outcomes.
(ii) Here is another presentation of the same idea: divide the 90 numbers into
subsets according to last digit:

Ag = {10,20,30,...,90}, A; ={1,11,21,...,81},
Ay ={2,12,22,...,82},..., Ag=1{9,19,29,...,89}.

The rule is that at most 1 number comes from each A;,. Hence first
choose 5 subsets Ay, , Ag,, ..., Ak, out of the ten possible: (150) choices.
Then choose one number from the 9 in each set Ag;: 9° total possibilities.
By the multiplication principle (150) 95 outcomes.

C.7. Denote the four players by A, B, C and D. Note that if we choose the partner
of A (which we can do three possible ways) then this will determine the other team
as well. Thus there are 3 ways to set up the doubles match.

C.8. (a) Once we choose the opponent of team A, the whole tournament is set up.
Thus there are 3 ways to set up the tournament.

(b) In the tournament there are three games, each have two possible outcomes.
Thus for a given set up we have 23 = 8 outcomes, and since there are 3 ways to
set up the tournament this gives 8-3 = 24 possible outcomes for the tournament.

C.9. (a) In order to produce all pairs we can first choose the rank of the pair (2,
3, ..., J, Q, Kor A), which gives 13 choices. Then we choose the two cards
from the 4 possibilities for that rank (for example, if the rank is K then we
choose 2 cards from © K, & K, ¢ K, # K), which gives (3) choices. By the

multiplication principle we have altogether 13 - (;) = 78 choices.

(b) To produce two cards with the same suit we first choose the suit (4 choices)
and then choose the two cards from the 13 possibilities with the given suit
((%}) = 78 choices). By the multiplication principle the result is 4 (') = 312.

(¢) To produce a suited connector, first choose the suit (4 choices) then one of the
13 neighboring pairs. This gives 4 - 13 = 52 choices.

C.10. (a) We can construct a hand with two pairs the following way. First we

choose the ranks of the repeated ranks, we can do that (123) different ways.
For the lower ranked pair we can choose the two suits (g) ways, and the for
the larger ranked pair we again have (;1) choices for the suits. The fifth card
must have a different rank than the two pairs we have already chosen, there are

52 — 2 - 4 = 44 choices for that. This gives (7) - (3) - (3) - 44 = 123552 choices.
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(b) We can choose the rank of the three cards of the same rank 13 ways, and the
three suits (3) = 4 ways. The other two cards have different ranks, we can
choose those ranks (122) different ways. For each of these two ranks we can
choose the suit four ways, which gives 42 choices. This gives 13 - 4 - (122) 42 =

54912 possible three of a kinds.

(¢) We can choose the rank of the starting card 10 ways (A, 2, ..., 10) if we want
five cards in sequential order, this identifies the ranks of the other cards. For
each of the 5 ranks we can choose the suit 4 ways. But for each sequence we
have four cases where all five cards are of the same suit, we have to remove
these from the 4% possibilities. This gives 10 - (4> — 4) = 10200 choices for a
straight.

(d) The suit of the five cards can be chosen 4 ways. There are (153) ways to choose
five cards, but we have to remove the cases when these are in sequential order.
We can choose the rank of the starting card 10 ways (A, 2, ..., 10) if we want
five cards in sequential order. This gives 4 - ((153) — 10) = 5108 choices for a
flush.

(e) We can construct a full house the following way. First choose the rank that
appears three times (13 choices), and then the rank appearing twice (there are
12 remaining choices). Then choose the three suits for the rank appearing three
times ((g) = 4 choices) and the suits for the other two cards ((3) = 6 choices).
In each step the number of choices does not depend on the previous decisions,
so we can multiply these together to get the number of ways we can get a full
house: 13-12-4 -6 = 3744.

(f) We can choose the rank of the 4 times repeated card 13 ways, and the fifth card
48 ways (since we have 48 other cards), this gives 13 - 48 = 624 poker hands
with four of a kind.

(g) We can choose the value of the starting card 10 ways (A, 2, ..., 10), and the
suit 4 ways, which gives 10 - 4 = 40 poker hands with straight flush. (Often
the case when the starting card is a 10 is called a royal flush. There are 4 such
hands.)

C.11. From the definition:

n—k n-(n—1)! k n-(n—1)!

n Hm—k—1l-(n—F) 0 k- (k=Dln—k—1)

() o= (1)

Here is another way to prove the identity. Assume that in a class there are n
students, and one of them is called Dana. There are (Z) ways to choose a team of
k students from the class. When we choose the team there are two possibilities:

Dana is either on the team or not. There are (”gl) ways to choose the team if

2+ () = s+ e
(

we cannot include Dana. There are (Zj) ways to choose the team if we have to
include Dana. These two numbers must add up to the total number of ways we can
select the team, which gives the identity.
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C.12. (a) We have to divide up the remaining 48 (non-ace) cards into four groups
so that the first group has 9 cards, and the second, third and fourth groups

have 13 cards. This can be done by (g 55 15) = ﬁ different ways.

o describe such a configuration we just have to assign a different suit for eac
b) To describ h fi b just have t i different suit f h
player. This can be done 4! = 24 different ways.

(¢) We can construct such a configuration by first choosing the 13 cards of Player 4
(there are 39 non-© cards, so we can do that Gg) different ways), then choosing
the 13 cards of Player 3 (there are 26 non-Q cards remaining, so we can do that
(39) different ways), and then choosing the 13 cards of Player 2 out of the
remaining 26 cards (out of which 13 are ), we can do that (fg) different ways.
(Player 1 gets the remaining 13 cards.) Since the number of choices in each
step do not depend on the outcomes of the previous choices, the total number

of configurations is the product (i’g) - (?g) (fg) = ff;?fj

C.13. Label the sides of the square with north, west, south and east. For any
coloring we can always rotate the square in a unique way so that the red side is the
north side. We can choose the colors of the other two sides (W, S, E)3-2-1=26
different ways, which means that there are 6 different colorings.

C.14. We will use one color twice and the other colors once. Let us first count the
number of ways we can color the sides so there are two red sides. Label the sides
of the square with north, west, south, east. We can rotate any coloring uniquely
so the (only) blue side is the north side. The yellow side can be chosen now three
different ways (from the other three positions), and once we have that, the positions
of the red sides are determined. Thus there are three ways we can color the sides of
the square so that there are 2 red, 1 blue and 1 yellow side and colorings that can
be rotated to each other are treated the same. Similarly, we have three colorings
with 2 blue, 1 red and 1 yellow side, and three colorings with 2 yellow, 1 red and 1
blue side. This gives 9 possible colorings.

C.15. Imagine that we place the colored cube on the table so that one of the faces
is facing us. There are 6 different colorings of the cube where the red and blue faces
are on the opposite sides. Indeed: for such a coloring we can always rotate the cube
uniquely so that it rests on the red face and the yellow face is facing us (with blue
on the top). Now we can choose the colors of the other three faces 3-2 -1 different
ways, which gives us 6 such colorings.

If the red and the blue faces are next to each other then we can always rotate
the cube uniquely so it rests on the red face and the blue face is facing us. The
remaining four faces can be colored 4 -3 -2 -1 different ways, thus we have 24 such
colorings.

This gives 24 + 6 = 30 colorings all together.

C.16. Number the bead positions clockwise with 0,1,...,17. We can choose the
positions of the 7 green beads out of the 18 possibilities (178 ) different ways. However
this way we over counted the number of necklaces, as we counted the rotated
versions of each necklace separately. We will show that each necklace was counted
exactly 18 times. A given necklace can be rotated 18 different ways (with the first

position going into one of the eighteen possible positions), we just have to check that
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two different rotations cannot give the same set of positions for the green beads.
We prove this by contradiction. Assume that we have seven different positions
g1,---,97 € {0,1,...,17} so that if we rotate them by 0 < d < 18 then we get
the same set of positions. It can be shown that this can only happen if each two
neighboring position are separated by the same number of steps. But 7 does not
divide 16, so this is impossible. Thus all 18 rotations of a necklace were counted
separately, which means that the number of necklaces is ﬁ(lf) = 1768.

C.17. Suppose that in a class there are n girls and n boys. There are (2:) different
ways we can choose a team of n students out of this class of 2n. For any 0 < k <n

there are (Z) . (nﬁk) ways to choose the team so that there are exactly k girls and
n— k boys chosen. For 0 < k <n we have (,",) = (}) and thus (})-(,",) = (2)2

By considering the possible values of the number of girls in the team we now

get the identity
2n _(n 2 n n\ > n n n\ >
n) \0 1 n)

C.18. If z = —1 then the inequality is 0 > 1 — n which certainly holds.

Now assume z > —1. For n = 1 both sides are equal to 1+, so the inequality is
true. Assume now that the inequality holds for some positive integer n, we need to
show that it holds for n+1 as well. By our induction assumption (1+x)™ > 1+ nz,
and because z > —1, we have 1 + z > 0. Hence we can multiply both sides of the
previous inequality with 1 4+ x to get

1+2)"" >0 +ne)142) =1+ (n+ 1)z +nz?

Since nx? > 0 we get (1 + )" > 1+ (n + 1)z which proves the induction step,
and finishes the proof.

C.19. Let a, = 11" — 6. We have a; = 5, which is divisible by 5. Now assume that
for some positive integer n the number a,, is divisible by 5. We have

ani1 = 11" — 6 = 11(a, + 6) — 6 = 11a,, + 60.

If % is an integer then % = 119 412 is also an integer. This shows the induction

step, which finishes the proof.

C.20. By checking the first couple of values of n we see that
2l < 4.1, 22 < 4.2, 2% < 4.3, 2t =4.4.

We will show that for all n > 4 we have 2™ > 4n. This certainly holds for n = 4.
Now assume that it holds for some integer n > 4, we will show that it also holds
for n + 1. Multiplying both sides of the inequality 2™ > 4n (which we assumed to
be true) by 2 we get

ontl > g,

But 8n = 4(n+ 1) +4(n — 1) > 4(n + 1) if n > 4. Thus 2"*! > 4(n + 1), which
finishes the proof.
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Appendix D.

D.1. We can separate the terms into two sums:
S n+2k)=>"n+d (2k).
k=1 k=1 k=1

Note that in the first sum we add n times the constant term n, so the sum is equal
to n?. The second sum is just twice the sum , so its value is n(n + 1). Thus

(n+2k) =n? +n(n+1) =2n* +n.

\V; TjM:

D.2. For any fixed
i Z;il aij = 0.

If we fix j > 1 then

1 we have Z;}il Qi = Qi + Qi 541 = 1—1=0. Thus

i=1 ! aj_1j+aj;=-1+1=0, ifj>1.

Thus 3272, 37%, a;; = 1. This shows that for this particular choice of numbers
a;,; we have

o0 o0 o0 o0
)3 SIS 3) SIS
i=1j=1 j=14i=1

D.3. (a) Evaluating the sum on the inside first using (D.6):

n

M = (5 5t

k=1 k=1

n

>

k
k=1 =1
Separating the sum in two parts and then using and (D.7):

"1 1 1 & 1 &
Z(2k2+2k>:2;k2+2;1k

k=1

n

14

_ 1 n(n+1)(@2n+1) +} n(n+1)
2 6 2 2
(n(n+1) n® n? n
=T on g1 _LrLn
1 (2n+1+3) 6 + 5 +3

(b) Since the sum on the inside has k terms that are all equal to k we get

5

k=1/¢=1 k=1

n
p_nn+1)2n+1) 15 1, 1
k* = 5 —3n +2n +6n.

(c) Separating the sum into three parts:

n n

n k k k
SN TH2%k+0= D742 DS k> D> L

k
k=1 /=1 k=1 /=1 k=1/=1 k=1 /=1

n
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The second and third sums can be evaluated using parts (a) and (b). The first sum
is

U i mn+1) 7, 7T
227227’6:#:5”“5”

k=1 =1 k=1
Thus we get
n k
7 7 1 1 1 nd  n?
T4+2%k+0)==-n4+-n+2-(=n®+=-n?+- —+ —+ =
Z (7T+2k+7) 5t gt (3n+2n+6n tetat3

k=1¢=1
5 5 9 25
=-n’+5n"+ —n
6 6
D.4. Z;’:ij is the sum of the arithmetic progression 4,741, ..., n which has n—i+1
elements, so its value is (n — i + 1)"f*. Thus

n n
>
i=1 j=i

n

z:(n—iﬂ)n;H :25(—i2+z‘+n2+n)

i=1 i=1
IS A 3 ae)
i=1 i=1 i=1

The terms in the last sum do not depend on ¢, so

%Z(n2 +n) = %(n2 +n)n = w

i=1

The first and second sums can be computed using the identities and :

lz”: n(n+1)(2n +1)
2 12

=1

1« n(n+1)
-

Collecting all the terms:

"L nn+1)2n+1 nn+1 n?(n+1
)3 PR (RS NI URS NS URS)
— 12 2 2
i=1 j=1i
n(n+1 nn+1)2n+1
=D o 41 43 4 6n) = M E L ).
12 6
Here is a quicker solution using the exchange of sums. In the double sum we have
1 <i < j <n. If we switch the order of the summation, then ¢ will go from 1 to j,

and then j will go from 1 to n:

n n n j

2.2 =220

i=1 j=i j=1i=1
(The switching of the order of the summation is justified because we have a finite
sum.) The inside sum is easy to evaluate because the summand does not depend
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by (D.7).
D.5. (a) From (D.1)) we have

E QTJ_Z‘—'-J)H—l—‘rl‘H_Z _l'z:l'

Thus

i

Zijzgl_z:m(l—i—x—i—xg—i—...)

T n_ T I T
_1—1:7122030 Cl-2 1l—2 (1—2)2

(b) Using the hint we can write

e’} oo k

IS 3

k=1 k=1j=1
In the sum we have all k,j7 with 1 < 57 < k. Thus if we switch the order of
summation then we first have k going from j to oo and then j going from 1 to oco:

co k 0o o

2D at= )t

k=1j=1 j=1k=j
This is exactly the sum that we computed in part (a), which shows that the answer
is again ﬁ The fact that we can switch the order of the summation follows
from the fact that the double sum in (a) is finite even if we put absolute values
around each term.

D.6. We use induction. For n = 1 the two sides are equal: 12 = % Assume

that the identity holds for n > 1, we will show that it also holds for n + 1. By the
induction hypothesis

D2n+1
12+22+~~+n?+(n+1)2:n(n+ )2n + )+(n+1)2

6
n+1( (2n+1)4+6(n+1)) = 61(2n +7n +6)

(n+1)(2n* +Tn+6)  (n+1)(n+2)(2n+ 3)

6 N 6 '
The last formula is exactly the right side of (D.7) for n 4+ 1 in place of n, which
proves the induction step and the statement.

D.7. We prove the identity by induction. The identity holds for n = 1. Assume
that it holds for n > 1, we will show that it also holds for n + 1. By the induction
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hypothesis

2 12
13+23+...+n3+(n+1)3:%4_(714_1)3
2

(n+1)? (Z

_(n+ 1)%(n+2)2
S E—
This is exactly stated for n + 1, which completes the proof.

on? +4n +4
4

+n+1) =(n+1)

D.8. First note that both sums have finitely many terms, because (Z) =0if k > n.

If we move every term to the left side then we get

(0) - () () - () + () -+

We would like to show that this expression is zero. Note that the alternating
signs can be expressed using powers of —1, hence the expression above is equal to
Shco(=DE(R) = X o (=)F 1R (D). But this is exactly equal to (=1 + 1)" =
0™ = 0 by the binomial theorem. Hence Y, _(—1)*(}) = 0 and

() (6)+ () =)+ () () -

Using the binomial theorem for (1+1)" we get >, (7) = 2". Introducing
an= (") (D)4 (7)) +
n — 0 2 4 o
b= (") + () + (1) +
=1 3 5)

we have just shown that a, = b, and a, + b, = 2". This yields a,, = b, = 2" L.
But a,, is exactly the number of even subsets of a set of size n (as it counts the
number of subsets with 0,2,4... elements), thus the number of even subsets is
27~1. Similarly, the number of odd subsets is also 271,

D.9. We would like to show (D.10) for all z,y and n > 1. For n = 1 the two sides
are equal. Assume that the statement holds for n, we will prove that it also holds
for n + 1. By the induction hypothesis

@t =) e = @Y ()t

k=0
_Z< ) Ryn=k (g 4 y) = %(k)mkﬁ-l Yy k+i)<z)mkyn—k+1_

Shifting the index in the first sum gives

n n n o n+1 n - n n -
kzzo< ) k+1 k+z;)( ) k k+1 _ Z(kl)xkyn-‘rl k+z<k)xkyn k+1

k=1

_ n+1 n+1 - n n k, n+l1—k
et e () ()
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where in the last step we separated the last and first term of the two sums. Using
Exercise [C.11| we get that ((kfl) + (Z)) = (”Zl) which gives

n+1 n+1 n+1 - n+ 1 k. n+l—k = n+ 1 k. n+l—k
(z+y)" ="yt Y (T )ty => ()
k=1 k=0

which is exactly what we wanted to prove.

D.10. For r = 2 the statement is the binomial theorem, which we have proved in
Fact Assume that for a certain r > 2 the statement is true, we will prove that
it holds for r + 1 as well.

We start by noting that
(@1 +@2+ -+ @) = (@1 + 22+ + (2 + 2040))"

We can use our induction assumption for the » numbers x1, 22, ..., Zy—1, 2, + Tr11
to get

(@1 +z24 -+ (zp + 2r31))"

Z n k1, ko kr_1 ky
= (k k k )xl ‘T"2 .”x'f—l (J"T+$T+1)
k120, k>0, k>0 N H2 o BT

kit+ko+-+kr=n
Using the binomial theorem for (z, + z,,1)" gives

(x14+x2+ -+ (2r + 2pg1))"

b n k
= T k1, ko kr_1_j kyr—j
= E E Catas? e wleeg) .
(klak27-~~7k’r)< ) " "

k1 >0, ks >0,..., ky >0 j=0 J
ki+ka+-t+kr=n

Introducing the new notation a = j,b = k,. — j we can rewrite the double sum as
follows

b n k
2 : § : T k1 ko kr—1_j kr—7j
- 1 2 -1 %r 7'+1)
<k17k27-~-ak7‘>( > '

k120, k> >0,.... kp >0 j=0 J
ki+kot+kr=n

_ n a+b\ i & ks ,
= Z <k13k27"'7k7"—1,a+b>( a >x11$22...$ ) _’1,‘T$T+1) .

k120, k22>0,..., kr—12>0,a2>0,b>0
ki4+ko+-+kr_1+a+b=n

Now note that

n a+b\ n! (a+0d)!
kl,kg,...,kr_l,a+b a o kl'kg'kr_ll(a+b)' ald!

. n
- klakQa"'7k7‘—17aab .
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This means that
(T + @2+ + (T + Try1))"

n kp_
- 2 (k: Koo ko1,a b>z§1x§2”'$“5m’"“)b
k120, k>0, kp_1>0,a>0,6>0 N 17720 Br=1 G
kit+kot-+kr—1+atb=n

which is exactly the statement we have to prove for r+4 1. This proves the induction
step and the theorem.

D.11. This can be done similarly to Exercise We outline the proof for r = 3,
the general case is similar (with more indices). We need to show that

n
n 2 k1, ko k:
(ZC]_ +£L'2+.%'3) = (k ko k )x11x22$33-
1,2, 3
k12>0,k2>0,k3>0
ki+ko+kz=n

For n =1 the two sides are equal: the only possible triples (ki, k2, k3) are (1,0,0),
(0,1,0) and (0,0,1) and these give the terms x1, 2 and 3. Now assume that the
equation holds for some n, we would like to show it for n+1. Take the equation for n
and multiply both sides with 21 +x2+x3. Then on one side we get (21 +2x2 +x3)"+1,
while the other side is

n ki+1_ ko ks ki, ka+1_ ks k1, ko, ks+1
E (kz i k)(wl To x3” + X XTy" X3 + X Ty Ty .
k120, ky>0,kg>0 N 17203
ki1+ka+ks=n

The coefficient of ' z52x5* for a given 0 < a1,0 < ag,0 < agwith a1+az+az = n+1

is equal to
n N n N n
a; —1,a2, a3 ai,az —1,as3 ay,az,az — 1

which can be shown to be equal to (alncj;laa). (This is a generalization of Exercise

and can be shown the same way.) But this means that

1 n k141, ko, k k1 ko+l kK k1 ko, ks+1
(r1 + 29 + 23)" T = E (k . k>(x11 zo2as® + oyt xs® 4 xy agt ey’ )
k120, ko >0,k >0 N 1223
k1+ka+kz=n

n+1 ay a2 _.a3z
L1 Lo 3",
ai, az,as
a120,a2>0,a3>0
ai+az+az=n+1

which is exactly what we needed for the induction step.
D.12. Imagine that we expand all the parentheses in the product
($1+"'+$r)n :(=T1+"'+Ir)($1Jr"'JréEr)"'(ler"'JrIr).

Then each term in the resulting expansion will be of the form of z¥* ...z with
k; > 0 and k1 + - - - + k, = n. This is because from each of the (z1 + -+ z,) term
we will pick exactly one of the x;, and we have n factors in the end. Now we have
to determine the coefficient of a the term xlfl ---zk in the expansion for a given
choice of kq,..., k. with k; > 0 and k; 4+ --- + k. = n. In order to get such a term

from the expansion we need to choose ki times 1, ko times x5 and so on. But the
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number of ways we can do that is exactly the multinomial coefficient (k1 k:gn... & )
This proves the identity (D.11]).



