## **Chapter 1: Real Numbers and Variable Expressions**

### **Prep Test**

- **1.** 127.16
- **2.** 3416 + 42,561 + 537 = 46,514
- 3. 5004 487 = 4517
- 4.  $407 \times 28 = 11,396$
- 5.  $11,684 \div 23 = 508$
- **6.** 24
- 7. 4
- **8.** 3.7
- **9.**  $\frac{4}{10} = \frac{2}{5}$
- **10.** iv Division by 0 is undefined.

### **Section 1.1**

### **Concept Check**

- 1. a. left
  - b. right
- 2. a. positive
  - b. negative
- 3. absolute
- **4.** Add the absolute values. The sign is the sign of the addends.
- 5. Find the absolute value of each number.
  Subtract the smaller number from the larger one.
  The sign of the final answer is the sign of the number with the larger absolute value.
- **6.** *Minus* is the operation subtraction; *negative* indicates the opposite of a number.
- **7.** Add the opposite of the second integer to the first integer.
- 8. a. positive
  - **b.** negative

#### **Objective A Exercises**

9. 8 > -6

- **10.** -14 < 16
- **11.** -12 < 1
- **12.** 35 > 28
- **13.** 42 > 19
- **14.** -42 < 27
- **15.** 0 > -31
- **16.** -17 < 0
- **17.** 53 > -46
- **18.** -27 > -38
- **19.** -23 < -8 -18 < -8 -8 = -8 0 > -8
  - The elements -23 and -18 are less than -8.
- **20.** -33 < -10 -24 < -10 -10 = -10 0 > -10
  - The elements -33 and -24 are less than -10.
- **21.** -33 < -10 -13 < -10 21 > -10 37 > 10
  - The elements 21 and 37 are greater than -10.
- **22.** -27 < -15 -14 > -15 14 > -15 27 > -15
  - The elements -14, 14, and 27 are greater than -15.
- **23.** (i) *n* is positive.
- **24.** (iv) n can be positive, negative, or 0.

#### **Objective B Exercises**

- **25.** –4
- **26.** -8

## 2 Chapter 2 First-Degree Equations and Inequalities

- **27.** 9
- **28.** 12
- **29.** 28
- **30.** 36
- **31.** 14
- **32.** 40
- **33.** –77
- **34.** -39
- **35.** 0
- **36.** 13
- **37.** 74
- **38.** 96
- **39.** -82
- **40.** -53
- **41.** -81
- **42.** –38
- **43.** |-83| > |58|
- **44.** |22| > |-19|
- **45.** |43| < |-52|
- **46.** |-71| < |-92|
- **47.** |-68| > |-42|
- **48.** |12| < |-31|
- **49.** |-45| < |-61|
- **50.** |-28| < |43|
- **51.** p = -19; -p = 19 p = 0; -p = 0p = 28; -p = -28
- **52.** q = -34; -q = 34 q = 0; -q = 0q = 31; -q = -31
- **53.** x = -45; -x = 45 x = 0; -x = 0

**54.** 
$$y = -91; -|y| = -91$$
  
 $y = 0; -|y| = 0$   
 $y = -48; -|y| = -48$ 

**55.** True

#### **Objective C Exercises**

- **56.** Change the sign on –6 to positive and change the subtraction sign to addition.
- **57.** -3+(-8)=-11
- **58.** -6+(-9)=-15
- **59.** -8+3=-5
- **60.** -9+2=-7
- **61.** -3+(-80)=-83
- **62.** -12+(-1)=-13
- **63.** -23 + (-23) = -46
- **64.** -12 + (-12) = -24
- **65.** 16 + (-16) = 0
- **66.** -17+17=0
- **67.** 48 + (-53) = -5
- **68.** 19 + (-41) = -22
- **69.** -17 + (-3) + 29 = -20 + 29 = 9
- **70.** 13+62+(-38)=75+(-38)=37
- 71. -3+(-8)+12=-11+12=1
- **72.** -27 + (-42) + (-18) = -69 + (-18) = -87
- 73. 16-8=16+(-8)=8
- **74.** 12-3=12+(-3)=9
- **75.** 7-14=7+(-14)=-7
- **76.** 6-9=6+(-9)=-3
- 77. -7-2=-7+(-2)=-9
- **78.** -9-4=-9+(-4)=-13

**79.** 
$$7-(-2)=7+2=9$$

**80.** 
$$3-(-4)=3+4=7$$

**81.** 
$$-6-(-3)=-6+3=-3$$

**82.** 
$$-4-(-2)=-4+2=-2$$

**83.** 
$$6-(-12)=6+12=18$$

**84.** 
$$-12-16=-12+(-16)=-28$$

**85.** 
$$13 + (-22) + 4 + (-5) = -9 + 4 + (-5)$$
  
=  $-5 + (-5) = -10$ 

**86.** 
$$-14 + (-3) + 7 + (-21) = -17 + 7 + (-21)$$
  
=  $-10 + (-21) = -31$ 

**87.** 
$$-16 + (-17) + (-18) + 10 = -33 + (-18) + 10$$
  
=  $-51 + 10 = -41$ 

**88.** 
$$-25 + (-31) + 24 + 19 = -56 + 24 + 19$$
  
=  $-32 + 19 = -13$ 

**89.** 
$$26 + (-15) + (-11) + (-12) = 11 + (-11) + (-12)$$
  
=  $0 + (-12) = -12$ 

**90.** 
$$-32+40+(-8)+(-19)=8+(-8)+(-19)$$
  
=  $0+(-19)=-19$ 

**91.** 
$$-14 + (-15) + (-11) + 40 = -29 + (-11) + 40$$
  
=  $-40 + 40 = 0$ 

**92.** 
$$28 + (-19) + (-8) + (-1) = 9 + (-8) + (-1)$$
  
=  $1 + (-1) = 0$ 

**93.** 
$$-4-3-2 = -4+(-3)+(-2)$$
  
=  $-7+(-2) = -9$ 

**94.** 
$$4-5-12=4+(-5)+(-12)$$
  
=  $-1+(-12)=-13$ 

**95.** 
$$12 - (-7) - 8 = 12 + 7 + (-8)$$
  
=  $19 + (-8) = 11$ 

**96.** 
$$-12 - (-3) - (-15) = -12 + 3 + 15$$
  
=  $-9 + 15 = 6$ 

**97.** 
$$-19 - (-19) - 18 = -19 + 19 + (-18)$$
  
=  $0 + (-18) = -18$ 

**98.** 
$$-8 - (-8) - 14 = -8 + 8 + (-14)$$
  
=  $0 + (-14) = -14$ 

**99.** 
$$-17 - (-8) - (-9) = -17 + 8 + 9$$
  
=  $-9 + 9 = 0$ 

100. 
$$7-8-(-1)=7+(-8)+1$$
  
= -1+1=0

101. 
$$-30 - (-65) - 29 - 4 = -30 + 65 + (-29) + (-4)$$
  
=  $35 + (-29) + (-4)$   
=  $6 + (-4) = 2$ 

**102.** 
$$42 - (-82) - 65 - 7 = 42 + 82 - 65 - 7$$
  
=  $124 - 65 - 7 = 59 - 7 = 52$ 

**103.** 
$$-16-47-63-12=-63-63-12$$
  
=  $-126-12=-138$ 

**104.** 
$$42 - (-30) - 65 - (-11) = 42 + 30 - 65 + 11$$
  
=  $72 - 65 + 11$   
=  $7 + 11 = 18$ 

**105.** 
$$-47 - (-67) - 13 - 15 = -47 + (67) + (-13) + (-15)$$
$$= 20 + (-13) + (-15)$$
$$= 7 + (-15) = -8$$

106. 
$$-18-49-(-84)-27 = -18+(-49)+84+(-27)$$
$$= -67+84+(-27)$$
$$= 17+(-27)=-10$$

107. 
$$-19-17-(-36)-12=-19+(-17)+36+(-12)$$
  
=  $-36+36+(-12)$   
=  $0+(-12)=-12$ 

## 4 Chapter 2 First-Degree Equations and Inequalities

### **Objective D Exercises**

- **112. a.** multiplication; When parentheses are used and there is no operation symbol, the operation is multiplication.
  - b. addition; Add 8 and negative 7.
  - c. subtraction; Subtract negative 7 from 8.
  - **d.** multiplication; When a variable is written next to another variable and there is no operation symbol, the operation is multiplication.
  - **e.** multiplication; When parentheses are used and there is no operation symbol, the operation is multiplication.
  - **f.** addition; Add negative x and negative y.
- **113.** 14(3) = 42
- **114.** (17)6=102
- 115.  $-7 \cdot 4 = -28$
- 116.  $-8 \cdot 7 = -56$
- **117.** (-12)(-5) = 60
- **118.** (-13)(-9) = 117
- 119. -11(23) = -253
- **120.** -8(21) = -168
- **121.** (-17)(14) = -238
- **122.** (-15)(12) = -180
- **123.** 6(-19) = -114
- **124.** 17(-13) = -221
- 125.  $12 \div (-6) = -2$
- 126.  $18 \div (-3) = -6$
- 127.  $(-72) \div (-9) = 8$
- 128.  $(-64) \div (-8) = 8$
- 129.  $-42 \div 6 = -7$

130. 
$$(-56) \div 8 = -7$$

- 131.  $(-144) \div 12 = -12$
- 132.  $(-93) \div (-3) = 31$
- 133.  $48 \div (-8) = -6$
- 134.  $57 \div (-3) = -19$
- 135.  $\frac{-49}{7} = -7$
- 136.  $\frac{-45}{5} = -9$
- 137.  $\frac{-44}{-4} = 11$
- 138.  $\frac{-36}{-9} = 4$
- 139.  $\frac{98}{-7} = -14$
- 140.  $\frac{85}{-5} = -17$
- **141.**  $-\frac{-120}{8} = -(-15) = 15$
- **142.**  $-\frac{-72}{4} = -(-18) = 18$
- 143.  $-\frac{-80}{-5} = -16$
- **144.**  $-\frac{-114}{-6} = -19$
- 145.  $0 \div (-9) = 0$
- **146.**  $0 \div (-14) = 0$
- 147.  $\frac{-261}{9} = -29$
- 148.  $\frac{-128}{4} = -32$
- 149.  $9 \div 0$  is undefined.
- **150.**  $(-21) \div 0$  is undefined.
- 151.  $\frac{132}{-12} = -11$

152. 
$$\frac{250}{-25} = -10$$

- 153.  $\frac{0}{0}$  is undefined
- 154.  $\frac{-58}{0}$  is undefined
- **155.** 7(5)(-3) = 35(-3) = -105
- **156.** (-3)(-2)8 = 6(8) = 48
- **157.** 9(-7)(-4) = -63(-4) = 252
- **158.** (-2)(6)(-4) = -12(-4) = 48
- **159.** 7(-2)(5)(-6) = -14(5)(-6) = -70(-6) = 420
- **160.** (-3)7(-2)8 = -21(-2)8 = (42)8 = 336
- **161.** (-14)9(-11)0 = -126(-11)0 = (1386)0 = 0
- **162.** (-13)(15)(-19)0 = -195(-19)0 = (3705)0 = 0
- 163. Negative

### **Objective E Exercises**

**164. Strategy** To find the difference, subtract the record low (-51° F) from the low in International Falls (-40° F).

**Solution**  $-40^{\circ} - (-51^{\circ}) = -40^{\circ} + 51^{\circ} = 11$ 

The difference is 11° F.

**165. Strategy** To find the difference, subtract record low (-36°) from the record high (117°).

**Solution** 117 - (-36) = 117 + 36 = 153

The difference is 153° F.

**Strategy** To find new temperature, add the rise  $(7^{\circ})$  to the original temperature  $(-8^{\circ})$ .

**Solution** -8 + 7 = -1

The temperature is  $-1^{\circ}$ .

**Strategy** To find new temperature, add the rise  $(5^{\circ})$  to the original temperature  $(-19^{\circ})$ .

**Solution** -19 + 5 = -14

The temperature is  $-14^{\circ}$ .

168. Strategy To find the difference, subtract the depth of the Mariana Trench (-11,520 m) from depth of the Philippine Trench (-10,540 m).

#### **Solution**

-10,540 - (-11,520) = -10,540 + 11,520 = 980

The difference in 980 m.

**169. Strategy** To find the difference, subtract the depth of the Mariana Trench (-11,520 m) from the height of Mt. Everest (8850 m).

#### **Solution**

8850 - (-11,520) = 8850 + 11,520 = 20,370

The difference is 20,370 m.

170. Strategy To determine if Mt. Everest could fit in the Tonga Trench, compare the height of Mt. Everest (8850 m) with the absolute value of the depth of the Tonga Trench (-10,630 m).

**Solution** 8850 < |-10,630|

Yes, Mt. Everest would fit in the Tonga Trench.

**171. a. Strategy** To find the score for each day relative to par, subtract par (72) from each day's scores.

**Solution** Day 1: 72 - 72 = 0

Day 2: 68 - 72 = -4

Day 3: 70 - 72 = -2

Ken Duke's scores for the first three days were 0, -4, -2.

**b. Strategy** To find the score for the first three days, add the three scores.

**Solution** 0+(-4)+(-2)=-4+(-2)=-6

Ken Duke's score for the first three days was −6.

**c. Strategy** To find the score for the first four days, find the score for the fourth day and add the fourth day's score to the first three day's scores.

#### **Solution**

Score for the fourth day: 68-72=-4

Score for the first four days: -6 + (-4) = -10

Ken Duke's score for the first four days was −10.

- Chapter 2 That Degree Equations and mequanties
- **Strategy** To find the average daily temperature:
  - Add the seven temperature readings.
  - Divide the total by 7.

#### **Solution**

$$4+(-5)+8+(-1)+(-12)+(-14)+(-8)$$

$$=-1+8+(-1)+(-12)+(-14)+(-8)$$

$$=7+(-1)+(-12)+(-14)+(-8)$$

$$=6+(-12)+(-14)+(-8)=-156$$

$$=-6+(-14)+(-8)$$

$$=-20+-8=-28$$

$$-28 \div 7=-4$$

The average daily low temperature was  $-4^{\circ}$  F.

- **173. Strategy** To find the average daily temperature:
  - Add the seven temperature readings.
  - Divide by the total by 7.

#### **Solution**

$$-6 + (-11) + 1 + 5 + (-3) + (-9) + (-5)$$

$$= -17 + 1 + 5 + (-3) + (-9) + (-5)$$

$$= -16 + 5 + (-3) + (-9) + (-5)$$

$$= -11 + (-3) + (-9) + (-5)$$

$$= -14 + (-9) + (-5)$$

$$= -23 + (-5) = -28$$

$$-28 \div 7 = -4$$

The average daily low temperature was  $-4^{\circ}$  F.

- **174.** True
- **175.** False
- **176. a.** Below
  - **b. Strategy** To find the boiling point of neon, multiply the highest boiling point on the graph (-35) by seven.

#### **Solution**

$$-35 \times 7 = -245$$

The boiling point of neon is  $-245^{\circ}$  C.

**177. Strategy** To find average score, divide the total of the scores (-20) by ten.

#### **Solution**

$$-20 \div 10 = -2$$

The average score is -2.

**Strategy** To find score, add the loss (-26) to the previous score (11).

### Solution

$$11 + (-26) = -15$$

The score is -15 points.

- **179. Strategy** To find the grade:
  - Multiply the number of correct answers (20) by 5.
  - Multiply the number of incorrect answers (5) by –5.
  - Multiply the number of blank questions (2) by -2.
  - Add the products.

#### Solution

$$20 \times 5 = 100$$

$$5 \times (-5) = -25$$

$$2\times(-2)=-4$$

$$100 + (-25) + (-4) = 75 + (-4) = 71$$

The grade is 71.

#### **Critical Thinking**

- **180.** The integers can be -1 and -8, -2 and -7, -3 and -6, or -4 and -5.
- **181. Strategy** To find largest difference, subtract the smallest number (-10) from the largest number (15).

**Solution** 
$$15 - (-10) = 15 + 10 = 25$$

The largest difference is 25.

- **182.** Sometimes true
- **183.** a. True
  - **b.** True

### **Projects or Group Activities**

**184.** Answers will vary. For example -7 + 3 = -4 or 8 + (-12) = -4.

**Strategy:** Write any number. If you pick a positive number first, then write a negative number whose absolute value is 4 more than the positive number you picked. If you write a negative number first, write a positive number that is 4 less than the absolute value of the negative number you picked.

**185.** Answers will vary. For example:

$$-12 - (-6) = 12 + 6 = -6$$
.

**Strategy:** Write any negative number. Then subtract a negative number whose absolute value is 6 less than the absolute value of the first number.

**186.** 5, -15, 45, -135, . . .

To get each successive number, multiply by -3

$$-135(-3) = 405$$

$$405(-3) = -1215$$

$$-1215(-3) = 3645$$

**187.** -2, 4, -8, 16, . . .

To get each successive number, multiply by -2.

$$16(-2) = -32$$

$$-32(-2) = 64$$

$$64(-2) = -128$$

$$-32, 64, -128$$

**188.** -3, -12, -48, -192, . . .

To get each successive number, multiply by 4.

$$-192(4) = -768$$

$$-768(4) = -3072$$

$$-3072(4) = -12,288$$

-768, -3072, -12,288

### **Section 1.2**

#### **Concept Check**

- **1.** 3; 4; terminating
- **2.** 100%
- 3 0.01

- 4. numerators, common denominator
- 5. equivalent, common denominator
- **6.** numerators, denominators
- 7. reciprocal
- 8. radical sign, radicand
- 9.  $(-5)^6$
- 10.  $2\sqrt{2}$  is in simplest form because the radicand does not have a perfect square factor.  $\sqrt{8}$  is not in simplest form because the radicand does have a perfect square factor: 4 is a perfect square that is a factor of 8.

### Objective A

- **11.**  $\frac{1}{8} = 1 \div 8 = 0.125$
- 12.  $\frac{7}{8} = 7 \div 8 = 0.875$
- 13.  $\frac{2}{9} = 2 \div 9 = 0.\overline{2}$
- **14.**  $\frac{8}{9} = 8 \div 9 = 0.\overline{8}$
- **15.**  $\frac{1}{6} = 1 \div 6 = 0.1\overline{6}$
- **16.**  $\frac{5}{6} = 5 \div 6 = 0.8\overline{3}$
- 17.  $\frac{9}{16} = 9 \div 16 = 0.5625$
- **18.**  $\frac{15}{16} = 15 \div 16 = 0.9375$
- **19.**  $\frac{7}{12} = 7 \div 12 = 0.58\overline{3}$
- **20.**  $\frac{11}{12} = 11 \div 12 = 0.91\overline{6}$
- **21.**  $\frac{21}{40} = 21 \div 40 = 0.525$
- **22.**  $\frac{5}{11} = 5 \div 11 = 0.\overline{45}$

## **Objective B Exercises**

- 23. 100% = 100(0.01) = 1, multiplying by 1 does not change the value of the number.
- **24.**  $75\% = 75 \left(\frac{1}{100}\right) = \frac{75}{100} = \frac{3}{4}$ 75% = 75(0.01) = 0.75
- **25.**  $40\% = 40 \left( \frac{1}{100} \right) = \frac{40}{100} = \frac{2}{5}$ 40% = 40(0.01) = 0.40
- **26.**  $64\% = 64\left(\frac{1}{100}\right) = \frac{64}{100} = \frac{16}{25}$ 64% = 64(0.01) = 0.64
- 27.  $88\% = 88 \left(\frac{1}{100}\right) = \frac{88}{100} = \frac{22}{25}$ 88% = 88(0.01) = 0.88
- **28.**  $125\% = 125 \left(\frac{1}{100}\right) = \frac{125}{100} = \frac{5}{4}$ 125% = 125(0.01) = 1.25
- **29.**  $160\% = 160 \left(\frac{1}{100}\right) = \frac{160}{100} = \frac{8}{5}$ 160% = 160(0.01) = 1.60
- **30.**  $19\% = 19\left(\frac{1}{100}\right) = \frac{19}{100}$ 19% = 19(0.01) = 0.19
- **31.**  $87\% = 87 \left(\frac{1}{100}\right) = \frac{87}{100}$ 87% = 87(0.01) = 0.87
- **32.**  $5\% = 5\left(\frac{1}{100}\right) = \frac{5}{100} = \frac{1}{20}$ 5% = 5(0.01) = 0.05
- **33.**  $450\% = 450 \left( \frac{1}{100} \right) = \frac{450}{100} = \frac{9}{2}$ 450% = 450(0.01) = 4.50
- **34.**  $11\frac{1}{9}\% = 11\frac{1}{9}\left(\frac{1}{100}\right) = \frac{100}{9}\left(\frac{1}{100}\right) = \frac{1}{9}$
- **35.**  $4\frac{2}{7}\% = 4\frac{2}{7}\left(\frac{1}{100}\right) = \frac{30}{7}\left(\frac{1}{100}\right) = \frac{3}{70}$

**36.** 
$$12\frac{1}{2}\% = 12\frac{1}{2}\left(\frac{1}{100}\right) = \frac{25}{2}\left(\frac{1}{100}\right) = \frac{1}{8}$$

**37.** 
$$37\frac{1}{2}\% = 37\frac{1}{2}\left(\frac{1}{100}\right) = \frac{75}{2}\left(\frac{1}{100}\right) = \frac{3}{8}$$

**38.** 
$$66\frac{2}{3}\% = 66\frac{2}{3}\left(\frac{1}{100}\right) = \frac{200}{3}\left(\frac{1}{100}\right) = \frac{2}{3}$$

**39.** 
$$\frac{1}{4}\% = \frac{1}{4} \left( \frac{1}{100} \right) = \frac{1}{400}$$

**40.** 
$$\frac{1}{2}\% = \frac{1}{2} \left( \frac{1}{100} \right) = \frac{1}{200}$$

**41.** 
$$6\frac{1}{4}\% = 6\frac{1}{4}\left(\frac{1}{100}\right) = \frac{25}{4}\left(\frac{1}{100}\right) = \frac{1}{16}$$

**42.** 
$$83\frac{1}{3}\% = 83\frac{1}{3}\left(\frac{1}{100}\right) = \frac{250}{3}\left(\frac{1}{100}\right) = \frac{5}{6}$$

**43.** 
$$5\frac{3}{4}\% = 5\frac{3}{4}\left(\frac{1}{100}\right) = \frac{23}{4}\left(\frac{1}{100}\right) = \frac{23}{400}$$

**44.** 
$$7.3\% = 7.3(0.01) = 0.073$$

**45.** 
$$9.1\% = 9.1(0.01) = 0.091$$

**47.** 
$$16.7\% = 16.7(0.01) = 0.167$$

**48.** 
$$0.3\% = 0.3(0.01) = 0.003$$

**49.** 
$$0.9\% = 0.9(0.01) = 0.009$$

**50.** 
$$9.9\% = 9.9(0.01) = 0.099$$

**51.** 
$$9.15\% = 9.15(0.01) = 0.0915$$

**52.** 
$$121.2\% = 121.2(0.01) = 1.212$$

**53.** 
$$18.23\% = 18.23(0.01) = 0.1823$$

**54.** 
$$0.15 = 0.15(100\%) = 15\%$$

**55.** 
$$0.37 = 0.37(100\%) = 37\%$$

**56.** 
$$0.05 = 0.05(100\%) = 5\%$$

**57.** 
$$0.02 = 0.02(100\%) = 2\%$$

**58.** 
$$0.175 = 0.175(100\%) = 17.5\%$$

**59.** 
$$0.125 = 0.125(100\%) = 12.5\%$$

**60.** 
$$1.15 = 1.15(100\%) = 115\%$$

**61.** 
$$1.36 = 1.36(100\%) = 136\%$$

**62.** 
$$0.008 = 0.008(100\%) = 0.8\%$$

**63.** 
$$0.004 = 0.004(100\%) = 0.4\%$$

**64.** 
$$\frac{27}{50} = \frac{27}{50} (100\%) = \frac{2700}{50} \% = 54\%$$

**65.** 
$$\frac{83}{100} = \frac{83}{100}(100\%) = \frac{8300}{100}\% = 83\%$$

**66.** 
$$\frac{1}{3} = \frac{1}{3}(100\%) = \frac{100}{3}\% = 33\frac{1}{3}\%$$

**67.** 
$$\frac{3}{8} = \frac{3}{8} (100\%) = \frac{300}{8} \% = 37\frac{1}{2} \%$$

**68.** 
$$\frac{5}{11} = \frac{5}{11}(100\%) = \frac{500}{11}\% = 45\frac{5}{11}\%$$

**69.** 
$$\frac{4}{9} = \frac{4}{9}(100\%) = \frac{400}{9}\% = 44\frac{4}{9}\%$$

**70.** 
$$\frac{7}{8} = \frac{7}{8} (100\%) = \frac{700}{8} \% = 87\frac{1}{2} \%$$

**71.** 
$$\frac{9}{20} = \frac{9}{20}(100\%) = \frac{900}{20}\% = 45\%$$

72. 
$$1\frac{2}{3} = 1\frac{2}{3}(100\%) = \frac{5}{3}(100\%) = \frac{500}{3}\%$$
  
=  $166\frac{2}{3}\%$ 

73. 
$$2\frac{1}{2} = 2\frac{1}{2}(100\%) = \frac{5}{2}(100\%) = \frac{500}{2}\%$$
  
= 250%

- **74.** Greater than 100%.
- **75.** Greater than 1%.

#### **Objective C Exercises**

**76.** 
$$-\frac{5}{6} - \frac{5}{9} = \frac{-15}{18} + \frac{-10}{18} = \frac{-15 - 10}{18} = -\frac{25}{18}$$

77. 
$$-\frac{6}{13} + \frac{17}{26} = \frac{-12}{26} + \frac{17}{36} = \frac{-12 + 17}{26} = \frac{5}{26}$$

**78.** 
$$-\frac{7}{12} + \frac{5}{8} = \frac{-14}{24} + \frac{15}{24} = \frac{-14+15}{24} = \frac{1}{24}$$

**79.** 
$$\frac{5}{8} - \left(-\frac{3}{4}\right) = \frac{5}{8} + \frac{6}{8} = \frac{5+6}{8} = \frac{11}{8}$$

**80.** 
$$\frac{3}{5} - \frac{11}{12} = \frac{36}{60} - \frac{55}{60} = \frac{36 - 55}{60} = -\frac{19}{60}$$

**81.** 
$$\frac{11}{12} - \frac{5}{6} = \frac{11}{12} - \frac{10}{12} = \frac{11 - 10}{12} = \frac{1}{12}$$

**82.** 
$$-\frac{2}{3} - \left(-\frac{11}{18}\right) = \frac{-12}{18} + \frac{11}{18} = \frac{-12 + 11}{18} = -\frac{1}{18}$$

**83.** 
$$-\frac{5}{8} - \left(-\frac{11}{12}\right) = \frac{-15}{24} + \frac{22}{24} = \frac{-15 + 22}{24} = \frac{7}{24}$$

**84.** 
$$\frac{1}{3} + \frac{5}{6} - \frac{2}{9} = \frac{6}{18} + \frac{15}{18} - \frac{4}{18} = \frac{6+15-4}{18} = \frac{17}{18}$$

**85.** 
$$\frac{1}{2} - \frac{2}{3} + \frac{1}{6} = \frac{3}{6} - \frac{4}{6} + \frac{1}{6} = \frac{3 - 4 + 1}{6} = \frac{0}{6} = 0$$

**86.** 
$$-\frac{5}{16} + \frac{3}{4} - \frac{7}{8} = -\frac{5}{16} + \frac{12}{16} - \frac{14}{16} = \frac{-5 + 12 - 14}{16}$$
$$= -\frac{7}{16}$$

**87.** 
$$\frac{1}{2} - \frac{3}{8} - \left(-\frac{1}{4}\right) = \frac{4}{8} - \frac{3}{8} + \frac{2}{8} = \frac{4 - 3 + 2}{8} = \frac{3}{8}$$

**88.** 
$$-13.092 + 6.9 = -6.192$$

**89.** 
$$2.54 - 3.6 = -1.06$$

**90.** 
$$5.43 + 7.925 = 13.355$$

**91.** 
$$-16.92 - 6.925 = -23.845$$

**92.** 
$$-3.87 + 8.546 = 4.676$$

**93.** 
$$6.9027 - 17.692 = -10.7893$$

**94.** 
$$2.09 - 6.72 - 5.4 = -4.63 - 5.4 = -10.03$$

**95.** 
$$-3.09 - 4.6 - (-27.3) = -7.69 + 27.3 = 19.61$$

**96.** 
$$16.4 - (-3.09) - 7.93 = 16.4 + 3.09 - 7.93$$
  
=  $19.49 - 7.93 = 11.56$ 

**97.** 
$$2.66 - (-4.66) - 8.2 = 2.66 + 4.66 - 8.2$$
  
=  $7.32 - 8.2 = -0.88$ 

**98.** 
$$\frac{7}{8} + \frac{4}{5} \approx 2$$

**99.** 
$$-0.125 + 1.25 \approx 1$$

**100.** 
$$-1.3 + 0.2 \approx -1$$

## SALE

### **Objective D Exercises**

**101.** 
$$\left(-\frac{3}{4}\right)\left(-\frac{8}{27}\right) = \frac{\overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}}}{\overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}} \cdot \overset{1}{\cancel{3}}} = \frac{2}{9}$$

**102.** 
$$\left(-\frac{1}{2}\right)\left(\frac{8}{9}\right) = -\frac{\cancel{2} \cdot 2 \cdot 2}{\cancel{2} \cdot 3 \cdot 3} = -\frac{4}{9}$$

**103.** 
$$\left(\frac{5}{12}\right)\left(-\frac{8}{15}\right) = -\frac{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot 2}{\frac{1}{3} \cdot \frac{1}{3} \cdot 3 \cdot 3 \cdot \frac{1}{3}} = -\frac{2}{9}$$

**104.** 
$$\frac{5}{8} \left( -\frac{7}{12} \right) \frac{16}{25} = -\frac{\cancel{\cancel{x}} \cdot 7 \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}}}{\cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cdot \cancel{\cancel{x}}} = -\frac{7}{30}$$

**105.** 
$$\frac{5}{12} \left( -\frac{8}{15} \right) \frac{1}{3} = -\frac{\cancel{\cancel{5}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{2}}}{\cancel{\cancel{2}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}}} = -\frac{2}{27}$$

**106.** 
$$\frac{1}{2} \left( -\frac{3}{4} \right) \left( -\frac{5}{8} \right) = \frac{3 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} = \frac{15}{64}$$

**107.** 
$$\frac{3}{8} \div \frac{1}{4} = \frac{3}{8} \cdot \frac{4}{1} = \frac{3 \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{2} \cdot \cancel{2}} = \frac{3}{2}$$

**108.** 
$$\frac{5}{6} \div \left(-\frac{3}{4}\right) = \frac{5}{6} \cdot \left(-\frac{4}{3}\right) = -\frac{5 \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{3} \cdot \cancel{3}} = -\frac{10}{9}$$

**109.** 
$$-\frac{5}{12} \div \frac{15}{32} = -\frac{5}{12} \cdot \frac{32}{15} = -\frac{\cancel{5} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{5}} = -\frac{8}{9}$$

110. 
$$\frac{1}{8} \div \left(-\frac{5}{12}\right) = \frac{1}{8} \cdot \left(-\frac{12}{5}\right) = -\frac{\cancel{2} \cdot \cancel{2} \cdot 3}{\cancel{2} \cdot \cancel{2} \cdot 2 \cdot 5} = -\frac{3}{10}$$

111. 
$$-\frac{4}{9} \div \left(-\frac{2}{3}\right) = -\frac{4}{9} \cdot \left(-\frac{3}{2}\right) = \frac{\stackrel{1}{\cancel{2}} \cdot 2 \cdot \stackrel{1}{\cancel{3}}}{\stackrel{\cancel{3}}{\cancel{3}} \cdot 3 \cdot \stackrel{1}{\cancel{3}}} = \frac{2}{3}$$

112. 
$$-\frac{6}{11} \div \frac{4}{9} = -\frac{6}{11} \cdot \frac{9}{4} = -\frac{\cancel{2} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}}{\cancel{11} \cdot \cancel{2} \cdot \cancel{2}} = -\frac{27}{22}$$

113. 
$$1.2(3.47) = 4.164$$

**114.** 
$$(-0.8)6.2 = -4.96$$

**115.** 
$$(-1.89)(-2.3) = 4.347$$

**116.** 
$$(6.9)(-4.2) = -28.98$$

**117.** 
$$1.2(-0.5)(3.7) = (-0.6)(3.7) = -2.22$$

**118.** 
$$2.3(-0.6)(0.8) = -1.38(0.8) = -1.104$$

119. 
$$-1.27 \div (-1.7) \approx 0.75$$

**120.** 
$$9.07 \div (-3.5) \approx -2.59$$

**121.** 
$$0.0976 \div 0.042 \approx 2.32$$

**122.** 
$$-6.904 \div 1.35 \approx -5.11$$

123. 
$$-7.894 \div (-2.06) \approx 3.83$$

**124.** 
$$-354.2086 \div 0.1719 \approx -2060.55$$

**b.** Greater than 1

### **Objective E Exercises**

126. 
$$6^2 = 6 \cdot 6 = 36$$

**127.** 
$$7^4 = 7 \cdot 7 \cdot 7 \cdot 7 = 2401$$

**128.** 
$$-7^2 = -(7 \cdot 7) = -49$$

**129.** 
$$-4^3 = -(4 \cdot 4 \cdot 4) = -64$$

**130.** 
$$(-3)^2 = (-3)(-3) = 9$$

**131.** 
$$(-2)^3 = (-2)(-2)(-2) = -8$$

**132.** 
$$(-3)^4 = (-3)(-3)(-3)(-3) = 81$$

133. 
$$(-5)^3 = (-5)(-5)(-5) = -125$$

**134.** 
$$\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1 \cdot 1}{2 \cdot 2} = \frac{1}{4}$$

**135.** 
$$\left(-\frac{3}{4}\right)^3 = \left(-\frac{3}{4}\right)\left(-\frac{3}{4}\right)\left(-\frac{3}{4}\right) = -\frac{3 \cdot 3 \cdot 3}{4 \cdot 4 \cdot 4} = -\frac{27}{64}$$

**136.** 
$$(0.3)^2 = (0.3)(0.3) = 0.09$$

**137.** 
$$(1.5)^3 = (1.5)(1.5)(1.5) = 3.375$$

**138.** 
$$\left(\frac{2}{3}\right)^2 \cdot 3^3 = \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) \cdot 3 \cdot 3 \cdot 3 = \frac{2 \cdot 2 \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}}{\cancel{3} \cdot \cancel{3}} = 12$$

**139.** 
$$\left(-\frac{1}{2}\right)^3 \cdot 8 = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) \cdot 2 \cdot 2 \cdot 2$$

$$=-\frac{\stackrel{1}{\cancel{2}}\cdot\stackrel{1}{\cancel{2}}\cdot\stackrel{1}{\cancel{2}}}{\stackrel{1}{\cancel{2}}\cdot\stackrel{1}{\cancel{2}}\cdot\stackrel{1}{\cancel{2}}}=-1$$

**140.** 
$$(0.3)^3 \cdot 2^3 = (0.3)(0.3)(0.3) \cdot 2 \cdot 2 \cdot 2 = 0.216$$

**141.** 
$$(-2) \cdot (-2)^2 = (-2)(-2)(-2) = -8$$

**142.** 
$$2^3 \cdot 3^3 \cdot (-4) = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot (-4)$$

$$= 8 \cdot 27 \cdot (-4) = 216 \cdot (-4) = -864$$

**143.** 
$$(-3)^3 \cdot 5^2 \cdot 10 = (-3)(-3)(-3) \cdot 5 \cdot 5 \cdot 10$$

$$=-27 \cdot 25 \cdot 10 = -675 \cdot 10 = -6750$$

**144.** 
$$(-7) \cdot 4^2 \cdot 3^2 = (-7) \cdot 4 \cdot 4 \cdot 3 \cdot 3 = (-7) \cdot 16 \cdot 9$$

$$=-112 \cdot 9 = -1008$$

- 145. Negative
- 146. Negative
- **147.** Positive
- **148.** Positive

### **Objective F Exercises**

- 149.  $\sqrt{16} = 4$
- 150.  $\sqrt{64} = 8$
- 151.  $\sqrt{49} = 7$
- 152.  $\sqrt{144} = 12$
- 153.  $\sqrt{32} = \sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$
- **154.**  $\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}$
- **155.**  $\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$
- **156.**  $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$
- 157.  $6\sqrt{18} = 6\sqrt{9 \cdot 2} = 6\sqrt{9} \cdot \sqrt{2}$ =  $6 \cdot 3\sqrt{2} = 18\sqrt{2}$
- **158.**  $-3\sqrt{48} = -3\sqrt{16 \cdot 3} = -3\sqrt{16} \cdot \sqrt{3}$  $= -3 \cdot 4\sqrt{3} = -12\sqrt{3}$

159. 
$$5\sqrt{40} = 5\sqrt{4 \cdot 10} = 5\sqrt{4} \cdot \sqrt{10}$$
  
=  $5 \cdot 2\sqrt{10} = 10\sqrt{10}$ 

**160.** 
$$2\sqrt{28} = 2\sqrt{4 \cdot 7} = 2\sqrt{4} \cdot \sqrt{7} = 2 \cdot 2\sqrt{7} = 4\sqrt{7}$$

**161.** 
$$\sqrt{15} = \sqrt{3.5} = \sqrt{15}$$

162. 
$$\sqrt{21} = \sqrt{3 \cdot 7} = \sqrt{21}$$

- 163.  $\sqrt{29}$
- 164.  $\sqrt{13}$

**165.** 
$$-9\sqrt{72} = -9\sqrt{4 \cdot 9 \cdot 2} = -9\sqrt{4} \cdot \sqrt{9} \cdot \sqrt{2}$$
$$= -9 \cdot 2 \cdot 3\sqrt{2} = -54\sqrt{2}$$

**166.** 
$$11\sqrt{80} = 11\sqrt{16 \cdot 5} = 11\sqrt{16} \cdot \sqrt{5}$$
  
=  $11 \cdot 4\sqrt{5} = 44\sqrt{5}$ 

**167.** 
$$\sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$$

**168.** 
$$\sqrt{225} = \sqrt{25 \cdot 9} = \sqrt{25} \cdot \sqrt{3} = 5 \cdot 3 = 15$$

169. 
$$\sqrt{0} = 0$$

170. 
$$\sqrt{210} = \sqrt{2 \cdot 3 \cdot 5 \cdot 7} = \sqrt{210}$$

171. 
$$6\sqrt{128} = 6\sqrt{64 \cdot 2} = 6\sqrt{64} \cdot \sqrt{2}$$
  
=  $6 \cdot 8\sqrt{2} = 48\sqrt{2}$ 

172. 
$$9\sqrt{288} = 9\sqrt{16 \cdot 9 \cdot 2} = 9\sqrt{16} \cdot \sqrt{9} \cdot \sqrt{2}$$
  
=  $9 \cdot 4 \cdot 3\sqrt{2} = 108\sqrt{2}$ 

173. 
$$\sqrt{240} \approx 15.492$$

174. 
$$\sqrt{300} \approx 17.321$$

175. 
$$\sqrt{288} \approx 16.971$$

176. 
$$\sqrt{600} \approx 24.495$$

177. 
$$\sqrt{256} = 16$$

178. 
$$\sqrt{324} = 18$$

- **179.** Between –11 and –10
- **180.** Not a real number
- **181.** Between 2 and 3
- **182.** Between 14 and 15

### **Objective G Exercises**

**183. Strategy** To find the difference, subtract the low temperature (-48.9°) from the high temperature (6.67°).

**Solution** 6.67 - (-48.9) = 6.67 + 48.9 = 55.57

The difference between the record high and record low temperature in Browing is 55.57° C.

**184. Strategy** To find the amount the temperature fell, subtract the first temperature (-20°) from the second temperature (12.22°).

**Solution** 12.22 - (-20) = 12.22 + 20 = 32.22

The temperature fell 32.22° C.

**185. Strategy** To find the difference, subtract the melting point (-218.4°) from the boiling point (-182.962°).

#### Solution

-182.962 - (-218.4) = -182.962 + 218.4 = 35.438

The difference between the boiling point and melting point is 35.438° C.

**186. Strategy** To find the difference, subtract the melting point  $(-209.86^{\circ})$  from the boiling point  $(-195.8^{\circ})$ .

#### **Solution**

$$-195.8 - (-209.86) = -195.8 + 209.86 = 14.06$$

The difference between the boiling point and melting point is 14.06° C.

**187. a. Strategy** To find the difference, subtract the oil production in 2008 (4.9 million) from the oil production in 1973 (9.2 million).

#### **Solution**

$$9.2 - 4.9 = 4.3$$

The difference in oil production is 4.3 million barrels per day.

**b. Strategy** To find the increase, subtract the oil production in 2008 (4.9) from the predicted production in 2020 (6.0).

**Solution** 6.0 - 4.9 = 1.1

The increase in oil production from 2008 to 2020 is 1.1 million barrels per day.

**188. Strategy** To find the total cost of the two fabrics, add the cost of the  $12\frac{1}{2}$  yd at \$5.43 per yard to the cost of the  $5\frac{3}{4}$  yd at \$6.94 per yard.

#### Solution

$$12\frac{1}{2}(5.43) = 12.5(5.43)$$

$$5\frac{3}{4}(6.94) = 5.75(6.94)$$

$$12.5(5.43) + 5.75(6.94) = 107.78$$

The total cost of the two fabrics is \$107.78.

**189.** Strategy To find how much butter the chef should use, add  $\frac{1}{2}$  of  $\frac{3}{4}$  c to  $\frac{3}{4}$  c.

**Solution**  $\frac{3}{4} \cdot \frac{1}{2} + \frac{3}{4} = \frac{3}{8} + \frac{3}{4} = \frac{3}{8} + \frac{6}{8} = \frac{9}{8} = 1\frac{1}{8}$ 

The chef should use  $1\frac{1}{8}$  c of butter.

190. Strategy To find number of servings, divide the total weight (18 oz.) by the number of ounces per serving  $\left(\frac{3}{4}\right)$ .

#### **Solution**

$$18 \div \frac{3}{4} = \frac{18}{1} \div \frac{3}{4} = \frac{\cancel{18}}{\cancel{1}} \cdot \frac{\cancel{4}}{\cancel{3}} = \frac{6 \cdot \cancel{4}}{\cancel{1}} = 24$$

There are 24 servings in 1 box.

191. Strategy To find number of servings, divide the total weight (24 oz.) by the number of ounces per serving  $\left(1\frac{1}{2}\right)$ .

#### **Solution**

$$24 \div 1\frac{1}{2} = \frac{24}{1} \div \frac{3}{2} = \frac{\cancel{24}}{1} \cdot \cancel{2} = \frac{8 \cdot 2}{1} = 16$$

There are 16 servings in 1 box.

#### **Critical Thinking**

- 192. a. True
  - b. True
  - c. False
  - d. False

- **193.** Answers will vary. For example:
  - **a.** 0.15
  - **b.** 1.05
  - **c.** 0.001
- 194. Strategy To find a rational number that is one-half the difference between  $\frac{5}{11}$  and  $\frac{4}{11}$ , subtract the two numbers and divide by 2.

### Solution

$$\left(\frac{5}{11} - \frac{4}{11}\right) \div 2 = \frac{1}{11} \div 2 = \frac{1}{11} \cdot \frac{1}{2} = \frac{1}{22}$$

 $\frac{1}{22}$  is one-half the difference between  $\frac{5}{11}$ 

- and  $\frac{4}{11}$ .
- 195. Yes, it is always possible to find a rational number between two given numbers.

  Explanations will vary. One method is to add the two numbers and divide the sum by 2

### **Projects or Group Activities**

196. 
$$\frac{17}{99} = 0.\overline{17}, \frac{45}{99} = 0.\overline{45}, \frac{73}{99} = 0.\overline{73}, \frac{83}{99} = 0.\overline{83},$$
  
 $\frac{33}{99} = 0.\overline{33} = 0.\overline{3}, \text{ yes}; \frac{1}{99} = 0.\overline{01}, \text{ yes}$ 

**197.** 
$$a = 2, b = 3, c = 6$$

#### **Section 1.3**

### **Concept Check**

- **1.** We need an Order of Operations Agreement to prevent there being more than one answer for a numerical expression.
- **2.** The Order of Operations Agreement: Step 1 Perform operations inside grouping symbols.

Step 2 Simplify exponential expressions.

Step 3 Do multiplication and division as they occur from left to right

Step 4 Do addition and subtraction as they occur from left to right.

### **Objective A Exercises**

- 3.  $4-8 \div 2 = 4-4 = 0$
- 4.  $2^2 \cdot 3 3 = 4 \cdot 3 3 = 12 3 = 9$

5. 
$$2(3-4)-(-3)^2 = 2(-1)-(-3)^2$$
  
=  $2(-1)-9$   
=  $-2-9$   
=  $-11$ 

**6.** 
$$16-32 \div 2^3 = 16-32 \div 8 = 16-4 = 12$$

7. 
$$24-18 \div 3 + 2 = 24-6+2=18+2=20$$

8. 
$$8 - (-3)^2 - (-2) = 8 - (9) - (-2)$$
  
=  $8 - 9 + 2$   
=  $-1 + 2$   
= 1

9. 
$$8-2(3)^2 = 8-2(9)$$
  
=  $8-18$   
=  $-10$ 

**10.** 
$$16-16 \cdot 2 \div 4 = 16-32 \div 4$$
  
=  $16-8$   
=  $8$ 

11. 
$$12+16 \div 4 \cdot 2 = 12+4 \cdot 2$$
  
=  $12+8$   
=  $20$ 

**12.** 
$$16-2\cdot 4^2 = 16-2\cdot 16$$
  
=  $16-32$   
=  $-16$ 

13. 
$$27-18 \div (-3^2) = 27-18 \div (-9)$$
  
=  $27+2$   
=  $29$ 

**14.** 
$$4+12 \div 3 \cdot 2 = 4+4 \cdot 2$$
  
=  $4+8$   
= 12

**15.** 
$$16+15 \div (-5) - 2 = 16 + (-3) - 2$$
  
=  $13-2$   
=  $11$ 

16. 
$$14-2^2-(4-7)=14-2^2-(-3)$$
  
=  $14-4-(-3)$   
=  $14-4+3$   
=  $10+3$   
=  $13$ 

17. 
$$14-2^2-|4-7|=14-2^2-|-3|=14-2^2-3$$
  
=  $14-4-3=10-3=7$ 

## 14 Chapter 2 First-Degree Equations and Inequalities

**18.** 
$$10-|5-8|+2^3=10-|-3|+2^3=10-3+2^3$$
  
=  $10-3+8=7+8=15$ 

19. 
$$3-2[8-(3-2)]=3-2[8-(1)]$$
  
=  $3-2[7]$   
=  $3-14$   
=  $-11$ 

**20.** 
$$-2^2 + 4[16 \div (3-5)] = -2^2 + 4[16 \div -(2)]$$
  
=  $-2^2 + 4[-8]$   
=  $-4 + 4[-8]$   
=  $-4 + (-32)$   
=  $-36$ 

**21.** 
$$6 + \frac{16-4}{2^2+2} - 2 = 6 + \frac{12}{4+2} - 2$$
  
=  $6 + \frac{12}{6} - 2$   
=  $6 + 2 - 2$   
=  $8 - 2$   
=  $6$ 

22. 
$$24 \div \frac{3^2}{8-5} - (-5) = 24 \div \frac{9}{3} - (-5)$$
  
=  $24 \div 3 - (-5)$   
=  $8 - (-5)$   
=  $8 + 5$   
= 13

23. 
$$18 \div |9-2^{3}| + (-3) = 18 \div |9-8| + (-3)$$
  
=  $18 \div 1 + (-3)$   
=  $18 + (-3)$   
=  $15$ 

**24.** 
$$96 \div 2[12 + (6-2)] - 3^2 = 96 \div 2[12 + 4] - 3^2$$
  
=  $96 \div 2[16] - 3^2$   
=  $96 \div 2[16] - 9$   
=  $48[16] - 9$   
=  $768 - 9$   
=  $759$ 

**25.** 
$$4[16-(7-1)] \div 10 = 4[16-6] \div 10$$
  
=  $4[10] \div 10$   
=  $40 \div 10$   
=  $4$ 

**26.** 
$$18 \div 2 - 4^2 - (-3)^2 = 18 \div 2 - 16 - 9$$
  
=  $9 - 16 - 9$   
=  $-7 - 9$   
=  $-16$ 

**27.** 
$$20 \div (10 - 2^3) + (-5) = 20 \div (10 - 8) + (-5)$$
  
=  $20 \div 2 + (-5) = 10 + (-5) = 5$ 

**28.** 
$$16-3(8-3)^2 \div 5 = 16-3(5)^2 \div 5$$
  
=  $16-3(25) \div 5$   
=  $16-75 \div 5 = 16-15 = 1$ 

**29.** 
$$4(-8) \div \left[2(7-3)^2\right] = 4(-8) \div \left[2(4)^2\right]$$
  
=  $4(-8) \div \left[2(16)\right] = 4(-8) \div 32$   
=  $-32 \div 32 = -1$ 

30. 
$$\frac{(-10) + (-2)}{6^2 - 30} \div |2 - 4| = \frac{-12}{36 - 30} \div |-2|$$
$$= \frac{-12}{6} \div 2 = -2 \div 2 = -1$$

31. 
$$16-4 \cdot \frac{3^{3}-7}{2^{3}+2} - \left(-2\right)^{2} = 16-4 \cdot \frac{27-7}{8+2} - \left(4\right)$$
$$= 16-4 \cdot \frac{20}{10} - 4$$
$$= 16-4 \cdot 2-4$$
$$= 16-8-4=8-4=4$$

**32.** 
$$(0.2)^2 \cdot (-0.5) + 1.72 = (0.04)(-0.5) + 1.72$$
  
=  $-0.02 + 1.72 = 1.70$ 

33. 
$$0.3(1.7-4.8) + (1.2)^2 = 0.3(-3.1) + 1.44$$
  
= -0.93 + 1.44 = 0.51

**34.** 
$$(1.8)^2 - 2.52 \div 1.8 = 3.24 - 2.52 \div 1.8$$
  
= 3.24 - 1.4 = 1.84

**35.** 
$$(1.65-1.05)^2 \div 0.4 + 0.8 = (0.6)^2 \div 0.4 + 0.8$$
  
=  $0.36 \div 0.4 + 0.8$   
=  $0.9 + 0.8 = 1.7$ 

**36.** 
$$15+15 \div 3-4^2 = 15+15 \div 3-16$$
  
=  $15+5-16$ 

#### **Critical Thinking**

37. Answers will vary. For example,  $\frac{17}{24}$  and  $\frac{33}{48}$ .

| 38. | $\frac{2}{3}$  | $-\frac{1}{6}$ | 0             |
|-----|----------------|----------------|---------------|
|     | $-\frac{1}{2}$ | $\frac{1}{6}$  | $\frac{5}{6}$ |
|     | 1              | 1              | 1             |

- **39.** Answers will vary. For example:
  - **a.**  $\frac{1}{2}$
  - **b.**
  - **c.** 2
- 40. No, the Order of Operations Agreement was not followed in the given simplification of 6+2(4-9) because the addition was performed before the multiplication. The correct simplification is:

$$6+2(4-9) = 6+2(-5)$$
$$= 6+(-10)$$
$$= -4$$

### **Projects and Group Activities**

- **41.**  $1,000,000 = 100^3$ 
  - A B
- C

216

- A
- 3 C

- 1
- 27
- is
- $2^{3}$

64 125

8

- **A**:  $(1+3n)^3$
- **B**:  $(2+3n)^3$
- C:  $(3+3n)^3$

$$100^3 = \left\lceil 1 + 3(33) \right\rceil^3$$

1,000,000 is in Column A.

### **Check Your Progress: Chapter 1**

- **1.** {1, 2, 3, 4, 5, 6, 7, 8}
- **2.** -7 < 1
  - 0<1
  - 2 > 1
  - 5 > 1
  - -7 and 0 are less than 1.
- **3.** 13

$$-|-18|=-18$$

- **5.** |31|>|-13|
- **6.** -47 + 23 = -24
- 7. -11-(-27)=-11+27=16
- 8. -32+40+(-9)=8+(-9)=-1
- 9. 42-(-82)-65-7=42+82-65-7= 124-65-7=59-7=52
- **10.** 16(-2) = -32
- **11.** -9(7)(-5) = -63(-5) = 315
- 12.  $250 \div (-25) = -10$
- 13.  $-\frac{-80}{-5} = -16$
- 14.  $\frac{-58}{0}$  is undefined
- **15.**  $\frac{11}{16} = 11 \div 16 = 0.6875$
- **16.**  $\frac{7}{11} = 7 \div 11 = 0.\overline{63}$
- **17.**  $45\% = 45\left(\frac{1}{100}\right) = \frac{45}{100} = \frac{9}{20}$

$$45\% = 45(0.01) = 0.45$$

- **18.**  $14\frac{1}{2}\% = 14\frac{1}{2}\left(\frac{1}{100}\right) = \frac{29}{2}\left(\frac{1}{100}\right) = \frac{29}{200}$
- **19.**  $\frac{7}{8} = \frac{7}{8} \times 100\% = \frac{700}{8}\% = 87.5\%$
- **20.** 0.08 = 0.08(100%) = 8%
- **21.**  $\frac{5}{6} + \frac{3}{18} = \frac{15}{18} + \frac{3}{18} = \frac{18}{18} = 1$
- **22.**  $\frac{3}{24} \frac{1}{6} = \frac{3}{24} \frac{4}{24} = -\frac{1}{24}$
- **23.** -18.39 + 4.9 23.7 = -13.49 23.7 = -37.19
- **24.**  $\frac{5}{8} \left( -\frac{9}{12} \right) \left( \frac{16}{25} \right) = -\frac{\cancel{\cancel{5}} \cdot \cancel{\cancel{9}} \cdot \cancel{\cancel{16}}}{\cancel{\cancel{\cancel{8}}} \cdot \cancel{\cancel{12}} \cdot \cancel{\cancel{25}}} = -\frac{3}{10}$

- **25.**  $-\frac{6}{11} \div \frac{9}{4} = -\frac{\cancel{2}}{11} \cdot \frac{4}{\cancel{9}} = -\frac{8}{33}$
- **26.** -1.6(0.2) = -0.32
- **27.**  $3\sqrt{18} = 3\sqrt{9 \cdot 2} = 3\sqrt{3} \cdot \sqrt{2} = 3 \cdot 3\sqrt{2} = 6\sqrt{2}$
- **28.**  $\sqrt{27} = \sqrt{9 \cdot 3} = \sqrt{9} \cdot \sqrt{3} = 3\sqrt{3}$
- **29.**  $-3^2 \cdot (-2)^4 = -9(16) = -144$
- 30.  $5-4[3-2(7-1)] \div 9 = 5-4[3-2(6)] \div 9$ =  $5-4[3-12] \div 9$ =  $5-4[-9] \div 9$ =  $5+36 \div 9$ = 5+4= 9
- 31.  $-4 \cdot 2^3 \frac{1-13}{2^2 \cdot 3} = -4 \cdot 2^3 \frac{-12}{4 \cdot 3}$   $= -4 \cdot 2^3 - (-1)$   $= -4 \cdot 8 - (-1)$  = -32 - (-1) = -32 + 1= -31
- 32.  $(8-3^2)^6 + (2\cdot 3-7)^9 = (8-9)^6 + (6-7)^9$ =  $(-1)^6 + (-1)^9$ = 1-1= 0
- **33. Strategy** To find the temperature, add the rise  $(8^{\circ})$  to the previous temperature  $(-3^{\circ})$ .

**Solution**  $-3^{\circ}+8^{\circ}=5^{\circ}$ The temperature is  $5^{\circ}$  C.

- **34. Strategy** To find the average low temperature:
  - add the temperatures  $(-8^{\circ}, -12^{\circ}, 0^{\circ}, -4^{\circ}, 5^{\circ}, -7^{\circ}, -9^{\circ})$ .
  - add divide by the number of days in a week (7).

**Solution** -8+(-12)+0+(-4)+5+(-7)+(-9)

$$=-20+0+(-4)+5+(-7)+(-9)$$

$$=-20+(-4)+5+(-7)+(-9)$$

$$=-24+5+(-7)+(-9)$$

$$=-19+(-7)+(-9)$$

$$=-26+(-9)$$

$$=-35$$

$$=-35$$
  
 $-35 \div 7 = -5$ 

The average low temperature is  $-5^{\circ}$  C.

**35. Strategy** To find the temperature, subtract the rise (20.3°) from the high temperature (15.7°).

**Solution**  $15.7^{\circ}-20.3^{\circ}=-4.6^{\circ}$  The temperature was  $-4.6^{\circ}$  C.

### Section 1.4

### **Concept Check**

- 1.  $2x^2$ , 5x, -8
- 2.  $-3n^2$ , -4n, 7
- 3.  $-a^4$ , 6
- **4.** coefficient of  $x^2$ : 1 coefficient of -9x: -9
- 5. coefficient of  $12a^2$ : 12 coefficient of -8ab: -8 coefficient of  $-b^2$ : -1
- **6.** coefficient of  $n^3$ : 1 coefficient of  $-4n^2$ : -4 coefficient of -n: -1
- 7. reciprocal (or multiplicative inverse)
- **8.** opposite (or additive inverse)

9. Like terms are variable terms with the same variable part. Constant terms are also like terms. Examples of like terms are 4x and -9x.

Examples of terms that are not alike are  $4x^2$  and -9x. The terms 4 and 9 are also like terms; 4 and 4x are not.

- To simplify a variable term, add like terms.
- less than, quotient
- 12. subtracted from, product, cube
- 13. 25-x
- 14. 5W

#### **Objective A Exercises**

- **15.**  $6b \div (-a)$  $6(3) \div (-2) = 18 \div (-2) = -9$
- **16.**  $bc \div (2a)$  $3(-4) \div (2 \cdot 2) = -12 \div 4 = -3$
- 17.  $b^2 4ac$  $(3)^2 - 4(2)(-4) = 9 - 4(2)(-4)$ =9-(-32)=9+32
- 18.  $a^2 b^2$  $2^2 - 3^2 = 4 - 9 = -5$
- 19.  $b^2-c^2$  $3^2 - (-4)^2 = 9 - 16 = -7$
- **20.**  $(a+b)^2$  $(2+3)^2 = 5^2 = 25$
- **21.**  $a^2 + b^2$  $2^2 + 3^2 = 4 + 9 = 13$
- **22.**  $2a (c + a)^2$  $2(2) - (-4) + 2^2 = 2(2) - (-2)^2$
- **23.**  $\frac{5ab}{6}$  3cb  $\frac{5(2)(3)}{6} - 3(-4)(3) = \frac{30}{6} - (-36)$ =5-(-36)=41

- **24.**  $\frac{d-b}{}$  $\frac{3-4}{-1} = \frac{-1}{-1} = 1$
- **25.**  $\frac{2d+b}{-a}$  $\frac{2(3)+4}{-(-2)} = \frac{6+4}{2} = \frac{10}{2} = 5$
- **26.**  $\frac{b+2d}{b}$  $\frac{4+2(3)}{4} = \frac{4+6}{4} = \frac{10}{4} = \frac{5}{2}$
- **27.**  $\frac{b-d}{c-a}$  $\frac{4-3}{-1-(-2)} = \frac{1}{1} = 1$
- **28.**  $\frac{2c-d}{-ad}$  $\frac{2(-1)-3}{-(-2)(3)} = \frac{-2-3}{-(-6)} = -\frac{5}{6}$
- **29.**  $(b+d)^2-4a$  $(4+3)^2 - 4(-2) = 7^2 - 4(-2)$ =49-(-8)=57
- **30.**  $(d-a)^2 3c$  $[3-(-2)]^2-3(-1)=5^2-3(-1)$ =25-(-3)=28
- **31.**  $(d-a)^2 \div 5$  $[3-(-2)]^2 \div 5 = 5^2 \div 5 = 25 \div 5 = 5$
- **32.** 3(b-a)-bc34 - (-2) - 4(-1) = 3(6) - 4(-1)=18-(-4)=22
- 33.  $\frac{b-2a}{bc^2-d}$  $\frac{4-2\left(-2\right)}{4\left(-1\right)^{2}-3} = \frac{4-\left(-4\right)}{4\left(1\right)-3} = \frac{8}{4-3} = \frac{8}{1} = 8$
- **34.**  $\frac{b^2 a}{ad + 3c}$  $\frac{4^2 - (-2)}{(-2)(3) + 3(-1)} = \frac{16 - (-2)}{-6 + (-3)} = \frac{18}{-9} = -2$

**35.** 
$$\frac{1}{3}d^2 - \frac{3}{8}b^2$$
  
 $\frac{1}{3}(3)^2 - \frac{3}{8}(4)^2 = \frac{1}{3}(9) - \frac{3}{8}(16) = 3 - 6 = -3$ 

**36.** 
$$\frac{5}{8}a^4 - c^2$$
  
 $\frac{5}{8}(-2)^4 - (-1)^2 = \frac{5}{8}(16) - (1) = 10 - 1 = 9$ 

37. 
$$\frac{-4bc}{2a-b}$$

$$\frac{-4(4)(-1)}{2(-2)-4} = \frac{16}{-4-4} = \frac{16}{-8} = -2$$

38. 
$$-\frac{3}{4}b + \frac{1}{2}(ac + bd)$$

$$-\frac{3}{4}(4) + \frac{1}{2}[(-2)(-1) + 4(3)] = -\frac{3}{4}(4) + \frac{1}{2}[2 + 12]$$

$$= -\frac{3}{4}(4) + \frac{1}{2}[14]$$

$$= -3 + 7 = 4$$

39. 
$$-\frac{2}{3}d - \frac{1}{5}(bd - ac)$$
  
 $-\frac{2}{3}(3) - \frac{1}{5}[4(3) - (-2)(-1)] = -\frac{2}{3}(3) - \frac{1}{5}[12 - 2]$   
 $= -\frac{2}{3}(3) - \frac{1}{5}(10)$   
 $= -2 - 2 = -4$ 

**40.** 
$$(b-a)^2 - (d-c)^2$$

$$\left[4 - \left(-2\right)\right]^2 - \left[3 - \left(-1\right)\right]^2 = 6^2 - 4^2$$

$$= 36 - 16 - 20$$

- **41.** Positive
- **42.** Positive
- 43. Negative
- 44. Negative

#### **Objective B Exercises**

**45.** 
$$6x + 8x = 14x$$

**46.** 
$$12x + 13x = 25x$$

**47.** 
$$9a - 4a = 5a$$

**48.** 
$$12a - 3a = 9a$$

**49.** 
$$7-3b=7-3b$$

**50.** 
$$5+2a=5+2a$$

**51.** 
$$-12a + 17a = 5a$$

**52.** 
$$-3a + 12a = 9a$$

**53.** 
$$-12xy + 17xy = 5xy$$

**54.** 
$$-15xy + 3xy = -12xy$$

**55.** 
$$-3ab + 3ab = 0$$

**56.** 
$$-7ab + 7ab = 0$$

**57.** 
$$-\frac{1}{2}x - \frac{1}{3}x = -\frac{3}{6}x - \frac{2}{6}x = -\frac{5}{6}x$$

**58.** 
$$-\frac{2}{5}y + \frac{3}{10}y = -\frac{4}{10}y + \frac{3}{10}y = -\frac{1}{10}y$$

**59.** 
$$2.3x + 4.2x = 6.5x$$

**60.** 
$$6.1y - 9.2y = -3.1y$$

**61.** 
$$x - 0.55x = 0.45x$$

**62.** 
$$0.65A - A = -0.35A$$

**63.** 
$$5a - 3a + 5a = 7a$$

**64.** 
$$10a - 17a + 3a = -4a$$

**65.** 
$$-5x^2 - 12x^2 + 3x^2 = -14x^2$$

**66.** 
$$-y^2 - 8y^2 + 7y^2 = -2y^2$$

**67.** 
$$\frac{3}{4}x - \frac{1}{3}x - \frac{7}{8}x = \frac{18}{24}x - \frac{8}{24}x - \frac{21}{24}x = -\frac{11}{24}x$$

**68.** 
$$-\frac{2}{5}a - \left(-\frac{3}{10}a\right) - \frac{11}{15}a = \frac{-12}{30}a + \frac{9}{30}a - \frac{22}{30}a$$
$$= -\frac{25}{30}a = -\frac{5}{6}a$$

**69.** 
$$7x - 3y + 10x = 17x - 3y$$

**70.** 
$$8v + 8x - 8v = 8x$$

**71.** 
$$3a + (-7b) - 5a + b = -2a - 6b$$

**72.** 
$$-5b + 7a - 7b + 12a = 19a - 12b$$

**73.** 
$$3x + (-8y) - 10x + 4x = -3x - 8y$$

**74.** 
$$3y + (-12x) - 7y + 2y = -12x - 2y$$

**75.** 
$$x^2 - 7x + (-5x^2) + 5x = -4x^2 - 2x$$

**76.** 
$$3x^2 + 5x - 10x^2 - 10x = -7x^2 - 5x$$

**77.** 
$$-10x - 10y - 10y - 10x = -20x - 20y$$

iv. 
$$-20x - 20y$$
 Yes

$$v. -20y - 20x \text{ Yes}$$

### **Objective C Exercises**

**78.** 
$$4(3x) = 12x$$

**79.** 
$$12(5x) = 60x$$

**80.** 
$$-3(7a) = -21a$$

**81.** 
$$-2(5a) = -10a$$

**82.** 
$$-2(-3y) = 6y$$

**83.** 
$$-5(-6y) = 30y$$

**84.** 
$$(4x)2 = 8x$$

**85.** 
$$(6x)12 = 72x$$

**86.** 
$$(3a)(-2) = -6a$$

**87.** 
$$(7a)(-4) = -28a$$

**88.** 
$$(-3b)(-4)=12b$$

**89.** 
$$(-12b)(-9) = 108b$$

**90.** 
$$-5(3x^2) = -15x^2$$

**91.** 
$$-8(7x^2) = -56x^2$$

**92.** 
$$\frac{1}{3}(3x^2) = x^2$$

**93.** 
$$\frac{1}{6}(6x^2) = x^2$$

**94.** 
$$\frac{1}{5}(5a) = a$$

**95.** 
$$\frac{1}{8}(8x) = x$$

**96.** 
$$-\frac{1}{2}(-2x) = x$$

**97.** 
$$-\frac{1}{4}(-4a) = a$$

**98.** 
$$-\frac{1}{7}(-7n) = n$$

**99.** 
$$-\frac{1}{9}(-9b) = b$$

**100.** 
$$(3x)\left(\frac{1}{3}\right) = x$$

**101.** 
$$(12x)\left(\frac{1}{12}\right) = x$$

**102.** 
$$(-6y)\left(-\frac{1}{6}\right) = y$$

**103.** 
$$(-10n)\left(-\frac{1}{10}\right) = n$$

**104.** 
$$\frac{1}{3}(9x) = 3x$$

**105.** 
$$\frac{1}{7}(14x) = 2x$$

**106.** 
$$-0.2(10x) = -2x$$

**107.** 
$$-0.25(8x) = -2x$$

**108.** 
$$-\frac{2}{3}(12a^2) = -8a^2$$

**109.** 
$$-\frac{5}{8}(24a^2) = -15a^2$$

**110.** 
$$-0.5(-16y) = 8y$$

**111.** 
$$-0.75(-8y) = 6y$$

**112.** 
$$(16y)\left(\frac{1}{4}\right) = 4y$$

**113.** 
$$(33y)\left(\frac{1}{11}\right) = 3y$$

**114.** 
$$(-6x)\left(\frac{1}{3}\right) = -2x$$

**115.** 
$$(-10x)\left(\frac{1}{5}\right) = -2x$$

**116.** 
$$(-8a)\left(-\frac{3}{4}\right) = 6a$$

### **Objective D Exercises**

**119.** 
$$2(4x-3)=8x-6$$

**120.** 
$$5(2x-7)=10x-35$$

**121.** 
$$-2(a+7) = -2a-14$$

**122.** 
$$-5(a+16) = -5a - 80$$

**123.** 
$$-3(2y - 8) = -6y + 24$$

**124.** 
$$-5(3y - 7) = -15y + 35$$

**125.** 
$$-(x+2) = -x - 2$$

**126.** 
$$-(x+7) = -x-7$$

**127.** 
$$(5-3b)7 = 35-21b$$

**128.** 
$$(10-7b)2=20-14b$$

**129.** 
$$\frac{1}{3}(6-15y) = 2-5y$$

**130.** 
$$\frac{1}{2}(-8x + 4y) = -4x + 2y$$

**131.** 
$$3(5x^2 + 2x) = 15x^2 + 6x$$

**132.** 
$$6(3x^2 + 2x) = 18x^2 + 12x$$

**133.** 
$$-2(-y + 9) = 2y - 18$$

**134.** 
$$-5(-2x + 7) = 10x - 35$$

**135.** 
$$(-3x - 6)5 = -15x - 30$$

**136.** 
$$(-2x + 7)7 = -14x + 49$$

**137.** 
$$2(-3x^2-14)=-6x^2-28$$

**138.** 
$$5(-6x^2-3)=-30x^2-15$$

**139.** 
$$-3(2y^2-7)=-6y^2+21$$

**140.** 
$$-8(3y^2-12)=-24y^2+96$$

**141.** 
$$3(x^2 - y^2) = 3x^2 - 3y^2$$

**142.** 
$$5(x^2 + y^2) = 5x^2 + 5y^2$$

**143.** 
$$-\frac{2}{3}(6x-18y) = -4x+12y$$

**144.** 
$$-\frac{1}{2}(x-4y) = -\frac{1}{2}x + 2y$$

**145.** 
$$-(6a^2 - 7b^2) = -6a^2 + 7b^2$$

**146.** 
$$3(x^2 + 2x - 6) = 3x^2 + 6x - 18$$

**147.** 
$$4(x^2-3x+5)=4x^2-12x+20$$

**148.** 
$$-2(y^2-2y+4)=-2y^2+4y-8$$

**149.** 
$$\frac{3}{4}(2x-6y+8) = \frac{3}{2}x - \frac{9}{2}y + 6$$

**150.** 
$$-\frac{2}{3}(6x-9y+1)=-4x+6y-\frac{2}{3}$$

**151.** 
$$4(-3a^2 - 5a + 7) = -12a^2 - 20a + 28$$

**152.** 
$$-5(-2x^2 - 3x + 7) = 10x^2 + 15x - 35$$

**153.** 
$$-3(-4x^2 + 3x - 4) = 12x^2 - 9x + 12$$

**154.** 
$$3(2x^2 + xy - 3y^2) = 6x^2 + 3xy - 9y^2$$

**155.** 
$$5(2x^2 - 4xy - y^2) = 10x^2 - 20xy - 5y^2$$

**156.** 
$$-(3a^2 + 5a - 4) = -3a^2 - 5a + 4$$

**157.** 
$$-(8b^2 - 6b + 9) = -8b^2 + 6b - 9$$

**159.** 
$$12-7(y-9)=12-7y+63=-7y+75$$

i. 
$$5(y-9) = 5y-45$$
 No

**ii.** 
$$12 - 7y - 63 = -7y - 51$$
 No

**iii.** 
$$12 - 7y + 63 = -7y + 75$$
 Yes

$$iv. 12 - 7y - 9 = -7y + 3$$
 No

**160.** 
$$4x - 2(3x + 8) = 4x - 6x - 16 = -2x - 16$$

**161.** 
$$6a - (5a + 7) = 6a - 5a - 7 = a - 7$$

**162.** 
$$9-3(4y+6)=9-12y-18=-12y-9$$

**163.** 
$$10 - (11x - 3) = 10 - 11x + 3 = -11x + 13$$

**164.** 
$$5n - (7-2n) = 5n - 7 + 2n = 7n - 7$$

**165.** 
$$8 - (12 + 4y) = 8 - 12 - 4y = -4y - 4$$

**166.** 
$$3(x+2)-5(x-7)=3x+6-5x+35$$
  
=  $-2x+41$ 

**167.** 
$$2(x-4)-4(x+2)=2x-8-4x-8$$
  
=  $-2x-16$ 

**168.** 
$$12(y-2)+3(7-3y)=12y-24+21-9y$$
  
= 3y-3

**169.** 
$$6(2y-7)-(3-2y)=12y-42-3+2y$$
  
=  $14y-45$ 

**170.** 
$$3(a-b)-(a+b)=3a-3b-a-b=2a-4b$$

**171.** 
$$2(a+2b)-(a-3b)=2a+4b-a+3b=a+7b$$

**172.** 
$$4[x-2(x-3)] = 4[x-2x+6] = 4[-x+6]$$
  
=  $-4x+24$ 

**173.** 
$$2[x+2(x+7)] = 2[x+2x+14] = 2[3x+14]$$
  
=  $6x + 28$ 

174. 
$$-2[3x+2(4-x)] = -2[3x+8-2x]$$
  
=  $-2[x+8] = -2x-16$ 

175. 
$$-5[2x+3(5-x)] = -5[2x+15-3x]$$
  
=  $-5[-x+15] = 5x-75$ 

**176.** 
$$-3[2x-(x+7)] = -3[2x-x-7]$$
  
=  $-3[x-7] = -3x + 21$ 

177. 
$$-2[3x-(5x-2)] = -2[3x-5x+2]$$
  
=  $-2[-2x+2] = 4x-4$ 

178. 
$$2x-3[x-(4-x)] = 2x-3[x-4+x]$$
  
=  $2x-3[2x-4]$   
=  $2x-6x+12 = -4x+12$ 

179. 
$$-7x + 3[x - (3 - 2x)] = -7x + 3[x - 3 + 2x]$$
  
=  $-7x + 3[3x - 3]$   
=  $-7x + 9x - 9 = 2x - 9$ 

**180.** 
$$-5x - 2[2x - 4(x + 7)] - 6$$
  
=  $-5x - 2[2x - 4x - 28] - 6$   
=  $-5x - 2[-2x - 28] - 6$   
=  $-5x + 4x + 56 - 6 = -x + 50$ 

**181.** 
$$0.12(2x+3) + x = 0.24x + 0.36 + x$$
  
=  $1.24x + 0.36$ 

**182.** 
$$0.05x + 0.02(4 - x) = 0.05x + 0.08 - 0.02x$$
  
=  $0.03x + 0.08$ 

**183.** 
$$0.03x + 0.04(1000 - x) = 0.03x + 40 - 0.04x$$
  
=  $-0.01x + 40$ 

#### **Objective E Exercises**

**184.** the unknown number: 
$$x$$
  $12-x$ 

**185.** the unknown number: 
$$x \frac{x}{18}$$

**186.** the unknown number: 
$$x = \frac{2}{3}x$$

**187.** the unknown number: 
$$x + 20$$

**188.** the unknown number: 
$$x$$
 twice the unknown number:  $2x \frac{2x}{9}$ 

**189.** the unknown number: 
$$x$$
 the product of eleven and the number:  $11x$   $11x-8$ 

190. the unknown number: 
$$x$$
 the sum of the number and twelve:  $x + 12$ 

$$\frac{15}{x+12}$$

**191.** the unknown number: 
$$x$$
 the quotient of the number and twenty:  $\frac{x}{20}$ 

$$40 - \frac{x}{20}$$

192. the unknown number: 
$$x$$
 twice the number:  $2x$  five more than twice the number:  $2x + 5$ 

$$\frac{2x+5}{x}$$

## 22 Chapter 2 First-Degree Equations and Inequalities

- 193. the unknown number: x the square of the number:  $x^2$  twice the number: 2x  $x^2 + 2x$
- **194.** (i) the <u>difference between</u> thirty-two and the <u>quotient of</u> a number and seven:  $32 \frac{a}{7}$ 
  - (ii) thirty-two <u>decreased by</u> the <u>quotient of</u> a number and seven  $32 \frac{a}{7}$  Yes
  - (iii) thirty-two minus the ratio of a number to seven  $32 - \frac{a}{7}$  Yes
- 195. the unknown number: x the difference between the number and 50: x 50 10(x 50) = 10x 500
- **196.** the unknown number: x the total of the number and two: x + 2 (x+2)-9=x+2-9=x-7
- **197.** the unknown number: x three more than the number: x + 3 x (x + 3) = x x 3 = -3
- **198.** the unknown number: x the sum of the number and nineteen: x + 19 4(x+19) = 4x + 76
- 199. the unknown number: x twice the number: 2x the difference between twice the number and four: 2x 4 (2x-4)+x=2x-4+x=3x-4
- **200.** the unknown number: x five less than the number: x 5 (x-5)7 = 7x 35
- **201.** the unknown number: x the product of three and the number: 3x + 3x = 4x
- **202.** the unknown number: x the total of the number and 9: x + 9

- **203.** the unknown number: x the sum of the number and six: x + 6 (x+6)+5=x+6+5=x+11
- **204.** the unknown number: x the difference between eight and the number: 8-x x-(8-x)=x-8+x=2x-8
- **205.** the unknown number: x the sum of the number and ten: x + 10 x (x + 10) = x x 10 = -10
- **206.** the unknown number: x the total of a number a 5: x + 5 (x+5)+2=x+5+2=x+7
- **207.** number of visitors to the Metropolitan Museum of Art: M number of visitors to the Louvre: M+3,800,000
- **208.** diameter of Dione: d diameter of Rhea: d + 253
- **209.** noise level of a car horn: d noise level of an ambulance siren: d + 10
- **210.** genes in a roundworm genome: G genes in the human genome: G + 11,000
- **211.** U2's concert ticket sales: T E Street Band's concert ticket sales: T 28,500,000
- **212.** total number of Americans: N number who think money should be spent on exploration of Mars:  $\frac{3}{4}N$
- **213.** number of bones in your body: N number of bones in your foot:  $\frac{1}{4}N$
- **214.** points for a safety: *s* points for a touchdown: 3*s*
- **215.** attendance at major league basketball games: B attendance at major league baseball games: B + 50,000,000

- **216.** number of people surveyed: N number of people who would pay down their debt: 0.43N
- **217.** number of U.S. undergraduate students: N number who attend a two-year college: 0.46N
- **218.** width of the rectangle: W length of the rectangle: 2W + 5
- **219.** measure of the largest angle: L measure of the smallest angle:  $\frac{1}{2}L-10$
- **220.** hours of overtime worked: h weekly pay: 1172 + 38h

### **Critical Thinking**

- **221.** The number of students enrolled in fall-term science classes.
- **222.** The number of students enrolled in spring-term science classes.
- **223.** length of wire: x length of side of square:  $\frac{1}{4}x$
- **224.** number of oxygen atoms: x number of hydrogen atoms: 2x
- **225.** Two examples of translation of 5x + 8 are "eight more than the product of five and a number" and "the sum of five times a number and eight." Two examples of the translation of 5(x + 8) are "five times the sum of a number and eight" and "the product of five and eight more than a number.

### **Projects or Group Activities**

- **226.** (a) False. For example,  $8 \div 2 \neq 2 \div 8$ .
  - (b) False. For example,
  - $(12 \div 4) \div 2 \neq 12 \div (4 \div 2).$
  - (c) False. For example,
  - $(9-2)-3 \neq 9-(2-3)$ .
  - (d) False. For example,  $10-4 \neq 4-10$ .

**227.** a. Yes;  $7 \otimes 5 = 5 \otimes 7$   $7 \otimes 5 = 23$   $5 \otimes 7$ 

$$=(5\cdot7)-(5+7)=35-12=23$$

b. No;  $(7 \otimes 5) \otimes 2 \neq 7 \otimes (5 \otimes 2)$ 

$$(7 \otimes 5) \otimes 2$$

$$= 23 \otimes 2$$

$$= (23 \cdot 2) - (23 + 2)$$

$$= 46 - 25$$

$$7 \otimes (5 \otimes 2)$$

$$= 7 \otimes [(5 \cdot 2) - (5 + 2)]$$

$$= 7 \otimes [10 - 7]$$

$$= 7 \otimes 3$$

$$= (7 \cdot 3) - (7 + 3)$$

$$= 21 - 10$$

$$= 11$$

- **228.** Answers will vary. One example is unbuckling the seat belt and then getting out of the car.
- **229.** (i) 2x + 4(2x+1) = 2x + 8x + 4 = 10x + 4

(ii) 
$$x-(4-9x)+8=x-4+9x+8=10x+4$$

(iii) 
$$7(x-4)-3(2x+6)=7x-28-6x-18$$
  
=  $x-46$ 

(iv) 
$$3(2x+8)+4(x-5)=6x+24+4x-20$$
  
=  $10x+4$ 

(v) 
$$6-2[x+(3x-4)]+2(9x-5)$$
  
=  $6-2[x+3x-4]+2(9x-5)$   
=  $6-2[4x-4]+2(9x-5)$   
=  $6-8x+8+18x-10$   
=  $10x+4$ 

i, ii, iv, and v are equivalent; they are equal to 10x + 4.

### **Section 1.5**

### **Concept Check**

1. roster, set-builder, interval

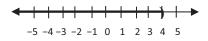
- 2. a. Student explanations should include the idea that to find the union of two sets, we list all the elements of the first set and then list all the elements of the second set that are not elements of the first set.
  - **b.** Student explanations should include the idea that to find the intersection of two sets, we list only those elements that are elements of both sets.


### **Objective A Exercises**

- **3.**  $A = \{16, 17, 18, 19, 20, 21\}$
- **4.**  $A = \{-9, -8, -7, -6, -5\}$
- **5.**  $A = \{9, 11, 13, 15, 17\}$
- **6.**  $A = \{-10, -8, -6, -4, -2\}$
- 7.  $A \cup B = \{3, 4, 5, 6\}$
- **8.**  $A \cup B = \{-3, -2, -1, 0\}$
- **9.**  $A \cup B = \{-10, -9, -8, 8, 9, 10\}$
- **10.**  $A \cup B = \{m, n, o, p, q\}$
- **11.**  $A \cup B = \{1, 3, 7, 9, 11, 13\}$
- **12.**  $A \cup B = \{-3, -2, -1, 1, 2\}$
- **13.**  $A \cap B = \{4, 5\}$
- **14.**  $A \cap B = \{-4\}$
- **15.**  $A \cap B = \emptyset$
- **16.**  $A \cap B = \{1, 2, 3, 4\}$
- 17.  $A \cap B = \{c, d, e\}$
- **18.**  $A \cap B = \{m, n\}$

#### **Objective B**

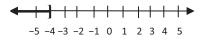
- 19.  $\{x \mid x > -5, x \in \text{negative integers}\}$
- **20.**  $\{x \mid x < 5, x \in \text{positive integers}\}$
- 21.  $\{x \mid x > 30, x \in \text{integers}\}$
- $22. \quad \left\{ x \middle| x < -70, \ x \in \text{integers} \right\}$
- 23.  $\{x \mid x > 8, x \in \text{real numbers}\}$


- **24.**  $\{x \mid x < 57, x \in \text{real numbers}\}$
- **25.** (1, 2)
- **26.** (-2, 4]
- **27.**  $(3, \infty)$
- **28.**  $(-\infty, 0]$
- **29.** [-4, 5)
- **30.** [-3, 0]
- **31.** (-∞, 2]
- **32.**  $[-3, \infty)$
- **33.** [-3,1]
- **34.**  $\{x \mid -4 \le x \le 5\}$
- **35.**  $\{x \mid -5 < x < -3\}$
- **36.**  $\{x \mid x > 4\}$
- **37.**  $\{x \mid x \le -2\}$
- **38.**  $\{x \mid 4 < x \le 9\}$
- **39.**  $\{x \mid -3 \le x \le -2\}$
- **40.**  $\{x \mid x \ge 0\}$
- **41.**  $\{x \mid x \le 6\}$
- **42.**  $\{x \mid -\infty < x < \infty\}$
- **43.** [-5, 4]



**44.** (-3, 5]




**45.**  $\{x \mid x < 4\}$ 

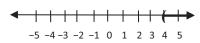


**46.**  $\{x \mid x \ge -3\}$ 

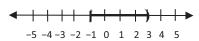



**47.**  $\{x \mid x \le -4\}$ 

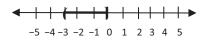



**48.**  $\{x \mid x > 0\}$ 

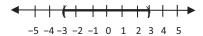



**49.** (-∞, 3]

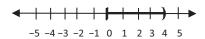



**50.** (4, ∞)




**51.** [-1, 3)




**52.** (-3, 0]

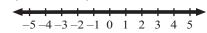


**53.**  $\{x \mid -3 < x < 3\}$ 

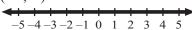



**54.**  $\{x \mid 0 \le x < 4\}$ 




**55.**  $\{x \mid 2 \le x \le 4\}$ 




**56.**  $\{x \mid -4 < x < 1\}$ 



**57.**  $\{x \mid -\infty < x < \infty\}$ 



**58.**  $(-\infty, \infty)$ 



- **59.** None
- **60.** One, 4.

#### **Critical Thinking**

- **61.**  $m \ge 250$
- **62.** t < 32
- **63.** True

#### **Projects of Group Activities**

- **64.** Answers will vary. For example,  $A = \{1, 2\}$  and  $B = 3\}$ .
- **65.** Answers will vary. For example,  $A = \{1, 2, 3, 4\}$  and  $B = \{1, 2, 3, 4\}$ .
- **66.** Answers will vary. For example,  $A = \{1, 2, 3\}$  and  $B = \{1, 2, 3, 5\}$ .

#### **Chapter 1 Review Exercises**

- 1. -4 < 1 True 0 < 1 True 11 < 1 False x < 1 for the values -4 and 0.
- **2.** 4

3. 
$$-|-5| = -(5) = -5$$

- **4.** -3 + (-12) + 6 + (-4) = -15 + 6 + (-4)= -9 + (-4) = -13
- 5. 16-(-3)-18=16+3-18=19-18=1
- **6.** -6(7) = -42
- 7.  $-100 \div 5 = -20$

8. 
$$0.28 \\
25)7.00$$

$$\frac{50}{200}$$

$$\frac{200}{0}$$

$$\frac{7}{25} = 0.28$$

**9.** 
$$6.2\% = 6.2(0.01) = 0.062$$

**10.** 
$$\frac{5}{8} = \frac{5}{8} (100\%) = \frac{500}{8}\% = 62.5\%$$

11. 
$$\frac{1}{3} - \frac{1}{6} + \frac{5}{12} = \frac{4}{12} - \frac{2}{12} + \frac{5}{12} = \frac{4 - 2 + 5}{12} = \frac{7}{12}$$

**12.** 
$$5.17 - 6.238 = -1.068$$

13. 
$$-\frac{18}{35} \div \frac{17}{28} = -\frac{18}{35} \cdot \frac{28}{17} = -\frac{2 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot \cancel{\chi}}{5 \cdot \cancel{\chi} \cdot 17} = -\frac{72}{85}$$

**15.** 
$$\left(-\frac{2}{3}\right)^4 = \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) = \frac{16}{81}$$

**16.** 
$$2\sqrt{36} = 2 \cdot 6 = 12$$

17. 
$$-3\sqrt{120} = -3\sqrt{4 \cdot 30} = -3 \cdot 2\sqrt{30} = -6\sqrt{30}$$

**18.** 
$$-3^2 + 4[18 + (12 - 20)] = -3^2 + 4[18 + (-8)]$$
  
=  $-3^2 + 4[10]$   
=  $-9 + 40 = 31$ 

19. 
$$(b-a)^2 + c$$
  

$$[3-(-2)]^2 + 4 = [3+2]^2 + 4 = [5]^2 + 4$$

$$= 25 + 4 = 29$$

**20.** 
$$6a-4b+2a=6a+2a-4b$$
  
=  $(6+2)a-4b$   
=  $8a-4b$ 

**21.** 
$$-3(-12y) = -3(-12)y = 36y$$

**22.** 
$$5(2x-7)=5(2x)+5(-7)=10x-35$$

23. 
$$-4(2x-9)+5(3x+2)$$
  
=  $-4(2x)-4(-9)+5(3x)+5(2)$   
=  $-8x+36+15x+10$   
=  $-8x+15x+36+10$   
=  $7x+46$ 

**24.** 
$$5[2-3(6x-1)] = 5[2-18x+3]$$
  
=  $5[5-18x]$   
=  $25-90x$   
=  $-90x+25$ 

**26.** 
$$A \cap B = \{1, 5, 9\}$$

**27.** 
$$\{x \mid x > 3\}$$



- **30.** Strategy To find the score:
  - Multiply the number of correct answers by 6.
  - Multiply the number of incorrect answers by -4.
  - Multiply the number of blank answers by -2.
  - Add the results.

#### Solution

$$21(6) = 126$$
  
 $5(-4) = -20$   
 $4(-2) = -8$ 

$$4(-2) = -8$$
  
 $126 + (-20) + (-8) = 98$ 

The student's score was 98.

### 31. Strategy To find the percent

- Find the total number by adding the numbers in the three categories together.
- Divide the number opposing (1260) by the total number and multiply by 100%.

**Solution** 
$$491+385+1260=2136$$
  $\left(\frac{1260}{2136}\right)100\%=59.0\%$ 

59.0% oppose abolishing the penny.

**32.** the unknown number: x twice the number: 2x one-half the number:  $\frac{1}{2}x$ 

$$2x - \frac{1}{2}x = \left(2 - \frac{1}{2}\right)x = \left(\frac{4}{2} - \frac{1}{2}\right)x = \frac{3}{2}x$$

**33.** number of American League cards: *A* number of National League cards: *5A* 

## **Chapter 1Test**

- 1. -2 > -40
- **2.** 7
- 3. -|-4|=-(4)=-4
- 4. 16-30=-14
- 5. -22+14+(-8)=-8+(-8)=-16
- **6.** 16 (-30) 42 = 16 + 30 42 = 46 42 = 4
- 7.  $-561 \div (-33) = 17$
- 8.  $\frac{7}{9} = 0.\overline{7}$
- 9.  $45\% = 45\left(\frac{1}{100}\right) = \frac{45}{100} = \frac{9}{20}$ 45% = 45(0.01) = 0.45
- **10.**  $-\frac{2}{5} + \frac{7}{15} = -\frac{6}{15} + \frac{7}{15} = \frac{-6+7}{15} = \frac{1}{15}$
- **11.** 6.02(-0.89) = -5.3578
- 12.  $\frac{5}{12} \div \left(-\frac{5}{6}\right) = \frac{5}{12} \cdot \left(-\frac{6}{5}\right) = -\frac{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}{\frac{1}{2} \cdot 2 \cdot \frac{3}{3} \cdot \frac{5}{3}} = -\frac{1}{2}$
- 13.  $\frac{3}{4} \cdot (4)^2 = \frac{3}{4} \cdot 16 = \frac{3 \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{2}} = 12$
- **14.**  $-2\sqrt{45} = -2\sqrt{9 \cdot 5} = -2\sqrt{9} \cdot \sqrt{5} = -2 \cdot 3\sqrt{5} = -6\sqrt{5}$

- 15.  $16 \div 2[8-3(4-2)] + 1 = 16 \div 2[8-3(2)] + 1$   $= 16 \div 2[8-6] + 1$   $= 16 \div 2[2] + 1$  = 8[2] + 1 = 16 + 1= 17
- **16.**  $b^2 3ab$   $(-2)^2 3(3)(-2) = 4 + 18 = 22$
- 17. 3x-5x+7x=(3-5+7)x=5x
- **18.**  $\frac{1}{5}(10x) = \frac{1}{5}(10)x = 2x$
- **19.**  $-3(2x^2 7y^2) = -3(2x^2) 3(-7y^2)$ =  $-6x^2 + 21y^2$
- **20.** 2x-3(x-2) = 2x-3(x)-3(-2)= 2x-3x+6= -x+6
- **21.** 2x + 3[4 (3x 7)] = 2x + 3[4 3x + 7]= 2x + 3[11 - 3x]= 2x + 33 - 9x= 2x - 9x + 33= -7x + 33
- **22.** {-2, -1, 0, 1, 2, 3}
- **23.**  $\{x \mid x < -3, x \in \text{ real numbers}\}$
- **24.**  $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- **25.**  $\{x \mid x < 1\}$



- **26.** (0, 5)

  -5 -4 -3 -2 -1 0 1 2 3 4 5
- 27. the number: x the difference between a number and 3: x-3 10(x-3)=10x-30

28 Chapter 2 First-Degree Equations and Inequalities

- **28.** catcher's throw: *s* pitcher's fastball: 2*s*
- **29. a.** 1981, 1988, 1989, 1990, 1991, 1995

**b.** 
$$-369.7 - (-81.1) = -369.7 + 81.1 = -288.6$$

The difference between the trade balance in 1990 and 2000 was –\$288.6 billion.

**c.** The difference in trade was greatest from 1999 to 2000.

**d.** 
$$\frac{-81.1}{-19.4} = 4.18 \approx 4$$
 times greater

e. 
$$\frac{-369.7}{4} = -\$92.425$$
 billion

**30. Strategy** To find the difference between the highest temperature and the lowest temperature, subtract the lowest temperature (-81.4°) from the highest temperature (134.0°).

**Solution** 
$$134.0 - (-81.4) = 134.0 + 81.4 = 215.4$$

The difference between the highest temperature recorded in North America and the lowest temperature recorded is 215.4° F.

## **Chapter 2: First-Degree Equations and Inequalities**

## **Prep Test**

- 1.  $\frac{9}{100} = 0.09$
- **2.**  $\frac{3}{4} = \frac{3}{4} (100\%) = \frac{300}{4} \% = 75\%$
- 3.  $3x^2 4x 1$   $3(-4)^2 - 4(-4) - 1$  = 3(16) - 4(-4) - 1 = 48 + 16 - 1= 63
- **4.** R 0.35R = (1 0.35)R = 0.65R
- 5.  $\frac{1}{2}x + \frac{2}{3}x = \left(\frac{1}{2} + \frac{2}{3}\right)x$  $= \left(\frac{3}{6} + \frac{4}{6}\right)x$  $= \frac{7}{6}x$
- **6.** 6x-3(6-x)=6x-3(6)-3(-x)= 6x-18+3x= 9x-18
- 7. 0.22(3x+6) + x = 0.66x + 1.32 + x = 1.66x + 1.32
- 8. the unknown number: n twice a number: 2n 5-2n
- **9.** speed of old card: *s* speed of new card: 5*s*
- **10.** length of longer piece: x length of shorter piece: 5 x

## Section 2.1

## **Concept Check**

- 1. a. equation
  - **b.** expression
  - **c.** expression
  - **d.** equation
  - e. expression

- **3.** i, ii, and iv are equations in the form x + a = b. You would subtract a from both sides.
- **4.** i, ii, and iv are equations in the form ax = b. You would divide both sides by a.
- 5. Amount: 30; base: 40
- **6.** Amount: 8; base: 20
- 7. unknown; 30; 24
- **8.** 25%; 16,000; unknown
- 9. Keith
- **10. a.** 12 mph **b.** 4 mph

### **Objective A Exercises**

11.  $\frac{2x = 8}{2(4) | 8}$ 

Yes, 4 is a solution.

12.  $\frac{y+4}{3+4} = \frac{7}{7}$ 

Yes, 3 is a solution.

13.  $\frac{2b-1=3}{2(-1)-1 \mid 3}$   $-2-1 \mid 3$   $-3 \neq 3$ 

No, -1 is not a solution.

14.  $\begin{array}{rrrrr}
3a-4 &=& 10 \\
\hline
3(-2)-4 &|& 10 \\
-6-4 &|& 10 \\
-10 \neq 10
\end{array}$ 

No, -2 is not a solution.

15.  $\frac{4-2m = 3}{4-2(1) \mid 3} \\
4-2 \mid 3 \\
2 \neq 3$ 

No, 1 is not a solution.

**2.** The solution is 8.

16. 
$$\frac{7-3n = 2}{7-3(2) \mid 2}$$

$$7-6 \mid 2$$

$$1 \neq 2$$

No, 2 is not a solution.

17. 
$$\frac{2x+5 = 3x}{2(5)+5 \mid 3(5)}$$
$$10+5 \mid 15$$
$$15=15$$

Yes, 5 is a solution.

18. 
$$\frac{3y-4 = 2y}{3(4)-4 \mid (2)4}$$

$$12-4 \mid 8$$

$$8=8$$

Yes, 4 is a solution.

19. 
$$\begin{array}{rcrrr}
3a+2 &=& 2-a \\
\hline
3(-2)+2 & | & 2-(-2) \\
-6+2 & | & 2+2 \\
-4 \neq 4
\end{array}$$

No, -2 is not a solution.

**20.** 
$$\frac{z^2 + 1}{3^2 + 1} = \frac{4 + 3z}{4 + 3(3)}$$
$$9 + 1 \quad | \quad 4 + 9$$
$$10 \neq 13$$

No, 3 is not a solution.

21. 
$$\frac{2x^{2}-1 = 4x-1}{2(2)^{2}-1 \mid 4(2)-1}$$
$$2(4)-1 \mid 8-1$$
$$8-1 \mid 7$$
$$7 = 7$$

Yes, 2 is a solution.

22. 
$$\frac{y^2 - 1}{(-1)^2 - 1} = \frac{4y + 3}{4(-1) + 3}$$
$$1 - 1 \quad | \quad -4 + 3$$
$$0 \neq -1$$

No, -1 is not a solution.

23. 
$$\frac{4y+1 = 3}{4(1/2)+1 \mid 3}$$
$$2+1 \mid 3$$
$$3=3$$

Yes,  $\frac{1}{2}$  is a solution.

24. 
$$\frac{5m+1 = 10m-3}{5(2/5)+1 \mid 10(2/5)-3}$$
$$2+1 \mid 4-3$$
$$3 \neq 1$$

No,  $\frac{2}{5}$  is not a solution.

25. 
$$\frac{8x - 1}{8(3/4) - 1} = \frac{12x + 3}{12(3/4) + 3}$$

$$6 - 1 \quad | \quad 9 + 3$$

$$5 \neq 12$$

No,  $\frac{3}{4}$  is not a solution.

**26.** Negative

### **Objective B Exercises**

- 27. x will be greater than  $\frac{19}{24}$  because you will add  $\frac{11}{16}$  to solve the equation.
- **28.** x will be less than  $-\frac{21}{43}$  because a  $-\frac{13}{15}$  will be added to solve the equation.

29. 
$$x+5=7$$
  
 $x+5-5=7-5$   
 $x=2$ 

The solution is 2.

30. 
$$y+3=9$$
  
 $y+3-3=9-3$   
 $y=6$ 

The solution is 6.

31. 
$$b-4=11$$
  
 $b-4+4=11+4$   
 $b=15$ 

The solution is 15.

32. 
$$z-6=10$$
  
 $z-6+6=10+6$   
 $z=16$ 

The solution is 16.

33. 
$$2+a=8$$
  
 $2-2+a=8-2$   
 $a=6$ 

The solution is 6.

34. 
$$5+x=12$$
  
 $5-5+x=12-5$   
 $x=7$ 

The solution is 7.

35. 
$$n-5 = -2$$
  
 $n-5+5 = -2+5$   
 $n = 3$ 

The solution is 3.

36. 
$$x-6=-5$$
  
 $x-6+6=-5+6$   
 $x=1$ 

The solution is 1.

37. 
$$b+7=7$$
  
 $b+7-7=7-7$   
 $b=0$ 

The solution is 0.

38. 
$$y-5=-5$$
  
 $y-5+5=-5+5$   
 $y=0$ 

The solution is 0.

39. 
$$z+9=2$$
  
 $z+9-9=2-9$   
 $z=-7$ 

The solution is -7.

**40.** 
$$n+11=1$$
  
 $n+11-11=1-11$   
 $n=-10$ 

The solution is -10.

41. 
$$10 + m = 3$$
$$10 - 10 + m = 3 - 10$$
$$m = -7$$

The solution is -7.

**42.** 
$$8 + x = 5$$
  $8 - 8 + x = 5 - 8$   $x = -3$ 

The solution is -3.

43. 
$$9+x=-3$$
  
 $9-9+x=-3-9$   
 $x=-12$ 

The solution is -12.

44. 
$$10+y=-4$$

$$10-10+y=-4-10$$

$$y=-14$$

The solution is -14.

**45.** 
$$2 = x + 7$$
  
 $2 - 7 = x + 7 - 7$   
 $-5 = x$ 

The solution is -5.

**46.** 
$$-8 = n + 1$$
  
 $-8 - 1 = n + 1 - 1$   
 $-9 = n$ 

The solution is -9.

47. 
$$4 = m-11$$
  
 $4+11 = m-11+11$   
 $15 = m$ 

The solution is 15.

**48.** 
$$-6 = y - 5$$
  
 $-6 + 5 = y - 5 + 5$   
 $-1 = y$ 

The solution is -1.

**49.** 
$$12 = 3 + w$$
  
  $12 - 3 = 3 - 3 + w$   
  $9 = w$ 

The solution is 9.

**50.** 
$$-9 = 5 + x$$

$$-9 - 5 = 5 - 5 + x$$

$$-14 = x$$

The solution is -14.

51. 
$$4 = -10 + b$$
$$4 + 10 = -10 + 10 + b$$
$$14 = b$$

The solution is 14.

**52.** 
$$-7 = -2 + x$$
  
 $-7 + 2 = -2 + 2 + x$   
 $-5 = x$ 

The solution is -5.

53. 
$$m + \frac{2}{3} = -\frac{1}{3}$$
$$m + \frac{2}{3} - \frac{2}{3} = -\frac{1}{3} - \frac{2}{3}$$
$$m = -1$$

The solution is -1.

54. 
$$c + \frac{3}{4} = -\frac{1}{4}$$

$$c + \frac{3}{4} - \frac{3}{4} = -\frac{1}{4} - \frac{3}{4}$$

$$c = -1$$

The solution is -1.

## 32 Chapter 2 First-Degree Equations and Inequalities



55. 
$$x - \frac{1}{2} = \frac{1}{2}$$
  
 $x - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$   
 $x = 1$ 

The solution is 1.

56. 
$$x - \frac{2}{5} = \frac{3}{5}$$
$$x - \frac{2}{5} + \frac{2}{5} = \frac{3}{5} + \frac{2}{5}$$
$$x = 1$$

The solution is 1.

57. 
$$\frac{5}{8} + y = \frac{1}{8}$$
$$\frac{5}{8} - \frac{5}{8} + y = \frac{1}{8} - \frac{5}{8}$$
$$y = -\frac{4}{8}$$
$$y = -\frac{1}{2}$$

The solution is  $-\frac{1}{2}$ .

58. 
$$\frac{4}{9} + a = -\frac{2}{9}$$
$$\frac{4}{9} - \frac{4}{9} + a = -\frac{2}{9} - \frac{4}{9}$$
$$a = -\frac{6}{9}$$
$$a = -\frac{2}{3}$$

The solution is  $-\frac{2}{3}$ .

59. 
$$-\frac{5}{6} = x - \frac{1}{4}$$

$$-\frac{5}{6} + \frac{1}{4} = x - \frac{1}{4} + \frac{1}{4}$$

$$-\frac{10}{12} + \frac{3}{12} = x$$

$$-\frac{7}{12} = x$$

The solution is  $-\frac{7}{12}$ .

60. 
$$-\frac{1}{4} = c - \frac{2}{3}$$

$$-\frac{1}{4} + \frac{2}{3} = c - \frac{2}{3} + \frac{2}{3}$$

$$-\frac{3}{12} + \frac{8}{12} = c$$

$$\frac{5}{12} = c$$

The solution is  $\frac{5}{12}$ .

**61.** 
$$d+1.3619 = 2.0148$$
  $d+1.3619-1.3619 = 2.0148-1.3619$   $d=0.6529$ 

The solution is 0.6529.

62. 
$$w + 2.932 = 4.801$$
  
 $w + 2.932 - 2.932 = 4.801 - 2.932$   
 $w = 1.869$ 

The solution is 1.869.

63. 
$$6.149 = -3.108 + z$$
$$6.149 + 3.108 = -3.108 + 3.108 + z$$
$$9.257 = z$$

The solution is 9.257.

64. 
$$5.237 = -2.014 + x$$
  
 $5.237 + 2.014 = -2.014 + 2.014 + x$   
 $7.251 = x$ 

The solution is 7.251.

### **Objective C Exercises**

**65.** 
$$5x = -15$$

$$\frac{5x}{5} = \frac{-15}{5}$$

$$x = -3$$

The solution is -3.

**66.** 
$$4y = -28$$

$$\frac{4y}{4} = \frac{-28}{4}$$

$$y = -7$$

The solution is -7.

**67.** 
$$3b = 0$$
  $\frac{3b}{3} = \frac{0}{3}$   $b = 0$ 

The solution is 0.

The solution is 0.

**69.** -3x = 6 $\frac{-3x}{-3} = \frac{6}{-3}$ x = -2

The solution is -2.

70. -5m = 20 $\frac{-5m}{-5} = \frac{20}{-5}$ m = -4

The solution is -4.

71.  $-\frac{1}{6}n = -30$   $-6\left(-\frac{1}{6}n\right) = -6(-30)$  n = 180

The solution is 180.

72.  $20 = \frac{1}{4}c$  $4(20) = 4\left(\frac{1}{4}c\right)$ 80 = c

The solution is 80.

73. 0 = -5x  $\frac{0}{-5} = \frac{-5x}{-5}$ 0 = x

The solution is 0.

74. 0 = -8a $\frac{0}{-8} = \frac{-8a}{-8}$ 0 = a

The solution is 0.

75.  $\frac{x}{3} = 2$  $3\left(\frac{x}{3}\right) = 3(2)$ x = 6

The solution is 6.

76.  $\frac{x}{4} = 3$   $4\left(\frac{1}{4}x\right) = 4(3)$  x = 12

The solution is 12.

77.  $-\frac{y}{2} = 5$  $-2\left(-\frac{1}{2}y\right) = -2(5)$ y = -10

The solution is -10.

78.  $-\frac{b}{3} = 6$   $-3\left(-\frac{1}{3}b\right) = -3(6)$  b = -18

The solution is -18.

79.  $\frac{3}{4}y = 9$   $\frac{4}{3}(\frac{3}{4}y) = \frac{4}{3}(9)$  y = 12

The solution is 12.

80.  $\frac{2}{5}x = 6$  $\frac{5}{2}\left(\frac{2}{5}x\right) = \frac{5}{2}(6)$ x = 15

The solution is 15.

**81.**  $-\frac{2}{3}d = 8$  $-\frac{3}{2}\left(-\frac{2}{3}d\right) = -\frac{3}{2}(8)$ d = -12

The solution is -12.

**82.**  $-\frac{3}{5}m = 12$  $-\frac{5}{3}\left(-\frac{3}{5}m\right) = -\frac{5}{3}(12)$ m = -20

The solution is -20.

## 34 Chapter 2 First-Degree Equations and Inequalities



83. 
$$\frac{2n}{3} = 0$$
$$\frac{3}{2} \left(\frac{2}{3}n\right) = \frac{3}{2}(0)$$
$$n = 0$$

The solution is 0.

84. 
$$\frac{5x}{6} = 0$$
$$\frac{6}{5} \left(\frac{5}{6}x\right) = \frac{6}{5}(0)$$
$$x = 0$$

The solution is 0.

**85.** 
$$\frac{-3z}{8} = 9$$
$$-\frac{8}{3} \left( -\frac{3}{8}z \right) = -\frac{8}{3}(9)$$
$$z = -24$$

The solution is -24.

**86.** 
$$\frac{3}{4}x = 2$$
  $\frac{4}{3}(\frac{3}{4}x) = \frac{4}{3}(2)$   $x = \frac{8}{3}$ 

The solution is  $\frac{8}{3}$ .

87. 
$$\frac{2}{9} = \frac{2}{3}y$$

$$\frac{3}{2}\left(\frac{2}{9}\right) = \frac{3}{2}\left(\frac{2}{3}y\right)$$

$$\frac{1}{3} = y$$

The solution is  $\frac{1}{3}$ .

**88.** 
$$-\frac{6}{7} = -\frac{3}{4}b$$

$$-\frac{4}{3}\left(-\frac{6}{7}\right) = -\frac{4}{3}\left(-\frac{3}{4}b\right)$$

$$\frac{8}{7} = b$$

The solution is  $\frac{8}{7}$ .

89. 
$$\frac{x}{1.46} = 3.25$$

$$1.46 \left(\frac{1}{1.46}x\right) = 1.46(3.25)$$

$$x = 4.745$$
The solution is 4.745.

90. 
$$\frac{z}{2.95} = -7.88$$
$$2.95 \left(\frac{1}{2.95}z\right) = 2.95(-7.88)$$
$$z = -23.246$$

The solution is -23.246.

91. 
$$3.47a = 7.1482$$
  
 $\frac{3.47a}{3.47} = \frac{7.1482}{3.47}$   
 $a = 2.06$ 

The solution is 2.06.

92. 
$$2.31m = 2.4255$$
  
 $\frac{2.31m}{2.31} = \frac{2.4255}{2.31}$   
 $m = 1.05$ 

The solution is 1.05.

93. 
$$2m + 5m = 49$$
$$7m = 49$$
$$\frac{7m}{7} = \frac{49}{7}$$
$$m = 7$$

The solution is 7.

94. 
$$5x + 2x = 14$$
  
 $7x = 14$   
 $\frac{7x}{7} = \frac{14}{7}$   
 $x = 2$ 

The solution is 2.

95. 
$$3n + 2n = 20$$

$$5n = 20$$

$$\frac{5n}{5} = \frac{20}{5}$$

$$n = 4$$

The solution is 4.

96. 
$$7d - 4d = 9$$
$$3d = 9$$
$$\frac{3d}{3} = \frac{9}{3}$$
$$c = 3$$

The solution is 3.

**97.** 
$$10y - 3y = 21$$
  
 $7y = 21$   
 $\frac{7y}{7} = \frac{21}{7}$ 

$$y = 3$$

The solution is 3.

98. 
$$2x - 5x = 9$$
$$-3x = 9$$
$$\frac{-3x}{-3} = \frac{9}{-3}$$
$$x = -3$$

The solution is -3.

### **Objective D Exercises**

103. 
$$P \cdot B = A$$
  
 $0.35(80) = A$   
 $A = 28$   
35% of 80 is 28.

**104.** 
$$P \cdot B = A$$
  
 $P(8) = 0.5$   
 $\frac{P(8)}{8} = \frac{0.5}{8}$   
 $P = 0.0625$   
 $P = 6.25\%$ 

The percent is 6.25%.

105. 
$$P \cdot B = A$$
  
 $0.012(60) = A$   
 $A = 0.72$   
 $1.2\%$  of 60 is 0.72.

106. 
$$P \cdot B = A$$
  
 $P(5) = 8$   
 $\frac{P(5)}{5} = \frac{8}{5}$   
 $P = 1.6$   
 $P = 160\%$ 

The percent is 160%.

107. 
$$P \cdot B = A$$
  
 $(1.25)B = 80$   
 $\frac{(1.25)B}{1.25} = \frac{80}{1.25}$   
 $B = 64$ 

The number is 64.

108. 
$$P \cdot B = A$$
  
 $P(20) = 30$   
 $\frac{P(20)}{20} = \frac{30}{20}$   
 $P = 1.5$   
 $P = 150\%$ 

The percent is 150%.

109. 
$$P \cdot B = A$$
  
 $P(50) = 12$   
 $\frac{P(50)}{50} = \frac{12}{50}$   
 $P = 0.24$   
 $P = 24\%$ 

The percent is 24%.

110. 
$$P \cdot B = A$$
  
 $P(125) = 50$   
 $\frac{P(125)}{125} = \frac{50}{125}$   
 $P = 0.40$   
 $P = 40\%$ 

The percent is 40%.

111. 
$$P \cdot B = A$$
  
 $0.18(40) = A$   
 $A = 7.2$   
18% of 40 is 7.2.

112. 
$$P \cdot B = A$$
  
 $0.25(60) = A$   
 $A = 15$   
25% of 60 is 15.

113. 
$$P \cdot B = A$$
  
 $0.12(B) = 48$   
 $\frac{0.12(B)}{0.12} = \frac{48}{0.12}$   
 $B = 400$ 

The number is 400.

114. 
$$P \cdot B = A$$
  
 $0.45(B) = 9$   
 $\frac{0.45(B)}{0.45} = \frac{9}{0.45}$   
 $B = 20$ 

The number is 20.

115. 
$$\frac{1}{3}(27) = A$$
  $\left(33\frac{1}{3}\% = \frac{1}{3}\right)$   
 $9 = A$   
 $33\frac{1}{3}\%$  of 27 is 9.

116. 
$$\frac{1}{6}(30) = A$$
  $\left(16\frac{2}{3}\% = \frac{1}{6}\right)$   
 $5 = A$   
 $16\frac{2}{3}\%$  percent of 30 is 5.

117. 
$$P(12) = 3$$
  
 $\frac{12P}{12} = \frac{3}{12}$   
 $P = 0.25$ 

The percent is 25%.

118. 
$$P(15) = 10$$
  
 $\frac{15P}{15} = \frac{10}{15}$   
 $P = \frac{2}{3}$ 

The percent is  $66\frac{2}{3}\%$ .

119. 
$$P \cdot B = A$$
  
 $P(6) = 12$   
 $\frac{P(6)}{6} = \frac{12}{6}$   
 $P = 2$   
 $P = 200\%$ 

The percent is 200%.

120. 
$$P \cdot B = A$$
  
 $P(16) = 20$   
 $\frac{P(16)}{16} = \frac{20}{16}$   
 $P = 1.25$   
 $P = 125\%$ 

The percent is 125%.

121. 
$$P \cdot B = A$$
  
 $0.0525B = 21$   
 $\frac{0.0525B}{0.0525} = \frac{21}{0.0525}$   
 $B = 400$   
The number is 400.

122. 
$$P \cdot B = A$$
  
 $0.375B = 15$   
 $\frac{0.375B}{0.375} = \frac{15}{0.375}$   
 $B = 40$ 

The number is 40.

123. 
$$P \cdot B = A$$
  
 $0.154(50) = A$   
 $A = 7.7$   
15.4% of 50 is 7.7.

124. 
$$P \cdot B = A$$
  
 $0.185(46) = A$   
 $A = 8.51$   
The number is 8.51.

125. 
$$P \cdot B = A$$
  
 $0.005B = 1$   
 $\frac{0.005B}{0.005} = \frac{1}{0.005}$   
 $B = 200$ 

126. 
$$P \cdot B = A$$
  
 $0.015B = 3$   
 $\frac{0.015B}{0.015} = \frac{3}{0.015}$   
 $B = 200$ 

The number is 200.

The number is 200.

127. 
$$P \cdot B = A$$
  
 $0.0075B = 3$   
 $\frac{0.0075B}{0.0075} = \frac{3}{0.0075}$   
 $B = 400$ 

The number is 400.

128. 
$$P \cdot B = A$$
  
 $0.005B = 3$   
 $\frac{0.005B}{0.005} = \frac{3}{0.005}$   
 $B = 600$ 

The number is 600.

129. 
$$P \cdot B = A$$
  
 $2.5(12) = A$   
 $A = 30$   
250% of 12 is 30.

**132. Strategy** To find the amount, solve the basic percent equations, using B = 100 and  $P = 66\frac{2}{3}\%$  or 0.6666... The amount is unknown.

### Solution

$$P \cdot B = A$$
  
0.66666...(100) =  $A$   
66.666... =  $A$ 

67 votes are needed to override a veto.

**133. Strategy** To find the percent, solve the basic percent equation  $P \cdot B = A$  using B = 26735 and A = 23126.

#### **Solution**

$$P \cdot B = A$$

$$P \cdot 26735 = 23126$$

$$P = \frac{23126}{26735}$$

$$P = 0.979$$

97.9% of those that started, finished.

**134. Strategy** To find the total users next year, solve the basic percent equation  $P \cdot B = A$  using P = 0.178 and A = 13.2.

#### **Solution**

$$P \cdot B = A$$
$$0.178B = 13.2$$
$$B \approx 74$$

The total water usage per day is 74 gal per person.

- **135.** Strategy To find the percent:
  - Add the deaths to get the total number.
  - •Add the deaths from a fall (30), fire (47), and drowning (200).
  - Solve the basic percent equation  $P \cdot B = A$  using B = total deaths and A = total deaths from a fall, fire, and drowning

#### **Solution**

Total deaths: 30+47+200+1950=2227Deaths from a fall, fire, or drowning: 30+47+200=277 $P \cdot B = A$ 

$$P2227 = 277$$

$$P \approx .12$$

12% of accidental deaths are not car accidents.

- **136.** You need to know the number of people three years old and older in the U.S that are enrolled in school.
- **137. Strategy** To find the percent, solve the basic percent equation  $P \cdot B = A$  using B = 2252 and A = 1850.

#### **Solution**

$$P \cdot B = A$$

$$P2252 = 1850$$

$$P \approx .821$$

The percent of the vacation costs that are charged is 82.1%.

**138. Strategy** To find the total electricity, solve the basic percent equation  $P \cdot B = A$  using P = 0.33 and A = 31.7.

#### Solution

$$P \cdot B = A$$
$$0.33B = 31.7$$
$$B \approx 96.1$$

The total electricity used was 96.1 billion killowatts.

**139. Strategy** To find the simple interest rate, solve the simple interest equation using I = \$72, P = \$1200, and t = 8 months  $= \frac{8}{12}$  years, for r.

#### **Solution**

$$I = Prt$$

$$72 = (1200)r \left(\frac{8}{12}\right)$$

$$72 = 800r$$

$$\frac{72}{800} = \frac{800r}{800}$$

$$0.09 = r$$

The annual simple interest rate is 9%.

**140. Strategy** To find the principal, solve the simple interest equation using I = \$300, r = 8% = 0.08, and t = 2 years, for P.

#### **Solution**

$$I = Prt$$

$$300 = P(0.08)(2)$$

$$300 = 0.16P$$

$$\frac{300}{0.16} = \frac{0.16P}{0.16}$$

$$1875 = P$$

Andrea must invest \$1875.

**141. Strategy** To find the interest, solve the simple interest equation for each account: First, using P = \$1000, r = 7.5% = 0.075, and t = 1 year, for I. Second, using P = 3000 - 1000 = \$2000, r = 8.25% = 0.0825, and t = 1 year, for I. Finally, find the total interest by adding the interest earned in each account.

#### **Solution**

I = Prt I = (1000)(0.075)(1) I = 75 I = Prt I = (2000)(0.0825)(1) I = 165 75 + 165 = \$240

Sal earned \$240 after one year.

**142. Strategy** To determine who will earn more interest after one year, solve the simple interest equation for each account: First, using P = \$2500, r = 8% = 0.08, and t = 1 year, for I. Second, using P = \$3000, r = 7% = 0.07, and t = 1 year, for I. Finally, compare the interest earned.

#### **Solution**

I = Prt I = (2500)(0.08)(1) I = 200 Americo's interest I = Prt I = (3000)(0.07)(1)I = 210 Octavia's interest

Americo's interest was \$200. Octavia's interest was \$210.

Octavia earns more interest after one year.

**143. Strategy** To find the amount of interest earned by Makana:

First, find the interest rate of Marlys by solving simple interest equation with I = 51, P = \$850, and t = 1 year, for r. Second, find Makana's interest rate by increasing Marlys' interest rate by 1%. Finally, using the rate found in the previous step, P = \$900, t = 1 year, and solve for I.

#### Solution

I = Prt 51 = (850)(r)(1)  $\frac{51}{850} = r$  0.06 = rMarlys' rate is 6%: 0.06 + 0.01 = 0.07 I = Prt I = (900)(0.07)(1)I = 63

Makana would earn \$63.

**144. Strategy** To determine how much was invested at 8%, solve the simple interest equation for each account:

First, using P = \$2000, r = 6% = 0.06, and t = 1 year, for I.

Second, using the amount of interest found the first step for I, r = 8% = 0.08, and t = 1 year, for P.

#### **Solution**

I = Prt I = (2000)(0.06)(1)I = 120

The interest on \$2000 at 6% is \$120.

I = Prt 120 = P(0.08)(1)  $\frac{120}{0.08} = P$  1500 = P

\$1500 was invested at 8%.

145. Strategy The principal for each

investment is the same amount. The time the interest accrued is the same for each account. If one account earns 6% and the other earns 9%, the combined interest earned is between 6% and 9%. To find simple interest rate on the combined accounts, solve the simple interest equation for each account:

First, using P = \$1000, r = 9% = 0.09, and t = 1 year, for I.

Second, using P = \$1000, r = 6% = 0.06, and t = 1 year, for I.

Finally, to find the combined interest rate, add the value of P = 1000 + 1000 = \$2000, and total the interest earned in both accounts, using the simple interest equation to find r.

#### **Solution**

I = Prt I = (1000)(0.09)(1) I = 90 I = Prt I = (1000)(0.06)(1) I = 60 90 + 60 = (2000)r(1)  $\frac{150}{2000} = \frac{2000r}{2000}$  0.075 = r

The interest rate earned on the combined accounts is between 6% and 9%.

**146. Strategy** To find the amount of platinum, solve the basic percent equation using P = 15% = 0.15 and

B = 12g. The amount is unknown.

#### **Solution**

$$PB = A$$
  
0.15(12) =  $A$   
1.8 =  $A$ 

There is 1.8 g of platinum in the necklace.

**147. Strategy** To find the percent, solve the basic percent equation using B = 250 and A = 5. The percent is the unknown.

#### **Solution**

$$PB = A P(250) = 5 \frac{250P}{250} = \frac{5}{250} P = 0.02$$

There is a 2% concentration of hydrogen peroxide.

**148. Strategy** To find the amount of wool, solve the basic percent equation using P = 75% = 0.75 and B = 175 lb. The amount is unknown.

### Solution

$$PB = A$$
  
 $0.75(175) = A$   
 $131.25 = A$ 

There is a 131.25 lb of wool in the carpet.

149. Strategy To find which brand has the greater concentration, solve the basic percent equation for Apple Dan's using B = 32 and A = 8. The percent is the unknown. Then solve the basic percent equation for the generic brand using B = 40 and A = 9. The percent is the unknown. Compare the percent of concentration.

### Solution

$$PB = A$$
 $P(32) = 8$ 
 $\frac{32P}{32} = \frac{8}{32}$ 
 $P = 0.25$  Apple Dan's

 $PB = A$ 
 $P(40) = 9$ 
 $\frac{40P}{40} = \frac{9}{40}$ 
 $P = 0.225$  generic

25% > 22.5%

Apple Dan's concentration is 25%. The generic's concentration is 22.5%. Apple Dan's has the greater concentration.

**150. Strategy** To find the percent, solve the basic percent equation using B = 500 + 500 = 1000 and A = 500. The percent is unknown.

### **Solution**

$$PB = A$$

$$P(1000) = 500$$

$$\frac{1000P}{1000} = \frac{500}{1000}$$

$$P = 0.5$$

The percent concentration is 50%.

**151. Strategy** To find the amount that is not glycerin, solve the basic percent equation, find the percent that is not glycerin using P = 100 - 75% = 25% = 0.25 and B = 50 g. The amount is unknown.

#### **Solution**

$$PB = A$$
  
 $0.25(50) = A$   
 $12.5 = A$ 

There is 12.5 g of cream that is not glycerin.

**152. Strategy** To find the percent, solve the basic percent equation using B = 100 + 50 = 150 and A = 100(9%) = 9. The percent is unknown.

#### **Solution**

$$PB = A$$
 $P(150) = 9$ 
 $\frac{150P}{150} = \frac{9}{150}$ 
 $P = 0.06$ 

The percent concentration is 6%.

**153. Strategy** To find the percent, solve the basic percent equation using B = 500 - 100 = 400 and A = 50. The percent is unknown.

#### **Solution**

$$PB = A$$

$$P(400) = 50$$

$$\frac{400P}{400} = \frac{50}{400}$$

$$P = 0.125$$

The percent concentration is 12.5%.

### **Objective E Exercises**

- 154. (a) greater than
  - (b) equal to
  - (c) 2 mi
- 155. (a) equal to
  - (b) less than
- **156. Strategy** To find the time, solve d = rt for t using d = 1069 km and r = 350.

#### **Solution**

$$d = rt$$

$$1069 = 350t$$

$$\frac{1069}{350} = \frac{350t}{350}$$

$$3.1 \approx t$$

The time to travel between the two cities is 3.1 h.

**157. Strategy** To find the number of miles per hour, solve d = rt for d using d = 20 mi and  $t = \frac{40}{60} = \frac{2}{3}$ h.

### Solution

$$d = rt$$

$$20 = r\left(\frac{2}{3}\right)$$

$$\frac{3}{2}(20) = r\left(\frac{2}{3}\right)\left(\frac{3}{2}\right)$$

$$30 = r$$

The dietician's average rate of speed is 30 mph.

**158. Strategy** To find the number of miles traveled, solve d = rt for d using r = 9 mph and  $t = \frac{20}{60} = \frac{1}{3} h$ .

#### **Solution**

$$d = rt$$

$$d = 9\left(\frac{1}{3}\right)$$

$$d = 3$$

The runner will travel 3 mi.

**159. Strategy** To find the number of miles traveled, solve d = rt for d using d = 27 mi and  $t = \frac{45}{60} = \frac{3}{4} h$ .

#### **Solution**

$$d = rt$$

$$27 = r\left(\frac{3}{4}\right)$$

$$36 = r$$

Marcella's average rate of speed is 36 mph.

**160. Strategy** To find the number of hours to complete the trip:

Find the number of hours riding by solvi

Find the number of hours riding by solving d = rt for t using d = 36 mi and r = 12 mph. Add the time taken for lunch (1 h) to the above time.

#### **Solution**

$$d = rt$$

$$36 = 12t$$

$$\frac{36}{12} = t$$

$$3 = r$$

$$3 + 1 + 1 + 4 + 4 + 1$$

It will take them 4 h to complete the trip.

**161. Strategy** To find the number of hours to walk the course:

Find the rate to run the course by solving d = rt for r using d = 30 km and t = 2 h.

Decrease the rate by 3 km/h to find his walking rate.

Solve for d = rt for t using d = 30 km and r equal to his walking rate.

#### **Solution**

$$d = rt$$

$$30 = r(2)$$

$$\frac{30}{2} = r$$

$$15 = r$$
 His running rate
$$15 - 3 = 12$$
 His walking rate
$$d = rt$$

$$30 = 12t$$

$$\frac{30}{12} = t$$

$$2.5 = t$$

It would take Palmer 2.5 h to walk the course.

**162. Strategy** The distance is 250 ft. Therefore d = 250. You are traveling at 5 ft/s and the moving sidewalk is traveling at 3 ft/s. Your rate is the sum of the two rates, or 8 ft/s. Therefore, r = 8. To find the time, solve d = rt for t.

#### **Solution**

$$d = rt$$

$$250 = 8t$$

$$\frac{250}{8} = t$$

$$31.25 = t$$

It would take 31.25 s to walk from one end to the other.

**163. Strategy** The distance is 8 mi. Therefore d = 8. The joggers are running toward each other, one at 5 mph and one at 7 mph. The rate is the sum of the two rates, or 12 mph. So, r = 12. To find the time solve d = rt for t. Convert the answer to minutes.

### Solution

$$d = rt$$

$$8 = 12t$$

$$\frac{8}{12} = t$$

$$\frac{2}{3} = t$$

$$\frac{2}{3} \text{ h} = \frac{2}{3} \cdot 60 \text{ min} = 40 \text{ min}$$

The two joggers will meet 40 min after they start.

- **164.** Strategy To find the time when they will meet:
  - find the distance the sQuba on top of the water will travel in using t = 3 and using t = t.
  - find the distance the sQuba on bottom of the water will travel in using t = 1.8 and using t = t.
  - the total of the two distances must be 1.6, so write an equation and solve for *t*.

#### **Solution**

On top: On bottom: d = rt d = rt d = 3t d = 1.8t 3t + 1.8t = 1.6 4.8t = 1.6 $\frac{4.8t}{4.8} = \frac{1.6}{4.8}$ 

$$t = \frac{1}{3}$$

$$\frac{1}{3} \cdot 60 \text{ min} = 20 \text{ min}$$

The sQuba on top of the water will be over the other sQuba in 20 min.

**165. Strategy** The two cyclists are traveling in opposite directions, one at 8 mph and one at 9 mph. The rate is the sum of the two rates, or 17 mph. So, r = 17. The time traveled is  $30 \text{ min} = \frac{1}{2} \text{ h}$ . So,  $t = \frac{1}{2}$ . To find the distance, solve d = rt for d.

### **Solution**

d = rt $d = 17 \cdot \frac{1}{2}$ 

The two cyclists are 8.5 mi apart.

**166. Strategy** The distance is 4 mi. So, d = 4. The canoe is traveling against a 2 mph current. In calm water they can paddle at 10 mph. The rate is 10 mph - 2 mph = 8 mph . So r = 8. Solve d = rt for t.

### **Solution**

d = rt 4 = 8t  $\frac{4}{8} = t$ 

It will take them 0.5 h.

167. Strategy To find the number of miles apart:Find the distance the first train travels by

solving d = rt for d using r = 45 and t = 2. Find the distance the second train travels by solving d = rt for d using r = 60 and t = 1. Find the difference between these distances.

#### Solution

First train: Second train:

d = rt d = rt d = 45(2) d = 60(1) d = 90 d = 6090 - 60 = 30

The trains are 30 mi apart.

## **Critical Thinking**

168.  $\frac{3y - 8y}{7} = 15$  $\frac{-5y}{7} = 15$  $\frac{7}{-5} \cdot \frac{-5y}{7} = 15 \cdot \frac{7}{-5}$ y = -21

The solution is -21.

# **NOT FOR SALE**

Section 2.1 43

169. 
$$\frac{2m+m}{5} = -9$$
$$\frac{3m}{5} = -9$$
$$\frac{5}{3} \cdot \frac{3m}{5} = -9 \cdot \frac{5}{3}$$
$$m = -15$$

The solution is -15.

170. 
$$\frac{1}{\frac{1}{x}} + 8 = -19$$
 $\frac{1}{\frac{1}{x}} + 8 - 8 = -19 - 8$ 
 $\frac{1}{\frac{1}{x}} = -27$ 
 $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = \frac{1}{x} \cdot (-27)$ 
 $1 = \frac{-27}{x}$ 
 $x \cdot 1 = x \cdot \frac{-27}{x}$ 
 $x = -27$ 

The solution is -27.

171. 
$$\frac{1}{\frac{1}{x}} = 5$$

$$\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = \frac{1}{x} \cdot 5$$

$$1 = \frac{5}{x}$$

$$x \cdot 1 = x \cdot \frac{5}{x}$$

$$x = 5$$

The solution is 5.

72. 
$$\frac{5}{7} - \frac{3}{7} = 6$$

$$\frac{7}{a} \cdot \frac{5}{7} - \frac{7}{a} \cdot \frac{3}{7} = \frac{7}{a} \cdot 6$$

$$5 - 3 = \frac{42}{a}$$

$$2 = \frac{42}{a}$$

$$a \cdot 2 = a \cdot \frac{42}{a}$$

$$2a = 42$$

$$\frac{2a}{2} = \frac{42}{2}$$

$$a = 21$$

The solution is 21.

173. 
$$\frac{4}{\frac{3}{b}} = 8$$

$$\frac{3}{b} \cdot \frac{4}{\frac{3}{b}} = \frac{3}{b} \cdot 8$$

$$4 = \frac{24}{b}$$

$$b \cdot 4 = b \cdot \frac{24}{b}$$

$$4b = 24$$

$$\frac{4b}{4} = \frac{24}{4}$$

$$b = 6$$

The solution is 6.



- 174. Strategy To find the p:
  - find the amount of the bill without tax by solving the equation B + BP = T for B, where P = 0.725 and T = 92.74
  - find the amount of the tip by solving BP = A for A using P = 0.15 and B as the total of the bill without tax.

### Solution

$$B + BP = T$$

$$B + B.0725 = 92.74$$

$$1.0725B = 92.74$$

$$\frac{1.0725B}{1.0725} = \frac{92.74}{1.0725}$$

$$B = 86.47$$

$$BP = A$$

$$86.47 \cdot 0.15 = A$$

$$13 \approx A$$

The tip should be \$13.

**175.** Lower

After the increase, the cost is now 1.1C (C+0.1C=1.1C). After the decrease, the new price is 0.99C [1.1C-0.1(1.1C)=1.1C-0.11C =0.99C].

- 176. B + PB = A B + 1B = 2BIt is 2 times its original amount.
- **177.** Employee B. If Employee B earned more before the raise and they got the same percent raise, then Employee B will get more after the raise.
- **178.** Employee B. If they earned the same before the raise and Employee B got a bigger percent raise, then Employee B will earn more after the raise.

### **Projects and Group Activities**

- **179.** Answers will vary. One example is x+7=9.
- **180.** Answer will vary. One example is 3x = -3.

181. 
$$\frac{3}{7} + \frac{1}{b} = 2$$

$$7b \cdot \frac{3}{7} + 7b \cdot \frac{1}{b} = 7b \cdot 2$$

$$3b + 7 = 14b$$

$$3b - 3b + 7 = 14b - 3b$$

$$7 = 11b$$

$$\frac{7}{11} = \frac{11b}{11}$$

$$\frac{7}{11} = b$$

The solution is  $\frac{7}{11}$ .

182. 
$$x+5=10-15$$
  
 $x+5=-5$   
 $x+5-5=-5-5$   
 $x=-10$   
 $x+5=15-10$   
 $x+5=5$   
 $x+5-5=5-5$   
 $x=0$   
 $x+10=5-15$   
 $x+10=-10$   
 $x+10-10=-10-10$   
 $x=-20$   
 $x+10=15-5$   
 $x+10=10$   
 $x+10-10=10-10$   
 $x=0$   
 $x+15=5-10$   
 $x+15=5$   
 $x+15-15=-5-15$   
 $x=-20$   
 $x+15=5$   
 $x=-10$ 

- **a.** The largest solution is 0.
- b. The smallest solution is -20.

- 183. a. Strategy To find the percent for each region:
  - find the total population by adding the number in each region (67.4, 113.6, 72.2, and 55.8)
  - find the percent by solving BP = A for P using A = the total population and B as the population for each region.

#### **Solution**

Total: 
$$67.4 + 113.6 + 72.2 + 55.8 = 309$$

| Midwest: 21.8%         | South: 36.8%            |
|------------------------|-------------------------|
| BP = A                 | BP = A                  |
| 309P = 67.4            | 309P = 113.6            |
| $P = \frac{67.4}{309}$ | $P = \frac{113.6}{309}$ |
| P = 0.218              | P = 0.368               |

West: 23.4% Northwest: 18.1% 
$$BP = A$$
  $BP = A$   $309P = 72.2$   $309P = 55.8$   $P = \frac{72.2}{309}$   $P = 0.234$   $P = 0.181$ 

- b. South, South
- **c.** Strategy To find the percent California, solve the formula BP = A for P using P = the total population and A = 38.

#### **Solution**

$$BP = A$$

$$309P = 38$$

$$P = \frac{38}{309}$$

$$P = 0.123$$

- 12.3% of the population lives in California.
- **d. Strategy** To find the population for Wyoming, solve the formula BP = A for A using B = the total population and P = 0.00168.

#### **Solution**

$$BP = A$$

$$309(0.00168) = A$$

$$0.52 = P$$

0.52 million = 520,000

The population of Wyoming is 520,000.

e. Answers will vary.

## **Section 2.2**

### **Concept Check**

- 1. a and i, b and iii, c and ii, d and iv
- 2. False
- **3.** 5; 8
- **4.** 18
- 5. True
- **6.** True
- 7. Subtract 2x from each side.
- **8.** −2

### **Objective A Exercises**

9. 
$$3x + 1 = 10$$
$$3x + 1 - 1 = 10 - 1$$
$$3x = 9$$
$$\frac{3x}{3} = \frac{9}{3}$$
$$x = 3$$

The solution is 3.

10. 
$$4y + 3 = 11$$
$$4y + 3 - 3 = 11 - 3$$
$$4y = 8$$
$$\frac{4y}{4} = \frac{8}{4}$$
$$y = 2$$

The solution is 2.

11. 
$$2a-5=7$$
  
 $2a-5+5=7+5$   
 $2a = 12$   
 $\frac{2a}{2} = \frac{12}{2}$   
 $a = 6$ 

The solution is 6.

12. 
$$5m - 6 = 9$$
  
 $5m - 6 + 6 = 9 + 6$   
 $5m = 15$   
 $\frac{5m}{5} = \frac{15}{5}$   
 $m = 3$ 

The solution is 3.



13. 
$$5 = 4x + 9$$

$$5 - 9 = 4x + 9 - 9$$

$$-4 = 4x$$

$$\frac{-4}{4} = \frac{4x}{4}$$

$$-1 = x$$

The solution is -1.

14. 
$$2 = 5b + 12$$
$$2 - 12 = 5b + 12 - 12$$
$$-10 = 5b$$
$$\frac{-10}{5} = \frac{5b}{5}$$
$$-2 = b$$

The solution is -2.

15. 
$$2x - 5 = -11$$
$$2x - 5 + 5 = -11 + 5$$
$$2x = -6$$
$$\frac{2x}{2} = \frac{-6}{2}$$
$$x = -3$$

The solution is -3.

16. 
$$3n - 7 = -19$$
$$3n - 7 + 7 = -19 + 7$$
$$3n = -12$$
$$\frac{3n}{3} = \frac{-12}{3}$$
$$n = -4$$

The solution is -4.

17. 
$$4-3w = -2$$

$$4-4-3w = -2-4$$

$$-3w = -6$$

$$\frac{-3w}{-3} = \frac{-6}{-3}$$

$$w = 2$$

The solution is 2.

18. 
$$5-6x = -13$$

$$5-6-6x = -13-5$$

$$-6x = -18$$

$$\frac{-6x}{-6} = \frac{-18}{-6}$$

$$x = 3$$
The solution is 3.

19. 8-3t = 2 8-8-3t = 2-8 -3t = -6  $\frac{-3t}{-3} = \frac{-6}{-3}$  t = 2

The solution is 2.

20. 
$$12-5x = 7$$
$$12-12-5x = 7-12$$
$$-5x = -5$$
$$\frac{-5x}{-5} = \frac{-5}{-5}$$
$$x = 1$$

The solution is 1.

21. 
$$4a - 20 = 0$$
$$4a - 20 + 20 = 0 + 20$$
$$4a = 20$$
$$\frac{4a}{4} = \frac{20}{4}$$
$$a = 5$$

The solution is 5.

$$3y - 9 = 0$$

$$3y - 9 + 9 = 0 + 9$$

$$3y = 9$$

$$\frac{3y}{3} = \frac{9}{3}$$

$$y = 3$$

The solution is 3.

23. 
$$6 + 2b = 0$$
  
 $6 - 6 + 2b = 0 - 6$   
 $2b = -6$   
 $\frac{2b}{2} = \frac{-6}{2}$   
 $b = -3$ 

The solution is -3.

24. 
$$10 + 5m = 0$$
$$10 - 10 + 5m = 0 - 10$$
$$5m = -10$$
$$\frac{5m}{5} = \frac{-10}{5}$$
$$m = -2$$

The solution is -2.

25. 
$$-2x + 5 = -7$$

$$-2x + 5 - 5 = -7 - 5$$

$$-2x = -12$$

$$\frac{-2x}{-2} = \frac{-12}{-2}$$

$$x = 6$$

The solution is 6.

26. 
$$-5d + 3 = -12$$
$$-5d + 3 - 3 = -12 - 3$$
$$-5d = -15$$
$$\frac{-5d}{-5} = \frac{-15}{-5}$$
$$d = 3$$

The solution is 3.

27. 
$$-1.2x + 3 = -0.6$$
$$-1.2x + 3 - 3 = -0.6 - 3$$
$$-1.2x = -3.6$$
$$\frac{-1.2x}{-1.2} = \frac{-3.6}{-1.2}$$
$$x = 3$$

The solution is 3.

28. 
$$-1.3 = -1.1y + 0.9$$
$$-1.3 - 0.9 = -1.1y + 0.9 - 0.9$$
$$-2.2 = -1.1y$$
$$\frac{-2.2}{-1.1} = \frac{-1.1y}{-1.1}$$
$$2 = y$$

The solution is 2.

29. 
$$2 = 7 - 5a$$
  
 $2 - 7 = 7 - 7 - 5a$   
 $-5 = -5a$   
 $\frac{-5}{-5} = \frac{-5a}{-5}$   
 $1 = a$ 

The solution is 1.

30. 
$$3 = 11 - 4n$$
  
 $3 - 11 = 11 - 11 - 4n$   
 $-8 = -4n$   
 $\frac{-8}{-4} = \frac{-4n}{-4}$   
 $2 = n$   
The solution is 2.

31. -35 = -6b + 1-35 - 1 = -6b + 1 - 1-36 = -6b $\frac{-36}{-6} = \frac{-6b}{-6}$ 6 = b

The solution is 6.

32. 
$$-8x + 3 = -29$$
$$-8x + 3 - 3 = -29 - 3$$
$$-8x = -32$$
$$\frac{-8x}{-8} = \frac{-32}{-8}$$
$$x = 4$$

The solution is 4.

33. 
$$-3m - 21 = 0$$
$$-3m - 21 + 21 = 0 + 21$$
$$-3m = 21$$
$$\frac{-3m}{-3} = \frac{21}{-3}$$
$$m = -7$$

The solution is -7.

34. 
$$-5x - 30 = 0$$

$$-5x - 30 + 30 = 0 + 30$$

$$-5x = 30$$

$$\frac{-5x}{-5} = \frac{30}{-5}$$

$$x = -6$$

The solution is -6.

35. 
$$-4y + 15 = 15$$
$$-4y + 15 - 15 = 15 - 15$$
$$-4y = 0$$
$$\frac{-4y}{-4} = \frac{0}{-4}$$
$$y = 0$$

The solution is 0.

36. 
$$-3x + 19 = 19$$
$$-3x + 19 - 19 = 19 - 19$$
$$-3x = 0$$
$$\frac{-3x}{-3} = \frac{0}{-3}$$
$$x = 0$$

The solution is 0.

37. 
$$9-4x = 6$$

$$9-9-4x = 6-9$$

$$-4x = -3$$

$$\frac{-4x}{-4} = \frac{-3}{-4}$$

$$x = \frac{3}{4}$$

The solution is  $\frac{3}{4}$ .

38. 
$$3t - 2 = 0$$
$$3t - 2 + 2 = 0 + 2$$
$$3t = 2$$
$$\frac{3t}{3} = \frac{2}{3}$$
$$t = \frac{2}{3}$$

The solution is  $\frac{2}{3}$ .

39. 
$$9x - 4 = 0$$
  
 $9x - 4 + 4 = 0 + 4$   
 $9x = 4$   
 $\frac{9x}{9} = \frac{4}{9}$   
 $x = \frac{4}{9}$ 

The solution is  $\frac{4}{9}$ .

40. 
$$7 - 8z = 0$$

$$7 - 7 - 8z = 0 - 7$$

$$-8z = -7$$

$$\frac{-8z}{-8} = \frac{-7}{-8}$$

$$z = \frac{7}{8}$$

The solution is  $\frac{7}{8}$ .

41. 
$$1-3x = 0$$

$$1-1-3x = 0-1$$

$$-3x = -1$$

$$\frac{-3x}{-3} = \frac{-1}{-3}$$

$$x = \frac{1}{3}$$

The solution is  $\frac{1}{3}$ .

42. 
$$9d + 10 = 7$$
  
 $9d + 10 - 10 = 7 - 10$   
 $9d = -3$   
 $\frac{9d}{9} = \frac{-3}{9}$   
 $d = -\frac{3}{9}$   
 $d = -\frac{1}{3}$ 

The solution is  $-\frac{1}{3}$ .

43. 
$$12w + 11 = 5$$
$$12w + 11 - 11 = 5 - 11$$
$$12w = -6$$
$$\frac{12w}{12} = \frac{-6}{12}$$
$$w = -\frac{6}{12}$$
$$w = -\frac{1}{2}$$

The solution is  $-\frac{1}{2}$ .

44. 
$$6y-5 = -7$$

$$6y-5+5 = -7+5$$

$$6y = -2$$

$$\frac{6y}{6} = \frac{-2}{6}$$

$$y = -\frac{2}{6}$$

$$y = -\frac{1}{3}$$

The solution is  $-\frac{1}{3}$ .

45. 
$$8b-3 = -9$$
  
 $8b-3+3 = -9+3$   
 $8b = -6$   
 $\frac{8b}{8} = \frac{-6}{8}$   
 $b = -\frac{6}{8}$   
 $b = -\frac{3}{4}$ 

The solution is  $-\frac{3}{4}$ .

46. 
$$5-6m = 2$$

$$5-5-6m = 2-5$$

$$-6m = -3$$

$$\frac{-6m}{-6} = \frac{-3}{-6}$$

$$m = \frac{3}{6}$$

$$m = \frac{1}{2}$$

The solution is  $\frac{1}{2}$ .

47. 
$$7-9a = 4$$
  
 $7-7-9a = 4-7$   
 $-9a = -3$   
 $\frac{-9a}{-9} = \frac{-3}{-9}$   
 $a = \frac{3}{9}$   
 $a = \frac{1}{3}$ 

The solution is  $\frac{1}{3}$ .

48. 
$$9 = -12c + 5$$

$$9 - 5 = -12c + 5 - 5$$

$$4 = -12c$$

$$\frac{4}{-12} = \frac{-12c}{-12}$$

$$-\frac{4}{12} = c$$

$$-\frac{1}{3} = c$$

The solution is  $-\frac{1}{3}$ .

49. 
$$10 = -18x + 7$$

$$10 - 7 = -18x + 7 - 7$$

$$3 = -18x$$

$$\frac{3}{-18} = \frac{-18x}{-18}$$

$$-\frac{3}{18} = x$$

$$-\frac{1}{6} = x$$

The solution is  $-\frac{1}{6}$ .

50. 
$$5y + \frac{3}{7} = \frac{3}{7}$$
$$5y + \frac{3}{7} - \frac{3}{7} = \frac{3}{7} - \frac{3}{7}$$
$$5y = 0$$
$$\frac{5y}{5} = \frac{0}{5}$$
$$y = 0$$

The solution is 0.

51. 
$$9x + \frac{4}{5} = \frac{4}{5}$$
$$9x + \frac{4}{5} - \frac{4}{5} = \frac{4}{5} - \frac{4}{5}$$
$$9x = 0$$
$$\frac{9x}{9} = \frac{0}{9}$$
$$x = 0$$

The solution is 0.

52. 
$$0.8 = 7d + 0.1$$
$$0.8 - 0.1 = 7d + 0.1 - 0.1$$
$$0.7 = 7d$$
$$\frac{0.7}{7} = \frac{7d}{7}$$
$$0.1 = d$$

The solution is 0.1.

53. 
$$0.9 = 10x - 0.6$$
$$0.9 + 0.6 = 10x - 0.6 + 0.6$$
$$1.5 = 10x$$
$$\frac{1.5}{10} = \frac{10x}{10}$$
$$0.15 = x$$

The solution is 0.15.

54. 
$$-6y+5=13$$

$$-6y+5-5=13-5$$

$$-6y=8$$

$$\frac{-6y}{-6} = \frac{8}{-6}$$

$$y = -\frac{8}{6}$$

$$y = -\frac{4}{3}$$

The solution is  $-\frac{4}{3}$ .

55. 
$$-4x+3=9$$

$$-4x+3-3=9-3$$

$$-4x=6$$

$$\frac{-4x}{-4} = \frac{6}{-4}$$

$$x = -\frac{6}{4}$$

$$x = -\frac{3}{2}$$

The solution is  $-\frac{3}{2}$ .

56. 
$$\frac{1}{2}a - 3 = 1$$

$$\frac{1}{2}a - 3 + 3 = 1 + 3$$

$$\frac{1}{2}a = 4$$

$$2\left(\frac{1}{2}a\right) = 2 \cdot 4$$

$$a = 8$$

The solution is 8.

57. 
$$\frac{1}{3}m - 1 = 5$$

$$\frac{1}{3}m - 1 + 1 = 5 + 1$$

$$\frac{1}{3}m = 6$$

$$3\left(\frac{1}{3}m\right) = 3 \cdot 6$$

$$m = 18$$

The solution is 18.

58. 
$$\frac{2}{5}y + 4 = 6$$

$$\frac{2}{5}y + 4 - 4 = 6 - 4$$

$$\frac{2}{5}y = 2$$

$$\frac{5}{2}(\frac{2}{5}y) = \frac{5}{2}(2)$$

$$y = 5$$

The solution is 5.

59. 
$$\frac{3}{4}n + 7 = 13$$
$$\frac{3}{4}n + 7 - 7 = 13 - 7$$
$$\frac{3}{4}n = 6$$
$$\frac{4}{3}(\frac{3}{4}n) = \frac{4}{3}(6)$$
$$n = 8$$

The solution is 8.

**60.** 
$$-\frac{2}{3}x + 1 = 7$$
$$-\frac{2}{3}x + 1 - 1 = 7 - 1$$
$$-\frac{2}{3}x = 6$$
$$-\frac{3}{2}\left(-\frac{2}{3}x\right) = -\frac{3}{2}(6)$$
$$x = -9$$

The solution is -9.

61. 
$$-\frac{3}{8}b + 4 = 10$$
$$-\frac{3}{8}b + 4 - 4 = 10 - 4$$
$$-\frac{3}{8}b = 6$$
$$-\frac{8}{3}(-\frac{3}{8}b) = -\frac{8}{3}(6)$$
$$b = -16$$

The solution is -16.

62. 
$$\frac{x}{4} - 6 = 1$$

$$\frac{x}{4} - 6 + 6 = 1 + 6$$

$$\frac{x}{4} = 7$$

$$4\left(\frac{1}{4}x\right) = 4 \cdot 7$$

$$x = 28$$

The solution is 28.

63. 
$$\frac{y}{5} - 2 = 3$$

$$\frac{y}{5} - 2 + 2 = 3 + 2$$

$$\frac{y}{5} = 5$$

$$5\left(\frac{1}{5}y\right) = 5 \cdot 5$$

$$y = 25$$

The solution is 25.

64. 
$$\frac{2x}{3} - 1 = 5$$

$$\frac{2x}{3} - 1 + 1 = 5 + 1$$

$$\frac{2x}{3} = 6$$

$$\frac{3}{2} \left(\frac{2}{3}x\right) = \frac{3}{2}(6)$$

$$x = 9$$

The solution is 9.

65. 
$$\frac{2}{3}x - \frac{5}{6} = -\frac{1}{3}$$

$$6\left(\frac{2}{3}x - \frac{5}{6}\right) = 6\left(-\frac{1}{3}\right)$$

$$4x - 5 = -2$$

$$4x = 3$$

$$x = \frac{3}{4}$$

The solution is  $\frac{3}{4}$ .

66. 
$$\frac{5}{4}x + \frac{2}{3} = \frac{1}{4}$$

$$12\left(\frac{5}{4}x + \frac{2}{3}\right) = 12\left(\frac{1}{4}\right)$$

$$15x + 8 = 3$$

$$15x = -5$$

$$x = -\frac{1}{3}$$

The solution is  $-\frac{1}{3}$ .

The solution is 
$$-\frac{1}{3}$$
.

67.  $\frac{1}{2} - \frac{2}{3}x = \frac{1}{4}$ 
 $12\left(\frac{1}{2} - \frac{2}{3}x\right) = 12\left(\frac{1}{4}\right)$ 
 $6 - 8x = 3$ 
 $-8x = -3$ 
 $x = \frac{3}{8}$ 

The solution is  $\frac{3}{2}$ 

The solution is  $\frac{3}{8}$ .

68. 
$$\frac{3}{4} - \frac{3}{5}x = \frac{19}{20}$$
$$20\left(\frac{3}{4} - \frac{3}{5}x\right) = 20\left(\frac{19}{20}\right)$$
$$15 - 12x = 19$$
$$-12x = 4$$
$$x = -\frac{1}{3}$$

The solution is  $-\frac{1}{3}$ .

69. 
$$\frac{3}{2} = \frac{5}{6} + \frac{3x}{8}$$
$$\frac{3}{2} - \frac{5}{6} = \frac{5}{6} - \frac{5}{6} + \frac{3x}{8}$$
$$\frac{2}{3} = \frac{3x}{8}$$
$$\frac{8}{3} \left(\frac{2}{3}\right) = \frac{8}{3} \left(\frac{3x}{8}\right)$$
$$\frac{16}{9} = x$$

The solution is  $\frac{16}{9}$ .

70. 
$$-\frac{1}{4} = \frac{5}{12} + \frac{5x}{6}$$

$$-\frac{1}{4} - \frac{5}{12} = \frac{5}{12} - \frac{5}{12} + \frac{5x}{6}$$

$$-\frac{2}{3} = \frac{5x}{6}$$

$$\frac{6}{5} \left(-\frac{2}{3}\right) = \frac{6}{5} \left(\frac{5x}{6}\right)$$

$$-\frac{4}{5} = x$$

The solution is  $-\frac{4}{5}$ .

71. 
$$\frac{11}{27} = \frac{4}{9} - \frac{2x}{3}$$

$$\frac{11}{27} - \frac{4}{9} = \frac{4}{9} - \frac{4}{9} - \frac{2x}{3}$$

$$-\frac{1}{27} = -\frac{2x}{3}$$

$$-\frac{3}{2} \left(-\frac{1}{27}\right) = -\frac{3}{2} \left(-\frac{2x}{3}\right)$$

$$\frac{1}{18} = x$$

The solution is  $\frac{1}{18}$ .



72. 
$$\frac{37}{24} = \frac{7}{8} - \frac{5x}{6}$$
$$24\left(\frac{37}{24}\right) = 24\left(\frac{7}{8} - \frac{5x}{6}\right)$$
$$37 = 21 - 20x$$
$$37 - 21 = 21 - 20x - 21$$
$$16 = -20x$$
$$-\frac{4}{5} = x$$

The solution is  $-\frac{4}{5}$ .

73. 
$$7 = \frac{2x}{5} + 4$$

$$7 - 4 = \frac{2x}{5} + 4 - 4$$

$$3 = \frac{2x}{5}$$

$$\frac{5}{2}(3) = \frac{5}{2} \left(\frac{2}{5}x\right)$$

$$\frac{15}{2} = x$$

The solution is  $\frac{15}{2}$ .

74. 
$$5 - \frac{4}{7}c = 8$$

$$5 - 5 - \frac{4}{7}c = 8 - 5$$

$$-\frac{4}{7}c = 3$$

$$-\frac{7}{4}\left(-\frac{4}{7}c\right) = -\frac{7}{4}(3)$$

$$c = -\frac{21}{4}$$

The solution is  $-\frac{21}{4}$ .

75. 
$$7 - \frac{5}{9}y = 9$$

$$7 - 7 - \frac{5}{9}y = 9 - 7$$

$$-\frac{5}{9}y = 2$$

$$-\frac{9}{5}\left(-\frac{5}{9}y\right) = -\frac{9}{5}(2)$$

$$y = -\frac{18}{5}$$

The solution is  $-\frac{18}{5}$ .

76. 
$$6a + 3 + 2a = 11$$
  
 $8a + 3 = 11$   
 $8a + 3 - 3 = 11 - 3$   
 $8a = 8$   
 $\frac{8a}{8} = \frac{8}{8}$   
 $a = 1$ 

The solution is 1.

77. 
$$5y + 9 + 2y = 23$$
  
 $7y + 9 = 23$   
 $7y + 9 - 9 = 23 - 9$   
 $7y = 14$   
 $\frac{7y}{7} = \frac{14}{7}$   
 $y = 2$ 

The solution is 2.

78. 
$$7x - 4 - 2x = 6$$
  
 $5x - 4 = 6$   
 $5x - 4 + 4 = 6 + 4$   
 $5x = 10$   
 $\frac{5x}{5} = \frac{10}{5}$   
 $x = 2$ 

The solution is 2.

79. 
$$11z - 3 - 7z = 9$$

$$4z - 3 = 9$$

$$4z - 3 + 3 = 9 + 3$$

$$4z = 12$$

$$\frac{4z}{4} = \frac{12}{4}$$

$$z = 3$$

The solution is 3.

**80.** 
$$2x - 6x + 1 = 9$$
$$-4x + 1 = 9$$
$$-4x + 1 - 1 = 9 - 1$$
$$-4x = 8$$
$$\frac{-4x}{-4} = \frac{8}{-4}$$
$$x = -2$$

The solution is -2.

- 81. Negative
- **82.** Positive
- **83.** Negative

**84.** Positive

85. 
$$3x + 4y = 13$$
 when  $y = -2$   
 $3x + 4(-2) = 13$   
 $3x - 8 = 13$   
 $3x - 8 + 8 = 13 + 8$   
 $3x = 21$   
 $\frac{3x}{3} = \frac{21}{3}$   
 $x = 7$ 

The solution is 7.

86. 
$$2x-3y=8$$
, when  $y=0$   
 $2x-3(0)=8$   
 $2x=8$   
 $\frac{2x}{2}=\frac{8}{2}$   
 $x=4$   
The solution is 4.

87. 
$$4-5x = -1$$

$$4-4-5x = -1-4$$

$$-5x = -5$$

$$\frac{-5x}{-5} = \frac{-5}{-5}$$

$$x = 1$$

$$x^{2}-3x+1; x = 1$$

$$(1)^{2}-3(1)+1$$

$$1-3+1$$

$$-1$$

## **Objective B Exercises**

88. 
$$8x + 5 = 4x + 13$$
$$8x - 4x + 5 = 4x - 4x + 13$$
$$4x + 5 = 13$$
$$4x + 5 - 5 = 13 - 5$$
$$4x = 8$$
$$\frac{4x}{4} = \frac{8}{4}$$
$$x = 2$$

The solution is 2.

89. 
$$6y + 2 = y + 17$$

$$6y - y + 2 = y - y + 17$$

$$5y + 2 = 17$$

$$5y + 2 - 2 = 17 - 2$$

$$5y = 15$$

$$\frac{5y}{5} = \frac{15}{5}$$

$$y = 3$$

The solution is 3.

90. 
$$5x - 4 = 2x + 5$$
$$5x - 2x - 4 = 2x - 2x + 5$$
$$3x - 4 + 4 = 5 + 4$$
$$3x = 9$$
$$\frac{3x}{3} = \frac{9}{3}$$
$$x = 3$$

The solution is 3.

91. 
$$13b - 1 = 4b - 19$$
$$13b - 4b - 1 = 4b - 4b - 19$$
$$9b - 1 = -19$$
$$9b - 1 + 1 = -19 + 1$$
$$9b = -18$$
$$\frac{9b}{9} = \frac{-18}{9}$$
$$b = -2$$

The solution is -2.

92. 
$$15x - 2 = 4x - 13$$
$$15x - 4x - 2 = 4x - 4x - 13$$
$$11x - 2 = -13$$
$$11x - 2 + 2 = -13 + 2$$
$$11x = -11$$
$$\frac{11x}{11} = \frac{-11}{11}$$
$$x = -1$$

The solution is -1.

93. 
$$7a - 5 = 2a - 20$$

$$7a - 2a - 5 = 2a - 2a - 20$$

$$5a - 5 = -20$$

$$5a - 5 + 5 = -20 + 5$$

$$5a = -15$$

$$\frac{5a}{5} = \frac{-15}{5}$$

$$a = -3$$

The solution is -3.



94. 
$$3x + 1 = 11 - 2x$$
$$3x + 2x + 1 = 11 - 2x + 2x$$
$$5x + 1 = 11$$
$$5x + 1 - 1 = 11 - 1$$
$$5x = 10$$
$$\frac{5x}{5} = \frac{10}{5}$$
$$x = 2$$

The solution is 2.

95. 
$$n-2 = 6-3n$$

$$n+3n-2 = 6+3n+3n$$

$$4n-2 = 6$$

$$4n-2+2 = 6+2$$

$$4n = 8$$

$$\frac{4n}{4} = \frac{8}{4}$$

$$n = 2$$

The solution is 2.

96. 
$$2x - 3 = -11 - 2x$$
$$2x + 2x - 3 = -11 - 2x + 2x$$
$$4x - 3 = -11$$
$$4x - 3 + 3 = -11 + 3$$
$$4x = -8$$
$$\frac{4x}{4} = \frac{-8}{4}$$
$$x = -2$$

The solution is -2.

97. 
$$4y - 2 = -16 - 3y$$

$$4y + 3y - 2 = -16 - 3y + 3y$$

$$7y - 2 = -16$$

$$7y - 2 + 2 = -16 + 2$$

$$7y = -14$$

$$\frac{7y}{7} = \frac{-14}{7}$$

$$y = -2$$

The solution is -2.

98. 
$$0.2b + 3 = 0.5b + 12$$

$$0.2b - 0.5b + 3 = 0.5b - 0.5b + 12$$

$$-0.3b + 3 = 12$$

$$-0.3b + 3 - 3 = 12 - 3$$

$$-0.3b = 9$$

$$\frac{-0.3b}{-0.3} = \frac{9}{-0.3}$$

$$b = -30$$

The solution is -30.

99. 
$$m + 0.4 = 3m + 0.8$$

$$m - 3m + 0.4 = 3m - 3m + 0.8$$

$$-2m + 0.4 = 0.8$$

$$-2m + 0.4 - 0.4 = 0.8 - 0.4$$

$$-2m = 0.4$$

$$\frac{-2m}{-2} = \frac{0.4}{-2}$$

$$m = -0.2$$

The solution is -0.2.

100. 
$$4y - 8 = y - 8$$
$$4y - y - 8 = y - y - 8$$
$$3y - 8 = -8$$
$$3y - 8 + 8 = -8 + 8$$
$$3y = 0$$
$$\frac{3y}{3} = \frac{0}{3}$$
$$y = 0$$

The solution is 0.

101. 
$$5a + 7 = 2a + 7$$
$$5a - 2a + 7 = 2a - 2a + 7$$
$$3a + 7 = 7$$
$$3a + 7 - 7 = 7 - 7$$
$$3a = 0$$
$$\frac{3a}{3} = \frac{0}{3}$$
$$a = 0$$

The solution is 0.

102. 
$$6-5x = 8-3x$$

$$6-5x + 3x = 8-3x + 3x$$

$$6-2x = 8$$

$$6-6-2x = 8-6$$

$$-2x = 2$$

$$\frac{-2x}{-2} = \frac{2}{-2}$$

$$x = -1$$

The solution is -1.

103. 
$$10-4n = 16-n$$

$$10-4n+n = 16-n+n$$

$$10-3n = 16$$

$$10-10-3n = 16-10$$

$$-3n = 6$$

$$\frac{-3n}{-3} = \frac{6}{-3}$$

$$n = -2$$

The solution is -2.

# **NOT FOR SALE**

104. 
$$5+7x = 11+9x$$

$$5+7x-9x = 11+9x-9x$$

$$5-2x = 11$$

$$5-5-2x = 11-5$$

$$-2x = 6$$

$$\frac{-2x}{-2} = \frac{6}{-2}$$

$$x = -3$$

The solution is -3.

105. 
$$3-2y = 15 + 4y$$
$$3-2y-4y = 15 + 4y - 4y$$
$$3-6y = 15$$
$$3-3-6y = 15-3$$
$$-6y = 12$$
$$\frac{-6y}{-6} = \frac{12}{-6}$$
$$y = -2$$

The solution is -2.

106. 
$$2x - 4 = 6x$$
$$2x - 2x - 4 = 6x - 2x$$
$$-4 = 4x$$
$$\frac{-4}{4} = \frac{4x}{4}$$
$$-1 = x$$

The solution is -1.

107. 
$$2b - 10 = 7b$$
$$2b - 2b - 10 = 7b - 2b$$
$$-10 = 5b$$
$$\frac{-10}{5} = \frac{5b}{5}$$
$$-2 = b$$

The solution is -2.

108. 
$$8m = 3m + 20$$

$$8m - 3m = 3m - 3m + 20$$

$$5m = 20$$

$$\frac{5m}{5} = \frac{20}{5}$$

$$m = 4$$

The solution is 4.

109. 
$$9y = 5y + 16$$
$$9y - 5y = 5y - 5y + 16$$
$$4y = 16$$
$$\frac{4y}{4} = \frac{16}{4}$$
$$y = 4$$

The solution is 4.

110. 
$$8b + 5 = 5b + 7$$
  
 $8b - 5b + 5 = 5b - 5b + 7$   
 $3b + 5 = 7$   
 $3b + 5 - 5 = 7 - 5$   
 $3b = 2$   
 $\frac{3b}{3} = \frac{2}{3}$   
 $b = \frac{2}{3}$ 

The solution is  $\frac{2}{3}$ .

111. 
$$6y - 1 = 2y + 2$$

$$6y - 2y - 1 = 2y - 2y + 2$$

$$4y - 1 = 2$$

$$4y - 1 + 1 = 2 + 1$$

$$4y = 3$$

$$\frac{4y}{4} = \frac{3}{4}$$

$$y = \frac{3}{4}$$

The solution is  $\frac{3}{4}$ .

112. 
$$7x - 8 = x - 3$$

$$7x - x - 8 = x - x - 3$$

$$6x - 8 = -3$$

$$6x - 8 + 8 = -3 + 8$$

$$6x = 5$$

$$\frac{6x}{6} = \frac{5}{6}$$

$$x = \frac{5}{6}$$

The solution is  $\frac{5}{6}$ .

113. 
$$2y - 7 = -1 - 2y$$

$$2y + 2y - 7 = -1 - 2y + 2y$$

$$4y - 7 = -1$$

$$4y - 7 + 7 = -1 + 7$$

$$4y = 6$$

$$\frac{4y}{4} = \frac{6}{4}$$

$$y = \frac{3}{2}$$

The solution is  $\frac{3}{2}$ .

114. 
$$2m - 1 = -6m + 5$$

$$2m + 6m - 1 = -6m + 6m + 5$$

$$8m - 1 = 5$$

$$8m - 1 + 1 = 5 + 1$$

$$8m = 6$$

$$\frac{8m}{8} = \frac{6}{8}$$

$$m = \frac{3}{4}$$

The solution is  $\frac{3}{4}$ .

115. 
$$5x = 3x - 8$$

$$5x - 3x = 3x - 3x - 8$$

$$2x = -8$$

$$\frac{2x}{2} = \frac{-8}{2}$$

$$x = -4$$

$$4x + 2$$

$$= 4(-4) + 2$$

$$= -16 + 2$$

$$= -14$$

The answer is -14.

116. 
$$7x + 3 = 5x - 7$$

$$7x - 5x + 3 = 5x - 5x - 7$$

$$2x + 3 = -7$$

$$2x + 3 = -7 - 3$$

$$2x = -10$$

$$\frac{2x}{2} = \frac{-10}{2}$$

$$x = -5$$

$$3x - 2$$

$$= 3(-5) - 2$$

$$= -15 - 2$$

$$= -17$$

The answer is -17.

117. 
$$2-6a=5-3a$$
  $4a^2-2a+1$   $2-6a+3a=5-3a+3a$   $4(-1)^2-2(-1)+1$   $2-3a=5$   $2-2-3a=5-2$   $4(1)-2(-1)+1$   $2-3a=3$   $2-3a=3$ 

The answer is 7.

118. 
$$1-5c = 4-4c 
1-5c+4c = 4-4c+4c 
1-c = 4 
1-1-c = 4-1 
-c = 3 
-1(-c) = -1(3)$$

$$3c^2 - 4c + 2 
= 3(-3)^2 - 4(-3) + 2 
= 3(9) - 4(-3) + 2 
= 27 + 12 + 2 
= 39 + 2 
= 41 
c = -3$$

The answer is 41.

**Objective C Exercises** 

120. 
$$5x + 2(x + 1) = 23$$
  
 $5x + 2x + 2 = 23$   
 $7x + 2 = 23$   
 $7x + 2 - 2 = 23 - 2$   
 $7x = 21$   
 $\frac{7x}{7} = \frac{21}{7}$   
 $x = 3$ 

The solution is 3.

121. 
$$6y + 2(2y + 3) = 16$$
  
 $6y + 4y + 6 = 16$   
 $10y + 6 = 16$   
 $10y + 6 - 6 = 16 - 6$   
 $10y = 10$   
 $\frac{10y}{10} = \frac{10}{10}$   
 $y = 1$ 

The solution is 1.

122. 
$$9n - 3(2n - 1) = 15$$
  
 $9n - 6n + 3 = 15$   
 $3n + 3 = 15$   
 $3n + 3 - 3 = 15 - 3$   
 $3n = 12$   
 $\frac{3n}{3} = \frac{12}{3}$   
 $n = 4$ 

The solution is 4.

123. 
$$12x - 2(4x - 6) = 28$$
  
 $12x - 8x + 12 = 28$   
 $4x + 12 = 28$   
 $4x + 12 - 12 = 28 - 12$   
 $4x = 16$   
 $\frac{4x}{4} = \frac{16}{4}$   
 $x = 4$ 

The solution is 4.

124. 
$$7a - (3a - 4) = 12$$
  
 $7a - 3a + 4 = 12$   
 $4a + 4 = 12$   
 $4a + 4 - 4 = 12 - 4$   
 $4a = 8$   
 $\frac{4a}{4} = \frac{8}{4}$   
 $a = 2$ 

The solution is 2.

# **NOT FOR SALE**

125. 
$$9m - 4(2m - 3) = 11$$
  
 $9m - 8m + 12 = 11$   
 $m + 12 = 11$   
 $m + 12 - 12 = 11 - 12$   
 $m = -1$ 

The solution is -1.

126. 
$$5(3-2y)+4y = 3$$
  
 $15-10y+4y = 3$   
 $15-6y = 3$   
 $15-15-6y = 3-15$   
 $-6y = -12$   
 $\frac{-6y}{-6} = \frac{-12}{-6}$   
 $y = 2$ 

The solution is 2.

127. 
$$4(1-3x) + 7x = 9$$
  
 $4-12x + 7x = 9$   
 $4-5x = 9$   
 $4-4-5x = 9-4$   
 $-5x = 5$   
 $\frac{-5x}{-5} = \frac{5}{-5}$   
 $x = -1$ 

The solution is -1.

128. 
$$5y - 3 = 7 + 4(y - 2)$$

$$5y - 3 = 7 + 4y - 8$$

$$5y - 3 = -1 + 4y$$

$$5y - 4y - 3 = -1 + 4y - 4y$$

$$y - 3 = -1$$

$$y - 3 + 3 = -1 + 3$$

$$y = 2$$

The solution is 2.

129. 
$$0.22(x+6) = 0.2x + 1.8$$

$$0.22x + 1.32 = 0.2x + 1.8$$

$$0.22x - 0.2x + 1.32 = 0.2x - 0.2x + 1.8$$

$$0.02x + 1.32 = 1.8$$

$$0.02x + 1.32 - 1.32 = 1.8 - 1.32$$

$$0.02x = 0.48$$

$$\frac{0.02x}{0.02} = \frac{0.48}{0.02}$$

$$x = 24$$

The solution is 24.

130. 
$$0.05(4-x) + 0.1x = 0.32$$
  
 $0.2 - 0.05x + 0.1x = 0.32$   
 $0.2 + 0.05x = 0.32$   
 $0.2 - 0.2 + 0.05x = 0.32 - 0.2$   
 $0.05x = 0.12$   
 $\frac{0.05x}{0.05} = \frac{0.12}{0.05}$   
 $x = 2.4$ 

The solution is 2.4.

131. 
$$0.3x + 0.3(x + 10) = 300$$
  
 $0.3x + 0.3x + 3 = 300$   
 $0.6x + 3 = 300$   
 $0.6x + 3 - 3 = 300 - 3$   
 $0.6x = 297$   
 $\frac{0.6x}{0.6} = \frac{297}{0.6}$   
 $x = 495$ 

The solution is 495.

132. 
$$2a - 5 = 4(3a + 1) - 2$$
$$2a - 5 = 12a + 4 - 2$$
$$2a - 5 = 12a + 2$$
$$2a - 12a - 5 = 12a - 12a + 2$$
$$-10a - 5 = 2$$
$$-10a - 5 + 5 = 2 + 5$$
$$-10a = 7$$
$$\frac{-10a}{-10} = \frac{7}{-10}$$
$$a = -\frac{7}{10}$$

The solution is  $-\frac{7}{10}$ .

133. 
$$5 - (9 - 6x) = 2x - 2$$

$$5 - 9 + 6x = 2x - 2$$

$$-4 + 6x = 2x - 2$$

$$-4 + 6x - 2x = 2x - 2x - 2$$

$$-4 + 4x = -2$$

$$-4 + 4 + 4x = -2 + 4$$

$$4x = 2$$

$$\frac{4x}{4} = \frac{2}{4}$$

$$x = \frac{1}{2}$$

The solution is  $\frac{1}{2}$ .

134. 
$$7 - (5 - 8x) = 4x + 3$$
  
 $7 - 5 + 8x = 4x + 3$   
 $2 + 8x = 4x + 3$   
 $2 + 8x - 4x = 4x - 4x + 3$   
 $2 + 4x = 3$   
 $2 - 2 + 4x = 3 - 2$   
 $4x = 1$   
 $\frac{4x}{4} = \frac{1}{4}$   
 $x = \frac{1}{4}$ 

The solution is  $\frac{1}{4}$ .

135. 
$$32-4(y-1) = 3(2y+8)$$
  
 $32-4y+4=6y+24$   
 $36-4y=6y+24$   
 $18-12y=6y+24$   
 $18-12y-6y=6y-6y+24$   
 $18-18y=24$   
 $18-18-18y=24-18$   
 $-18y=6$   
 $\frac{-18y}{-18} = \frac{6}{-18}$   
 $y=-\frac{1}{3}$ 

The solution is  $-\frac{1}{3}$ .

136. 
$$52-(2x-4) = 2(5-3x)$$
  
 $52-2x+4 = 10-6x$   
 $56-2x = 10-6x$   
 $30-10x = 10-6x$   
 $30-10x+6x = 10-6x+6x$   
 $30-4x = 10$   
 $30-30-4x = 10-30$   
 $-4x = -20$   
 $\frac{-4x}{-4} = \frac{-20}{-4}$   
 $x = 5$ 

The solution is 5.

137. 
$$3a + 22 + 3(a - 1) = 2(3a + 4)$$
  
 $3a + 22 + 3a - 3 = 6a + 8$   
 $3a + 2 - 1 + 3a = 6a + 8$   
 $3a - 2 + 6a = 6a + 8$   
 $9a - 2 = 6a + 8$   
 $9a - 6a - 2 = 6a - 6a + 8$   
 $3a - 2 = 8$   
 $3a - 2 + 2 = 8 + 2$   
 $3a = 10$   
 $\frac{3a}{3} = \frac{10}{3}$   
 $a = \frac{10}{3}$ 

The solution is  $\frac{10}{3}$ .

138. 
$$5+31+2(2x-3) = 6(x+5)$$
  
 $5+31+4x-6 = 6x+30$   
 $5+3-5+4x = 6x+30$   
 $5-15+12x = 6x+30$   
 $-10+12x = 6x+30$   
 $-10+12x-6x = 6x-6x+30$   
 $-10+6x = 30$   
 $-10+10+6x = 30+10$   
 $6x = 40$   
 $\frac{6x}{6} = \frac{40}{6}$   
 $x = \frac{20}{3}$ 

The solution is  $\frac{20}{3}$ .

139. 
$$-24 - (3b + 2) = 5 - 2(3b + 6)$$
  
 $-24 - 3b - 2 = 5 - 6b - 12$   
 $-22 - 3b = -7 - 6b$   
 $-4 + 6b = -7 - 6b$   
 $-4 + 6b + 6b = -7 - 6b + 6b$   
 $-4 + 12b = -7$   
 $-4 + 4 + 12b = -7 + 4$   
 $12b = -3$   
 $\frac{12b}{12} = \frac{-3}{12}$   
 $b = -\frac{1}{4}$ 

The solution is  $-\frac{1}{4}$ .

# **NOT FOR SALE**

140. 
$$-4 \times -2(2x - 3) + 1 = 2x - 3$$
  
 $-4 \times -4x + 6 + 1 = 2x - 3$   
 $-4 -3x + 6 + 1 = 2x - 3$   
 $12x - 24 + 1 = 2x - 3$   
 $12x - 23 = 2x - 3$   
 $12x - 23 = 2x - 2x - 3$   
 $10x - 23 = -3$   
 $10x - 23 + 23 = -3 + 23$   
 $10x = 20$   
 $\frac{10x}{10} = \frac{20}{10}$   
 $x = 2$ 

The solution is 2.

The answer is 0.

142. 
$$9-5x = 12 - (6x + 7) \\
9-5x = 12 - 6x - 7 \\
9-5x = 5 - 6x \\
9-5x + 6x = 5 - 6x + 6x \\
9+x = 5 \\
9-9+x = 5-9 \\
x = -4$$

$$x^2 - 3x - 2 \\
= (-4)^2 - 3(-4) - 2 \\
= 16 - 3(-4) - 2 \\
= 16 + 12 - 2 \\
= 28 - 2 \\
= 26$$

The answer is 26.

#### **Objective D Exercises**

**143.** Strategy F = 14

Unknown: m

**Solution** 

$$F = 2.5 + 2.3(m - 1)$$

$$14 = 2.5 + 2.3m - 2.3$$

$$14 = 0.2 + 2.3m$$

$$14 - 0.2 = 0.2 - 0.2 + 2.3m$$

$$13.98 = 2.3m$$

$$\frac{13.98}{2.3} = \frac{2.3m}{2.3}$$

$$6.08 \approx m$$

The customer drove 6 mi.

**144.** Strategy 
$$F = 20.9$$

Unknown: m

Solution

$$F = 2.5 + 2.3(m-1)$$

$$20.9 = 2.5 + 2.3m - 2.3$$

$$20.9 = 0.2 + 2.3m$$

$$20.9 - 0.2 = 0.2 - 0.2 + 2.3m$$

$$20.7 = 2.3m$$

$$\frac{20.7}{2.3} = \frac{2.3m}{2.3}$$

$$9 = m$$

The customer drove 9 mi.

**145.** (a) 
$$8 - 3 = 5$$
 ft

- (b) The person who is 3 ft away.
- (c) No
- **146. Strategy** To find the force when the system balances, replace the variables  $F_1$ , x, and d in the lever system equation by the given values and solve for  $F_2$ .

#### **Solution**

$$F_1x = F_2(d-x)$$

$$1002 = F_2(10-2)$$

$$1002 = F_2 \cdot 8$$

$$200 = 8F_2$$

$$\frac{200}{8} = \frac{8F_2}{8}$$

$$25 = F_2$$

A 25-lb force must be applied to the other end.

**147. Solution** To find the location of the fulcrum when the system balances, replace the variables  $F_1$ ,  $F_2$ , and d in the lever system equation by the given values and solve for x.

#### **Solution**

$$F_1x = F_2(d-x)$$

$$70x = 175(14-x)$$

$$70x = 2450-175x$$

$$70x + 175x = 2450-175x + 175x$$

$$245x = 2450$$

$$\frac{245x}{245} = \frac{2450}{245}$$

$$x = 10$$

The fulcrum is 10 ft from the child.



**148. Strategy** To find the location of the fulcrum when the system balances, replace the variables  $F_1$ ,  $F_2$ , and d in the lever system equation by the given values and solve for x.

#### **Solution**

$$F_1x = F_2(d-x)$$

$$180x = 120(15-x)$$

$$180x = 1800 - 120x$$

$$180x + 120x = 1800$$

$$300x = 1800$$

$$\frac{300x}{300} = \frac{1800}{300}$$

$$x = 6$$

The fulcrum is 6 ft from the 180-lb person.

**149. Strategy** To find the location of the fulcrum when the system balances, replace the variables  $F_1$ ,  $F_2$ , and d in the lever system equation by the given values and solve for x.

#### **Solution**

$$F_1x = F_2(d-x)$$

$$90x = 60(12-x)$$

$$90x = 720 - 60x$$

$$90x + 60x = 720$$

$$150x = 720$$

$$\frac{150x}{150} = \frac{720}{150}$$

$$x = 4.8$$

The fulcrum is 4.8 ft from the 90-lb child.

**150. Strategy** To find the location of the fulcrum when the system balanced, replaces the variables  $F_1$ ,  $F_2$ , and d in the lever system equation by the given values and solve for x.

#### **Solution**

$$F_{1}x = F_{2}(d - x)$$

$$12 8x = 16 (018 - x)$$

$$12 8x = 28 80 - 16 0x$$

$$12 8x + 16 0x = 28 80 - 16 0x + 16 0x$$

$$28 8x = 28 80$$

$$\frac{28 8x}{28 8} = \frac{28 80}{28 8}$$

$$x = 10$$

The fulcrum is 10 ft from the 128–lb acrobat.

**151. Strategy** To find the force when the system balances, replace the variables  $F_2$ , x, and d in the lever system equation by the given values and solve for  $F_1$ .

#### **Solution**

$$F_1x = F_2(d-x)$$

$$F_1 \cdot 0.15 = 30(9-0.15)$$

$$F_1 \cdot 0.15 = 30(8.85)$$

$$0.15F_1 = 26.55$$

$$\frac{0.15F_1}{0.15} = \frac{26.55}{0.15}$$

$$F_1 = 17.70$$

A 1770-lb force is applied to the other end.

**152. Strategy** To find the break-even point, replace the variables *P*, *C*, and *F* in the cost equation by the given values and solve for *x*.

#### **Solution**

$$Px = Cx + F$$

$$1600x = 950x + 211,250$$

$$1600 - 950x = 211,250$$

$$650x = 211,250$$

$$x = 325$$

The break-even point is 325 laser printers.

**153. Strategy** To find the break-even point, replace the variables *P*, *C*, and *F* in the cost equation by the given values and solve for *x*.

#### **Solution**

$$Px = Cx + F$$

$$325x = 175x + 39,000$$

$$325x - 175x = 39,000$$

$$150x = 39,000$$

$$\frac{150x}{150} = \frac{39,000}{150}$$

$$x = 260$$

The break-even point is 260 barbecues.

**154. Strategy** To find the break-even point, replace the variables *P*, *C*, and *F* in the cost equation by the given values and solve for *x*.

### **Solution**

$$Px = Cx + F$$

$$99x = 38x + 24,400$$

$$99x - 38x = 24,400$$

$$61x = 24,400$$

$$\frac{61x}{61} = \frac{24,400}{61}$$

$$x = 400$$

The break-even point is 400 headphones.

**155. Strategy** To find the break-even point, replace the variables *P*, *C*, and *F* in the cost equation by the given values and solve for *x*.

#### **Solution**

$$Px = Cx + F$$

$$49x = 12x + 19,240$$

$$49x - 12x = 19,240$$

$$37x = 19,240$$

$$\frac{37x}{37} = \frac{19,240}{37}$$

$$x = 520$$

The break-even point is 520 recorders.

**156. Strategy** m = 10.4 Unknown: C

#### **Solution**

$$m = \frac{1}{6}(C - 5)$$

$$10.4 = \frac{1}{6}(C - 5)$$

$$10.4 = \frac{1}{6}C - \frac{5}{6}$$

$$6 \cdot 10.4 = 6 \cdot \frac{1}{6}C - 6 \cdot \frac{5}{6}$$

$$62.4 = C - 5$$

$$62.4 + 5 = C - 5 + 5$$

$$67.4 = C$$

The mammal consumes 67.4 ml/min.

**157. Strategy** m = 8.3 Unknown: C

### **Solution**

$$m = \frac{1}{6}(C-5)$$

$$8.3 = \frac{1}{6}(C-5)$$

$$8.3 = \frac{1}{6}C - \frac{5}{6}$$

$$6 \cdot 8.3 = 6 \cdot \frac{1}{6}C - 6 \cdot \frac{5}{6}$$

$$49.8 = C - 5$$

$$49.8 + 5 = C - 5 + 5$$

$$54.8 = C$$

The mammal consumes 54.8 ml/min.

## **Critical Thinking**

**158.** 
$$3(2x-1)-(6x-4)=-9$$
  
 $6x-3-6x+4=-9$   
 $1=-9$ 

No solution

159. 
$$\frac{1}{5}(25-10b)+4=\frac{1}{3}(9b-15)-6$$

$$5-2b+4=3b-5-6$$

$$9-2b=3b-11$$

$$9-2b-3b=3b-3b-11$$

$$9-5b=-11$$

$$9-9-5b=-11-9$$

$$-5b=-20$$

$$\frac{-5b}{-5}=\frac{-20}{-5}$$

$$b=4$$

The solution is 4.

160. 
$$3[4(w+2)-(w+1)] = 5(2+w)$$
  
 $3[4w+8-w-1] = 10+5w$   
 $3[3w+7] = 10+5w$   
 $9w+21=10+5w$   
 $9w-5w+21=10+5w-5w$   
 $4w+21=10$   
 $4w+21-21=10-21$   
 $4w=-11$   
 $\frac{4w}{4} = \frac{-11}{4}$   
 $w = -\frac{11}{4}$ 

The solution is  $-\frac{11}{4}$ .

161. 
$$\frac{2(5x-6)-3(x-4)}{7} = x+2$$

$$\frac{10x-12-3x+12}{7} = x+2$$

$$\frac{7x}{7} = x+2$$

$$x = x+2$$

$$x - x = x - x + 2$$

$$0 = 2$$

No solution

**162. Strategy** Let x = the number.

One-half the number:  $\frac{1}{2}x$ 

Two-thirds the number:  $\frac{2}{3}x$ 

#### **Solution**

$$\frac{1}{2}x = \frac{2}{3}x$$

$$\frac{1}{2}x - \frac{2}{3}x = \frac{2}{3}x - \frac{2}{3}x$$

$$\frac{3}{6}x - \frac{4}{6}x = 0$$

$$-\frac{1}{6}x = 0$$

$$-6 \cdot \left(-\frac{1}{6}x\right) = -6 \cdot 0$$

$$x = 0$$

The number is 0.

- **163.** 3x-4(x-1) is an expression, not an equation. There must be a equals sign to have an equation. You cannot solve an expression.
- **164.** Many beginning algebra students do not differentiate between an equation that has no solution and an equation whose solution is zero. Students should explain that the solution of the equation 2x + 3 = 3 is the (real) number zero. However, there is no solution of x = x + 1 because there is no (real) number that is equal to the number plus 1.

**165. Strategy** Let x be the number. Subtract 4 from the number: x - 4

300% of the result: 3(x-4)

### **Solution**

$$3(x-4) = x$$

$$3x-12 = x$$

$$3x-3x-12 = x-3x$$

$$-12 = -2x$$

$$\frac{-12}{-2} = \frac{-2x}{-2}$$

$$6 = x$$

The number is 6.

## **Projects and Group Activities**

- **166. Strategy** To find *x*;
  - replace t with x + 4 in the equation s = 3t 1
  - replace s with the result in the equation s = 5x 3
  - solve for *x*

#### **Solution**

$$s = 3t - 1$$

$$s = 5x - 3$$

$$s = 3(x + 4) - 1$$

$$3x + 11 = 5x - 3$$

$$s = 3x + 12 - 1$$

$$3x - 3x + 11 = 5x - 3x - 3$$

$$11 = 2x - 3$$

$$11 + 3 = 2x - 3 + 3$$

$$14 = 2x$$

$$\frac{14}{2} = \frac{2x}{2}$$

$$7 = x$$

The value of x is 7.

**167.** Strategy Let x be the population in 1990.

Population after 10,000 increase: x + 10,000

Population after 10% decrease:

$$x+10,000-0.1(x+10,000)$$

$$x + 10,000 - 0.1x - 1000$$

0.9x + 9000

6000 more than the beginning:

0.9x + 9000 = x + 6000

### Solution

$$0.9x + 9000 = x + 6000$$

$$0.9x - 0.9x + 9000 = x - 0.9x + 6000$$

$$9000 = 0.1x + 6000$$

$$9000 - 6000 = 0.1x + 6000 - 6000$$

$$3000 = 0.1x$$

$$\frac{3000}{0.1} = \frac{0.1x}{0.1}$$

The population in 1990 was 30,000.

30,000 = x

## **Section 2.3**

## **Concept Check**

- 1. True
- 2. True
- 3. Ttue
- **4. a.** 12 x
  - **b.** 12 x
- **5.** equals
- **6.** consecutive
- **7.** 1; 2; 2
- **8.** whole; low-fat;

### **Objective A Exercises**

**9.** the unknown number: x

The difference between a number and 15

is seven

$$x-15 = 7$$

$$x-15+15 = 7+15$$

$$x = 22$$

The number is 22.

**10.** the unknown number: *x* 

The sum of five and a number

is three

5 + x = 3

$$5-5+x=3-5$$
$$x=-2$$

The number is -2.

11. the unknown number: x

The difference between nine and a number

s seven

9 - x = 7

$$9 - 9 - x = 7 - 9$$

$$-x = -2$$

$$\frac{-1x}{-1} = \frac{-2}{-1}$$

x = 2

The number is 2.

**12.** the unknown number: x

Three-fifths of a number

is negative thirty

 $\frac{3}{5}x = -30$ 

 $\frac{5}{3} \left( \frac{3}{5} x \right) = \frac{5}{3} (-30)$ 

x = -50

The number is -50.

**13.** the unknown number: *x* 

The difference between five and twice a number

is

one

5 - 2x = 1<br/>5 - 5 - 2x = 1 - 5

-2x = -4

$$\frac{-2x}{-2} = \frac{-4}{-2}$$

$$x = 2$$

The number is 2.



**14.** the unknown number: x

| Four more than three |    |          |
|----------------------|----|----------|
| Tour more than three | is | thirteen |
| times a number       | 15 | timiteen |
| 3x + 4 = 13          |    |          |
| 3x + 4 - 4 = 13 - 4  |    |          |
| 3x = 0               |    |          |

$$3x = 9$$

$$\frac{3x}{3} = \frac{9}{3}$$

$$x = 3$$

The number is 3.

15. the unknown number: x

| The sum of twice a            | is fifteen |
|-------------------------------|------------|
| number and five               | is litteen |
| 2x + 5 = 15                   | •          |
| 2x + 5 - 5 = 15 - 5           |            |
| 2x = 10                       |            |
| $\frac{2x}{2} = \frac{10}{2}$ |            |
| x = 5                         |            |

The number is 5.

**16.** the unknown number: x

The difference between nine times a number and six is twelve 9x - 6 = 12 9x - 6 + 6 = 12 + 6 9x = 18  $9x = \frac{18}{9}$ 

The number is 2.

17. the unknown number: x

Six less than four times a number 4x - 6 = 22 4x - 6 + 6 = 22 + 6 4x = 28  $\frac{4x}{4} = \frac{28}{4}$  x = 7is twenty-two

The number is 7.

**18.** the unknown number: *x* 

Four times the sum of twice a number and three 4(2x+3) = 12 8x+12=12 8x+12-12=12-12 8x=0  $\frac{8x}{8} = \frac{0}{8}$  x = 0

The number is 0.

**19.** the unknown number: *x* 

Three times the difference between four times a number and seven 3(4x-7) = 15 12x-21=15 12x-21+21=15+21 12x=36  $\frac{12x}{12} = \frac{36}{12}$ 

The number is 3.

**20.** the unknown number: *x* 

Twice the difference between a number and twenty-five

x = 3

three times the number

two times

the larger

is

$$2(x-25) = 3x$$
$$2x-50 = 3x$$
$$2x-2x-50 = 3x-2x$$
$$-50 = x$$

The number is -50.

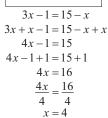
21. the smaller number: *x* 

Three

the larger number: 20 - x

times the smaller 3x = 2(20 - x) 3x = 40 - 2x 3x + 2x = 40 - 2x + 2x 5x = 40  $\frac{5x}{5} = \frac{40}{5}$  x = 8

20 - x = 20 - 8 = 12The smaller number is 8.


The larger number is 12.

22. the smaller number: x the larger number: 15 - x

One less than three times the smaller

is equal to

the larger



$$15 - x = 15 - 4 = 11$$

The smaller number is 4.

The larger number is 11.

23. the smaller number: x the larger number: 14-x

The difference between two times the smaller and the larger

one

is

$$2x - (14 - x) = 1$$

$$2x - 14 + x = 1$$

$$3x - 14 = 1$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$

$$14 - x = 14 - 5 = 9$$

The smaller number is 5.

The larger number is 9.

24. the smaller number: x the larger number: 18 - x

The total of three times the smaller

is forty-four

and twice the larger
$$3x+2(18-x) = 44$$

$$3x+36-2x = 44$$

$$x+36=44$$

$$x+36-36=44-36$$

$$x=8$$

$$18-x=18-8=10$$

The smaller number is 8.

The larger number is 10.

**25.** First odd integer: *n* 

Second odd integer: n + 2

Third odd integer: n + 4

The sum of the three integers is 51.

$$n + (n + 2) + (n + 4) = 51$$

$$3n + 6 = 51$$

$$3n = 45$$

$$n = 15$$

$$n + 2 = 15 + 2 = 17$$

$$n + 4 = 15 + 4 = 19$$

The three integers are 15, 17, and 19.

**26.** First even integer: *n* 

Second even integer: n + 2

Third even integer: n + 4

The sum of the three integers is -18.

$$n + (n + 2) + (n + 4) = -18$$

$$3n + 6 = -18$$

$$3n = -24$$

$$n = -8$$

$$n + 2 = -8 + 2 = -6$$

$$n + 4 = -8 + 4 = -4$$

The three integers are -8, -6, and -4.

**27.** First odd integer: *n* 

Second odd integer: n + 2

Third odd integer: n + 4

Three times the second number is one more than the sum of the first and third numbers.

$$3(n+2) = 1 + n + (n+4)$$

$$3n+6 = 5 + 2n$$

$$n+6 = 5$$

$$n = -1$$

$$n+2 = -1 + 2 = 1$$

$$n+4 = -1 + 4 = 3$$

The three integers are -1, 1, and 3.

**28.** First odd integer: *n* 

Second odd integer: n + 2

Third odd integer: n + 4

Twice the first number equals seven more than the largest number.

$$2n = 7 + (n + 4)$$

$$2n = 11 + n$$

$$n = 11$$

$$n + 2 = 11 + 2 = 13$$

$$n + 4 = 11 + 4 = 15$$

The three integers are 11, 13, and 15.



## **29.** First even integer: *n*

Second even integer: n + 2

Three times the first integer equals twice the second integer.

$$3n = 2(n+2)$$
$$3n = 2n+4$$
$$n = 4$$

n = 4n + 2 = 4 + 2 = 6

The integers are 4 and 6.

## **30.** First even integer: *n*

Second even integer: n + 2

Four times the first equals three times the second.

$$4n = 3(n+2)$$
$$4n = 3n+6$$
$$n = 6$$

n+2=6+2=8

The integers are 6 and 8.

### **31.** (iii)

### **Objective B Exercises**

32.

19,200

is

three-fifths of the original number

$$19200 = \frac{3}{5}x$$

$$\frac{5}{3} \cdot 19200 = \frac{5}{3} \cdot \frac{3}{5}x$$
$$32000 = x$$

The original value was \$32,000.

33.

320

is

one-fourth of the length of the Golden Gate Bridge

$$320 = \frac{1}{4}x$$

$$4 \cdot 320 = 4 \cdot \frac{1}{4}x$$

$$1280 = x$$

The Golden Gate Bridge is 1280 ft.

34.

Orange

has

one-fifth of 290 calories

$$x = \frac{1}{5} \cdot 290$$

x = 58

An orange has 58 calories.

35.

\$1400 million

was

one-sixty-fifth of gross national product

$$1400 = \frac{1}{65}x$$

$$65 \cdot 1400 = 65 \cdot \frac{1}{65}x$$

91,000

91,000 million = 91 billion

The gross national product was \$91 billion.

### **36.** Strategy Let x = amount of iron

15x = amount of mulch

2x = amount of potassium

The total is 18

Solution

$$x + 15x + 2x = 18$$

$$18x = 18$$

$$\frac{18x}{18} = \frac{18}{18}$$

$$x = 1$$

x = 1 lb iron

15x = 15(1) = 15 lb mulch

There are 15 lb of mulch.

**37.** Strategy To find the length of the sides of the triangle, write and solve an equation using x to represent the length of an equal side.

#### Solution

Perimeter of 23 ft is 
$$\begin{bmatrix} x & \text{ft} + x & \text{ft} + x & \text{ft} + x & \text{ft} + x & \text{ft} \end{bmatrix}$$

$$23 = x + x + (2x - 1)$$

$$23 = 4x - 1$$

$$24 = 4x$$

$$\frac{24}{4} = x$$

$$6 = x$$

$$2x - 1 = 12 - 1 = 11$$

The length of the sides are 6 ft, 6 ft and 11 ft.

**38.** Strategy To find the lengths of the sides of the triangle, write and solve an equation using x to represent the length of each equal side is then 3x + 2.

#### Solution

Perimeter of 46 m is 
$$(3x+2) m + (3x+2) m+x m$$

$$46 = 3x + 2 + 3x + 2 + x$$

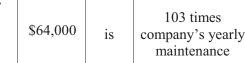
$$46 = 7x + 4$$

$$42 = 7x$$

$$\frac{42}{7} = x$$

$$6 = x$$

$$3x + 2 = 3(6) + 2 = 20$$


The lengths of the sides are 20 m, 20 m, and 6 m.

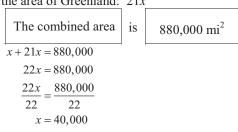
39. Strategy Level of 
$$tv = 70$$
  
Blender =  $70 + 20 = 90$   
Jet engine =  $2(90) - 40$ 

### Solution

$$2(90) - 40 = 180 - 40 = 140$$
  
The jet engine is 140 decibels.

**40.** 




$$64000 = 103x$$

$$\frac{64000}{103} = \frac{103x}{103}$$

$$621.36 \approx x$$

The company's yearly cost for a robot was \$600

**41.** the area of Iceland: *x* the area of Greenland: 21*x* 



21(40,000) = 840,000The area of Greenland is 840,000 mi<sup>2</sup>.

**42.** hours of labor: x

\$820 is \$375 and \$89 per hour

$$820 = 375 + 89x$$

$$820 - 375 = 375 - 375 + 89x$$

$$445 = 89x$$

$$\frac{445}{89} = \frac{89x}{89}$$

$$5 = x$$

5 h of labor were required.

**43. Strategy** To find the number of kilowatt hours, write and solve an equation using *x* to represent the number of kilowatt hours over 300.

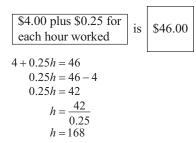
#### **Solution**

The total cost is \$\[ \\$51.95 \]
$$0.08(300) + 0.13x = 51.95$$

$$24 + 0.13x = 51.95$$

$$0.13x = 51.95 - 24$$

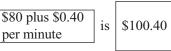
$$0.13x = 27.95$$


$$x = \frac{27.95}{0.13}$$

$$x = 215$$

The total number of kilowatt hours is 300 + 215 = 515. The family used 515 kWh.

**44. Strategy** To find the number of hours worked, write and solve an equation using *h* to represent the number of hours worked.


#### **Solution**



The union member worked 168 h during March.

**45. Strategy** To find the amount of time that the phone was used, write and solve an equation using *x* to represent the amount of time.

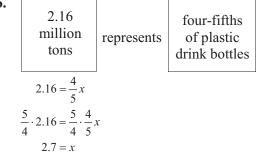
#### **Solution**



$$80 + 0.40x = 100.40$$

$$0.40x = 100.40 - 80$$

$$0.40x = 20.40$$


$$x = \frac{20.40}{0.40}$$

$$x = 51$$

$$900 + 51 = 951$$

The business executive used the phone for 951 min.

46.



There were 2.7 million tons of plastic drink bottles stocked for sale.

- **47.** \$.15
- **48.** \$2.99

## **Critical Thinking**

**49. Strategy** length of the shorter piece: x perimeter of the shorter square: x length of the longer piece: 12 - x perimeter of the longer piece: 12 - x

#### Solution

perimeter of the larger square is twice the perimeter of the shorter square 
$$12-x=2x$$

$$12-x+x=2x+x$$

$$12=3x$$

$$\frac{12}{3}=\frac{3x}{3}$$

$$4=x$$

$$12-4=8$$

The perimeter of the larger square is 8 ft.

**50.** 
$$\frac{1}{3}$$

- **51. Strategy** To find the time remaining:
  - find the time to complete the whole trip
  - subtract the time completed  $\frac{1}{2}$  h from the whole trip to get the time remaining.

one-half hour

#### **Solution**

three-fifths of

the trip

$$\frac{3}{5}t = \frac{1}{2}$$

$$\frac{5}{3} \cdot \frac{3}{5}t = \frac{5}{3} \cdot \frac{1}{2}$$

$$t = \frac{5}{6}$$

$$\frac{5}{6} - \frac{1}{2} = \frac{5}{6} - \frac{3}{6} = \frac{2}{6} = \frac{1}{3}$$

$$\frac{1}{3} \text{ h is remaining.}$$

in

**52.** money in cash drawer at beginning: x one-half was used in the morning:  $\frac{1}{2}x$  one-third of the remaining was used in the

afternoon: 
$$\frac{1}{3} \left( \frac{1}{2} x \right) = \frac{1}{6} x$$
  
 $x - \frac{1}{2} x - \frac{1}{6} x = 5$   
 $\frac{6}{6} x - \frac{3}{6} x - \frac{1}{6} x = 5$   
 $\frac{2}{6} x = 5$   
 $\frac{1}{3} x = 5$   
 $3 \cdot \frac{1}{3} x = 3 \cdot 5$ 

There were \$15 in the cash drawer at the start of the day.

53. first number: n second consecutive even number: n + 2 third consecutive even number: n + 4 fourth consecutive even number: n + 6 The sum of the four number is -36.

$$n+n+2+n+4+n+6=-36$$

$$4n+12=-36$$

$$4n+12-12=-36-12$$

$$4n=-48$$

$$\frac{4n}{4}=\frac{-48}{4}$$

$$n=-12$$

$$n+2=-12+2=-10$$

$$n+4 = -12+4 = -8$$

$$n+6 = -12+6 = -6$$

The integers are -12, -10, -8, and -6.

**54.** first number: n second consecutive odd number: n+2

third consecutive odd number: n + 4 fourth consecutive odd number: n + 6 The sum of the four number is -48.

$$n+n+2+n+4+n+6 = -48$$

$$4n+12 = -48$$

$$4n+12-12 = -48-12$$

$$4n = -60$$

$$\frac{4n}{4} = \frac{-60}{4}$$

$$n+2=-15+2=-13$$
  
 $n+4=-15+4=-11$ 

$$n+6=-15+6=-9$$

The integers are -15, -13, -11 and -9.

n = -15

55. first number: n second consecutive odd number: n + 2 third consecutive odd number: n + 4 The sum of the first and the third is twice the second.

$$n+n+4 = 2(n+2)$$
$$2n+4 = 2n+4$$

Since an identity is true for all values, any three consecutive odd integers will make this true.

**56.** first number: n second consecutive number: n + 1 third consecutive number: n + 2

fourth consecutive number: n + 2

The sum of the first and the fourth is equal to the sum of the second and the third.

$$n+n+3 = n+1+n+2$$
  
 $2n+2 = 2n+3$ 

Since an identity is true for all values, any four consecutive even integers will make this true.

# **Projects or Group Activities**

**57.** even

**58.** odd

**59.** even

**60.** even

**61.** even

**62.** even

**63.** even

## **Check Your Progress: Chapter 2**

1. 
$$\begin{array}{c|cccc}
2a(a-1) = 3a + 3 \\
\hline
2(3)(3-1) & 3(3) + 3 \\
6(2) & 9 + 3 \\
12 & 12
\end{array}$$

Yes

2. 
$$x+7=-4$$
  
 $x+7-7=-4-7$   
 $x=-11$ 

The solution is -11.

3. 
$$-3y = -27$$
  
 $\frac{-3y}{-3} = \frac{-27}{-3}$   
 $y = 9$ 

The solution is 9.

4. 
$$P \cdot B = A$$
  
 $0.45 \cdot 160 = A$   
 $72 = A$   
The 72 is 45% of 160.

5. 
$$6-4a = -10$$
  
 $6-6-4a = -10-6$   
 $-4a = -16$   
 $\frac{-4a}{-4} = \frac{-16}{-4}$   
 $a = 4$ 

The solution is 4.

6. 
$$8t+1=-1$$

$$8\left(-\frac{1}{4}\right)+1 -1$$

$$-2+1 -1$$

$$-1$$
Yes

7. 
$$\frac{1}{6} + b = -\frac{1}{3}$$

$$\frac{6}{1} \cdot \frac{1}{6} + 6 \cdot b = \frac{6}{1} \left( -\frac{1}{3} \right)$$

$$1 + 6b = -2$$

$$6b = -3$$

$$b = -\frac{1}{2}$$

The solution is  $-\frac{1}{2}$ .

8. 
$$5x-4(3-x) = 2(x-1)-3$$

$$5x-12+4x = 2x-2-3$$

$$9x-12 = 2x-5$$

$$9x-2x-12 = 2x-2x-5$$

$$7x-12 = -5$$

$$7x-12+12 = -5+12$$

$$7x = 7$$

$$\frac{7x}{7} = \frac{7}{7}$$

$$x = 1$$

The solution is 1.

**9.** Strategy Solve the equation  $P \cdot B = A$  for B using P = 0.18 and A = 27.

# **Solution** $P \cdot B = A$ 0.18B = 27

$$\frac{0.18B = 27}{0.18} = \frac{27}{0.18}$$
$$B = 150$$

18% of 150 is 27.

10. 
$$6y+5-8y=3-4y$$

$$-2y+5=3-4y$$

$$-2y+4y+5=3-4y+4y$$

$$2y+5=3$$

$$2y+5-5=3-5$$

$$2y=-2$$

$$\frac{2y}{2}=\frac{-2}{2}$$

The solution is -1.

y = -1

12. 
$$84 = -16 + t$$
  
 $84 + 16 = -16 + 16 + t$   
 $100 = t$ 

The solution is 100.

13. 
$$\frac{3}{4}c = \frac{3}{5}$$
$$\frac{4}{3} \cdot \frac{3}{4}c = \frac{4}{3} \cdot \frac{3}{5}$$
$$c = \frac{4}{5}$$

The solution is  $\frac{4}{5}$ .

14. 
$$9 = \frac{1}{2}d - 5$$
$$9 + 5 = \frac{1}{2}d - 5 + 5$$
$$14 = \frac{1}{2}d$$
$$2 \cdot 14 = 2 \cdot \frac{1}{2}d$$
$$28 = d$$

The solution is 28.

**15.** Strategy Solve  $P \cdot B = A$  for P using 170 for B and 42.5 for A.

## **Solution**

$$P \cdot B = A$$

$$P \cdot 170 = 42.5$$

$$\frac{P170}{170} = \frac{42.5}{170}$$

$$P = 0.25$$
42.5 is 25% of 170.

16. 
$$-\frac{8}{9} = -\frac{2}{3}y$$

$$-\frac{3}{2} \left( -\frac{8}{9} \right) = -\frac{3}{2} \left( -\frac{2}{3}y \right)$$

$$\frac{4}{3} = y$$

The solution is  $\frac{4}{3}$ .

17. 
$$3n+2(n-4)=7$$
  
 $3n+2n-8=7$   
 $5n-8=7$   
 $5n-8+8=7+8$   
 $5n=15$   
 $\frac{5n}{5}=\frac{15}{5}$   
 $n=3$ 

The solution is 3.

18. 
$$3x - 8 = 5x + 6$$
$$3x - 3x - 8 = 5x - 3x + 6$$
$$-8 = 2x + 6$$
$$-8 - 6 = 2x + 6 - 6$$
$$-14 = 2x$$
$$\frac{-14}{2} = \frac{2x}{2}$$
$$-7 = x$$

The solution is -7.

19. 
$$2[3-5(x-1)] = 7x-1$$
  
 $2[3-5x+5] = 7x-1$   
 $2[8-5x] = 7x-1$   
 $16-10x = 7x-1$   
 $16-10x-7x = 7x-7x-1$   
 $16-17x = -1$   
 $16-16-17x = -1-16$   
 $-17x = -17$   
 $\frac{-17x}{-17} = \frac{-17}{-17}$   
 $x = 1$ 

The solution is 1.

20. 
$$18 = 2t$$

$$\frac{18}{2} = \frac{2t}{2}$$

$$9 = t$$

The solution is 9.



## **21.** the unknown number: x

| The quotient of |  |
|-----------------|--|
| fifteen and an  |  |
| unknown number  |  |

is -3

$$\frac{15}{x} = -3$$

$$x\left(\frac{15}{x}\right) = x(-3)$$

$$15 = -3x$$

$$15 = -3x$$

The number is -5.

-5 = x

### **22.** First odd integer: *x*

Second odd integer: x + 2Third odd integer: x + 4Fourth odd integer: x + 6The sum of the integers is 24. x+x+2+x+4+x+6=24

$$2+x+4+x+6 = 24$$

$$4x+12 = 24$$

$$4x+12-12 = 24-12$$

$$4x = 12$$

$$\frac{4x}{4} = \frac{12}{4}$$

$$x = 3$$
  
 $x + 2 = 5$   
 $x + 4 = 7$   
 $x + 6 = 9$ 

The integers are 3, 5, 7, and 9.

# **23. Strategy** Solve the equation B + BP = A for A using 1970 for B and 0.116 for P.

x = 3

#### **Solution**

$$B + BP = A$$

$$1970 + 1970 \cdot 0.116 = A$$

$$1970 + 229 = A$$

$$2199 = A$$

The average consumption is 2199 calories.

#### **24. Strategy** To find the total time:

- find the time with the current to travel 24 mi (r = 10 + 2 = 12)
- find the time without the current to travel 24 mi (r = 10 2 = 8)
- add the two times and 1 hour to get the total trip

#### **Solution**

with the current: without the current:

$$rt = d rt = d 8t = 24$$

$$12t = 24 8t = 24$$

$$\frac{12t}{12} = \frac{24}{12} \frac{8t}{8} = \frac{24}{8}$$

$$t = 2 t = 3$$

$$2 + 3 + 1 = 6$$

The total trip was 6 h.

# **25. Strategy** Check the equation $F_1 x = F_2 (d - x)$ when $F_1 = 60, x = 3.5, F_2 = 50, \text{ and } d = 8$ .

### Solution

$$\begin{array}{c|c}
F_1 x = F_2 (d - x) \\
\hline
60 \cdot 3.5 & 50(8 - 3.5) \\
210 & 50(4.5) \\
210 & 225
\end{array}$$
No

### Section 2.4

### **Concept Check**

- **1.** \$10.50
- **2.** \$600
- **3.** \$.76
- **4.** 0.90; 225
- **5.** 100
- **6.** 1.5; 8.5
- 7. True
- 8. True
- 9. False
- **10.** In the formula V = AC, V represents the value, A represents the amount, and C represents the cost. For example: there are 2 pounds of tomatoes that sell for \$1.49 per pound. To find the value (V), multiply the amount (2) by the cost (\$1.49).

$$V = AC$$
$$V = 2 \cdot 1.49$$

$$V = 2.98$$

The value of the tomatoes would be \$2.98.

11. In the formula Q = Ar, Q represents the quantity, A represents the amount, and r represents the percent. For example: there are 2 ml of a 25% acid solution. To find the value (Q), multiply the amount (2) by the percent (0.25).

$$Q = Ar$$

$$Q = 2 \cdot 0.25$$

$$Q = 0.5$$

There is 0.5 ml of acid in the solution.

**12.** In the formula d = rt, d represents the distance, r represents the rate, and t represents the time.

### **Objective A Exercises**

#### 13. Strategy

•Amount of high-protein supplement: xAmount of vitamin supplement: 5 - x

|              | Amount | Cost | Value     |
|--------------|--------|------|-----------|
| High-protein | x      | 6.75 | 6.75x     |
| Vitamin      | 5-x    | 3.25 | 3.25(5-x) |
| Mixture      | 5      | 4.65 | 4.65(5)   |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$6.75x + 3.25(5 - x) = 4.65(5)$$

$$6.75x + 16.25 - 3.25x = 23.25$$

$$3.50x + 16.25 = 23.25$$

$$3.50x + 16.25 - 16.25 = 23.25 - 16.25$$

$$3.50x = 7.00$$

$$x = \frac{7.00}{3.50}$$

$$x = 2$$

$$5 - x = 3$$

To make the mixture, 2 lb of the high protein supplement and 3 lb of the vitamin supplement were used.

#### 14. Strategy

•Amount of alloy 1: xAmount of alloy 2: 200 - x

|         | Amount  | Cost | Value       |
|---------|---------|------|-------------|
| Alloy 1 | x       | 4.30 | 4.30(x)     |
| Alloy 2 | 200 - x | 1.80 | 1.80(200-x) |
| Mixture | 200     | 2.50 | 2.50(200)   |
|         |         |      |             |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$4.30x + 1.80(200 - x) = 2.50(200)$$

$$4.30x + 360.00 - 1.80x = 500.00$$

$$2.50x + 360 = 500$$

$$2.50x + 360 - 360 = 500 - 360$$

$$2.50x = 140$$

$$x = \frac{140}{2.50}$$

$$x = 56$$

$$200 - x = 144$$

The amount of alloy 1 needed is 56 oz. The amount of alloy 2 needed is 144 oz.

## 15. Strategy

•Amount of chamomile tea: *x* Amount of orange tea: 12

|            | Amount | Cost  | Value             |
|------------|--------|-------|-------------------|
| Chamomile  | x      | 18.20 | 18.20( <i>x</i> ) |
| Orange tea | 12     | 12.25 | 12(12.25)         |
| Mixture    | x + 12 | 14.63 | 14.63(x+12)       |

• The sum of the values before mixing equals the value after mixing.

## Solution

$$18.20x + 12(12.25) = 14.63(x + 12)$$

$$18.20x + 147 = 14.63x + 175.56$$

$$18.20x - 14.63x + 147 = 14.63x - 14.63x + 175.56$$

$$3.57x + 147 = 175.56$$

$$3.57x + 147 - 147 = 175.56 - 147$$

$$3.57x = 28.56$$

$$\frac{3.57x}{3.57} = \frac{28.56}{3.57}$$

$$x = 8$$

The amount of chamomile tea needed is 8 lb.

#### 16. Strategy

•Amount of millet seed: 100 Amount of sunflower seed: *x* 

|                | Amount  | Cost | Value       |
|----------------|---------|------|-------------|
| Millet seed    | 100     | 0.60 | 0.60(100)   |
| Sunflower seed | x       | 1.10 | 1.10x       |
| Mixture        | 100 + x | 0.70 | 0.70(100+x) |

• The sum of the values before mixing equals the value after mixing.

Τ

## 74 Chapter 2 First-Degree Equations and Inequalities

#### **Solution**

$$60+1.10x = 0.70(100+x)$$

$$60+1.10x = 70+0.70x$$

$$60-60+1.10x = 70-60+0.70x$$

$$1.10x = 10+0.70x$$

$$1.10x-0.70x = 10+0.70x-0.70x$$

$$0.40x = 10$$

$$\frac{0.40x}{0.40} = \frac{10}{0.40}$$

$$x = 25$$

The mixture will need 25 lb of sunflower seeds.

#### 17. Strategy

•Cost of mixture: x

|                  | Amount | Cost | Value    |
|------------------|--------|------|----------|
| Expensive coffee | 8      | 9.20 | 8(9.20)  |
| Cheaper coffee   | 12     | 5.50 | 12(5.50) |
| Mixture          | 20     | х    | 20(x)    |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$8(9.20) + 12(5.50) = 20x$$

$$73.60 + 66 = 20x$$

$$139.60 = 20x$$

$$\frac{139.60}{20} = \frac{20x}{20}$$

$$6.98 = x$$

The cost of the coffee mixture is \$6.98.

#### 18. Strategy

•Cost of mixture: x

|         | Amount | Cost | Value    |
|---------|--------|------|----------|
| 200 oz  | 200    | 7.50 | 7.5(200) |
| 500 oz  | 500    | 4.00 | 4(500)   |
| Mixture | 700    | x    | 700(x)   |

• The sum of the values before mixing equals the value after mixing.

## Solution

$$7.5(200) + 4(500) = 700x$$
$$1500 + 2000 = 700x$$
$$3500 = 700x$$
$$\frac{3500}{700} = \frac{700x}{700}$$
$$5 = x$$

The cost of the perfume mixture is \$5.00 per ounce.

## 19. Strategy

• Amount of \$1 herb: x

|          | Amount | Cost | Value       |
|----------|--------|------|-------------|
| \$2 herb | 30     | 2    | 2(30)       |
| \$1 herb | X      | 1    | 1 <i>x</i>  |
| Mixture  | 30 + x | 1.60 | 1.6(30 + x) |

• The sum of the values before mixing equals the value after mixing.

#### Solution

$$2(30) + x = 1.6(30 + x)$$

$$60 + x = 48 + 1.6x$$

$$60 + x - x = 48 + 1.6x - x$$

$$60 = 48 + 0.6x$$

$$60 - 48 = 48 - 48 + 0.6x$$

$$12 = 0.6x$$

$$\frac{12}{0.6} = \frac{0.6x}{0.6}$$

$$20 = x$$

The amount of the \$1 herb is 20 oz.

### 20. Strategy

•Amount of popcorn: 5

Amount of caramel: x

|         | Amount | Cost | Value         |
|---------|--------|------|---------------|
| Popcorn | 5      | 0.80 | 0.80(5)       |
| Caramel | X      | 2.40 | 2.40 <i>x</i> |
| Mixture | 5+x    | 1.40 | 1.40(5+x)     |

• The sum of the values before mixing equals the value after mixing.

#### Solution

$$4+2.40x = 1.40(5+x)$$

$$4+2.40x = 7+1.40x$$

$$4+2.40x-1.40x = 7+1.40x-1.40x$$

$$4+1x = 7$$

$$4-4+1x = 7-4$$

$$x = 3$$

3 lb of caramel are needed to make the mixture.

## **NOT FOR SALE**

#### 21. Strategy

•Amount of pepper cheddar cheese: xAmount of Pennsylvania Jack: 5-x

|                | Amount | Cost  | Value    |
|----------------|--------|-------|----------|
| Pepper cheddar | x      | 16    | 16x      |
| Jack           | 5-x    | 12    | 12(5-x)  |
| Mixture        | 5      | 13.20 | 13.20(5) |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$16x + 12(5-x) = 13.20(5)$$

$$16x + 60 - 12x = 66$$

$$4x + 60 - 60 = 66 - 60$$

$$4x = 6$$

$$\frac{4x}{4} = \frac{6}{4}$$

$$x = 1.5$$

$$5 - 1.5 = 3.5$$

The mixture needs 1.5 kg of pepper cheese and 3.5 kg of Pennsylvania Jack.

#### 22. Strategy

• Amount of oak chips: *x* 

Amount of pine chips: 80 - x

|            | Amount | Cost | Value      |
|------------|--------|------|------------|
| Oak chips  | x      | 3.10 | 3.10x      |
| Pine chips | 80 - x | 2.50 | 2.50(80-x) |
| Mixture    | 80     | 2.65 | 2.65(80)   |

• The sum of the values before mixing equals the value after mixing.

### Solution

$$3.10x + 2.50(80 - x) = 2.65(80)$$

$$3.10x + 200 - 2.50x = 212$$

$$0.60x + 200 - 200 = 212 - 200$$

$$0.60x = 12$$

$$\frac{0.60x}{0.60} = \frac{12}{0.60}$$

$$x = 20$$

$$80 - 20 = 60$$

The mixture needs 20 lb of oak chips and 60 lb of pine chips.

#### 23. Strategy

• Amount of grain: 500 Amount of meal: *x* 

|         | Amount  | Cost | Value         |
|---------|---------|------|---------------|
| Grain   | 500     | 1.2  | 1.2(500)      |
| Meal    | x       | 0.8  | 0.8x          |
| Mixture | 500 + x | 1.05 | 1.05(500 + x) |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$1.2(500) + 0.8x = 1.05(500 + x)$$

$$600 + 0.8x = 525 + 1.05x$$

$$600 + 0.8x - 0.8x = 525 + 1.05x - 0.8x$$

$$600 = 525 + 0.25x$$

$$600 - 525 = 525 - 525 + 0.25x$$

$$75 = 0.25x$$

$$\frac{75}{0.25} = \frac{0.25x}{0.25}$$

$$300 = x$$

The mixture needs 300 lb of meal.

#### 24. Strategy

• Amount of fruit juice: x

Amount of ice cream: 100 - x

|             | Amount  | Cost | Value       |
|-------------|---------|------|-------------|
| Fruit juice | x       | 4.50 | 4.50x       |
| Ice cream   | 100 - x | 8.50 | 8.50(100-x) |
| Mixture     | 100     | 5.50 | 100(5.50)   |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$4.50x + 8.50(100 - x) = 100(5.50)$$

$$4.50x + 850 - 8.50x = 550$$

$$-4x + 850 = 550$$

$$-4x + 850 - 850 = 550 - 850$$

$$-4x = -300$$

$$\frac{-4x}{-4} = \frac{-300}{-4}$$

$$x = 75$$

$$100 - 75 = 25$$

The punch needs 75 gal of fruit juice and 25 gal of ice cream.

## 76 Chapter 2 First-Degree Equations and Inequalities

## 25. Strategy

•Amount of almonds: xAmount of walnuts: 100 - x

|         | Amount  | Cost | Value      |
|---------|---------|------|------------|
| Almonds | x       | 6.50 | 6.50(x)    |
| Walnuts | 100 - x | 5.50 | 5.50(100 - |
| Mixture | 100     | 5.87 | 5.87(100)  |

• The sum of the values before mixing equals the value after mixing.

#### Solution

$$6.50x + 5.50(100 - x) = 5.87(100)$$

$$6.50x + 550 - 5.50x = 587$$

$$x + 550 = 587$$

$$x + 550 - 550 = 587 - 550$$

$$x = 37$$

$$100 - x = 63$$

The amount of almonds is 37 lb. The amount of walnuts is 63 lb.

### 26. Strategy

• cost of house blend coffee: x

|             | Amount | Cost | Value       |
|-------------|--------|------|-------------|
| Central Am. | 12     | 8    | 12(8)       |
| South Am.   | 30     | 4.50 | 30(4.50)    |
| Mixture     | 42     | х    | 42 <i>x</i> |

• The sum of the values before mixing equals the value after mixing.

#### Solution

$$12(8) + 30(4.50) = 42x$$
$$96 + 135 = 42x$$
$$231 = 42x$$
$$\frac{231}{42} = \frac{42x}{42}$$
$$5.5 = x$$

The house blend costs \$5.50.

#### 27. Strategy

•Cost of mixture: x

|         | Amount | Cost | Value     |
|---------|--------|------|-----------|
| Sugar   | 40     | 2.00 | 40(2.00)  |
| Flakes  | 120    | 1.20 | 120(1.20) |
| Mixture | 160    | x    | 160x      |

• The sum of the values before mixing equals the value after mixing.

## Solution

$$40(2.00) + 120(1.20) = 160x$$

$$80 + 144 = 160x$$

$$224 = 160x$$

$$\frac{224}{160} = \frac{160x}{160}$$

$$1.40 = x$$

The cost per pound of the sugar-coated cereal is \$1.40.

#### 28. Strategy

• Amount of blue dye: x

|          | Amount | Cost | Value      |
|----------|--------|------|------------|
| Blue dye | X      | 1.60 | 1.60x      |
| Anil     | 18     | 2.50 | 18(2.50)   |
| Mixture  | 18 + x | 1.90 | 1.90(18+x) |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$1.6x + 18(2.50) = 1.90(18 + x)$$

$$1.6x + 45 = 34.2 + 1.9x$$

$$1.6x - 1.6x + 45 = 34.2 + 1.9x - 1.6x$$

$$45 = 34.2 + 0.3x$$

$$45 - 34.2 = 34.2 - 34.2 + 0.3x$$

$$10.8 = 0.3x$$

$$\frac{10.8}{0.3} = \frac{0.3x}{0.3}$$

$$36 = x$$

The mixture needs 36 L of blue dye.

## 29. Strategy

• Number of bundles of seedlings: xNumber of bundles of container-grown plants: 1720 - x

|               | Amount | Cost | Value              |
|---------------|--------|------|--------------------|
| Seedlings     | x      | 17   | 17(x)              |
| Contain-grown | 14 - x | 45   | 45(14 – <i>x</i> ) |
| Mixture       | 14     |      | 406                |

• The sum of the values of the seedlings and container-grown plants must equal the total spent.

#### Solution

$$17x + 45(14 - x) = 406$$
$$17x + 630 - 45x = 406$$
$$-28x = -224$$
$$\frac{-28x}{-28} = \frac{-224}{-28}$$
$$x = 8$$

$$14 - x = 14 - 8 = 6$$

The Park's Department bought 8 bundles of seedlings and 6 bundles of container-grown plants.

#### 30. Strategy

• cost per ounce of gold alloy: x

|           | Amount | Cost | Value    |
|-----------|--------|------|----------|
| Pure gold | 25     | 1282 | 25(1282) |
| alloy     | 40     | 900  | 40(900)  |
| Mixture   | 65     | х    | 65x      |

• The sum of the before mixing equals the value after mixing.

#### **Solution**

$$25(1282) + 40(900) = 65x$$
$$32050 + 36000 = 65x$$
$$68050 = 65x$$
$$\frac{68050}{65} = \frac{65x}{65}$$
$$1046.92 \approx x$$

The cost of the gold alloy is \$1046.92.

#### 31. Strategy

•Amount of expensive lotion: 50 Amount of supplement lotion: 100

|                   | Amount | Cost | Value    |
|-------------------|--------|------|----------|
| Expensive lotion  | 50     | 4.00 | 4(50)    |
| Supplement lotion | 100    | 2.50 | 2.5(100) |
| Mixture           | 150    | х    | 150x     |

• The sum of the values before mixing equals the value after mixing.

#### **Solution**

$$200 + 250 = 150x$$

$$450 = 150x$$

$$\frac{450}{150} = \frac{150x}{150}$$

$$3 = x$$

The sunscreen mixture will cost \$3.00.

**32.** iii, v, and vi

**33.** iv

## **Objective B Exercises**

### 34. Strategy

• The percent concentration of the resulting alloy: *x* 

|                | Amount | Percent | Quantity |
|----------------|--------|---------|----------|
| 30% gold alloy | 40     | 0.30    | 0.30(40) |
| 20% gold alloy | 60     | 0.20    | 0.20(60) |
| Mixture        | 100    | х       | 100x     |

 The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.30(40) + 0.20(60) = 100x$$

$$12 + 12 = 100x$$

$$24 = 100x$$

$$0.24 = x$$

The resulting alloy is 24% gold.

#### 35. Strategy

• The percent concentration of tomato juice in the mixture: *x* 

|           | Amount | Percent | Quantity  |
|-----------|--------|---------|-----------|
| 50% juice | 100    | 0.50    | 0.50(100) |
| 25% juice | 200    | 0.25    | 0.25(200) |
| Mixture   | 300    | х       | 300x      |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.50(100) + 0.25(200) = 300x$$

$$50 + 50 = 300x$$

$$100 = 300x$$

$$\frac{1}{3} = x$$

The percent concentration of tomato juice in the mixture as  $33\frac{1}{3}\%$ .

## 78 Chapter 2 First-Degree Equations and Inequalities

## SALE

## 36. Strategy

- Amount of 15% acid solution: x
- Mixture: x + 5

|          | Amount | Percent | Quantity  |
|----------|--------|---------|-----------|
| 15% acid | x      | 0.15    | 0.15x     |
| 20% acid | 5      | 0.20    | 0.20(5)   |
| Mixture  | x + 5  | 0.16    | 0.16(x+5) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.15x + 0.20(5) = 0.16(x + 5)$$

$$0.15x + 1 = 0.16x + 0.8$$

$$-0.01x = -0.2$$

$$x = 20$$

20 gallons of 15% acid solution must be used.

### 37. Strategy

- Amount of 50% corn: x
- Amount of mixture: x + 400

|          | Amount  | Percent | Quantity      |
|----------|---------|---------|---------------|
| 50% corn | x       | 0.50    | 0.50x         |
| 80% corn | 400     | 0.80    | 0.80(400)     |
| Mixture  | x + 400 | 0.75    | 0.75(x + 400) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.50x + 0.80(400) = 0.75(x + 400)$$
$$0.50x + 320 = 0.75x + 300$$
$$-0.25x = -20$$
$$x = 80$$

80 lbs of 50% corn must be used.

#### 38. Strategy

- Amount of 25% wool yarn: x
- Amount of mixture: x + 20

|                | Amount | Percent | Quantity   |
|----------------|--------|---------|------------|
| 25% wool yarn  | х      | 0.25    | 0.25x      |
| 50% wool alloy | 20     | 0.50    | 0.50(20)   |
| Mixture        | x + 20 | 0.35    | 0.35(x+20) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.25x + 0.50(20) = 0.35(x + 20)$$

$$0.25x + 10 = 0.35x + 7$$

$$-0.10x = -3$$

$$x = 30$$

30 lbs of 25% wool yarn must be used.

### 39. Strategy

- Amount of dark green paint: x
- Amount of mixture: x + 5

|                   | Amount | Percent | Quantity  |
|-------------------|--------|---------|-----------|
| Light green paint | x      | 0.40    | 0.40x     |
| Dark green paint  | 5      | 0.20    | 0.20(5)   |
| 25% yellow paint  | x + 5  | 0.25    | 0.25(x+5) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

## **Solution**

$$0.40x + 0.20(5) = 0.25(x+5)$$

$$0.40x + 1 = 0.25x + 1.25$$

$$0.15x = 0.25$$

$$x = 1\frac{2}{3}$$

 $1\frac{2}{3}$  gal of light green latex paint must be used.

### 40. Strategy

- Amount of 9% nitrogen food: x
- Amount of 25% nitrogen food: 10 x

|              | Amount | Percent | Quantity   |
|--------------|--------|---------|------------|
| 9% nitrogen  | X      | 0.09    | 0.09x      |
| 25% nitrogen | 10 - x | 0.25    | 0.25(10-x) |
| 15% nitrogen | 10     | 0.15    | 0.15(10)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

## **Solution**

$$0.09x + 0.25(10 - x) = 0.15(10)$$

$$0.09x + 2.5 - 0.25x = 1.5$$

$$-0.16x + 2.5 = 1.5$$

$$-0.16x = -1$$

$$x = 6.25$$

6.25 gal of the 9% nitrogen plant food must be used.

## OT FOR SAL

0.16(50)

## 41. Strategy

- Amount of 13% acid solution: x
- Amount of 18% acid solution: 50 x

|          | Amount | Percent | Quantity   |
|----------|--------|---------|------------|
| 13% acid | x      | 0.13    | 0.13x      |
| 18% acid | 50 - x | 0.18    | 0.18(50-x) |

16% acid mixture

• The sum of the quantities before mixing is equal to the quantity after mixing.

50

0.16

## **Solution**

$$0.13x + 0.18(50 - x) = 0.16(50)$$

$$0.13x + 9.00 - 0.18x = 8.00$$

$$-0.05x + 9.00 = 8.00$$

$$-0.05x = -1.00$$

$$x = 20$$

$$50 - x = 50 - 20 = 30$$

The amount of 13% solution is 20 ml. The amount of 18% solution is 30 ml.

### 42. Strategy

• The percent concentration of sugar in the mixture: x

|         | Amount | Percent | Quantity |
|---------|--------|---------|----------|
| Sugar   | 5      | 1.00    | 1.00(5)  |
| Cereal  | 45     | 0.10    | 0.10(45) |
| Mixture | 50     | х       | 50x      |

• The sum of the quantities before mixing is equal to the quantity after mixing.

### **Solution**

$$1.00(5) + 0.10(45) = 50x$$

$$5 + 4.5 = 50x$$

$$9.5 = 50x$$

$$0.19 = x$$

The percent concentration of sugar in the mixture is 19%.

#### 43. Strategy

• Percent concentration of the resulting alloy: x

|                   | Amount | Percent | Quantity |
|-------------------|--------|---------|----------|
| Pure silver       | 30     | 1.00    | 30       |
| 20% silver        | 50     | 0.20    | 0.20(50) |
| Resulting mixture | 80     | х       | 80x      |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$30+10=80x$$
$$40=80x$$
$$0.50=x$$

The percent concentration is 50%.

### 44. Strategy

• Amount of 60% lavender: x

|              | Amount | Percent | Quantity     |
|--------------|--------|---------|--------------|
| 80% lavender | 70     | 0.80    | 0.80(70)     |
| 60% lavender | x      | 0.60    | 0.60x        |
| 74% mixture  | x + 70 | 0.74    | 0.74(x + 70) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.8(70) + 0.6x = 0.74(x+70)$$

$$56 + 0.6x = 0.74x + 51.8$$

$$56 + 0.6x - 0.6x = 0.74x - 0.6x + 51.8$$

$$56 = 0.14x + 51.8$$

$$56 - 51.8 = 0.14x + 51.8 - 51.8$$

$$4.2 = 0.14x$$

$$\frac{4.2}{0.14} = \frac{0.14x}{0.14}$$

$$30 = x$$

30 oz of 60% should be used.

#### 45. Strategy

• Amount of 40% mixture: x

|              | Amount | Percent | Quantity   |
|--------------|--------|---------|------------|
| Grass seed 1 | X      | 0.40    | 0.40x      |
| Grass seed 2 | 40     | 0.60    | 0.60(40)   |
| 60% mixture  | x + 40 | 0.56    | 0.56(x+40) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.4x + 0.6(40) = 0.56(x + 40)$$

$$0.4x + 24 = 0.56x + 22.4$$

$$0.4x - 0.4x + 24 = 0.56x - 0.4x + 22.4$$

$$24 = 0.16x + 22.4$$

$$24 - 22.4 = 0.16x + 22.4 - 22.4$$

$$1.6 = 0.16x$$

$$\frac{1.6}{0.16} = \frac{0.16x}{0.16}$$

$$10 = x$$

10 lb of the 40% mixture must be used.

## INSTRUC

## 46. Strategy

- Amount of 7% hydrogen peroxide: x
- Amount of 4% hydrogen peroxide: 300 x

|                      | Amount  | Percent | Quantity    |
|----------------------|---------|---------|-------------|
| 7% hydrogen peroxide | x       | 0.07    | 0.07x       |
| 4% hydrogen peroxide | 300 - x | 0.04    | 0.04(300-x) |
| Mixture              | 300     | 0.05    | 0.05(300)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.07x + 0.04(300 - x) = 0.05(300)$$

$$0.07x + 12 - 0.04x = 15$$

$$0.03x = 3$$

$$x = 100$$

$$300 - x = 200$$

100 ml of 7% hydrogen peroxide and 200 ml of 4% hydrogen peroxide are needed.

## 47. Strategy

- Amount of pure silk: x
- Amount of 85% silk: 75 x

|           | Amount | Percent | Quantity   |
|-----------|--------|---------|------------|
| Pure silk | x      | 1.00    | х          |
| 85% silk  | 75 - x | 0.84    | 0.85(75-x) |
| Mixture   | 75     | 0.96    | 0.96(75)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

## Solution

$$x + 0.85(75 - x) = 0.96(75)$$

$$x + 63.75 - 0.85x = 72$$

$$0.15x + 63.75 - 63.75 = 72 - 63.75$$

$$0.15x = 8.25$$

$$x = 55$$

$$75 - 55 = 20$$

55 kg of pure silk and 20 kg of 85% silk are needed.

## 48. Strategy

• Percent concentration of the mixture: x

|                 | Amount | Percent | Quantity |
|-----------------|--------|---------|----------|
| Pure aloe cream | 40     | 1.00    | 40(1)    |
| 64% aloe        | 50     | 0.64    | 0.64(50) |
| mixture         | 90     | х       | 90x      |

• The sum of the quantities before mixing is equal to the quantity after mixing.

## Solution

$$40 + 0.64(50) = 90x$$

$$40 + 32 = 90x$$

$$72 = 90x$$

$$\frac{72}{90} = \frac{90x}{90}$$

$$0.8 = x$$

The mixture is 80% aloe.

#### 49. Strategy

• amount of pure ethanol: x

|              | Amount  | Percent | Quantity      |
|--------------|---------|---------|---------------|
| Pure ethanol | X       | 1.00    | 1 <i>x</i>    |
| E10          | 100     | 0.10    | 0.10(100)     |
| mixture      | 100 + x | 0.20    | 0.20(100 + x) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$x + 0.1(100) = 0.2(100 + x)$$

$$x + 10 = 20 + 0.2x$$

$$x - 0.20x + 10 = 20 + 0.2x - 0.2x$$

$$0.8x + 10 = 20$$

$$0.8x + 10 - 10 = 20 - 10$$

$$0.8x = 10$$

$$\frac{0.8x}{0.8} = \frac{10}{0.8}$$

$$x = 12.5$$

12.5 gal of ethanol need to be added.

## **NOT FOR SALE**

### 50. Strategy

 $\bullet$  percent concentration of the mixture: x

|                 | Amount | Percent | Quantity    |
|-----------------|--------|---------|-------------|
| 20% conditioner | 12     | 0.20    | 0.2(12)     |
| shampoo         | 8      | 0.00    | 0(8)        |
| mixture         | 20     | x       | 20 <i>x</i> |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.2(12) + 0(8) = 20x$$
$$2.4 = 20x$$
$$2.4 = 20x$$
$$\frac{2.4}{20} = x$$
$$0.12 = x$$

The mixture is 12% conditioner.

## 51. Strategy • Amount of pure chocolate: x

|                | Amount  | Percent | Quantity    |
|----------------|---------|---------|-------------|
| 50% chocolate  | 150     | 0.50    | 0.50(150)   |
| Pure chocolate | x       | 1.00    | 1.00x       |
| Mixture        | x + 150 | 0.75    | 0.75(x+150) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.50(150) + 1.00x = 0.75(150 + x)$$

$$75 + x = 112.5 + 0.75x$$

$$0.25x = 37.5$$

$$x = 150$$

150 oz of pure chocolate must be added.

#### 52. Strategy

• percent concentration of wild rice in mixture: x

|                | Amount | Percent | Value   |
|----------------|--------|---------|---------|
| Pure wild rice | 8      | 1.00    | 8(1)    |
| 20% wild rice  | 12     | 0.20    | 0.2(12) |
| mixture        | 20     | х       | 20x     |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$8(1) + 0.2(12) = 20x$$

$$8 + 2.4 = 20x$$

$$10.4 = 20x$$

$$\frac{10.4}{20} = \frac{20x}{20}$$

$$0.52 = x$$

The mixture is 52% wild rice.

53. False

54. False

### **Objective C Exercises**

#### 55. Strategy

• Speed of first plane: r

• Speed of second plane: r + 25

|              | Rate   | Time | Distance |
|--------------|--------|------|----------|
| First plane  | r      | 2    | 2r       |
| Second plane | r + 25 | 2    | 2(r+25)  |

• In 2 h, the planes are 470 miles apart.

#### **Solution**

$$2r + 2(r + 25) = 470$$
$$2r + 2r + 50 = 470$$
$$4r = 420$$
$$r = 105$$
$$r + 25 = 130$$

The first plane is flying at 105 mph and the second plane is flying at 130 mph.

#### 56. Strategy

- Speed of first cyclist r
- Speed of second cyclist: 2r

|             | Rate | Time | Distance   |
|-------------|------|------|------------|
| First plane | r    | 3    | 3r         |
| Second      | 2r   | 3    | 6 <i>r</i> |

• In 3 h, the planes are 81 miles apart.

#### **Solution**

$$3r + 6r = 81$$
$$9r = 81$$
$$r = 9$$
$$2r = 18$$

The first cyclist is traveling at 9 mph and the second at 18 mph.

## **57. Strategy** • Time for first skater: *t*

• Time for second skater: t - 10

| First skater  |
|---------------|
| Second skater |

| Rate | Time          | Distance   |
|------|---------------|------------|
| 8    | t             | 8 <i>t</i> |
| 10   | <i>t</i> – 10 | 10(t-10)   |

• The skaters travel the same distance.

#### **Solution**

$$8t = 10(t - 10)$$

$$8t = 10t - 100$$

$$8t - 10t = 10t - 10t - 100$$

$$-2t = -100$$

$$\frac{-2t}{-2} = \frac{-100}{-2}$$

$$t = 50$$

Time for second skater = 50 - 10 = 40The second skater overtakes the first 40 s after the second skater starts.

## 58. Strategy

- Time for first runner: t
- Time for second runner:  $t \frac{1}{2}$

|               | Rate | Time            | Distance                      |
|---------------|------|-----------------|-------------------------------|
| First runner  | 6    | t               | 6t                            |
| Second runner | 7    | $t-\frac{1}{2}$ | $7\left(t-\frac{1}{2}\right)$ |

• The second runner overtakes the first runner.

#### **Solution**

$$6t = 7\left(t - \frac{1}{2}\right)$$

$$6t = 7t - 3\frac{1}{2}$$

$$-1t = -3\frac{1}{2}$$

$$t = 3\frac{1}{2}$$

$$t = -\frac{1}{2} = 3$$

The second runner will overtake the first runner in 3 h.

## 59. Strategy

- Time the motorboat travels: *t*
- Time the cabin cruiser travels: t-2

|               | Rate | Time         | Distance   |
|---------------|------|--------------|------------|
| Motorboat     | 9    | t            | 9 <i>t</i> |
| Cabin Cruiser | 18   | <i>t</i> – 2 | 18(t-2)    |

• How many hours after the cabin cruiser leaves will the cabin cruiser meet up with the motorboat?

#### Solution

$$9t = 18(t-2)$$

$$9t = 18t - 36$$

$$-9t = -36$$

$$t = 4$$

$$t - 2 = 2$$

The cabin cruiser will overtake the motorboat in 2 h.

#### 60. Strategy

- Time for the jogger: t
- Time for the cyclist: t 1

|         | Rate | Time         | Distance |
|---------|------|--------------|----------|
| Jogger  | 6    | t            | 6t       |
| Cyclist | 8    | <i>t</i> – 1 | 8(t-1)   |

• The jogger and cyclist traveled a total of 15 mi.

#### Solution

$$6t + 9(t - 1) = 15$$

$$6t + 9t - 9 = 15$$

$$15t - 9 = 15$$

$$15t - 9 + 9 = 15 + 9$$

$$15t = 24$$

$$\frac{15t}{15} = \frac{24}{15}$$

$$t = \frac{8}{5}$$

$$\frac{8}{5}$$
 hr · 60 min = 96 min = 1 hr 36 min

1 hr 36 min after 8:00 A.M. = 9:36 A.M.

The two meet at 9:36 A.M..

## **NOT FOR SALE**

## 61. Strategy

- Time to airport: t
- Time in flight: 3 t

|            | Rate | Time | Distance    |
|------------|------|------|-------------|
| To airport | 30   | t    | 30 <i>t</i> |
| In flight  | 60   | 3-t  | 60(3-t)     |

• The total trip is 150 mi.

#### **Solution**

$$30t + 60(3-t) = 150$$

$$30t + 180 - 60t = 150$$

$$180 - 30t = 150$$

$$-30t = -30$$

$$t = 1$$
Distance =  $60(3-t) = 60(3-1)$ 

$$= 60(2) = 120$$

The corporate offices are 120 mi from the airport.

#### 62. Strategy

- Time traveling at 105 mph: t
- Time traveling at 115 mph: 25 t

|        | Rate | Time         | Distance     |
|--------|------|--------------|--------------|
| At 105 | 105  | t            | 105 <i>t</i> |
| At 115 | 115  | 5 – <i>t</i> | 115(5-t)     |

• The total trip is 555 mi.

#### **Solution**

$$105t + 115(5-t) = 555$$

$$105t + 575 - 115t = 555$$

$$575 - 10t = 555$$

$$-10t = -20$$

$$t = 2$$

$$5 - t = 5 - 2 = 3$$

The plane travels at 105 mph for 2 h and at 115 mph for 3 h.

#### 63. Strategy

- Speed for first 3 h: r
- Speed for second 3 h: r 5

|           | Rate  | Time | Distance |
|-----------|-------|------|----------|
| First 3h  | r     | 3    | 3r       |
| Second 3h | r – 5 | 3    | 3(r-5)   |

• The total trip is 57 mi.

#### **Solution**

$$3r + 3(r - 5) = 57$$
  
 $3r + 3r - 15 = 57$   
 $6r - 15 = 57$   
 $6r = 72$   
 $r = 12$   
Distance  $= 3r = 3(12) = 36$ 

The sailboat traveled 36 mi in the first 3 h.

## 64. Strategy

- Time to site: t
- Time returning: 5 t

|           | Rate | Time         | Distance     |
|-----------|------|--------------|--------------|
| To site   | 150  | t            | 150 <i>t</i> |
| Returning | 100  | 5 – <i>t</i> | 100(5-t)     |

• The two distances are the same.

#### Solution

$$150t = 100(5-t)$$

$$150t = 500 - 100t$$

$$150t + 100t = 500 - 100t + 100t$$

$$250t = 500$$

$$\frac{250t}{250} = \frac{500}{250}$$

$$t = 2$$

Distance = 150t = 150(2) = 300 mi each way The total distance was 600 mi.

#### 65. Strategy

- Rate for freight train: r
- Rate for passenger train: r + 20

|           | Rate   | Time | Distance   |
|-----------|--------|------|------------|
| Freight   | r      | 5    | 5 <i>r</i> |
| Passenger | r + 20 | 3    | 3(r+20)    |

• The trains travel the same distance.

## Solution

$$5r = 3(r+20)$$

$$5r = 3r+60$$

$$2r = 60$$

$$r = 30$$

$$r + 20 = 30 + 20 = 50$$

The freight train travels at 30 mph.

The passenger train travels at 50 mph.

## 66. Strategy

- The speed of the car: 2r
- The speed of the bus: r

|     | Rate | Time | Distance |
|-----|------|------|----------|
| Car | 2r   | 2    | 4r       |
| Bus | r    | 2    | 2r       |

• In 2 h the car is 68 mi ahead of the bus.

#### **Solution**

$$2r + 68 = 4r$$
$$68 = 2r$$
$$34 = r$$
$$2r = 68$$

The car is traveling at 68 mph.

### 67. Strategy

- The time the first ship traveled: t
- The time the second ship traveled:  $t = \frac{10}{25}$

|             | Rate | Time                | Distance                         |
|-------------|------|---------------------|----------------------------------|
| First ship  | 25   | t                   | 25 <i>t</i>                      |
| Second ship | 35   | $t - \frac{10}{25}$ | $35\left(t-\frac{10}{25}\right)$ |

• The second ship catches up to the first ship.

#### **Solution**

$$25t = 35\left(t - \frac{10}{25}\right)$$

$$25t = 35t - 14$$

$$-10t = -14$$

$$t = 1.4$$

$$t - \frac{10}{25} = 1.4 - 0.4 = 1$$

The second ship catches up to the first ship in 1 h.

### 68. Strategy

- Time the first plane traveled: t
- •Time the second plane traveled: t-1

|              | Rate | Time  | Distance          |
|--------------|------|-------|-------------------|
| First plane  | 500  | t     | 500t              |
| Second plane | 500  | t - 1 | 500( <i>t</i> -1) |

• The planes pass each other.

## **Solution**

$$500t + 500(t-1) = 3000$$
  

$$500t + 500t - 500 = 3000$$
  

$$1000t = 2500$$
  

$$t = 2\frac{1}{2}$$

The planes will pass each other after 2.5 h.

## 69. Strategy

- Rate of the second car: r
- Rate of the first car: r + 10
- 12 min ÷  $60 = \frac{1}{5}$  hr

|            | Rate   | Time          | Distance            |
|------------|--------|---------------|---------------------|
| First car  | r + 10 | $\frac{1}{5}$ | $\frac{1}{5}(r+10)$ |
| Second car | r      | $\frac{1}{5}$ | $\frac{1}{5}r$      |

• The total distance traveled by the two cars is 36.

## Solution

$$\frac{1}{5}(r+10) + \frac{1}{5}r = 36$$

$$\frac{1}{5}r + 2 + \frac{1}{5}r = 36$$

$$\frac{5}{1} \cdot \frac{1}{5}r + 5 \cdot 2 + \frac{5}{1} \cdot \frac{1}{5}r = 5 \cdot 36$$

$$r + 10 + r = 180$$

$$2r + 10 - 10 = 180 - 10$$

$$2r = 170$$

$$\frac{2r}{2} = \frac{170}{2}$$

$$r = 85$$

$$85 + 10 = 95$$

The faster car is traveling 95 km/h.

## **NOT FOR SALE**

## 70. Strategy

- Time the first train traveled: t
- •Time the second train traveled: t-1

|              | Rate | Time         | Distance    |
|--------------|------|--------------|-------------|
| First train  | 60   | t            | 60 <i>t</i> |
| Second train | 50   | <i>t</i> – 1 | 50(t-1)     |

• The two trains pass each other.

#### **Solution**

$$60t + 50(t-1) = 500$$

$$60t + 50t - 50 = 500$$

$$110t = 550$$

$$t = 5$$

$$t - 1 = 4$$

The trains pass each other 4 h after the second train leaves Charleston.

#### 71. Strategy

- Time for first car: t
- Time for second car:  $t \frac{1}{4}$

|               | Rate | Time            | Distance                        |
|---------------|------|-----------------|---------------------------------|
| First driver  | 90   | t               | 90 <i>t</i>                     |
| Second driver | 120  | $t-\frac{1}{4}$ | $120\left(t-\frac{1}{4}\right)$ |

• The second car will overtake the first when the distances are equal.

#### Solution

$$90t = 120\left(t - \frac{1}{4}\right)$$

$$90t = 120t - 30$$

$$90t - 120t = 120t - 120t - 30$$

$$-30t = -30$$

$$\frac{-30t}{-30} = \frac{-30}{-30}$$

$$t = 1$$

Distance = 90t = 90(1) = 90 mi

The track is on 50 mi, so the second will not overtake the first.

#### 72. Strategy

- Rate traveled on winding road: r
- Rate traveled on straight road: t + 20

|               | Rate   | Time | Distance      |
|---------------|--------|------|---------------|
| Straight road | r + 20 | 2    | 2(r+20)       |
| Winding road  | r      | 3    | 3( <i>r</i> ) |

• The total distance traveled was 210 mi.

#### **Solution**

$$2(r+20)+3(r) = 210$$

$$2r+40+3r = 210$$

$$5r+40 = 210$$

$$5r+40-40 = 210-40$$

$$5r = 170$$

$$\frac{5r}{5} = \frac{170}{5}$$

$$r = 34$$

The average speed on the winding road was 34 mph.

### 73. Strategy

- Time the car traveled: t
- •Time the bus traveled: t-1

|     | Rate | Time  | Distance    |
|-----|------|-------|-------------|
| Car | 45   | t     | 45 <i>t</i> |
| Bus | 60   | t - 1 | 60(t-1)     |

• The bus overtakes the car.

#### **Solution**

$$45t = 60(t-1)$$

$$45t = 60t - 60$$

$$-15t = -60$$

$$t = 4$$

$$45t = 180$$

The bus overtakes the car 180 mi from the starting point.

### 74. Strategy

- Time for car: t
- •Time for cyclist: t + 3

|         | Rate | Time | Distance    |
|---------|------|------|-------------|
| Car     | 48   | t    | 48 <i>t</i> |
| Cyclist | 12   | t+3  | 12(t+3)     |

• The two vehicles travel the same distance.

#### **Solution**

$$48t = 12(t+3)$$

$$48t = 12t + 36$$

$$36t = 36$$

$$t = 1$$
Distance =  $48t = 48(1) = 48$ 

The car overtakes the cyclist 48 mi from the starting point.

## 75. Strategy

- Time for the first part of the trip: t
- Time for the second part of the trip: 5 t

|                    | Rate | Time         | Distance     |
|--------------------|------|--------------|--------------|
| First part of trip | 115  | t            | 115 <i>t</i> |
| Remainder of trip  | 125  | 5 – <i>t</i> | 125(5-t)     |

• The total distance traveled was 605 mi.

#### **Solution**

$$115t + 125(5-t) = 605$$

$$115t + 625 - 125t = 605$$

$$-10t + 625 - 625 = 605 - 625$$

$$-10t = -20$$

$$\frac{-10t}{-10} = \frac{-20}{-10}$$

$$t = 2$$

$$5 - 2 = 3$$

The plane traveled 2 h at 115 mph and 3 h at 125 mph.

#### **Critical Thinking**

#### 76. Strategy

• Cost of the mixture: x

|                   | Amount | Cost | Value    |
|-------------------|--------|------|----------|
| \$4.50 alloy      | 30     | 4.50 | 4.50(30) |
| \$3.50 alloy      | 40     | 3.50 | 3.50(40) |
| \$3.00 alloy      | 30     | 3.00 | 3.00(30) |
| Resulting mixture | 100    | х    | 100x     |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$4.50(30) + 3.50(40) + 3.00(30) = 100x$$
$$135 + 140 + 90 = 100x$$
$$365 = 100x$$
$$\frac{365}{100} = \frac{100x}{100}$$
$$3.65 = x$$

The mixture costs \$3.65 per ounce.

## 77. Strategy

- Amount of Walnuts: x
- Amount of Cashews: 50 20 x = 30 x

|         | Amount | Cost | Value      |
|---------|--------|------|------------|
| Walnuts | x      | 5.60 | 5.60(x)    |
| Cashews | 30 - x | 7.50 | 7.50(30-x) |
| Peanuts | 20     | 4.00 | 4.00(20)   |
| Mixture | 50     | 5.72 | 5.72(50)   |

• The sum of the values before mixing equals the value after mixing.

#### Solution

$$5.60(x) + 7.50(30 - x) + 4.00(20) = 5.72(50)$$

$$5.6x + 225 - 7.5x + 80 = 286$$

$$-1.9x + 305 = 286 - 305$$

$$-1.9x = -19$$

$$\frac{-1.9x}{-1.9} = \frac{-19}{-1.9}$$

$$x = 10$$

$$30 - 10 = 20$$

The amount of walnuts is 10 lb. The amount of cashews is 20 lb.

#### 78. Strategy

• Amount of water evaporated: x

|          | Amount | Percent | Quantity   |
|----------|--------|---------|------------|
| Water    | X      | 0       | 0(x)       |
| 12% salt | 50     | 0.12    | 0.12(50)   |
| 15% salt | 50 - x | 0.15    | 0.15(50-x) |

• The difference between the quantities before and after evaporation is equal to the quantity before evaporation.

#### Solution

$$0.12(50) - 0x = 0.15(50 - x)$$

$$6 = 7.5 - 0.15x$$

$$-1.5 = -0.15x$$

$$10 = x$$

10 oz of water should be evaporated.

### 79. Strategy

• Amount of pure acid: x

• Amount of water: 10 - x

| Pure acid |  |
|-----------|--|
| Water     |  |
| Mixture   |  |

| Amount | Percent | Quantity |
|--------|---------|----------|
| X      | 1.00    | 1.00x    |
| 10-x   | 0       | 0(10-x)  |
| 10     | 0.30    | 0.30(10) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$1.00x + 0(10 - x) = 0.30(10)$$
$$x = 3$$

10 - 3 = 7

3 L of pure acid and 7 L of water are mixed.

#### 80. Strategy

• Amount of pure acid: x

• Amount of water: 50 - x

|           | Amount | Percent | Quantity   |
|-----------|--------|---------|------------|
| Pure acid | 50     | 1.00    | 1.00(50)   |
| Water     | х      | 0       | 0(x)       |
| Mixture   | 50 + x | 0.40    | 0.40(50+x) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$1.00(50) + 0(x) = 0.40(50 + x)$$

$$50 = 20 + 0.4x$$

$$50 - 20 = 20 - 20 + 0.4x$$

$$30 = 0.4x$$

$$\frac{30}{0.4} = \frac{0.4x}{0.4}$$

$$75 = x$$

75 g of pure water must be added.

#### 81. Strategy

• Number of adult tickets: x

• Number of child tickets: 120 - x

|               | Amount  | Cost | Value       |
|---------------|---------|------|-------------|
| Adult tickets | х       | 5.50 | 5.50(x)     |
| Child tickets | 120 - x | 2.75 | 2.75(120-x) |

• The sum of the values must equal \$563.75.

#### Solution

$$5.50x + 2.75(120 - x) = 563.75$$

$$5.50x + 330 - 2.75x = 563.75$$

$$2.75x + 330 = 563.75$$

$$2.75x + 330 - 330 = 563.75 - 330$$

$$2.75x = 233.75$$

$$\frac{2.75x}{2.75} = \frac{233.75}{2.75}$$

$$x = 85$$

120 - 85 = 35

85 adult tickets and 35 child tickets were sold.

### 82. Strategy

• Speed for the car: 3r + 5

• Speed for the cyclist: *r* 

|         | Rate   | Time | Distance     |
|---------|--------|------|--------------|
| Car     | 3r + 5 | 1.5  | 1.5(3r+5)    |
| Cyclist | r      | 1.5  | 1.5 <i>r</i> |

• The distance for the car is 46.5 more than the distance for the cyclist.

#### **Solution**

$$1.5(3r+5) = 1.5r + 46.5$$

$$4.5r + 7.5 = 1.5r + 46.5$$

$$4.5r - 1.5r + 7.5 = 1.5r - 1.5r + 46.5$$

$$3r + 7.5 = 46.5$$

$$3r + 7.5 - 7.5 = 46.5 - 7.5$$

$$3r = 39$$

$$\frac{3r}{3} = \frac{39}{3}$$

$$r = 13$$

The cyclist is traveling 13 mph.

#### 83. Strategy

• Time downstream: t

• Time upstream: 1 - t

|            | Rate | Time | Distance    |
|------------|------|------|-------------|
| Downstream | 12   | t    | 12 <i>t</i> |
| Upstream   | 4    | 1-t  | 4(1-t)      |

• The distance downstream is equal to the distance upstream.

$$12t = 4(1-t)$$

$$12t = 4 - 4t$$

$$12t + 4t = 4 - 4t + 4t$$

$$16t = 4$$

$$\frac{16t}{16} = \frac{4}{16}$$

$$t = \frac{1}{4}$$

$$\frac{1}{4} \cdot 60 \text{ min} = 15 \text{ min}$$

$$10:00 + 0:15 = 10:15$$

The campers turned around at 10:15 A.M.

## 84. Strategy

- Time for the truck: t
- Time for the van: t-1

|       | Rate | Time         | Distance    |
|-------|------|--------------|-------------|
| Truck | 45   | t            | 45 <i>t</i> |
| Van   | 65   | <i>t</i> – 1 | 65(t-1)     |

 The van overtakes the truck when the distances are equal.

#### **Solution**

$$45t = 65(t-1)$$

$$45t = 65t - 65$$

$$45t - 65t = 65t - 65t - 65$$

$$-20t = -65$$

$$\frac{-20t}{-20} = \frac{-65}{-20}$$

$$t = \frac{13}{4}$$

$$t = 3\frac{1}{4}$$

$$3\frac{1}{4}$$
 h = 3 h 15 min

11 A.M. + 3 h 15 min = 2:15 P.M.

The van overtake the truck at 2:15 P.M.

## **Projects and Group Activities**

#### 85. Strategy

- Amount to be drained and pure to be added: x
- Amount of 20%: 15 x

|               | Amount | Percent | Quantity   |
|---------------|--------|---------|------------|
| re antifreeze | x      | 1.00    | 1.00x      |
| 20%           | 15 - x | 0.20    | 0.20(15-x) |
| Mixture       | 15     | 0.40    | 0.40(15)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

## Solution

Pure

$$1.00x + 0.20(15 - x) = 0.40(15)$$

$$x + 3 - 0.2x = 6$$

$$0.8x + 3 = 6$$

$$0.8x + 3 - 3 = 6 - 3$$

$$0.8x = 3$$

$$\frac{0.8x}{0.8} = \frac{3}{0.8}$$

$$x = 3.75$$

3 .75 gal should be drained and replaced with antifreeze.

## 86. Strategy To find the amount of acid in the

beginning. 
$$\left(33\frac{1}{3}\% = \frac{1}{3}; 50\% = \frac{1}{2}\right)$$

• Amount acid: x

After the 5 oz of water are added:

|          | Amount        | Percent       | Quantity            |
|----------|---------------|---------------|---------------------|
| Solution | <i>x</i> + 5  | $\frac{1}{3}$ | $\frac{1}{3}(x+5)$  |
| Acid     | 5             | 1.00          | 1.00(5)             |
| Mixture  | <i>x</i> + 10 | $\frac{1}{2}$ | $\frac{1}{2}(x+10)$ |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$\frac{1}{3}(x+5)+1.00(5) = \frac{1}{2}(x+10)$$

$$\frac{1}{3}x+\frac{5}{3}+5 = \frac{1}{2}x+5$$

$$\frac{6}{1}\cdot\frac{1}{3}x+\frac{6}{1}\cdot\frac{5}{3}+6\cdot5 = \frac{6}{1}\cdot\frac{1}{2}x+6\cdot5$$

$$2x+10+30 = 3x+30$$

$$2x+40 = 3x+30$$

$$2x-2x+40 = 3x-2x+30$$

$$40 = x+30$$

$$40-30 = x+30-30$$

$$10 = x$$

**Strategy** Find the percent of the acid at the beginning.

• Percent of acid: x

|           | Amount | Percent       | Quantity          |
|-----------|--------|---------------|-------------------|
| Beginning | 10     | x             | 10x               |
| Water     | 5      | 0             | 0(5)              |
| Mixture   | 15     | $\frac{1}{3}$ | $\frac{1}{3}(15)$ |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### Solution

$$10x + 0(5) = \frac{1}{3}(15)$$

$$10x = 5$$

$$\frac{10x}{10} = \frac{5}{10}$$

The original mixture was 50%.

#### 87. Strategy

- Find the total distance traveled and the total time.
- Divide the total distance by the total time to determine the average speed.

|           | Rate | Time                | Distance   |
|-----------|------|---------------------|------------|
| Leaving   | 10   | 2                   | 10(2) = 20 |
| Returning | 20   | $\frac{20}{20} = 1$ | 20(1) = 20 |
| Total     |      | 3                   | 40         |

#### Solution

Average speed = 
$$\frac{40}{3}$$
 =  $13\frac{1}{3}$ 

The bicyclist's average speed is  $13\frac{1}{3}$  mph.

## **88.** Strategy • The rate for $2^{nd}$ mi: r

|             | Rate | Time                          | Distance |
|-------------|------|-------------------------------|----------|
| First mile  | 30   | $\frac{1}{30}$                | 1        |
| Second mile | r    | $\frac{1}{r}$                 | 1        |
| Both miles  | 60   | $\frac{2}{60} = \frac{1}{30}$ | 2        |

• The time traveled during the first mile plus the time traveled during the second mile is equal to the total time traveled during both miles.

#### **Solution**

$$\frac{1}{30} + \frac{1}{r} = \frac{1}{30}$$

$$\frac{1}{r} = 0$$

$$r = 0$$

There is no solution to this problem. It is not possible to increase the speed enough to average 60 mph.

#### 89. Strategy

- Time to ascend: t
- Time to descend: 12 t

|         | Rate | Time   | Distance     |
|---------|------|--------|--------------|
| Ascend  | 0.5  | t      | 0.5 <i>t</i> |
| Descend | 1    | 12 - t | 1(12-t)      |

• The distances are the same.

#### **Solution**

$$0.5t = 1(12-t)$$

$$0.5t = 12-t$$

$$0.5t + t = 12-t + t$$

$$1.5t = 12$$

$$\frac{1.5t}{1.5} = \frac{12}{1.5}$$

$$t = 8$$

Distance: 0.5t = 0.5(8) = 4 mi each way The total distance was 8 mi.



90. We look for patterns in mathematics to help us solve different types of problems. If we notice that the amount times the cost is equal to the value it helps us see the relationship holds for all value problems. If we notice that the amount times the percent gives us the volume it helps us to see the relationship for all percent volume problems. We could see that the amount times the cost gives us the value, we can see that problem 81 is a type of mixture problem.

## Section 2.5

## **Concept Check**

1. The Addition Property of Inequalities states that the same number can be added to each side of an inequality without changing the solution set of the inequality.

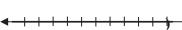
Examples will vary. For instance:

$$8 > 6$$
  $-5 < -1$   
 $8 + 7 > 6 + 7$  and  $-5 + (-2) < -1 + (-2)$   
 $15 > 13$   $-7 < -3$ 

2. The Multiplication Property of Inequalities: Rule 1: Each side of an inequality can be multiplied by the same positive constant without changing the solution set of the inequality.

Rule 2: If each side of an inequality is multiplied by the same negative constant and the inequality symbol is reversed, then the solution set of the inequality is not changed.

Examples will vary. For instance:


| 8 > 6                   |     | 8 > 6                       |
|-------------------------|-----|-----------------------------|
| $2 \cdot 8 > 2 \cdot 6$ | and | $(-2)\cdot 8 > (-2)\cdot 6$ |
| 18 > 12                 |     | -16 < -12                   |

- **3.** Replace *x* with each value to determine if the inequality holds.
  - i)  $-17 + 7 \le -3$ ;  $-10 \le -3$ ; solution
  - ii)  $8 + 7 \le -3$ ;  $15 \le -3$ ; not a solution
  - iii)  $-10 + 7 \le -3$ ;  $-3 \le -3$ ; solution
  - iv)  $0 + 7 \le -3$ ;  $7 \le -3$ ; not a solution

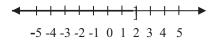
- **4.** Replace *x* with each value to determine if the inequality holds.
  - i) 2(6) 1 > 5; 12 1 > 5; 11 > 5; solution
  - ii) 2(-4) 1 > 5; -8 1 > 5; -9 > 5;
  - not a solution
  - iii) 2(3) 1 > 5; 6 1 > 5; 5 > 5;
  - not a solution
  - iv) 2(5) 1 > 5; 10 1 > 5; 9 > 5; solution
- 5. <
- **6. a.** When a compound inequality is combined with *or* the set operation union is used.
  - **b.** When a compound inequality is combined with *and* the set operation intersection is used.

## **Objective A Exercises**

7. 
$$x - 3 < 2$$
  
 $x < 5$   
 $\{x \mid x < 5\}$ 



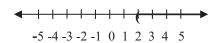
**8.** 
$$x + 4 \ge 2$$


$$x \ge -2$$
$$\{x \mid x \ge -2\}$$

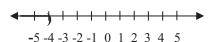
**9.** 
$$4x < 8$$

$$\frac{4x}{4} \le \frac{8}{4}$$

$$x \le 2$$


$$\{x \mid x \leq 2\}$$




**10.** 
$$6x > 12$$

$$\frac{6x}{6} > \frac{12}{6}$$

$$\{x | x > 2\}$$



11. 
$$-2x > 8$$
  
 $\frac{-2x}{-2} < \frac{8}{-2}$   
 $x < -4$   
 $\{x \mid x < -4\}$ 



12. 
$$-3x \le -9$$
  
 $\frac{-3x}{-3} \ge \frac{-9}{-3}$   
 $x \ge 3$   
 $\{x \mid x \ge 3\}$   
 $4$   
 $-5$  -4 -3 -2 -1 0 1 2 3 4 5

13. 
$$3x - 1 > 2x + 2$$
  
 $x - 1 > 2$   
 $x > 3$   
The solution set is  $\{x \mid x > 3\}$ .

**14.**  $5x + 2 \ge 4x - 1$ 

 $x + 2 \ge -1$ 

$$x \ge -3$$
  
The solution set is  $\{x | x \ge -3\}$ .

15. 
$$2x-1 > 7$$
  
 $2x > 8$   
 $\frac{2x}{2} > \frac{8}{2}$   
 $x > 4$   
The solution set is  $(x|x)$ 

The solution set is  $\{x | x > 4\}$ .

16. 
$$3x + 2 < 8$$
  
 $3x < 6$   
 $\frac{3x}{3} < \frac{6}{3}$   
 $x < 2$ 

The solution set is  $\{x \mid x < 2\}$ .

17. 
$$5x-2 \le 8$$
  
 $5x \le 10$   
 $\frac{5x}{5} \le \frac{10}{5}$   
 $x \le 2$   
The solution set is  $\{x \mid x < 2\}$ .

18. 
$$4x + 3 \le -1$$
  
 $4x \le -4$   
 $\frac{4x}{4} \le \frac{-4}{4}$   
 $x \le -1$   
The solution set is  $\{x \mid x \le -1\}$ .

19. 
$$6x + 3 > 4x - 1$$
  
 $6x > 4x - 4$   
 $2x > -4$   
 $\frac{2x}{2} > \frac{-4}{2}$   
 $x > -2$   
The solution set is  $\{x | x > -2\}$ .

20. 
$$7x + 4 < 2x - 6$$
  
 $5x + 4 < -6$   
 $5x < -10$   
 $\frac{5x}{5} < \frac{-10}{5}$   
 $x < -2$   
The solution set is  $\{x \mid x < -2\}$ .

21. 
$$8x + 1 \ge 2x + 13$$
  
 $6x + 1 \ge 13$   
 $6x \ge 12$   
 $\frac{6x}{6} \ge \frac{12}{6}$   
 $x \ge 2$   
The solution set is  $\{x \mid x \ge 2\}$ .

22. 
$$5x - 4 < 2x + 5$$
  
 $3x - 4 < 5$   
 $3x < 9$   
 $\frac{3x}{3} < \frac{9}{3}$   
 $x < 3$   
The solution set is  $\{x \mid x < 3\}$ .

23. 
$$4-3x < 10$$
  
 $-3x < 6$   
 $\frac{-3x}{-3} > \frac{6}{-3}$   
 $x > -2$   
The solution set is  $\{x | x > -2\}$ .

**24.** 
$$2-5x > 7$$
  
 $-5x > 5$   
 $\frac{-5x}{-5} < \frac{5}{-5}$   
 $x < -1$ 

The solution set is  $\{x \mid x < -1\}$ .

25. 
$$7 - 2x \ge 1$$
  
 $-2x \ge -6$   
 $\frac{-2x}{-2} \le \frac{-6}{-2}$   
 $x < 3$ 

The solution set is  $\{x \mid x \le 3\}$ .

26. 
$$3-5x \le 18$$
  
 $-5x \le 15$   
 $\frac{-5x}{-5} \ge \frac{15}{-5}$   
 $x \ge -3$ 

The solution set is  $\{x | x \ge -3\}$ .

27. 
$$-3 - 4x > -11$$
  
 $-4x > -8$   
 $\frac{-4x}{-4} < \frac{-8}{-4}$   
 $x < 2$ 

The solution set is  $\{x \mid x < 2\}$ .

28. 
$$-2 - x < 7$$
  
 $-x < 9$   
 $(-1)(-x) > (-1)(9)$   
 $x > -9$ 

The solution set is  $\{x | x > -9\}$ .

29. 
$$4x - 2 < x - 11$$
  
 $3x - 2 < -11$   
 $3x < -9$   
 $\frac{3x}{3} < \frac{-9}{3}$   
 $x < -3$ 

The solution set is  $\{x \mid x < -3\}$ .

30. 
$$6x + 5 \le x - 10$$
  
 $5x + 5 \le -10$   
 $5x \le -15$   
 $\frac{5x}{5} \le \frac{-15}{5}$   
 $x \le -3$   
The solution set is  $\{x \mid x \le -3\}$ .

31. 
$$x+7 \ge 4x-8$$
  
 $-3x+7 \ge -8$   
 $-3x \ge -15$   
 $\frac{-3x}{-3} \le \frac{-15}{-3}$   
 $x \le 5$ 

The solution set is  $\{x | x \le 5\}$ .

32. 
$$3x + 1 \le 7x - 15$$
  
 $-4x + 1 \le -15$   
 $-4x \le -16$   
 $\frac{-4x}{-4} \ge \frac{-16}{-4}$   
 $x \ge 4$ 

The solution set is  $\{x | x \ge 4\}$ .

33. 
$$3x + 2 \le 7x + 4$$
 $-4x + 2 \le 4$ 
 $-4x \le 2$ 
 $\frac{-4x}{-4} \ge \frac{2}{-4}$ 
 $x \ge -\frac{1}{2}$ 

The solution set is  $\{x | x \ge -\frac{1}{2}\}.$ 

- **34.** The solution to the inequality x + n > a, where both n and a are positive and n < a contains only positive numbers.
- **35.** The solution to the inequality nx > a, where both n and a are negative contains both positive and negative numbers.
- **36.** The solution to the inequality nx > a, where n is negative and a is positive contains only negative numbers.

**37.** The solution to the inequality x - n > -a, where both n and a are positive and n < acontains both positive and negative numbers.

38. 
$$3x - 5 \ge -2x + 5$$
  
 $5x - 5 \ge 5$   
 $5x \ge 10$   
 $\frac{5x}{5} \ge \frac{10}{5}$   
 $x \ge 2$ 

The solution is  $[2,\infty)$ .

39. 
$$7x+3<4x+1$$

$$7x+3-3<4x+1-3$$

$$7x<4x-2$$

$$7x-4x<4x-4x-2$$

$$3x<-2$$

$$\frac{3x}{3}<\frac{-2}{3}$$

$$x<-\frac{2}{3}$$
The solution is  $\left(-\infty,-\frac{2}{3}\right)$ 

**40.** 

40. 
$$5x-7 \le x-9$$

$$5x-7+7 \le x-9+7$$

$$5x \le x-2$$

$$5x-x \le x-2-2$$

$$4x \le -2$$

$$\frac{4x}{4} \le \frac{-2}{4}$$

$$x \le -\frac{1}{2}$$
The solution is  $\left(-\infty, -\frac{1}{2}\right]$ .

41. 
$$\frac{2}{3}x - \frac{3}{2} < \frac{7}{6} - \frac{1}{3}x$$

$$6\left(\frac{2}{3}x - \frac{3}{2}\right) < 6\left(\frac{7}{6} - \frac{1}{3}x\right)$$

$$4x - 9 < 7 - 2x$$

$$6x - 9 < 7$$

$$6x < 16$$

$$\frac{6x}{6} < \frac{16}{6}$$

$$x < \frac{8}{3}$$
The solution is  $\left(-\infty, \frac{8}{3}\right)$ 

42. 
$$\frac{7}{12}x - \frac{3}{2} < \frac{2}{3}x + \frac{5}{6}$$

$$12\left(\frac{7}{12}x - \frac{3}{2}\right) < 12\left(\frac{2}{3}x + \frac{5}{6}\right)$$

$$7x - 18 < 8x + 10$$

$$-x - 18 < 10$$

$$-x < 28$$

$$(-1)(-x) > (-1)(28)$$

$$x > -28$$

The solution is  $(-28, \infty)$ .

43. 
$$\frac{1}{2}x - \frac{3}{4} < \frac{7}{4}x - 2$$

$$4\left(\frac{1}{2}x - \frac{3}{4}\right) < 4\left(\frac{7}{4}x - 2\right)$$

$$2x - 3 < 7x - 8$$

$$-5x - 3 < -8$$

$$-5x < -5$$

$$\frac{-5x}{-5} > \frac{-5}{-5}$$

$$x > 1$$
The solution is  $(1, \infty)$ .

44. 
$$6 - 2(x - 4) \le 2x + 10$$
  
 $6 - 2x + 8 \le 2x + 10$   
 $14 - 2x \le 2x + 10$   
 $14 - 4x \le 10$   
 $-4x \le -4$   
 $\frac{-4x}{-4} \ge \frac{-4}{-4}$   
 $x \ge 1$ 

The solution is  $[1, \infty)$ .

**45.** 
$$4(2x-1) > 3x - 2(3x - 5)$$
  
 $8x - 4 > 3x - 6x + 10$   
 $8x - 4 > -3x + 10$   
 $11x - 4 > 10$   
 $11x > 14$   
 $\frac{11x}{11} > \frac{14}{11}$   
 $x > \frac{14}{11}$ 

The solution is  $\left(\frac{14}{11}, \infty\right)$ 

**46.** 
$$2(1-3x)-4 > 10+3(1-x)$$
  
 $2-6x-4 > 10+3-3x$   
 $-6x-2 > 13-3x$   
 $-3x-2 > 13$   
 $-3x > 15$   
 $\frac{-3x}{-3} < \frac{15}{-3}$   
 $x < -5$ 

The solution is  $(-\infty, -5)$ .

47. 
$$2-5(x+1) \ge 3(x-1)-8$$
  
 $2-5x-5 \ge 3x-3-8$   
 $-3-5x \ge 3x-11$   
 $-5x \ge 3x-8$   
 $-8x \ge -8$   
 $\frac{-8x}{-8} \le \frac{-8}{-8}$   
 $x \le 1$ 

The solution is  $(-\infty, 1]$ .

**48.** 
$$2-2(7-2x) < 3(3-x)$$
  
 $2-14+4x < 9-3x$   
 $-12+4x < 9-3x$   
 $4x < 21-3x$   
 $7x < 21$   
 $x < 3$ 

The solution is  $(-\infty, 3)$ .

**49.** 
$$3 + 2(x + 5) \ge x + 5(x + 1) + 1$$
  
 $3 + 2x + 10 \ge x + 5x + 5 + 1$   
 $2x + 13 \ge 6x + 6$   
 $-4x + 13 \ge 6$   
 $-4x \ge -7$   
 $\frac{-4x}{-4} \le \frac{-7}{-4}$   
 $x \le \frac{7}{4}$ 

The solution is  $\left(-\infty, \frac{7}{4}\right]$ 

**50.** 
$$10 - 13(2 - x) < 5(3x - 2)$$
  
 $10 - 26 + 13x < 15x - 10$   
 $-16 + 13x < 15x - 10$   
 $13x < 15x + 6$   
 $-2x < 6$   
 $\frac{-2x}{-2} > \frac{6}{-2}$   
 $x > -3$ 

The solution is  $(-3, \infty)$ .

51. 
$$3-4(x+2) \le 6+4(2x+1)$$
  
 $3-4x-8 \le 6+8x+4$   
 $-4x-5 \le 10+8x$   
 $-12x-5 \le 10$   
 $-12x \le 15$   
 $\frac{-12x}{-12} \ge \frac{15}{-12}$   
 $x \ge -\frac{5}{4}$ 

The solution is  $\left[-\frac{5}{4}, \infty\right)$ 

52. 
$$3x - 2(3x - 5) \le 2 - 5(x - 4)$$
  
 $3x - 6x + 10 \le 2 - 5x + 20$   
 $-3x + 10 \le 22 - 5x$   
 $2x + 10 \le 22$   
 $2x \le 12$   
 $\frac{2x}{2} \le \frac{12}{2}$   
 $x \le 6$   
The solution is  $(-\infty, 6]$ .

**53.** 
$$12 - 2(3x - 2) \ge 5x - 2(5 - x)$$
  
 $12 - 6x + 4 \ge 5x - 10 + 2x$   
 $16 - 6x \ge 7x - 10$   
 $-6x \ge 7x - 26$   
 $-13x \ge -26$   
 $\frac{-13x}{-13} \le \frac{-26}{-13}$   
 $x \le 2$ 

The solution is  $(-\infty, 2]$ .

## **Objective B Exercises**

**54.** 
$$3x < 6$$
 and  $x + 2 > 1$   
 $x < 2$   $x > -1$   
 $\{x \mid x < 2\}$   $\{x \mid x > -1\}$   
 $\{x \mid x < 2\} \cap \{x \mid x > -1\} = (-1, 2)$ 

55. 
$$x-3 \le 1$$
 and  $2x \ge -4$   
 $x \le 4$   $x \ge -2$   
 $\{x \mid x \le 4\}$   $\{x \mid x \ge -2\}$   
 $\{x \mid x \le 4\} \cap \{x \mid x \ge -2\} = [-2, 4]$ 

**56.** 
$$x + 2 \ge 5$$
 or  $3x \le 3$   
 $x \ge 3$   $x \le 1$   
 $\{x \mid x \ge 3\}$   $\{x \mid x \le 1\}$   
 $\{x \mid x \ge 3\} \cup \{x \mid x \le 1\} = (-\infty, 1] \cup [3, \infty)$ 

57. 
$$2x < 6$$
 or  $x-4 > 1$   
 $x < 3$   $x > 5$   
 $\{x \mid x < 3\}$   $\{x \mid x > 5\}$   
 $\{x \mid x < 3\} \cup \{x \mid x > 5\} = (-\infty,3) \cup (5,\infty)$ 

**58.** 
$$-2x > -8$$
 and  $-3x < 6$   
 $x < 4$   $x > -2$   
 $\{x \mid x < 4\}$   $\{x \mid x > -2\}$   
 $\{x \mid x < 4\} \cap \{x \mid x > -2\} = (-2, 4)$ 

**59.** 
$$\frac{1}{2}x > -2$$
 and  $5x < 10$   
 $x > -4$   $x < 2$   
 $\{x \mid x > -4\}$   $\{x \mid x < 2\}$   
 $\{x \mid x > -4\} \cap \{x \mid x < 2\} = (-4, 2)$ 

**60.** 
$$\frac{1}{3}x < -1$$
 or  $2x > 0$   
 $x < -3$   $x > 0$   
 $\{x \mid x < -3\}$   $\{x \mid x > 0\}$   
 $\{x \mid x < -3\} \cup \{x \mid x > 0\} = (-\infty, -3) \cup (0, \infty)$ 

61. 
$$\frac{2}{3}x > 4$$
 or  $2x < -8$   
 $x > 6$   $x < -4$   
 $\{x \mid x > 6\}$   $\{x \mid x < -4\}$   
 $\{x \mid x > 6\} \cup \{x \mid x < -4\} = (-\infty, -4) \cup (6, \infty)$ 

62. 
$$x + 4 \ge 5$$
 and  $2x \ge 6$   
 $x \ge 1$   $x \ge 3$   
 $\{x \mid x \ge 1\}$   $\{x \mid x \ge 3\}$   
 $\{x \mid x \ge 1\} \cap \{x \mid x \ge 3\} = [3, \infty)$ 

63. 
$$3x < -9$$
 and  $x-2 < 2$   
 $x < -3$   $x < 4$   
 $\{x \mid x < -3\}$   $\{x \mid x < 4\}$   
 $\{x \mid x < -3\} \cap \{x \mid x < 4\} = (-\infty, -3)$ 

**64.** 
$$-5x > 10$$
 and  $x + 1 > 6$   
 $x < -2$   $x > 5$   
 $\{x \mid x < -2\}$   $\{x \mid x > 5\}$   
 $\{x \mid x < -2\} \cap \{x \mid x > 5\} = \emptyset$ 

65. 
$$2x-3 > 1$$
 and  $3x-1 < 2$   
 $2x > 4$   $3x < 3$   
 $x > 2$   $x < 1$   
 $\{x \mid x > 2\}$   $\{x \mid x < 1\}$   
 $\{x \mid x > 2\} \cap \{x \mid x < 1\} = \emptyset$ 

66. 
$$7x < 14$$
 and  $1-x < 4$   
 $x < 2$   $-x < 3$   
 $x > -3$   
 $\{x \mid x < 2\}$   $\{x \mid x > -3\}$   
 $\{x \mid x < 2\} \cap \{x \mid x > -3\} = (-3, 2)$ 

67. 
$$4x + 1 < 5$$
 and  $4x + 7 > -1$   
 $4x < 4$   $4x > -8$   
 $x < 1$   $x > -2$   
 $\{x \mid x < 1\}$   $\{x \mid x > -2\}$   
 $\{x \mid x < 1\} \cap \{x \mid x > -2\} = (-2, 1)$ 

- **68.** The inequality x > -3 and x > 2 describes one interval of real numbers.
- **69.** The inequality x > -3 or x < 2 describes all real numbers.
- **70.** The inequality x < -3 and x > 2 describes the empty set.

- SALE
- **71.** The inequality x < -3 or x > 2 describes two intervals of real numbers.
- 72. 3x + 7 < 10 or 2x 1 > 5 3x < 3 2x > 6 x < 1 x > 3  $\{x \mid x < 1\}$   $\{x \mid x > 3\}$  $\{x \mid x < 1\} \cup \{x \mid x > 3\} = \{x \mid x < 1 \text{ or } x > 3\}$
- 73. 6x-2 < -14 or 5x+1 > 11 6x < -12 5x > 10 x < -2 x > 2 $\{x \mid x < -2\} \cup \{x \mid x > 2\} = \{x \mid x < -2 \text{ or } x > 2\}$
- 74. -5 < 3x + 4 < 16 -5 + (-4) < 3x + 4 + (-4) < 16 + (-4) -9 < 3x < 12  $\frac{-9}{3} < \frac{3x}{3} < \frac{12}{3}$  -3 < x < 4 $\{x \mid -3 < x < 4\}$
- 75. 5 < 4x 3 < 21 5 + 3 < 4x - 3 + 3 < 21 + 3 8 < 4x < 24  $\frac{8}{4} < \frac{4x}{4} < \frac{24}{4}$  2 < x < 6 $\{x \mid 2 < x < 6\}$
- 76. 0 < 2x 6 < 4 0 + 6 < 2x - 6 + 6 < 4 + 6 6 < 2x < 10  $\frac{6}{2} < \frac{2x}{2} < \frac{10}{2}$  3 < x < 5 $\{x \mid 3 < x < 5\}$
- 77. -2 < 3x + 7 < 1 -2 + (-7) < 3x + 7 + (-7) < 1 + (-7) -9 < 3x < -6  $\frac{-9}{3} < \frac{3x}{3} < \frac{-6}{3}$  -3 < x < -2 $\{x \mid -3 < x < -2\}$

- 78. 4x 1 > 11 or  $4x 1 \le -11$  4x > 12  $4x \le -10$  x > 3  $x \le -\frac{5}{2}$  $\{x \mid x > 3\} \cup \{x \mid x \le -\frac{5}{2}\} = \{x \mid x > 3 \text{ or } x \le -\frac{5}{2}\}$
- 79. 3x 5 > 10 or 3x 5 < -10 3x > 15 3x < -5 x > 5  $x < -\frac{5}{3}$   $\{x \mid x > 5\}$   $\{x \mid x < -\frac{5}{3}\}$  $\{x \mid x > 5\} \cup \{x \mid x < -\frac{5}{3}\} = \{x \mid x > 5 \text{ or } x < -\frac{5}{3}\}$
- **80.** 9x 2 < 7 and 3x 5 > 10 9x < 9 3x > 15 x < 1 x > 5  $\{x \mid x < 1\}$   $\{x \mid x > 5\}$  $\{x \mid x < 1\} \cap \{x \mid x > 5\} = \emptyset$
- **81.**  $8x + 2 \le -14$  and 4x 2 > 10  $8x \le -16$  4x > 12  $x \le -2$  x > 3 $\{x \mid x \le -2\} \cap \{x \mid x > 3\} = \emptyset$
- 82. 3x 11 < 4 or  $4x + 9 \ge 1$  3x < 15  $4x \ge -8$  x < 5  $x \ge -2$  $\{x \mid x < 5\}$   $\{x \mid x \ge -2\}$  = the set of real numbers
- **83.**  $5x + 12 \ge 2$  or  $7x 1 \le 13$   $5x \ge -10$   $7x \le 14$   $x \ge -2$   $x \le 2$  $\{x \mid x \ge -2\} \cup \{x \mid x \le 2\}$  = the set of real numbers

84. 
$$-6 \le 5x + 14 \le 24$$
  
 $-6 + (-14) \le 5x + 14 + (-14) \le 24 + (-14)$   
 $-20 \le 5x \le 10$   
 $\frac{-20}{5} \le \frac{5x}{5} \le \frac{10}{5}$   
 $-4 \le x \le 2$   
 $\{x \mid -4 < x < 2\}$ 

85. 
$$3 \le 7x - 14 \le 31$$
  
 $3 + 14 \le 7x - 14 + 14 \le 31 + 14$   
 $17 \le 7x \le 45$   
 $\frac{17}{7} \le \frac{7x}{7} \le \frac{45}{7}$   
 $\frac{17}{7} \le x \le \frac{45}{7}$   
 $\{x \mid \frac{17}{7} \le x \le \frac{45}{7}\}$ 

86. 
$$3-2x > 7$$
 and  $5x + 2 > -18$   
 $-2x > 4$   $5x > -20$   
 $x < -2$   $x > -4$   
 $\{x \mid x < -2\} \cap \{x \mid x > -4\} = \{x \mid -4 < x < -2\}$ 

87. 
$$1-3x < 16$$
 and  $1-3x > -16$   
 $-3x < 15$   $-3x > -17$   
 $x > -5$   $x < \frac{-17}{-3}$   
 $\{x \mid x > -5\}$   $\{x \mid x < \frac{17}{3}\}$   
 $\{x \mid x > -5\} \cap \{x \mid x < \frac{17}{3}\} = \{x \mid -5 < x < \frac{17}{3}\}$ 

88. 
$$5-4x > 21$$
 or  $7x-2 > 19$   
 $-4x > 16$   $7x > 21$   
 $x < -4$   $x > 3$   
 $\{x \mid x < -4\} \cup \{x \mid x > 3\} = \{x \mid x < -4 \text{ or } x > 3\}$ 

89. 
$$6x + 5 < -1$$
 or  $1 - 2x < 7$   
 $6x < -6$   $-2x < 6$   
 $x < -1$   $x > -3$   
 $\{x \mid x < -1\}$   $\{x \mid x > -3\}$  The set of real numbers.

90. 
$$3-7x \le 31$$
 and  $5-4x > 1$   
 $-7x \le 28$   $-4x > -4$   
 $x \ge -4$   $x < 1$   
 $\{x \mid x \ge -4\} \cap \{x \mid x < 1\} = \{x \mid -4 \le x < 1\}$ 

91. 
$$9-x \ge 7$$
 and  $9-2x < 3$   
 $-x \ge -2$   $-2x < -6$   
 $x \le 2$   $x > 3$   
 $\{x \mid x \le 2\} \cap \{x \mid x > 3\} = \emptyset$ 

## **Objective C Exercises**

- **92.** The low temperature was  $21^{\circ}$ F can be written as  $t \ge 21$ .
- **93.** The temperature did not go above  $42^{\circ}$ F can be written as  $t \le 42$ .
- **94.** The temperature ranged from  $21^{\circ}F$  to  $42^{\circ}F$  can be written as  $21 \le t \le 42$ .
- **95.** The high temperature was  $42^{\circ}$ F can be written as  $t \le 42$ .
- **96. Strategy:** Let *W* represent the width of the rectangle.

The length of the rectangle is 4W + 2. To find the maximum width solve the inequality 2L + 2W < 34.

Solution: 
$$2L + 2W < 34$$
  
 $2(4W+2) + 2W < 34$   
 $8W+4+2W < 34$   
 $10W+4 < 34$   
 $10W < 30$   
 $W < 3$ 

The maximum width of the rectangle is 2 ft.

**97. Strategy:** Let *x* represent the width of the rectangle.

The length of the rectangle is 2x - 5. To find the maximum width solve the inequality 2L + 2W < 60.

**Solution:** 
$$2L + 2W < 60$$
  
 $2(2x - 5) + 2x < 60$   
 $4x - 10 + 2x < 60$   
 $6x - 10 < 60$   
 $6x < 70$   
 $x < \frac{70}{6} = 11\frac{2}{3}$ 

The maximum width of the rectangle is 11 cm.

98. a) the total length of the fish is

2 + 3(1) + 3(1.75) + 5(1) = 15.25 in

**b) Strategy:** Let *n* represent the number of 2-in hatchet fish.

To find the maximum number of hatchet fish that can be added solve the inequality 288 > 12(15.25 + 2n).

**Solution:** 
$$288 \ge 12(15.25 + 2n)$$
  
 $288 \ge 183 + 24n$   
 $105 \ge 24n$   
 $\frac{105}{24} \ge n$   
 $4\frac{3}{8} \ge n$ 

You can add a maximum of 4 hatchet fish.

**99. Strategy:** Let *d* represent the number of days to run advertisement.

To find the maximum number of days the advertisement can run on the website solve the inequality  $250 + 12d \le 1500$ .

**Solution:** 
$$250 + 12d \le 1500$$
  
 $12d \le 1250$   
 $d \le \frac{1250}{12}$   
 $d \le 104\frac{1}{6}$ 

You can run the advertisement for 104 days.

**100. Strategy:** Let *t* represent the number of additional tickets.

To find the maximum number of tickets Alisha can purchase solve the inequality 25 + 1.50t < 45.

**Solution:** 
$$25 + 1.5t \le 45$$
  
 $1.5t \le 20$   
 $t \le \frac{20}{1.5}$   
 $t \le 13\frac{1}{3}$ 

Alisha can buy an additional 13 tickets.

**101. Strategy:** Let *x* represent the cost of a gallon of paint.

Since a gallon of paint covers 100 square feet and the room is 320 square feet the homeowner will need to buy 4 gallons of paint.

To find the maximum cost per gallon solve the inequality  $24 + 4x \le 100$ .

**Solution:** 
$$24 + 4x \le 100$$
  
 $4x \le 76$   
 $x < 19$ 

The maximum that the homeowner can pay for a gallon of paint is \$19.

102. Strategy: To find the temperature range in

Celsius degrees solve the compound

inequality 
$$14 < \frac{9}{5}C + 32 < 77$$
.

**Solution:** 
$$14 < \frac{9}{5}C + 32 < 77$$

$$14 + (-32) < \frac{9}{5}C + 32 + (-32) < 77 + (-32)$$
$$-18 < \frac{9}{5}C < 45$$

$$\frac{5}{9}(-18) < \frac{5}{9} \left(\frac{9C}{5}\right) < \frac{5}{9}(45)$$

$$-10^{\circ} < C < 25^{\circ}$$

Section 2.5

inequality 
$$0 < \frac{5(F-32)}{9} < 30$$
.

**Solution:** 
$$0 < \frac{5(F-32)}{9} < 30$$

$$\frac{9}{5}(0) < \frac{9}{5} \left( \frac{5(F-32)}{9} \right) < \frac{9}{5}(30)$$

$$0 < F - 32 < 54$$

$$0 + 32 < F - 32 + 32 < 54 + 32$$

$$32^{\circ} < F < 86^{\circ}$$

**104. Strategy:** Let *N* represent the amount of sales.

To find the minimum amount of sales solve the inequality  $1200 + 0.06N \ge 6000$ .

**Solution:** 
$$1200 + 0.06N \ge 6000$$
  
 $0.06N > 4800$ 

The executive's amount of sales must be \$80,000 or more per month.

**105. Strategy:** Let *N* represent the amount of sales.

To find the minimum amount of sales solve the inequality  $1000 + 0.05N \ge 3200$ .

**Solution:** 
$$1000 + 0.05N \ge 3200$$

$$0.05N \ge 2200$$

$$N \ge 44,000$$

George's amount of sales must be \$44,000 or more per month.

**106. Strategy:** Divide the total number of students (70) and the number of professors (10) by 12.

Solve the inequality  $N > \frac{70+10}{12}$ .

#### **Solution**

$$N > \frac{70 + 10}{12}$$

$$N > \frac{80}{12}$$

The minimum number of busses is 7.

**107.** Let x represent the number of gallons needed in the first month. To find the minimum, solve the inequality  $x+(x+400)+(x+800)+(x+1200)+(x+1600) \ge 8500$ .

## Solution

$$x + x + 400 + (x + 800) + (x + 1200) + (x + 1600) \le 8500$$

$$5x + 4000 \le 8500$$

$$5x + 4000 - 4000 \le 8500 - 4000$$

$$5x \le 4500$$

The company must make a minimum of 900 gal the first month.

**108. Strategy:** Let *N* represent the score on the last test.

To find the range of scores solve the inequality

$$90 \le \frac{95 + 89 + 81 + N}{4} \le 100.$$

#### **Solution:**

$$90 \le \frac{95 + 89 + 81 + N}{4} \le 100$$

$$90 \le \frac{265 + N}{4} \le 100$$

$$4(90) \le 4 \cdot \frac{265 + N}{4} \le 4(100)$$

$$360 < 265 + N < 400$$

$$360 - 265 \le 265 - 265 + N \le 400 - 265$$
$$95 < N < 135$$

Since 100 is the maximum core, the range of scores needed to receive an A grade is 95 < N < 100.

**109. Strategy:** Let *n* represent the score on the last test.

To find the range of scores solve the inequality

$$70 \le \frac{56 + 91 + 83 + 62 + n}{5} \le 79.$$

## **Solution:**

$$70 \le \frac{56 + 91 + 83 + 62 + n}{5} \le 79$$
$$70 \le \frac{292 + n}{5} \le 79$$

$$5(70) \le 5 \cdot \frac{292 + n}{5} \le 5(79)$$
$$350 \le 292 + n \le 395$$

$$350 - 292 \le 292 - 292 + n \le 395 - 292$$
$$58 \le n \le 103$$

Since 100 is the maximum core, the range of scores needed to receive an C grade is  $58 \le n \le 100$ .

**110. Strategy:** Let *n* number of miles on a full tank. To find the range of miles, solve the

inequality 
$$\frac{112}{3.5} \le n \le \frac{112}{5}$$
.

#### **Solution:**

$$112(3.5) \le n \le 112(5)$$

$$392 \le n \le 560$$

The range of miles on a full tank is between 392 mi and 560 mi.

### **Critical Thinking**

**111.** a) 
$$a < 2x + 1 < b$$

$$a-1 \le 2x \le b-1$$
  
Since  $-2 \le x \le 4$  we have  $-4$ 

Since 
$$-2 \le x \le 4$$
 we have  $-4 \le 2x \le 6$ 

$$a - 1 \le 2x$$
  
$$a - 1 \le -4$$

$$a \leq -3$$

The largest possible value of a is -3.

**b)** 
$$2x \le b - 1$$
  $6 \le b - 1$ 

$$7 \leq b$$

The smallest possible value of b is 7.

- **112.** False
- **113.** True
- **114.** True
- 115. True

## **Projects or Group Activities**

- 116. a) Always true
  - b) Sometimes true
  - c) Sometimes true
  - d) Sometimes true
  - e) Always true

## Section 2.6

## **Concept Check**

1. 
$$|2-8|=6$$

$$|-6| = 6$$
$$6 = 6$$

Yes, 2 is a solution.

**2.** 
$$|2(-2) - 5| = 9$$

$$|-4-5|=9$$

$$|-9| = 9$$
$$9 = 9$$

Yes, -2 is a solution.

## 3. |3(-1)-4|=7

$$|-3-4|=7$$

$$|-7| = 7$$

$$7 = 7$$

Yes, -1 is a solution.

## **4.** |6(1)-1|=-5

$$|6-1| = -5$$
  
 $|5| = -5$ 

$$5 \neq -5$$

## 5. |x| = 7

$$x = 7 \text{ or } x = -7$$

The solutions are 7 and -7.

## **6.** |a| = 2

$$a = 2 \text{ or } a = -2$$

The solutions are 2 and -2.

7. 
$$|-y| = 6$$
  
 $-y = 6 \text{ or } -y = -6$   
 $y = -6 \text{ or } y = 6$   
The solutions are 6 and -6.

8. 
$$|-t| = 3$$
  
 $-t = 3 \text{ or } -t = -3$   
 $t = -3 \text{ or } t = 3$   
The solutions are 3 and  $-3$ .

9. 
$$|x| = -4$$
  
There is no solution to this equation because the absolute value of a number must be nonnegative.

10. 
$$|y| = -3$$
  
There is no solution to this equation because the absolute value of a number must be nonnegative.

11. 
$$|-t| = -3$$
  
There is no solution to this equation because the absolute value of a number must be nonnegative.

12. 
$$|-y| = -2$$
  
There is no solution to this equation because the absolute value of a number must be nonnegative.

13. 
$$|x| > 3$$
  
 $x > 3$  or  $x < -3$   
 $\{x \mid x > 3\}$   $\{x \mid x < -3\}$   
 $\{x \mid x > 3\} \cup \{x \mid x < -3\} = \{x \mid x > 3 \text{ or } x < -3\}$ 

14. 
$$|x| < 5$$
  
 $-5 < x < 5$   
 $\{x \mid -5 < x < 5\}$ 

**15.** 
$$|x-2| < 5$$

**16.** 
$$|x-4| > 3$$

## **Objective A Exercises**

17. 
$$|x + 2| = 3$$
  
 $x + 2 = 3$  or  $x + 2 = -3$   
 $x = 1$   $x = -5$   
The solutions are 1 and  $-5$ .

18. 
$$|x + 5| = 2$$
  
 $x + 5 = 2$  or  $x + 5 = -2$   
 $x = -3$   $x = -7$   
The solutions are  $-3$  and  $-7$ .

19. 
$$|y-5| = 3$$
  
 $y-5=3$  or  $y-5=-3$   
 $y=8$   $y=2$   
The solutions are 2 and 8.

**20.** 
$$|y-8|=4$$
  
 $y-8=4$  or  $y-8=-4$   
 $y=12$   $y=4$   
The solutions are 4 and 12.

21. 
$$|a-2| = 0$$
  
 $a-2 = 0$   
 $a = 2$   
The solution is 2.

22. 
$$|a+7| = 0$$
  
 $a+7=0$   
 $a=-7$   
The solution is  $-7$ .

23. 
$$|x-2| = -4$$
  
There is no solution to this equation because the absolute value of a number must be nonnegative.

**24.** 
$$|x + 8| = -2$$
 There is no solution to this equation because the absolute value of a number must be nonnegative.



25. 
$$|3 - 4x| = 9$$
  
 $3 - 4x = 9$  or  $3 - 4x = -9$   
 $-4x = 6$   $-4x = -12$   
 $x = -\frac{3}{2}$   $x = 3$ 

The solutions are 3 and  $-\frac{3}{2}$ .

**26.** 
$$|2 - 5x| = 3$$
  
 $2 - 5x = 3$  or  $2 - 5x = -3$   
 $-5x = 1$   $-5x = -5$   
 $x = -\frac{1}{5}$   $x = 1$ 

The solutions are 1 and  $-\frac{1}{5}$ .

27. 
$$|2x - 3| = 0$$
  
 $2x - 3 = 0$   
 $2x = 3$   
 $x = \frac{3}{2}$ 

The solution is  $\frac{3}{2}$ .

28. 
$$|5x + 5| = 0$$
  
 $5x + 5 = 0$   
 $5x = -5$   
 $x = -1$   
The solution is  $-1$ .

**29.** |3x-2|=-4

There is no solution to this equation because the absolute value of a number must be nonnegative.

**30.** |2x + 5| = -2 There is no solution to this equation because the absolute value of a number must be nonnegative.

31. 
$$|x-2|-2=3$$
  
 $|x-2|=5$   
 $x-2=5$  or  $x-2=-5$   
 $x=7$   $x=-3$   
The solutions are 7 and  $x=-3$ .

32. |x-9|-3=2 |x-9|=5 x-9=5 or x-9=-5 x=14 x=4The solutions are 4 and 14.

33. 
$$|3a+2|-4=4$$
  
 $|3a+2|=8$   
 $3a+2=8$  or  $3a+2=-8$   
 $3a=6$   $3a=-10$   
 $a=2$   $a=-\frac{10}{3}$ 

The solutions are 2 and  $-\frac{10}{3}$ .

34. 
$$|2a+9|+4=5$$
  
 $|2a+9|=1$   
 $2a+9=1$  or  $2a+9=-1$   
 $2a=-8$   
 $a=-4$   
 $a=-5$   
The solutions are  $-4$  and  $-5$ .

35. 
$$|2 - y| + 3 = 4$$
  
 $|2 - y| = 1$   
 $2 - y = 1$  or  $2 - y = -1$   
 $-y = -1$   
 $y = 1$   $y = 3$ 

The solutions are 1 and 3.

36. 
$$|8-y|-3=1$$
  
 $|8-y|=4$   
 $8-y=4$  or  $8-y=-4$   
 $-y=-4$   
 $y=4$   
 $y=12$   
The solutions are 4 and 12.

37. 
$$|2x-3|+3=3$$
  
 $|2x-3|=0$   
 $2x-3=0$   
 $2x=3$   
 $x=\frac{3}{2}$   
The solution is  $\frac{3}{2}$ .

38. 
$$|4x - 7| - 5 = -5$$
  
 $|4x - 7| = 0$   
 $4x - 7 = 0$   
 $4x = 7$   
 $x = \frac{7}{4}$ 

The solution is  $\frac{7}{4}$ .

**39.** 
$$|2x - 3| + 4 = -4$$
  
 $|2x - 3| = -8$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**40.** 
$$|3x - 2| + 1 = -1$$
  $|3x - 2| = -2$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

41. 
$$|6x - 5| - 2 = 4$$
  
 $|6x - 5| = 6$   
 $6x - 5 = 6$  or  $6x - 5 = -6$   
 $6x = 11$   $6x = -1$   
 $6x = -1$   
 $6x = -1$ 

The solutions are  $\frac{11}{6}$  and  $-\frac{1}{6}$ .

42. 
$$|4b + 3| - 2 = 7$$
  
 $|4b + 3| = 9$   
 $4b + 3 = 9$  or  $4b + 3 = -9$   
 $4b = 6$   $4b = -12$   
 $b = \frac{3}{2}$   $b = -3$ 

The solutions are  $\frac{3}{2}$  and -3.

**43.** 
$$|3t + 2| + 3 = 4$$
  
 $|3t + 2| = 1$   
 $3t + 2 = 1$  or  $3t + 2 = -1$   
 $3t = -1$   $3t = -3$   
 $t = -\frac{1}{3}$   $t = -1$ 

he solutions are  $-\frac{1}{3}$  and -1.

44. 
$$|5x-2|+5=7$$
  
 $|5x-2|=2$   
 $5x-2=2$  or  $5x-2=-2$   
 $5x=4$   $5x=0$   
 $x=\frac{4}{5}$   $x=0$ 

The solutions are  $\frac{4}{5}$  and 0.

**45.** 
$$3 - |x - 4| = 5$$
  
 $-|x - 4| = 2$   
 $|x - 4| = -2$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**46.** 
$$2 - |x - 5| = 4$$
  
 $-|x - 5| = 2$   
 $|x - 5| = -2$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

47. 
$$8 - |2x - 3| = 5$$
  
 $-|2x - 3| = -3$   
 $|2x - 3| = 3$   
 $2x - 3 = 3$  or  $2x - 3 = -3$   
 $2x = 6$   $2x = 0$   
 $x = 3$   $x = 0$ 

The solutions are 3 and 0.

**48.** 
$$8 - |3x + 2| = 3$$
  
 $-|3x + 2| = -5$   
 $|3x + 2| = 5$   
 $3x + 2 = 5$  or  $3x + 2 = -5$   
 $3x = 3$   $3x = -7$   
 $x = 1$   $x = -\frac{7}{3}$ 

The solutions are 1 and  $-\frac{7}{2}$ .

**49.** 
$$|2 - 3x| + 7 = 2$$
  $|2 - 3x| = -5$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**50.** 
$$|1 - 5a| + 2 = 3$$
  
 $|1 - 5a| = 1$   
 $1 - 5a = 1$  or  $1 - 5a = -1$   
 $-5a = 0$   $-5a = -2$   
 $a = 0$   $a = \frac{2}{5}$ 

The solutions are 0 and  $\frac{2}{5}$ .

**51.** 
$$|8-3x|-3=2$$
  
 $|8-3x|=5$   
 $8-3x=5$  or  $8-3x=-5$   
 $-3x=-3$   $-3x=-13$   
 $x=1$   $x=\frac{13}{3}$ 

The solutions are 1 and  $\frac{13}{3}$ 

**52.** 
$$|6-5b| - 4 = 3$$
  
 $|6-5b| = 7$   
 $6-5b = 7$  or  $6-5b = -7$   
 $-5b = 1$   $6-5b = -13$   
 $b = -\frac{1}{5}$   $b = \frac{13}{5}$ 

The solutions are  $-\frac{1}{5}$  and  $\frac{13}{5}$ .

**53.** 
$$|2x - 8| + 12 = 2$$
  
 $|2x - 8| = -10$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**54.** 
$$|3x-4|+8=3$$
  $|3x-4|=-5$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**55.** 
$$2 + |3x - 4| = 5$$
  
 $|3x - 4| = 3$   
 $3x - 4 = 3$  or  $3x - 4 = -3$   
 $3x = 7$   $3x = 1$   
 $x = \frac{7}{3}$   $x = \frac{1}{3}$ 

The solutions are  $\frac{7}{3}$  and  $\frac{1}{3}$ .

**56.** 
$$5 + |2x + 1| = 8$$
  
 $|2x + 1| = 3$   
 $2x + 1 = 3$  or  $2x + 1 = -3$   
 $2x = 2$   
 $x = 1$   
 $2x = -4$   
 $x = -2$ 

The solutions are 1 and -2.

57. 
$$5 - |2x + 1| = 5$$
  
 $-|2x + 1| = 0$   
 $2x + 1 = 0$   
 $2x = -1$   
 $x = -\frac{1}{2}$ 

The solution is  $-\frac{1}{2}$ .

**58.** 
$$3 - |5x + 3| = 3$$
  
 $-|5x + 3| = 0$   
 $5x + 3 = 0$   
 $5x = -3$   
 $x = -\frac{3}{5}$ 

The solution is  $-\frac{3}{5}$ .

**59.** 
$$6 - |2x + 4| = 3$$
  
 $-|2x + 4| = -3$   
 $|2x + 4| = 3$   
 $2x + 4 = 3$  or  $2x + 4 = -3$   
 $2x = -1$   $2x = -7$   
 $x = -\frac{1}{2}$   $x = -\frac{7}{2}$ 

The solutions are  $-\frac{1}{2}$  and  $-\frac{7}{2}$ .

60. 
$$8-|3x-2|=5$$
  
 $-|3x-2|=-3$   
 $|3x-2|=3$   
 $3x-2=3$   
 $3x=5$  or  $3x=-1$   
 $x=\frac{5}{3}$   $x=-\frac{1}{3}$ 

The solutions are  $\frac{5}{3}$  and  $-\frac{1}{3}$ .

61. 
$$8 - |1 - 3x| = -1$$
  
 $-|1 - 3x| = -9$   
 $|1 - 3x| = 9$   
 $1 - 3x = 9$   
 $-3x = 8$  or  $-3x = -10$   
 $x = -\frac{8}{3}$   $x = \frac{10}{3}$ 

The solutions are  $-\frac{8}{3}$  and  $\frac{10}{3}$ .

62. 
$$3-|3-5x| = -2$$
  
 $-|3-5x| = -5$   
 $|3-5x| = 5$   
 $3-5x = 5$   
 $-5x = 2$  or  $-5x = -8$   
 $x = -\frac{2}{5}$   $x = \frac{8}{5}$ 

The solutions are  $-\frac{2}{5}$  and  $\frac{8}{5}$ .

**63.** 
$$5 + |2 - x| = 3$$
  $|2 - x| = -2$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

**64.** 
$$6 + |3 - 2x| = 2$$
  
 $|3 - 2x| = -4$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

- **65.** Two positive solutions.
- **66.** No solution.
- **67.** Two negative solutions.
- **68.** One positive and one negative solution.

## **Objective B Exercises**

**69.** 
$$|x+1| > 2$$
  
 $x+1 > 2$  or  $x+1 < -2$   
 $x > 1$   $x < -3$   
 $\{x \mid x > 1\}$   $\{x \mid x < -3\}$   
 $\{x \mid x > 1\} \cup \{x \mid x < -3\} = \{x \mid x > 1 \text{ or } x < -3\}$ 

70. 
$$|x-2| > 1$$
  
 $x-2 > 1$  or  $x-2 < -1$   
 $x > 3$   $x < 1$   
 $\{x \mid x > 3\}$   $\{x \mid x < 1\}$   
 $\{x \mid x > 3\} \cup \{x \mid x < 1\} = \{x \mid x > 3 \text{ or } x < 1\}$ 

71. 
$$|x-5| \le 1$$
  
 $-1 \le x-5 \le 1$   
 $-1+5 \le x-5+5 \le 1+5$   
 $4 \le x \le 6$   
 $\{x \mid 4 \le x \le 6\}$ 

72. 
$$|x-4| \le 3$$
  
 $-3 \le x - 4 \le 3$   
 $-3 + 4 \le x - 4 + 4 \le 3 + 4$   
 $1 \le x \le 7$   
 $\{x \mid 1 \le x \le 7\}$ 

73. 
$$|2-x| \ge 3$$
  
 $2-x \ge 3$  or  $2-x \le -3$   
 $-x \ge 1$   $-x \le -5$   
 $x \le -1$   $x \ge 5$   
 $\{x \mid x \le -1\} \cup \{x \mid x \ge 5\} = \{x \mid x \le -1 \text{ or } x \ge 5\}$ 

74. 
$$|3-x| \ge 2$$
  
 $3-x \ge 2$  or  $3-x \le -2$   
 $-x \ge -1$   $-x \le -5$   
 $x \le 1$   $x \ge 5$   
 $\{x \mid x \le 1\} \cup \{x \mid x \ge 5\} = \{x \mid x \le 1 \text{ or } x \ge 5\}$ 

75. 
$$|2x + 1| < 5$$
  
 $-5 < 2x + 1 < 5$   
 $-5 - 1 < 2x + 1 - 1 < 5 - 1$   
 $-6 < 2x < 4$   
 $-3 < x < 2$   
 $\{x \mid -3 < x < 2\}$ 

76. 
$$|3x-2| < 4$$
  
 $-4 < 3x - 2 < 4$   
 $-4 + 2 < 3x - 2 + 2 < 4 + 2$   
 $-2 < 3x < 6$   
 $-\frac{2}{3} < x < 2$   
 $\{x \mid -\frac{2}{2} < x < 2\}$ 

77. 
$$|5x + 2| > 12$$
  
 $5x + 2 > 12$  or  $5x + 2 < -12$   
 $5x > 10$   $5x < -14$   
 $x > 2$   $x < -\frac{14}{5}$   
 $\{x \mid x > 2\} \cup \{x \mid x < -\frac{14}{5}\}$   
 $=\{x \mid x > 2 \text{ or } x < -\frac{14}{5}\}$ 

78. 
$$|7x-1| > 13$$
  
 $7x-1 > 13$  or  $7x-1 < -13$   
 $7x > 14$   $7x < -12$   
 $x > 2$   $x < -\frac{12}{7}$   
 $\{x \mid x > 2\} \cup \{x \mid x < -\frac{12}{7}\}$   
 $=\{x \mid x > 2 \text{ or } x < -\frac{12}{7}\}$ 

79. 
$$|4x-3| \le -2$$
  
The absolute value of a number must be nonnegative. The solution set is the empty set  $\emptyset$ .

**80.** 
$$|5x + 1| \le -4$$
 The absolute value of a number must be nonnegative. The solution set is the empty set  $\emptyset$ .

81. 
$$|2x + 7| > -5$$
  
 $2x + 7 > -5$  or  $2x + 7 < 5$   
 $2x > -12$   $2x < -2$   
 $x > -6$   $x < -1$   
 $\{x \mid x > -6\} \cup \{x \mid x < -1\} = \text{The set of all real numbers.}$ 

82. 
$$|3x-1| > -4$$
  
 $3x-1 > -4$  or  $3x-1 < 4$   
 $3x > -3$   $3x < 5$   
 $x > -1$   $x < \frac{5}{3}$   
 $\{x \mid x > -1\}$   $\{x \mid x < \frac{5}{3}\}$   
 $\{x \mid x > -1\} \cup \{x \mid x < \frac{5}{3}\} = \text{The set of all real numbers.}$ 

83. 
$$|4-3x| \ge 5$$
  
 $4-3x \ge 5$  or  $4-3x \le -5$   
 $-3x \ge 1$   $-3x \le -9$   
 $x \le -\frac{1}{3}$   $x \ge 3$   
 $\{x \mid x \le -\frac{1}{3}\}$   $\{x \mid x \ge 3\}$   
 $\{x \mid x \le -\frac{1}{3}\} \cup \{x \mid x \ge 3\}$   
 $= \{x \mid x \le -\frac{1}{3} \text{ or } x \ge 3\}$ 

84. 
$$|7-2x| > 9$$
  
 $7-2x > 9$  or  $7-2x < -9$   
 $-2x > 2$   $-2x < -16$   
 $x < -1$   $x > 8$   
 $\{x \mid x < -1\} \cup \{x \mid x > 8\}$   
 $= \{x \mid x < -1 \text{ or } x > 8\}$ 

85. 
$$|5-4x| \le 13$$
  
 $-13 \le 5 - 4x \le 13$   
 $-13 + (-5) \le 5 + (-5) - 4x \le 13 + (-5)$   
 $-18 \le -4x \le 8$   
 $\frac{18}{4} \ge x \ge -2$   
 $\{x \mid -2 \le x \le \frac{9}{2}\}$ 

86. 
$$|3 - 7x| < 17$$
  
 $-17 < 3 - 7x < 17$   
 $-17 + (-3) < 3 + (-3) - 7x < 17 + (-3)$   
 $-20 < -7x < 14$   
 $\frac{20}{7} > x > -2$   
 $\{x \mid -2 < x < \frac{20}{7}\}$ 

87. 
$$|6 - 3x| \le 0$$
  
 $0 \le 6 - 3x \le 0$   
 $-6 \le -3x \le -6$   
 $2 \le x \le 2$   
 $2 \le x \le 2 = \{x \mid x = 2\}$ 

**88.** 
$$|10 - 5x| \ge 0$$
  
 $10 - 5x \ge 0$  or  $10 - 5x \le 0$   
 $-5x \ge -10$   $-5x \le -10$   
 $x \le 2$   $x \ge 2$   
 $\{x \mid x \le 2\}$   $\{x \mid x \le 2\}$   $\{x \mid x \ge 2\}$  = The set of all real numbers.

89. 
$$|2 - 9x| > 20$$
  
 $2 - 9x > 20$  or  $2 - 9x < -20$   
 $- 9x > 18$   $- 9x < -22$   
 $x < -2$   $x > \frac{22}{9}$   
 $\{x \mid x < -2\} \cup \{x \mid x > \frac{22}{9}\}$   
 $= \{x \mid x < -2 \text{ or } x > \frac{22}{9}\}$ 

90. 
$$|5x-1| < 16$$
  
 $-16 < 5x - 1 < 16$   
 $-16 + 1 < 5x - 1 + 1 < 16 + 1$   
 $-15 < 5x < 17$   
 $-3 < x < \frac{17}{5}$   
 $\{x \mid -3 < x < \frac{17}{5}\}$ 

91. 
$$|2x-3|+2<8$$
  
 $|2x-3|<6$   
 $-6<2x-3<6$   
 $-6+3<2x-3+3<6+3$   
 $-3<2x<9$   
 $-\frac{3}{2}< x<\frac{9}{2}$   
 $\{x \mid -\frac{3}{2} < x < \frac{9}{2}\}$ 

92. 
$$|3x - 5| + 1 < 7$$
  
 $|3x - 5| < 6$   
 $-6 < 3x - 5 < 6$   
 $-6 + 5 < 3x - 5 + 5 < 6 + 5$   
 $-1 < 3x < 11$   
 $-\frac{1}{3} < x < \frac{11}{3}$   
 $\{x \mid -\frac{1}{3} < x < \frac{11}{3}\}$ 

93. 
$$|2-5x|-4>-2$$
  
 $|2-5x|>2$   
 $2-5x>2$  or  $2-5x<-2$   
 $-5x>0$   $-5x<-4$   
 $x<0$   $x>\frac{4}{5}$   
 $\{x\mid x<0\}\cup\{x\mid x>\frac{4}{5}\}=\{x\mid x<0 \text{ or } x>\frac{4}{5}\}$ 

94. 
$$|4-2x|-9>-3$$
  
 $|4-2x|>6$   
 $4-2x>6$  or  $4-2x<-6$   
 $-2x>2$   $-2x<-10$   
 $x<-1$   $x>5$   
 $\{x \mid x<-1\} \cup \{x \mid x>5\}$   
 $=\{x \mid x<-1 \text{ or } x>5\}$ 

95. 
$$8 - |2x - 5| < 3$$
  
 $-|2x - 5| < -5$   
 $|2x - 5| > 5$   
 $2x - 5 < -5$  or  $2x - 5 > 5$   
 $2x < 0$   $2x > 10$   
 $x < 0$   $x > 5$   
 $\{x \mid x < 0\} \cup \{x \mid x > 5\} = \{x \mid x < 0 \text{ or } x > 5\}$ 

96. 
$$12 - |3x - 4| > 7$$
  
 $-|3x - 4| > -5$   
 $|3x - 4| < 5$   
 $-5 < 3x - 4 < 5$   
 $-5 + 4 < 3x - 4 + 4 < 5 + 4$   
 $-1 < 3x < 9$   
 $-\frac{1}{3} < x < 3$   
 $\{x \mid -\frac{1}{3} < x < 3\}$ 

- 97. All negative solutions.
- **98.** Both positive and negative solutions.

## **Objective C Exercises**

- **99.** The desired dosage is 3 ml. The tolerance is 0.2 ml.
- **100.** The desired diameter of the piston is 5 in. The actual diameter can vary from the desired diameter by 0.01 in.
- **101. Strategy:** Let *d* represent the diameter of the bushing, *T* the tolerance and *x* the lower and upper limits of the diameter. Solve the absolute value inequality  $|x d| \le T$ .

**Solution:** 
$$|x - d| \le T$$
  
 $|x - 1.75| \le 0.008$   
 $-0.008 \le x - 1.75 \le 0.008$   
 $-0.008 + 1.75 \le x - 1.75 + 1.75$   
 $\le 0.008 + 1.75$   
 $1.742 \le x \le 1.758$ 

The lower and upper limits of the diameter of the bushing are 1.742 in. and 1.758 in.

**102. Strategy:** Let d represent the diameter of the bushing, T the tolerance and x the lower and upper limits of the diameter. Solve the absolute value inequality  $|x - d| \le T$ .

**Solution:** 
$$|x - d| \le T$$
  
 $|x - 3.48| \le 0.004$   
 $-0.004 \le x - 3.48 \le 0.004$   
 $-0.004 + 3.48 \le x - 3.48 + 3.48$   
 $\le 0.004 + 3.48$   
 $3.476 \le x \le 3.484$ 

The lower and upper limits of the diameter of the bushing are 3.476 in. and 3.484 in.

**103. Strategy:** Let *L* represent the length of the piston.

Solve the absolute value inequality

$$|L-9\frac{5}{8}| \le \frac{1}{32}.$$

Solution: 
$$|L - 9\frac{5}{8}| \le \frac{1}{32}$$
  
 $-\frac{1}{32} \le L - 9\frac{5}{8} \le \frac{1}{32}$   
 $-\frac{1}{32} + 9\frac{5}{8} \le L - 9\frac{5}{8} + 9\frac{5}{8} \le \frac{1}{32} + 9\frac{5}{8}$   
 $9\frac{19}{32} \le L \le 9\frac{21}{32}$ 

The upper and lower limits of the length of the piston are  $9\frac{19}{32}$  in. and  $9\frac{21}{32}$  in.

**104. a) Strategy:** Let *x* represent the range in the girth of an NCAA football. Solve the absolute value inequality  $|x - 21| \le \frac{1}{4}$ .

Solution: 
$$|x - 21| \le \frac{1}{4}$$
  
 $-\frac{1}{4} \le x - 21 | \le \frac{1}{4}$   
 $-\frac{1}{4} + 21 \le x - 21 + 21 \le \frac{1}{4} + 21$   
 $20\frac{3}{4} \le x \le 21\frac{1}{4}$ 

The lower and upper limits of the girth of an NCAA football are  $20\frac{3}{4}$  in. and  $21\frac{1}{4}$  in.

**b) Strategy:** Let *x* represent the range of the circumference of an NCAA football. Solve the absolute value inequality

$$|x-28\frac{1}{8}| \le \frac{3}{8}.$$

Solution: 
$$|x - 28\frac{1}{8}| \le \frac{3}{8}$$
  
 $-\frac{3}{8} \le x - 28\frac{1}{8} \le \frac{3}{8}$   
 $-\frac{3}{8} + 28\frac{1}{8} \le x - 28\frac{1}{8} + 28\frac{1}{8} \le \frac{3}{8} + 28\frac{1}{8}$   
 $27\frac{3}{4} \le x \le 28\frac{1}{2}$ 

The lower and upper limits of the circumference of an NCAA football are

$$27\frac{3}{4}$$
 in. and  $28\frac{1}{2}$  in.

c) Strategy: Let x represent the range of the length of an NCAA football. Solve the absolute value inequality  $|x - 11\frac{1}{32}| \le \frac{5}{32}$ .

**Solution:** 
$$|x-11\frac{1}{32}| \le \frac{5}{32}$$

$$-\frac{5}{12} \le x - 11\frac{1}{32} \le \frac{5}{32}$$

$$-\frac{5}{12} + 11\frac{1}{32} \le x - 11\frac{1}{32} + 11\frac{1}{32} \le \frac{5}{32} + 11\frac{1}{32}$$

$$10\frac{7}{8} \le x \le 11\frac{3}{16}$$

The upper and lower limits of the length of an NCAA football are  $10\frac{7}{8}$  and  $11\frac{3}{16}$  in.

**105. Strategy:** Let x represent the percent of American voters who felt the economy is an important issue. Solve the absolute value inequality  $|x-41| \le 3$ .

**Solution:** 
$$|x - 41| \le 3$$
  
 $-3 \le x - 41 \le 3$   
 $-3 + 41 \le x - 41 + 41 \le 3 + 41$   
 $38 < x < 44$ 

The lower and upper limits of American voters who felt the economy is an important issue 38% and 44%.

**106. a) Strategy:** Let x represent the temperature range for gold sword tail. Solve the absolute value inequality  $|x - 73| \le 9$ .

**Solution:** 
$$|x - 73| \le 9$$
  
 $-9 \le x - 73 \le 9$   
 $-9 + 73 \le x - 73 + 73 \le 9 + 73$   
 $64 < x < 82$ 

The lower and upper limits of temperature requirements for the gold swordtail are 64°F and 82°F.

**b) Strategy:** Let *x* represent the pH levels for gold sword tail. Solve the absolute value inequality  $|x - 7.65| \le 0.65$ .

**Solution:** 
$$|x - 7.65| \le 0.65$$
  
 $-0.65 \le x - 7.65 \le 0.65$   
 $-0.65 + 7.65 \le x - 7.65 + 7.65$   
 $\le 0.65 + 7.65$   
 $7.0 \le x \le 8.3$ 

The lower and upper limits of the range in pH levels for the gold swordtail are 7.0 and 8.3.

**107. Strategy:** Let M represent the range, in ohms, for a resistor. Let T represent the tolerance of the resistor. Solve the absolute value inequality |M-29,000| < T.

**Solution:** 
$$T = (0.02)(29,000)$$
  
= 580 ohm  
 $|M - 29,000| \le 580$   
 $-580 \le M - 29,000 \le 580$   
 $-580 + 29,000 \le M - 29,000 + 29,000$   
 $\le 580 + 29,000$   
 $28,420 \le M \le 29,580$ 

The upper and lower limits of the resistor are 28,420 ohms and 29,580 ohms.

**108. Strategy:** Let *M* represent the range, in ohms, for a resistor.

Let T represent the tolerance of the resistor. Solve the absolute value inequality |M-15,000| < T.

**Solution:** 
$$T = (0.10)(15,000)$$
  
= 1500 ohms  
 $|M-15,000| \le 1500$   
 $-1500 \le M-15,000 \le 1500$   
 $-1500+15,000 \le M-15,000+15,000$   
 $\le 1500+15,000$   
 $13,500 \le M \le 16,500$ 

The upper and lower limits of the resistor are 13,500 ohms and 16,500 ohms.

#### **Critical Thinking**

**109.** a) The equation |x + 3| = x + 3 is true for all x for which  $x + 3 \ge 0$ .

$$x + 3 \ge 0$$

$$x \ge -3$$

$$\{x \mid x \ge -3\}$$

**b)** The equation |a-4|=4-a is true for all a for which  $4-a \ge 0$ .

$$4-a \ge 0$$

$$-a \ge -4$$

$$a \le 4$$

$$\{a \mid a \le 4\}$$

- **110.** a)  $|x + y| \le |x| + |y|$ b)  $|x - y| \ge |x| - |y|$ 
  - c)  $|x y| \ge |x| |y|$
  - d) |xy| = |x||y|
- 111.  $-2 \le x \le 2$   $-a \le 3x - 2 \le a$ ,  $a \ge 0$ For x = 2 we have 3x - 2 = 4 and 3x - 2 < 4for  $-2 \le x \le 2$ . For  $3x - 2 \le a$  to be true a must be greater than or equal to 4. The smallest possible value of a is 4.

#### **Projects or Group Activities**

112. 
$$|4x+3| = 2x+10$$
  
 $4x+3 = 2x+10$   
 $4x-2x+3 = 2x-2x+10$   
 $2x+3-3=10-3$  or  
 $2x = 7$   
 $\frac{2x}{2} = \frac{7}{2}$   
 $x = \frac{7}{2}$   
 $4x+3 = -(2x+10)$   
 $4x+3 = -2x-10$   
 $4x+2x+3 = -2x+2x-10$   
 $6x+3=10$   
 $6x+3-3=-10-3$   
 $6x = -13$   
 $\frac{6x}{6} = \frac{-13}{6}$   
 $x = \frac{-13}{6}$ 

The solutions are  $\frac{7}{2}$  and  $-\frac{13}{6}$ .

113. 
$$|3x-4|=2x+10$$
  
 $3x-4=2x+10$   
 $3x-2x-4=2x-2x+10$   
 $x-4=10$  or  
 $x-4+4=10+4$   
 $x=14$   
 $3x-4=-(2x+10)$   
 $3x-4=-2x-10$   
 $3x+2x-4=-2x+2x-10$   
 $5x-4=-10$   
 $5x-4+4=-10+4$   
 $5x=-6$   
 $\frac{5x}{5}=\frac{-6}{5}$   
 $x=-\frac{6}{5}$ 

The solutions are 14 and  $-\frac{6}{5}$ .

**114.** 
$$|x+3| = 2x-1$$

$$x+3=2x-1$$

$$x - 2x + 3 = 2x - 2x - 1$$

$$-x + 3 = -1$$

$$-x+3-3=-1-3$$
 or

$$-x = -4$$

$$x = 4$$

$$x+3=-(2x-1)$$

$$x + 3 = -2x + 1$$

$$x + 2x + 3 = -2x + 2x + 1$$

$$3x + 3 = 1$$

$$3x + 3 - 3 = 1 - 3$$

$$3x = -2$$

$$\frac{3x}{3} = -\frac{2}{3}$$

$$x = -\frac{2}{3}$$

x cannot equal  $-\frac{2}{3}$  since

$$\left| -\frac{2}{3} + 3 \right|$$
 is positive and

$$3\left(-\frac{2}{3}\right) - 1 = -2 - 1 = -3$$
. The solution is 4.

#### **115.** |3x+1|=2x-5

$$3x + 1 = 2x - 5$$

$$3x-2x+1=2x-2x-5$$

$$x + 1 = -5$$

$$x+1-1=-5-1$$

$$x = -6$$

$$3x+1=-(2x-5)$$

$$3x + 1 = -2x + 5$$

$$3x + 2x + 1 = -2x + 2x + 5$$

$$5x + 1 = 5$$

$$5x+1-1=5-1$$

$$5x = 4$$

$$\frac{5x}{5} = \frac{4}{5}$$

$$x = \frac{4}{5}$$

Since 
$$2x-5=2(-6)-5=-12-5=-17$$

and 
$$2x-5=2\left(-\frac{6}{5}\right)-5=-\frac{12}{5}-\frac{25}{5}=-\frac{37}{5}$$
,

there is no solution.

#### **Chapter 2 Review Exercises**

1. 
$$x+3=24$$

$$x = 24 - 3$$

$$x = 21$$

The solution is 21.

2. 
$$x+5(3x-20)=10(x-4)$$

$$x + 15x - 100 = 10x - 40$$

$$16x - 100 = 10x - 40$$

$$6x = 60$$

$$\frac{6x}{6} = \frac{60}{6}$$

$$x = 10$$

The solution is 10.

3. 
$$5x - 6 = 29$$

$$5x = 29 + 6$$

$$5x = 35$$

$$\frac{5x}{5} = \frac{35}{5}$$

$$x = 7$$

The solution is 7.

#### **4.** 5x-2=4x+5

$$\begin{array}{c|cccc}
5(3) - 2 & 4(3) + 5 \\
15 - 2 & 12 + 5 \\
13 \neq 17
\end{array}$$

No, 3 is not a solution.

5. 
$$\frac{3}{5}a = 12$$

$$a=12\cdot\frac{5}{3}$$

$$a = 20$$

The solution is 20.

### 112 Chapter 2 First-Degree Equations and Inequalities



6. 
$$3x-7 > -2$$
  
 $3x-7+7 > -2+7$   
 $3x > 5$   
 $\frac{3x}{3} > \frac{5}{3}$   
 $x > \frac{5}{3}$ 

The solution is  $\left(\frac{5}{3}, \infty\right)$ .

7. 
$$P(12) = 30$$
  
 $\frac{P(12)}{12} = \frac{30}{12}$   
 $P = 2.5$ 

The percent is 250%.

8. 
$$5x + 3 = 10x - 17$$
  
 $3 + 17 = 10x - 5x$   
 $20 = 5x$   
 $4 = x$ 

The solution is 4.

9. 
$$7 - [4 + 2(x - 3)] = 11(x + 2)$$
  
 $7 - [4 + 2x - 6] = 11x + 22$   
 $7 - [-2 + 2x] = 11x + 22$   
 $7 + 2 - 2x = 11x + 22$   
 $9 - 2x = 11x + 22$   
 $9 - 22 = 11x + 2x$   
 $-13 = 13x$   
 $-1 = x$ 

The solution is -1.

10. 
$$6+|3x-3|=2$$
  
 $6-6+|3x-3|=2-6$   
 $|3x-3|=-4$ 

There is no solution to this equation because the absolute value of a number must be nonnegative.

11. 
$$|2x-5| < 3$$
  
 $-3 < 2x - 5 < 3$   
 $-3 + 5 < 2x - 5 + 5 < 3 + 5$   
 $2 < 2x < 8$   
 $\frac{2}{2} < \frac{2x}{2} < \frac{8}{2}$   
 $1 < x < 4$ 

The solution set is  $\{x \mid 1 < x < 4\}$ .

12. 
$$3x < 4$$
  $x + 2 > -1$   $\frac{3x}{3} < \frac{4}{3}$   $x + 2 - 2 > -1 - 2$   $x > -3$   $x < \frac{4}{3}$  and  $\{x \mid x < \frac{4}{3}\} \cup \{x \mid x > -3\} = \{x \mid -3 < x < \frac{4}{3}\}$ 

The solution is set is  $\left\{x \mid -3 < x < \frac{4}{3}\right\}$ .

13. 
$$3x-2 > x-4$$
  $7x-5 < 3x + 3$   
 $3x-x-2 > x-x-4$   $7x-3x-5 < 3x-3x + 3$   
 $2x-2 > -4$   $4x-5 < 3$   
 $2x-2+2 > -4+2$  or  $4x-5+5 < 3+5$   
 $2x > -2$   $4x < 8$   
 $\frac{2x}{2} > \frac{-2}{2}$   $\frac{4x}{4} < \frac{8}{4}$   
 $x > -1$   $x < 2$   
 $\{x \mid x > -1\} \cup \{x \mid x < 2\}$   
 $= \{x \mid x \text{ is any real number}\}$ 

The interval is  $(-\infty, \infty)$ .

14. 
$$4x-5 \ge 3$$
 and  $4x-5 \le -3$   
 $4x-5+5 \ge 3+5$   $4x \le 8$   $4x \le 2$   
 $\frac{4x}{4} \ge \frac{8}{4}$   $\frac{4x}{4} \le \frac{2}{4}$   
 $x \ge 2$   $x \le \frac{1}{2}$ 

The solution set is  $\{x \mid x \ge 2\} \cup \{x \mid x \le \frac{1}{2}\}.$ 

15. 
$$3y-5=3-2y$$
$$3y+2y-5=3-2y+2y$$
$$5y-5=3$$
$$5y-5+5=3+5$$
$$5y=8$$
$$\frac{5y}{5} = \frac{8}{5}$$
$$y = \frac{8}{5}$$

The solution is  $\frac{8}{5}$ .

16. 
$$4x-5+x=6x-8$$
  
 $5x-5=6x-8$   
 $5x-6x-5=6x-6x-8$   
 $-x-5=-8$   
 $-x-5+5=-8+5$   
 $-x=-3$   
 $\frac{-x}{-1}=\frac{-3}{-1}$   
 $x=3$ 

The solution is 3.

17. 
$$3(x-4) = -5(6-x)$$
$$3x-12 = -30+5x$$
$$3x-5x-12 = -30+5x-5x$$
$$-2x-12 = -30$$
$$-2x-12+12 = -30+12$$
$$-2x = -18$$
$$\frac{-2x}{-2} = \frac{-18}{-2}$$
$$x = 9$$

The solution is 9.

18. 
$$\frac{3x-2}{4} + 1 = \frac{2x-3}{2}$$

$$4\left(\frac{3x-2}{4} + 1\right) = 4\left(\frac{2x-3}{2}\right)$$

$$3x-2+4=4x-6$$

$$3x+2=4x-6$$

$$3x-4x+2=4x-4x-6$$

$$-x+2=-6$$

$$-x+2-2=-6-2$$

$$-x=-8$$

$$\frac{-x}{-1} = \frac{-8}{-1}$$

$$x=8$$

The solution is 8.

19. 
$$|5x+8| = 0$$
  
 $5x+8=0$   
 $5x+8-8=0-8$   
 $5x=-8$   
 $\frac{5x}{5} = \frac{-8}{5}$   
 $x = -\frac{8}{5}$ 

The solution is  $-\frac{8}{5}$ .

**20.** 
$$|5x-4| < -2$$

There is no solution to this equation because the absolute value of a number must be nonnegative.

**21. Strategy** Given: 
$$F_1 = 120$$
,  $x = 2$ ,  $d - x = 12 - 2 = 10$  Unknown:  $F_2$ 

#### Solution

$$F_1 x = F_2 (d - x)$$

$$120(2) = F_2 (10)$$

$$240 = 10F_2$$

$$24 = F_2$$

The force is 24 lb.

#### 22. Strategy

- Speed on winding road: r
- Speed on level road: r + 20

|              | Rate   | Time | Distance |
|--------------|--------|------|----------|
| Winding road | r      | 3    | 3r       |
| Level road   | r + 20 | 2    | 2(r+20)  |

• The total trip was 200 mi.

#### **Solution**

$$3r + 2(r + 20) = 200$$
$$3r + 2r + 40 = 200$$
$$5r + 40 = 200$$
$$5r = 160$$
$$r = 32$$

The average speed on the winding road was 32 mph.

#### 23. Strategy

- Amount of cranberry juice: *x*
- Amount of apple juice: 10 x

| • •             | Amount | Cost | Value      |
|-----------------|--------|------|------------|
| Cranberry juice | x      | 1.79 | 1.79(x)    |
| Apple juice     | 10 - x | 1.19 | 1.19(10-x) |
| Mixture         | 10     | 1.61 | 1.61(10)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$1.79x + 1.19(10 - x) = 1.61(10)$$
$$1.79x + 11.90 - 1.19x = 16.10$$
$$0.60x = 4.2$$
$$x = 7$$

$$10 - x = 10 - 3 = 7$$

The amount of cranberry juice was 7 qt. The amount of apple juice was 3 qt.

#### **24.** Strategy • First integer: *n*

- Second integer: n + 1
- Third integer: n + 2
- Four times the second integer equals the sum of the first and third integer.

is

sixteen

#### **Solution**

$$4(n+1) = n+n+2$$

$$4n+4 = 2n+2$$

$$2n = -2$$

$$n = -1$$

The integers are -1, 0, and 1.

### **25.** The unknown number is *x*. Four less than

| five times a                  |  |  |
|-------------------------------|--|--|
| number                        |  |  |
| 5x - 4 = 16                   |  |  |
| 5x - 4 + 4 = 16 + 4           |  |  |
| 5x = 20                       |  |  |
| $\frac{5x}{x} = \frac{20}{x}$ |  |  |
| 5 5                           |  |  |

x = 4The number is 4.

#### **26.** The height of the Eiffel Tower: x

| 1472 :- | 654 less than twice the    |
|---------|----------------------------|
| 14/2 IS | height of the Eiffel Tower |
|         |                            |

$$1472 = 2x - 654$$

$$2126 = 2x$$

$$1063 = x$$

The Eiffel Tower is 1063 feet tall.

#### 27. Strategy

- Time for jet plane: t
- Time for propeller-driven plane: t + 2

|           | Rate | Time  | Distance |
|-----------|------|-------|----------|
| Jet       | 600  | t     | 600t     |
| Propeller | 200  | t + 2 | 200(t+2) |

• The two traveled the same distance.

#### **Solution**

$$600t = 200(t + 2)$$

$$600t = 200t + 400$$

$$400t = 400$$

$$t = 1$$

Distance = 
$$600t = 600(1) = 600$$

The jet overtakes the propeller-driven plane 600 mi from the starting point.

# **28. Strategy** • Let *b* represent the diameter of the bushing, *T* the tolerance, and *d* the lower and upper limits of diameter. Solve the absolute value inequality $|d-b| \le T$ for *d*.

#### **Solution**

$$\begin{aligned} \left| d - b \right| &\leq T \\ -0.003 &< d - 2.75 \leq 0.003 \\ -0.003 &< d - 2.75 \leq 0.003 \\ -0.003 + 2.75 &\leq d - 2.75 + 2.75 \leq 0.003 + 2.75 \\ 2.747 &\leq d \leq 2.753 \end{aligned}$$

The lower limit of the bushing is 2.747 in. and the upper limit is 2.753 in.

#### 29. Strategy

• Amount of butter fat in the mixture: x

|         | Amount | Percent | Quantity    |
|---------|--------|---------|-------------|
| Cream   | 5      | 0.30    | 0.3(5)      |
| Milk    | 8      | 0.04    | 0.04(8)     |
| Mixture | 13     | x       | 13 <i>x</i> |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$0.30(5) + 0.04(8) = 13x$$
$$1.5 + 0.32 = 13x$$
$$1.82 = 13x$$
$$0.14 = x$$

The mixture is 14% butterfat.

#### 30. Strategy

- Time to island: t
- Time to return:  $2\frac{1}{3} t = \frac{7}{3} t$

|           | Rate | Time             | Distance                       |
|-----------|------|------------------|--------------------------------|
| To island | 16   | t                | 16 <i>t</i>                    |
| Return    | 12   | $\frac{7}{3}$ -t | $12\left(\frac{7}{3}-t\right)$ |

• The distance to the island equals the distance to return.

#### **Solution**

$$16t = 12\left(\frac{7}{3} - t\right)$$

$$16t = 28 - 12t$$

$$16t + 12t = 28 - 12t + 12t$$

$$28t = 28$$

$$\frac{28t}{28} = \frac{28}{28}$$

$$t = 1$$

$$16t = 16(1) = 16$$

The distance from the island to the dock is 16 mi.

### **Chapter 2 Test**

1. 
$$3x-2=5x+8$$
$$3x-3x-2=5x-3x+8$$
$$-2-8=2x+8-8$$
$$-10=2x$$
$$\frac{-10}{2}=\frac{2x}{2}$$
$$-5=x$$

The solution is -5.

2. 
$$x-3=-8$$
  
 $x-3+3=-8+3$   
 $x=-5$ 

The solution is -5.

3. 
$$3x-5 = -14$$
  
 $3x-5+5 = -14+5$   
 $3x = -9$   
 $\frac{3x}{3} = \frac{-9}{3}$   
 $x = -3$ 

The solution is -3

4. 
$$4-2(3-2x) = 2(5-x)$$

$$4-6+4x = 10-2x$$

$$-2+4x = 10-2x$$

$$-2+2+4x+2x = 10+2-2x+2x$$

$$6x = 12$$

$$\frac{6x}{6} = \frac{12}{6}$$

$$x = 2$$

The solution is 2.

5. 
$$x^{2} - 3x = 2x - 6$$

$$(-2)^{2} - 3(-2) | 2(-2) - 6$$

$$4 - 3(-2) | -4 - 6$$

$$4 + 6 | -10$$

$$10 \neq -10$$

No, -2 is not a solution.

6. 
$$7-4x = -13$$

$$7-7-4x = -13-7$$

$$-4x = -20$$

$$\frac{-4x}{-4} = \frac{-20}{-4}$$

$$x = 5$$

The solution is 5.

7. 
$$P \cdot B = A$$
  
 $0.005(8) = A$   
 $0.04 = A$   
 $0.5\%$  of 8 is 0.04.

8. 
$$5x - 2(4x - 3) = 6x + 9$$

$$5x - 8x + 6 = 6x + 9$$

$$-3x + 6 = 6x + 9$$

$$-3x + 3x + 6 - 9 = 6x + 3x + 9 - 9$$

$$-3 = 9x$$

$$\frac{-3}{9} = \frac{9x}{9}$$

$$-\frac{1}{3} = x$$

The solution is  $-\frac{1}{3}$ .

### 116 Chapter 2 First-Degree Equations and Inequalities



9. 
$$5x + 3 - 7x = 2x - 5$$
$$-2x + 3 = 2x - 5$$
$$-2x + 2x + 3 + 5 = 2x + 2x - 5 + 5$$
$$8 = 4x$$
$$\frac{8}{4} = \frac{4x}{4}$$
$$2 = x$$

The solution is 2.

10. 
$$\frac{3}{4}x = -9$$
$$\frac{4}{3}\left(\frac{3}{4}x\right) = -9\left(\frac{4}{3}\right)$$
$$x = -12$$

The solution is -12.

11. 
$$4-3(x+2) < 2(2x+3)-1$$

$$4-3x-6 < 4x+6-1$$

$$-2-3x > 4x+5$$

$$-2+2-3x-4x < 4x-4x+5+2$$

$$-7x < 7$$

$$\frac{-7x}{-7} > \frac{7}{-7}$$

$$x > -1$$

The solution is  $(-1, \infty)$ .

12. 
$$4x-1>5$$
  $2-3x<8$   
 $4x-1+1>5+1$   $2-2-3x<8-2$   
 $4x>6$  or  $-3x<6$   
 $\frac{4x}{4}>\frac{6}{4}$   $\frac{-3x}{-3}>\frac{6}{-3}$   
 $x>\frac{3}{2}$   $x>-2$   
 $\left\{x\mid x>\frac{3}{2}\right\}\cup\left\{x\mid x>-2\right\}=\left\{x\mid x>-2\right\}$ 

The solution set is  $\{x \mid x > -2\}$ .

13. 
$$4-3x \ge 7$$
  $2x+3 \ge 7$   
 $4-4-3x \ge 7-4$   $2x+3-3 \ge 7-3$   
 $-3x \ge 3$  and  $2x \ge 4$   
 $\frac{-3x}{-3} \le \frac{3}{-3}$   $\frac{2x}{x} \ge \frac{4}{2}$   
 $x \le -1$   $x \ge 2$   
 $\{x \mid x \le -1\} \cap \{x \mid x \ge 2\} = \emptyset$ 

There is no solution.

14. 
$$|3-5x| = 12$$
  
 $3-5x = 12$   
 $3-5x = 12$   
 $3-3-5x = 12-3$   
 $3-3-5x = -12-3$   
 $5x = 9$ 

$$\begin{array}{rcl}
 -5x &= 9 & -5x &= -15 \\
 \hline
 -5x &= \frac{9}{-5} & \frac{-5x}{-5} &= \frac{-15}{-5} \\
 x &= -\frac{9}{5} & x &= 3
 \end{array}$$

The solutions are  $-\frac{9}{5}$  and 3.

15. 
$$2 - |2x - 5| = -7$$

$$2 - 2 - |2x - 5| = -7 - 2$$

$$-|2x - 5| = -9$$

$$-|2x - 5| = 9$$

$$|2x - 5| = 9$$

$$2x - 5 = 9$$

$$2x - 5 = 9 + 5$$

$$2x - 5 + 5 = 9 + 5$$

$$2x = 14$$

$$\frac{2x}{2} = \frac{14}{2}$$

$$x = 7$$

$$2x = -4$$

$$\frac{2x}{2} = \frac{-4}{2}$$

$$x = -2$$

The solutions are -2 and 7.

16. 
$$|3x-5| \le 4$$
  
 $-4 \le 3x-5 \le 4$   
 $-4+5 \le 3x-5+5 \le 4+5$   
 $1 \le 3x \le 9$   
 $\frac{1}{3} \le \frac{3x}{3} \le \frac{9}{3}$   
 $\frac{1}{3} \le x \le 3$ 

The solution set is  $\left\{ x \mid \frac{1}{3} \le x \le 3 \right\}$ .

### 17. Strategy • Amount rye flour: x

• Amount wheat flour: 15 - x

|         | Amount | Percent | Quantity   |
|---------|--------|---------|------------|
| Rye     | x      | 0.70    | 0.70(x)    |
| Wheat   | 15 - x | 0.40    | 0.40(15-x) |
| Mixture | 15     | 0.60    | 15(0.60)   |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### Solution

$$0.70x + 0.40(15 - x) = 0.60(5)$$
$$0.70x + 6 - 0.40x = 9$$
$$0.30x + 6 = 9$$
$$0.30x = 3$$
$$x = 10$$

$$15 - x = 15 - 10 = 5$$

The amount of rye flour is 10 lb. The amount of wheat flour is 5 lb.

#### 18. Strategy • First even integer: n

- Second even integer: n + 2
- Third even integer: n + 4
- The sum of the integers is 36.

#### **Solution**

$$n+n+2+n+4=36$$

$$3n+6=36$$

$$3n+6-6=36-6$$

$$3n=30$$

$$\frac{3n}{3}=\frac{30}{3}$$

$$n=10$$

$$n+2=10+2=12$$

$$n+4=10+4=14$$

The integers are 10, 12, and 14.

#### 19. Strategy $\bullet$ Amount pure water: x

|              | Amount | Percent | Quantity  |
|--------------|--------|---------|-----------|
| Water        | x      | 0.00    | 0.00(x)   |
| 20% solution | 5      | 0.20    | 0.20(5)   |
| Mixture      | x + 5  | 0.16    | 0.16(x+5) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### Solution

$$0.00x + 0.20(5) = 0.16(x+5)$$
$$1 = 0.16x + 0.8$$
$$0.2 = 0.16x$$
$$1.25 = x$$

1.25 gal of water must be added.

#### **20.** The number: x

The three times the number: 3x

| The difference between 3 times the number and 15 | is | 27 |
|--------------------------------------------------|----|----|
| number and 15                                    |    |    |

$$3x - 15 = 27$$

$$3x - 15 + 15 = 27 + 15$$

$$3x = 42$$

$$\frac{3x}{3} = \frac{42}{3}$$

$$x = 14$$

The number is 14.

#### 21. Strategy

- Rate of the skier: x
- Rate of the snowmobile: x + 4

|            | Rate         | Time | Distance   |
|------------|--------------|------|------------|
| Skier      | x            | 3    | 3 <i>x</i> |
| Snowmobile | <i>x</i> + 4 | 1    | 1(x + 4)   |

• The two traveled the same distance.

#### Solution

$$3x = x + 4$$
$$2x = 4$$

$$x = 2$$

$$x + 4 = 2 + 4 = 6$$

The rate of the snowmobile is 6 mph.

**22. Strategy** Write and solve an equation letting x represent the number of LCD flat panel TVs and 140 - x represent the LCD rear projection TVs.

#### **Solution**

$$3(140-x) = x - 20$$

$$420-3x = x - 20$$

$$440 = 4x$$

$$110 = x$$

The company makes 110 LCD flat panel TVs each day.

- **23. Strategy** The smaller number: x
  - The larger number: 18 x

#### **Solution**

$$4x-7 = 2(18-x)+5$$

$$4x-7 = 36-2x+5$$

$$4x-7 = 41-2x$$

$$6x = 48$$

$$x = 8$$

$$18-x = 18-8 = 10$$

The smaller number is 8.

The larger number is 10.

- 24. Strategy
  - Time for flight out: t
  - Time for flight in: 7 t

|            | Rate | Time | Distance    |
|------------|------|------|-------------|
| Flight out | 90   | t    | 90 <i>t</i> |
| Flight in  | 120  | 7 -t | 120(7 -t)   |

• The distance traveled is the same.

#### **Solution**

$$90t = 120(7 - t)$$
$$90t = 840 - 120t$$
$$210t = 840$$
$$t = 4$$

Distance = 90t = 90(4) = 360

The distance to the airport is 360 mi.

**25. Strategy** Given:  $m_1 = 100$ ,  $T_1 = 80$ ,  $m_2 = 50$ , and  $T_2 = 20$ 

Unknown: T

#### **Solution**

$$m_1(T_1 - T) = m_2(T - T_2)$$

$$100(80 - T) = 50(T - 20)$$

$$8000 - 100T = 50T - 1000$$

$$-150T = -9000$$

$$T = 60$$

The final temperature is 60° C.

**26. Strategy** To find the number of miles, write and solve an inequality using *N* to represent the number of miles.

#### **Solution**

cost of Gambelli < cost of McDougal  

$$40 + 0.25N < 58$$
  
 $40 - 40 + 0.25N < 58 - 40$   
 $0.25N < 18$   
 $\frac{0.18N}{0.18} < \frac{18}{0.25}$   
 $N < 72$ 

Gambelli will cost less if you drive less the 72 mi.

**27. Strategy** • Let *b* represent the diameter of the bushing, *T* the tolerance, and *d* the lower and upper limits of diameter. Solve the absolute value inequality  $|d-b| \le T$  for *d*.

#### **Solution**

$$\begin{aligned} \left| d - b \right| &\leq T \\ \left| d - 2.65 \right| &< 0.002 \\ -0.002 &< d - 2.65 \leq 0.002 \\ -0.002 + 2.65 \leq d - 2.65 + 2.65 \leq 0.002 + 2.65 \\ 2.648 \leq d \leq 2.652 \end{aligned}$$

The lower limit of the bushing is 2.648 in. and the upper limit is 2.652 in.

#### **Cumulative Review Exercises**

1. 
$$-6-(-20)-8=-6+20-8=14-8=6$$

**2.** 
$$(-2)(-6)(-4) = 12(-4) = -48$$

3. 
$$-\frac{5}{6} - \left(-\frac{7}{16}\right) = -\frac{40}{48} - \left(-\frac{21}{48}\right) = \frac{-40 - (-21)}{48} = \frac{-40 + 21}{48}$$
$$= -\frac{19}{48}$$

4. 
$$-\frac{7}{3} \div \frac{7}{6} = -\frac{7}{3} \cdot \frac{6}{7} = -\frac{7 \cdot 6}{3 \cdot 7} = -2$$

5. 
$$-4^{2} \cdot \left(-\frac{3}{2}\right)^{3} = -(4)(4)\left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right)$$
$$= -16\left(-\frac{27}{8}\right) = 54$$

6. 
$$25 - 3\frac{(5-2)^2}{2^3 + 1} + 2 = 25 - 3\frac{(3)^2}{8+1} + 2$$
$$= 25 - 3\frac{9}{9} + 2$$
$$= 25 - 3 + 2$$
$$= 22 + 2 = 24$$

7. 
$$3(a-c)-2ab$$
  
=  $3[2-(-4)]-2(2)(3)=3[2+4]-2(2)(3)$   
=  $3[6]-2(2)(3)=18-2(2)(3)=18-4(3)$   
=  $18-12=6$ 

8. 
$$3x - 8x + (-12x) = -5x + (-12x)$$
  
=  $-5x - 12x = -17x$ 

9. 
$$2a - (-b) - 7a - 5b = 2a + b - 7a - 5b$$
  
=  $(2a - 7a) + (b - 5b)$   
=  $-5a + (-4b) = -5a - 4b$ 

**10.** 
$$(16x)\left(\frac{1}{8}\right) = \frac{1}{8}(16x) = \left(\frac{1}{8} \cdot 16\right)x = 2x$$

**11.** 
$$-4(-9y) = 4(9y) = (4 \cdot 9)y = 36y$$

12. 
$$-2(-x^2 - 3x + 2) = -2(-x^2) + (-2)(-3x) + (-2)(2)$$
  
=  $2x^2 + 6x - 4$ 

13. 
$$-3 \ 2x - 4(x - 3) + 2 = -3 \ 2x - 4x + 12 + 2$$
  
=  $-3 \ -2x + 12 + 2 = 6x - 36 + 2$   
=  $6x - 34$ 

**14.** 
$$A \cap B = \{-4, -2, 0, 2\} \cap \{-4, 0, 4, 8\} = \{-4, 0\}$$

15. 
$$\{x \mid x < 3\} \cap \{x \mid x > -2\}$$

-5 -4 -3 -2 -1 0 1 2 3 4 5

Yes, -3 is a solution.

17. Percent · Base = Amount  

$$32\% \cdot 60 = A$$
  
 $0.32 \cdot 60 = A$   
 $19.2 = A$   
32% of 60 is 19.2

18. 
$$\frac{3}{5}x = -15$$
  
 $\frac{5}{3} \cdot \frac{3}{5}x = \frac{5}{3} \cdot (-15)$   
 $1 \cdot x = -25$   
 $x = -25$ 

The solution is -25.

19. 
$$7x - 8 = -29$$
  
 $7x - 8 + 8 = -29 + 8$   
 $7x = -21$   
 $\frac{7x}{7} = \frac{-21}{7}$   
 $x = -3$ 

The solution is -3.

20. 
$$13-9x = -14$$
$$13-13-9x = -14-13$$
$$-9x = -27$$
$$\frac{-9x}{-9} = \frac{-27}{-9}$$
$$x = 3$$

The solution is 3.

21. 
$$8x-3(4x-5) = -2x-11$$
  
 $8x-12x+15 = -2x-11$   
 $-4x+15 = -2x-11$   
 $-2x = -26$   
 $x = 13$ 

The solution is 13.

22. Percent · Base = Amount
$$25\% \cdot B = 30$$

$$0.25B = 30$$

$$\frac{0.25B}{0.25} = \frac{30}{0.25}$$

$$B = 120$$

25% of 120 is 30.

# SALE

23. 
$$5x-8=12x+13$$

$$5x-12x-8=5x-5x+13$$

$$-7x-8=13$$

$$-7x-8+8=13+8$$

$$-7x=21$$

$$\frac{-7x}{-7}=\frac{21}{-7}$$

$$x=-3$$

The solution is -3.

24. 
$$11-4x = 2x + 8$$

$$11-4x-2x = 2x-2x+8$$

$$11-6x = 8$$

$$11-11-6x = 8-11$$

$$-6x = -3$$

$$\frac{-6x}{-6} = \frac{-3}{-6}$$

$$x = \frac{1}{2}$$

The solution is  $\frac{1}{2}$ .

25. 
$$3-2(2x-1) \ge 3(2x-2)+1$$
  
 $3-4x+2 \ge 6x-6+1$   
 $-4x+5 \ge 6x-5$   
 $-4x-6x+5 \ge -5$   
 $-10x+5 \ge -5$   
 $-10x+5-5 \ge -5-5$   
 $-10x \ge -10$   
 $\frac{-10x}{-10} \le \frac{-10}{-10}$   
 $x \le 1$ 

The solution set is  $\{x \mid x \le 1\}$ .

26. 
$$3x+2 \le 5$$
  
 $3x+2-2 \le 5-2$   
 $3x \le 3$   
 $3x \le 3$   
The solution set is  $3x \le 3$   
 $3x \le 3$ 

27. 
$$|3-2x| = 5$$
  
 $3-2x = 5$   
 $3-3-2x = 5-3$   
 $-2x = 2$   
 $-2x = 2$   
 $-2x = -8$   
 $-2x = -8$   
 $-2x = -8$   
 $x = -1$   
 $x = 4$ 

The solutions are -1 and 4.

28. 
$$|3x-1| > 5$$
  
 $3x-1 < -5$   
 $3x-1+1 < -5+1$   
 $3x < -4$  or  $3x > 6$   
 $\frac{3x}{3} < \frac{-4}{3}$   $\frac{3x}{3} > \frac{6}{3}$   
 $x < -\frac{4}{3}$   $x > 2$   
 $\left\{x \mid x < -\frac{4}{3}\right\} \cup \left\{x \mid x > 2\right\} = \left\{x \mid x > 2 \text{ or } x < -\frac{4}{3}\right\}$   
The solution set is  $\left\{x \mid x > 2 \text{ or } x < -\frac{4}{3}\right\}$ .

**27.** 
$$55\% = 55 \left( \frac{1}{100} \right) = \frac{55}{100} = \frac{11}{20}$$

**30.** 
$$1.03 = 1.03(100\%) = 103\%$$

**31. Strategy** Given: 
$$m_1 = 300$$
,  $T_1 = 750$ ,  $m_2 = 100$ , and  $T_2 = 15$  Unknown:  $T$ 

Solution

$$m_1(T_1 - T) = m_2(T - T_2)$$

$$300(75 - T) = 100(T - 15)$$

$$22,500 - 300T = 100T - 1500$$

$$-400T = -24,000$$

$$T = 60$$

The final temperature is 60° C.

The number is 6.

The unknown number: xThe difference between 12 and the product of 3 and a number 12 - 5x = -18 -5x = -30 x = 6

#### **33.** To find the area of the garage, let x = the area.

|                                                    | 0 / |                      |
|----------------------------------------------------|-----|----------------------|
| 200 ft <sup>2</sup> more than three times the area | is  | 2000 ft <sup>2</sup> |
| of the garage                                      |     |                      |
| 3x + 200 = 2000                                    |     |                      |
| 3x = 1800                                          |     |                      |
| x = 600                                            |     |                      |

The area of th4e garage is 600 ft<sup>2</sup>.

#### **34. Strategy** • Amount of oat flour: x

|         | Amount        | Cost | Quantity   |
|---------|---------------|------|------------|
| Oat     | x             | 0.80 | 0.80x      |
| Wheat   | 40            | 0.50 | 0.50(40)   |
| Mixture | <i>x</i> + 40 | 0.60 | 0.60(x+40) |
|         |               |      |            |

#### **Solution**

$$0.80x + 0.50(40) = 0.60(x + 40)$$
$$0.80x + 20 = 0.60x + 24$$
$$0.20x = 4$$
$$x = 20$$

20 lb of oat flour are needed for the mixture.

#### **35. Strategy** • Amount pure gold: *x*

|           | Amount Percent |      | Quantity    |
|-----------|----------------|------|-------------|
| Pure gold | X              | 1.00 | 1.00x       |
| Alloy     | 100            | 0.20 | 0.20(100)   |
| Mixture   | x + 100        | 0.36 | 0.36(x+100) |

• The sum of the quantities before mixing is equal to the quantity after mixing.

#### **Solution**

$$1.00x + 0.20(100) = 0.36(x+100)$$
$$1.00x + 20 = 0.36x + 36$$
$$0.64x = 16$$
$$x = 25$$

25 g of pure gold must be added.

#### 36. Strategy

Time running: t
Time jogging: 55 - t

|         | Rate | Time   | Distance   |
|---------|------|--------|------------|
| Running | 8    | t      | 8 <i>t</i> |
| Jogging | 3    | 55 – t | 3(55 -t)   |

• The distance traveled is the same.

### Solution

$$8t = 3(55 - t) 
8t = 165 - 3t 
11t = 165 
t = 15$$

Distance = 8t = 8(15) = 120The length of the track is 120 m.

### **NOT FOR SALE**

### **Chapter 3: Geometry**

### **Prep Test**

- 1. 2(18) + 2(10) = 36 + 20 = 56
- 2. x + 47 = 90x = 43
- 3. 32 + 97 + x = 180 129 + x = 180x = 51
- 4. abc (2)(3.14)(9) = 6.28(9) = 56.52
- 5.  $xyz^3$   $\left(\frac{4}{3}\right)(3.14)(3^3) = \frac{4}{3}(3.14)27 = 113.04$
- 6.  $\frac{1}{2}a(b+c)$ =  $\frac{1}{2}(6)(25+15) = \frac{1}{2}(6)(40) = 3(40) = 120$

#### **Section 3.1**

#### **Concept Check**

- **1.** 12; 5; *x*; 4
- **2.** 113°; 180°
- **3.** 160°; 140°; 360°
- **4.** 3*x*; 90°
- **5.** *a*; *b*
- **6.** *b*; *c*
- 7.  $c; d; 180^{\circ}$
- **8.** *a*; *c*
- **9. a.**  $\angle a$ ,  $\angle b$ , and  $\angle c$ 
  - **b.**  $\angle y$  and  $\angle z$
  - **c.** ∠*x*
- 10. a.  $\angle b$ ;  $\angle c$ 
  - **b.**  $\angle y$ ;  $\angle z$

#### **Objective A Exercises**

- 11. The measure of the given angle is  $40^{\circ}$ . The measure of the angle is between  $0^{\circ}$  and  $90^{\circ}$ , so the angle is acute.
- 12. The measure of the given angle is 69°. The measure of the angle is between 0° and 90°, so the angle is acute.
- 13. The measure of the given angle is 115°. The measure of the angle is between 90° and 180°, so the angle is obtuse.
- 14. The measure of the given angle is 122°. The measure of the angle is between 90° and 180°, so the angle is obtuse.
- **15.** The measure of the given angle is 90°. The angle is right.
- **16.** The measure of the given angle is 20°. The measure of the angle is between 0° and 90°, so the angle is acute.
- 17. Strategy Complementary angles are two angles whose sum is  $90^{\circ}$ . To find the complement, let x represent the complement of a  $62^{\circ}$  angle. Write an equation and solve for x.

#### **Solution**

$$x + 62^{\circ} = 90^{\circ}$$
$$x = 28^{\circ}$$

The complement of a  $62^{\circ}$  angle is a  $28^{\circ}$  angle.

18. Strategy Complementary angles are two angles whose sum is  $90^{\circ}$ . To find the complement, let x represent the complement of a  $31^{\circ}$  angle. Write an equation and solve for x.

#### **Solution**

$$x + 31^{\circ} = 90^{\circ}$$
$$x = 59^{\circ}$$

The complement of a 31° angle is a 59° angle.

19. Strategy Supplementary angles are two angles whose sum is  $180^{\circ}$ . To find the supplement, let *x* represent the supplement of a  $162^{\circ}$  angle. Write an equation and solve for *x*.

#### Solution

$$x + 162^{\circ} = 180^{\circ}$$
$$x = 18^{\circ}$$

The supplement of a 162° angle is an 18° angle.

**20. Strategy** Supplementary angles are two angles whose sum is  $180^{\circ}$ . To find the supplement, let *x* represent the supplement of a  $72^{\circ}$  angle. Write an equation and solve for *x*.

#### **Solution**

$$x + 72^{\circ} = 180^{\circ}$$
$$x = 108^{\circ}$$

The supplement of a 72° angle is a 108° angle.

- 21. AB + BC + CD = AD 12 + BC + 9 = 35 21 + BC = 35 BC = 14BC = 14 cm
- 22. AB + BC + CD = AD 21 + 14 + CD = 54 35 + CD = 54 CD = 19CD = 19 mm
- 23. QR + RS = QS QR + 3(QR) = QS  $7 + 3 \cdot 7 = QS$  7 + 21 = QS 28 = QS QS = 28 ft
- **24.** QR + RS = QS QR + 2(QR) = QS 15 + 2(15) = QS 15 + 30 = QS 45 = QSQS = 45 in.

- 25. EF + FG = EG  $EF + \frac{1}{2}(EF) = EG$   $20 + \frac{1}{2}(20) = EG$  20 + 10 = EG 30 = EG EG = 30 m
- 26. EF + FG = EG  $EF + \frac{1}{3}(EF) = EG$   $18 + \frac{1}{3}(18) = EG$  18 + 6 = EG 24 = EG EG = 24 cm
- 27.  $\angle LOM + \angle MON = \angle LON$   $53^{\circ} + \angle MON = 139^{\circ}$   $\angle MON = 139^{\circ} - 53^{\circ} = 86^{\circ}$ The measure of  $\angle MON$  is  $86^{\circ}$ .
- 28.  $\angle LOM + \angle MON = \angle LON$   $\angle LOM + 38^{\circ} + = 85^{\circ}$   $\angle LOM = 85^{\circ} - 38^{\circ} = 47^{\circ}$ The measure of  $\angle LON$  is  $47^{\circ}$ .
- **29. Strategy** To find the measure of  $\angle x$ , write an equation using the fact that the sum of the measures of  $\angle x$  and  $\angle 2x$  is 90°. Solve for  $\angle x$ .

#### **Solution**

$$x + 2x = 90^{\circ}$$
$$3x = 90^{\circ}$$
$$x = 30^{\circ}$$

The measure of  $\angle x$  is 30°.

**30. Strategy** To find the measure of  $\angle x$ , write an equation using the fact that the sum of the measures of  $\angle x$  and  $\angle 4x$  is 90°. Solve for  $\angle x$ .

#### **Solution**

$$x + 4x = 90^{\circ}$$
$$5x = 90^{\circ}$$
$$x = 18^{\circ}$$

The measure of  $\angle x$  is 18°.