
Chapter 2

1.  P{X = 0} =
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10

2 2
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=
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2. −n, −n + 2, −n + 4, . . . , n − 2, n
1

3.  P{X = −2} =

P{X = 0} =

4 =
1

2

P{X = 2} 

4. (a) 1, 2, 3, 4, 5, 6
(b) 1, 2, 3, 4, 5, 6
(c) 2,3,...,11,12
(d) −5, −4, . . . , 4, 5

11

5.  P{max = 6} = 

P{max = 5} =

36
1

= P{min  =  1} 

P{min = 2} 
4 =

P{max = 4} = 

P{max = 3} = 

P{max = 2} = 

P{max = 1} =

7
= P{min  =  3} 

36
5

= P{min  =  4} 
36
1

= P{min  =  5} 
12
1

= P{min  =  6} 
36 

6. (H, H, H, H, H), p5 if p = P{heads} 

7.  p(0) = (.3)3 = .027 

p(1) = 3(.3)2(.7) = .189 

p(2) = 3(.3)(.7)2 = .441 

p(3) = (.7)3 = .343

8.  p(0) =

9.  p(0) =

p(3) =

1

2
,p(1)=2

1 1

,
2

,p(1)=  
10

,p(2)=5 
1 1

10,p(3.5)= 
10

]

10. 1 −

3

[
3

][
 1

]2 [ 5 
2 6 6

[
3

][
 1

]3 200
− =

3 6 216

11.

12.

8
[
5

][
 1

]4 [ 2 
4 3 3

] [
5

][
 1

]5 10 + 1 11
+ = =

5 3 243 243 
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∑(10)[ 1]10

13.
i

i =7
2 [

1
]6 1

14.  P{X = 0} = P{X = 6} =

P{X = 1} = P{X = 5} = 6

2
[
1

=
64

]6
6

=

P{X =  2} = P{X =  4} = 

]6

2[
6

][
 1

2 2

64
]6

15
=

64
P{X = 3} =

[
6

][
 1

3 2
20

=
64
n!

15. P{X =k} 
P{X = k − 1}

(n−k)!k! pk (1 − p)n−k 

=
n!

k−1(1 − p)n−k+1 

(n−k+1)!(k−1)! p
= n

−k+1

k

Hence,

P{X =k}

p
1− p

P{X = k − 1}

The result follows.

≥ 1 ↔ (n − k  + 1)p > k(1 − p) 

↔ (n + 1) p ≥ k 

16. 1 − (.95)52 − 52(.95)51(.05)
17. Follows since there aren!x1!···xr ! 
permutationsofnobjectsofwhichx1 arealike,x2

are alike,…, xr are alike.

18. (a)  P(Xi = xi , i = 1, . . . , r − 1|Xr = j )
xi,i = 1,...,r − 1, Xr = j)

= P
(Xi =

n! x1

P(Xr = j)

= x1!...xr−1!j! p1  ...pxr−1r −1  r
n! j −j 

j !(n− j )! pr (1 − pr )n

=
(n − j )! 

x1!... xr−1!

(
∏

i =1

)xi

pi

1− pr 

(b) The conditional distribution of X1, . . . , Xr−1 given that Xr = j is multinomial 
with parameters n − j,pi ,i = 1,...,r − 1. 

1− pr 

(c) The preceding is true because given that Xr = j, each of the n − j trials
that did not result in outcome r resulted in outcome i with probabilitypi

1− pr ,
i = 1, . . . , r − 1.

19.  P{X1 + · · · + Xk = m} 
]

=
[
n
m (

p1 +
n−m

···+ pk)m(pk+1 +···+ pr) 
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20.
5!

2!1!2!
[

]2 [ ]1[
1

]2[ 3 1
= .054

5 10 2
]5 [ ] ]3 [

21. 1 −

1

3
10

3 ]4[ 7
[
5

][
 3 7 ]2

−5 −
10 10 2 10 10

22. 32 
23. In order for X to equal n, the first n − 1 flips must have r − 1 heads, and then the

nth flip must land heads. By independence the desired probability is thus

[
n − 1

]

r−1 pr−1(1 − p)n−r xp 

24. It is the number of tails before heads appears for the r th time. 
25. A total of 7 games will be played if the first 6 result in 3 wins and 3 losses. Thus,

P{7 games} =

Differentiation yields

)(
6
3

p3(1 − p3)

d

dp
[ ] 

P{7} = 20 3p2(1 − p)3 − p33(1 − p)2

= 60 p2(1 − p)2[1 − 2 p] 

Thus, the derivative is zero when p = 1/2. Taking the second derivative shows that 
the maximum is attained at this value. 

26. Let X denote the number of games played. 

(a) P{X = 2} = p2 + (1 − p)2 

P{X = 3} = 2p(1 − p) 
{ }

E[X]=2 p2 + (1 − p)2 + 6p(1 − p)

= 2 + 2p(1 − p) 

Since p(1 − p) is maximized when p = 1/2, we see that E [X ] is maximized 
at that value of p. 

(b) P{X = 3} = p3 + (1 − p)3 

P{X = 4} 

= P{X = 4,I has 2 wins in first 3 games} 

+ P{X = 4, II has 2 wins in first3 games} 

= 3p2(1 − p)p + 3p(1 − p)2(1 − p) 

 P{X = 5} 

= P{each player has 2 wins in the first 4 games} 

=6p2(1− p)2 
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[ ]
E[X]=3 p3 + (1 − p)3 + 12 p(1 − p)

[ ]
p2 + (1 − p)2 + 30 p2(1 − p)2

Differentiating and setting equal to 0 shows that the maximum is attained when
p = 1/2.

27. P{same number of heads} = 

∑ (

∑
P{A=i,B =i}

i
)

=
i

(
k
)

i
n−k

(1/2)k (1/2)n−k

i



= ∑(k)(n − k)
i i

i
(

n
(1/2)

=

=

∑

i
(
n

)

k

k  
)  

(n − k
) 

k−i i

n
(1/2)

n
(1/2) 

Another argument is as follows: 

P{# heads of A = # heads of B} 

= P{# tails of A  = # heads of  B} 

since coin is fair 

= P{k − # heads of A = # heads of B} = 

P{k = total # heads} 

28. (a) Consider the first time that the two coins give different results. Then 

P{X = 0} = P{(t,h)|(t,h) or (h,t)} 
1 

= p
(1−p)

=
2p(1 − p) 2

(b) No, with this procedure 

P{X = 0} = P {first flip is a tail} = 1 − p 

29. Each flip after the first will, independently, result in a changeover with probability  
1/2. Therefore,

P{k changeovers} =

P{X =i}

)(
n − 1

(1/2)n−1

k

30. P{X = i − 1} =    e−λλi/
i! =

 λ/i
e−λλi−1/(i − 1)! 

Hence, P{X = i } is increasing for λ ≥ i and decreasing for λ < i . 
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32. (a) .394 (b) .303 (c) .091
∫ 1

33. c (1 − x2)d x = 1
−1[ ]

c  x− x3 1




3 −1

=1

3
c=

F(y)=

4
1

3∫
4 −1

(1 − x2)d x

3

∫ 2

3[ y 2
]

=
y− , −1 < y < 1

4 3 + 3
( ) 

34. c 4x − 2x2 dx =1
0 

c(2x2 − 2x3/3) = 1 

8c/3 = 1 
3 

c=
8

{1 3} 3∫ 3/2 ( )
P X <

2 < 2

∫ ∞
35.  P{X > 20} =

=

=

10

4x − 2x2  dx
8 1/2
11
16 

20 x2 d
x=2

36.
  P{D ≤ x} = area of disk of radius x

area of disk of radius 1
2 

= π
x

=x2

π 

37.  P{M ≤ x} = P{max(X1, . . . , Xn ) ≤ x} 

= P{X1 ≤x,...,Xn ≤x} 

∏ 
=    P{Xi ≤x} 

i =1 

=xn

fM(x) =

38. c = 2
31

d

dx
p{M ≤ x} = nxn−1

39.  E [X ] = 6 



7

n

n

n−1∑   n
−1 ∑   n

−1

n
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40. Let X denote the number of games played. 

P{X = 4} = p4 + (1 − p)4 

P{X = 5} = P{X = 5, I wins 3 of first 4} 

+ P{X = 5, II wins 3 of first 4} 

= 4p3(1 − p)p + 4(1 − p)3p(1 − p) 

P{X = 6} = P{X = 6, I wins 3 of first 5} 

+ P{X = 6, II wins 3 of first 5} 

= 10 p3(1 − p)2 p + 10 p2(1 − p)3(1 − p) 

P{X = 7} = P{first 6 games are split} 

= 20 p3(1 − p)3 

∑ 
E[X]= iP{X =i}

i =4 

When p = 1/2, E [X] = 93/16 = 5.8125 
41. Let Xi equal 1 if a changeover results from the i th flip and let it be 0 otherwise. 

Then 

∑ 
number of changeovers = Xi

i =2 

As, 

E[Xi] = P{Xi =  1} = P{flip  i  − 1  = flip  i} 

= 2p(1 − p) 

we see that 

∑ 
E [number of changeovers] = E[Xi]

i =2 

= 2(n − 1)p(1 − p) 

42. Suppose the coupon collector has i different types. Let Xi  denote the number of 
additional coupons collected until the collector has i + 1 types. It is easy to see 
that the Xi are independent geometric random variables with respective parameters 
(n − i )/n, i = 0, 1, . . . , n − 1. Therefore,

∑ [ ]
∑ ∑

Xi = [Xi]= n/(n − i )
i =0 i =0 i =0

∑
=n 1/ j

j =1 



n

n

n
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∑ 
43. (a)  X = Xi

i =1 

(b) E[Xi ] = P{Xi = 1} 

= P{red ball i is chosen before all n black balls} 

= 1/(n + 1) since each of these n + 1 balls is equally 

likely to be the one chosen earliest 

Therefore, 

∑ 
E[X]= E[Xi] = n/(n + 1)

i =1

44. (a) Let Yi equal 1 if red ball i is chosen after the first but before the second black
ball, i = 1, . . . , n. Then

∑ 
Y =    Yi 

i =1 

(b)   E[Yi ] = P{Yi = 1} 

= P{red ball i is the second chosen from a set of n + 1 balls} 

= 1/(n + 1) since each of the n + 1 is equally likely to be 

the second one chosen. 

Therefore, 

E[Y] = n/(n + 1) 

(c) Answer is the same as in Problem 41. 
(d) We can let the outcome of this experiment be the vector (R1, R2, . . . , Rn ) where 

Ri is the number of red balls chosen after the (i − 1)st but before the ith black 
ball. Since all orderings of the n + m balls are equally likely it follows that all 
different orderings of R1, . . . , Rn will have the same probability distribution. 
For instance, 

P{R1 =a,R2 =b}= P{R2 =a,R1 =b} 

From this it follows that all the Ri have the same distribution and thus the same 
mean. 

45. Let Ni  denote the number of keys in box i, i = 1, . . . , k. Then, with X equal to 
the number of collisions we have that X =

∑k
i =1 (Ni −1)+ =∑i=1 (Ni 

−1+I 
{Ni = 0})where I{Ni = 0}isequalto1if Ni = 0andisequalto0otherwise. 



k

k

k

k

∞ ∞

∞ ∞

∞∑ ∞ ∞ ∞

∞ ∞

∞ ∞
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Hence,

E[X]=
∑

(r pi − 1 + (1 − pi )r ) = r − k
i =1

∑ 
+ (1 − pi )r

i
 =1

Another way to solve this problem is to let Y denote the number of boxes having at
least one key, and then use the identity X = r − Y , which is true since only the 

first∑k
key put in each box does not result in a collision. Writing  Y = 
and taking expectations yields

∑

i =1 I
{N

i  > 0}  

E[X] = r − E[Y] = r − [1 − (1 − pi )r ]
i =1

∑
=r−k+ (1 − pi )r

i
 =1

46. Using that X =
∑∞

n=1 In ,weobtain
∑ ∑

E[X]= E[In]= P{X ≥n}
n=1 n=1

Making the change of variables m = n − 1 gives

∑ ∑
E[X]= P{X ≥ m + 1} =    P{X > m}

m=0 m=0

(b) Let
{
1,  if n ≤ X

In =

Jm =

Then

0,  if n  > X

{
1,  if m  ≤ Y 
0,  if m > Y

∑ ∑ ∑ 
XY =    In Jm = In Jm

n=1 m=1 n=1 m=1

Taking expectations now yields the result

∑ ∑
E[XY]= E[InJm]

n=1 m=1

∑ ∑
= P(X ≥n,Y ≥m)

n=1 m=1 



r
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47. Let Xi be 1 if trial i is a success and 0 otherwise. 

(a) The largest value is .6. If X1  = X2  = X3, then 1.8 = E[X ] = 3E[X1] = 
3P{X1 = 1} and so 

P{X = 3} = P{X1 = 1} = .6 

That this is the largest value is seen by Markov’s inequality, which yields 

P{X ≥ 3} ≤ E[X]/3 = .6 

(b) The smallest value is 0. To construct a probability scenario for which  P{X = 
3} = 0 let U be a uniform random variable on (0, 1), and define

X1 =

X2 =

X3 =

1 if U ≤ .6
0 otherwise

1 if U ≥ .4
0 otherwise

1 if either U ≤ .3 or U ≥ .7
0 otherwise 

It is easy to see that 

P{X1 = X2 = X3 = 1} = 0 

49.  E[X2] − (E[X ])2 = V ar (X ) = E (X − E [X ])2 ≥ 0. Equality when V ar (X ) = 0, 
that is, when X is constant. 

50. Var(cX) = E[(cX − E[cX])2]

= E[c2(X  −  E(X))2]  

=c2Var(X) 

Var(c + X) = E[(c + X − E[c + X])2] 

= E[(X − E[X])2] 

=Var(X) 

∑r 

51.  N = i =1 Xi whereXi 
isthenumberofflipsbetweenthe(i−1)standithhead.Hence,

 Xi is geometric with mean 1/ p. Thus,

52. (a)

(b)
(c)

∑
E[N]= E[Xi]=

i =1

n

n+1
0
1

r

p 
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53.
1 1 

n+1
, 

2n + 1
−

[ ]
2

1
n+1

54.
(a) Using the fact that E [X + Y ] = 0 we see that 0 = 2 p(1, 1) − 2 p(−1, −1), 

which gives the result.
(b) This follows since

0 = E[X − Y] = 2p(1,−1) − 2p(−1,1)

(c) V ar (X ) = E [X2] = 1
(d) V ar (Y ) = E [Y2] = 1
(e) Since

1  = p(1,1)  + p(−1,1)  + p(1,−1)  + p(−1,1) 

= 2p(1,1) + 2p(1,−1)

we see that if p = 2 p(1, 1) then 1 − p = 2 p(1, −1) 
Now,

Cov(X,Y) = E[XY] 

= p(1,1) + p(−1,−1)

− p(1,−1)−p(−1,1) 

= p  − (1  − p)  = 2p  − 1 

∑ ( j )
55. (a) P(Y = j ) =

i =0
i

j

e−3λλj/j!

∑
( j )

j −1 
=e−2λλ 1i 1

j! i
i =0

j 
=e−2λ(

2λ) 

j! 
∑(j)

(b) P(X = i ) =

=

i
j =i

1

e−2λλj/j!

∑ 1



j

j

∞

∞

∞

i!
e−2λ

i

= λ e−2λ

j =i

∑

(j − i)!
λj

λk/k!
i!

=e−λλ

k=0
i

i! 


