
Chapter 1

Exercise solutions

1. The radii of the Earth, Moon, and Sun are 6,371 km, 1,738 km, and 6.951 ×
105 km, respectively. From Figures 1.1, 1.5, and 1.6, make a rough estimate

of how long it takes a P -wave to traverse the diameter of each body.

Crude estimates based on mean velocity follow:

Earth: 2 × 6371 km / 11 km/s = 1160 s = 19.3 min

Moon: 2 × 1738 km / 7.6 km/s = 460 s = 7.7 min

Sun: 2 × 7 × 105 km / 250 km/s = 5600 s = 93 min

2. The P to S velocity ratio for most common rocks is about 1.7 (∼
√

3). What

solid part of the Earth has a very different P/S velocity ratio? Hint: Look at

Figure 1.1.

The inner core, where the P/S velocity ratio is about 3.

3. Assume that the S velocity perturbations plotted at 150 km depth in Figure

1.7 extend throughout the uppermost 300 km of the mantle. Estimate how

many seconds earlier a vertically upgoing S-wave will arrive at a seismic station

in the middle of Canada, compared to a station in the eastern Pacific. Ignore

any topographic or crustal thickness differences between the sites; consider

only the integrated travel time difference through the upper mantle.

S velocity is about 4.5 km/s, so wave takes 300/4.5 = 67 s to go 300 km.

Canada is about 1.4% fast; eastern Pacific is about 1.8% slow. The difference

is 3.2% or 0.032.

Thus, S-wave will arrive earlier at central Canadian station by about (0.032)67

= 2.1 s . This may be an underestimate because the plot is saturated so the

perturbations could exceed these values.

4. Assuming that the P velocity in the ocean is 1.5 km/s, estimate the minimum

and maximum water depths shown in Figure 1.8. If the crustal P velocity is 5

km/s, what is the depth to the top of the magma chamber from the sea floor?
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Minimum water depth = 3.5 × 1.5 / 2 = 2.62 km

Maximum water depth = 3.93 × 1.5 / 2 = 2.95 km

Top of magma chamber = (3.95 - 3.5) × 5 / 2 = 1.1 km below sea floor

5. Earthquake moment is defined as M0 = µDA, where µ is the shear modulus,

D is the average displacement on the fault, and A is the fault area that slipped.

The moment magnitude, MW , is defined as MW = 2
3 [log10M0 − 9.1], where

the moment M0 is in N m.

(a) The moment of the 2004 Sumatra-Andaman earthquake has been esti-

mated to be about 1.0 × 1023 N m. What moment magnitude does this

correspond to? Assuming that the fault is horizontal, crudely estimate

the slip area from the image shown in Figure 1.9. Assuming that the

shear modulus µ = 3.0× 1010 N/m2, then compute the average displace-

ment on the fault.

From the equation given, we have

MW = 2
3

[
log10(1023)− 9.1

]
= 2

3(23− 9.1) = 9.27

The moment magnitude is 9.27 .

The slip area is about 200 km wide and 1200 km long, thus A = 240,000

km2 = 2.4× 1011 m2, and we have

D =
M0

µA
=

1023

3.0× 1010 × 2.4× 1011
=

100

7.2
= 14 m

The average displacement is about 14 m .

(b) A Hollywood director wants to make a movie about a devastating magni-

tude 10 earthquake in California with 40 m of slip (displacement) along

the San Andreas Fault. Given that the crust is about 35 km thick in

California, how scientifically plausible is this scenario? Hint: you may

assume that the shear modulus µ = 3× 1010 N/m2

We also need to know the length of the San Andreas Fault (SAF) that

ruptures, which is not given, so some research is needed. The SAF is

about 1200 km long, which is also roughly the N-S extent of California.

So 1200 km is a reasonable upper bound on the maximum SAF rupture

length. If we assume that the rupture extends throughout the crust (an

assumption implied by the question wording, but which is probably an

overestimate for typical SAF earthquakes), then the fault area is A =

1.2× 106 × 3.5× 104 m2 = 4.2× 1010 m. We then have

M0 = µDA = 3× 1010 · 40 · 4.2× 1010 ≈ 5× 1022 N m

The moment magnitude is

MW = 2
3

[
log10(5× 1022)− 9.1

]
= 2

3(22.7− 9.1) = 9.07
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The moment magnitude is about 9.1 , which is much less than 10. Thus

the director’s idea for a magnitude 10 earthquake is not plausible for

the SAF in California.

6. The 2004 Sumatra earthquake lasted about 10 minutes and radiated about

2 ×1017 joules of seismic energy. Compute the corresponding power output

in terrawatts (TW). Then do some research on the web and compare this

power to: (a) average rate of electricity consumption in the United States, (b)

average dissipation rate of tidal energy in the world’s oceans, and (c) total

heat flow out of the Earth. Note that the total energy release (including heat

generated on the fault, etc.) of the Sumatra earthquake may be significantly

greater than the seismically radiated energy. This is discussed in Chapter 9.

A watt is one joule per second. 10 minutes is 600 s. Thus, the radiated power

during the earthquake was 2×1017/600 = 3.33×1014 watts. A terrawatt (TW)

is 1012 watts, so the radiated power was about 330 TW . For comparison,

(a) 2017 US power consumption was about 4000 TW hours (source Wikipedia).

Thus the average power usage is 4000/(365 · 24) = 0.46 TW .

(b) Earth’s tidal energy dissipation is about 3.7 TW , most of which occurs

in the oceans (see p. 106–108 of Stacey and Davis, Physics of the Earth, 2008).

The Wikipedia article on tidal acceleration cites 3.3 TW.

(c) Earth’s integrated heat flux is about 44 TW (p. 337, Stacey and Davis,

Physics of the Earth, 2008). The Wikipedia article on Earth’s energy budget

cites 47 TW from Davies and Davies, Earth’s surface heat flux, Solid Earth,

1(1), 524, 2010.



Chapter 2

Exercise solutions

1. Assume that the horizontal components of the 2-D stress tensor are

τττ =

[
τxx τxy
τyx τyy

]
=

[
−30 −20
−20 −40

]
MPa

(a) Compute the normal and shear stresses on a fault that strikes 10◦ east

of north.

cos 10◦ = 0.9848, sin 10◦ = 0.1736, thus fault parallel vector f̂ = (0.1736,

0.9848), fault normal vector n̂ = (0.9848, -0.1736). The traction on the

fault plane is given by

t(n̂) = τττ n̂ =

[
−30 −20
−20 −40

] [
0.9848
−0.1736

]
=

[
−26.07
−12.75

]
MPa.

and

tN = t · n̂ = (−26.07,−12.75) · (0.9848,−0.1736) = -23.46 MPa

tS = t · f̂ = (−26.07,−12.75) · (0.1736, 0.9848) = -17.08 MPa

The fault normal compression is 23.46 MPa. The shear stress is 17.08

MPa.

(b) Compute the principal stresses, and give the azimuths (in degrees east of

north) of the maximum and minimum compressional stress axes.

λ1 = −55.61 MPa, 38◦ E of N

λ2 = −14.38 MPa, 128◦ E of N

(solution computed using Matlab)

2. The principal stress axes for a 2-D geometry are oriented at N45◦E and

N135◦E, corresponding to principal stresses of -15 and -10 MPa. What are the

4 components of the 2-D stress tensor in a (x = east, y = north) coordinate

system?

The eigenvector matrix is

N =

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
1



2 CHAPTER 2. EXERCISE SOLUTIONS

Note that N = NT = N−1. The principal (diagonalized) stress tensor is

τττP =

[
−15 0

0 −10

]
which we can rotate to the stress tensor in E-N coordinates as

τττ = NτττPN
T =

[
−12.5 −2.5
−2.5 −12.5

]
MPa

3. Figure 2.5 shows a vertical-component seismogram of the 1989 Loma Prieta

earthquake recorded in Finland.

(a) Estimate the dominant period, T , of the surface wave from its first ten

cycles. Then compute the frequency f = 1/T .

There are about 8 peaks in 200 s so the period, T , is about 25 s . The

frequency, f , is 1/25 = 0.04 Hz .

(b) Make an estimate of the maximum surface-wave strain recorded at this

site. Hints: 1 micron = 10−6 m, assume the Rayleigh surface wave phase

velocity at the dominant period is 3.9 km/s, remember that strain is ∂uz/∂x,

Table 3.1 may be helpful.

The amplitude A = 300 microns = 3 × 10−4 m. The wavelength Λ = cT =

(3.9 km/s)(25 s) = 97.5 km = about 100 km = 1 ×105 m. The wavenumber

k = 2π/Λ = 0.0628/km = 6.28× 10−5/m. We can approximate displacement

as a harmonic wave as ux = A sin(kx). Strain = ∂ux/∂x = kA cos(kx) so the

maximum strain occurs when cos = 1 and is Ak = (3× 10−4)(6.28× 10−5) =

1.9× 10−8 .

Note that this value is halved if we express this in terms of the strain tensor,

i.e.,

emax ≈
[

0 10−8

10−8 0

]

4. Using Equations (2.4), (2.23), and (2.30), show that the principal stress axes

always coincide with the principal strain axes for isotropic media. In other

words, show that if x is an eigenvector of e, then it is also an eigenvector of τττ .

We can show that the principal strain axes coincide if we prove that if x is an

eigenvector of the strain tensor e then it also must be an eigenvector of the

stress tensor τ , that is if

eijxj = αxi

then

τijxj = α′xi
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Using the isotropic stress/strain relation τij = λekkδij + 2µeij (equation 2.29),

we have

τijxj = λekkδijxj + 2µeijxj
= λekkxi + 2µαxi
= (λekk + 2µα)xi

= α′xi (2.1)

where α′ = λekk + 2µα. This completes the proof.

5. From Equations (2.34) and (2.35) derive expressions for the Lamé parameters

in terms of the seismic velocities and density.

µ = ρβ2

λ = ρ(α2 − 2β2)

6. Seismic observations of S velocity can be directly related to the shear modulus

µ. However, P velocity is a function of both the shear and bulk moduli. For

this reason, sometimes seismologists will compute the bulk sound speed, defined

as:

Vc =

√
κ

ρ
(2.2)

which isolates the sensitivity to the bulk modulus κ.

(a) Derive an equation for Vc in terms of the P velocity, α, and the S velocity,

β.

We have

Vc =

√
κ

ρ

We need to solve for κ in terms of α and β. We have from the P and S velocity

definitions:

λ+ 2µ = ρα2

µ = ρβ2

λ = ρ(α2 − 2β2)

The bulk modulus κ = λ+ 2/3µ and thus

κ = ρ(α2 − 2ρβ2 + 2/3ρβ2)

= ρ(α2 − 4/3β2)

and thus

Vc =

√
α2 − 4

3
β2
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(b) For the specific case of a Poisson solid, express Vc as a fraction of the P

velocity.

For a Poisson solid, α =
√

3β, so β2 = 1
3α

2. Substituting into our result from

(a), we have

Vc =

√
α2 − 4

9
α2 = α

√
9

9
− 4

9
=

√
5

3
α = 0.745α

7. What is the P/S velocity ratio for a rock with a Poisson’s ratio of 0.30?

Starting with equation (2.36), we have

σ =
(α/β)2 − 2

2(α/β)2 − 2
2σ(α/β)2 − 2σ = (α/β)2 − 2

2− 2σ = (α/β)2 − 2σ(α/β)2 = (α/β)2[1− 2σ]

α

β
=

√
2− 2σ

1− 2σ

α

β
=

√
2− 0.6

1− 0.6
=

√
1.4

0.4
=
√

3.5 = 1.87 for σ = 0.30

8. A sample of granite in the laboratory is observed to have a P velocity of 5.5

km/s and a density of 2.6 Mg/m3. Assuming it is a Poisson solid, obtain values

for the Lamé parameters, Young’s modulus, and the bulk modulus. Express

your answers in pascals.

For a Poisson solid, β = α/
√

3 = 3.1754 km/s for α = 5.5 km/s. From Exercise

2.5, we have

λ = ρ(α2 − 2β2) = 2.6(5.52 − 2(3.1754)2)

λ = 26.22
Mg

m3

km2

s2
106m2

km2

103kg

Mg

λ = 26.22× 109
kg

m s2
λ = 26.22 GPa

and

µ = ρβ2 = 2.6(3.1754)2

µ = 26.22 GPa

Note that λ = µ as should be the case for a Poisson solid. The Young’s

modulus is given by

E =
(3λ+ 2µ)µ

λ+ µ
= 2.5µ since λ = µ
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E = 65.55 GPa

The bulk modulus is given by

κ = λ+
2

3
µ =

5

3
µ

κ = 43.7 GPa

Summarizing, we have: λ = µ = 26.22 GPA, E = 65.55 GPa, κ = 43.7 GPa .

9. Using values from the PREM model (Appendix 1), compute values for the

bulk modulus on both sides of (a) the core–mantle boundary (CMB) and (b)

the inner-core boundary (ICB). Express your answers in pascals.

The bulk modulus is given by

κ = λ+
2

3
µ

From Exercise 2.5 we have µ = ρβ2 and λ = ρ(α2 − 2β2) and thus

κ = ρ(α2 − 4

3
β2)

From the PREM model in the Appendix, we can thus construct a table with

the κ values:

Vp Vs den kappa

CMB top 13.72 7.26 5.57 657 Gpa

CMB bot 8.06 0 9.90 643 GPa

ICB top 10.36 0 12.17 1306 GPa

ICB bot 11.03 3.5 12.76 1344 GPa

10. Figure 2.6 shows surface displacement rates as a function of distance from the

San Andreas Fault in California.

(a) Consider this as a 2-D problem with the x-axis perpendicular to the fault

and the y-axis parallel to the fault. From these data, estimate the yearly

strain (e) and rotation (ΩΩΩ) tensors for a point on the fault. Express your

answers as 2× 2 matrices.

Each year, ∂y/∂x ≈ 43 mm / 50 km = (43× 10−3 m) / (50× 103 m) =

0.86×10−6 = 8.6× 10−7/yr . This is the only non-zero partial derivative

in the J matrix. We thus have

J =

[
0 θ
0 0

]
= e + Ω =

[
0 θ/2
θ/2 0

]
+

[
0 θ/2
−θ/2 0

]
where θ = ∂y/∂x = 8.6× 10−7 and thus

e =

[
0 4.3× 10−7

4.3× 10−7 0

]
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and

Ω =

[
0 −4.3× 10−7

4.3× 10−7 0

]

(b) Assuming the crustal shear modulus is 27 GPa, compute the yearly

change in the stress tensor. Express your answer as a 2× 2 matrix with

appropriate units.

τττ =

[
0 2.3× 104

2.3× 104 0

]
Pa

(c) If the crustal shear modulus is 27 GPa, what is the shear stress across

the fault after 200 years, assuming zero initial shear stress?

4.6× 106 Pa (4.6 MPa)

(d) If large earthquakes occur every 200 years and release all of the distributed

strain by movement along the fault, what, if anything, can be inferred

about the absolute level of shear stress?

The absolute shear stress across the fault before the earthquake must be

at least 4.6 MPa, but it could also be much bigger, depending upon how

large the stress drop is relative to the absolute stress. The involves the

frictional properties of the fault, and is discussed in Chapter 9. (Note:

this question is to get students to think or do research—the answer is not

in the chapter)

(e) What, if anything, can be learned about the fault from the observation

that most of the deformation occurs within a zone less than 50 km wide?

Vertical strike-slip faults like the San Andreas are typically modeled as

a locked zone (where the earthquakes occur) above a creeping zone at

depth. The width of the deformation zone is proportional in some sense

to the depth of the locked zone. (Note: this question is to get students

to think or do research—the answer is not in the chapter.)

11. Do some research on the observed density of the Sun. Are the high sound

velocities in the Sun (see Fig. 1.6) compared to Earth’s P velocities caused

primarily by low solar densities compared to the Earth, a higher bulk modulus

or some combination of these factors?

The average solar density is about 1.4 g/cc, compared to 4 to 5 g/cc in Earth’s

mantle. This would make solar velocities higher by about a factor of
√

3 ∼ 1.7.

But the average solar P velocity is about 50 times higher than in Earth, so the

more important difference is that the bulk modulus, κ, is much higher for the

Sun. Students can make this more complicated by trying to take into account

the velocity depth dependence, but I was just looking for a rough estimate

based on average properties.
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12. The University of California, San Diego, operates the Piñon Flat Observatory

(PFO) in the mountains northeast of San Diego (near Anza). Instruments

include high-quality strain meters for measuring crustal deformation.

(a) Assume, at 5 km depth beneath PFO, the seismic velocities are α = 6

km/s and β = 3.5 km/s and the density is ρ = 2.7 Mg/m3. Compute

values for the Lamé parameters, λ and µ, from these numbers. Express

your answer in units of pascals.

From the solution to Exercise 5, we have

λ = ρ(α2 − 2β2) = 2.7(6.02 − 2(3.5)2)

λ = 31.05
Mg

m3

km2

s2
106m2

km2

103kg

Mg

λ = 31.05× 109
kg

m s2
λ = 31.05 GPa

µ = ρβ2 = 2.7(3.5)2

µ = 33.07 GPa

Summarizing, λ = 31.05 GPa, µ = 33.07 GPa .

(b) Following the 1992 Landers earthquake (MS = 7.3), located in south-

ern California 80 km north of PFO (Fig. 2.7), the PFO strain meters

measured a large static change in strain compared to values before the

event. Horizontal components of the strain tensor changed by the follow-

ing amounts: e11 = −0.26× 10−6, e22 = 0.92× 10−6, e12 = −0.69× 10−6.

In this notation 1 is east, 2 is north, and extension is positive. You may

assume that this strain change occurred instantaneously at the time of

the event. Assuming these strain values are also accurate at depth, use

the result you obtained in part (a) to determine the change in stress

due to the Landers earthquake at 5 km, that is, compute the change in

τ11, τ22, and τ12. Treat this as a two-dimensional problem by assuming

there is no strain in the vertical direction and no depth dependence of

the strain.

From (2.30), we have

τττ =

[
λ tr[e] + 2µe11 2µe12

2µe21 λ tr[e] + 2µe22

]
Given the Landers strain changes of e11 = −0.26×10−6, e22 = 0.92×10−6,

e12 = −0.69× 10−6, then tr[e] = 0.66× 10−6 and

τττ =

[
3300 −45600
−45600 81300

]
Pa

or τ11 = 3.3× 103 Pa, τ22 = 8.13× 104 Pa, and τ12 = −4.56× 104 Pa

(c) Compute the orientations of the principal strain axes (horizontal) for the

response at PFO to the Landers event. Express your answers as azimuths

(degrees east of north).
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The strain tensor is [
−0.26 −0.69
−0.69 0.92

]
× 10−6

The solution to the eigenvalue problem for this matrix gives orientations

of principal strains as N65◦E and N155◦E (or N25◦W) .

(d) A steady long-term change in strain at PFO has been observed to occur in

which the changes in one year are: e11 = 0.101×10−6, e22 = −0.02×10−6,

e12 = 0.005×10−6. Note that the long-term strain change is close to sim-

ple E–W extension. Assuming that this strain rate has occurred steadily

for the last 1,000 years, from an initial state of zero stress, compute the

components of the stress tensor at 5 km depth. (Note: This is proba-

bly not a very realistic assumption!) Don’t include the large hydrostatic

component of stress at 5 km depth.

From (2.30), we have

τττ =

[
λ tr[e] + 2µe11 2µe12

2µe21 λ tr[e] + 2µe22

]

Given the 1000 year strain changes of e11 = 0.101× 10−3, e22 = −0.02×
10−3, e12 = 0.005× 10−3, then tr[e] = 0.081× 10−3 and using λ = 31.05

GPa and µ = 33.07 GPa from 2.6a we have

τττ =

[
9.20 0.33
0.33 1.19

]
MPa

(e) Farmer Bob owns a 1 km2 plot of land near PFO that he has fenced and

surveyed with great precision. How much land does Farmer Bob gain or

lose each year? How much did he gain or lose as a result of the Landers

earthquake? Express your answers in m2.

Use tr[e] as a measure of area change. Each year, tr[e] = 0.081× 10−6 so

Farmer Bob gains 0.081 m2 of land each year .

For Landers tr[e] = 0.66× 10−6 so

Farmer Bob gained 0.66 m2 of land following the Landers earthquake .

(f) (COMPUTER) Write a computer program that computes the stress across

vertical faults at azimuths between 0 and 170 degrees (east from north,

at 10 degree increments). For the stress tensors that you calculated in (b)

and (d), make a table that lists the fault azimuth and the correspond-

ing shear stress and normal stress across the fault (for Landers these

are the stress changes, not absolute stresses). At what azimuths are the

maximum shear stresses for each case?
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(g) (COMPUTER) Several studies (e.g., Stein et al., 1992, 1994; Harris and

Simpson, 1992; Harris et al., 1995; Stein, 1999; Harris, 2002) have mod-

eled the spatial distribution of events following large earthquakes by as-

suming that the likelihood of earthquake rupture along a fault is related

to the Coulomb failure function (CFF). Ignoring the effect of pore fluid

pressure, the change in CFF may be expressed as:

∆CFF = ∆|τs|+ µs∆τn,

where τs is the shear stress (traction), τn is the normal stress, and µs is

the coefficient of static friction (don’t confuse this with the shear mod-

ulus!). Note that CFF increases as the shear stress increases, and as

the compressional stress on the fault is reduced (recall in our sign con-

vention that extensional stresses are positive and compressional stresses

are negative). Assume that µs = 0.2 and modify your computer pro-

gram to compute ∆CFF for each fault orientation. Make a table of the

yearly change in ∆CFF due to the long-term strain change at each fault

azimuth.

(h) (COMPUTER) Now assume that the faults will fail when their long-

term CFF reaches some critical threshold value. The change in time to

the next earthquake may be expressed as

∆t =
CFF1000+L − CFF1000

CFFa
,

where CFFa is the annual change in CFF, CFF1000 is the thousand year

change in CFF, and CFF1000+L is the thousand year + Landers change

in CFF (note that CFF1000+L 6= CFF1000 + CFFL). Compute the effect

of the Landers earthquake in terms of advancing or retarding the time

until the next earthquake for each fault orientation. Express your answer

in years, using the sign convention of positive time for advancement of

the next earthquake and negative time for retardation.
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Results for parts f–h are given in the following table:
----Landers---- Annual (*1000)

azi tau-s tau-n tau-s tau-n CFF-L CFF-a dt L/a

0 -45643.5 3294.0 330.7 9196.2 46302.3 2170.0 -20.7 21.3

10 -56239.4 21258.7 1679.6 8841.7 60491.1 3447.9 -15.1 17.5

20 -60052.0 41764.0 2825.9 8047.3 68404.8 4435.3 -11.7 15.4

30 -56621.4 62336.7 3631.3 6908.7 69088.8 5013.0 -8.8 13.8

40 -46361.5 80495.3 3998.7 5563.4 62460.5 5111.4 -5.9 12.2

50 -30509.7 94049.8 3883.8 4173.4 49319.6 4718.5 -2.5 10.5

60 -10977.9 101365.2 3300.5 2906.6 31251.0 3881.9 2.4 8.1

70 9877.9 101559.1 2319.1 1915.8 30189.8 2702.3 11.2 11.2

80 29542.3 94608.3 1058.0 1320.3 48464.0 1322.0 36.7 36.7

90 45643.5 81351.0 -330.8 1192.0 61913.7 569.2 -51.6 108.8

100 56239.4 63386.3 -1679.6 1546.5 68916.6 1988.9 -21.9 34.7

110 60052.0 42881.0 -2825.9 2341.0 68628.2 3294.0 -15.6 20.8

120 56621.4 22308.3 -3631.3 3479.5 61083.1 4327.2 -12.1 14.1

130 46361.5 4149.6 -3998.7 4824.9 47191.4 4963.7 -9.2 9.5

140 30509.6 -9404.8 -3883.8 6214.8 28628.7 5126.8 -6.3 5.6

150 10977.9 -16720.2 -3300.5 7481.6 7633.9 4796.8 -3.0 1.6

160 -9877.9 -16914.1 -2319.1 8472.5 6495.1 4013.6 1.6 1.6

170 -29542.3 -9963.3 -1058.0 9068.0 27549.7 2871.6 9.6 9.6

(i) No increase in seismicity (small earthquake activity) has been observed
near PFO following the Landers event. Does this say anything about the
validity of the threshold CFF model?

Maybe! (another food for thought question to get students thinking, with
no simple answer)


