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Chapter	1:	The	nature	of	econometrics	and	
economic	data	
TEACHING	NOTES	
You have substantial latitude about what to emphasise in Chapter 1. We find it useful to talk about the 
economics of crime example (Example 1.1) and the wage example (Example 1.2) so that students see, 
at the outset, that econometrics is linked to economic reasoning, even if the economics is not 
complicated theory. 

We like to familiarise students with the important data structures that empirical economists use, 
focusing primarily on cross-sectional and time series data sets, as these are what we cover in a first-
semester course. It is probably a good idea to mention the growing importance of data sets that have 
both a cross-sectional and a time dimension. 

We spend almost an entire lecture talking about the problems inherent in drawing causal inferences in 
the social sciences. We do this mostly through the agricultural yield, return to education and crime 
examples. These examples also contrast experimental and non-experimental (observational) data. 
Students studying business and finance tend to find the term structure of interest rates example more 
relevant, although the issue there is testing the implication of a simple theory, as opposed to inferring 
causality. We have found that spending time talking about these examples, in place of a formal review 
of probability and statistics, is more successful in teaching the students how econometrics can be used. 
(And, it is more enjoyable for the students and for us.) 

We do not use counterfactual notation as in the modern ‘treatment effects’ literature, but we do 
discuss causality using counterfactual reasoning. The return to education, perhaps focusing on the 
return to getting a college degree, is a good example of how counterfactual reasoning is easily 
incorporated into the discussion of causality. 
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Solutions	to	review	questions	
1	 	 (i)	 Ideally,	we	could	randomly	assign	students	to	classes	of	different	sizes.	That	is,	each	

student	is	assigned	a	different	class	size	without	regard	to	any	student	characteristics	such	
as	ability	and	family	background.	We	would	like	substantial	variation	in	class	sizes	(subject,	
of	course,	to	ethical	considerations	and	resource	constraints).	

(ii)	 A	negative	correlation	means	that	larger	class	size	is	associated	with	lower	performance.	
We	might	find	a	negative	correlation	because	larger	class	size	actually	hurts	performance.	
However,	with	observational	data,	there	are	other	reasons	we	might	find	a	negative	
relationship.	For	example,	children	from	more	affluent	families	in	Australia	might	be	more	
likely	to	attend	schools	with	smaller	class	sizes,	and	affluent	children	generally	score	
better	on	standardised	tests.	Another	possibility	is	that,	within	a	school,	a	principal	might	
assign	the	better	students	to	smaller	classes.	Or,	some	parents	might	insist	their	children	
are	in	the	smaller	classes,	and	these	same	parents	tend	to	be	more	involved	in	their	
children’s	education.	

(iii)	 Given	the	potential	for	confounding	factors	–	some	of	which	are	listed	in	(ii)	–	finding	a	
negative	correlation	would	not	be	strong	evidence	that	smaller	class	sizes	actually	lead	to	
better	performance.	Some	way	of	controlling	for	the	confounding	factors	is	needed,	and	
this	is	the	subject	of	multiple	regression	analysis.	

2	 	 (i)	 Here	is	one	way	to	pose	the	question:	If	two	firms,	say	A	and	B,	are	identical	in	all	respects	
except	that	firm	A	supplies	job	training	one	hour	per	worker	more	than	firm	B,	by	how	
much	would	firm	A’s	output	differ	from	firm	B’s?	

(ii)	 Manufacturing	firms	in	Victoria	are	likely	to	choose	job	training	depending	on	the	
characteristics	of	workers.	Some	observed	characteristics	are	years	of	schooling,	years	in	
the	workforce	and	experience	in	a	particular	job.	Firms	might	even	discriminate	based	on	
age,	gender	or	race.	Perhaps	firms	choose	to	offer	training	to	more	or	less	able	workers,	
where	‘ability’	might	be	difficult	to	quantify	but	where	a	manager	has	some	idea	about	the	
relative	abilities	of	different	employees.	Moreover,	different	kinds	of	workers	might	be	
attracted	to	firms	that	offer	more	job	training	on	average,	and	this	might	not	be	evident	to	
employers.	

(iii)	 The	amount	of	capital	and	technology	available	to	workers	would	also	affect	output.	So,	
two	firms	with	exactly	the	same	kinds	of	employees	would	generally	have	different	
outputs	if	they	use	different	amounts	of	capital	or	technology.	The	quality	of	managers	
would	also	have	an	effect.	

(iv)	 No,	unless	the	amount	of	training	is	randomly	assigned.	The	many	factors	listed	in	parts	(ii)	
and	(iii)	can	contribute	to	finding	a	positive	correlation	between	output	and	training	even	
if	job	training	does	not	improve	worker	productivity.		

3	 It	does	not	make	sense	to	pose	the	question	in	terms	of	causality.	Economists	would	assume	
that	students	choose	a	mix	of	studying	and	working	(and	other	activities,	such	as	attending	
class,	leisure	and	sleeping)	based	on	rational	behaviour,	such	as	maximising	utility	subject	to	
the	constraint	that	there	are	only	168	hours	in	a	week.	We	can	then	use	statistical	methods	to	
measure	the	association	between	studying	and	working,	including	regression	analysis.	But	we	
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would	not	be	claiming	that	one	variable	‘causes’	the	other.	They	are	both	choice	variables	of	
the	student.		

4	 	 (i)	 The	notion	of	ceteris	paribus	indicates	circumstances	when	other	factors	are	equal	or	
remain	the	same.	In	economic	and	econometric	analysis,	this	notion	is	implicit	in	many	
theoretical	model-building,	estimations	and	explanations	involving	relationships	of	
economic	variables;	and	as	we	identify	changes	in	one	variable	of	interest	due	to	changes	
in	another	variable,	keeping	everything	else	constant	or	unchanged.	For	example,	in	a	
typical	supply	model	we	may	be	interested	to	analyse	the	effect	of	price	changes	on	
quantity	supplied	of	a	product,	holding	other	factors	such	costs	of	production,	prices	of	
related	goods	and	technology	unchanged.	As	per	Example	1.2	of	the	chapter,	we	might	be	
interested	in	the	effect	of	another	year	of	experience	on	wages,	with	training	and	
education	remaining	unchanged.	If	we	allow	all	the	three	variables	–	training,	education	
and	experience	–	to	change	simultaneously,	then	the	net	effect	on	wages	due	to	changes	
in	experience	could	not	be	ascertained	and	such	analysis	would	have	few	implications	for	
policy.		

(ii)	 	

	

					Figure:	Total	population	of	selected	Asia-Pacific	economies,	2018	

Multiple-choice	questions	

1	 c	 5	 b	

2	 d	 6	 d	

3	 b	 7	 c	

4	 b	 8	 a	
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Computer	questions	
C1	 	(i)	 The	average	of	educ	is	about	12.6	years.	There	are	two	people	reporting	zero	years	of	

education,	and	19	people	reporting	18	years	of	education.	

(ii)	 The	average	of	wage	is	about	$5.90,	which	seems	low	in	the	year	2008.	

(iii)	 Using	Table	B-60	in	the	2004	Economic	Report	of	the	President,	the	CPI	was	56.9	in	1976	
and	184.0	in	2003.	

(iv)	 The	sample	contains	252	women	(the	number	of	observations	with	female	=	1)	and		
274	men.	

C2	 	(i)	 There	are	1388	observations	in	the	sample.	Tabulating	the	variable	cigs	shows	that	212	
women	have	cigs	>	0.	

(ii)	 The	average	of	cigs	is	about	2.09,	but	this	includes	the	1176	women	who	did	not	smoke.	
Reporting	just	the	average	masks	the	fact	that	almost	85%	of	the	women	did	not	smoke.	It	
makes	more	sense	to	say	that	the	‘typical’	woman	does	not	smoke	during	pregnancy;	
indeed,	the	median	number	of	cigarettes	smoked	is	zero.	

(iii)	 The	average	of	cigs	over	the	women	with	cigs	>	0	is	about	13.7.	Of	course	this	is	much	
higher	than	the	average	over	the	entire	sample	because	we	are	excluding	1176	non-
smoker	women.	

(iv)	 The	average	of	fatheduc	is	about	13.2.	There	are	196	observations	with	a	missing	value	for	
fatheduc,	and	those	observations	are	necessarily	excluded	in	computing	the	average.	

C3	 (i)	 185/445	≈	.416	is	the	fraction	of	men	receiving	job	training,	or	about	41.6%.	

(ii)	 For	men	receiving	job	training,	the	average	of	re78	is	about	6.35,	or	$6350.	For	men	not	
receiving	job	training,	the	average	of	re78	is	about	4.55,	or	$4550.	The	difference	is	$1800,	
which	is	very	large.	On	average,	the	men	receiving	the	job	training	had	earnings	about	
40%	higher	than	those	not	receiving	training.	

(iii)	 About	24.3%	of	the	men	who	received	training	were	unemployed	in	1978;	the	figure	is	
35.4%	for	men	not	receiving	training.	This,	too,	is	a	big	difference.	

(iv)	 The	differences	in	earnings	and	unemployment	rates	suggest	the	training	program	had	
strong,	positive	effects.	Our	conclusions	about	economic	significance	would	be	stronger	if	
we	could	also	establish	statistical	significance.	

C4	 (i)	 The	smallest	and	largest	values	of	children	are	0	and	13,	respectively.	The	average	is	about	
2.27.	

(ii)	 Out	of	4358	women,	only	611	have	electricity	in	the	home,	or	about	14.02%.	

(iii)	 The	average	of	children	for	women	without	electricity	is	about	2.33,	and	for	those	with	
electricity	it	is	about	1.90.	So,	on	average,	women	with	electricity	have	.43	fewer	children	
than	those	who	do	not.	
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(iv)	 We	cannot	infer	causality	here.	There	are	many	confounding	factors	that	may	be	related	
to	the	number	of	children	and	the	presence	of	electricity	in	the	home;	household	income	
and	level	of	education	are	two	possibilities.	For	example,	it	could	be	that	women	with	
more	education	have	fewer	children	and	are	more	likely	to	have	electricity	in	the	home	
(the	latter	due	to	an	income	effect).	

C5	 (i)	 	
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There	appears	to	be	a	downward	trend	in	the	data.	

(ii)	 	
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The	number	of	marriages	is	lower	in	the	leap	years	although	more	recently	the	differential	
appears	to	be	getting	smaller.	
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(iii)	 	

15

16

17

18

19

20

21

22

23

60 65 70 75 80 85 90 95 00 05 10

Number of Marriages in Ireland ('000)

15

16

17

18

19

20

21

22

23

60 65 70 75 80 85 90 95 00 05 10

Number of Marriages in Ireland ('000)

Leap

Non-Leap

	

The	number	of	marriages	has	fluctuated	over	time	with	some	periods	of	downturns	and	
other	periods	where	there	has	been	an	increase.	There	is	no	obvious	difference	when	we	
plot	the	data	separately	for	leap	and	non-leap	years.	

C6	 (i)	
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In	the	first	plot	we	observe	that	energy	usage	increases	with	increases	in	average	
temperature.	The	relationship	doesn’t	appear	to	be	linear.	

(ii)	 In	the	second	plot	we	divide	the	data	by	whether	the	observation	is	in	the	daylight	savings	
period	or	not.	When	the	observations	are	not	in	the	daylight	savings	period	these	mainly	
correspond	to	winter	and	in	the	graph	we	can	see	these	observations	are	generally	
clustered	in	the	area	of	lower	average	temperatures	and	lower	energy	usage.	However,	
the	nonlinearity	in	the	data	can	still	be	observed.		 	
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Chapter	2:	Basic	mathematical	tools	
Solutions	to	review	questions	
1	 The	table	is	extended	with	required	calculations	as	follows:	

Observation	 Xi	 Yi	 Xi2	 Xi	Yi	 ( )2iX X− 	

1	 	2	 	1	 4	 2	 (2	–	2.6)2	=	.36	

2	 	0	 	3	 0	 0	 (0	–	2.6)2	=	6.76	

3	 –1	 –2	 1	 2	 (–1	–	2.6)2	=	12.96	

4	 	5		 	4	 25	 20	 (5	–	2.6)2	=	5.76	

5	 	7	 	3	 49	 21	 (7	–	2.6)2	=	19.36	
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(i)		 As	the	table	shows,	 	=	13	and	 	=	9	

(ii)		 From	the	table,	 =	79	and	 =	(13)2	=	169	

(iii)		 	=45	and	 	=	13*9	=	117	

(iv)		 	=	13	+	9	=	22	and	 	=	13	+	9	=	22.	Actually,	these	are	same	

quantities.		
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(vii)	 =	2*5=10	

(viii)	
( )5

1
i

i
X X

=
−∑

=	0	

2	 	 	(i)	 The	average	monthly	housing	expenditure	is	$566.	

(ii)	 The	average	monthly	expenditure	would	be	$5.66,	respectively,	measured	in	hundreds	of	
dollars.	

(iii)	 The	average	monthly	housing	expenditure	increases	to	$586.	

3	 	 	(i)	 This	is	just	a	standard	linear	equation	with	intercept	equal	to	3	and	slope	equal	to	.125.	
The	intercept	is	the	number	of	missed	classes	for	a	student	who	lives	on	campus.	

	

(ii)	 The	average	number	of	classes	missed	by	students	who	live	8	kilometres	away	is:	
	missed	=	3	+	.125(8)	=	4.0,	or	approximately	4	classes.	

(iii)	 The	difference	between	the	average	number	of	classes	missed	by	student	living	16	
kilometres	and	32	kilometres	away	is	=	[3	+	.125(32)]	–	[3	+	.125(16))]	=	7	–	5	=	2	classes.		

4	 If	price	=	15	and	income	=	200,	quantity	=	20	–	1.8(15)	+	.03(200)	=		–1,	which	is	nonsense.	This	
shows	that	linear	demand	functions	generally	cannot	describe	demand	over	a	wide	range	of	
prices	and	income.	

5	 	 (i)	 The	percentage	point	change	is	6	–	4	=	2,	or	a	two	percentage	point	increase	in	the	
unemployment	rate.	

(ii)	 The	percentage	change	in	the	unemployment	rate	is	100[(6	–	4)/4]	=	50%;	
i.e.	unemployment	increased	by	50%.	
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6	 The	majority	shareholder	is	referring	to	the	percentage	point	increase	in	the	stock	return,	while	
the	CEO	is	referring	to	the	change	relative	to	the	initial	return	of	15%.	To	be	precise,	the	
shareholder	should	specifically	refer	to	a	3	percentage	point	increase.	

7	 	 (i)	 The	person	b’s	salary	exceeds	that	of	person	B	by	100[42	000	–	35	000)/35	000]	=	20%.	

(ii)	 The	approximate	proportionate	change	is	log(42	000)	–	log(35	000)	 ≈ 	.182,	so	the	
approximate	percentage	change	is	18.2%.	[Note:		log(⋅)	denotes	the	natural	log.]	

8	 	 (i)	 When	exper	=	0,	log(salary)	=	10.6;	therefore,	salary	=	exp(10.6)	≈ 	$40	134.84.	When	
exper	=	5,	salary	=	exp[10.6	+	.027(5)]	≈ 	$45	935.80.	

(ii)	 The	approximate	proportionate	increase	is	.027(5)	=	.135,	so	the	approximate	percentage	
change	is	13.5%.	

(iii)	 100[(45	935.80	–	40	134.84)/40	134.84)	≈ 		14.5%,	so	the	exact	percentage	increase	is	
about	one	percentage	point	higher.	

9	 	 (i)	 The	relationship	between	yield	and	fertiliser	is	graphed.	

	

(ii)	 Compared	with	a	linear	function,	the	function	

yield		=		120	+	.13 fertilizer 	

has	a	diminishing	marginal	effect,	and	the	slope	approaches	zero	as	fertiliser	gets	large.	
The	initial	kilogram	of	fertiliser	has	the	largest	effect,	and	each	additional	kilogram	has	a	
marginal	effect	smaller	than	the	previous	kilogram.	

10	 	 (i)	 The	value	20.5	is	the	intercept	in	the	equation,	so	it	literally	means	that	if	age	=	0	then	the	
BMI	is	20.5.	Of	course,	age	=	0	measured	in	years	would	indicate	the	BMI	of	20.5	as	shown	
by	the	intercept	is	the	BMI	of	newborn	babies	–	or	more	precisely,	babies	less	than	a	year	

fertilizer
0 50 100

120

121

yield 122
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old.	The	intercept	by	itself	is	not	much	of	interest	since	the	body	fat	of	babies	less	than	a	
year	old	is	not	usually	a	concern.	Also,	the	intercept	should	ideally	reflect	a	dataset	on	age	
and	BMI	of	the	adult	population;	so,	by	itself,	20.5	is	not	of	much	interest.		

(ii)	 We	use	calculus	to	obtain	the	maximum	BMI:	

		 .2 .004dBMI Age
dAge

= − 	 and		
2

2 .004 0.d BMI
dAge

= − < 	

		 Hence,	the	BMI	function	has	a	maximum.	Letting	the	first	derivative	equal	to	0,		

		
.2 .004 0

.2 50
.004

dBMI Age
dAge

Age

= − =

= =

	

Therefore,	BMI	is	maximum	at	the	age	of	50	years.		

(iii)	 The	following	graph	shows	the	solution	rounded	to	the	nearest	integer:	
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(iv)	 It	is	not	at	all	realistic	to	think	that	BMI	and	age	will	have	a	deterministic	relationship.	BMI	
is	also	scientifically	measured	in	accordance	with	the	height	of	a	person.	Besides,	there	are	
many	other	factors	that	affect	BMI	of	a	person,	such	as	general	lifestyle,	eating	habits,	
health	awareness	and	income.	Multiple	regression	analysis	allows	for	many	observed	
factors	to	affect	a	variable	such	as	BMI,	and	also	recognises	that	there	are	unobserved	
factors	that	are	important	and	that	we	can	never	directly	account	for.	

Multiple-choice	questions	

1	 d	 5	 c	 9	 a	

2	 b	 6	 b	 10	 a	

3	 d	 7	 c	 	 	

4	 b	 8	 c	 	 	
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Chapter	3:	Fundamentals	of	statistics:		
a	review	
Solutions	to	review	questions	
1	 	 	(i)	 P(0<	Z	<	1)	=	.8413	–	.5	=	.3413	

(ii)	 P(–1<	Z	<	1)	=	.9901	–	.9265	=	.0636	

(iii)	 P(Z	>	2.55)	=	1	–	.9946	=	.0054	

(iv)	 P(Z>	–1.92)	=	1	–	.9726	=	.0274	

(v)	 P(Z	<	–.43)	=	.3336	

2	 	 	(i)	 P(X	≤	6)	=	P[(X	–	5)/2	≤	(6	–	5)/2]	=	P(Z	≤	.5)	≈ 	.692,	where	Z	denotes	a	Normal	(0,1)	
random	variable.	[we	obtain	P(Z	≤	.5)	from	Table	G.1.]	

(ii)	 P(X	>	4)	=	P[(X	–	5)/2	>	(4	–	5)/2]	=	P(Z	>	−	.5)	=	P(Z	≤	.5)	≈	.692.		

(iii)	 P(|X	–	5|	>	1)	=	P(X	–	5	>	1)	+	P(X	–	5	<	–1)	=	P(X	>	6)	+	P(X	<	4)	≈ 	(1	–	.692)	+	(1	–	.692)	=	
.616,	where	we	have	used	answers	from	parts	(i)	and	(ii).	

(iv)	 P(2.5<X<2.8)	=	P[(X	–	5)/2]	<Z < P(X	–	5)/2]	=	P[(2.5	–	5)/2]<	Z	<P[(2.8	–	5)/2]	=		
P(–1.25<Z<	–1.1)	=	.4562	–	.1056	=	.3506		

(v)	 P(4<X<5.74)	=	P[(X	–	5)/2]	<Z < P(X	–	5)/2]	=	P[(4	–	5)/2]>Z>P[(5.74	–	5)/2]	=	P(–.5<Z<.37)	=	
.6443	–	.3085	=	.3358	

3	 Let	X	denote	family	income.	Then,	given	the	information,	we	find	the	required	probabilities	as	
shown	below:	

(i)	 30000 50000( 30000) ( ) ( 2) .0228
10000

P X P Z P Z−< = < = < − = 		

(ii)		 70000 50000( 70000) ( ) ( 2) 1 .9772 .0228
10000

P X P Z P Z−> = > = > = − = 	

4	 Let	X	represent	the	marks	obtained	by	the	students	and	XA	and	XA+	denote	the	lowest	mark	that	
will	be	awarded	an	A	and	A+	grades,	respectively.	Given	that		 (70,6)X N! 	 we	first	find	out	

the	values	of	standard	normal	variable	Z,	such	that	the	probability	of	Z	exceeding	this	value	is	
10%	or	.10	and	5%	or	.05.	That	is,	we	need	to	find	the	value	of	Z	that	leaves	out	10%	of	the	area	
and	5%	of	the	area	under	the	right	tail	of	the	Z	distribution.	

From	the	appendix	on	areas	under	the	standard	normal	distribution,	we	find	that	the	relevant	

value	of	Z	is	1.28	(approximately).	Hence	we	get	 70 1.28
6

X − = 		

⇒ XA	=	(1.28)	.	6	+	70	=	77.68. 



	

©	Cengage	Learning	2021.	All	rights	reserved.																																						12	

Hence,	the	lowest	mark	that	will	be	awarded	an	A	grade	is	77.68	or	78	(approximately).	
Similarly,	from	the	standard	normal	distribution,	we	find	that	the	relevant	value	of	Z	allowing	
5%	of	the	area	under	the	normal	curve	is	1.65	(approximately).	Hence	we	get	

		 	
70 1.65
6

1.65 6 70 79.9A

X

X +

− =

⇒ = × + =

	

The	lowest	mark	that	will	be	awarded	an	A+	grade	is	79.9	or	80	(approximately).	

5	 Let	Yit	be	the	binary	variable	equal	to	one	if	fund	I	outperforms	the	market	in	year	t.	By	
assumption,	P(Yit	=	1)	=	.5	(a	50-50	chance	of	outperforming	the	market	for	each	fund	in	each	
year).	Now,	for	any	fund,	we	are	also	assuming	that	performance	relative	to	the	market	is	
independent	across	years;	but	then	the	probability	that	fund	I	outperforms	the	market	in	all	
10	years	–	P(Yi,1	=	1,Yi,2	=	1,	! ,	Yi,10	=	1)	–	is	just	the	product	of	the	probabilities:	
P(Yi,1	=	1) ⋅ P(Yi,2	=	1)	! 	P(Yi,10	=	1)	=	(.5)10	=	1/1024	(which	is	slightly	less	than	.001).		
In	fact,	if	we	define	a	binary	random	variable	YI	such	that	YI	=	1	if	and	only	if	fund	I	
outperformed	the	market	in	all	10	years,	then	P(YI	=	1)	=	1/1024.	

6	 In	eight	attempts,	the	expected	number	of	free	throws	is	8(.74)	=	5.92,	or	about	six	free	throws.	

7	 Tossing	three	coins	gives	the	following	sample	space	or	the	possible	combinations	of	events:		
HHH,	HHT,	HTH,	HTT,	THH,	THT,TTH,	TTT	
Since	P(H)	=	.5	and	P(T)	=	.5,	the	probability	of	each	event	–	say	of	the	event	HTH	–	is		
		 	 P(HTH)	=	.5*.5*.5	=	.125.	

Given	that	X	represents	the	number	of	tails,	we	can	construct	the	probability	distribution	of	X	
that	takes	the	values	of	0	(no	tail),	1	(one	tail),	2(two	tails)	and	3	(three	tails).	

X	 0	 1	 2	 3	
Prob.	 .125	 .375	 .375	 .125	

E(X)	=	0*.125	+	1*.375	+	2*.375	+	3*.125	=	1.5	

E(X2)	=	02*.125	+	12*.375	+	22*.375	+	32*.125	=	3	

Profit	=	(X2	+	X)	–	5	

E(Profit)	=	E(X2	+	X)	–	5	=	E(X2)	+	E(X)	–	5	=	3	+	1.5	–	5	=	–.5,	hence	a	loss	of	50	cents.	

8	 If	Y	is	salary	in	dollars	then	Y	=	1000	.	X,	and	so	the	expected	value	of	Y	is	1000	times	the	
expected	value	of	X,	and	the	standard	deviation	of	Y	is	1000	times	the	standard	deviation	of	X.	
Therefore,	the	expected	value	and	standard	deviation	of	salary,	measured	in	dollars,	are	
$57	000	and	$14	600,	respectively.	

9	 		(i)	 P(male	wins)	=	40/60	=	.667	apx	

(ii)	 P(married/	male)	=	
10( & ) 10 60 1060 * .2540( ) 60 40 4060

P married male
P male

= = = = 			
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10	 E(GRADE|ATAR=65)	=	10.5	+	.85	(65)	=	65.75.	Similarly,	E(GRADE|ATAR=95)	=	10.5	+	.85	(95)	=	
91.25.	The	difference	in	expected	grade	obtained	in	the	subject	is	substantial,	but	the	
difference	in	ATAR	scores	is	also	rather	large.	

11	 (i)	 This	is	just	a	special	case	of	what	we	covered	in	the	text,	with	n	=	4:		E(Y )	=	µ	and	Var(Y
)	=	σ2/4.	

(ii)	 E(W)	=	E(Y1)/8	+	E(Y2)/8	+	E(Y3)/4	+	E(Y4)/2	=	µ[(1/8)	+	(1/8)	+	(1/4)	+	(1/2)]	=		
µ(1	+	1	+	2	+	4)/8	=	µ,	which	shows	that	W	is	unbiased.	Because	the	YI	are	independent,		

	 Var(W)	=	Var(Y1)/64	+	Var(Y2)/64	+	Var(Y3)/16	+	Var(Y4)/4	
	 	 	=	σ2[(1/64)	+	(1/64)	+	(4/64)	+	(16/64)]	=	σ2(22/64)	=	σ2(11/32).	

(iii)	 Because	11/32	>	8/32	=	1/4,	Var(W)	>	Var(Y )	for	any	σ2	>	0,	so	Y is	preferred	to	W	
because	each	is	unbiased.	

12	 (i)	 E(Wa)	=	a1E(Y1)	+	a2E(Y2)	+	! 		+	anE(Yn)	=	(a1	+	a2	+	! 	+	an)µ.	Therefore,	we	must	have	a1	
+	a2	+	! 	+	an	=	1	for	unbiasedness.	

(ii)	 Var(Wa)	=	
2
1a Var(Y1)	+	

2
2a Var(Y2)	+	! 	+	

2
na Var(Yn)	=	(

2
1a 	+	

2
2a 		+	! 	+	

2
na )σ2.	

(iii)	 From	the	hint,	when	a1	+	a2	+	! 	+	an	=	1	–	the	condition	needed	for	unbiasedness	of	Wa	–	

we	have	1/n	≤	
2
1a 	+	

2
2a 	+	! 	+	

2
na .		

But	then	Var(Y )	=	σ2/n	≤	σ2(
2
1a 	+	

2
2a 	+	! 	+	

2
na )	=	Var(Wa).	

13	 (i)	 E(W1)	=	[(n	–	1)/n]E(Y )	=	[(n	–	1)/n]µ,	and	so	Bias(W1)	=	[(n	–	1)/n]µ	–	µ	=	–µ/n.	Similarly,	

E(W2)	=	E(Y )/2	=	µ/2,	and	so	Bias(W2)	=	µ/2	–	µ	=	–µ/2.	The	bias	in	W1	tends	to	zero	as	
n	→	∞,	while	the	bias	in	W2	is	–µ/2	for	all	n.	This	is	an	important	difference.	

(ii)	 plim(W1)	=	plim[(n	–	1)/n] ⋅plim(Y )	=	1 ⋅µ	=	µ.	plim(W2)	=	plim(Y )/2		=	µ/2.	Because	
plim(W1)	=	µ	and	plim(W2)	=	µ/2,	W1	is	consistent	whereas	W2	is	inconsistent.	

(iii)	 Var(W1)	=	[(n	–	1)/n]2Var(Y )	=	[(n	–	1)2/n3]σ2	and	Var(W2)	=	Var(Y )/4	=	σ2/(4n).		

(iv)	 Because	Y 	is	unbiased,	its	mean	squared	error	is	simply	its	variance.	On	the	other	hand,	
MSE(W1)	=	Var(W1)	+	[Bias(W1)]2	=	[(n	–	1)2/n3]σ2	+	µ2/n2.	When	µ	=	0,	MSE(W1)	=	

Var(W1)	=	[(n	–	1)2/n3]σ2	<	σ2/n	=	Var(Y )	because	(n	–	1)/n	<	1.	Therefore,	MSE(W1)	is	
smaller	than	Var(Y )	for	µ	close	to	zero.	For	large	n,	the	difference	between	the	two	
estimators	is	trivial.	

14	 (i)	 While	the	expected	value	of	the	numerator	of	G	is	E(Y )	=	θ,	and	the	expected	value	of	
the	denominator	is	E(1	–	Y )	=	1	–	θ,	the	expected	value	of	the	ratio	is	not	the	ratio	of	the	
expected	value.	

(ii)	 By	Property	PLIM.2(iii),	the	plim	of	the	ratio	is	the	ratio	of	the	plims	(provided	the	plim	of	
the	denominator	is	not	zero):	
plim(G)	=	plim[Y /(1	–	Y )]	=	plim(Y )/[1	–	plim(Y )]	=	θ/(1	–	θ)	=	γ.	
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15	 	(i)	 H0:	µ	=	0.	

(ii)	 H1:	µ	<	0.	

(iii)	 The	standard	error	of	𝑦	is	 /s n 	=	13.8/30	=	.46.	Therefore,	the	t-statistic	for	testing	H0:	
µ	=	0	is	t	=	𝑦/se(𝑦)	=	–.97/.46	≈		–2.11.	We	obtain	the	p-value	as	P(Z	≤	–2.11),	where		
Z	~	Normal(0,1).	These	probabilities	are	in	the	appendix	of	statistical	tables.		
p-value	=	.0174.	Because	the	p-value	is	below	.05,	we	reject	H0	against	the	one-sided	
alternative	at	the	5%	level.	We	do	not	reject	at	the	1%	level	because	p-value	=	.0174	>	.01.	

(iv)	 The	estimated	reduction,	about	.97	litres,	does	not	seem	large	for	an	entire	year’s	
consumption.	If	the	alcohol	is	beer,	.97	litres	is	less	than	three	375-mL	cans	of	beer.	Even	if	
this	is	hard	liquor,	the	reduction	seems	small.	(On	the	other	hand,	when	aggregated	across	
the	entire	population,	alcohol	distributors	might	not	think	the	effect	is	so	small.)	

(v)	 The	implicit	assumption	is	that	other	factors	that	affect	alcohol	consumption	–	such	as	
income,	or	changes	in	price	due	to	transportation	costs	–	are	constant	over	the	two	years.	

16	 	(i)	 The	average	increase	in	wage	is	𝐷	=	.24,	or	24	cents.	The	sample	standard	deviation	is	
about	.451,	and	so,	with	n	=	15,	the	standard	error	of	𝐷	is	 .451/ 15 	≈	.1164.		

From	Table	A.2,	the	97.5th	percentile	in	the	t14	distribution	is	2.145.		
So	the	95%	CI	is	.24	±	2.145(.1164),	or	about	–.010	to	.490.	

(ii)	 If	µ	=	E(Di)	then	H0:	µ	=	0.	The	alternative	is	that	management’s	claim	is	true:		
H1:	µ	>	0.	

(iii)	 We	have	the	mean	and	standard	error	from	part	(i):		t	=	.24/.1164	≈		2.062.	The	5%	critical	
value	for	a	one-tailed	test	with	df	=	14	is	1.761,	while	the	1%	critical	value	is	2.624.	
Therefore,	H0	is	rejected	in	favour	of	H1	at	the	5%	level	but	not	the	1%	level.	

17	 (i)	 For	each	player,	θ		is	estimated	using	𝑌	in	the	table	below.	

Player	 Goals	 TSG	 𝒀	

Nick	Riewoldt	 44	 73	 0.603	

Luke	Breust	 49	 63	 0.778	

Jarryd	Roughhead	 55	 99	 0.556	

Lance	Franklin	 52	 99	 0.525	

Jack	Riewoldt	 48	 93	 0.516	

Travis	Cloke	 38	 82	 0.463	

(ii)	 Var(𝑌)	=	θ(1	–	θ)/n	[because	the	variance	of	each	YI	is	 (1 )θ θ− 	and	so		

sd(𝑌)	=	 (1 ) / nθ θ− .	
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(iii)	 The	asymptotic	t-statistic	is	(𝑌		−	.5)/se(𝑌);	when	we	plug	in	the	estimate	for	each	player	
we	obtain	the	se(𝑦)	for	each	player.	These	are	calculated	and	presented	in	the	third	
column	of	the	following	table.	The	critical	value	(based	on	the	standard	normal	
distribution)	with	5%	level	of	significance	for	a	one-tailed	test	with	the	alternate	
hypothesis	H1:	θ	>	.5	is	1.645.	So	the	null	hypothesis	that	the	probability	of	kicking	any	
particular	goal	=	.5	or	θ		=	.5	is	rejected	for	the	first	two	players,	as	shown	in	the	table.		

Player	 𝒀	 se( y )	=	 (1 ) /y y n− 		 t-statistics		 Test	
outcome	

Nick	Riewoldt	 0.603	 0.057	 (.603	–	.5)/.057	≈ 	1.807	 Reject	H0	
Luke	Breust	 0.778	 0.052	 (.778	–	.5)/.052	≈ 	5.346	 Reject	H0	

Jarryd	Roughhead	 0.556	 0.050	 (.556	–	.5)/.050	 ≈ 	1.12	 Do	not	
reject	H0	

Lance	Franklin	 0.525	 0.050	 (.525	–	.5)/.050	≈ 	0.503	 Do	not	
reject	H0	

Jack	Riewoldt	 0.516	 0.052	 (.516	–	.5)/.052	≈ 	0.308	 Do	not	
reject	H0	

Travis	Cloke	 0.463	 0.055	 (.463	–	.5)/.055	 ≈ 	–0.6734	 Do	not	
reject	H0	

18	 We	need	to	conduct	a	hypothesis	test	of	the	mean	price	of	new	houses	in	Sydney.	

The	hypotheses	are:	
𝐻&: 𝜇 = $370	000	
𝐻/: 𝜇 > $370	000	

The	test	statistic	is:		

𝑡 =
𝑋 − 𝜇
𝑠
𝑛

=
375500 − 370000

160009
256

= 5.5	

At	5%	level	of	significance,	the	critical	value	of	t	with	upper	one	tailed	test	with		
n–1	=	256–1	=	255	df	is	t.05	=	1.645,	which	is	the	same	as	the	value	of	a	standard	normal	value	
(given	the	large	sample).	

As	t	=	5.5	>	Zcrit	=	c	=	1.645,	hence	we	reject	the	null	hypothesis	and	we	conclude	that,	based	on	
this	sample,	the	average	new	house	price	in	Sydney	is	significantly	higher	than	the	national	
average	price	of	new	homes.		

Multiple-choice	questions	
1	 c	 5	 c	 9	 a	

2	 c	 6	 b	 10	 b	

3	 b	 7	 d	 11	 c	

4	 a	 8	 d	 12	 a	
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Chapter	4:	The	simple	regression	model	
TEACHING	NOTES	
This is the chapter where we expect students to follow most, if not all, of the algebraic derivations. In 
class, we like to derive at least the unbiasedness of the OLS slope coefficient, and usually, we derive 
the variance. At a minimum, we talk about the factors affecting the variance. To simplify the notation, 
after we emphasise the assumptions in the population model, and assume random sampling, we just 
condition on the values of the explanatory variables in the sample. Technically, this is justified by 
random sampling because, for example, E(ui|x1, x2, ..., xn) = E(ui|xi) by independent sampling. We find 
that students are able to focus on the key assumption SLR.4 and subsequently take our word about 
how conditioning on the independent variables in the sample is harmless. Because statistical inference 
is no more difficult in multiple regression than in simple regression, we postpone inference until 
Chapter 6. (This reduces redundancy and allows you to focus on the interpretive differences between 
simple and multiple regression.) 

You might notice how, compared with most other texts, we use relatively few assumptions to derive 
the unbiasedness of the OLS slope estimator, followed by the formula for its variance. This is because 
we do not introduce redundant or unnecessary assumptions. For example, once SLR.4 is assumed, 
nothing further about the relationship between u and x is needed to obtain the unbiasedness of OLS 
under random sampling. 

Incidentally, one of the uncomfortable facts about finite-sample analysis is that there is a difference 
between an estimator that is unbiased conditional on the outcome of the covariates and one that is 
unconditionally unbiased. If the distribution of the 𝑥= is such that they can all equal the same value 
with positive probability – as is the case with discreteness in the distribution – then the unconditional 
expectation does not really exist. Or, if it is made to exist, then the estimator is not unbiased. We do 
not try to explain these subtleties in an introductory course, but we have had instructors ask about the 
difference. 
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Solutions	to	review	questions	
1	 	 (i)	 Income,	age,	and	family	background	(such	as	number	of	siblings)	are	just	a	few	

possibilities.	It	seems	that	each	of	these	could	be	correlated	with	years	of	education.	
(Income	and	education	are	probably	positively	correlated;	age	and	education	may	be	
negatively	correlated	because	women	in	more	recent	cohorts	have,	on	average,	more	
education;	and	number	of	siblings	and	education	are	probably	negatively	correlated.)	

(ii)	 A	simple	regression	as	shown	will	not	be	sufficient	if	the	factors	we	listed	in	part	(i)	are	
correlated	with	educ.	Because	we	would	like	to	hold	these	factors	fixed,	they	are	part	of	
the	error	term.	However	as	per	one	of	the	basic	assumptions	of	simple	regression,	we	
know	that	u	is	not	to	be	correlated	with	the	explanatory	variable.	Hence,	if	u	is	correlated	
with	educ	then	E(u|educ)	≠	0,	and	so	SLR.4	fails.	

2	 The	estimated	regression	models	are	shown	in	the	following	figure.		

						 	

It	is	clear	that	the	estimates	of	the	intercept,	𝛽1	is	same	for	both	the	samples.	However,	the	
slopes	are	different.	The	estimates	of	the	slope	𝛽2	from	the	first	and	second	samples	are	0.75	
and	0.95,	respectively.	The	above	figure	shows	that	while	the	fitted	line	representing	the	
second	sample	is	steeper	due	to	its	higher	slope	estimate,	both	the	lines	have	the	same	
intercept	(1.2).		
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3	 	 (i)	 Let	yI	=	MARKSi,	xI	=	HOURSi,	and	n	=	8.	Then		 x =	25.875,	 y 	=	66.125,	

1

n

i=
∑ (xI	–	 x )(yI	–	 y )	=	120.125,	and	

1

n

i=
∑ (xI	–	 x )2	=	56.875.	From	equation	(4.17),	we	obtain	

the	slope	as	𝛽1=	120.125/56.875	 ≈ 	2.112,	rounded	to	three	places	after	the	decimal.	From	
(4.18),	
𝛽0	=	𝑦	–	𝛽1𝑥	 ≈ 	66.125	–	(2.112)25.875	 ≈ 	11.477.	So	we	can	write		

	 MARKS	=	11.447	+	2.112	HOURS		

	 n	=	8.	

The	intercept	does	not	have	a	useful	interpretation	because	the	value	of	the	variable	
HOURS	is	not	close	to	zero	for	the	population	of	interest.	If	HOURS	is	
5	units	higher,	MARKS	increases	by	2.112(5)	=	10.56.	

(ii)	 The	fitted	values	and	residuals	—	rounded	to	three	decimal	places	—	are	given	along	with	
the	observation	number	i	and	MARKS	in	the	following	table:	

i	 MARKS	 𝑀𝐴𝑅𝐾𝑆	 û 	
1	 58	 55.829	 2.171	
2	 69	 62.165	 6.835	
3	 62	 66.389	 –4.389	
4	 73	 68.501	 4.499	
5	 74	 72.725	 1.275	
6	 62	 64.277	 –2.277	
7	 55	 64.277	 –9.277	
8	 76	 74.837	 1.163	

You	can	verify	that	the	residuals,	as	reported	in	the	table,	sum	to	0.			

(iii)	 When	HOURS	=	25,	MARKS	=	11.447	+	2.112(25)	≈ 	64.25.		

(iv)	 The	sum	of	squared	residuals, 2

1

ˆ
n

i
i
u

=
∑ ,	is	about	185.1604	(rounded	to	four	decimal	places),	

and	the	total	sum	of	squares,
1

n

i=
∑ (yI	–	 y )2,	is	about	438.875.	So	the		

R-squared	from	the	regression	is	

R2		=		1	–	SSR/SST	≈ 	1	–	(185.1604/438.875)	≈ 	.578.	

	 Therefore,	about	57.8%	of	the	variation	in	MARKS	is	explained	by	HOURS	in	this	small	
sample	of	students.	

	 	


