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Preface

These are my own solutions to the problems in Introduction to Quantum Mechanics, 2nd ed. I have made every
effort to insure that they are clear and correct, but errors are bound to occur, and for this I apologize in advance.
I would like to thank the many people who pointed out mistakes in the solution manual for the first edition,
and encourage anyone who finds defects in this one to alert me (griffith@reed.edu). I’ll maintain a list of errata
on my web page (http://academic.reed.edu/physics/faculty/griffiths.html), and incorporate corrections in the
manual itself from time to time. I also thank my students at Reed and at Smith for many useful suggestions,
and above all Neelaksh Sadhoo, who did most of the typesetting.

At the end of the manual there is a grid that correlates the problem numbers in the second edition with
those in the first edition.

David Griffiths

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 1. THE WAVE FUNCTION 3

Chapter 1

The Wave Function

Problem 1.1

(a)

〈j〉2 = 212 = 441.

〈j2〉 =
1
N

∑
j2N(j) =

1
14

[
(142) + (152) + 3(162) + 2(222) + 2(242) + 5(252)

]
=

1
14

(196 + 225 + 768 + 968 + 1152 + 3125) =
6434
14

= 459.571.

(b)

j ∆j = j − 〈j〉
14 14− 21 = −7
15 15− 21 = −6
16 16− 21 = −5
22 22− 21 = 1
24 24− 21 = 3
25 25− 21 = 4

σ2 =
1
N

∑
(∆j)2N(j) =

1
14

[
(−7)2 + (−6)2 + (−5)2 · 3 + (1)2 · 2 + (3)2 · 2 + (4)2 · 5

]
=

1
14

(49 + 36 + 75 + 2 + 18 + 80) =
260
14

= 18.571.

σ =
√

18.571 = 4.309.

(c)

〈j2〉 − 〈j〉2 = 459.571− 441 = 18.571. [Agrees with (b).]

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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4 CHAPTER 1. THE WAVE FUNCTION

Problem 1.2

(a)

〈x2〉 =
∫ h

0

x2 1
2
√
hx

dx =
1

2
√
h

(
2
5
x5/2

)∣∣∣∣h
0

=
h2

5
.

σ2 = 〈x2〉 − 〈x〉2 =
h2

5
−

(
h

3

)2

=
4
45

h2 ⇒ σ =
2h

3
√

5
= 0.2981h.

(b)

P = 1−
∫ x+

x−

1
2
√
hx

dx = 1− 1
2
√
h

(2
√
x)

∣∣∣∣x+

x−

= 1− 1√
h

(√
x+ −

√
x−

)
.

x+ ≡ 〈x〉+ σ = 0.3333h + 0.2981h = 0.6315h; x− ≡ 〈x〉 − σ = 0.3333h− 0.2981h = 0.0352h.

P = 1−
√

0.6315 +
√

0.0352 = 0.393.

Problem 1.3

(a)

1 =
∫ ∞
−∞

Ae−λ(x−a)2dx. Let u ≡ x− a, du = dx, u : −∞→∞.

1 = A

∫ ∞
−∞

e−λu2
du = A

√
π

λ
⇒ A =

√
λ

π
.

(b)

〈x〉 = A

∫ ∞
−∞

xe−λ(x−a)2dx = A

∫ ∞
−∞

(u + a)e−λu2
du

= A

[∫ ∞
−∞

ue−λu2
du + a

∫ ∞
−∞

e−λu2
du

]
= A

(
0 + a

√
π

λ

)
= a.

〈x2〉 = A

∫ ∞
−∞

x2e−λ(x−a)2dx

= A

{∫ ∞
−∞

u2e−λu2
du + 2a

∫ ∞
−∞

ue−λu2
du + a2

∫ ∞
−∞

e−λu2
du

}
= A

[
1
2λ

√
π

λ
+ 0 + a2

√
π

λ

]
= a2 +

1
2λ

.

σ2 = 〈x2〉 − 〈x〉2 = a2 +
1
2λ
− a2 =

1
2λ

; σ =
1√
2λ

.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 5

(c)

A

xa

ρ(x)

Problem 1.4

(a)

1 =
|A|2
a2

∫ a

0

x2dx +
|A|2

(b− a)2

∫ b

a

(b− x)2dx = |A|2
{

1
a2

(
x3

3

)∣∣∣∣a
0

+
1

(b− a)2

(
− (b− x)3

3

)∣∣∣∣b
a

}

= |A|2
[
a

3
+

b− a

3

]
= |A|2 b

3
⇒ A =

√
3
b
.

(b)

xa

A

b

Ψ

(c) At x = a.

(d)

P =
∫ a

0

|Ψ|2dx =
|A|2
a2

∫ a

0

x2dx = |A|2 a
3

=
a

b
.

{
P = 1 if b = a, �
P = 1/2 if b = 2a. �

(e)

〈x〉 =
∫

x|Ψ|2dx = |A|2
{

1
a2

∫ a

0

x3dx +
1

(b− a)2

∫ b

a

x(b− x)2dx
}

=
3
b

{
1
a2

(
x4

4

)∣∣∣∣a
0

+
1

(b− a)2

(
b2

x2

2
− 2b

x3

3
+

x4

4

)∣∣∣∣b
a

}

=
3

4b(b− a)2
[
a2(b− a)2 + 2b4 − 8b4/3 + b4 − 2a2b2 + 8a3b/3− a4

]
=

3
4b(b− a)2

(
b4

3
− a2b2 +

2
3
a3b

)
=

1
4(b− a)2

(b3 − 3a2b + 2a3) =
2a + b

4
.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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6 CHAPTER 1. THE WAVE FUNCTION

Problem 1.5

(a)

1 =
∫
|Ψ|2dx = 2|A|2

∫ ∞
0

e−2λxdx = 2|A|2
(
e−2λx

−2λ

)∣∣∣∣∞
0

=
|A|2
λ

; A =
√
λ.

(b)

〈x〉 =
∫

x|Ψ|2dx = |A|2
∫ ∞
−∞

xe−2λ|x|dx = 0. [Odd integrand.]

〈x2〉 = 2|A|2
∫ ∞

0

x2e−2λxdx = 2λ
[

2
(2λ)3

]
=

1
2λ2

.

(c)

σ2 = 〈x2〉 − 〈x〉2 =
1

2λ2
; σ =

1√
2λ

. |Ψ(±σ)|2 = |A|2e−2λσ = λe−2λ/
√

2λ = λe−
√

2 = 0.2431λ.

|Ψ|2
λ

σ−σ +
x

.24λ

Probability outside:

2
∫ ∞

σ

|Ψ|2dx = 2|A|2
∫ ∞

σ

e−2λxdx = 2λ
(
e−2λx

−2λ

)∣∣∣∣∞
σ

= e−2λσ = e−
√

2 = 0.2431.

Problem 1.6

For integration by parts, the differentiation has to be with respect to the integration variable – in this case the
differentiation is with respect to t, but the integration variable is x. It’s true that

∂

∂t
(x|Ψ|2) =

∂x

∂t
|Ψ|2 + x

∂

∂t
|Ψ|2 = x

∂

∂t
|Ψ|2,

but this does not allow us to perform the integration:∫ b

a

x
∂

∂t
|Ψ|2dx =

∫ b

a

∂

∂t
(x|Ψ|2)dx �= (x|Ψ|2)

∣∣b
a
.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 7

Problem 1.7

From Eq. 1.33, d〈p〉
dt = −i�

∫
∂
∂t

(
Ψ∗ ∂Ψ

∂x

)
dx. But, noting that ∂2Ψ

∂x∂t = ∂2Ψ
∂t∂x and using Eqs. 1.23-1.24:

∂

∂t

(
Ψ∗

∂Ψ
∂x

)
=

∂Ψ∗

∂t

∂Ψ
∂x

+ Ψ∗
∂

∂x

(
∂Ψ
∂t

)
=

[
− i�

2m
∂2Ψ∗

∂x2
+

i

�
V Ψ∗

]
∂Ψ
∂x

+ Ψ∗
∂

∂x

[
i�

2m
∂2Ψ
∂x2

− i

�
V Ψ

]
=

i�

2m

[
Ψ∗

∂3Ψ
∂x3

− ∂2Ψ∗

∂x2

∂Ψ
∂x

]
+

i

�

[
V Ψ∗

∂Ψ
∂x

−Ψ∗
∂

∂x
(V Ψ)

]
The first term integrates to zero, using integration by parts twice, and the second term can be simplified to
V Ψ∗ ∂Ψ

∂x −Ψ∗V ∂Ψ
∂x −Ψ∗ ∂V

∂x Ψ = −|Ψ|2 ∂V
∂x . So

d〈p〉
dt

= −i�

(
i

�

) ∫
−|Ψ|2 ∂V

∂x
dx = 〈−∂V

∂x
〉. QED

Problem 1.8

Suppose Ψ satisfies the Schrödinger equation without V0: i�∂Ψ
∂t = − �

2

2m
∂2Ψ
∂x2 + V Ψ. We want to find the solution

Ψ0 with V0: i�∂Ψ0
∂t = − �

2

2m
∂2Ψ0
∂x2 + (V + V0)Ψ0.

Claim: Ψ0 = Ψe−iV0t/�.

Proof: i�∂Ψ0
∂t = i�∂Ψ

∂t e
−iV0t/� + i�Ψ

(
− iV0

�

)
e−iV0t/� =

[
− �

2

2m
∂2Ψ
∂x2 + V Ψ

]
e−iV0t/� + V0Ψe−iV0t/�

= − �
2

2m
∂2Ψ0
∂x2 + (V + V0)Ψ0. QED

This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being inde-
pendent of x, cancels out in Eq. 1.36.

Problem 1.9

(a)

1 = 2|A|2
∫ ∞

0

e−2amx2/�dx = 2|A|2 1
2

√
π

(2am/�)
= |A|2

√
π�

2am
; A =

(
2am
π�

)1/4

.

(b)

∂Ψ
∂t

= −iaΨ;
∂Ψ
∂x

= −2amx

�
Ψ;

∂2Ψ
∂x2

= −2am
�

(
Ψ + x

∂Ψ
∂x

)
= −2am

�

(
1− 2amx2

�

)
Ψ.

Plug these into the Schrödinger equation, i�∂Ψ
∂t = − �

2

2m
∂2Ψ
∂x2 + V Ψ:

V Ψ = i�(−ia)Ψ +
�

2

2m

(
−2am

�

) (
1− 2amx2

�

)
Ψ

=
[
�a− �a

(
1− 2amx2

�

)]
Ψ = 2a2mx2Ψ, so V (x) = 2ma2x2.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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8 CHAPTER 1. THE WAVE FUNCTION

(c)

〈x〉 =
∫ ∞
−∞

x|Ψ|2dx = 0. [Odd integrand.]

〈x2〉 = 2|A|2
∫ ∞

0

x2e−2amx2/�dx = 2|A|2 1
22(2am/�)

√
π�

2am
=

�

4am
.

〈p〉 = m
d〈x〉
dt

= 0.

〈p2〉 =
∫

Ψ∗
(

�

i

∂

∂x

)2

Ψdx = −�
2

∫
Ψ∗

∂2Ψ
∂x2

dx

= −�
2

∫
Ψ∗

[
−2am

�

(
1− 2amx2

�

)
Ψ

]
dx = 2am�

{∫
|Ψ|2dx− 2am

�

∫
x2|Ψ|2dx

}
= 2am�

(
1− 2am

�
〈x2〉

)
= 2am�

(
1− 2am

�

�

4am

)
= 2am�

(
1
2

)
= am�.

(d)

σ2
x = 〈x2〉 − 〈x〉2 =

�

4am
=⇒ σx =

√
�

4am
; σ2

p = 〈p2〉 − 〈p〉2 = am� =⇒ σp =
√
am�.

σxσp =
√

�

4am

√
am� = �

2 . This is (just barely) consistent with the uncertainty principle.

Problem 1.10

From Math Tables: π = 3.141592653589793238462643 · · ·

(a)
P (0) = 0 P (1) = 2/25 P (2) = 3/25 P (3) = 5/25 P (4) = 3/25
P (5) = 3/25 P (6) = 3/25 P (7) = 1/25 P (8) = 2/25 P (9) = 3/25

In general, P (j) = N(j)
N .

(b) Most probable: 3. Median: 13 are ≤ 4, 12 are ≥ 5, so median is 4.

Average: 〈j〉 = 1
25 [0 · 0 + 1 · 2 + 2 · 3 + 3 · 5 + 4 · 3 + 5 · 3 + 6 · 3 + 7 · 1 + 8 · 2 + 9 · 3]

= 1
25 [0 + 2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27] = 118

25 = 4.72.

(c) 〈j2〉 = 1
25 [0 + 12 · 2 + 22 · 3 + 32 · 5 + 42 · 3 + 52 · 3 + 62 · 3 + 72 · 1 + 82 · 2 + 92 · 3]

= 1
25 [0 + 2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243] = 710

25 = 28.4.

σ2 = 〈j2〉 − 〈j〉2 = 28.4− 4.722 = 28.4− 22.2784 = 6.1216; σ =
√

6.1216 = 2.474.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 9

Problem 1.11

(a) Constant for 0 ≤ θ ≤ π, otherwise zero. In view of Eq. 1.16, the constant is 1/π.

ρ(θ) =
{

1/π, if 0 ≤ θ ≤ π,
0, otherwise.

1/π

−π/2 0 π 3π/2

ρ(θ)

θ

(b)

〈θ〉 =
∫

θρ(θ) dθ =
1
π

∫ π

0

θdθ =
1
π

(
θ2

2

)∣∣∣∣π
0

=
π

2
[of course].

〈θ2〉 =
1
π

∫ π

0

θ2 dθ =
1
π

(
θ3

3

)∣∣∣∣π
0

=
π2

3
.

σ2 = 〈θ2〉 − 〈θ〉2 =
π2

3
− π2

4
=

π2

12
; σ =

π

2
√

3
.

(c)

〈sin θ〉 =
1
π

∫ π

0

sin θ dθ =
1
π

(− cos θ)|π0 =
1
π

(1− (−1)) =
2
π

.

〈cos θ〉 =
1
π

∫ π

0

cos θ dθ =
1
π

(sin θ)|π0 = 0.

〈cos2 θ〉 =
1
π

∫ π

0

cos2 θ dθ =
1
π

∫ π

0

(1/2)dθ =
1
2
.

[Because sin2 θ + cos2 θ = 1, and the integrals of sin2 and cos2 are equal (over suitable intervals), one can
replace them by 1/2 in such cases.]

Problem 1.12

(a) x = r cos θ ⇒ dx = −r sin θ dθ. The probability that the needle lies in range dθ is ρ(θ)dθ = 1
πdθ, so the

probability that it’s in the range dx is

ρ(x)dx =
1
π

dx

r sin θ
=

1
π

dx

r
√

1− (x/r)2
=

dx

π
√
r2 − x2

.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
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10 CHAPTER 1. THE WAVE FUNCTION

ρ(x)

xr 2r-r-2r

∴ ρ(x) =
{ 1

π
√

r2−x2 , if − r < x < r,

0, otherwise.
[Note: We want the magnitude of dx here.]

Total:
∫ r

−r
1

π
√

r2−x2 dx = 2
π

∫ r

0
1√

r2−x2 dx = 2
π sin−1 x

r

∣∣r
0

= 2
π sin−1(1) = 2

π · π
2 = 1.�

(b)

〈x〉 =
1
π

∫ r

−r

x
1√

r2 − x2
dx = 0 [odd integrand, even interval].

〈x2〉 =
2
π

∫ r

0

x2

√
r2 − x2

dx =
2
π

[
−x

2

√
r2 − x2 +

r2

2
sin−1

(x

r

)]∣∣∣∣r
0

=
2
π

r2

2
sin−1(1) =

r2

2
.

σ2 = 〈x2〉 − 〈x〉2 = r2/2 =⇒ σ = r/
√

2.

To get 〈x〉 and 〈x2〉 from Problem 1.11(c), use x = r cos θ, so 〈x〉 = r〈cos θ〉 = 0, 〈x2〉 = r2〈cos2 θ〉 = r2/2.

Problem 1.13

Suppose the eye end lands a distance y up from a line (0 ≤ y < l), and let x be the projection along that same
direction (−l ≤ x < l). The needle crosses the line above if y + x ≥ l (i.e. x ≥ l − y), and it crosses the line
below if y + x < 0 (i.e. x < −y). So for a given value of y, the probability of crossing (using Problem 1.12) is

P (y) =
∫ −y

−l

ρ(x)dx +
∫ l

l−y

ρ(x)dx =
1
π

{∫ −y

−l

1√
l2 − x2

dx +
∫ l

l−y

1√
l2 − x2

dx

}

=
1
π

{
sin−1

(x

l

)∣∣∣−y

−l
+ sin−1

(x

l

)∣∣∣l
l−y

}
=

1
π

[
− sin−1(y/l) + 2 sin−1(1)− sin−1(1− y/l)

]
= 1− sin−1(y/l)

π
− sin−1(1− y/l)

π
.

Now, all values of y are equally likely, so ρ(y) = 1/l, and hence the probability of crossing is

P =
1
πl

∫ l

0

[
π − sin−1

(y

l

)
− sin−1

(
l − y

l

)]
dy =

1
πl

∫ l

0

[
π − 2 sin−1(y/l)

]
dy

=
1
πl

[
πl − 2

(
y sin−1(y/l) + l

√
1− (y/l)2

)∣∣∣l
0

]
= 1− 2

πl
[l sin−1(1)− l] = 1− 1 +

2
π

=
2
π

.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 11

Problem 1.14

(a) Pab(t) =
∫ b

a
|Ψ(x, t)2dx, so dPab

dt =
∫ b

a
∂
∂t |Ψ|2dx. But (Eq. 1.25):

∂|Ψ|2
∂t

=
∂

∂x

[
i�

2m

(
Ψ∗

∂Ψ
∂x

− ∂Ψ∗

∂x
Ψ

)]
= − ∂

∂t
J(x, t).

∴ dPab

dt
= −

∫ b

a

∂

∂x
J(x, t)dx = − [J(x, t)]|ba = J(a, t)− J(b, t). QED

Probability is dimensionless, so J has the dimensions 1/time, and units seconds−1.

(b) Here Ψ(x, t) = f(x)e−iat, where f(x) ≡ Ae−amx2/�, so Ψ∂Ψ∗

∂x = fe−iat df
dxe

iat = f df
dx ,

and Ψ∗ ∂Ψ
∂x = f df

dx too, so J(x, t) = 0.

Problem 1.15

(a) Eq. 1.24 now reads ∂Ψ∗

∂t = − i�
2m

∂2Ψ∗

∂x2 + i
�
V ∗Ψ∗, and Eq. 1.25 picks up an extra term:

∂

∂t
|Ψ|2 = · · ·+ i

�
|Ψ|2(V ∗ − V ) = · · ·+ i

�
|Ψ|2(V0 + iΓ− V0 + iΓ) = · · · − 2Γ

�
|Ψ|2,

and Eq. 1.27 becomes dP
dt = − 2Γ

�

∫∞
−∞ |Ψ|2dx = − 2Γ

�
P . QED

(b)

dP

P
= −2Γ

�
dt =⇒ lnP = −2Γ

�
t + constant =⇒ P (t) = P (0)e−2Γt/�, so τ =

�

2Γ
.

Problem 1.16

Use Eqs. [1.23] and [1.24], and integration by parts:

d

dt

∫ ∞
−∞

Ψ∗1Ψ2 dx =
∫ ∞
−∞

∂

∂t
(Ψ∗1Ψ2) dx =

∫ ∞
−∞

(
∂Ψ∗1
∂t

Ψ2 + Ψ∗1
∂Ψ2

∂t

)
dx

=
∫ ∞
−∞

[(−i�

2m
∂2Ψ∗1
∂x2

+
i

�
V Ψ∗1

)
Ψ2 + Ψ∗1

(
i�

2m
∂2Ψ2

∂x2
− i

�
V Ψ2

)]
dx

= − i�

2m

∫ ∞
−∞

(
∂2Ψ∗1
∂x2

Ψ2 −Ψ∗1
∂2Ψ2

∂x2

)
dx

= − i�

2m

[
∂Ψ∗1
∂x

Ψ2

∣∣∣∣∞
−∞

−
∫ ∞
−∞

∂Ψ∗1
∂x

∂Ψ2

∂x
dx− Ψ∗1

∂Ψ2

∂x

∣∣∣∣∞
−∞

+
∫ ∞
−∞

∂Ψ∗1
∂x

∂Ψ2

∂x
dx

]
= 0. QED
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12 CHAPTER 1. THE WAVE FUNCTION

Problem 1.17

(a)

1 = |A|2
∫ a

−a

(
a2 − x2

)2
dx = 2|A|2

∫ a

0

(
a4 − 2a2x2 + x4

)
dx = 2|A|2

[
a4x− 2a2x

3

3
+

x5

5

]∣∣∣∣a
0

= 2|A|2a5

(
1− 2

3
+

1
5

)
=

16
15

a5|A|2, so A =

√
15

16a5
.

(b)

〈x〉 =
∫ a

−a

x|Ψ|2 dx = 0. (Odd integrand.)

(c)

〈p〉 =
�

i
A2

∫ a

−a

(
a2 − x2

) d

dx

(
a2 − x2

)
︸ ︷︷ ︸

−2x

dx = 0. (Odd integrand.)

Since we only know 〈x〉 at t = 0 we cannot calculate d〈x〉/dt directly.

(d)

〈x2〉 = A2

∫ a

−a

x2
(
a2 − x2

)2
dx = 2A2

∫ a

0

(
a4x2 − 2a2x4 + x6

)
dx

= 2
15

16a5

[
a4x

3

3
− 2a2x

5

5
+

x7

7

]∣∣∣∣a
0

=
15
8a5

(
a7

)(1
3
− 2

5
+

1
7

)

=✚
✚15a2

8

(
35− 42 + 15

✁3 · ✁5 · 7

)
=

a2

8
· 8
7

=
a2

7
.

(e)

〈p2〉 = −A2
�

2

∫ a

−a

(
a2 − x2

) d2

dx2

(
a2 − x2

)
︸ ︷︷ ︸

−2

dx = 2A2
�

22
∫ a

0

(
a2 − x2

)
dx

= 4 · 15
16a5

�
2

(
a2x− x3

3

)∣∣∣∣a
0

=
15�

2

4a5

(
a3 − a3

3

)
=

15�
2

4a2
· 2
3

=
5
2

�
2

a2
.

(f)

σx =
√
〈x2〉 − 〈x〉2 =

√
1
7
a2 =

a√
7
.

(g)

σp =
√
〈p2〉 − 〈p〉2 =

√
5
2

�2

a2
=

√
5
2

�

a
.
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CHAPTER 1. THE WAVE FUNCTION 13

(h)

σxσp =
a√
7
·
√

5
2

�

a
=

√
5
14

� =

√
10
7

�

2
>

�

2
. �

Problem 1.18

h√
3mkBT

> d ⇒ T <
h2

3mkBd2
.

(a) Electrons (m = 9.1× 10−31 kg):

T <
(6.6× 10−34)2

3(9.1× 10−31)(1.4× 10−23)(3× 10−10)2
= 1.3× 105 K.

Sodium nuclei (m = 23mp = 23(1.7× 10−27) = 3.9× 10−26 kg):

T <
(6.6× 10−34)2

3(3.9× 10−26)(1.4× 10−23)(3× 10−10)2
= 3.0 K.

(b) PV = NkBT ; volume occupied by one molecule (N = 1, V = d3) ⇒ d = (kBT/P )1/3.

T <
h2

2mkB

(
P

kBT

)2/3

⇒ T 5/3 <
h2

3m
P 2/3

k
5/3
B

⇒ T <
1
kB

(
h2

3m

)3/5

P 2/5.

For helium (m = 4mp = 6.8× 10−27 kg) at 1 atm = 1.0× 105 N/m2:

T <
1

(1.4× 10−23)

(
(6.6× 10−34)2

3(6.8× 10−27)

)3/5

(1.0× 105)2/5 = 2.8 K.

For hydrogen (m = 2mp = 3.4× 10−27 kg) with d = 0.01 m:

T <
(6.6× 10−34)2

3(3.4× 10−27)(1.4× 10−23)(10−2)2
= 3.1× 10−14 K.

At 3 K it is definitely in the classical regime.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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14 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Chapter 2

Time-Independent Schrödinger
Equation

Problem 2.1

(a)

Ψ(x, t) = ψ(x)e−i(E0+iΓ)t/� = ψ(x)eΓt/�e−iE0t/� =⇒ |Ψ|2 = |ψ|2e2Γt/�.

∫ ∞
−∞

|Ψ(x, t)|2dx = e2Γt/�

∫ ∞
−∞

|ψ|2dx.

The second term is independent of t, so if the product is to be 1 for all time, the first term (e2Γt/�) must
also be constant, and hence Γ = 0. QED

(b) If ψ satisfies Eq. 2.5, − �
2

2m
∂2ψ
dx2 + V ψ = Eψ, then (taking the complex conjugate and noting that V and

E are real): − �
2

2m
∂2ψ∗

dx2 + V ψ∗ = Eψ∗, so ψ∗ also satisfies Eq. 2.5. Now, if ψ1 and ψ2 satisfy Eq. 2.5, so
too does any linear combination of them (ψ3 ≡ c1ψ1 + c2ψ2):

− �
2

2m
∂2ψ3

dx2
+ V ψ3 = − �

2

2m

(
c1

∂2ψ1

dx2
+ c2

∂2ψ2

∂x2

)
+ V (c1ψ1 + c2ψ2)

= c1

[
− �

2

2m
d2ψ1

dx2
+ V ψ1

]
+ c2

[
− �

2

2m
d2ψ2

dx2
+ V ψ2

]
= c1(Eψ1) + c2(Eψ2) = E(c1ψ1 + c2ψ2) = Eψ3.

Thus, (ψ + ψ∗) and i(ψ − ψ∗) – both of which are real – satisfy Eq. 2.5. Conclusion: From any complex
solution, we can always construct two real solutions (of course, if ψ is already real, the second one will be
zero). In particular, since ψ = 1

2 [(ψ + ψ∗)− i(i(ψ − ψ∗))], ψ can be expressed as a linear combination of
two real solutions. QED

(c) If ψ(x) satisfies Eq. 2.5, then, changing variables x→ −x and noting that ∂2/∂(−x)2 = ∂2/∂x2,

− �
2

2m
∂2ψ(−x)

dx2
+ V (−x)ψ(−x) = Eψ(−x);

so if V (−x) = V (x) then ψ(−x) also satisfies Eq. 2.5. It follows that ψ+(x) ≡ ψ(x) + ψ(−x) (which is
even: ψ+(−x) = ψ+(x)) and ψ−(x) ≡ ψ(x)− ψ(−x) (which is odd: ψ−(−x) = −ψ−(x)) both satisfy Eq.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 15

2.5. But ψ(x) = 1
2 (ψ+(x) + ψ−(x)), so any solution can be expressed as a linear combination of even and

odd solutions. QED

Problem 2.2

Given d2ψ
dx2 = 2m

�2 [V (x)−E]ψ, if E < Vmin, then ψ′′ and ψ always have the same sign: If ψ is positive(negative),
then ψ′′ is also positive(negative). This means that ψ always curves away from the axis (see Figure). However,
it has got to go to zero as x→ −∞ (else it would not be normalizable). At some point it’s got to depart from
zero (if it doesn’t, it’s going to be identically zero everywhere), in (say) the positive direction. At this point its
slope is positive, and increasing, so ψ gets bigger and bigger as x increases. It can’t ever “turn over” and head
back toward the axis, because that would requuire a negative second derivative—it always has to bend away
from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In
neither case is there any way for it to come back to zero, as it must (at x → ∞) in order to be normalizable.
QED

x

ψ

Problem 2.3

Equation 2.20 says d2ψ
dx2 = − 2mE

�2 ψ; Eq. 2.23 says ψ(0) = ψ(a) = 0. If E = 0, d2ψ/dx2 = 0, so ψ(x) = A + Bx;
ψ(0) = A = 0 ⇒ ψ = Bx; ψ(a) = Ba = 0 ⇒ B = 0, so ψ = 0. If E < 0, d2ψ/dx2 = κ2ψ, with κ ≡

√
−2mE/�

real, so ψ(x) = Aeκx + Be−κx. This time ψ(0) = A + B = 0 ⇒ B = −A, so ψ = A(eκx − e−κx), while
ψ(a) = A

(
eκa − eiκa

)
= 0 ⇒ either A = 0, so ψ = 0, or else eκa = e−κa, so e2κa = 1, so 2κa = ln(1) = 0,

so κ = 0, and again ψ = 0. In all cases, then, the boundary conditions force ψ = 0, which is unacceptable
(non-normalizable).

Problem 2.4

〈x〉 =
∫

x|ψ|2dx =
2
a

∫ a

0

x sin2
(nπ

a
x
)
dx. Let y ≡ nπ

a
x, so dx =

a

nπ
dy; y : 0→ nπ.

=
2
a

( a

nπ

)2
∫ nπ

0

y sin2 y dy =
2a

n2π2

[
y2

4
− y sin 2y

4
− cos 2y

8

]∣∣∣∣nπ

0

=
2a

n2π2

[
n2π2

4
− cos 2nπ

8
+

1
8

]
=

a

2
. (Independent of n.)
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16 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

〈x2〉 =
2
a

∫ a

0

x2 sin2
(nπ

a
x
)
dx =

2
a

( a

nπ

)3
∫ nπ

0

y2 sin2 y dy

=
2a2

(nπ)3

[
y3

6
−

(
y3

4
− 1

8

)
sin 2y − y cos 2y

4

]nπ

0

=
2a2

(nπ)3

[
(nπ)3

6
− nπ cos(2nπ)

4

]
= a2

[
1
3
− 1

2(nπ)2

]
.

〈p〉 = m
d〈x〉
dt

= 0. (Note : Eq. 1.33 is much faster than Eq. 1.35.)

〈p2〉 =
∫

ψ∗n

(
�

i

d

dx

)2

ψn dx = −�
2

∫
ψ∗n

(
d2ψn

dx2

)
dx

= (−�
2)

(
−2mEn

�2

) ∫
ψ∗nψn dx = 2mEn =

(
nπ�

a

)2

.

σ2
x = 〈x2〉 − 〈x〉2 = a2

(
1
3
− 1

2(nπ)2
− 1

4

)
=

a2

4

(
1
3
− 2

(nπ)2

)
; σx =

a

2

√
1
3
− 2

(nπ)2
.

σ2
p = 〈p2〉 − 〈p〉2 =

(
nπ�

a

)2

; σp =
nπ�

a
. ∴ σxσp =

�

2

√
(nπ)2

3
− 2.

The product σxσp is smallest for n = 1; in that case, σxσp = �

2

√
π2

3 − 2 = (1.136)�/2 > �/2. �

Problem 2.5

(a)

|Ψ|2 = Ψ2Ψ = |A|2(ψ∗1 + ψ∗2)(ψ1 + ψ2) = |A|2[ψ∗1ψ1 + ψ∗1ψ2 + ψ∗2ψ1 + ψ∗2ψ2].

1 =
∫
|Ψ|2dx = |A|2

∫
[|ψ1|2 + ψ∗1ψ2 + ψ∗2ψ1 + |ψ2|2]dx = 2|A|2 ⇒ A = 1/

√
2.

(b)

Ψ(x, t) =
1√
2

[
ψ1e
−iE1t/� + ψ2e

−iE2t/�

]
(but

En

�
= n2ω)

=
1√
2

√
2
a

[
sin

(π

a
x
)
e−iωt + sin

(
2π
a

x

)
e−i4ωt

]
=

1√
a
e−iωt

[
sin

(π

a
x
)

+ sin
(

2π
a

x

)
e−3iωt

]
.

|Ψ(x, t)|2 =
1
a

[
sin2

(π

a
x
)

+ sin
(π

a
x
)

sin
(

2π
a

x

) (
e−3iωt + e3iωt

)
+ sin2

(
2π
a

x

)]
=

1
a

[
sin2

(π

a
x
)

+ sin2

(
2π
a

x

)
+ 2 sin

(π

a
x
)

sin
(

2π
a

x

)
cos(3ωt)

]
.
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currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 17

(c)

〈x〉 =
∫

x|Ψ(x, t)|2dx

=
1
a

∫ a

0

x

[
sin2

(π

a
x
)

+ sin2

(
2π
a

x

)
+ 2 sin

(π

a
x
)

sin
(

2π
a

x

)
cos(3ωt)

]
dx

∫ a

0

x sin2
(π

a
x
)
dx =

[
x2

4
− x sin

(
2π
a x

)
4π/a

− cos
(

2π
a x

)
8(π/a)2

]∣∣∣∣∣
a

0

=
a2

4
=

∫ a

0

x sin2

(
2π
a

x

)
dx.

∫ a

0

x sin
(π

a
x
)

sin
(

2π
a

x

)
dx =

1
2

∫ a

0

x

[
cos

(π

a
x
)
− cos

(
3π
a

x

)]
dx

=
1
2

[
a2

π2
cos

(π

a
x
)

+
ax

π
sin

(π

a
x
)
− a2

9π2
cos

(
3π
a

x

)
− ax

3π
sin

(
3π
a

x

)]a

0

=
1
2

[
a2

π2

(
cos(π)− cos(0)

)
− a2

9π2

(
cos(3π)− cos(0)

)]
= −a2

π2

(
1− 1

9

)
= − 8a2

9π2
.

∴ 〈x〉 =
1
a

[
a2

4
+

a2

4
− 16a2

9π2
cos(3ωt)

]
=

a

2

[
1− 32

9π2
cos(3ωt)

]
.

Amplitude:
32
9π2

(a

2

)
= 0.3603(a/2); angular frequency: 3ω =

3π2
�

2ma2
.

(d)

〈p〉 = m
d〈x〉
dt

= m
(a

2

) (
− 32

9π2

)
(−3ω) sin(3ωt) =

8�

3a
sin(3ωt).

(e) You could get either E1 = π2
�

2/2ma2 or E2 = 2π2
�

2/ma2, with equal probability P1 = P2 = 1/2.

So 〈H〉 =
1
2
(E1 + E2) =

5π2
�

2

4ma2
; it’s the average of E1 and E2.

Problem 2.6

From Problem 2.5, we see that

Ψ(x, t) = 1√
a
e−iωt

[
sin

(
π
ax

)
+ sin

(
2π
a x

)
e−3iωteiφ

]
;

|Ψ(x, t)|2 = 1
a

[
sin2

(
π
ax

)
+ sin2

(
2π
a x

)
+ 2 sin

(
π
ax

)
sin

(
2π
a x

)
cos(3ωt− φ)

]
;
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18 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

and hence 〈x〉 = a
2

[
1− 32

9π2 cos(3ωt− φ)
]
. This amounts physically to starting the clock at a different time

(i.e., shifting the t = 0 point).

If φ =
π

2
, so Ψ(x, 0) = A[ψ1(x) + iψ2(x)], then cos(3ωt− φ) = sin(3ωt); 〈x〉 starts at

a

2
.

If φ = π, so Ψ(x, 0) = A[ψ1(x)− ψ2(x)], then cos(3ωt− φ) = − cos(3ωt); 〈x〉 starts at
a

2

(
1 +

32
9π2

)
.

Problem 2.7

Ψ(x,0)

xaa/2

Aa/2

(a)

1 = A2

∫ a/2

0

x2dx + A2

∫ a

a/2

(a− x)2dx = A2

[
x3

3

∣∣∣∣a/2

0

− (a− x)3

3

∣∣∣∣a
a/2

]

=
A2

3

(
a3

8
+

a3

8

)
=

A2a3

12
⇒ A =

2
√

3√
a3

.

(b)

cn =

√
2
a

2
√

3
a
√
a

[ ∫ a/2

0

x sin
(
nπ

a
x

)
dx +

∫ a

a/2

(a− x) sin
(
nπ

a
x

)
dx

]
=

2
√

6
a2

{[(
a

nπ

)2

sin
(
nπ

a
x

)
− xa

nπ
cos

(
nπ

a
x

)]∣∣∣∣a/2

0

+ a

[
− a

nπ
cos

(
nπ

a
x

)]∣∣∣∣a
a/2

−
[(

a

nπ

)2

sin
(
nπ

a
x

)
−

(
ax

nπ

)
cos

(
nπ

a
x

)]∣∣∣∣a
a/2

}

=
2
√

6
a2

[(
a

nπ

)2

sin
(
nπ

2

)
−✘✘✘

✘✘✘
✘a2

2nπ
cos

(
nπ

2

)
−
✟✟

✟✟
✟a2

nπ
cosnπ +

✟✟
✟✟

✟✟
✟

a2

nπ
cos

(
nπ

2

)
+

(
a

nπ

)2

sin
(
nπ

2

)
+
✟✟

✟✟
✟a2

nπ
cosnπ −✘✘✘

✘✘✘
✘a2

2nπ
cos

(
nπ

2

)]
=

2
√

6

��a2
2 �
�a2

(nπ)2
sin

(
nπ

2

)
=

4
√

6
(nπ)2

sin
(
nπ

2

)
=

{
0, n even,
(−1)(n−1)/2 4

√
6

(nπ)2 , n odd.

So Ψ(x, t) =
4
√

6
π2

√
2
a

∑
n=1,3,5,...

(−1)(n−1)/2 1
n2

sin
(
nπ

a
x

)
e−Ent/�, where En =

n2π2
�

2

2ma2
.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 19

(c)

P1 = |c1|2 =
16 · 6
π4

= 0.9855.

(d)

〈H〉 =
∑

|cn|2En =
96
π4

π2
�

2

2ma2

(
1
1

+
1
32

+
1
52

+
1
72

+ · · ·︸ ︷︷ ︸
π2/8

)
=

48�
2

π2ma2

π2

8
=

6�
2

ma2
.

Problem 2.8

(a)

Ψ(x, 0) =

{
A, 0 < x < a/2;
0, otherwise.

1 = A2

∫ a/2

0

dx = A2(a/2)⇒ A =

√
2
a
.

(b) From Eq. 2.37,

c1 = A

√
2
a

∫ a/2

0

sin
(π

a
x
)
dx =

2
a

[
−a

π
cos

(π

a
x
)] ∣∣∣∣a/2

0

= − 2
π

[
cos

(π

2

)
− cos 0

]
=

2
π
.

P1 = |c1|2 = (2/π)2 = 0.4053.

Problem 2.9

ĤΨ(x, 0) = − �
2

2m
∂2

∂x2
[Ax(a− x)] = −A

�
2

2m
∂

∂x
(a− 2x) = A

�
2

m
.

∫
Ψ(x, 0)∗ĤΨ(x, 0) dx = A2 �

2

m

∫ a

0

x(a− x) dx = A2 �
2

m

(
a
x2

2
− x3

3

) ∣∣∣∣a
0

= A2 �
2

m

(
a3

2
− a3

3

)
=

30
a5

�
2

m

a3

6
=

5�
2

ma2

(same as Example 2.3).
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20 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Problem 2.10

(a) Using Eqs. 2.47 and 2.59,

a+ψ0 =
1√

2�mω

(
−�

d

dx
+ mωx

) (mω

π�

)1/4

e−
mω
2�

x2

=
1√

2�mω

(mω

π�

)1/4 [
−�

(
−mω

2�

)
2x + mωx

]
e−

mω
2�

x2
=

1√
2�mω

(mω

π�

)1/4

2mωxe−
mω
2�

x2
.

(a+)2ψ0 =
1

2�mω

(mω

π�

)1/4

2mω

(
−�

d

dx
+ mωx

)
xe−

mω
2�

x2

=
1
�

(mω

π�

)1/4 [
−�

(
1− x

mω

2�
2x

)
+ mωx2

]
e−

mω
2�

x2
=

(mω

π�

)1/4
(

2mω

�
x2 − 1

)
e−

mω
2�

x2
.

Therefore, from Eq. 2.67,

ψ2 =
1√
2
(a+)2ψ0 =

1√
2

(mω

π�

)1/4
(

2mω

�
x2 − 1

)
e−

mω
2�

x2
.

(b)
ψ ψ ψ1 20

(c) Since ψ0 and ψ2 are even, whereas ψ1 is odd,
∫
ψ∗0ψ1dx and

∫
ψ∗2ψ1dx vanish automatically. The only one

we need to check is
∫
ψ∗2ψ0 dx:∫

ψ∗2ψ0 dx =
1√
2

√
mω

π�

∫ ∞
−∞

(
2mω

�
x2 − 1

)
e−

mω
�

x2
dx

= −
√

mω

2π�

( ∫ ∞
−∞

e−
mω

�
x2

dx− 2mω

�

∫ ∞
−∞

x2e−
mω

�
x2

dx

)
= −

√
mω

2π�

(√
π�

mω
− 2mω

�

�

2mω

√
π�

mω

)
= 0. �

Problem 2.11

(a) Note that ψ0 is even, and ψ1 is odd. In either case |ψ|2 is even, so 〈x〉 =
∫
x|ψ|2dx = 0. Therefore

〈p〉 = md〈x〉/dt = 0. (These results hold for any stationary state of the harmonic oscillator.)

From Eqs. 2.59 and 2.62, ψ0 = αe−ξ2/2, ψ1 =
√

2αξe−ξ2/2. So

n = 0:

〈x2〉 = α2

∫ ∞
−∞

x2e−ξ2/2dx = α2

(
�

mω

)3/2 ∫ ∞
−∞

ξ2e−ξ2
dξ =

1√
π

(
�

mω

)√
π

2
=

�

2mω
.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 21

〈p2〉 =
∫

ψ0

(
�

i

d

dx

)2

ψ0 dx = −�
2α2

√
mω

�

∫ ∞
−∞

e−ξ2/2

(
d2

dξ2
e−ξ2/2

)
dξ

= −m�ω√
π

∫ ∞
−∞

(
ξ2 − 1

)
e−ξ2/2dξ = −m�ω√

π

(√
π

2
−
√
π

)
=

m�ω

2
.

n = 1:

〈x2〉 = 2α2

∫ ∞
−∞

x2ξ2e−ξ2
dx = 2α2

(
�

mω

)3/2 ∫ ∞
−∞

ξ4e−ξ2
dξ =

2�√
πmω

3
√
π

4
=

3�

2mω
.

〈p2〉 = −�
22α2

√
mω

�

∫ ∞
−∞

ξe−ξ2/2

[
d2

dξ2

(
ξe−ξ2/2

)]
dξ

= −2mω�√
π

∫ ∞
−∞

(
ξ4 − 3ξ2

)
e−ξ2

dξ = −2mω�√
π

(
3
4
√
π − 3

√
π

2

)
=

3m�ω

2
.

(b) n = 0:

σx =
√
〈x2〉 − 〈x〉2 =

√
�

2mω
; σp =

√
〈p2〉 − 〈p〉2 =

√
m�ω

2
;

σxσp =

√
�

2mω

√
mω�

2
=

�

2
. (Right at the uncertainty limit.)�

n = 1:

σx =

√
3�

2mω
; σp =

√
3m�ω

2
; σxσp = 3

�

2
>

�

2
. �

(c)

〈T 〉 =
1

2m
〈p2〉 =


1
4�ω (n = 0)

3
4�ω (n = 1)

 ; 〈V 〉 =
1
2
mω2〈x2〉 =


1
4�ω (n = 0)

3
4�ω (n = 1)

 .

〈T 〉+ 〈V 〉 = 〈H〉 =


1
2�ω (n = 0) = E0

3
2�ω (n = 1) = E1

 , as expected.

Problem 2.12

From Eq. 2.69,

x =

√
�

2mω
(a+ + a−), p = i

√
�mω

2
(a+ − a−),

so

〈x〉 =

√
�

2mω

∫
ψ∗n(a+ + a−)ψn dx.
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22 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

But (Eq. 2.66)
a+ψn =

√
n + 1ψn+1, a−ψn =

√
nψn−1.

So

〈x〉 =

√
�

2mω

[√
n + 1

∫
ψ∗nψn+1 dx +

√
n

∫
ψ∗nψn−1 dx

]
= 0 (by orthogonality).

〈p〉 = m
d〈x〉
dt

= 0. x2 =
�

2mω
(a+ + a−)2 =

�

2mω

(
a2
+ + a+a− + a−a+ + a2

−
)
.

〈x2〉 =
�

2mω

∫
ψ∗n

(
a2
+ + a+a− + a−a+ + a2

−
)
ψn. But


a2
+ψn = a+

(√
n + 1ψn+1

)
=
√
n + 1

√
n + 2ψn+2 =

√
(n + 1)(n + 2)ψn+2.

a+a−ψn = a+

(√
nψn−1

)
=
√
n
√
nψn = nψn.

a−a+ψn = a−
(√

n + 1ψn+1

)
=

√
n + 1)

√
n + 1ψn = (n + 1)ψn.

a2
−ψn = a−

(√
nψn−1

)
=
√
n
√
n− 1ψn−2 =

√
(n− 1)nψn−2.

So

〈x2〉 =
�

2mω

[
0 + n

∫
|ψn|2dx + (n + 1)

∫
|ψn|2 dx + 0

]
=

�

2mω
(2n + 1) =

(
n +

1
2

)
�

mω
.

p2 = −�mω

2
(a+ − a−)2 = −�mω

2
(
a2
+ − a+a− − a−a+ + a2

−
)
⇒

〈p2〉 = −�mω

2
[0− n− (n + 1) + 0] =

�mω

2
(2n + 1) =

(
n +

1
2

)
m�ω.

〈T 〉 = 〈p2/2m〉 =
1
2

(
n +

1
2

)
�ω .

σx =
√
〈x2〉 − 〈x〉2 =

√
n +

1
2

√
�

mω
; σp =

√
〈p2〉 − 〈p〉2 =

√
n +

1
2

√
m�ω; σxσp =

(
n +

1
2

)
� ≥ �

2
. �

Problem 2.13

(a)

1 =
∫
|Ψ(x, 0)|2dx = |A|2

∫ (
9|ψ0|2 + 12ψ∗0ψ1 + 12ψ∗1ψ0 + 16|ψ1|2

)
dx

= |A|2(9 + 0 + 0 + 16) = 25|A|2 ⇒ A = 1/5.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 23

(b)

Ψ(x, t) =
1
5

[
3ψ0(x)e−iE0t/� + 4ψ1(x)e−iE1t/�

]
=

1
5

[
3ψ0(x)e−iωt/2 + 4ψ1(x)e−3iωt/2

]
.

(Here ψ0 and ψ1 are given by Eqs. 2.59 and 2.62; E1 and E2 by Eq. 2.61.)

|Ψ(x, t)|2 =
1
25

[
9ψ2

0 + 12ψ0ψ1e
iωt/2e−3iωt/2 + 12ψ0ψ1e

−iωt/2e3iωt/2 + 16ψ2
1

]
=

1
25

[
9ψ2

0 + 16ψ2
1 + 24ψ0ψ1 cos(ωt)

]
.

(c)

〈x〉 =
1
25

[
9

∫
xψ2

0 dx + 16
∫

xψ2
1 dx + 24 cos(ωt)

∫
xψ0ψ1 dx

]
.

But
∫
xψ2

0 dx =
∫
xψ2

1 dx = 0 (see Problem 2.11 or 2.12), while

∫
xψ0ψ1 dx =

√
mω

π�

√
2mω

�

∫
xe−

mω
2�

x2
xe−

mω
2�

x2
dx =

√
2
π

(mω

�

) ∫ ∞
−∞

x2e−
mω

�
x2

dx

=

√
2
π

(mω

�

)
2
√
π2

(
1
2

√
�

mω

)3

=

√
�

2mω
.

So

〈x〉 =
24
25

√
�

2mω
cos(ωt); 〈p〉 = m

d

dt
〈x〉 = −24

25

√
mω�

2
sin(ωt).

(With ψ2 in place of ψ1 the frequency would be (E2 − E0)/� = [(5/2)�ω − (1/2)�ω]/� = 2ω.)

Ehrenfest’s theorem says d〈p〉/dt = −〈∂V/∂x〉. Here

d〈p〉
dt

= −24
25

√
mω�

2
ω cos(ωt), V =

1
2
mω2x2 ⇒ ∂V

∂x
= mω2x,

so

−
〈∂V
∂x

〉
= −mω2〈x〉 = −mω2 24

25

√
�

2mω
cos(ωt) = −24

25

√
�mω

2
ω cos(ωt),

so Ehrenfest’s theorem holds.

(d) You could get E0 = 1
2�ω, with probability |c0|2 = 9/25, or E1 = 3

2�ω, with probability |c1|2 = 16/25.

Problem 2.14

The new allowed energies are E′n = (n + 1
2 )�ω′ = 2(n + 1

2 )�ω = �ω, 3�ω, 5�ω, . . . . So the probability of
getting 1

2�ω is zero. The probability of getting �ω (the new ground state energy) is P0 = |c0|2, where c0 =∫
Ψ(x, 0)ψ′0 dx, with

Ψ(x, 0) = ψ0(x) =
(mω

π�

)1/4

e−
mω
2�

x2
, ψ0(x)′ =

(
m2ω
π�

)1/4

e−
m2ω
2�

x2
.
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24 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

So

c0 = 21/4

√
mω

π�

∫ ∞
−∞

e−
3mω
2�

x2
dx = 21/4

√
mω

π�
2
√
π

(
1
2

√
2�

3mω

)
= 21/4

√
2
3
.

Therefore

P0 =
2
3

√
2 = 0.9428.

Problem 2.15

ψ0 =
(mω

π�

)1/4

e−ξ2/2, so P = 2
√

mω

π�

∫ ∞
x0

e−ξ2
dx = 2

√
mω

π�

√
�

mω

∫ ∞
ξ0

e−ξ2
dξ.

Classically allowed region extends out to: 1
2mω2x2

0 = E0 = 1
2�ω, or x0 =

√
�

mω , so ξ0 = 1.

P =
2√
π

∫ ∞
1

e−ξ2
dξ = 2(1− F (

√
2)) (in notation of CRC Table) = 0.157.

Problem 2.16

n = 5: j = 1 ⇒ a3 = −2(5−1)
(1+1)(1+2)a1 = − 4

3a1; j = 3 ⇒ a5 = −2(5−3)
(3+1)(3+2)a3 = − 1

5a3 = 4
15a1; j = 5 ⇒ a7 = 0. So

H5(ξ) = a1ξ − 4
3a1ξ

3 + 4
15a1ξ

5 = a1
15 (15ξ − 20ξ3 + 4ξ5). By convention the coefficient of ξ5 is 25, so a1 = 15 · 8,

and H5(ξ) = 120ξ − 160ξ3 + 32ξ5 (which agrees with Table 2.1).

n = 6: j = 0 ⇒ a2 = −2(6−0)
(0+1)(0+2)a0 = −6a0; j = 2 ⇒ a4 = −2(6−2)

(2+1)(2+2)a2 = − 2
3a2 = 4a0; j = 4 ⇒ a6 =

−2(6−4)
(4+1)(4+2)a4 = − 2

15a4 = − 8
15a0; j = 6⇒ a8 = 0. So H6(ξ) = a0 − 6a0ξ

2 + 4a0ξ
4 − 8

15ξ
6a0. The coefficient of ξ6

is 26, so 26 = − 8
15a0 ⇒ a0 = −15 · 8 = −120. H6(ξ) = −120 + 720ξ2 − 480ξ4 + 64ξ6.

Problem 2.17

(a)

d

dξ
(e−ξ2

) = −2ξe−ξ2
;

(
d

dξ

)2

e−ξ2
=

d

dξ
(−2ξe−ξ2

) = (−2 + 4ξ2)e−ξ2
;

(
d

dξ

)3

e−ξ2
=

d

dξ

[
(−2 + 4ξ2)e−ξ2

]
=

[
8ξ + (−2 + 4ξ2)(−2ξ)

]
e−ξ2

= (12ξ − 8ξ3)e−ξ2
;

(
d

dξ

)4

e−ξ2
=

d

dξ

[
(12ξ − 8ξ3)e−ξ2

]
=

[
12− 24ξ2 + (12ξ − 8ξ3)(−2ξ)

]
e−ξ2

= (12− 48ξ2 + 16ξ4)e−ξ2
.

H3(ξ) = −eξ2
(

d

dξ

)3

e−ξ2
= −12ξ + 8ξ3; H4(ξ) = eξ2

(
d

dξ

)4

e−ξ2
= 12− 48ξ2 + 16ξ4.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 25

(b)

H5 = 2ξH4 − 8H3 = 2ξ(12− 48ξ2 + 16ξ4)− 8(−12ξ + 8ξ3) = 120ξ − 160ξ3 + 32ξ5.

H6 = 2ξH5 − 10H4 = 2ξ(120ξ − 160ξ3 + 32ξ5)− 10(12− 48ξ2 + 16ξ4) = −120 + 720ξ2 − 480ξ4 + 64ξ6.

(c)

dH5

dξ
= 120− 480ξ2 + 160ξ4 = 10(12− 48ξ2 + 16ξ4) = (2)(5)H4. �

dH6

dξ
= 1440ξ − 1920ξ3 + 384ξ5 = 12(120ξ − 160ξ3 + 32ξ5) = (2)(6)H5. �

(d)

d

dz
(e−z2+2zξ) = (−2z + ξ)e−z2+2zξ; setting z = 0, H0(ξ) = 2ξ.

(
d

dz

)2

(e−z2+2zξ) =
d

dz

[
(−2z + 2ξ)e−z2+2zξ

]
=

[
− 2 + (−2z + 2ξ)2

]
e−z2+2zξ; setting z = 0, H1(ξ) = −2 + 4ξ2.

(
d

dz

)3

(e−z2+2zξ) =
d

dz

{[
− 2 + (−2z + 2ξ)2

]
e−z2+2zξ

}
=

{
2(−2z + 2ξ)(−2) +

[
− 2 + (−2z + 2ξ)2

]
(−2z + 2ξ)

}
e−z2+2zξ;

setting z = 0, H2(ξ) = −8ξ + (−2 + 4ξ2)(2ξ) = −12ξ + 8ξ3.

Problem 2.18

Aeikx + Be−ikx = A(cos kx + i sin kx) + B(cos kx− i sin kx) = (A + B) cos kx + i(A−B) sin kx

= C cos kx + D sin kx, with C = A + B; D = i(A−B).

C cos kx + D sin kx = C

(
eikx + e−ikx

2

)
+ D

(
eikx − e−ikx

2i

)
=

1
2
(C − iD)eikx +

1
2
(C + iD)e−ikx

= Aeikx + Be−ikx, with A =
1
2
(C − iD); B =

1
2
(C + iD).
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26 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Problem 2.19

Equation 2.94 says Ψ = Aei(kx− �k2
2m t), so

J =
i�

2m

(
Ψ

∂Ψ∗

∂x
−Ψ∗

∂Ψ
∂x

)
=

i�

2m
|A|2

[
ei(kx− �k2

2m t)(−ik)e−i(kx− �k2
2m t) − e−i(kx− �k2

2m t)(ik)ei(kx− �k2
2m t)

]
=

i�

2m
|A|2(−2ik) =

�k

m
|A|2.

It flows in the positive (x) direction (as you would expect).

Problem 2.20

(a)

f(x) = b0 +
∞∑

n=1

an

2i

(
einπx/a − e−inπx/a

)
+
∞∑

n=1

bn

2

(
einπx/a + e−inπx/a

)
= b0 +

∞∑
n=1

(
an

2i
+

bn

2

)
einπx/a +

∞∑
n=1

(
−an

2i
+

bn

2

)
e−inπx/a.

Let

c0 ≡ b0; cn = 1
2 (−ian + bn) , for n = 1, 2, 3, . . . ; cn ≡ 1

2 (ia−n + b−n) , for n = −1,−2,−3, . . . .

Then f(x) =
∞∑

n=−∞
cne

inπx/a. QED

(b) ∫ a

−a

f(x)e−imπx/adx =
∞∑

n=−∞
cn

∫ a

−a

ei(n−m)πx/adx. But for n �= m,

∫ a

−a

ei(n−m)πx/adx =
ei(n−m)πx/a

i(n−m)π/a

∣∣∣∣a
−a

=
ei(n−m)π − e−i(n−m)π

i(n−m)π/a
=

(−1)n−m − (−1)n−m

i(n−m)π/a
= 0,

whereas for n = m,∫ a

−a

ei(n−m)πx/adx =
∫ a

−a

dx = 2a.

So all terms except n = m are zero, and∫ a

−a

f(x)e−imπx/a = 2acm, so cn =
1
2a

∫ a

−a

f(x)e−inπx/adx. QED

(c)

f(x) =
∞∑

n=−∞

√
π

2
1
a
F (k)eikx =

1√
2π

∑
F (k)eikx∆k,
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 27

where ∆k ≡ π

a
is the increment in k from n to (n + 1).

F (k) =

√
2
π
a

1
2a

∫ a

−a

f(x)e−ikxdx =
1√
2π

∫ a

−a

f(x)e−ikxdx.

(d) As a→∞, k becomes a continuous variable,

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikxdk; F (k) =
1√
2π

∫ ∞
−∞

f(x)eikxdx.

Problem 2.21

(a)

1 =
∫ ∞
−∞

|Ψ(x, 0)|2dx = 2|A|2
∫ ∞

0

e−2axdx = 2|A|2 e
−2ax

−2a

∣∣∣∣∞
0

=
|A|2
a
⇒ A =

√
a.

(b)

φ(k) =
A√
2π

∫ ∞
−∞

e−a|x|e−ikx dx =
A√
2π

∫ ∞
−∞

e−a|x|(cos kx− i sin kx)dx.

The cosine integrand is even, and the sine is odd, so the latter vanishes and

φ(k) = 2
A√
2π

∫ ∞
0

e−ax cos kx dx =
A√
2π

∫ ∞
0

e−ax
(
eikx + e−ikx

)
dx

=
A√
2π

∫ ∞
0

(
e(ik−a)x + e−(ik+a)x

)
dx =

A√
2π

[
e(ik−a)x

ik − a
+

e−(ik+a)x

−(ik + a)

]∣∣∣∣∞
0

=
A√
2π

( −1
ik − a

+
1

ik + a

)
=

A√
2π
−ik − a + ik − a

−k2 − a2
=

√
a

2π
2a

k2 + a2
.

(c)

Ψ(x, t) =
1√
2π

2

√
a3

2π

∫ ∞
−∞

1
k2 + a2

ei(kx− �k2
2m t)dk =

a3/2

π

∫ ∞
−∞

1
k2 + a2

ei(kx− �k2
2m t)dk.

(d) For large a, Ψ(x, 0) is a sharp narrow spike whereas φ(k) ∼=
√

2/πa is broad and flat; position is well-
defined but momentum is ill-defined. For small a, Ψ(x, 0) is a broad and flat whereas φ(k) ∼= (

√
2a3/π)/k2

is a sharp narrow spike; position is ill-defined but momentum is well-defined.
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Problem 2.22

(a)

1 = |A|2
∫ ∞
−∞

e−2ax2
dx = |A|2

√
π

2a
; A =

(
2a
π

)1/4

.

(b) ∫ ∞
−∞

e−(ax2+bx)dx =
∫ ∞
−∞

e−y2+(b2/4a) 1√
a
dy =

1√
a
eb2/4a

∫ ∞
−∞

e−y2
dy =

√
π

a
eb2/4a.

φ(k) =
1√
2π

A

∫ ∞
−∞

e−ax2
e−ikxdx =

1√
2π

(
2a
π

)1/4 √
π

a
e−k2/4a =

1
(2πa)1/4

e−k2/4a.

Ψ(x, t) =
1√
2π

1
(2πa)1/4

∫ ∞
−∞

e−k2/4aei(kx−�k2t/2m)︸ ︷︷ ︸
e−[( 1

4a+i�t/2m)k2−ixk]

dk

=
1√

2π(2πa)1/4

√
π√

1
4a + i�t/2m

e−x2/4( 1
4a+i�t/2m) =

(
2a
π

)1/4
e−ax2/(1+2i�at/m)√

1 + 2i�at/m
.

(c)

Let θ ≡ 2�at/m. Then |Ψ|2 =

√
2a
π

e−ax2/(1+iθ)e−ax2/(1−iθ)√
(1 + iθ)(1− iθ)

. The exponent is

− ax2

(1 + iθ)
− ax2

(1− iθ)
= −ax2 (1− iθ + 1 + iθ)

(1 + iθ)(1− iθ)
=
−2ax2

1 + θ2
; |Ψ|2 =

√
2a
π

e−2ax2/(1+θ2)

√
1 + θ2

.

Or, with w ≡
√

a

1 + θ2
, |Ψ|2 =

√
2
π
we−2w2x2

. As t increases, the graph of |Ψ|2 flattens out and broadens.

|Ψ|2 |Ψ|2

x x
t = 0 t > 0

(d)

〈x〉 =
∫ ∞
−∞

x|Ψ|2dx = 0 (odd integrand); 〈p〉 = m
d〈x〉
dt

= 0.

〈x2〉 =

√
2
π
w

∫ ∞
−∞

x2e−2w2x2
dx =

√
2
π
w

1
4w2

√
π

2w2
=

1
4w2

. 〈p2〉 = −�
2

∫ ∞
−∞

Ψ∗
d2Ψ
dx2

dx.
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Write Ψ = Be−bx2
, where B ≡

(
2a
π

)1/4 1√
1 + iθ

and b ≡ a

1 + iθ
.

d2Ψ
dx2

= B
d

dx

(
−2bxe−bx2

)
= −2bB(1− 2bx2)e−bx2

.

Ψ∗
d2Ψ
dx2

= −2b|B|2(1− 2bx2)e−(b+b∗)x2
; b + b∗ =

a

1 + iθ
+

a

1− iθ
=

2a
1 + θ2

= 2w2.

|B|2 =

√
2a
π

1√
1 + θ2

=

√
2
π
w. So Ψ∗

d2Ψ
dx2

= −2b

√
2
π
w(1− 2bx2)e−2w2x2

.

〈p2〉 = 2b�2

√
2
π
w

∫ ∞
−∞

(1− 2bx2)e−2w2x2
dx

= 2b�2

√
2
π
w

(√
π

2w2
− 2b

1
4w2

√
π

2w2

)
= 2b�2

(
1− b

2w2

)
.

But 1− b

2w2
= 1−

(
a

1 + iθ

) (
1 + θ2

2a

)
= 1− (1− iθ)

2
=

1 + iθ

2
=

a

2b
, so

〈p2〉 = 2b�2 a

2b
= �

2a. σx =
1

2w
; σp = �

√
a.

(e)

σxσp =
1

2w
�
√
a =

�

2

√
1 + θ2 =

�

2

√
1 + (2�at/m)2 ≥ �

2
. �

Closest at t = 0, at which time it is right at the uncertainty limit.

Problem 2.23

(a)

(−2)3 − 3(−2)2 + 2(−2)− 1 = −8− 12− 4− 1 = −25.

(b)

cos(3π) + 2 = −1 + 2 = 1.

(c)

0 (x = 2 is outside the domain of integration).
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Problem 2.24

(a) Let y ≡ cx, so dx =
1
c
dy.

{
If c > 0, y : −∞→∞.
If c < 0, y :∞→ −∞.

}
∫ ∞
−∞

f(x)δ(cx)dx =


1
c

∫∞
−∞ f(y/c)δ(y)dy = 1

cf(0) (c > 0); or

1
c

∫ −∞
∞ f(y/c)δ(y)dy = − 1

c

∫∞
−∞ f(y/c)δ(y)dy = − 1

cf(0) (c < 0).

In either case,
∫ ∞
−∞

f(x)δ(cx)dx =
1
|c|f(0) =

∫ ∞
−∞

f(x)
1
|c|δ(x)dx. So δ(cx) =

1
|c|δ(x). �

(b) ∫ ∞
−∞

f(x)
dθ

dx
dx = fθ

∣∣∣∣∞
−∞

−
∫ ∞
−∞

df

dx
θdx (integration by parts)

= f(∞)−
∫ ∞

0

df

dx
dx = f(∞)− f(∞) + f(0) = f(0) =

∫ ∞
−∞

f(x)δ(x)dx.

So dθ/dx = δ(x). � [Makes sense: The θ function is constant (so derivative is zero) except at x = 0, where
the derivative is infinite.]

Problem 2.25

ψ(x) =
√
mα

�
e−mα|x|/�

2
=
√
mα

�

{
e−mαx/�

2
, (x ≥ 0),

emαx/�
2
, (x ≤ 0).

〈x〉 = 0 (odd integrand).

〈x2〉 =
∫ ∞
−∞

x2|ψ|2dx = 2
mα

�2

∫ ∞
0

x2e−2mαx/�
2
dx =

2mα

�2
2

(
�

2

2mα

)3

=
�

4

2m2α2
; σx =

�
2

√
2mα

.

dψ

dx
=
√
mα

�


−mα

�2 e−mαx/�
2
, (x ≥ 0)

mα
�2 emαx/�

2
, (x ≤ 0)

 =
(√

mα

�

)3 [
−θ(x)e−mαx/�

2
+ θ(−x)emαx/�

2
]
.

d2ψ

dx2
=

(√
mα

�

)3 [
−δ(x)e−mαx/�

2
+

mα

�2
θ(x)e−mαx/�

2 − δ(−x)emαx/�
2
+

mα

�2
θ(−x)emαx/�

2
]

=
(√

mα

�

)3 [
−2δ(x) +

mα

�2
e−mα|x|/�

2
]
.

In the last step I used the fact that δ(−x) = δ(x) (Eq. 2.142), f(x)δ(x) = f(0)δ(x) (Eq. 2.112), and θ(−x) +
θ(x) = 1 (Eq. 2.143). Since dψ/dx is an odd function, 〈p〉 = 0.

〈p2〉 = −�
2

∫ ∞
−∞

ψ
d2ψ

dx2
dx = −�

2

√
mα

�

(√
mα

�

)3 ∫ ∞
−∞

e−mα|x|/�
2
[
−2δ(x) +

mα

�2
e−mα|x|/�

2
]
dx

=
(mα

�

)2
[
2− 2

mα

�2

∫ ∞
0

e−2mαx/�
2
dx

]
= 2

(mα

�

)2
[
1− mα

�2

�
2

2mα

]
=

(mα

�

)2

.

Evidently

σp =
mα

�
, so σxσp =

�
2

√
2mα

mα

�
=
√

2
�

2
>

�

2
. �
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