Contents

Preface	2
1 The Wave Function	3
2 Time-Independent Schrödinger Equation	14
3 Formalism	62
4 Quantum Mechanics in Three Dimensions	87
5 Identical Particles	132
6 Time-Independent Perturbation Theory	154
7 The Variational Principle	190
8 The WKB Approximation	219
9 Time-Dependent Perturbation Theory	230
10 The Adiabatic Approximation	254
11 Scattering	268
12 Afterword	282
Appendix Linear Algebra	283
2nd Edition 1st Edition Problem Correlation Crid	200

Preface

These are my own solutions to the problems in *Introduction to Quantum Mechanics*, 2nd ed. I have made every effort to insure that they are clear and correct, but errors are bound to occur, and for this I apologize in advance. I would like to thank the many people who pointed out mistakes in the solution manual for the first edition, and encourage anyone who finds defects in this one to alert me (griffith@reed.edu). I'll maintain a list of errata on my web page (http://academic.reed.edu/physics/faculty/griffiths.html), and incorporate corrections in the manual itself from time to time. I also thank my students at Reed and at Smith for many useful suggestions, and above all Neelaksh Sadhoo, who did most of the typesetting.

At the end of the manual there is a grid that correlates the problem numbers in the second edition with those in the first edition.

David Griffiths

Chapter 1

The Wave Function

Problem 1.1

(a)

$$\langle j \rangle^2 = 21^2 = \boxed{441.}$$

$$\begin{split} \langle j^2 \rangle &= \frac{1}{N} \sum j^2 N(j) = \frac{1}{14} \left[(14^2) + (15^2) + 3(16^2) + 2(22^2) + 2(24^2) + 5(25^2) \right] \\ &= \frac{1}{14} (196 + 225 + 768 + 968 + 1152 + 3125) = \frac{6434}{14} = \boxed{459.571.} \end{split}$$

$$\sigma^{2} = \frac{1}{N} \sum_{j=0}^{N} (\Delta j)^{2} N(j) = \frac{1}{14} \left[(-7)^{2} + (-6)^{2} + (-5)^{2} \cdot 3 + (1)^{2} \cdot 2 + (3)^{2} \cdot 2 + (4)^{2} \cdot 5 \right]$$
$$= \frac{1}{14} (49 + 36 + 75 + 2 + 18 + 80) = \frac{260}{14} = \boxed{18.571.}$$

$$\sigma = \sqrt{18.571} = \boxed{4.309.}$$

(c) $\langle j^2 \rangle - \langle j \rangle^2 = 459.571 - 441 = 18.571. \quad [\text{Agrees with (b)}.]$

^{©2005} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(a)
$$\langle x^2 \rangle = \int_0^h x^2 \frac{1}{2\sqrt{hx}} dx = \frac{1}{2\sqrt{h}} \left(\frac{2}{5} x^{5/2} \right) \Big|_0^h = \frac{h^2}{5}.$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{h^2}{5} - \left(\frac{h}{3} \right)^2 = \frac{4}{45} h^2 \implies \sigma = \boxed{\frac{2h}{3\sqrt{5}} = 0.2981h.}$$

(b)
$$P = 1 - \int_{x_{-}}^{x_{+}} \frac{1}{2\sqrt{hx}} dx = 1 - \left. \frac{1}{2\sqrt{h}} (2\sqrt{x}) \right|_{x_{-}}^{x_{+}} = 1 - \frac{1}{\sqrt{h}} \left(\sqrt{x_{+}} - \sqrt{x_{-}} \right).$$

$$x_{+} \equiv \langle x \rangle + \sigma = 0.3333h + 0.2981h = 0.6315h; \quad x_{-} \equiv \langle x \rangle - \sigma = 0.3333h - 0.2981h = 0.0352h.$$

$$P = 1 - \sqrt{0.6315} + \sqrt{0.0352} = \boxed{0.393.}$$

Problem 1.3

(a)
$$1 = \int_{-\infty}^{\infty} A e^{-\lambda (x-a)^2} dx. \quad \text{Let } u \equiv x - a, \, du = dx, \, u : -\infty \to \infty.$$

$$1 = A \int_{-\infty}^{\infty} e^{-\lambda u^2} du = A \sqrt{\frac{\pi}{\lambda}} \quad \Rightarrow \boxed{A = \sqrt{\frac{\lambda}{\pi}}.}$$

(b)
$$\langle x \rangle = A \int_{-\infty}^{\infty} x e^{-\lambda(x-a)^2} dx = A \int_{-\infty}^{\infty} (u+a) e^{-\lambda u^2} du$$

$$= A \left[\int_{-\infty}^{\infty} u e^{-\lambda u^2} du + a \int_{-\infty}^{\infty} e^{-\lambda u^2} du \right] = A \left(0 + a \sqrt{\frac{\pi}{\lambda}} \right) = \boxed{a.}$$

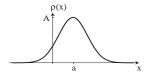
$$\langle x^2 \rangle = A \int_{-\infty}^{\infty} x^2 e^{-\lambda(x-a)^2} dx$$

$$= A \left\{ \int_{-\infty}^{\infty} u^2 e^{-\lambda u^2} du + 2a \int_{-\infty}^{\infty} u e^{-\lambda u^2} du + a^2 \int_{-\infty}^{\infty} e^{-\lambda u^2} du \right\}$$

$$= A \left[\frac{1}{2\lambda} \sqrt{\frac{\pi}{\lambda}} + 0 + a^2 \sqrt{\frac{\pi}{\lambda}} \right] = \boxed{a^2 + \frac{1}{2\lambda}}.$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = a^2 + \frac{1}{2\lambda} - a^2 = \frac{1}{2\lambda}; \qquad \boxed{\sigma = \frac{1}{\sqrt{2\lambda}}}.$$

(c)

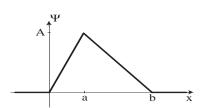


Problem 1.4

(a)

$$\begin{split} 1 &= \frac{|A|^2}{a^2} \int_0^a x^2 dx + \frac{|A|^2}{(b-a)^2} \int_a^b (b-x)^2 dx = |A|^2 \left\{ \frac{1}{a^2} \left(\frac{x^3}{3} \right) \Big|_0^a + \frac{1}{(b-a)^2} \left(-\frac{(b-x)^3}{3} \right) \Big|_a^b \right\} \\ &= |A|^2 \left[\frac{a}{3} + \frac{b-a}{3} \right] = |A|^2 \frac{b}{3} \ \Rightarrow \ \boxed{A = \sqrt{\frac{3}{b}}}. \end{split}$$

(b)



- (c) At x = a.
- (d)

$$P = \int_0^a |\Psi|^2 dx = \frac{|A|^2}{a^2} \int_0^a x^2 dx = |A|^2 \frac{a}{3} = \boxed{\frac{a}{b}}. \begin{cases} P = 1 & \text{if } b = a, \checkmark \\ P = 1/2 & \text{if } b = 2a. \checkmark \end{cases}$$

(e)

$$\begin{split} \langle x \rangle &= \int x |\Psi|^2 dx = |A|^2 \bigg\{ \frac{1}{a^2} \int_0^a x^3 dx + \frac{1}{(b-a)^2} \int_a^b x (b-x)^2 dx \bigg\} \\ &= \frac{3}{b} \left\{ \frac{1}{a^2} \left(\frac{x^4}{4} \right) \bigg|_0^a + \frac{1}{(b-a)^2} \left(b^2 \frac{x^2}{2} - 2b \frac{x^3}{3} + \frac{x^4}{4} \right) \bigg|_a^b \right\} \\ &= \frac{3}{4b(b-a)^2} \left[a^2 (b-a)^2 + 2b^4 - 8b^4/3 + b^4 - 2a^2 b^2 + 8a^3 b/3 - a^4 \right] \\ &= \frac{3}{4b(b-a)^2} \left(\frac{b^4}{3} - a^2 b^2 + \frac{2}{3}a^3 b \right) = \frac{1}{4(b-a)^2} (b^3 - 3a^2 b + 2a^3) = \boxed{\frac{2a+b}{4}}. \end{split}$$

(a)

$$1 = \int |\Psi|^2 dx = 2|A|^2 \int_0^\infty e^{-2\lambda x} dx = 2|A|^2 \left(\frac{e^{-2\lambda x}}{-2\lambda}\right)\Big|_0^\infty = \frac{|A|^2}{\lambda}; \quad \boxed{A = \sqrt{\lambda}.}$$

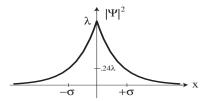
(b)

$$\langle x \rangle = \int x |\Psi|^2 dx = |A|^2 \int_{-\infty}^{\infty} x e^{-2\lambda |x|} dx = \boxed{0.}$$
 [Odd integrand.]

$$\langle x^2 \rangle = 2|A|^2 \int_0^\infty x^2 e^{-2\lambda x} dx = 2\lambda \left[\frac{2}{(2\lambda)^3} \right] = \boxed{\frac{1}{2\lambda^2}}.$$

(c)

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{1}{2\lambda^2}; \qquad \boxed{\sigma = \frac{1}{\sqrt{2}\lambda}.} \qquad |\Psi(\pm \sigma)|^2 = |A|^2 e^{-2\lambda\sigma} = \lambda e^{-2\lambda/\sqrt{2}\lambda} = \lambda e^{-\sqrt{2}} = 0.2431\lambda.$$



Probability outside:

$$2\int_{\sigma}^{\infty} |\Psi|^2 dx = 2|A|^2 \int_{\sigma}^{\infty} e^{-2\lambda x} dx = 2\lambda \left(\frac{e^{-2\lambda x}}{-2\lambda}\right)\Big|_{\sigma}^{\infty} = e^{-2\lambda \sigma} = \boxed{e^{-\sqrt{2}} = 0.2431.}$$

Problem 1.6

For integration by parts, the differentiation has to be with respect to the *integration* variable – in this case the differentiation is with respect to t, but the integration variable is x. It's true that

$$\frac{\partial}{\partial t}(x|\Psi|^2) = \frac{\partial x}{\partial t}|\Psi|^2 + x\frac{\partial}{\partial t}|\Psi|^2 = x\frac{\partial}{\partial t}|\Psi|^2,$$

but this does *not* allow us to perform the integration:

$$\int_{a}^{b} x \frac{\partial}{\partial t} |\Psi|^{2} dx = \int_{a}^{b} \frac{\partial}{\partial t} (x |\Psi|^{2}) dx \neq (x |\Psi|^{2}) \Big|_{a}^{b}.$$

^{©2005} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

From Eq. 1.33, $\frac{d\langle p \rangle}{dt} = -i\hbar \int \frac{\partial}{\partial t} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx$. But, noting that $\frac{\partial^2 \Psi}{\partial x \partial t} = \frac{\partial^2 \Psi}{\partial t \partial x}$ and using Eqs. 1.23-1.24:

$$\begin{split} \frac{\partial}{\partial t} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) &= \frac{\partial \Psi^*}{\partial t} \frac{\partial \Psi}{\partial x} + \Psi^* \frac{\partial}{\partial x} \left(\frac{\partial \Psi}{\partial t} \right) = \left[-\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^* \right] \frac{\partial \Psi}{\partial x} + \Psi^* \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi \right] \\ &= \frac{i\hbar}{2m} \left[\Psi^* \frac{\partial^3 \Psi}{\partial x^3} - \frac{\partial^2 \Psi^*}{\partial x^2} \frac{\partial \Psi}{\partial x} \right] + \frac{i}{\hbar} \left[V \Psi^* \frac{\partial \Psi}{\partial x} - \Psi^* \frac{\partial}{\partial x} (V \Psi) \right] \end{split}$$

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to $V\Psi^*\frac{\partial\Psi}{\partial x}-\Psi^*V\frac{\partial\Psi}{\partial x}-\Psi^*\frac{\partial V}{\partial x}\Psi=-|\Psi|^2\frac{\partial V}{\partial x}$. So

$$\frac{d\langle p\rangle}{dt} = -i\hbar \left(\frac{i}{\hbar}\right) \int -|\Psi|^2 \frac{\partial V}{\partial x} dx = \langle -\frac{\partial V}{\partial x} \rangle. \quad \text{QED}$$

Problem 1.8

Suppose Ψ satisfies the Schrödinger equation without V_0 : $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$. We want to find the solution Ψ_0 with V_0 : $i\hbar \frac{\partial \Psi_0}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_0}{\partial x^2} + (V + V_0)\Psi_0$.

Claim:
$$\Psi_0 = \Psi e^{-iV_0 t/\hbar}$$
.

Proof:
$$i\hbar \frac{\partial \Psi_0}{\partial t} = i\hbar \frac{\partial \Psi}{\partial t} e^{-iV_0 t/\hbar} + i\hbar \Psi \left(-\frac{iV_0}{\hbar} \right) e^{-iV_0 t/\hbar} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V \Psi \right] e^{-iV_0 t/\hbar} + V_0 \Psi e^{-iV_0 t/\hbar}$$

$$= -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_0}{\partial x^2} + (V + V_0) \Psi_0. \qquad \text{QED}$$

This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being independent of x, cancels out in Eq. 1.36.

Problem 1.9

(a)

$$1 = 2|A|^2 \int_0^\infty e^{-2amx^2/\hbar} dx = 2|A|^2 \frac{1}{2} \sqrt{\frac{\pi}{(2am/\hbar)}} = |A|^2 \sqrt{\frac{\pi\hbar}{2am}}; \quad \boxed{A = \left(\frac{2am}{\pi\hbar}\right)^{1/4}}.$$

(b)

$$\frac{\partial \Psi}{\partial t} = -ia\Psi; \quad \frac{\partial \Psi}{\partial x} = -\frac{2amx}{\hbar}\Psi; \quad \frac{\partial^2 \Psi}{\partial x^2} = -\frac{2am}{\hbar}\left(\Psi + x\frac{\partial \Psi}{\partial x}\right) = -\frac{2am}{\hbar}\left(1 - \frac{2amx^2}{\hbar}\right)\Psi.$$

Plug these into the Schrödinger equation, $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi$:

$$\begin{split} V\Psi &= i\hbar(-ia)\Psi + \frac{\hbar^2}{2m}\left(-\frac{2am}{\hbar}\right)\left(1 - \frac{2amx^2}{\hbar}\right)\Psi \\ &= \left[\hbar a - \hbar a\left(1 - \frac{2amx^2}{\hbar}\right)\right]\Psi = 2a^2mx^2\Psi, \quad \text{so} \quad \boxed{V(x) = 2ma^2x^2.} \end{split}$$

(c)

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi|^2 dx = \boxed{0.}$$
 [Odd integrand.]

$$\langle x^2 \rangle = 2|A|^2 \int_0^\infty x^2 e^{-2amx^2/\hbar} dx = 2|A|^2 \frac{1}{2^2 (2am/\hbar)} \sqrt{\frac{\pi \hbar}{2am}} = \boxed{\frac{\hbar}{4am}}.$$

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = \boxed{0.}$$

$$\begin{split} \langle p^2 \rangle &= \int \Psi^* \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right)^2 \Psi dx = -\hbar^2 \int \Psi^* \frac{\partial^2 \Psi}{\partial x^2} dx \\ &= -\hbar^2 \int \Psi^* \left[-\frac{2am}{\hbar} \left(1 - \frac{2amx^2}{\hbar} \right) \Psi \right] dx = 2am\hbar \left\{ \int |\Psi|^2 dx - \frac{2am}{\hbar} \int x^2 |\Psi|^2 dx \right\} \\ &= 2am\hbar \left(1 - \frac{2am}{\hbar} \langle x^2 \rangle \right) = 2am\hbar \left(1 - \frac{2am}{\hbar} \frac{\hbar}{4am} \right) = 2am\hbar \left(\frac{1}{2} \right) = \boxed{am\hbar}. \end{split}$$

(d)
$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{\hbar}{4am} \Longrightarrow \boxed{\sigma_x = \sqrt{\frac{\hbar}{4am}}}; \quad \sigma_p^2 = \langle p^2 \rangle - \langle p \rangle^2 = am\hbar \Longrightarrow \boxed{\sigma_p = \sqrt{am\hbar}.}$$

 $\sigma_x \sigma_p = \sqrt{\frac{\hbar}{4am}} \sqrt{am\hbar} = \frac{\hbar}{2}$. This is (just barely) consistent with the uncertainty principle.

Problem 1.10

From Math Tables: $\pi = 3.141592653589793238462643 \cdots$

(a)
$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline P(0) = 0 & P(1) = 2/25 & P(2) = 3/25 & P(3) = 5/25 & P(4) = 3/25\\ P(5) = 3/25 & P(6) = 3/25 & P(7) = 1/25 & P(8) = 2/25 & P(9) = 3/25\\ \hline \text{In general, } P(j) = \frac{N(j)}{N}. \end{array}$$

(b) Most probable: 3. Median: 13 are
$$\leq 4$$
, 12 are ≥ 5 , so median is 4.
Average: $\langle j \rangle = \frac{1}{25} [0 \cdot 0 + 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 5 + 4 \cdot 3 + 5 \cdot 3 + 6 \cdot 3 + 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3]$
= $\frac{1}{25} [0 + 2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27] = \frac{118}{25} = \boxed{4.72.}$

(c)
$$\langle j^2 \rangle = \frac{1}{25} [0 + 1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 5 + 4^2 \cdot 3 + 5^2 \cdot 3 + 6^2 \cdot 3 + 7^2 \cdot 1 + 8^2 \cdot 2 + 9^2 \cdot 3]$$

 $= \frac{1}{25} [0 + 2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243] = \frac{710}{25} = \boxed{28.4.}$
 $\sigma^2 = \langle j^2 \rangle - \langle j \rangle^2 = 28.4 - 4.72^2 = 28.4 - 22.2784 = 6.1216; \quad \sigma = \sqrt{6.1216} = \boxed{2.474.}$

(a) Constant for $0 \le \theta \le \pi$, otherwise zero. In view of Eq. 1.16, the constant is $1/\pi$.

$$\rho(\theta) = \begin{cases} 1/\pi, & \text{if } 0 \le \theta \le \pi, \\ 0, & \text{otherwise.} \end{cases}$$



(b)

$$\langle \theta \rangle = \int \theta \rho(\theta) d\theta = \frac{1}{\pi} \int_0^{\pi} \theta d\theta = \frac{1}{\pi} \left(\frac{\theta^2}{2} \right) \Big|_0^{\pi} = \boxed{\frac{\pi}{2}} \quad \text{[of course]}.$$

$$\langle \theta^2 \rangle = \frac{1}{\pi} \int_0^{\pi} \theta^2 d\theta = \frac{1}{\pi} \left(\frac{\theta^3}{3} \right) \Big|_0^{\pi} = \boxed{\frac{\pi^2}{3}}.$$

$$\sigma^2 = \langle \theta^2 \rangle - \langle \theta \rangle^2 = \frac{\pi^2}{3} - \frac{\pi^2}{4} = \frac{\pi^2}{12}; \quad \boxed{\sigma = \frac{\pi}{2\sqrt{3}}}.$$

(c)

$$\langle \sin \theta \rangle = \frac{1}{\pi} \int_0^\pi \sin \theta \, d\theta = \frac{1}{\pi} \left. (-\cos \theta) \right|_0^\pi = \frac{1}{\pi} (1 - (-1)) = \boxed{\frac{2}{\pi}}.$$

$$\langle \cos \theta \rangle = \frac{1}{\pi} \int_0^{\pi} \cos \theta \, d\theta = \frac{1}{\pi} \left(\sin \theta \right) \Big|_0^{\pi} = \boxed{0}.$$

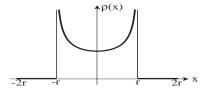
$$\langle \cos^2 \theta \rangle = \frac{1}{\pi} \int_0^{\pi} \cos^2 \theta \, d\theta = \frac{1}{\pi} \int_0^{\pi} (1/2) d\theta = \boxed{\frac{1}{2}}.$$

[Because $\sin^2 \theta + \cos^2 \theta = 1$, and the integrals of \sin^2 and \cos^2 are equal (over suitable intervals), one can replace them by 1/2 in such cases.]

Problem 1.12

(a) $x = r \cos \theta \Rightarrow dx = -r \sin \theta d\theta$. The probability that the needle lies in range $d\theta$ is $\rho(\theta)d\theta = \frac{1}{\pi}d\theta$, so the probability that it's in the range dx is

$$\rho(x)dx = \frac{1}{\pi} \frac{dx}{r \sin \theta} = \frac{1}{\pi} \frac{dx}{r\sqrt{1 - (x/r)^2}} = \frac{dx}{\pi \sqrt{r^2 - x^2}}.$$



$$\therefore \rho(x) = \begin{cases} \frac{1}{\pi\sqrt{r^2 - x^2}}, & \text{if } -r < x < r, \\ 0, & \text{otherwise.} \end{cases}$$

[Note: We want the magnitude of dx here.]

Total:
$$\int_{-r}^{r} \frac{1}{\pi \sqrt{r^2 - x^2}} dx = \frac{2}{\pi} \int_{0}^{r} \frac{1}{\sqrt{r^2 - x^2}} dx = \frac{2}{\pi} \sin^{-1} \frac{x}{r} \Big|_{0}^{r} = \frac{2}{\pi} \sin^{-1} (1) = \frac{2}{\pi} \cdot \frac{\pi}{2} = 1.$$

(b)
$$\langle x \rangle = \frac{1}{\pi} \int_{-r}^{r} x \frac{1}{\sqrt{r^2 - x^2}} dx = \boxed{0}$$
 [odd integrand, even interval].

$$\langle x^2 \rangle = \frac{2}{\pi} \int_0^r \frac{x^2}{\sqrt{r^2 - x^2}} dx = \frac{2}{\pi} \left[-\frac{x}{2} \sqrt{r^2 - x^2} + \frac{r^2}{2} \sin^{-1} \left(\frac{x}{r} \right) \right]_0^r = \frac{2}{\pi} \frac{r^2}{2} \sin^{-1} (1) = \boxed{\frac{r^2}{2}}.$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = r^2/2 \Longrightarrow \sigma = r/\sqrt{2}.$$

To get $\langle x \rangle$ and $\langle x^2 \rangle$ from Problem 1.11(c), use $x = r \cos \theta$, so $\langle x \rangle = r \langle \cos \theta \rangle = 0$, $\langle x^2 \rangle = r^2 \langle \cos^2 \theta \rangle = r^2/2$.

Problem 1.13

Suppose the eye end lands a distance y up from a line $(0 \le y < l)$, and let x be the projection along that same direction $(-l \le x < l)$. The needle crosses the line above if $y + x \ge l$ (i.e. $x \ge l - y$), and it crosses the line below if y + x < 0 (i.e. x < -y). So for a given value of y, the probability of crossing (using Problem 1.12) is

$$P(y) = \int_{-l}^{-y} \rho(x)dx + \int_{l-y}^{l} \rho(x)dx = \frac{1}{\pi} \left\{ \int_{-l}^{-y} \frac{1}{\sqrt{l^2 - x^2}} dx + \int_{l-y}^{l} \frac{1}{\sqrt{l^2 - x^2}} dx \right\}$$

$$= \frac{1}{\pi} \left\{ \sin^{-1} \left(\frac{x}{l} \right) \Big|_{-l}^{-y} + \sin^{-1} \left(\frac{x}{l} \right) \Big|_{l-y}^{l} \right\} = \frac{1}{\pi} \left[-\sin^{-1}(y/l) + 2\sin^{-1}(1) - \sin^{-1}(1 - y/l) \right]$$

$$= 1 - \frac{\sin^{-1}(y/l)}{\pi} - \frac{\sin^{-1}(1 - y/l)}{\pi}.$$

Now, all values of y are equally likely, so $\rho(y) = 1/l$, and hence the probability of crossing is

$$P = \frac{1}{\pi l} \int_0^l \left[\pi - \sin^{-1} \left(\frac{y}{l} \right) - \sin^{-1} \left(\frac{l-y}{l} \right) \right] dy = \frac{1}{\pi l} \int_0^l \left[\pi - 2 \sin^{-1} (y/l) \right] dy$$
$$= \frac{1}{\pi l} \left[\pi l - 2 \left(y \sin^{-1} (y/l) + l \sqrt{1 - (y/l)^2} \right) \Big|_0^l \right] = 1 - \frac{2}{\pi l} [l \sin^{-1} (1) - l] = 1 - 1 + \frac{2}{\pi} = \boxed{\frac{2}{\pi}}.$$

(a)
$$P_{ab}(t) = \int_a^b |\Psi(x,t)|^2 dx$$
, so $\frac{dP_{ab}}{dt} = \int_a^b \frac{\partial}{\partial t} |\Psi|^2 dx$. But (Eq. 1.25):
$$\frac{\partial |\Psi|^2}{\partial t} = \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \right] = -\frac{\partial}{\partial t} J(x,t).$$

$$\therefore \frac{dP_{ab}}{dt} = -\int_a^b \frac{\partial}{\partial x} J(x,t) dx = -\left[J(x,t) \right] \Big|_a^b = J(a,t) - J(b,t).$$
 QED

Probability is dimensionless, so J has the dimensions 1/time, and units $seconds^{-1}$.

(b) Here
$$\Psi(x,t) = f(x)e^{-iat}$$
, where $f(x) \equiv Ae^{-amx^2/\hbar}$, so $\Psi \frac{\partial \Psi^*}{\partial x} = fe^{-iat} \frac{df}{dx}e^{iat} = f\frac{df}{dx}$, and $\Psi^* \frac{\partial \Psi}{\partial x} = f\frac{df}{dx}$ too, so $J(x,t) = 0$.

Problem 1.15

(a) Eq. 1.24 now reads $\frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V^* \Psi^*$, and Eq. 1.25 picks up an extra term:

$$\frac{\partial}{\partial t}|\Psi|^2 = \dots + \frac{i}{\hbar}|\Psi|^2(V^* - V) = \dots + \frac{i}{\hbar}|\Psi|^2(V_0 + i\Gamma - V_0 + i\Gamma) = \dots - \frac{2\Gamma}{\hbar}|\Psi|^2,$$

and Eq. 1.27 becomes $\frac{dP}{dt} = -\frac{2\Gamma}{\hbar} \int_{-\infty}^{\infty} |\Psi|^2 dx = -\frac{2\Gamma}{\hbar} P$. QED

(b)

$$\frac{dP}{P} = -\frac{2\Gamma}{\hbar}dt \Longrightarrow \ln P = -\frac{2\Gamma}{\hbar}t + \text{constant} \Longrightarrow \boxed{P(t) = P(0)e^{-2\Gamma t/\hbar}, \text{ so } \boxed{\tau = \frac{\hbar}{2\Gamma}}.}$$

Problem 1.16

Use Eqs. [1.23] and [1.24], and integration by parts:

$$\begin{split} \frac{d}{dt} \int_{-\infty}^{\infty} \Psi_1^* \Psi_2 \, dx &= \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left(\Psi_1^* \Psi_2 \right) \, dx = \int_{-\infty}^{\infty} \left(\frac{\partial \Psi_1^*}{\partial t} \Psi_2 + \Psi_1^* \frac{\partial \Psi_2}{\partial t} \right) \, dx \\ &= \int_{-\infty}^{\infty} \left[\left(\frac{-i\hbar}{2m} \frac{\partial^2 \Psi_1^*}{\partial x^2} + \frac{i}{\hbar} V \Psi_1^* \right) \Psi_2 + \Psi_1^* \left(\frac{i\hbar}{2m} \frac{\partial^2 \Psi_2}{\partial x^2} - \frac{i}{\hbar} V \Psi_2 \right) \right] \, dx \\ &= -\frac{i\hbar}{2m} \int_{-\infty}^{\infty} \left(\frac{\partial^2 \Psi_1^*}{\partial x^2} \Psi_2 - \Psi_1^* \frac{\partial^2 \Psi_2}{\partial x^2} \right) \, dx \\ &= -\frac{i\hbar}{2m} \left[\left. \frac{\partial \Psi_1^*}{\partial x} \Psi_2 \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\partial \Psi_1^*}{\partial x} \frac{\partial \Psi_2}{\partial x} \, dx - \Psi_1^* \frac{\partial \Psi_2}{\partial x} \right|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{\partial \Psi_1^*}{\partial x} \frac{\partial \Psi_2}{\partial x} \, dx \right] = 0. \text{ QED} \end{split}$$

^{©2005} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(a)

$$1 = |A|^2 \int_{-a}^{a} (a^2 - x^2)^2 dx = 2|A|^2 \int_{0}^{a} (a^4 - 2a^2x^2 + x^4) dx = 2|A|^2 \left[a^4x - 2a^2\frac{x^3}{3} + \frac{x^5}{5} \right]_{0}^{a}$$
$$= 2|A|^2 a^5 \left(1 - \frac{2}{3} + \frac{1}{5} \right) = \frac{16}{15} a^5 |A|^2, \text{ so } A = \sqrt{\frac{15}{16a^5}}.$$

(b)

$$\langle x \rangle = \int_{-a}^{a} x |\Psi|^2 dx = \boxed{0.}$$
 (Odd integrand.)

(c)

$$\langle p \rangle = \frac{\hbar}{i} A^2 \int_{-a}^a \left(a^2 - x^2 \right) \underbrace{\frac{d}{dx} \left(a^2 - x^2 \right)}_{-2x} dx = \boxed{0.}$$
 (Odd integrand.)

Since we only know $\langle x \rangle$ at t = 0 we cannot calculate $d\langle x \rangle/dt$ directly.

(d)

$$\begin{split} \langle x^2 \rangle &= A^2 \int_{-a}^a x^2 \big(a^2 - x^2 \big)^2 dx = 2A^2 \int_0^a \big(a^4 x^2 - 2a^2 x^4 + x^6 \big) dx \\ &= 2 \frac{15}{16a^5} \left[a^4 \frac{x^3}{3} - 2a^2 \frac{x^5}{5} + \frac{x^7}{7} \right] \Big|_0^a = \frac{15}{8a^5} \big(a^7 \big) \left(\frac{1}{3} - \frac{2}{5} + \frac{1}{7} \right) \\ &= \frac{\cancel{15}a^2}{8} \left(\frac{35 - 42 + 15}{\cancel{3} \cdot \cancel{5} \cdot 7} \right) = \frac{a^2}{8} \cdot \frac{8}{7} = \boxed{\frac{a^2}{7}}. \end{split}$$

(e)

$$\langle p^2 \rangle = -A^2 \hbar^2 \int_{-a}^a \left(a^2 - x^2 \right) \underbrace{\frac{d^2}{dx^2} \left(a^2 - x^2 \right)}_{-2} dx = 2A^2 \hbar^2 2 \int_0^a \left(a^2 - x^2 \right) dx$$
$$= 4 \cdot \frac{15}{16a^5} \hbar^2 \left(a^2 x - \frac{x^3}{3} \right) \Big|_0^a = \frac{15\hbar^2}{4a^5} \left(a^3 - \frac{a^3}{3} \right) = \frac{15\hbar^2}{4a^2} \cdot \frac{2}{3} = \boxed{\frac{5}{2} \frac{\hbar^2}{a^2}}.$$

(f)

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{7}a^2} = \boxed{\frac{a}{\sqrt{7}}}.$$

(g)

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{5}{2} \frac{\hbar^2}{a^2}} = \sqrt{\frac{5}{2} \frac{\hbar}{a}}.$$

(h)

$$\sigma_x \sigma_p = \frac{a}{\sqrt{7}} \cdot \sqrt{\frac{5}{2}} \frac{\hbar}{a} = \sqrt{\frac{5}{14}} \hbar = \sqrt{\frac{10}{7}} \frac{\hbar}{2} > \frac{\hbar}{2}. \checkmark$$

Problem 1.18

$$\frac{h}{\sqrt{3mk_BT}} > d \implies T < \frac{h^2}{3mk_Bd^2}.$$

(a) Electrons $(m = 9.1 \times 10^{-31} \text{ kg})$:

$$T < \frac{(6.6 \times 10^{-34})^2}{3(9.1 \times 10^{-31})(1.4 \times 10^{-23})(3 \times 10^{-10})^2} = \boxed{1.3 \times 10^5 \text{ K.}}$$

Sodium nuclei $(m = 23m_p = 23(1.7 \times 10^{-27}) = 3.9 \times 10^{-26} \text{ kg})$:

$$T < \frac{(6.6 \times 10^{-34})^2}{3(3.9 \times 10^{-26})(1.4 \times 10^{-23})(3 \times 10^{-10})^2} = \boxed{3.0 \text{ K.}}$$

(b) $PV = Nk_BT$; volume occupied by one molecule $(N = 1, V = d^3) \Rightarrow d = (k_BT/P)^{1/3}$.

$$T < \frac{h^2}{2mk_B} \left(\frac{P}{k_B T}\right)^{2/3} \ \Rightarrow \ T^{5/3} < \frac{h^2}{3m} \frac{P^{2/3}}{k_B^{5/3}} \ \Rightarrow T < \frac{1}{k_B} \left(\frac{h^2}{3m}\right)^{3/5} P^{2/5}.$$

For helium $(m=4m_p=6.8\times 10^{-27}~{\rm kg})$ at 1 atm $=1.0\times 10^5~{\rm N/m^2}$:

$$T < \frac{1}{(1.4 \times 10^{-23})} \left(\frac{(6.6 \times 10^{-34})^2}{3(6.8 \times 10^{-27})} \right)^{3/5} (1.0 \times 10^5)^{2/5} = \boxed{2.8 \text{ K.}}$$

For hydrogen $(m = 2m_p = 3.4 \times 10^{-27} \text{ kg})$ with d = 0.01 m:

$$T < \frac{(6.6 \times 10^{-34})^2}{3(3.4 \times 10^{-27})(1.4 \times 10^{-23})(10^{-2})^2} = \boxed{3.1 \times 10^{-14} \text{ K.}}$$

At 3 K it is definitely in the classical regime.

Chapter 2

Time-Independent Schrödinger Equation

Problem 2.1

(a)

$$\Psi(x,t) = \psi(x)e^{-i(E_0 + i\Gamma)t/\hbar} = \psi(x)e^{\Gamma t/\hbar}e^{-iE_0 t/\hbar} \Longrightarrow |\Psi|^2 = |\psi|^2e^{2\Gamma t/\hbar}.$$

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = e^{2\Gamma t/\hbar} \int_{-\infty}^{\infty} |\psi|^2 dx.$$

The second term is independent of t, so if the product is to be 1 for all time, the first term $(e^{2\Gamma t/\hbar})$ must also be constant, and hence $\Gamma = 0$. QED

(b) If ψ satisfies Eq. 2.5, $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{dx^2} + V\psi = E\psi$, then (taking the complex conjugate and noting that V and E are real): $-\frac{\hbar^2}{2m}\frac{\partial^2\psi^*}{dx^2} + V\psi^* = E\psi^*$, so ψ^* also satisfies Eq. 2.5. Now, if ψ_1 and ψ_2 satisfy Eq. 2.5, so too does any linear combination of them $(\psi_3 \equiv c_1\psi_1 + c_2\psi_2)$:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi_3}{dx^2} + V\psi_3 = -\frac{\hbar^2}{2m}\left(c_1\frac{\partial^2\psi_1}{dx^2} + c_2\frac{\partial^2\psi_2}{\partial x^2}\right) + V(c_1\psi_1 + c_2\psi_2)$$

$$= c_1\left[-\frac{\hbar^2}{2m}\frac{d^2\psi_1}{dx^2} + V\psi_1\right] + c_2\left[-\frac{\hbar^2}{2m}\frac{d^2\psi_2}{dx^2} + V\psi_2\right]$$

$$= c_1(E\psi_1) + c_2(E\psi_2) = E(c_1\psi_1 + c_2\psi_2) = E\psi_3.$$

Thus, $(\psi + \psi^*)$ and $i(\psi - \psi^*)$ – both of which are real – satisfy Eq. 2.5. Conclusion: From any complex solution, we can always construct two real solutions (of course, if ψ is already real, the second one will be zero). In particular, since $\psi = \frac{1}{2}[(\psi + \psi^*) - i(i(\psi - \psi^*))]$, ψ can be expressed as a linear combination of two real solutions. QED

(c) If $\psi(x)$ satisfies Eq. 2.5, then, changing variables $x \to -x$ and noting that $\partial^2/\partial(-x)^2 = \partial^2/\partial x^2$,

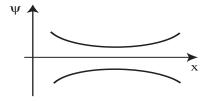
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(-x)}{\partial x^2} + V(-x)\psi(-x) = E\psi(-x);$$

so if V(-x) = V(x) then $\psi(-x)$ also satisfies Eq. 2.5. It follows that $\psi_+(x) \equiv \psi(x) + \psi(-x)$ (which is even: $\psi_+(-x) = \psi_+(x)$) and $\psi_-(x) \equiv \psi(x) - \psi(-x)$ (which is odd: $\psi_-(-x) = -\psi_-(x)$) both satisfy Eq.

2.5. But $\psi(x) = \frac{1}{2}(\psi_+(x) + \psi_-(x))$, so any solution can be expressed as a linear combination of even and odd solutions. QED

Problem 2.2

Given $\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2}[V(x) - E]\psi$, if $E < V_{\min}$, then ψ'' and ψ always have the same sign: If ψ is positive(negative), then ψ'' is also positive(negative). This means that ψ always curves away from the axis (see Figure). However, it has got to go to zero as $x \to -\infty$ (else it would not be normalizable). At some point it's got to depart from zero (if it doesn't, it's going to be identically zero everywhere), in (say) the positive direction. At this point its slope is positive, and increasing, so ψ gets bigger and bigger as x increases. It can't ever "turn over" and head back toward the axis, because that would requuire a negative second derivative—it always has to bend away from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In neither case is there any way for it to come back to zero, as it must (at $x \to \infty$) in order to be normalizable. QED



Problem 2.3

Equation 2.20 says $\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi$; Eq. 2.23 says $\psi(0) = \psi(a) = 0$. If E = 0, $d^2\psi/dx^2 = 0$, so $\psi(x) = A + Bx$; $\psi(0) = A = 0 \Rightarrow \psi = Bx$; $\psi(a) = Ba = 0 \Rightarrow B = 0$, so $\psi = 0$. If E < 0, $d^2\psi/dx^2 = \kappa^2\psi$, with $\kappa \equiv \sqrt{-2mE}/\hbar$ real, so $\psi(x) = Ae^{\kappa x} + Be^{-\kappa x}$. This time $\psi(0) = A + B = 0 \Rightarrow B = -A$, so $\psi = A(e^{\kappa x} - e^{-\kappa x})$, while $\psi(a) = A\left(e^{\kappa a} - e^{i\kappa a}\right) = 0 \Rightarrow$ either A = 0, so $\psi = 0$, or else $e^{\kappa a} = e^{-\kappa a}$, so $e^{2\kappa a} = 1$, so $2\kappa a = \ln(1) = 0$, so $\kappa = 0$, and again $\psi = 0$. In all cases, then, the boundary conditions force $\psi = 0$, which is unacceptable (non-normalizable).

Problem 2.4

$$\begin{split} \langle x \rangle &= \int x |\psi|^2 dx = \frac{2}{a} \int_0^a x \sin^2 \left(\frac{n\pi}{a} x \right) dx. \qquad \text{Let } y \equiv \frac{n\pi}{a} x, \text{ so } dx = \frac{a}{n\pi} dy; \quad y : 0 \to n\pi. \\ &= \frac{2}{a} \left(\frac{a}{n\pi} \right)^2 \int_0^{n\pi} y \sin^2 y \, dy = \frac{2a}{n^2 \pi^2} \left[\frac{y^2}{4} - \frac{y \sin 2y}{4} - \frac{\cos 2y}{8} \right] \Big|_0^{n\pi} \\ &= \frac{2a}{n^2 \pi^2} \left[\frac{n^2 \pi^2}{4} - \frac{\cos 2n\pi}{8} + \frac{1}{8} \right] = \boxed{\frac{a}{2}}. \quad \text{(Independent of } n.) \end{split}$$

$$\langle x^2 \rangle = \frac{2}{a} \int_0^a x^2 \sin^2 \left(\frac{n\pi}{a} x \right) dx = \frac{2}{a} \left(\frac{a}{n\pi} \right)^3 \int_0^{n\pi} y^2 \sin^2 y \, dy$$
$$= \frac{2a^2}{(n\pi)^3} \left[\frac{y^3}{6} - \left(\frac{y^3}{4} - \frac{1}{8} \right) \sin 2y - \frac{y \cos 2y}{4} \right]_0^{n\pi}$$
$$= \frac{2a^2}{(n\pi)^3} \left[\frac{(n\pi)^3}{6} - \frac{n\pi \cos(2n\pi)}{4} \right] = a^2 \left[\frac{1}{3} - \frac{1}{2(n\pi)^2} \right].$$

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = \boxed{0.}$$
 (*Note*: Eq. 1.33 is much faster than Eq. 1.35.)

$$\langle p^2 \rangle = \int \psi_n^* \left(\frac{\hbar}{i} \frac{d}{dx} \right)^2 \psi_n \, dx = -\hbar^2 \int \psi_n^* \left(\frac{d^2 \psi_n}{dx^2} \right) dx$$
$$= (-\hbar^2) \left(-\frac{2mE_n}{\hbar^2} \right) \int \psi_n^* \psi_n \, dx = 2mE_n = \boxed{\left(\frac{n\pi\hbar}{a} \right)^2}.$$

$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 = a^2 \left(\frac{1}{3} - \frac{1}{2(n\pi)^2} - \frac{1}{4} \right) = \frac{a^2}{4} \left(\frac{1}{3} - \frac{2}{(n\pi)^2} \right); \quad \sigma_x = \frac{a}{2} \sqrt{\frac{1}{3} - \frac{2}{(n\pi)^2}}.$$

$$\sigma_p^2 = \langle p^2 \rangle - \langle p \rangle^2 = \left(\frac{n\pi\hbar}{a}\right)^2; \quad \sigma_p = \frac{n\pi\hbar}{a}. \quad \therefore \sigma_x \sigma_p = \boxed{\frac{\hbar}{2}\sqrt{\frac{(n\pi)^2}{3} - 2}}.$$

The product $\sigma_x \sigma_p$ is smallest for n=1; in that case, $\sigma_x \sigma_p = \frac{\hbar}{2} \sqrt{\frac{\pi^2}{3} - 2} = (1.136)\hbar/2 > \hbar/2$.

Problem 2.5

(a)
$$|\Psi|^2 = \Psi^2 \Psi = |A|^2 (\psi_1^* + \psi_2^*) (\psi_1 + \psi_2) = |A|^2 [\psi_1^* \psi_1 + \psi_1^* \psi_2 + \psi_2^* \psi_1 + \psi_2^* \psi_2].$$

$$1 = \int |\Psi|^2 dx = |A|^2 \int [|\psi_1|^2 + \psi_1^* \psi_2 + \psi_2^* \psi_1 + |\psi_2|^2] dx = 2|A|^2 \Rightarrow \boxed{A = 1/\sqrt{2}.}$$
(b)

$$\Psi(x,t) = \frac{1}{\sqrt{2}} \left[\psi_1 e^{-iE_1 t/\hbar} + \psi_2 e^{-iE_2 t/\hbar} \right] \quad (\text{but } \frac{E_n}{\hbar} = n^2 \omega)$$

$$= \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \left[\sin\left(\frac{\pi}{a}x\right) e^{-i\omega t} + \sin\left(\frac{2\pi}{a}x\right) e^{-i4\omega t} \right] = \left[\frac{1}{\sqrt{a}} e^{-i\omega t} \left[\sin\left(\frac{\pi}{a}x\right) + \sin\left(\frac{2\pi}{a}x\right) e^{-3i\omega t} \right].$$

$$|\Psi(x,t)|^2 = \frac{1}{a} \left[\sin^2\left(\frac{\pi}{a}x\right) + \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) \left(e^{-3i\omega t} + e^{3i\omega t} \right) + \sin^2\left(\frac{2\pi}{a}x\right) \right]$$

$$= \left[\frac{1}{a} \left[\sin^2\left(\frac{\pi}{a}x\right) + \sin^2\left(\frac{2\pi}{a}x\right) + 2\sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) \cos(3\omega t) \right].$$

$$\begin{split} \langle x \rangle &= \int x |\Psi(x,t)|^2 dx \\ &= \frac{1}{a} \int_0^a x \left[\sin^2 \left(\frac{\pi}{a} x \right) + \sin^2 \left(\frac{2\pi}{a} x \right) + 2 \sin \left(\frac{\pi}{a} x \right) \sin \left(\frac{2\pi}{a} x \right) \cos(3\omega t) \right] dx \\ \int_0^a x \sin^2 \left(\frac{\pi}{a} x \right) dx &= \left[\frac{x^2}{4} - \frac{x \sin \left(\frac{2\pi}{a} x \right)}{4\pi/a} - \frac{\cos \left(\frac{2\pi}{a} x \right)}{8(\pi/a)^2} \right] \Big|_0^a = \frac{a^2}{4} = \int_0^a x \sin^2 \left(\frac{2\pi}{a} x \right) dx \\ \int_0^a x \sin \left(\frac{\pi}{a} x \right) \sin \left(\frac{2\pi}{a} x \right) dx &= \frac{1}{2} \int_0^a x \left[\cos \left(\frac{\pi}{a} x \right) - \cos \left(\frac{3\pi}{a} x \right) \right] dx \\ &= \frac{1}{2} \left[\frac{a^2}{\pi^2} \cos \left(\frac{\pi}{a} x \right) + \frac{ax}{\pi} \sin \left(\frac{\pi}{a} x \right) - \frac{a^2}{9\pi^2} \cos \left(\frac{3\pi}{a} x \right) - \frac{ax}{3\pi} \sin \left(\frac{3\pi}{a} x \right) \right]_0^a \\ &= \frac{1}{2} \left[\frac{a^2}{\pi^2} (\cos(\pi) - \cos(0)) - \frac{a^2}{9\pi^2} (\cos(3\pi) - \cos(0)) \right] = -\frac{a^2}{\pi^2} \left(1 - \frac{1}{9} \right) = -\frac{8a^2}{9\pi^2} . \\ &\therefore \langle x \rangle = \frac{1}{a} \left[\frac{a^2}{4} + \frac{a^2}{4} - \frac{16a^2}{9\pi^2} \cos(3\omega t) \right] = \left[\frac{a}{2} \left[1 - \frac{32}{9\pi^2} \cos(3\omega t) \right] . \end{split}$$

$$a \begin{bmatrix} 4 & 4 & 9\pi^2 & 1 \end{bmatrix} \begin{bmatrix} 2 \begin{bmatrix} 9\pi^2 & 1 \end{bmatrix} \begin{bmatrix} 32 & 6 \end{bmatrix}$$

Amplitude:
$$\left[\frac{32}{9\pi^2}\left(\frac{a}{2}\right) = 0.3603(a/2);\right]$$
 angular frequency: $3\omega = \frac{3\pi^2\hbar}{2ma^2}$.

angular frequency:
$$3\omega = \frac{3\pi^2\hbar}{2ma^2}$$
.

(d)

$$\langle p \rangle = m \frac{d \langle x \rangle}{dt} = m \left(\frac{a}{2} \right) \left(-\frac{32}{9\pi^2} \right) (-3\omega) \sin(3\omega t) = \boxed{\frac{8\hbar}{3a} \sin(3\omega t).}$$

(e) You could get either $E_1 = \pi^2 \hbar^2 / 2ma^2$ or $E_2 = 2\pi^2 \hbar^2 / ma^2$, with equal probability $P_1 = P_2 = 1/2$. So $\langle H \rangle = \boxed{\frac{1}{2}(E_1 + E_2) = \frac{5\pi^2\hbar^2}{4ma^2}};$ it's the average of E_1 and E_2 .

Problem 2.6

From Problem 2.5, we see that

$$\Psi(x,t) = \boxed{\frac{1}{\sqrt{a}}e^{-i\omega t}\left[\sin\left(\frac{\pi}{a}x\right) + \sin\left(\frac{2\pi}{a}x\right)e^{-3i\omega t}e^{i\phi}\right];}$$

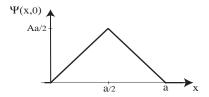
$$|\Psi(x,t)|^2 = \boxed{\frac{1}{a} \left[\sin^2 \left(\frac{\pi}{a} x \right) + \sin^2 \left(\frac{2\pi}{a} x \right) + 2 \sin \left(\frac{\pi}{a} x \right) \sin \left(\frac{2\pi}{a} x \right) \cos (3\omega t - \phi) \right];}$$

and hence $x = \frac{1}{2} \left[1 - \frac{32}{9\pi^2} \cos(3\omega t - \phi) \right]$. This amounts physically to starting the clock at a different time (i.e., shifting the t = 0 point).

If
$$\phi = \frac{\pi}{2}$$
, so $\Psi(x,0) = A[\psi_1(x) + i\psi_2(x)]$, then $\cos(3\omega t - \phi) = \sin(3\omega t)$; $\langle x \rangle$ starts at $\frac{a}{2}$

If
$$\phi = \pi$$
, so $\Psi(x,0) = A[\psi_1(x) - \psi_2(x)]$, then $\cos(3\omega t - \phi) = -\cos(3\omega t)$; $\langle x \rangle$ starts at $\frac{a}{2} \left(1 + \frac{32}{9\pi^2}\right)$.

Problem 2.7



(a)
$$1 = A^2 \int_0^{a/2} x^2 dx + A^2 \int_{a/2}^a (a - x)^2 dx = A^2 \left[\frac{x^3}{3} \Big|_0^{a/2} - \frac{(a - x)^3}{3} \Big|_{a/2}^a \right]$$

$$= \frac{A^2}{3} \left(\frac{a^3}{8} + \frac{a^3}{8} \right) = \frac{A^2 a^3}{12} \Rightarrow A = \frac{2\sqrt{3}}{\sqrt{a^3}}.$$

(b)
$$c_n = \sqrt{\frac{2}{a}} \frac{2\sqrt{3}}{a\sqrt{a}} \left[\int_0^{a/2} x \sin\left(\frac{n\pi}{a}x\right) dx + \int_{a/2}^a (a-x) \sin\left(\frac{n\pi}{a}x\right) dx \right]$$

$$= \frac{2\sqrt{6}}{a^2} \left\{ \left[\left(\frac{a}{n\pi}\right)^2 \sin\left(\frac{n\pi}{a}x\right) - \frac{xa}{n\pi} \cos\left(\frac{n\pi}{a}x\right) \right] \right|_0^{a/2}$$

$$+ a \left[-\frac{a}{n\pi} \cos\left(\frac{n\pi}{a}x\right) \right] \right|_{a/2}^a - \left[\left(\frac{a}{n\pi}\right)^2 \sin\left(\frac{n\pi}{a}x\right) - \left(\frac{ax}{n\pi}\right) \cos\left(\frac{n\pi}{a}x\right) \right] \right|_{a/2}^a \right\}$$

$$= \frac{2\sqrt{6}}{a^2} \left[\left(\frac{a}{n\pi}\right)^2 \sin\left(\frac{n\pi}{2}\right) - \frac{a^2}{2n\pi} \cos\left(\frac{n\pi}{2}\right) - \frac{a^2}{n\pi} \cos(n\pi + \frac{a^2}{n\pi}\cos\left(\frac{n\pi}{2}\right)) + \left(\frac{a}{n\pi}\right)^2 \sin\left(\frac{n\pi}{2}\right) + \frac{a^2}{n\pi} \cos(n\pi - \frac{a^2}{2n\pi}\cos\left(\frac{n\pi}{2}\right)) \right]$$

$$= \frac{2\sqrt{6}}{n^2} 2 \frac{n^2}{(n\pi)^2} \sin\left(\frac{n\pi}{2}\right) + \frac{a^2}{n\pi} \cos(n\pi - \frac{a^2}{2n\pi}\cos\left(\frac{n\pi}{2}\right)) = \begin{cases} 0, & n \text{ even,} \\ (-1)^{(n-1)/2} \frac{4\sqrt{6}}{(n\pi)^2}, & n \text{ odd.} \end{cases}$$
So
$$\boxed{\Psi(x,t) = \frac{4\sqrt{6}}{\pi^2} \sqrt{\frac{2}{a}} \sum_{n=1,3,5} (-1)^{(n-1)/2} \frac{1}{n^2} \sin\left(\frac{n\pi}{a}x\right) e^{-E_n t/\hbar}, \text{ where } E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}.$$

(c)

$$P_1 = |c_1|^2 = \frac{16 \cdot 6}{\pi^4} = \boxed{0.9855.}$$

(d)

$$\langle H \rangle = \sum |c_n|^2 E_n = \frac{96}{\pi^4} \frac{\pi^2 \hbar^2}{2ma^2} \left(\underbrace{\frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots}_{\pi^2/8} \right) = \frac{48\hbar^2}{\pi^2 ma^2} \frac{\pi^2}{8} = \boxed{\frac{6\hbar^2}{ma^2}}.$$

Problem 2.8

(a)

$$\Psi(x,0) = \begin{cases} A, & 0 < x < a/2; \\ 0, & \text{otherwise.} \end{cases} \quad 1 = A^2 \int_0^{a/2} dx = A^2(a/2) \Rightarrow \boxed{A = \sqrt{\frac{2}{a}}}.$$

(b) From Eq. 2.37,

$$c_1 = A\sqrt{\frac{2}{a}} \int_0^{a/2} \sin\left(\frac{\pi}{a}x\right) dx = \frac{2}{a} \left[-\frac{a}{\pi} \cos\left(\frac{\pi}{a}x\right) \right] \Big|_0^{a/2} = -\frac{2}{\pi} \left[\cos\left(\frac{\pi}{2}\right) - \cos 0 \right] = \frac{2}{\pi}.$$

$$P_1 = |c_1|^2 = (2/\pi)^2 = 0.4053.$$

Problem 2.9

$$\hat{H}\Psi(x,0) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\left[Ax(a-x)\right] = -A\frac{\hbar^2}{2m}\frac{\partial}{\partial x}(a-2x) = A\frac{\hbar^2}{m}.$$

$$\int \Psi(x,0)^* \hat{H} \Psi(x,0) \, dx = A^2 \frac{\hbar^2}{m} \int_0^a x(a-x) \, dx = A^2 \frac{\hbar^2}{m} \left(a \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^a$$
$$= A^2 \frac{\hbar^2}{m} \left(\frac{a^3}{2} - \frac{a^3}{3} \right) = \frac{30}{a^5} \frac{\hbar^2}{m} \frac{a^3}{6} = \boxed{\frac{5\hbar^2}{ma^2}}$$

(same as Example 2.3).

Problem 2.10

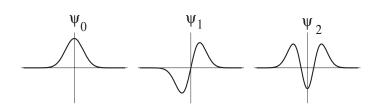
(a) Using Eqs. 2.47 and 2.59,

$$\begin{split} a_+\psi_0 &= \frac{1}{\sqrt{2\hbar m\omega}} \left(-\hbar \frac{d}{dx} + m\omega x\right) \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2} \\ &= \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \left[-\hbar \left(-\frac{m\omega}{2\hbar}\right) 2x + m\omega x\right] e^{-\frac{m\omega}{2\hbar}x^2} = \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} 2m\omega x e^{-\frac{m\omega}{2\hbar}x^2}. \\ (a_+)^2 \psi_0 &= \frac{1}{2\hbar m\omega} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} 2m\omega \left(-\hbar \frac{d}{dx} + m\omega x\right) x e^{-\frac{m\omega}{2\hbar}x^2} \\ &= \frac{1}{\hbar} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \left[-\hbar \left(1 - x\frac{m\omega}{2\hbar}2x\right) + m\omega x^2\right] e^{-\frac{m\omega}{2\hbar}x^2} = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \left(\frac{2m\omega}{\hbar}x^2 - 1\right) e^{-\frac{m\omega}{2\hbar}x^2}. \end{split}$$

Therefore, from Eq. 2.67,

$$\psi_2 = \frac{1}{\sqrt{2}} (a_+)^2 \psi_0 = \boxed{\frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \left(\frac{2m\omega}{\hbar}x^2 - 1\right) e^{-\frac{m\omega}{2\hbar}x^2}}.$$

(b)



(c) Since ψ_0 and ψ_2 are even, whereas ψ_1 is odd, $\int \psi_0^* \psi_1 dx$ and $\int \psi_2^* \psi_1 dx$ vanish automatically. The only one we need to check is $\int \psi_2^* \psi_0 dx$:

$$\begin{split} \int \psi_2^* \psi_0 \, dx &= \frac{1}{\sqrt{2}} \sqrt{\frac{m\omega}{\pi\hbar}} \int_{-\infty}^{\infty} \left(\frac{2m\omega}{\hbar} x^2 - 1 \right) e^{-\frac{m\omega}{\hbar} x^2} dx \\ &= -\sqrt{\frac{m\omega}{2\pi\hbar}} \bigg(\int_{-\infty}^{\infty} e^{-\frac{m\omega}{\hbar} x^2} dx - \frac{2m\omega}{\hbar} \int_{-\infty}^{\infty} x^2 e^{-\frac{m\omega}{\hbar} x^2} dx \bigg) \\ &= -\sqrt{\frac{m\omega}{2\pi\hbar}} \bigg(\sqrt{\frac{\pi\hbar}{m\omega}} - \frac{2m\omega}{\hbar} \frac{\hbar}{2m\omega} \sqrt{\frac{\pi\hbar}{m\omega}} \bigg) = 0. \ \checkmark \end{split}$$

Problem 2.11

(a) Note that ψ_0 is even, and ψ_1 is odd. In either case $|\psi|^2$ is even, so $\langle x \rangle = \int x |\psi|^2 dx = \boxed{0}$. Therefore $\langle p \rangle = md\langle x \rangle/dt = \boxed{0}$. (These results hold for any stationary state of the harmonic oscillator.)

From Eqs. 2.59 and 2.62, $\psi_0 = \alpha e^{-\xi^2/2}$, $\psi_1 = \sqrt{2}\alpha \xi e^{-\xi^2/2}$. So

 $\underline{n=0}$:

$$\langle x^2 \rangle = \alpha^2 \int_{-\infty}^{\infty} x^2 e^{-\xi^2/2} dx = \alpha^2 \left(\frac{\hbar}{m\omega}\right)^{3/2} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} d\xi = \frac{1}{\sqrt{\pi}} \left(\frac{\hbar}{m\omega}\right) \frac{\sqrt{\pi}}{2} = \boxed{\frac{\hbar}{2m\omega}}.$$

$$\langle p^2 \rangle = \int \psi_0 \left(\frac{\hbar}{i} \frac{d}{dx} \right)^2 \psi_0 \, dx = -\hbar^2 \alpha^2 \sqrt{\frac{m\omega}{\hbar}} \int_{-\infty}^{\infty} e^{-\xi^2/2} \left(\frac{d^2}{d\xi^2} e^{-\xi^2/2} \right) d\xi$$
$$= -\frac{m\hbar\omega}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\xi^2 - 1) e^{-\xi^2/2} d\xi = -\frac{m\hbar\omega}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} - \sqrt{\pi} \right) = \boxed{\frac{m\hbar\omega}{2}}.$$

 $\underline{n=1}$:

$$\langle x^2 \rangle = 2\alpha^2 \int_{-\infty}^{\infty} x^2 \xi^2 e^{-\xi^2} dx = 2\alpha^2 \left(\frac{\hbar}{m\omega}\right)^{3/2} \int_{-\infty}^{\infty} \xi^4 e^{-\xi^2} d\xi = \frac{2\hbar}{\sqrt{\pi}m\omega} \frac{3\sqrt{\pi}}{4} = \boxed{\frac{3\hbar}{2m\omega}}.$$

$$\begin{split} \langle p^2 \rangle &= -\hbar^2 2\alpha^2 \sqrt{\frac{m\omega}{\hbar}} \int_{-\infty}^{\infty} \xi e^{-\xi^2/2} \left[\frac{d^2}{d\xi^2} (\xi e^{-\xi^2/2}) \right] d\xi \\ &= -\frac{2m\omega\hbar}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\xi^4 - 3\xi^2) e^{-\xi^2} d\xi = -\frac{2m\omega\hbar}{\sqrt{\pi}} \left(\frac{3}{4} \sqrt{\pi} - 3\frac{\sqrt{\pi}}{2} \right) = \boxed{\frac{3m\hbar\omega}{2}}. \end{split}$$

(b) n = 0:

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{\hbar}{2m\omega}}; \ \sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{m\hbar\omega}{2}};$$

$$\sigma_x \sigma_p = \sqrt{\frac{\hbar}{2m\omega}} \sqrt{\frac{m\omega\hbar}{2}} = \frac{\hbar}{2}$$
. (Right at the uncertainty limit.)

n = 1:

$$\sigma_x = \sqrt{\frac{3\hbar}{2m\omega}}; \quad \sigma_p = \sqrt{\frac{3m\hbar\omega}{2}}; \quad \sigma_x\sigma_p = 3\frac{\hbar}{2} > \frac{\hbar}{2}. \checkmark$$

(c)

$$\langle T \rangle = \frac{1}{2m} \langle p^2 \rangle = \left[\left\{ \begin{array}{l} \frac{1}{4} \hbar \omega \ (n=0) \\ \frac{3}{4} \hbar \omega \ (n=1) \end{array} \right\}; \right] \quad \langle V \rangle = \frac{1}{2} m \omega^2 \langle x^2 \rangle = \left[\left\{ \begin{array}{l} \frac{1}{4} \hbar \omega \ (n=0) \\ \frac{3}{4} \hbar \omega \ (n=1) \end{array} \right\}. \right]$$

$$\langle T \rangle + \langle V \rangle = \langle H \rangle = \left\{ \begin{array}{l} \frac{1}{2}\hbar\omega \ (n=0) = E_0 \\ \\ \frac{3}{2}\hbar\omega \ (n=1) = E_1 \end{array} \right\}, \ \text{as expected}.$$

Problem 2.12

From Eq. 2.69,

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a_{+} + a_{-}), \quad p = i\sqrt{\frac{\hbar m\omega}{2}}(a_{+} - a_{-}),$$
$$\langle x \rangle = \sqrt{\frac{\hbar}{2m\omega}} \int \psi_{n}^{*}(a_{+} + a_{-})\psi_{n} dx.$$

so

But (Eq. 2.66)
$$a_+\psi_n = \sqrt{n+1}\psi_{n+1}, \quad a_-\psi_n = \sqrt{n}\psi_{n-1}.$$

So

$$\langle x \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left[\sqrt{n+1} \int \psi_n^* \psi_{n+1} \, dx + \sqrt{n} \int \psi_n^* \psi_{n-1} \, dx \right] = \boxed{0} \text{ (by orthogonality)}.$$

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = \boxed{0.} \quad x^2 = \frac{\hbar}{2m\omega} (a_+ + a_-)^2 = \frac{\hbar}{2m\omega} (a_+^2 + a_+ a_- + a_- a_+ + a_-^2).$$

$$\langle x^2 \rangle = \frac{\hbar}{2m\omega} \int \psi_n^* (a_+^2 + a_+ a_- + a_- a_+ + a_-^2) \psi_n.$$
 But

$$\begin{cases} a_+^2\psi_n &= a_+\big(\sqrt{n+1}\psi_{n+1}\big) = \sqrt{n+1}\sqrt{n+2}\psi_{n+2} = \sqrt{(n+1)(n+2)}\psi_{n+2}.\\ a_+a_-\psi_n &= a_+\big(\sqrt{n}\psi_{n-1}\big) &= \sqrt{n}\sqrt{n}\psi_n &= n\psi_n.\\ a_-a_+\psi_n &= a_-\big(\sqrt{n+1}\psi_{n+1}\big) = \sqrt{n+1}\sqrt{n+1}\psi_n &= (n+1)\psi_n.\\ a_-^2\psi_n &= a_-\big(\sqrt{n}\psi_{n-1}\big) &= \sqrt{n}\sqrt{n-1}\psi_{n-2} &= \sqrt{(n-1)n}\psi_{n-2}. \end{cases}$$

So

$$\langle x^2 \rangle = \frac{\hbar}{2m\omega} \left[0 + n \int |\psi_n|^2 dx + (n+1) \int |\psi_n|^2 dx + 0 \right] = \frac{\hbar}{2m\omega} (2n+1) = \boxed{\left(n + \frac{1}{2} \right) \frac{\hbar}{m\omega}}.$$

$$p^{2} = -\frac{\hbar m\omega}{2}(a_{+} - a_{-})^{2} = -\frac{\hbar m\omega}{2}(a_{+}^{2} - a_{+}a_{-} - a_{-}a_{+} + a_{-}^{2}) \Rightarrow$$

$$\langle p^2 \rangle = -\frac{\hbar m \omega}{2} \left[0 - n - (n+1) + 0 \right] = \frac{\hbar m \omega}{2} (2n+1) = \boxed{\left(n + \frac{1}{2} \right) m \hbar \omega.}$$

$$\langle T \rangle = \langle p^2/2m \rangle = \boxed{\frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega}.$$

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{n + \frac{1}{2}} \sqrt{\frac{\hbar}{m\omega}}; \quad \sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{n + \frac{1}{2}} \sqrt{m\hbar\omega}; \quad \sigma_x \sigma_p = \left(n + \frac{1}{2}\right) \hbar \geq \frac{\hbar}{2}. \checkmark$$

Problem 2.13

(a)

$$1 = \int |\Psi(x,0)|^2 dx = |A|^2 \int (9|\psi_0|^2 + 12\psi_0^*\psi_1 + 12\psi_1^*\psi_0 + 16|\psi_1|^2) dx$$
$$= |A|^2 (9 + 0 + 0 + 16) = 25|A|^2 \Rightarrow \boxed{A = 1/5.}$$

(b)
$$\Psi(x,t) = \frac{1}{5} \left[3\psi_0(x)e^{-iE_0t/\hbar} + 4\psi_1(x)e^{-iE_1t/\hbar} \right] = \left[\frac{1}{5} \left[3\psi_0(x)e^{-i\omega t/2} + 4\psi_1(x)e^{-3i\omega t/2} \right] \right].$$

(Here ψ_0 and ψ_1 are given by Eqs. 2.59 and 2.62; E_1 and E_2 by Eq. 2.61.)

$$|\Psi(x,t)|^2 = \frac{1}{25} \left[9\psi_0^2 + 12\psi_0\psi_1 e^{i\omega t/2} e^{-3i\omega t/2} + 12\psi_0\psi_1 e^{-i\omega t/2} e^{3i\omega t/2} + 16\psi_1^2 \right]$$
$$= \left[\frac{1}{25} \left[9\psi_0^2 + 16\psi_1^2 + 24\psi_0\psi_1 \cos(\omega t) \right]. \right]$$

(c)
$$\langle x \rangle = \frac{1}{25} \left[9 \int x \psi_0^2 dx + 16 \int x \psi_1^2 dx + 24 \cos(\omega t) \int x \psi_0 \psi_1 dx \right].$$

But $\int x\psi_0^2 dx = \int x\psi_1^2 dx = 0$ (see Problem 2.11 or 2.12), while

$$\int x\psi_0\psi_1 dx = \sqrt{\frac{m\omega}{\pi\hbar}} \sqrt{\frac{2m\omega}{\hbar}} \int xe^{-\frac{m\omega}{2\hbar}x^2} xe^{-\frac{m\omega}{2\hbar}x^2} dx = \sqrt{\frac{2}{\pi}} \left(\frac{m\omega}{\hbar}\right) \int_{-\infty}^{\infty} x^2 e^{-\frac{m\omega}{\hbar}x^2} dx$$
$$= \sqrt{\frac{2}{\pi}} \left(\frac{m\omega}{\hbar}\right) 2\sqrt{\pi} 2 \left(\frac{1}{2}\sqrt{\frac{\hbar}{m\omega}}\right)^3 = \sqrt{\frac{\hbar}{2m\omega}}.$$

So

$$\langle x \rangle = \boxed{\frac{24}{25} \sqrt{\frac{\hbar}{2m\omega}} \cos(\omega t)}; \quad \langle p \rangle = m \frac{d}{dt} \langle x \rangle = \boxed{-\frac{24}{25} \sqrt{\frac{m\omega\hbar}{2}} \sin(\omega t)}.$$

(With ψ_2 in place of ψ_1 the frequency would be $(E_2 - E_0)/\hbar = [(5/2)\hbar\omega - (1/2)\hbar\omega]/\hbar = 2\omega$.) Ehrenfest's theorem says $d\langle p \rangle/dt = -\langle \partial V/\partial x \rangle$. Here

$$\frac{d\langle p\rangle}{dt} = -\frac{24}{25}\sqrt{\frac{m\omega\hbar}{2}}\omega\cos(\omega t), \quad V = \frac{1}{2}m\omega^2 x^2 \Rightarrow \frac{\partial V}{\partial x} = m\omega^2 x.$$

so

$$-\left\langle \frac{\partial V}{\partial x} \right\rangle = -m\omega^2 \langle x \rangle = -m\omega^2 \frac{24}{25} \sqrt{\frac{\hbar}{2m\omega}} \cos(\omega t) = -\frac{24}{25} \sqrt{\frac{\hbar m\omega}{2}} \omega \cos(\omega t),$$

so Ehrenfest's theorem holds.

(d) You could get
$$E_0 = \frac{1}{2}\hbar\omega$$
, with probability $|c_0|^2 = 9/25$, or $E_1 = \frac{3}{2}\hbar\omega$, with probability $|c_1|^2 = 16/25$.

Problem 2.14

The new allowed energies are $E'_n = (n + \frac{1}{2})\hbar\omega' = 2(n + \frac{1}{2})\hbar\omega = \hbar\omega, 3\hbar\omega, 5\hbar\omega, \dots$ So the probability of getting $\frac{1}{2}\hbar\omega$ is zero. The probability of getting $\hbar\omega$ (the new ground state energy) is $P_0 = |c_0|^2$, where $c_0 = \int \Psi(x,0)\psi'_0 dx$, with

$$\Psi(x,0) = \psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}, \quad \psi_0(x)' = \left(\frac{m2\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m2\omega}{2\hbar}x^2}.$$

24

$$c_0 = 2^{1/4} \sqrt{\frac{m\omega}{\pi\hbar}} \int_{-\infty}^{\infty} e^{-\frac{3m\omega}{2\hbar}x^2} dx = 2^{1/4} \sqrt{\frac{m\omega}{\pi\hbar}} 2\sqrt{\pi} \left(\frac{1}{2}\sqrt{\frac{2\hbar}{3m\omega}}\right) = 2^{1/4} \sqrt{\frac{2}{3}}.$$

Therefore

$$P_0 = \boxed{\frac{2}{3}\sqrt{2} = 0.9428.}$$

Problem 2.15

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\xi^2/2}, \text{ so } P = 2\sqrt{\frac{m\omega}{\pi\hbar}} \int_{x_0}^{\infty} e^{-\xi^2} dx = 2\sqrt{\frac{m\omega}{\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \int_{\xi_0}^{\infty} e^{-\xi^2} d\xi.$$

Classically allowed region extends out to: $\frac{1}{2}m\omega^2x_0^2=E_0=\frac{1}{2}\hbar\omega$, or $x_0=\sqrt{\frac{\hbar}{m\omega}}$, so $\xi_0=1$.

$$P = \frac{2}{\sqrt{\pi}} \int_{1}^{\infty} e^{-\xi^2} d\xi = 2(1 - F(\sqrt{2})) \text{ (in notation of CRC Table)} = \boxed{0.157.}$$

Problem 2.16

 $\frac{n=5:\ j=1\Rightarrow a_3=\frac{-2(5-1)}{(1+1)(1+2)}a_1=-\frac{4}{3}a_1; j=3\Rightarrow a_5=\frac{-2(5-3)}{(3+1)(3+2)}a_3=-\frac{1}{5}a_3=\frac{4}{15}a_1;\ j=5\Rightarrow a_7=0.\ \text{So}\ H_5(\xi)=a_1\xi-\frac{4}{3}a_1\xi^3+\frac{4}{15}a_1\xi^5=\frac{a_1}{15}(15\xi-20\xi^3+4\xi^5).$ By convention the coefficient of ξ^5 is 2^5 , so $a_1=15\cdot 8$, and $H_5(\xi)=120\xi-160\xi^3+32\xi^5$ (which agrees with Table 2.1).

$$\frac{n=6:}{n=6:} \ j=0 \ \Rightarrow \ a_2 = \frac{-2(6-0)}{(0+1)(0+2)} a_0 = -6a_0; \ j=2 \ \Rightarrow \ a_4 = \frac{-2(6-2)}{(2+1)(2+2)} a_2 = -\frac{2}{3} a_2 = 4a_0; j=4 \ \Rightarrow \ a_6 = \frac{-2(6-4)}{(4+1)(4+2)} a_4 = -\frac{2}{15} a_4 = -\frac{8}{15} a_0; \ j=6 \ \Rightarrow \ a_8 = 0. \ \text{So} \ H_6(\xi) = a_0 - 6a_0 \xi^2 + 4a_0 \xi^4 - \frac{8}{15} \xi^6 a_0. \ \text{The coefficient of} \ \xi^6 \text{ is} \ 2^6, \ \text{so} \ 2^6 = -\frac{8}{15} a_0 \ \Rightarrow \ a_0 = -15 \cdot 8 = -120. \ \boxed{H_6(\xi) = -120 + 720 \xi^2 - 480 \xi^4 + 64 \xi^6.}$$

Problem 2.17

$$\frac{d}{d\xi}(e^{-\xi^2}) = -2\xi e^{-\xi^2}; \ \left(\frac{d}{d\xi}\right)^2 e^{-\xi^2} = \frac{d}{d\xi}(-2\xi e^{-\xi^2}) = (-2+4\xi^2)e^{-\xi^2};$$

$$\left(\frac{d}{d\xi}\right)^3 e^{-\xi^2} = \frac{d}{d\xi}\left[(-2+4\xi^2)e^{-\xi^2}\right] = \left[8\xi + (-2+4\xi^2)(-2\xi)\right]e^{-\xi^2} = (12\xi - 8\xi^3)e^{-\xi^2};$$

$$\left(\frac{d}{d\xi}\right)^4 e^{-\xi^2} = \frac{d}{d\xi}\left[(12\xi - 8\xi^3)e^{-\xi^2}\right] = \left[12 - 24\xi^2 + (12\xi - 8\xi^3)(-2\xi)\right]e^{-\xi^2} = (12 - 48\xi^2 + 16\xi^4)e^{-\xi^2}.$$

$$H_3(\xi) = -e^{\xi^2} \left(\frac{d}{d\xi}\right)^3 e^{-\xi^2} = \left[-12\xi + 8\xi^3;\right] H_4(\xi) = e^{\xi^2} \left(\frac{d}{d\xi}\right)^4 e^{-\xi^2} = \left[12 - 48\xi^2 + 16\xi^4.\right]$$

(b)
$$H_5 = 2\xi H_4 - 8H_3 = 2\xi (12 - 48\xi^2 + 16\xi^4) - 8(-12\xi + 8\xi^3) = \boxed{120\xi - 160\xi^3 + 32\xi^5}.$$

$$H_6 = 2\xi H_5 - 10H_4 = 2\xi (120\xi - 160\xi^3 + 32\xi^5) - 10(12 - 48\xi^2 + 16\xi^4) = \boxed{-120 + 720\xi^2 - 480\xi^4 + 64\xi^6}.$$

(c)
$$\frac{dH_5}{d\xi} = 120 - 480\xi^2 + 160\xi^4 = 10(12 - 48\xi^2 + 16\xi^4) = (2)(5)H_4. \checkmark$$

$$\frac{dH_6}{d\xi} = 1440\xi - 1920\xi^3 + 384\xi^5 = 12(120\xi - 160\xi^3 + 32\xi^5) = (2)(6)H_5. \checkmark$$

$$\frac{d}{dz}(e^{-z^2+2z\xi}) = (-2z+\xi)e^{-z^2+2z\xi}; \text{ setting } z = 0, \ \boxed{H_0(\xi) = 2\xi.}$$

$$\left(\frac{d}{dz}\right)^{2} \left(e^{-z^{2}+2z\xi}\right) = \frac{d}{dz} \left[(-2z+2\xi)e^{-z^{2}+2z\xi} \right]$$

$$= \left[-2 + (-2z+2\xi)^{2} \right] e^{-z^{2}+2z\xi}; \text{ setting } z = 0, \quad \boxed{H_{1}(\xi) = -2 + 4\xi^{2}.}$$

$$\begin{split} \left(\frac{d}{dz}\right)^3 \left(e^{-z^2+2z\xi}\right) &= \frac{d}{dz} \bigg\{ \bigg[-2 + (-2z+2\xi)^2 \bigg] e^{-z^2+2z\xi} \bigg\} \\ &= \bigg\{ 2(-2z+2\xi)(-2) + \bigg[-2 + (-2z+2\xi)^2 \bigg] (-2z+2\xi) \bigg\} e^{-z^2+2z\xi}; \end{split}$$

setting
$$z = 0$$
, $H_2(\xi) = -8\xi + (-2 + 4\xi^2)(2\xi) = \boxed{-12\xi + 8\xi^3}$.

Problem 2.18

(d)

$$Ae^{ikx} + Be^{-ikx} = A(\cos kx + i\sin kx) + B(\cos kx - i\sin kx) = (A+B)\cos kx + i(A-B)\sin kx$$
$$= C\cos kx + D\sin kx, \text{ with } C = A+B; D = i(A-B).$$

$$\begin{split} C\cos kx + D\sin kx &= C\left(\frac{e^{ikx} + e^{-ikx}}{2}\right) + D\left(\frac{e^{ikx} - e^{-ikx}}{2i}\right) = \frac{1}{2}(C - iD)e^{ikx} + \frac{1}{2}(C + iD)e^{-ikx} \\ &= Ae^{ikx} + Be^{-ikx}, \text{ with } \boxed{A = \frac{1}{2}(C - iD); \ B = \frac{1}{2}(C + iD).} \end{split}$$

Problem 2.19

Equation 2.94 says $\Psi = Ae^{i(kx - \frac{\hbar k^2}{2m}t)}$, so

$$J = \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right) = \frac{i\hbar}{2m} |A|^2 \left[e^{i(kx - \frac{\hbar k^2}{2m}t)} (-ik)e^{-i(kx - \frac{\hbar k^2}{2m}t)} - e^{-i(kx - \frac{\hbar k^2}{2m}t)} (ik)e^{i(kx - \frac{\hbar k^2}{2m}t)} \right]$$
$$= \frac{i\hbar}{2m} |A|^2 (-2ik) = \left[\frac{\hbar k}{m} |A|^2 \right].$$

It flows in the positive (x) direction (as you would expect).

Problem 2.20

(a)

$$f(x) = b_0 + \sum_{n=1}^{\infty} \frac{a_n}{2i} \left(e^{in\pi x/a} - e^{-in\pi x/a} \right) + \sum_{n=1}^{\infty} \frac{b_n}{2} \left(e^{in\pi x/a} + e^{-in\pi x/a} \right)$$
$$= b_0 + \sum_{n=1}^{\infty} \left(\frac{a_n}{2i} + \frac{b_n}{2} \right) e^{in\pi x/a} + \sum_{n=1}^{\infty} \left(-\frac{a_n}{2i} + \frac{b_n}{2} \right) e^{-in\pi x/a}.$$

Let

$$c_0 \equiv b_0$$
; $c_n = \frac{1}{2} (-ia_n + b_n)$, for $n = 1, 2, 3, \dots$; $c_n \equiv \frac{1}{2} (ia_{-n} + b_{-n})$, for $n = -1, -2, -3, \dots$

Then
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/a}$$
. QED

(b)

$$\int_{-a}^{a} f(x)e^{-im\pi x/a}dx = \sum_{n=-\infty}^{\infty} c_n \int_{-a}^{a} e^{i(n-m)\pi x/a}dx. \text{ But for } n \neq m,$$

$$\int_{-a}^{a} e^{i(n-m)\pi x/a} dx = \frac{e^{i(n-m)\pi x/a}}{i(n-m)\pi/a} \bigg|_{-a}^{a} = \frac{e^{i(n-m)\pi} - e^{-i(n-m)\pi}}{i(n-m)\pi/a} = \frac{(-1)^{n-m} - (-1)^{n-m}}{i(n-m)\pi/a} = 0,$$

whereas for n = m,

$$\int_{-a}^{a} e^{i(n-m)\pi x/a} dx = \int_{-a}^{a} dx = 2a.$$

So all terms except n = m are zero, and

$$\int_{-a}^{a} f(x)e^{-im\pi x/a} = 2ac_{m}, \text{ so } c_{n} = \frac{1}{2a} \int_{-a}^{a} f(x)e^{-in\pi x/a} dx. \quad \text{QED}$$

(c)

$$f(x) = \sum_{n=-\infty}^{\infty} \sqrt{\frac{\pi}{2}} \frac{1}{a} F(k) e^{ikx} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} F(k) e^{ikx} \Delta k,$$

where $\Delta k \equiv \frac{\pi}{a}$ is the increment in k from n to (n+1).

$$F(k) = \sqrt{\frac{2}{\pi}} a \frac{1}{2a} \int_{-a}^{a} f(x)e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-a}^{a} f(x)e^{-ikx} dx.$$

(d) As $a \to \infty$, k becomes a continuous variable,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx}dk; \ F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ikx}dx.$$

Problem 2.21

(a)

$$1 = \int_{-\infty}^{\infty} |\Psi(x,0)|^2 dx = 2|A|^2 \int_{0}^{\infty} e^{-2ax} dx = 2|A|^2 \frac{e^{-2ax}}{-2a} \Big|_{0}^{\infty} = \frac{|A|^2}{a} \Rightarrow A = \boxed{\sqrt{a}.}$$

(b)
$$\phi(k) = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a|x|} e^{-ikx} dx = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a|x|} (\cos kx - i\sin kx) dx.$$

The cosine integrand is even, and the sine is odd, so the latter vanishes and

$$\begin{split} \phi(k) &= 2\frac{A}{\sqrt{2\pi}} \int_0^\infty e^{-ax} \cos kx \, dx = \frac{A}{\sqrt{2\pi}} \int_0^\infty e^{-ax} \left(e^{ikx} + e^{-ikx} \right) \, dx \\ &= \frac{A}{\sqrt{2\pi}} \int_0^\infty \left(e^{(ik-a)x} + e^{-(ik+a)x} \right) dx = \frac{A}{\sqrt{2\pi}} \left[\frac{e^{(ik-a)x}}{ik-a} + \frac{e^{-(ik+a)x}}{-(ik+a)} \right] \Big|_0^\infty \\ &= \frac{A}{\sqrt{2\pi}} \left(\frac{-1}{ik-a} + \frac{1}{ik+a} \right) = \frac{A}{\sqrt{2\pi}} \frac{-ik-a+ik-a}{-k^2-a^2} = \sqrt{\frac{a}{2\pi}} \frac{2a}{k^2+a^2}. \end{split}$$

(c)

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} 2 \sqrt{\frac{a^3}{2\pi}} \int_{-\infty}^{\infty} \frac{1}{k^2 + a^2} e^{i(kx - \frac{\hbar k^2}{2m}t)} dk = \boxed{\frac{a^{3/2}}{\pi} \int_{-\infty}^{\infty} \frac{1}{k^2 + a^2} e^{i(kx - \frac{\hbar k^2}{2m}t)} dk}.$$

(d) For large a, $\Psi(x,0)$ is a sharp narrow spike whereas $\phi(k) \cong \sqrt{2/\pi a}$ is broad and flat; position is well-defined but momentum is ill-defined. For small a, $\Psi(x,0)$ is a broad and flat whereas $\phi(k) \cong (\sqrt{2a^3/\pi})/k^2$ is a sharp narrow spike; position is ill-defined but momentum is well-defined.

Problem 2.22

(a)

$$1 = |A|^2 \int_{-\infty}^{\infty} e^{-2ax^2} dx = |A|^2 \sqrt{\frac{\pi}{2a}}; \quad \boxed{A = \left(\frac{2a}{\pi}\right)^{1/4}.}$$

(b)

$$\int_{-\infty}^{\infty} e^{-(ax^2 + bx)} dx = \int_{-\infty}^{\infty} e^{-y^2 + (b^2/4a)} \frac{1}{\sqrt{a}} dy = \frac{1}{\sqrt{a}} e^{b^2/4a} \int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\frac{\pi}{a}} e^{b^2/4a}.$$

$$\phi(k) = \frac{1}{\sqrt{2\pi}} A \int_{-\infty}^{\infty} e^{-ax^2} e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \left(\frac{2a}{\pi}\right)^{1/4} \sqrt{\frac{\pi}{a}} e^{-k^2/4a} = \frac{1}{(2\pi a)^{1/4}} e^{-k^2/4a}.$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \frac{1}{(2\pi a)^{1/4}} \int_{-\infty}^{\infty} \underbrace{e^{-k^2/4a} e^{i(kx - \hbar k^2 t/2m)}}_{e^{-[(\frac{1}{4a} + i\hbar t/2m)k^2 - ixk]}} dk$$

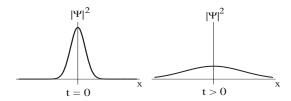
$$=\frac{1}{\sqrt{2\pi}(2\pi a)^{1/4}}\frac{\sqrt{\pi}}{\sqrt{\frac{1}{4a}+i\hbar t/2m}}e^{-x^2/4(\frac{1}{4a}+i\hbar t/2m)}=\boxed{\left(\frac{2a}{\pi}\right)^{1/4}\frac{e^{-ax^2/(1+2i\hbar at/m)}}{\sqrt{1+2i\hbar at/m}}}.$$

(c)

Let
$$\theta \equiv 2\hbar at/m$$
. Then $|\Psi|^2 = \sqrt{\frac{2a}{\pi}} \frac{e^{-ax^2/(1+i\theta)}e^{-ax^2/(1-i\theta)}}{\sqrt{(1+i\theta)(1-i\theta)}}$. The exponent is

$$-\frac{ax^2}{(1+i\theta)} - \frac{ax^2}{(1-i\theta)} = -ax^2 \frac{(1-i\theta+1+i\theta)}{(1+i\theta)(1-i\theta)} = \frac{-2ax^2}{1+\theta^2}; \ |\Psi|^2 = \sqrt{\frac{2a}{\pi}} \frac{e^{-2ax^2/(1+\theta^2)}}{\sqrt{1+\theta^2}}.$$

Or, with $w \equiv \sqrt{\frac{a}{1+\theta^2}}$, $|\Psi|^2 = \sqrt{\frac{2}{\pi}}we^{-2w^2x^2}$. As t increases, the graph of $|\Psi|^2$ flattens out and broadens.



(d)

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi|^2 dx = \boxed{0} \text{ (odd integrand)}; \ \langle p \rangle = m \frac{d\langle x \rangle}{dt} = \boxed{0}.$$

$$\langle x^2\rangle = \sqrt{\frac{2}{\pi}}w\int_{-\infty}^{\infty}x^2e^{-2w^2x^2}dx = \sqrt{\frac{2}{\pi}}w\frac{1}{4w^2}\sqrt{\frac{\pi}{2w^2}} = \boxed{\frac{1}{4w^2}.} \quad \langle p^2\rangle = -\hbar^2\int_{-\infty}^{\infty}\Psi^*\frac{d^2\Psi}{dx^2}dx.$$

Write
$$\Psi = Be^{-bx^2}$$
, where $B \equiv \left(\frac{2a}{\pi}\right)^{1/4} \frac{1}{\sqrt{1+i\theta}}$ and $b \equiv \frac{a}{1+i\theta}$.

$$\frac{d^2\Psi}{dx^2} = B\frac{d}{dx}\left(-2bxe^{-bx^2}\right) = -2bB(1 - 2bx^2)e^{-bx^2}.$$

$$\Psi^* \frac{d^2 \Psi}{dx^2} = -2b|B|^2 (1 - 2bx^2) e^{-(b+b^*)x^2}; \ b + b^* = \frac{a}{1 + i\theta} + \frac{a}{1 - i\theta} = \frac{2a}{1 + \theta^2} = 2w^2.$$

$$|B|^2 = \sqrt{\frac{2a}{\pi}} \frac{1}{\sqrt{1+\theta^2}} = \sqrt{\frac{2}{\pi}} w$$
. So $\Psi^* \frac{d^2 \Psi}{dx^2} = -2b\sqrt{\frac{2}{\pi}} w(1-2bx^2)e^{-2w^2x^2}$.

$$\begin{split} \langle p^2 \rangle &= 2b\hbar^2 \sqrt{\frac{2}{\pi}} w \int_{-\infty}^{\infty} (1 - 2bx^2) e^{-2w^2 x^2} dx \\ &= 2b\hbar^2 \sqrt{\frac{2}{\pi}} w \left(\sqrt{\frac{\pi}{2w^2}} - 2b \frac{1}{4w^2} \sqrt{\frac{\pi}{2w^2}} \right) = 2b\hbar^2 \left(1 - \frac{b}{2w^2} \right). \end{split}$$

But
$$1 - \frac{b}{2w^2} = 1 - \left(\frac{a}{1+i\theta}\right)\left(\frac{1+\theta^2}{2a}\right) = 1 - \frac{(1-i\theta)}{2} = \frac{1+i\theta}{2} = \frac{a}{2b}$$
, so

$$\langle p^2 \rangle = 2b\hbar^2 \frac{a}{2b} = \boxed{\hbar^2 a}.$$
 $\sigma_x = \frac{1}{2w};$ $\sigma_p = \hbar\sqrt{a}.$

(e)
$$\sigma_x \sigma_p = \frac{1}{2m} \hbar \sqrt{a} = \frac{\hbar}{2} \sqrt{1 + \theta^2} = \frac{\hbar}{2} \sqrt{1 + (2\hbar at/m)^2} \ge \frac{\hbar}{2}. \checkmark$$

Closest at t = 0, at which time it is right at the uncertainty limit.

Problem 2.23

(a)

$$(-2)^3 - 3(-2)^2 + 2(-2) - 1 = -8 - 12 - 4 - 1 = \boxed{-25}.$$

(b)

$$\cos(3\pi) + 2 = -1 + 2 = \boxed{1.}$$

(c)

 $\boxed{0}$ (x=2 is outside the domain of integration).

Problem 2.24

(a) Let
$$y \equiv cx$$
, so $dx = \frac{1}{c}dy$. $\left\{ \begin{array}{l} \text{If } c > 0, \ y : -\infty \to \infty. \\ \text{If } c < 0, \ y : \infty \to -\infty. \end{array} \right\}$

$$\int_{-\infty}^{\infty} f(x)\delta(cx)dx = \left\{ \begin{array}{l} \frac{1}{c}\int_{-\infty}^{\infty} f(y/c)\delta(y)dy = \frac{1}{c}f(0) \quad (c > 0); \text{ or} \\ \frac{1}{c}\int_{-\infty}^{\infty} f(y/c)\delta(y)dy = -\frac{1}{c}\int_{-\infty}^{\infty} f(y/c)\delta(y)dy = -\frac{1}{c}f(0) \quad (c < 0). \end{array} \right.$$
In either case, $\int_{-\infty}^{\infty} f(x)\delta(cx)dx = \frac{1}{|c|}f(0) = \int_{-\infty}^{\infty} f(x)\frac{1}{|c|}\delta(x)dx$. So $\delta(cx) = \frac{1}{|c|}\delta(x)$. \checkmark

$$\int_{-\infty}^{\infty} f(x) \frac{d\theta}{dx} dx = f\theta \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{df}{dx} \theta dx \quad \text{(integration by parts)}$$

$$= f(\infty) - \int_{0}^{\infty} \frac{df}{dx} dx = f(\infty) - f(\infty) + f(0) = f(0) = \int_{-\infty}^{\infty} f(x) \delta(x) dx.$$

So $d\theta/dx = \delta(x)$. \checkmark [Makes sense: The θ function is constant (so derivative is zero) except at x = 0, where the derivative is infinite.]

Problem 2.25

$$\psi(x) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2} = \frac{\sqrt{m\alpha}}{\hbar} \begin{cases} e^{-m\alpha x/\hbar^2}, & (x \ge 0), \\ e^{m\alpha x/\hbar^2}, & (x \le 0). \end{cases}$$

$$\langle x \rangle = 0 \text{ (odd integrand)}.$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi|^2 dx = 2 \frac{m\alpha}{\hbar^2} \int_{0}^{\infty} x^2 e^{-2m\alpha x/\hbar^2} dx = \frac{2m\alpha}{\hbar^2} 2 \left(\frac{\hbar^2}{2m\alpha}\right)^3 = \frac{\hbar^4}{2m^2\alpha^2}; \quad \sigma_x = \frac{\hbar^2}{\sqrt{2}m\alpha}$$

$$\frac{d\psi}{dx} = \frac{\sqrt{m\alpha}}{\hbar} \begin{cases} -\frac{m\alpha}{\hbar^2} e^{-m\alpha x/\hbar^2}, & (x \ge 0) \\ \frac{m\alpha}{\hbar^2} e^{m\alpha x/\hbar^2}, & (x \le 0) \end{cases} = \left(\frac{\sqrt{m\alpha}}{\hbar}\right)^3 \left[-\theta(x) e^{-m\alpha x/\hbar^2} + \theta(-x) e^{m\alpha x/\hbar^2}\right].$$

$$\frac{d^2\psi}{dx^2} = \left(\frac{\sqrt{m\alpha}}{\hbar}\right)^3 \left[-\delta(x) e^{-m\alpha x/\hbar^2} + \frac{m\alpha}{\hbar^2} \theta(x) e^{-m\alpha x/\hbar^2} - \delta(-x) e^{m\alpha x/\hbar^2} + \frac{m\alpha}{\hbar^2} \theta(-x) e^{m\alpha x/\hbar^2}\right]$$

$$= \left(\frac{\sqrt{m\alpha}}{\hbar}\right)^3 \left[-2\delta(x) + \frac{m\alpha}{\hbar^2} e^{-m\alpha|x|/\hbar^2}\right].$$

In the last step I used the fact that $\delta(-x) = \delta(x)$ (Eq. 2.142), $f(x)\delta(x) = f(0)\delta(x)$ (Eq. 2.112), and $\theta(-x) + \theta(x) = 1$ (Eq. 2.143). Since $d\psi/dx$ is an odd function, $\langle p \rangle = 0$.

$$\begin{split} \langle p^2 \rangle &= -\hbar^2 \int_{-\infty}^{\infty} \psi \frac{d^2 \psi}{dx^2} \, dx = -\hbar^2 \frac{\sqrt{m\alpha}}{\hbar} \left(\frac{\sqrt{m\alpha}}{\hbar} \right)^3 \int_{-\infty}^{\infty} e^{-m\alpha|x|/\hbar^2} \left[-2\delta(x) + \frac{m\alpha}{\hbar^2} e^{-m\alpha|x|/\hbar^2} \right] \, dx \\ &= \left(\frac{m\alpha}{\hbar} \right)^2 \left[2 - 2 \frac{m\alpha}{\hbar^2} \int_0^{\infty} e^{-2m\alpha x/\hbar^2} \, dx \right] = 2 \left(\frac{m\alpha}{\hbar} \right)^2 \left[1 - \frac{m\alpha}{\hbar^2} \frac{\hbar^2}{2m\alpha} \right] = \left(\frac{m\alpha}{\hbar} \right)^2. \end{split}$$

Evidently

$$\sigma_p = \frac{m\alpha}{\hbar}$$
, so $\sigma_x \sigma_p = \frac{\hbar^2}{\sqrt{2}m\alpha} \frac{m\alpha}{\hbar} = \sqrt{2}\frac{\hbar}{2} > \frac{\hbar}{2}$.