
Exercises:

9. Given a person’s year of birth, the Birthday Wizard can compute the year
in which the person’s nth birthday will occur or has occurred. Write
statements that can be used in a Java program to perform this computation
for the Birthday Wizard.

Solution:

System.out.println("Greetings.");

int year, age;

Scanner keyboard = new Scanner(System.in);
System.out.println("What year were you born in?");
year = keyboard.nextInt();
System.out.println("Choose an age in years.");
age = keyboard.nextInt();

System.out.println("You will turn " + age + " in the year ");
System.out.println(year + age);

10. Write statements that can be used in a Java program to read two integers
and display the number of integers that lie between them, including the
integers themselves. For example, four integers are between 3 and 6: 3, 4, 5,
and 6.

Solution:

System.out.println("Greetings.");

int min, max;

Scanner keyboard = new Scanner(System.in);
System.out.println("Enter a minimum and maximum value");
min = keyboard.nextInt();
max = keyboard.nextInt();

System.out.println("The number of values in the range from " +

min + " to " + max + " is ");
System.out.println(max-min+1);

11. A single bit can represent two values: 0 and 1. Two bits can represent
four values: 00, 01, 10, and 11. Three bits can represent eight values: 000,
001, 010, 011, 100, 101, 110, and 111. How many values can be represented
by

a. 8 bits? b. 16 bits? c. 32 bits?

Solution:

a) 28  256
b) 216  65536
c) 232  4294967296

13. Self-Test Question 27 asked you to think of some attributes for a song
object.
What attributes would you want for an object that represents a play list
containing many songs?

Solution:

The name of the play list, the songs in the play list, the number of songs, the length
of time for the play list

14. What behaviors might a song have? What behaviors might a play list
have? Contrast the difference in behavior between the two kinds of objects.

Solution:

A song object would have behaviors for modifying attributes like rating and play
count. It might also allow other attributes like the artist and album to be
modified. If the object contains music data, it could be able to play the song. In
contrast a play list would have behaviors that would allow one to manage the play
list. You would be able to add and remove songs. You would be able to change
the order of songs in the play list. A play list could also have the ability to play
the songs.

A song object would have behaviors for modifying attributes like rating and play
count. It might also allow other attributes like the artist and album to be
modified. If the object contains music data, it could be able to play the song. In
contrast a play list would have behaviors that would allow one to manage the play
list. You would be able to add and remove songs. You would be able to change
the order of songs in the play list. A play list could also have the ability to play
the songs.

15. What attributes and behaviors would an object representing a credit card
account have?

Solution:

A credit card account would attributes for personal information (name, address,
etc.), account number, credit limit, interest rate, current balance, and charge
history. For behaviors we would have actions like charging an item, computing
the interest, paying a monthly bill, raising the credit limit, and changing the
interest rate.

16. Suppose that you have a number x that is greater than 1. Write an
algorithm that computes the largest integer k such that 2k is less than or equal
to x.

Solution:

1.

Let k be 0
2. Let check be 1
3. While check < x

3.1.

Let k be k+1

3.2. Let check be check*2

17. Write an algorithm that finds the maximum value in a list of values.

Solution:

1.

Let max be the first value in the list

2. For each value x in the list
2.1. If x is greater than max

2.1.1. Let max be x 2

18. Write statements that can be used in a JavaFX application to draw the
five interlocking rings that are the symbol of the Olympics. (Don’t worry
about the color.)

Solution:

gc.strokeOval(0, 0, 40, 40);

gc.strokeOval(50, 0, 40, 40);

gc.strokeOval(100, 0, 40, 40);

gc.strokeOval(25, 25, 40, 40);

gc.strokeOval(75, 25, 40, 40);

Practice Programs:

1. Obtain a copy of the Java program shown in Listing 1.1 from the Web at
the location given in the preface. Name the file FirstProgram.java. Compile
the program so that you receive no compiler error messages. Then run the
program.

References:

Listing 1.1.

Solution:

See the code in FirstProgram.java.

2. Modify the Java program described in Practice Program 1 so that it adds
three numbers instead of two. Compile the program so that you receive no
compiler error messages. Then run the program.

References:

Project 1.1

Solution:

See the code in FirstProgram2.java.

Programming Projects

1. Write a Java program that displays the following picture. Hint: Write a
sequence of println statements that display lines of asterisks and blanks.

 * **
 * * *
 * * *
 * * *
************** *
* * *
* * *
* * *
* * *
* * *
* * *
* **

Solution:

See the code in Simple1.java.

2. Write a complete program for the problem described in Exercise 9.

References:

Exercise 1.9

Solution:

See the code in BirthdayWizard.java.

4. Write a JavaFX program similar to the one in Listing 1.2 that displays a
picture of a snowman. Hint: Draw three circles, one above the other. Make
the circles progressively smaller from bottom to top. Make the top circle a
happy face.

References:

Listing 1.2

Solution:

See the code in Snowman.java

6. Write a JavaFX program that displays the following pattern:

Solution:

See the code in Icon.java.

Exercises:

1. Write a program that demonstrates the approximate nature of floating-
point values by performing the following tasks:
• Use Scanner to read a floating-point value x.
• Compute 1.0 / x and store the result in y.
• Display x, y, and the product of x and y.
• Subtract 1 from the product of x and y and display the result.
Try your program with values of x that range from 2e-11 to 2e11. What can
you conclude?

Solution:

See the code in Approximation.java. You cannot count on mathematical identities to
always be true. For example, x times 1/x may not be equal to 1. You should avoid
testing for equality with floating point numbers.

2. Write a program that demonstrates type casting of double values by
performing the following tasks:
• Use Scanner to read a floating-point value x.
• Type cast x to an int value and store the result in y.
• Display x and y clearly labeled.
• Type cast x to a byte value and store the result in z.
• Display x and z clearly labeled.
Try your program with positive and negative values of x that range in
magnitude from 2e-11 to 2e11. What can you conclude?

Solution:

See the code in TypeCaster.java. As long as the value is not too large, then the type
cast acts like truncation. If the value is large enough, however, the result of the type
cast is unpredictable.

3. Write a program that demonstrates the operator % by performing the
following tasks:
• Use Scanner to read a floating-point value x.
• Compute x % 2.0 and store the result in y.
• Display x and y clearly labeled.
• Type cast x to an int value and store the result in z.
• Display x, z, and z % 2 clearly labeled.
Try your program with positive and negative values of x. What implications
do your results have for deciding whether a negative integer is odd?

Solution:

See the code in ModTester.java. If we compute the mod of a positive number, the
result is either zero or negative. If we compute the mod of a negative number, the
result is either zero or positive. Mathematically, when we mod an integer by 2, we
should get 1. But, because of the way mod works with positive and negative values,
we can not just check to see if the value of the mod is 1.

4. If u = 2, v = 3, w = 5, x = 7, and y = 11, what is the value of each of the
following expressions, assuming int variables?
• u + v * w + x
• u + y % v * w + x
• u++ / v + u++ * w

Solution:

u + v * w + x

is 2 + 3 * 5 + 7
is 2 + 15 + 7
is 24

u + y % v * w + x
is 2 + 11 % 3 * 5 + 7
is 2 + 2 * 5 + 7
is 2 + 10 + 7
is 19

u++ / v + u++ * w

is 2 / 3 + 3 * 5
is 2 / 3 + 3 * 5
is 0 + 15
is 15

This code is in Fragments.java.

5. What changes to the ChangeMaker program in Listing 2.3 are necessary if
it also accepts coins for one dollar and half a dollar?

Solution:

Add variables.

int dollars, halfDollars;
Change the prompt.

System.out.println("Enter a whole number greater than
0.");
Compute dollars and halfDollars before the quarters computation.

dollars = amount / 100;
amount = amount % 100;

halfDollars = amount / 50;
amount = amount % 50;

Add to the output.
System.out.println(dollars + " dollars");
System.out.println(halfDollars + " halfDollars");

6. If the int variable x contains 10, what will the following Java statements
display?
System.out.println("Test 1" + x * 3 * 2.0);
System.out.println("Test 2" + x * 3 + 2.0);
Given these results, explain why the following Java statement will not
compile:
System.out.println("Test 3" + x * 3 - 2.0)

Solution:

The first statement prints:

 Test 160.0
The second statement prints:

Test 2302.0
In the first print statement, we compute 60.0, convert that into a string and
concatenate it with “Test 1”.
In the second statement, we compute 30 and convert that into a string and
concatenate to “Test 2”. Then we convert 2.0 to a string and concatenate. Notice
that the plus operator is concatenation here not addition and the result is a string.

The third print statement does not compile, because Java can not apply the minus
operator to a string and 2.0.

This code is in Fragments.java.

7. Write some Java statements that use the String methods indexOf and
substring to find the first word in a string. We define word to be a string of
characters that does not include whitespace. For example, the first word of
the string " Hello, my good friend!" is the string "Hello," and the second
word is the string "my".

Solution:

sentence = sentence.trim();
int space = sentence.indexOf(" ");
String word = sentence.substring(0, space);

System.out.println("The first word is: " + word);

This code is in Fragments.java.

8. Repeat the previous exercise, but find the second word in the string.

Solution:

sentence = sentence.trim();
int space = sentence.indexOf(" ");
String rest = sentence.substring(space).trim();
space = rest.indexOf(" ");
String secondWord = rest.substring(0, space);

System.out.println("The second word is: "

+ secondWord);

This code is in Fragments.java.

9. What does the following Java statement display?
System.out.println("\"\tTest\\\\\rIt\'");
Does replacing the r with an n make a difference in what is displayed?

Solution:

The results depend on the environment being used. NetBeans displayed:

" Test\\

It'
BlueJ displayed:

" Test\\It'

The change made a difference in BlueJ, but not in NetBeans.

This code is in Fragments.java.

10. Write a single Java statement that will display the words one, two, and
three, each on its own line.

Solution:

System.out.println("one\ntwo\nthree");

This code is in Fragments.java.

11. What does the Java code
Scanner keyboard = new Scanner(System.in);
System.out.println("Enter a string.");
int n = keyboard.nextInt();
String s = keyboard.next();
System.out.println("n is " + n);
System.out.println("s is " + s);

display when the keyboard input is 2istheinput?

Solution:

Exception in thread "main" java.util.InputMismatchException

This code is in Fragments.java.

12. What does the Java code
Scanner keyboard = new Scanner(System.in);
keyboard.useDelimiter(“y”);
System.out.println("Enter a string.");
String a = keyboard.next();
String b = keyboard.next();
System.out.println("a is " + a);
System.out.println("b is " + b);
display when the keyboard input is
By the
pricking
of my thumbs

Solution:

a is B

b is the

pricking

of m

This code is in Fragments.java.

13. Repeat the previous exercise, but change next to nextLine in the
statement that assigns a value to b.

Solution:

a is b

b is y the

This code is in Fragments.java.

14. Many sports have constants embedded in their rules. For example,
baseball has 9 innings, 3 outs per inning, 3 strikes in an out, and 4 balls per
walk. We might encode the constants for a program involving baseball as
follows:
public static final int INNINGS = 9;
public static final int OUTS_PER_INNING = 3;
public static final int STRIKES_PER_OUT = 3;
public static final int BALLS_PER_WALK = 4;
For each of the following popular sports, give Java named constants that
could be used in a program involving that sport:
• Basketball
• American football
• Soccer
• Cricket
• Bowling

Solution:
These are just some of the possible constants we could define.

// Basketball

public static final int QUARTERS = 4;

public static final int POINTS_PER_REGULAR_SHOT = 2;

public static final int FOULS_PER_GAME = 5;

// American football

public static final int MINUTES_PER_QUARTER = 15;

public static final int DOWNS = 4;

public static final int YARDS_TO_FIRST_DOWN = 9;

public static final int POINTS_FOR_TD = 6;

public static final int POINTS_FOR_FIELDGOAL = 3;

// Soccer

public static final int PLAYERS_PER_SIDE = 11;

public static final int MINUTES_PER_HALF = 45;

public static final int BREAK_TIME = 15;

// Cricket

public static final int PLAYERS_PER_TEAM = 11;

public static final int PITCH_LENGTH = 66;

public static final int PITCH_WIDTH = 10;

// Bowling

public static final int NUMBER_OF_PINS = 10;

public static final int FRAMES = 10;

public static final int PERFECT_GAME = 300;

This code is in Fragments.java.

15. Repeat Exercise 18 in Chapter 1, but define and use named constants.

Solution:

public static final int RING_DIAMETER = 40;

public static final int RING_X_OFFSET = 25;

public static final int RING_Y_OFFSET = 25;

gc.strokeOval(0, 0, RING_DIAMETER, RING_DIAMETER);

gc.strokeOval(2*RING_X_OFFSET, 0, RING_DIAMETER, RING_DIAMETER);

gc.strokeOval(4*RING_X_OFFSET, 0, RING_DIAMETER, RING_DIAMETER);

gc.strokeOval(RING_X_OFFSET, RING_Y_OFFSET, RING_DIAMETER,

RING_DIAMETER);

 gc.strokeOval(3*RING_X_OFFSET, RING_Y_OFFSET, RING_DIAMETER,

RING_DIAMETER);

This code is in Rings.java.

16. Define named constants that you could use in Programming Project 6 in
Chapter 1.

Solution:

public static final int X_CENTER = 120;

public static final int Y_CENTER = 120;

public static final int FILL_DIAMETER = 20;

public static final int CLEAR_DIAMETER = 40;

gc.strokeOval(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER);

gc.fillOval(X_CENTER - FILL_DIAMETER/2,

Y_CENTER - FILL_DIAMETER/2,

FILL_DIAMETER, FILL_DIAMETER);

gc.strokeArc(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER + CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 0, 180,

ArcType.OPEN);

gc.strokeArc(X_CENTER - CLEAR_DIAMETER/2,

Y_CENTER - 3*CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 0, -180,

ArcType.OPEN);

gc.strokeArc(X_CENTER - 3*CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 90, -180,

ArcType.OPEN);

gc.strokeArc(X_CENTER + CLEAR_DIAMETER/2,

Y_CENTER - CLEAR_DIAMETER/2,

CLEAR_DIAMETER, CLEAR_DIAMETER, 90, 180,

ArcType.OPEN);

Practice Programs:

1. Write a program that reads three whole numbers and displays the average
of the three numbers.

Notes:

This project requires careful use of integer and double data types to avoid unwanted
truncation when dividing.

Solution:

See the code in Average3.java.

3. Write a program that reads the amount of a monthly mortgage payment
and the amount still owed—the outstanding balance—and then displays the
amount of the payment that goes to interest and the amount that goes to
principal (i.e., the amount that goes to reducing the debt). Assume that the
annual interest rate is 7.49 percent. Use a named constant for the interest
rate. Note that payments are made monthly, so the interest is only one
twelfth of the annual interest of 7.49 percent.

Notes:

Two solutions are given for this project. Since the round method in Java is not
discussed in this chapter, the first solution, Mortgage.java, takes a simplistic
approach in which the payment and principle amounts are entered as whole numbers
and the interest calculation truncates, rather than rounds. An alternative approach
would be to explain to students how to round numbers by doing the calculation in
floating point, adding 0.5, then truncating (by explicitly casting the result to int). In
addition, you may want to explain a technique for working with money: convert each
money value to an integer number of cents. Enter money amounts as a decimal value
with two decimal places, multiply by 100, and add 0.5, then truncate by explicitly
casting to int. Using the resulting integer values for all the money transactions
avoids errors in the cents that could occur through truncation or encoding the money
in floating point format. Mortgage2.java, uses this technique.

Solution:

See the code in Mortgage.java. This program only allows whole dollar input amounts
and truncates rather than round the interest calculations.

See the code in Mortgage2.java. This program allows dollar.cents input values.
Interest calculations are rounded.

4. Write a program that reads a four-digit integer, such as 1998, and then
displays it, one digit per line, like so:
1
9
9
8
Your prompt should tell the user to enter a four-digit integer. You can then
assume that the user follows directions. Hint: Use the division and remainder
operators.

Notes:

This project is straightforward since it assumes the user enters correct data.

Solution:

See the code in Vertical4Digits.java.

Programming Projects

1. Write a program that converts degrees from Fahrenheit to Celsius, using
the formula DegreesC = 5 (DegreesF − 32) / 9. Prompt the user to enter a
temperature in degrees Fahrenheit as a whole number without a fractional
part. Then have the program display the equivalent Celsius temperature,
including the fractional part to at least one decimal point. A possible
dialogue with the user might be
Enter a temperature in degrees Fahrenheit: 72
72 degrees Fahrenheit is 22.2 degrees Celsius.

Notes:

This project specifically asks for the Fahrenheit temperature to be an integer so the

Fahrenheit variable is declared as an int and the formula has only integer

constants. The calculated Celsius value, however, is supposed to include the

fractional part, so it must be a floating-point value and a cast to float is used in the

calculation to avoid truncation due to integer division.

Solution:

See the code in FtoC.java.

2. Write a program that reads a line of text and then displays the line, but
with the first occurrence of hate changed to love. For example, a possible
sample dialogue might be

Enter a line of text.
I hate you.
I have rephrased that line to read:
I love you.
You can assume that the word hate occurs in the input. If the word hate
occurs more than once in the line, your program will replace only its first
occurrence.

Notes:

This project gives the student practice using string methods and the backslash

character as an escape character to print double quotes.

Solution:

See the code in LoveHate.java.

3. Write a program that will read a line of text as input and then display the
line with the first word moved to the end of the line. For example, a possible
sample interaction with the user might be

Enter a line of text. No punctuation please.
Java is the language
I have rephrased that line to read:
Is the language Java

Assume that there is no space before the first word and that the end of the
first word is indicated by a blank, not by a comma or other punctuation.
Note that the new first word must begin with a capital letter.

Notes:

This project is more practice using string methods, including sub-string indexing.

Solution:

See the code in FirstToLastWord.java.

4. Write a program that asks the user to enter a favorite color, a favorite
food, a favorite animal, and the first name of a friend or relative. The
program should then print the following two lines, with the user’s input
replacing the items in italics: I had a dream that Name ate a Color Animal
and said it tasted like Food!

For example, if the user entered blue for the color, hamburger for the food,
dog for the animal, and Jake for the person’s name, the output would be
I had a dream that Jake ate a blue dog and said it tasted like hamburger!
Don’t forget to put the exclamation mark at the end.

Notes:

This project requires careful attention to spaces in output messages. In particular,

a space must be explicitly printed between the variables color and animal.

Solution:

See the code in SillySentence.java.

5. Write a program that determines the change to be dispensed from a
vending machine. An item in the machine can cost between 25 cents and a
dollar, in 5-cent increments (25, 30, 35, . . ., 90, 95, or 100), and the machine
accepts only a single dollar bill to pay for the item. For example, a possible
dialogue with the user might be

Enter price of item
(from 25 cents to a dollar, in 5-cent increments): 45
You bought an item for 45 cents and gave me a dollar,
so your change is
2 quarters,
0 dimes, and
1 nickel.● Programming Projects

Notes:

This project is a good example to use for explaining code reuse by the simple

process of copying a similar program and making modifications to it.

Solution:

See the code in VendingChange.java.

6. Write a program that reads a four-bit binary number from the keyboard as
a string and then converts it into decimal. For example, if the input is 1100,
the output should be 12. Hint: Break the string into substrings and then
convert each substring to a value for a single bit.

Notes:

This project gives an opportunity to discuss binary numbers in a simple context. It

requires the use of String manipulation and parseInt to convert each character into

an integer that can then be used in formula.

Solution:

See the code in FromBinary.java.

7. Many private water wells produce only 1 or 2 gallons of water per minute.
One way to avoid running out of water with these low-yield wells is to use a
holding tank. A family of 4 will use about 250 gallons of water per day.
However, there is a “natural” water holding tank in the casing (i.e. the hole)
of the well itself. The deeper the well, the more water that will be stored
that can be pumped out for household use. But how much water will be
available?

Write a program that allows the user to input the radius of the well casing in
inches (a typical well will have a 3 inch radius) and the depth of the well in
feet (assume water will fill this entire depth, although in practice that will
not be true since the static water level will generally be 50 feet or more
below the ground surface). The program should output the number of
gallons stored in the well casing. For your reference:

The volume of a cylinder is where r is the radius and h is the height.
1 cubic foot = 7.48 gallons of water.

 For example, a 300 foot well full of water with a radius of 3 inches for
the casing holds about 441 gallons of water -- plenty for a family of 4 and no
need to install a separate holding tank.

Notes:

This project gives the student practice with numerical calculations and simple

input/output. Introduces problem solving with relatively straightforward

conversion of units. Students are likely to encounter data type conversion issues

from double to int and vice versa (e.g. radius / 12 will result in 0 if radius is an int).

Solution:

See the code in WaterWell.java.

8. The Harris-Benedict equation estimates the number of calories your body
needs to maintain your weight if you do no exercise. This is called your
basal metabolic rate or BMR.

The calories needed for a woman to maintain her weight is:
BMR = 655 + (4.3 * weight in pounds) + (4.7 * height in inches) - (4.7 * age
in years)

The calories needed for a man to maintain his weight is:
BMR = 66 + (6.3 * weight in pounds) + (12.9 * height in inches) - (6.8 * age
in years)

A typical chocolate bar will contain around 230 calories. Write a program
that allows the user to input their weight in pounds, height in inches, and age
in years. The program should then output the number of chocolate bars that
should be consumed to maintain one’s weight for both a woman and a man
of the input weight, height, and age.

Notes:

This project gives the student practice with numerical calculations and simple

input/output. For a slightly more challenging problem allow the height to be

entered in feet and inches and have the program convert to inches.

Solution:

See the code in CandyCalculator.java.

10. Write a program that reads a string for a date in the format month / day /
year and displays it in the format day . month . year, which is a typical
format used in Europe. For example, if the input is 06/17/08, the output
should be 17.06.08. Your program should use JOptionPane for input and
output.

Notes:

This project is a simple applet that gives the students more practice with String

manipulation.

Solution:

See the code in DateDisplayer.java.

Exercises:

1. Write a fragment of code that will test whether an integer variable score
contains a valid test score. Valid test scores are in the range 0 to 100.

Solution:

if(score >= 0 && score <= 100)

 System.out.println("The score " + score + " is valid.");

else

 System.out.println("The score " + score + " is not valid.");

This code is in Fragments.java.

2. Write a fragment of code that will change the integer value stored in x as
follows.
If x is even, divide x by 2. If x is odd, multiply x by 3 and subtract 1.

Solution:

if(x % 2 == 1)

x = 3*x - 1;

else

x = x/2;

This code is in Fragments.java.

3. Suppose you are writing a program that asks the user to give a yes-or-no
response. Assume that the program reads the user’s response into the String
variable response.
a. If response is yes or y, set the boolean variable accept to true otherwise set
it to false.
b. How would you change the code so that it will also accept Yes and Y?

Solution:

a)
if(response.equals("y") || response.equals("yes"))

accept = true;

else

accept = false;

b) we can add in extra cases:
if(response.equals("y") || response.equals("yes") ||

response.equals("Y") || response.equals("Yes"))

accept = true;

else

accept = false;

or modify reponse before the if statement.
response = response.toLower();

if(response.equals("y") || response.equals("yes"))

accept = true;

else

accept = false;

This code is in Fragments.java.

4. Consider the following fragment of code:
if (x > 5)

System.out.println(“A”);
else if (x < 10)

System.out.println(“B”);
else

System.out.println(“C”);
What is displayed if x is
a. 4; b. 5; c. 6; d. 9; e. 10; f. 11

Solution:

a) B
b) B
c) A
d) A
e) A
f) A

5. Consider the following fragment of code:
if (x > 5)
{
System.out.println(“A”);
if (x < 10)
System.out.println(“B”);
}
else
System.out.println(“C”);
What is displayed if x is
a. 4; b. 5; c. 6; d. 9; e. 10; f. 11

Solution:

a) C
b) C
c) A B
d) A B
e) A
f) A

6. We would like to assess a service charge for cashing a check. The service
charge depends on the amount of the check. If the check amount is less than
$10, we will charge $1. If the amount is greater than $10 but less than $100,
we will charge 10% of the amount. If the amount is greater than $100, but
less than $1,000, we will charge $5 plus 5% of the amount. If the value is
over $1,000, we will charge $40 plus 1% of the amount. Use a multibranch
if-else statement in a fragment of code to compute the service charge.

Solution:

if(amount < 10.0)

serviceCharge = 1.0;

else if(amount < 100.0)

serviceCharge = 0.1 * amount;

else if(amount < 1000.0)

serviceCharge = 5.0 + 0.05 * amount;

else

serviceCharge = 40.0 + 0.01 * amount;

This code is in Fragments.java.

7. What is the value of each of the following boolean expressions if x is 5, y
is 10,
and z is 15?
a. (x < 5 && y > x)
b. (x < 5 || y > x)
c. (x > 3 || y < 10 && z == 15)
d. (!(x > 3) && x != z || x + y == z)

Solution:

a) false
b) true
c) true
d) true

This code is in Fragments.java.

8. The following code fragment will not compile. Why?
if !x > x + y

x = 2 * x;
else

x = x + 3;

Solution:

We need to add a couple pairs of parentheses. The boolean expression for an if
statement must be in parentheses. And we must apply the not operator to a boolean
value.
if (!(x > x + y))

9. Consider the boolean expression ((x > 10) || (x < 100)). Why is this
expression probably not what the programmer intended?

Solution:

This expression will always evaluate to true.

10. Consider the boolean expression ((2 < 5) && (x < 100)). Why is this
expression probably not what the programmer intended?

Solution:

This 2<5 is true and this expression is equivalent to just x<100.

11. Write a switch statement to convert a letter grade into an equivalent
numeric value on a four-point scale. Set the value of the variable gradeValue
to 4.0 for an A, 3.0 for a B, 2.0 for a C, 1.0 for a D, and 0.0 for an F. For any
other letter, set the value to 0.0 and display an error message.

Solution:

switch(letter){

case 'A':

gradeValue = 4.0;

break;

case 'B':

gradeValue = 3.0;

break;

case 'C':

gradeValue = 2.0;

break;

case 'D':

gradeValue = 1.0;

break;

case 'F':

gradeValue = 0.0;

break;

default:

gradeValue = 0.0;

System.out.println("The grade "

+ letter + " is not valid");

}

This code is in Fragments.java.

12. Consider the previous question, but include + or - letter grades. A+ is
4.25, A- is 3.75, B+ is 3.25, B- is 2.75, and so on.
a.Why can’t we use one switch statement with no other conditionals to
convert these additional letter grades?
b. Write a fragment of code that will do the conversion using a multibranch
ifelse statement.
c. Write a fragment of code that will do the conversion using nested switch
statements.

Solution:
a) The grade A+ would be a string, but we cannot use switch on a string.

b)
if(enhancedLetterGrade.equals("A+"))

 gradeValue = 4.25;

else if(enhancedLetterGrade.equals("A"))

 gradeValue = 4.0;

else if(enhancedLetterGrade.equals("A-"))

 gradeValue = 3.75;

else if(enhancedLetterGrade.equals("B+"))

 gradeValue = 3.25;

else if(enhancedLetterGrade.equals("B"))

 gradeValue = 3.0;

else if(enhancedLetterGrade.equals("B-"))

gradeValue = 2.75;

else if(enhancedLetterGrade.equals("C+"))

gradeValue = 2.25;

else if(enhancedLetterGrade.equals("C"))

gradeValue = 2.0;

else if(enhancedLetterGrade.equals("C-"))

gradeValue = 1.75;

else if(enhancedLetterGrade.equals("D+"))

gradeValue = 1.25;

else if(enhancedLetterGrade.equals("D"))

gradeValue = 1.0;

else if(enhancedLetterGrade.equals("D-"))

gradeValue = 0.75;

else if(enhancedLetterGrade.equals("F+"))

gradeValue = 0.25;

else if(enhancedLetterGrade.equals("F"))

gradeValue = 0.0;

else {

gradeValue = 0.0;

System.out.println("The grade "

+ enhancedLetterGrade + " is not valid");

 }

c)

 char letterPart = enhancedLetterGrade.charAt(0);

 char plusPart = '0';

 if(enhancedLetterGrade.length()>1)

 plusPart = enhancedLetterGrade.charAt(1);

 switch(letterPart){

 case 'A':

 gradeValue = 4.0;

 switch(plusPart){

 case '+':

 gradeValue += 0.25;

 break;

 case '-':

 gradeValue -= 0.25;

 break;

 }

 break;

 case 'B':

 gradeValue = 3.0;

 switch(plusPart){

 case '+':

 gradeValue += 0.25;

 break;

 case '-':

 gradeValue -= 0.25;

 break;

 }

 break;

 case 'C':

 gradeValue = 2.0;

 switch(plusPart){

 case '+':

 gradeValue += 0.25;

 break;

 case '-':

 gradeValue -= 0.25;

 break;

 }

 break;

 case 'D':

 gradeValue = 1.0;

 switch(plusPart){

 case '+':

 gradeValue += 0.25;

 break;

 case '-':

 gradeValue -= 0.25;

 break;

 }

 break;

 case 'F':

 gradeValue = 0.0;

 switch(plusPart){

 case '+':

 gradeValue += 0.25;

 break;

 }

 break;

 default:

 gradeValue = 0.0;

 System.out.println("The grade " + letter

 + " is not valid");

}

This code is in Fragments.java.

Practice Programs:

3. Write a program that reads three strings from the keyboard. Although the
strings are in no particular order, display the string that would be second if
they were arranged lexicographically.

Notes:

This project does a simple sort. Nested if statements are a natural way to accomplish
this task.

Solution:

See the code in MiddleString.java.

4. Write a program that reads a one-line sentence as input and then displays
the following response: If the sentence ends with a question mark (?) and the
input contains an even number of characters, display the word Yes. If the
sentence ends with a question mark and the input contains an odd number of
characters, display the word No. If the sentence ends with an exclamation
point (!), display the word Wow. In all other cases, display the words You
always say followed by the input string enclosed in quotes. Your output
should all be on one line. Be sure to note that in the last case, your output
must include quotation marks around the echoed input string. In all other
cases, there are no quotes in the output. Your program does not have to
check the input to see that the user has entered a legitimate sentence.

Notes:

This project requires a three-way selection statement and gives more practice with
string methods. The case statement can be used since the control expression is a
single character, and, in fact, that is what the solution in this manual uses. It may be
instructive to show the code using if/else, instead, and compare them for readability.
This project will be extended to use a loop in the next chapter.

Solution:

See the code in AskOrTellMeSelection.java.

5. Write a program that allows the user to convert a temperature given in

degrees from either Celsius to Fahrenheit or Fahrenheit to Celsius. Use the
following formulas:
Degrees_C = 5 (Degrees_F − 32) / 9
Degrees_F = (9 (Degrees_C) / 5) + 32
Prompt the user to enter a temperature and either a C or c for Celsius or an F
or f for Fahrenheit. Convert the temperature to Fahrenheit if Celsius is
entered, or to Celsius if Fahrenheit is entered. Display the result in a
readable format. If anything other than C, c, F, or f is entered, print an error
message and stop.

Notes:

This project uses selection to enhance the program FtoC developed in Chapter 2. The
solution includes a default case if an incorrect character (anything other than a ‘C’ or
‘F’, either upper or lower case) is entered for the units. A common error is to write
the while control expression as an OR instead of an AND, so the loop does not end
when either ‘Q’ or ‘q’ is entered. With an OR expression one or both sides of the
expression will always be true (if ‘Q’ is entered, the variable quit is not equal to
‘q’, and vice versa); quit must be both not equal to ‘Q’ and not equal to ‘q’ to
enter the loop.

Solution:

See the code in TemperatureConversionSelection.java.

Programming Projects

3. Suppose that we are working for an online service that provides a bulletin
board for its users. We would like to give our users the option of filtering out
profanity. Suppose that we consider the words cat, dog, and llama to be
profane. Write a program that reads a string from the keyboard and tests
whether the string contains one of our profane words. Your program should
find words like cAt that differ only in case. Option: As an extra challenge,
have your program reject only lines that contain a profane word exactly. For
example, Dogmatic concatenation is a small
category should not be considered profane.

Notes:

This project provides an opportunity to discuss some of the difficulties of in filtering
information. It requires a conversion to lowercase and a compound Boolean
expression.

Solution:

See the code in ProfaneFilter.java.

4. Write a program that reads a string from the keyboard and tests whether it
contains a valid date. Display the date and a message that indicates whether
it is valid. If it is not valid, also display a message explaining why it is not
valid. The input date will have the format mm/dd/yyyy. A valid month value
mm must be from 1 to 12 (January is 1). The day value dd must be from 1 to
a value that is appropriate for the given month. September, April, June, and
November each have 30 days. February has 28 days except for leap years
when it has 29. The remaining months all have 31 days each. A leap year is
any year that is divisible by 4 but not divisible by 100 unless it is also
divisible by 400.

Notes:

This project provides an opportunity to introduce format checking. The solution uses
case logic in combination with compound Boolean expressions.

Solution:

See the code in CheckDate.java.

5. Repeat the calorie counting program described in Programming Project 8
from Chapter 2. This time ask the user to input the string “M” if the user is a
man and “W” if the user is a woman. Use only the male formula to
calculate calories if “M” is entered and use only the female formula to
calculate calories if “W” is entered. Output the number of chocolate bars to
consume as before.

Notes:

This project is a relatively simple addition using String input.and an if statement.

References:

Programming Project 2.8

Solution:

See the code in CandyCalculator2.java.

6. Repeat Programming Project 10 but in addition ask the user if he or she is:
A.

Sedentary
B.

Somewhat active (exercise occasionally)

C. Active (exercise 3-4 days per week)
D. Highly active (exercise every day)

If the user answers “Sedentary” then increase the calculated BMR by 20
percent. If the user answers “Somewhat active” then increase the calculated
BMR by 30 percent. If the user answers “Active” then increase the
calculated BMR by 40 percent. Finally, if the user answers “Highly active”
then increase the calculated BMR by 50 percent. Output the number of
chocolate bars based on the new BMR value.

Notes:

This project requires additional logic and user input from Programming Project 2.8

References:

Programming Project 5

Solution:

See the code in CandyCalculator3.java.

8. Write a program to play the rock-paper-scissor game. Each of two users
types in either P, R, or S. The program then announces the winner as well as
the basis for determining the winner: paper covers rock, rock breaks scissors,
scissors cuts paper, or nobody wins. Your program should allow the users to
use lowercase as well as uppercase letters.

Notes:

This project is a relatively simple program with a large number of if-else statements
inside a loop.

Solution:

See the code in RockPaperScissors.java.

9. Write a JavaFX program to draw the five interlocking rings that are the
symbol of the Olympics. The color of the rings, from left to right, is blue,
yellow, black, green, and red.

Notes:

Use setStroke(Color) to set the color of the line

References:

Exercise 1.18

Solution:

See the code in Rings.java.

10. Repeat Programming Project 8 in Chapter 1, but add yes-or-no dialogs to
allow the user to make the following color changes:

•

Change the color of the solid center circle from black to red.
• Change the color of the outer circle from black to blue.
• Change the color of the spines from black to green.

Notes:

References:

Project 1.8

Solution:

See the code in Icon.java.

This project is an enhancement of a similar project from Chapter 1. This JavaFX
program uses dialog windows and selection to change the appearance of the image
drawn by the program. Use setStroke to set the line color and setFill to set the fill
color.

Exercises:

1. Write a fragment of code that will read words from the keyboard until the
word done is entered. For each word except done, report whether its first
character is equal to its last character. For the required loop, use a
a. while statement
b. do-while statement

Solution:

Scanner reader = new Scanner(System.in);

String word = "";

System.out.println("Please enter words ending with done.");

word = reader.next();

while(!word.equals("done")){

if(word.charAt(0) == word.charAt(word.length()-1)){

System.out.println("The word " + word

+ " has first and last characters that are the

same.");

}

word = reader.next();

}

System.out.println("Please enter words ending with done.");

boolean finished = false;

do{

word = reader.next();

if(word.equals("done"))

finished = true;

else

if(word.charAt(0) == word.charAt(word.length()-1)){

System.out.println("The word " + word

+ " has first and last characters that are

the same.");

}

} while (!finished);

This code is in Fragments.java.

2. Develop an algorithm for computing the month-by-month balance in your
savings account. You can make one transaction—a deposit or a
withdrawal—each month. Interest is added to the account at the beginning of
each month. The monthly interest rate is the yearly percentage rate divided
by 12.

Solution:

1. For month goes from 1 to 12
1.1. Compute the monthly interest
1.2. Compute the interest and add to the balance
1.3. Ask if the user is making a deposit or withdrawal.
1.4. Get the amount from the user
1.5.

If making a deposit
1.5.1. Add the amount to the balance

1.6. Else
1.6.1. Subtract the amount from the balance

1.7. Display the current balance

3. Develop an algorithm for a simple game of guessing at a secret five-digit
code. When the user enters a guess at the code, the program returns two
values: the number of digits in the guess that are in the correct position and
the sum of those digits. For example, if the secret code is 53840, and the
user guesses 83241, the digits 3 and 4 are in the correct position. Thus, the
program should respond with 2 and 7.
Allow the user to guess a fixed number of times.

Solution:

1.

Generate a secret code
2. For guess is 1 to max

2.1.

Get the users guess for the 5 digit code
2.2. Let correct be zero
2.3. Let sum be zero
2.4. For each digit

2.4.1. If the digit in the guess matches the users guess
2.4.1.1.Add 1 to correct
2.4.1.2.Add the value of the digit to sum

2.5. If correct is 5
2.5.1.

Congratulate the user on guessing the code

2.5.2. Exit the program
2.6. Else

2.6.1. Display correct and sum
2.7. Ask if the user is making a deposit or withdrawal.

3. Display a message telling the user they did not guess the code within the
maximum number of allowed guesses.

4. Write a fragment of code that will compute the sum of the first n positive
odd integers. For example, if n is 5, you should compute 1 + 3 + 5 + 7 + 9.

Solution:

int sum = 0;

int odd = 1;

for(int i=0; i<n; i++){

sum += odd;

odd += 2;

}

System.out.println("The sum of the first " + n

+ " odd numbers is " + sum);

This code is in Fragments.java.

5. Convert the following code so that it uses nested while statements instead
of for statements:

int s = 0;

int t = 1;
for (int i = 0; i < 10; i++)
{
s = s + i;
for (int j = i; j > 0; j--)
{
t = t * (j - i);
}
s = s * t;
System.out.println(“T is “ + t);

}
System.out.println(“S is “ + s);

Solution:

int s = 0;

int t = 1;

int i = 0;

while(i<10){

s = s + i;

int j = i;

while(j>0){

t = t * (j - i);

j--;

}

s = s * t;

System.out.println("T is " + t);

i++;

}

System.out.println("S is " + s);

This code is in Fragments.java.

6. Write a for statement to compute the sum 21 + 22 + 32 + 42 + 52 + ... + n .

Solution:

sum = 0;

for(i=1; i<=n; i++){

sum += i*i;

}

System.out.println("The sum is " + sum);

This code is in Fragments.java.

7. (Optional) Repeat the previous question, but use the comma operator and
omit the for statement’s body.

Solution:

for(sum=0, i=1; i<=n; sum += i*i, i++){}

System.out.println("The sum is " + sum);

This code is in Fragments.java.

11. Suppose we attend a party. To be sociable, we will shake hands with
everyone else. Write a fragment of code using a for statement that will
compute the total number of handshakes that occur. (Hint: Upon arrival,
each person shakes hands with everyone that is already there. Use the loop
to find the total number of handshakes as each person arrives.)

Solution:

int numberAttending = 8;

int handShakes = 0;

for(int person=1; person <= numberAttending; person++){

handShakes += (person - 1);

// When person k arrives, they will

//shake hands with the k-1 people already

there

}

System.out.println("The sum is " + sum);

This code is in Fragments.java.

12. Define an enumeration for each of the months in the year. Use a for-each
statement to display each month.

Solution:

enum Month {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,

DEC}

for (Month nextMonth : Month.values())

System.out.print(nextMonth + " ");

System.out.println();

This code is in Fragments.java.

13. Write a fragment of code that computes the final score of a baseball
game. Use a loop to read the number of runs scored by both teams during
each of nine innings. Display the final score afterwards.

Solution:

int innings = 9;

int team1Total = 0;

int team2Total = 0;

 //Scanner reader = new Scanner(System.in);

for(int inning=1; inning <= innings; inning++){

System.out.println("How many runs were scored in inning "

+ inning + " by each team?");

team1Total = team1Total + reader.nextInt();

team2Total = team2Total + reader.nextInt();

}

System.out.println("The first team scored: " + team1Total

+ " and the second team scored: " + team2Total);

This code is in Fragments.java.

14. Suppose that you work for a beverage company. The company wants to
know the optimal cost for a cylindrical container that holds a specified
volume. Write a fragment of code that uses an ask-before-iterating loop.
During each iteration of the loop, your code will ask the user to enter the
volume and the radius of the cylinder. Compute and display the height and
cost of the container. Use the following formulas, where V is the volume, r is
the radius, h is the height, and C is the cost.

r2
h 

V

C  2r(r h)

Solution:

double volume = 0.0;

double height = 0.0;

double radius = 0.0;

double cost = 0.0;

String answer;

//Scanner reader = new Scanner(System.in);

do

{

System.out.println("Enter the volume and radius "

+ "of the cylinder ");

volume = reader.nextDouble();

radius = reader.nextDouble();

height = volume / (Math.PI * radius * radius);

cost = 2 * Math.PI * radius *(radius + height);

System.out.println("The height required is: "

+ height + " and the cost is " + cost);

System.out.println("Do you want to compute the "

+ "cost for a different volume & height?");

System.out.println("Enter yes or no.");

answer = reader.next();

} while (answer.equalsIgnoreCase("yes"));

This code is in Fragments.java.

15. Suppose that we want to compute the geometric mean of a list of positive
values. To compute the geometric mean of k values, multiply them all
together and thenCcompute the kth root of the value. For example, the
geometric mean of 2, 5, and 7 is 2 5 73 . Use a loop with a sentinel value
to allow a user to enter an arbitrary number of values. Compute and display
the geometric mean of all the values, excluding the sentinel. (Hint:
Math.pow(x, 1.0 / k) will compute the kth root of x.)

Solution:

int count = 0;

double data = 0.0;

double product = 1.0;

//Scanner reader = new Scanner(System.in);

System.out.println("Enter data values for which" +

" to compute the geometric mean.");

System.out.println("Enter a negative number after");

System.out.println("you have entered all the data values.");

data = reader.nextDouble();

while (data >= 0) {

product = product * data;

count++;

data = reader.nextDouble();

}

System.out.println("The geometric mean is "

+ Math.pow(product, 1.0/count));

This code is in Fragments.java.

16. Imagine a program that compresses files by 80 percent and stores them
on storage media. Before the compressed file is stored, it must be divided
into blocks of 512 bytes each. Develop an algorithm for this program that
first reads the number of blocks available on the storage media. Then, in a
loop, read the uncompressed size of a file and determine whether the
compressed file will fit in the space left on the storage media. If so, the
program should compress and save the file. It continues until it encounters a
file that will exceed the available space on the media. For example, suppose
the media can hold 1000 blocks. A file of size 1100 bytes will compress to
size 880 and require 2 blocks. The available space is now 998
blocks. A file of size 20,000 bytes will compress to size 16,000 and require
32 blocks. The available space is now 966.

Solution:

1. Get the number of free blocks and assign it to the variable free
2. Let haveSpace be true
3. While haveSpace

3.1.

Get size of the file in bytes
3.2. Compute the compressed size of the file in bytes
3.3. Determine the number of blocks needed for the file
3.4. If the number of blocks needed is less than the free space

3.4.1. Reduce the number of free blocks
3.5. Else

3.5.1.

Let haveSpace be false
3.5.2. guess is 1 to max

17. Create an applet that draws a pattern of circles whose centers are evenly
spaced along a horizontal line. Use six constants to control the pattern: the
number of circles to draw, the diameter of the first circle, the x- and y-
coordinates of the center of the first circle, the distance between adjacent
centers, and the change in the diameter of each subsequent circle.

Solution:

See the code in MultipleCircles.java.

18. What does the following fragment of code display? What do you think
the programmer intended the code to do, and how would you fix it?

int product = 1;
int max = 20;
for (int i = 0; i <= max; i++)

product = product * i;
System.out.println(“The product is “ + product);

Solution:

The product displayed is 0. It is likely that the programmer wanted to compute the
product of the first 20 integer values. Change the for loop to be:

for (int i = 1; i <= max; i++)

19. What does the following fragment of code display? What do you think
the programmer intended the code to do, and how would you fix it?
int sum = 0;
int product = 1;
int max = 20;
for (int i = 1; i <= max; i++)
sum = sum + i;

product = product * i;
System.out.println(“The sum is “ + sum +
“ and the product is “ + product);

Solution:

The sum is 210 and the product is 21.0. It is likely that the programmer wanted to
compute the product of the first 20 integer values, only the statement

sum = sum + i;

is inside the body of the for loop. Change the for loop to be:
for (int i = 1; i <= max; i++){

sum = sum + i;

product = product * i;

}

Practice Programs:

1. Repeat Practice Program 4 of Chapter 3, but use a loop that reads and
processes sentences until the user says to end the program.

Notes:

This project is an extension of a project from the previous chapter to use looping.

References:

Project 3.4

Solution:

See the code in AskOrTellMe.java.

2. Write a program that implements your algorithm from Exercise 2.

Notes:

This project uses a loop to simulate a simplified checking account. It is strongly
recommended that students develop an algorithm first (Exercise 2) to instill good
design practices. This gives them a chance to see how well their design worked.

References:

Exercise 4.2

Solution:

See the code in MonthByMonth.java.

3. Repeat Practice Program 5 of Chapter 3, but use a loop so the user can
convert other temperatures. If the user enters a letter other than C or F—in
either uppercase or lowercase—after a temperature, print an error message
and ask the user to reenter a valid selection. Do not ask the user to reenter
the numeric portion of the temperature again, however. After each
conversion, ask the user to type Q or q to quit or to press any other key to
repeat the loop and perform another conversion.

Notes:

This project uses loops to further enhance the program
TemperatureConversionSelction developed in Chapter 3 (which enhanced FtoC
developed in Chapter 2). A common error is to write the while control expression as
an OR instead of an AND, so the loop does not end when either ‘Q’ or ‘q’ is entered.
With an OR expression one or both sides of the expression will always be true (if ‘Q’
is entered, the variable quit is not equal to ‘q’, and vice versa); quit must be both not
equal to ‘Q’ and not equal to ‘q’ to enter the loop.

References:

Practice Program 3.5

Solution:

See the code in TemperatureConversion.java.

5.

Write a program to read a list of nonnegative integers and to display the
largest integer, the smallest integer, and the average of all the integers. The
user indicates the end of the input by entering a negative sentinel value that
is not used in finding the largest, smallest, and average values. The average
should be a value of type double, so that it is computed with a fractional
part.

Notes:

The solution for this project includes a default case to print a message if no positive
integers are entered.

Solution:

See the code in LargeSmallAverage.java.

6.

Write a program to read a list of exam scores given as integer percentages
in the range 0 to 100. Display the total number of grades and the number of
grades in each letter-grade category as follows: 90 to 100 is an A, 80 to 89 is
a B, 70 to 79 is a C, 60 to 69 is a D, and 0 to 59 is an F.
Use a negative score as a sentinel value to indicate the end of the input. (The
negative value is used only to end the loop, so do not use it in the
calculations.) For example, if the input is

98 87 86 85 85 78 73 72 72 72 70 66 63 50 −1

the output would be

Total number of grades = 14
Number of A’s = 1
Number of B’s = 4
Number of C’s = 6
Number of D’s = 2
Number of F’s = 1

Notes:

This project requires both a sentinel controlled loop, multi-way selection, and running
sums that need to be initialized to zero to guarantee correct results.

Solution:

See the code in NumberOfGrades.java.

7.

Combine the programs from Programming Projects 5 and 6 to read integer
exam scores in the range 0 to 100 and to display the following statistics:
Total number of scores
Total number of each letter grade
Percentage of total for each letter grade
Range of scores: lowest and highest
Average score
As before, enter a negative score as a sentinel value to end the data input and
display the statistics.

Notes:

This project combines parts of the previous two projects. There is the potential for
incorrect results due to integer division truncation, so a cast to float is used for the
percent and average calculations. The solution in this manual also does a check to see
if no scores have been entered, and, if so, displays a special message rather than the
statistics.

References:

Practice Program 4.5, Practice Program 4.6

Solution:

See the code in ExamStatistics.java.

Programming Projects:

3. Write a program that reads a bank account balance and an interest rate and
displays the value of the account in ten years. The output should show the
value of the account for three different methods of compounding interest:
annually, monthly, and daily. When compounded annually, the interest is
added once per year at the end of the year. When compounded monthly, the
interest is added 12 times per year. When computed daily, the interest is
added 365 times per year. You do not have to worry about leap years;
assume that all years have 365 days. For annual interest, you can assume that
the interest is posted exactly one year from the date of deposit. In other
words, you do not have to worry about interest being posted
on a specific day of the year, such as December 31. Similarly, you can
assume that monthly interest is posted exactly one month after it is
deposited. Since the account earns interest on the interest, it should have a
higher balance when interest is posted more frequently. Be sure to adjust the
interest rate for the time period of the interest. If the rate is 5 percent, you
use 5/12 percent when posting monthly interest and 5/365 percent when
posting daily interest. Perform this calculation using a loop that adds in the
interest for each time period, that is, do not use some sort of algebraic
formula. Your program should have an outer loop that allows the user to
repeat this calculation for a new balance and interest rate. The calculation is
repeated until the user asks to end the program.

Notes:

This project is a bank account problem, so it requires the same consideration about
money calculations as the mortgage problem in Chapter 2. The round function in Java
will not be introduced until later, so a discussion of the special problems associated
with money calculations may be postponed until then. One solution in this manual,
BankAccount.java, takes a simplistic approach, uses floating point values and does
not round to the nearest penny. For contrast, a second program, BankAccount2.java,
which deals with the rounding problem (without using Java’s round function), is also
provided.

Solution:

See the code in BankAccount.java and BankAccount2.java.

4. Modify Programming Project 5 from Chapter 2 to check the validity of
input data. Valid input is no less than 25 cents, no more than 100 cents, and
an integer multiple of 5 cents. Compute the change only if a valid price is
entered. Otherwise, print separate error messages for any of the following
invalid inputs: a price under 25 cents, a price that is not an integer multiple
of 5, and a price that is more than a dollar.

Notes:

This project is a simple modification of Project 5 from Chapter 2. Three if statements
are added to detect invalid input: less than 25 cents, more than a dollar, and not a
multiple of 5 cents.

References:

Project 2.5

Solution:

See the code in VendingChangeImproved.java.

6.

Write a program that asks the user to enter the size of a triangle (an
integer from 1 to 50). Display the triangle by writing lines of asterisks. The
first line will have one asterisk, the next two, and so on, with each line
having one more asterisk than the previous line, up to the number entered by
the user. On the next line write one fewer asterisk and continue by
decreasing the number of asterisks by 1 for each successive line until only
one asterisk is displayed. Hint: Use nested for loops; the outside loop
controls the number of lines to write, and the inside loop controls the
number of asterisks to display on a line. For example, if the user enters 3, the
output would be
*
**

**
*

Notes:

This project includes input checking so it will not print any lines with asterisks if the
user enters a number less than 1 or greater than 50. If a valid number is entered, two
pairs of nested for-loops are used to print the triangle of asterisks. The first nested
pair prints the lines with an increasing number of asterisks, starting with one and
increasing by one per line up to a maximum of the number entered by the user. The
second nested pair of for-loops prints the lines with a decreasing number of asterisks,
starting with (number –1) down to 1. The outside loops count through the lines
printed and the inside loops count through the number of asterisks printed on the line.
The number of asterisks to print on any line is its line number set by the outside loop.

Solution:

See the code in TriangleOfAsterisks.java.

7. Write a program that simulates a bouncing ball by computing its height in
feet at each second as time passes on a simulated clock. At time zero, the
ball begins at height zero and has an initial velocity supplied by the user.
(An initial velocity of at least 100 feet per second is a good choice.) After
each second, change the height by adding the current velocity; then subtract
32 from the velocity. If the new height is less than zero, multiply both the
height and the velocity by -0.5 to simulate the bounce. Stop at the fifth
bounce. The output from your program should have the following form:

Enter the initial velocity of the ball: 100
Time: 0 Height: 0.0
Time: 1 Height: 100.0
Time: 2 Height: 168.0
Time: 3 Height: 204.0
Time: 4 Height: 208.0
Time: 5 Height: 180.0
Time: 6 Height: 120.0
Time: 7 Height: 28.0
Bounce!
Time: 8 Height: 48.0

Notes:

This project is a numerical simulation of a bouncing ball. The simulation of the
bounce is not particularly realistic, but it avoids dealing with issues of determining
exactly when the ball hits the surface. The quality of the simulation is sensitive to the
combination of the input parameters.

Solution:

See the code in Bounce.java.

8. You have three identical prizes to give away and a pool of 10 finalists.
The finalists are assigned numbers from 1 to 10. Write a program to
randomly select the numbers of 3 finalists to receive a prize. Make sure not
to pick the same number twice. For example, picking finalists 3, 6, 2 would
be valid but picking 3, 3, 11 would be invalid because finalist number 3 is
listed twice and 11 is not a valid finalist number. Random number
generation is discussed in Chapter 6, but for this problem you can insert the

following line of code to generate a random number between 1 and 10:

int num = (int) (Math.random() * 10) +1;

Notes:

This project uses random numbers in a loop. You might wish to introduce the
Random class instead of Math.random().

Solution:

See the code in RandomWinners.java.

9. Suppose we can buy a chocolate bar from the vending machine for $1
each. Inside every chocolate bar is a coupon. We can redeem 6 coupons for
one chocolate bar from the machine. This means that once you have started
buying chocolate bars from the machine, you always have some coupons.
We would like to know how many chocolate bars can be eaten if we start
with N dollars and always redeem coupons if we have enough for an
additional chocolate bar.

For example, with 6 dollars we could consume 7 chocolate bars after
purchasing 6 bars giving us 6 coupons and then redeeming the 6 coupons for
one bar. This would leave us with one extra coupon. For 11 dollars, we
could have consumed 13 chocolate bars and still have one coupon left. For
12 dollars, we could have consumed 14 chocolate bars and have two
coupons left.

Write a program that inputs a value for N and outputs how many chocolate
bars we can eat and how many coupons we would have leftover. Use a loop
that continues to redeem coupons as long as there are enough to get at least
one chocolate bar.

Notes:

Students often attempt this problem by trying to find a simple formula instead of
simulating the process in a loop. This also makes a good problem to re-do later after

covering recursion.

Solution:

See the code in ChocolateCoupons.java.

10. Holy digits Batman! The Riddler is planning his next caper somewhere
on Pennsylvania Avenue. In his usual sporting fashion, he has left the
address in the form of a puzzle. The address on Pennsylvania is a four digit
number where:

•

All four digits are different
• The digit in the thousands place is three times the digit in the tens

place
• The number is odd
• The sum of the digits is 27

Write a program that uses a loop (or loops) to find the address where the
Riddler plans to strike.
Notes:

Loop over all the digits in the address. You can generate an integer that corresponds to
the digits and check if it meets the constraints, or check if individual digits meet the
constraints.

Solution:

See the code in Riddler.java

11.Your country is at war and your enemies are using a secret code to
communicate with each other. You have managed to intercept a message
that reads as follows:

:mmZ\dxZmx]Zpgy

The message is obviously encrypted using the enemy's secret code. You
have just learned that their encryption method is based upon the ASCII
code (see Appendix 7). Individual characters in a string are encoded

using this system. For example, the character ‘A’ is encoded using the
number 65 and ‘B’ is encoded using the number 66. Your enemy's secret
code takes each letter of the message and encrypts it as follows:

if (OriginalChar + Key > 126) then
EncryptedChar = 32 + ((OriginalChar + Key) - 127)

else
EncryptedChar = (OriginalChar + Key)

For example, if the enemy uses Key = 10 then the message "Hey" would
initially be represented as:

Character ASCII code
H 72
e 101
y 121

And "Hey" would be encrypted as:

Encrypted H = (72 + 10) = 82 = R in ASCII
Encrypted e = (101 + 10) = 111 = o in ASCII

Encrypted y = 32 + ((121 + 10) - 127) = 36 = $ in ASCII

Consequently, "Hey" would be transmitted as "Ro$." Write a program
Java that decrypts the intercepted message. You only know that the key
used is a number between 1 and 100. Your program should try to decode
the message using all possible keys between 1 and 100. When you try the
valid key, the message will make sense. For all other keys, the message
will appear as gibberish. Since there are only 100 keys this would
obviously be a pretty crummy encryption system. This Programming
Project will require you to explore a bit on your own how to convert
from a char to a number, process the number, then convert it back to a
char. See Chapter 2 for String methods. You will want to use charAt().
Important: Note that the secret code has a \ so you will need to escape
encode it by using \\ if you hard-code it in your program.

Notes:

This program requires some knowledge of how to map from ASCII to integers,
perform arithmetic, and map back to ASCII.

Solution:

See the code in Decrypt.java

12.

Repeat the Programming Project 7, but write the program as a JavaFX
application. Use a constant for the initial velocity of the ball. Draw a circle
for the position of the ball at each second. The y-coordinate should be
proportional to the height of the ball, and the xcoordinate should change by a
small constant amount.

Notes:

This application shows a graphical representation of the previous project. If the time
increment used is too large, the resulting picture may look chaotic and not at all like a
trajectory.

References:

Project 4.7

Solution:

See the code in BounceJavaFX.java. If the scale factor and initial velocity are chosen
badly, your picture may not look very much like a bouncing ball. Instead, it may look
chaotic. For example, try initial velocity of 100 and scale of 2.

14. Create a JavaFX application that draws a pattern of evenly spaced
circles. Use four constants to control the pattern: the number of circles to
draw, the radius of the first circle, the change in the radius of each
subsequent circle, and the change in the x-coordinate of the circle.

Notes:

This application uses looping to control drawing a number of circles. Changing the
parameters results in interesting patterns.

Solution:

See the code in LineCircles.java.

15.

(Challenge) Repeat the previous project, but position the centers of the
circles on a spiral. The center of each circle will depend on both an angle
and a distance from the origin. A constant change in both the angle and the
distance will result in a spiral pattern.

Notes:

This application is an extension of the previous program to draw the circles on a
spiral. Knowledge of converting polar coordinates to Cartesian coordinates is helpful.

References:

Project 4.14

Solution:

See the code in SpiralCircles.java.

16. Write a JavaFX application that displays a series of pictures of a person
with arms, legs, and of course a head. Use a happy face for the head. Use
ovals for the body, arms, and legs. Draw a sequence of figures that appear
one after the other, as in Listing 4.9. Make the figures assume a running
position. Change the color of the person’s face in each succeeding figure,
going from white to pink to red to yellow to green. Have the smiling face
gradually change its mouth shape from a smile on the first person to a frown
on the last person. Use a switch statement to choose the color. Embed the
switch statement in a loop.

Notes:

This program is based on the MultipleFaces.java program in Listing 4.9. Rather than
using odd and even counter values to determine color, this program uses a switch to
determine the face color and the height adjustment of the mouth. The mouth height
adjustment is used to gradually change the mouth from a smile to a frown. Also, a
number of constants are added for the position and size of the arms, legs, and body.

References:

Listing 4.9

Solution:

See the code in RunningFaces.java

Exercises:

2. Repeat Exercise 1 for a credit card account instead of a credit card. An
account represents the charges and payments made using a credit card.

Solution:

3. Repeat Exercise 1 for a coin instead of a credit card.

Solution:

4. Repeat Exercise 1 for a collection of coins instead of a credit card.

Solution:

5. Consider a Java class that you could use to get an acceptable integer value
from the user. An object of this class will have the attributes

•

Minimum accepted value
• Maximum accepted value
• Prompt string
and the following method:
• getValue displays the prompt and reads a value using the class Scanner. If
the value read is not within the allowed range, the method should display an
error message and ask the user for a new value, repeating these actions until
an acceptable value is entered. The method then returns the value read.
a.

Write preconditions and postconditions for the method getValue.
b. Implement the class in Java.
c. Write some Java statements that test the class.

Solution:

Preconditions: minimum value is less than or equal to maximum value
Postconditions: the value returned will be greater than or equal to the minimum and
less than or equal to the maximum.

See the code in GetInput.java.

6. Consider a class that keeps track of the sales of an item. An object of this
class will have the attributes

•

Number sold
• Total sales
• Total discounts
• Cost per item
• Bulk quantity
• Bulk discount percentage
and the following methods:
• registerSale(n) records the sale of n items. If n is larger than the bulk
quantity, the cost per item will be reduced by the bulk discount.
• displaySales displays the number sold, the total sales, and total discount.

a.

Implement the class in Java.

b. Write some Java statements that test the class.

Solution:

See the code in ItemSales.java.

7. Consider a class MotorBoat that represents motorboats. A motorboat has
attributes for

•

The capacity of the fuel tank
• The amount of fuel in the tank
• The maximum speed of the boat
• The current speed of the boat
• The efficiency of the boat’s motor
• The distance traveled
The class has methods to
•

Change the speed of the boat
• Operate the boat for an amount of time at the current speed
• Refuel the boat with some amount of fuel
• Return the amount of fuel in the tank
• Return the distance traveled so far
If the boat has efficiency e, the amount of fuel used when traveling at a
speed s for time t is . The distance traveled in that time is .
a.

Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.

Solution:

a)
public void changeSpeed(double newSpeed)

public void operateForTime(double time)

public void refuelBoat(double amount)

public double fuelRemaining()

public double distance()

b)
public void changeSpeed(double newSpeed)
Precondition: newSpeed is positive.
Postcondition: The speed of the motor boat has been set to the minimum of newSpeed
and the maximum speed.

public void operateForTime(double time)
Precondition: time is positive.
Postcondition: The motor boat operates for the given amount of time or until it runs
out of fuel. The fuel and distance traveled will be updated appropriately.

public void refuelBoat(double amount)
Precondition: amount is positive.

Postcondition: The fuel in the motor boat will be set to the minimum of maximum fuel
capacity and current fuel plus the given amount.

public double fuelRemaining()
Precondition: none.
Postcondition: The amount fuel in the boat was returned.

public double distance()
Precondition: none.
Postcondition: The distance traveled in boat was returned.

c&d)
See the code in MotorBoat.java.

8. Consider a class PersonAddress that represents an entry in an address
book. Its attributes are

public String getPhoneNumber()

•

The first name of the person
• The last name of the person
• The e-mail address of the person
• The telephone number of the person
It will have methods to
•

Access each attribute
• Change the e-mail address
• Change the telephone number
• Test whether two instances are equal based solely on name
a.

Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.

Solution:

a)
public String getFirstName()

public String getLastName()

public String getEmailAddress()

public String getPhoneNumber()

public void updateEmail(String newEmail)

public void updatePhone(String newPhone)

public boolean equal(PersonAddress otherPerson)

b)
public String getFirstName()
Precondition: none.
Postcondition: The first name was returned.

public String getLastName()
Precondition: none.
Postcondition: The last name was returned.

public String getEmailAddress()
Precondition: none.
Postcondition: The email address was returned.

Precondition: none.

Postcondition: The phone number was returned.

public void updateEmail(String newEmail)
Precondition: none.
Postcondition: The email address was changed to newEmail.

public void updatePhone(String newPhone)
Precondition: none.
Postcondition: The phone number was changed to newPhone.

public boolean equal(PersonAddress otherPerson)
Precondition: otherPerson is not null.
Postcondition: True was returned if the first and last names match.

c&d)
See the code in PersonAddress.java.

9. Consider a class RatingScore that represents a numeric rating for
something such as a movie. Its attributes are

•

A description of what is being rated
• The maximum possible rating
• The rating
It will have methods to
•

Get the rating from a user
• Return the maximum rating possible
• Return the rating
• Return a string showing the rating in a format suitable for display
a.

Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.

Solution:

a)

public void inputRating()

public int getMaxRating()

public int getRating()

public String getRatingString()

b)
public void inputRating()

Precondition: maximum rating is positive.
Postcondition: A value for the rating was obtained from the user. The rating was
greater than or equal to zero and less than or equal to the maximum possible rating.
The rating attribute was changed to the value obtained from the user.

public int getMaxRating()

Precondition: none.
Postcondition: The maximum rating was returned.

public int getRating()

Precondition: none.
Postcondition: The rating was returned.

public String getRatingString()

Precondition: none.
Postcondition: The rating was returned in some nicely formatted string.

c&d)

See the code in RatingScore.java.

10. Consider a class ScienceFairProjectRating that will be used to help judge
a
science fair project. It will use the class RatingScore described in the
previous exercise. The attributes for the new class are
• The name of the project
• A unique identification string for the project
• The name of the person
• A rating for the creative ability (max. 30)
• A rating for the scientific thought (max. 30)
• A rating for thoroughness (max. 15)
• A rating for technical skills (max. 15)
• A rating for clarity (max. 10)
It will have methods to
• Get the number of judges
• Get all the ratings for a particular project
• Return the total of the ratings for a particular project
• Return the maximum total rating possible
• Return a string showing a project’s rating in a format suitable for display
a. Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.

Solution:

a)
public void rateProject()

public int totalRating()

public int maxRating()

public String getRatingString()

b)
public void rateProject()

Precondition: none.
Postcondition: Ratings were obtained from the user for each category and then set.

public int totalRating()

Precondition: none.
Postcondition: The total of the ratings in each category was returned.

public int maxRating()

Precondition: none.
Postcondition: The maximum possible total rating over all categories was returned.

public String getRatingString()

Precondition: none.
Postcondition: A string in a nice format that shows the rating of the project.

c&d)
See the code in ScienceFairProjectRating.java.

Practice Programs:

Documentation and javadoc
You may want to have students start using javadoc with these problems. Be sure to run
it on the solution files, e.g.

javadoc YearsToOvertake.java
to see what files are produced (there are many) and how to interpret them. Even if you
do not make javadoc part of the assignment, it is still a good idea to run it on this file and
look at what it produces, just in case a student tries it and asks questions.

1. Write a program to answer questions like the following: Suppose the
species Klingon ox has a population of 100 and a growth rate of 15 percent,
and the species elephant has a population of 10 and a growth rate of 35
percent. How many years will it take for the elephant population to exceed
the Klingon ox population? Use the class Species in Listing 5.17. Your
program will ask for the data on both species and will respond by telling you
how many years it will take for the species that starts with the lower
population to outnumber the species that starts with the higher population.
The two species may be entered in any order. It is possible that the species
with the smaller population will never outnumber the other species. In this
case, your program should display a suitable message stating this fact.

Notes:
1. Practice Program 1 is sufficiently complex that it is a good example to show

three aspects of program development, design, step-wise refinement, and testing.
This manual has four programs that demonstrate incremental development of this
Project.

1.1

YearsToOvertakePhase1 uses comments similar to pseudocode to
outline a solution (a simple but useful form of designing a solution before
implementing it) and adds just the code to read in two species, determines
which has the lower initial population, and display the results. Appropriate
test cases would include small values for the initial populations that would
make the first entry the lower, another set of values to make the second entry
lower, and a set of values to make the initial populations equal. When the two
initial populations are equal, the programmer may be surprised that the second
one entered will be assigned to lower. This last test case should make the
programmer aware that this special case needs to be considered explicitly. A
question worth asking is "Does it make a difference which species is assigned
to lower if they have equal populations?" Sometimes it will not matter (as in
this case), but other times it will. What should occur to the programmer is that
even with the same initial populations the two species could have different
growth rates, and some decision should be made about which one to assign to

lower. Perhaps it makes sense to assign the first one entered to lower if the
populations are equal, in which case the condition in the first if should be
changed to "less than or equal to" from just "less than." Although not
necessary, this was done in YearsToOvertakePhase2.

1.2 YearsToOvertakePhase2 explicitly assigns the first species entered to
lower if the two populations are equal (as described above, this is not
necessary but demonstrates the idea of explicitly coding for all possibilities).
More importantly, this version adds a loop to calculate (and display) the new
populations for both species for each year up to 10 years. This version allows
the programmer to experiment with population and growth values to develop
test cases for the final version. As described in this version's program
description, look for values that will result in

•

lower overtaking higher in 1 year,
• lower overtaking higher in less than 10 years,
• lower overtaking higher in exactly 10 years, and
• lower not overtaking higher, even after 10 years, but with equal

populations.

Some good test cases are shown in the following tables.

Test Case 1

1st Species' population < 2nd

2nd overtakes 1st in 1 year

Predicted results:

1st Species:
Name

 foo 1.

foo is assigned to higher
2. crepek is assigned to lower
3. crepek overtakes foo after 1
year.

population 2
growth rate 0

2nd Species Name crepek
population 1

growth rate 200

Test Case 2

1st Species' population <
2nd

2nd overtakes 1st in 7 years

Predicted results:

1st Species:
Name

 foo 1.

foo is assigned to lower
2. crepek is assigned to higher
3. crepek overtakes foo after 7
years.

population 2
growth rate 0

2nd Species
Name

crepek

population 1
growth rate 20

Test Case 3
1st Species' population < 2nd
2nd does not overtake 1st in 10
yr.
(populations are equal)

 Predicted results:

1st Species:
Name

foo 1. foo is assigned to lower
2. crepek is assigned to
higher
3. crepek does not overtake

foo after 10 years - they
both have final populations
of 2.

population 2
growth rate 0

2nd Species
Name

crepek

population 1
growth rate 10

Test Case 4
1st Species' population < 2nd

2nd overtakes 1st in exactly 10 yr.

Predicted results:
1st Species:
Name

foo 1. foo is assigned to lower
2. crepek is assigned to
higher
3. crepek overtakes foo in

exactly 10 years.

population 3
growth rate 5

2nd Species
Name

crepek

population 2
growth rate 10

1.3 YearsToOvertakePhase3 adds the test condition of the while-loop so
that it exits if either the species with the lower initial population overtakes the
other species or if the 10-year limit is reached. One run is enough to make the
programmer aware, if she/he was not already, that the exit value of years
will be incremented one time too many, and needs to be adjusted outside the
loop by subtracting one. The aware programmer will also note the special
condition that if the loop goes to the full ten years, the while-loop will be
exited, but you do not know if lower overtook higher, therefore an
additional test must be made.

1.4 The final version, YearsToOvertake cleans everything up, removes (or
comments out) test lines, and should be tested at least with the test cases listed
earlier. Here is another good test case:

Test Case 5
1st Species' population < 2nd
non-zero growth rates, 1st

overtakes 2nd in under 10 years
Predicted results:

1st Species:
Name

foo 1. foo is assigned to lower
2. crepek is assigned to
higher
3. crepek overtakes foo in 9

years.

population 2
growth rate 10

2nd Species
Name

crepek

population 1
growth rate 20

References:

Listing 5.19

Solution:

The final solution to this code is in YearsToOvertake.java.

Earlier iterations are in YearsToOvertakePhase1.java, YearsToOvertakePhase2.java,
and YearsToOvertakePhase3.java,.

2. Define a class called Counter. An object of this class is used to count
things, so it records a count that is a nonnegative whole number. Include
methods to set the counter to 0, to increase the count by 1, and to decrease
the count by 1. Be sure that no method allows the value of the counter to
become negative. Also include an accessor method that returns the current
count value, as well as a method that displays the count on the screen. Do
not define an input method. The only method that can set the counter is the
one that sets it to zero. Write a program to test your class definition. (Hint:
You need only one instance variable.)

Notes:

This project requires a test program in addition to the counter class; both are
straightforward

Solution:

See the code in Counter.java and CounterTest.java.

Programming Projects:

1. Write a grading program for an instructor whose course has the following
policies:
• Two quizzes, each graded on the basis of 10 points, are given.
• One midterm exam and one final exam, each graded on the basis of 100
points, are given.
• The final exam counts for 50 percent of the grade, the midterm counts for
25 percent, and the two quizzes together count for a total of 25 percent. (Do
not forget to normalize the quiz scores. They should be converted to
percentages before they are averaged in.)

Any grade of 90 percent or more is an A, any grade between 80 and 89
percent is a B, any grade between 70 and 79 percent is a C, any grade
between 60 and 69 percent is a D, and any grade below 60 percent is an F.
The program should read in the student’s scores and display the student’s
record, which consists of two quiz scores, two exam scores, the student’s
total score for the entire course, and the final letter grade. The total score is a
number in the range 0 to 100, which represents the weighted average of the
student’s work.

Define and use a class for the student record. The class should have instance
variables for the quizzes, midterm, final, total score for the course, and final
letter grade. The class should have input and output methods. The input
method should not ask for the final numeric grade, nor should it ask for the
final letter grade. The class should have methods to compute the overall
numeric grade and the final letter grade. These last two methods will be void
methods that set the appropriate instance variables. Remember, one method
can call another method. If you prefer, you can define a single method that
sets both the overall numeric score and the final letter grade, but if you do
this, use a helping method. Your program should use all the methods
described here. Your class should have a reasonable set of accessor and
mutator methods, whether or not your program uses them.

You may add other methods if you wish.

Notes:

This project has many simple things that need to be coded, so it is another good

opportunity to demonstrate incremental development.

Solution:

See the code in StudentGrade.java and StudentGradeTest.java.

2. Add methods to the Person class from Self-Test Question 16 to perform
the following tasks:
•

Set the name attribute of a Person object.
• Set the age attribute of a Person object.
• Test whether two Person objects are equal (have the same name and age).
• Test whether two Person objects have the same name.
• Test whether two Person objects are the same age.
• Test whether one Person object is older than another.
• Test whether one Person object is younger than another.
Write a driver (test) program that demonstrates each method, with at least
one true and one false case for each of the methods tested.

Notes:

This project requires seven new methods to be added to Person class, but most of
them are very simple to code. The test program, however, requires significant work to
create test cases that cover the various decision paths of the class’s methods. Note
that the equalsIgnoreCase method of the String class is used to check for
matching names.

References:

Self-Test Question 16

Solution:

See the code in PersonImproved.java and PersonImprovedTest.java.

3. Create a class that represents a grade distribution for a given course. Write
methods to perform the following tasks:
• Set the number of each of the letter grades A, B, C, D, and F.
• Read the number of each of the letter grades A, B, C, D, and F.
• Return the total number of grades.
• Return the percentage of each letter grade as a whole number between 0
and 100, inclusive.
• Draw a bar graph of the grade distribution.

The graph will have five bars, one per grade. Each bar can be a horizontal
row of asterisks, such that the number of asterisks in a row is proportionate
to the percentage of grades in each category. Let one asterisk represent 2
percent, so 50 asterisks correspond to 100 percent. Mark the horizontal axis
at 10 percent increments from 0 to 100 percent, and label each line with its
letter grade.

For example, if the grades are 1 A, 4 Bs, 6 Cs, 2 Ds, and 1 F, the total
number of grades is 14, the percentage of As is 7, the percentage of Bs is 29,
the percentage of Cs is 43, the percentage of Ds is 14, and the percentage of
Fs is 7. The A row would contain 4 asterisks (7 percent of 50 rounded to the
nearest integer), the B row 14, the C row 21, the D row 7, and the F row 4.

Notes:

This project requires several new methods, but most are simple, so it is just a matter of
adding and testing a piece at a time until it is complete. The code to draw the graph is
based on the project TriangleOfAsterisks from Chapter 4.
Solution:

See the code in GradesGraph.java and GradesGraphTest.java.

4. Write a program that uses the Purchase class in Listing 5.13 to set the
following prices:
Oranges: 10 for $2.99
Eggs: 12 for $1.69
Apples: 3 for $1.00
Watermelons: $4.39 each
Bagels: 6 for $3.50

Then calculate the cost of each of the following five items and the total bill:
2 dozen oranges
3 dozen eggs
20 apples
2 watermelons
1 dozen bagels

Notes:

This project does not specify how to input or display the information, so there are
several ways it might be done. The solution in this manual “hard codes” the input
data using set methods rather than entering it interactively via readInput(). In
addition to the total cost of the items, the program outputs the subtotal cost for each
item, along with its name and cost information.

References:

Listing 5.13

Solution:

See the code in Purchase.java and GroceryBill.java.

5. Write a program to answer questions like the following: Suppose the
species Klingon ox has a population of 100 and a growth rate of 15 percent,
and it lives in an area of 1500 square miles. How long would it take for the
population density to exceed 1 per square mile? Use the class Species in
Listing 5.19 with the addition of the getDensity method from Self-Test
Question 10.

Notes:

This project requires a new version of Species that includes the density method
from Self-Test Question 10. The main program uses this new version of the class
and does the following: asks the user to enter data for the species (name, population
and growth rate), the area (in square miles), and the target density. Note that the
solution in this manual is generalized so that the user can enter any density; it is not
hard-coded for 1 per square mile. Also note that a check is made to see if the density
is already at or above the target before it enters the loop to calculate the number of
years.

References:

Listing 5.19, Self-Test Question 10

Solution:

See the code in SpeciesWithDensity.java and YearsToDensity.

6. Consider a class that could be used to play a game of hangman. The class
has the following attributes:

• The secret word.
• The disguised word, in which each unknown letter in the secret word is
replaced with a question mark (?). For example, if the secret word is
abracadabra and the letters a, b, and e have been guessed, the disguised
word would be ab?a?a?ab?a.
• The number of guesses made.
• The number of incorrect guesses.

It will have the following methods:
• makeGuess(c) guesses that character c is in the word.
• getDisguisedWord returns a string containing correctly guessed letters
in
their correct positions and unknown letters replaced with ?.
• getSecretWord returns the secret word.
• getGuessCount returns the number of guesses made.
• isFound returns true if the hidden word has been discovered.

a. Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.
e. List any additional methods and attributes needed in the implementation
that were not listed in the original design. List any other changes made to the
original design.
f. Write a program that implements the game of hangman using the class you
wrote for Part d.

Notes:

This project considers the development of a hangman game. First, we focus on
domain methods for the class that encapsulates the operations required by such a
game. This class is tested and then is completed by adding in interface methods. To
make the code simpler, the class converts all input to lower case. The code takes a
particularly straightforward approach to creating the disguised word by just replacing
every possible character by ‘?’. This could be accomplished by using Scanner with
patterns but would require a discussion of their use that may not be appropriate for all
classes.

Solution:

a)
public void makeGuess(Character c)

public String getDisguisedWord()

public String getSecretWord()

public int getGuessCount()

public boolean isFound()

b)
public void makeGuess(Character c)

Precondition: The character is one of the 26 alpha characters.
Postcondition: The number of guesses and incorrect guesses is updated, the disguised
word is updated.

public String getDisguisedWord()

Precondition: none.
Postcondition: The disguised string was returned.

public String getSecretWord()

Precondition: none.
Postcondition: The secret word was returned.

public int getGuessCount()

Precondition: none.
Postcondition: The number of correct guesses was returned.

public boolean isFound()

Precondition: none.
Postcondition: True was returned if the disguised word has become the secret word.

d) We will add an attribute that will be the secret word with letters that
have been guessed replaced with #.

We will add the methods
public void initialize(String word) {

Precondition: none.
Postcondition: All of the attributes were initialized. The secret word was initialized
to the argument. The letters remaining attribute was set to the secret word. The
disguised word was set to the secret word with all the letters replaced by question
mark. The number of guesses made was set to zero. The number of incorrect guesses
was set to zero.

public String createDisguisedWord(String word)

Precondition: none.
Postcondition: Returned a string of the same length as the argument, but with all the
alpha characters replaced by ?.

public void playGame()

Precondition: The word has not already been guessed.
Postcondition: Letters were obtained one at a time until the secret word was guessed.
The number of guesses and incorrect guesses where displayed.

See the code in Hangman.java.

8. Consider a class ConcertPromoter that records the tickets sold for a
performance. Before the day of the concert, tickets are sold only over the
phone. Sales on the day of the performance are made only in person at the
concert venue. The class has the following attributes:
• The name of the band
• The capacity of the venue
• The number of tickets sold
• The price of a ticket sold by phone
• The price of a ticket sold at the concert venue
• The total sales amount
It has methods to
• Record the sale of one or more tickets
• Change from phone sales to sales at the concert venue
• Return the number of tickets sold
• Return the number of tickets remaining
• Return the total sales for the concert
a. Write a method heading for each method.
b. Write preconditions and postconditions for each method.
c. Write some Java statements that test the class.
d. Implement the class.
e. List any additional methods and attributes needed in the implementation
that were not listed in the original design. List any other changes made to the
original design.
f. Write a program using the class you wrote for Part d that will be used to
record sales for a concert. Your program should record phone sales, then
sales at the venue. As tickets are sold, the number of seats remaining should
be displayed. At the end of the program, display the number of tickets sold
and the total sales amount for the concert.

Notes:

The motivation for this project is to introduce a simplified example of the kind of
specialized programs students may encounter. We use a class to encapsulate the
domain knowledge. The main method contains a simple text based interface that uses
the class.

Solution:
a)
public void sellTickets(int number)

public void phoneSalesOver()

public int getTicketsSold()

public int getTicketsLeft()

public double getTotalSales()

b)
public void sellTickets(int number)

Precondition: Then number of tickets requested is positive and less than the number
of tickets unsold.
Postcondition: The number of tickets sold and total sales were updated.

public void phoneSalesOver()

Precondition: none.
Postcondition: Ticket sales can now be made only at the venue.

public int getTicketsSold()

Precondition: none.
Postcondition: The number of tickets sold was returned.

public int getTicketsLeft()

Precondition: none.
Postcondition: The number of unsold tickets was returned.

public double getTotalSales()

Precondition: none.
Postcondition: The total amount of sales was returned.

d) We need to add an attribute that will indicate whether ticket sales are
over the phone or at the venue.

We will add the methods
public void initialize(String band, int max, double

costOverPhone, double costAtVenue)

Precondition: none.
Postcondition: All the attributes were initialized. The name of the band was set to
band. The capacity of the venue was set to max. The number of tickets sold was set to
zero. The cost of the tickets when ordered by phone and at the venue were set to the
arguments. The sales total was set to zero. The attribute indicating where tickets are
being sold was set to indicate sales over the phone.

public boolean phoneSalesOnly()

Precondition: none.
Postcondition: Returned true if we are only making sales over the phone, otherwise
false.

public String getSalesReport()

Precondition: none.
Postcondition: Returned a string with the number of tickets sold and their amount.

public void doTicketSale()

Precondition: none.
Postcondition: Obtains a number of tickets to sell. Makes the sale if possible and
reports the cost of the tickets.

public double getSaleCost(int number)

Precondition: The number of tickets requested is positive and less than the number of
tickets unsold.
Postcondition: Returns the cost of the sale of that number of tickets.

We will change sellTickets slightly.
public boolean sellTickets(int number)

Precondition: The number of tickets requested is positive and less than the number of
tickets unsold.
Postcondition: The number of tickets sold and total sales were updated. True is
returned if the sale was finished, false otherwise.

See the code in ConcertPromoter.java.

9. Rewrite the Dog class given in Listing 5.1 by utilizing the information
and encapsulation principles described in section 5.2. The new version
should include accessor and mutator methods. Also define an equals method
for the class that returns true if the dog’s name, age, and breed match the
same variables for the other object that is being compared. Include a main
method to test the functionality of the new Dog class.

Notes:

This project involves a fairly straightforward implementations of encapsulation.
Solution:

See the code in Dog.java and DogDemo.java.

10. Consider a class Movie that contains information about a movie. The
class has the following attributes:
•

The movie name
• The MPAA rating (e.g. G, PG, PG-13, R)
• The number of people that have rated this movie as a 1 (Terrible)
• The number of people that have rated this movie as a 2 (Bad)
• The number of people that have rated this movie as a 3 (OK)
• The number of people that have rated this movie as a 4 (Good)
• The number of people that have rated this movie as a 5 (Great)
Implement the class with accessors and mutators for the movie name and
MPAA rating. Write a method addRating that takes an integer as an input
parameter. The method should verify that the parameter is a number
between 1 and 5, and if so, increment the number of people rating the movie
that matches the input parameter. For example, if 3 is the input parameter,
then the number of people that rated the movie as a 3 should be incremented
by one. Write another method, getAverage, that returns the average value for
all of the movie ratings.
 Test the class by writing a main method that creates at least two
movie objects, adds at least 5 ratings for each movie, and outputs the movie
name, MPAA rating, and average rating for each movie object.

Notes:

This is much more scalable using arrays and this problem is re-visited in Chapter 7.

Solution:

See the code in Movie.java.

11. Repeat Programming Project 18 from Chapter 4, but use a method that
displays a circular disk as a subtask.

Notes:

This application draws a bullseye. If the circle-drawing method (suggested in the
hint) takes a GraphicsContext object, center x- and y-coordinates, and a Color object
as parameters, then both the paint method and the circle-drawing method are quite
simple and easy to write.

References:

Project 4.18

Solution:

See the code in Bullseye.java.

12. Create a JavaFX application that displays something like the following
picture. You should have methods for drawing a monkey face and a hand.

Hear no
evil

See no
evil

Speak no
evil

Notes:

This application draws monkey faces. Getting the proportions and constants correct
can be challenging. It is strongly recommended that the methods be developed one at
a time and then combined for the final picture.

Solution:

See the code in MonkeyFaces.java.

Exercises:

1. Create a class that will bundle together several static methods for tax
computations. This class should not have a constructor. Its attributes are
• basicRate—the basic tax rate as a static double variable that starts at 4
percent
• luxuryRate—the luxury tax rate as a static double variable that starts at 10
percent
Its methods are
• computeCostBasic(price)—a static method that returns the given price
plus the basic tax, rounded to the nearest penny.
• computeCostLuxury(price)—a static method that returns the given price
plus the luxury tax, rounded to the nearest penny.
• changeBasicRateTo(newRate)—a static method that changes the basic tax
rate.
• changeLuxuryRateTo(newRate)—a static method that changes the luxury
tax rate.
• roundToNearestPenny(price)—a private static method that returns the
given price rounded to the nearest penny. For example, if the price is 12.567,
the method will return 12.57.

Solution:

See the code in TaxComputer.java.

2. Consider a class Time that represents a time of day. It has attributes for
the hour and minute. The hour value ranges from 0 to 23, where the range 0
to 11 represents a time before noon. The minute value ranges from 0 to 59.
a. Write a default constructor that initializes the time to 0 hours, 0 minutes.
b. Write a private method isValid(hour, minute) that returns true if the given
hour and minute values are in the appropriate range.
c. Write a method setTime(hour, minute) that sets the time if the given
values are valid.
d. Write another method setTime(hour, minute, isAM) that sets the time if
the given values are valid. The given hour should be in the range 1 to 12.
The parameter isAm is true if the time is an a. m. time and false otherwise.

Solution:

See the code in Time.java.

3. Write a default constructor and a second constructor for the class
RatingScore, as described in Exercise 9 of the previous chapter.

Solution:

See the code in RatingScore.java.

4. Write a constructor for the class ScienceFairProjectRating, as described in
Exercise 10 of the previous chapter. Give this constructor three parameters
corresponding to the first three attributes that the exercise describes. The
constructor should give default values to the other attributes.

Solution:

See the code in ScienceFairProjectRating.java.

5. Consider a class Characteristic that will be used in an online dating
service to assess how compatible two people are. Its attributes are
• description—a string that identifies the characteristic
• rating—an integer between 1 and 10 that indicates a person’s desire for this
characteristic in another person
a. Write a constructor that sets the description of the characteristic to a given
string and sets the rating to zero to indicate that it has not yet been
determined.
b. Write a private method isValid(aRating) that returns true if the given
rating is valid, that is, is between 1 and 10.
c. Write a method setRating(aRating) that sets the rating to aRating if it is
valid.
d. Write a method setRating that reads a rating from the keyboard, insisting
that the rating supplied by the user be valid.

Solution:

See the code in Characteristic.java.

6. Create a class RoomOccupancy that can be used to record the number of
people in the rooms of a building. The class has the attributes
• numberInRoom—the number of people in a room
• totalNumber—the total number of people in all rooms as a static variable
The class has the following methods:
• addOneToRoom—adds a person to the room and increases the value of
totalNumber
• removeOneFromRoom—removes a person from the room, ensuring that
numberInRoom does not go below zero, and decreases the value of
totalNumber as needed
• getNumber—returns the number of people in the room
• getTotal—a static method that returns the total number of people

Solution:

See the code in RoomOccupancy.java.

7. Write a program that tests the class RoomOccupancy described in the
previous exercise.

Solution:

See the code in RoomOccupancy.java.

8. Sometimes we would like a class that has just a single unique instance.
Create a class Merlin that has one attribute, theWizard, which is static and of
type Merlin. The class has only one constructor and two methods, as
follows:
• Merlin—a private constructor. Only this class can invoke this constructor;
no other class or program can create an instance of Merlin.
• summon—a static method that returns theWizard if it is not null; if
theWizard is null, this method creates an instance of Merlin using the private
constructor and assigns it to theWizard before returning it.
• consult—a nonstatic method that returns the string "Pull the sword
from the stone".

Solution:

See the code in Merlin.java.

9. Create a program that tests the class Merlin described in the previous
exercise. Use the toString method to verify that a unique instance has been
created.

Solution:

See the code in MerlinTester.java.

10. In the previous chapter, Self-Test Question 16 described a class Person
to represent a person. The class has instance variables for a person’s name,
which is a string, and an integer age. These variables are name and age,
respectively.
a. Write a default constructor for Person that sets name to the string "No
name yet" and age to zero.
b. Write a second constructor for Person that sets name to a given string and
age to a given age.
c. Write a static method createAdult() for Person that returns a special
instance of this class. The instance represents a generic adult and has the
name “An adult” and the age 21.

Solution:

See the code in Person.java.

11. Create a class Android whose objects have unique data. The class has the
following
attributes:
• tag—a static integer that begins at 1 and changes each time an instance is
created
• name—a string that is unique for each instance of this class
Android has the following methods:
• Android—a default constructor that sets the name to "Bob" concatenated
with the value of tag. After setting the name, this constructor changes the
value of tag by calling the private method changeTag.
• getName—returns the name portion of the invoking object.
• isPrime(n)—a private static method that returns true if n is prime—that is,
if it is not divisible by any number from 2 to n - 1.
• changeTag—a private static method that replaces tag with the next prime
number larger than the current value of tag.

Solution:

See the code in Android.java.

12. Create a program that tests the class Android described in the previous
exercise.

Solution:

See the code in Android.java.

Practice Programs:

1. Modify the definition of the class Species in Listing 5.19 of Chapter 5 by
removing the method setSpecies and adding the following methods:
• Five constructors: one for each instance variable, one with three parameters
for the three instance variables, and a default constructor. Be sure that each
constructor sets all of the instance variables.
• Four methods named set that can reset values: one is the same as the
method setSpecies in Listing 5.16, and the other three each reset one of the
instance variables.

Then write a test program to test all the methods you have added. Finally,
repeat Practice Program 1 in Chapter 5, but be sure to use some constructor
other than the default constructor when you define new objects of the class
Species.

Notes:

This project requires the development of test cases that exercise each of the new
constructors and methods at least once.

References:

Listing 5.16, Listing 5.19

Solution:

See the code in SpeciesCh6.java, SpeciesCh6Driver.java and
YearsToOvertakeCh6.java.

2. Repeat Programming Project 2 in Chapter 5. This time, add the following
four constructor methods: one for each instance variable, one with two
parameters for the two instance variables, and a default constructor. Be sure
that each constructor sets all of the instance variables. Write a driver
program to test each of the methods, including each of the four constructors
and at least one true and one false case for each of the test methods.

Notes:

The solution to this project sets the name parameter to “No name” and age to 0 if they
are not specified in the constructor. In addition, if the age argument is a negative
number an error message is printed and the age is set to 0.

References:

Project 5.2

Solution:

See the code in PersonCh6.java and PersonCh6Test.java.

3. Using the class Pet from Listing 6.1, write a program to read data for five
pets and display the following data: name of smallest pet, name of largest
pet, name of oldest pet, name of youngest pet, average weight of the five
pets, and average age of the five pets.

Notes:

This project is a little more challenging if it is written to find and display all the
names if more than one pet weighs the most or least, or is the oldest or youngest,
which is how the solution in this manual was written.

References:

Listing 6.1

Solution:

See the code in OutputFormat.java, PetRecord.java, and PetStatistics.java.

Programming Projects:

1. Define a utility class for displaying values of type double. Call the class
DoubleOut. Include all the methods from the class DollarFormat in Listing
6.14, all the methods from the class OutputFormat of Self-Test Question 30,
and a method called scienceWrite that displays a value of type double using
e notation, such as 2.13e−12. (This e notation is also called scientific
notation, which explains the method name.) When displayed in e notation,
the number should appear with exactly one nonzero digit before the decimal
point—unless the number is exactly zero. The method scienceWrite will not
advance to the next line. Also add a method called scienceWriteln that is the
same as scienceWrite except that it does advance to the next line. All but the
last two method definitions can simply be copied from the text (or more
easily from the source code for this book that is available on the Web.). Note
that you will be overloading the method names
write and writeln. Write a driver program to test your method
scienceWriteln. This driver program should use a stub for the method
scienceWrite. (Note that this means you can write and test scienceWriteln
before you even write scienceWrite.) Then write a driver program to test the
method scienceWrite. Finally, write a program that is a sort of super driver
program that takes a double value as input and then displays it using the two
writeln methods and the scienceWriteln method. Use the number 5 for the
number of digits after the decimal point when you need to specify such a
number. This super driver program should allow the user to repeat this
testing with additional numbers of type double until the user is ready to end
the program.

Notes:

The full solution to Project 1, DoubleOut.java, requires a little more thought than
some of the previous projects. For example, the possibility that the floating-point
number may be less than 0 must be taken into account. And, after carefully thinking
about how to convert to scientific notation and looking at the code in
OutputFormat, it should be apparent that scienceWriteln()can be written by
making a few changes to the method write(double number, int
digitsAfterPoint). It is helpful to use step-wise refinement and develop one
piece at a time. For example, develop a solution for numbers greater than one first,
then make the modifications for values less than one, where, as it happens, a little

pitfall is encountered: The pow method does not work with negative exponents, so
special provision must be made. One of the difficulties is deciding how to obtain just
the digits to print to the right of the decimal place. With a little thought, guidance, or
trial and error, students should be able to figure out that the code used in
writePositive will work if the value in the allWhole equation is divided by
10e (where e is the exponent of 10) if e is positive. If e is negative, the inverse
operation is required, so multiply by 10-e (the code is pow(10, -e)to make the
exponent positive).

References:
Self-Test Question 30, Listing 6.14

Solution:

An intermediate version of the code is given in DoubleOutWithStub.java and
DoubleOutWithStubDriver.java.

The final version of the code is given in DoubleOut.java and DoubleOutDriver.java.

2. Write a new class TruncatedDollarFormat that is the same as the class
DollarFormat from Listing 6.14, except that it truncates rather than rounds to
obtain two digits after the decimal point. When truncating, all digits after the
first two are discarded, so 1.229 becomes 1.22, not 1.23. Repeat
Programming Project 3 in Chapter 4 using this new class.

Notes:

This project may require a little trial and error to get the code right to truncate past the
two digits of the cents and not lose the cents completely. Casting a double to an
int will truncate, but it has to be done after the dollars.cents is multiplied by 100,
and an explicit cast is required by the java compiler (unlike C or C++):

int allCents = amount * 100;
gives a compiler error since amount is type double.

int allCents = (int)amount * 100;
loses the cents part of amount because the cast operates on amount before
multiplying by 100.

Putting parentheses around the multiplication, however, makes it do the
multiplication first:

int allCents = (int)(amount * 100);
so it does not lose the cents digits.

The only other “tricky” part is using the write() method in
TruncatedDollars along with System.out.println() and
System.out.print() to display money values interspersed with text in
sentences.

References:

Listing 6.14, Project 4.3

Solution:

See the code in TruncatedDollarFormat.java and TruncatedBankAccount.java.

3. Complete and fully test the class Time that Exercise 2 describes. Add two
more constructors that are analogous to the setTime methods described in
Parts c and d of Exercise 2. Also include the following methods:
• getTime24 returns a string that gives the time in 24-hour notation hhmm.
For example, if the hour value is 7 and the minute value is 25, return "0725".
If the hour value is 0 and the minute value is 5, return "0005". If the hour
value is 15 and the minute value is 30, return "1530".
• getTime12 returns a string that gives the time in 12-hour notation h:mm xx.
For example, if the hour value is 7 and the minute value is 25, return "7:25
am". If the hour value is 0 and the minute value is 5, return "12:05 am". If
the hour value is 15 and the minute value is 30, return "3:30 pm".

Notes:

This project is a continuation of Exercise 2. The conversion from military time (24
hour format) to civilian time (12 hour format) is not difficult, but it is tricky. Having
the students construct a table with corresponding times for both formats may help.
The test cases for the class are in the main method.

References:

Exercise 6.2

Solution:

See the code in Time.java.

4. Complete and fully test the class Characteristic that Exercise 5 describes.
Include the following methods:
• getDescription—returns the description of this characteristic.
• getRating—returns the rating of this characteristic.
• getCompatability(Characteristic otherRating)—returns the compatibility
measure of two matching characteristics, or zero if the descriptions do not
match.
• getCompatibilityMeasure(Characteristic otherRating)—a private method
that returns a compatibility measure as a double value using the

formula measure1 r1  r2 
2

81
.when both ratings are nonzero; m is zero if

either rating is zero. (Recall from Exercise 5 that the constructor sets the
rating to zero, indicating that it has not yet been determined.)
• isMatch(Characteristic otherRating)—a private method that returns true if
the descriptions match.

Notes:

This project is a continuation of Exercise 5. It adds methods that allow one to
determine a numeric score for compatibility. Test cases are in the main method.

References:

Exercise 6.5

Solution:

See the code in Characteristic.java.

6. Complete and fully test the class Person that Exercise 10 describes.
Include the following additional methods:
• getName—returns the name of the person as a string.
• getAge—returns the age of the person.
• setName(first, last)—sets the name of the person, given a first and last
name as strings.

• setName(name)—sets the name of the person, given the entire name as one
string.
• setAge(age)—sets the age of the person.
• createToddler—a static method that returns a special instance of the class
to represent a toddler. The instance has the name “A toddler” and the age 2.
• createPreschooler—a static method that returns a special instance of the
class to represent a preschooler. The instance has the name “A preschooler”
and the age 5.
• createAdolescent—a static method that returns a special instance of the
class to represent an adolescent. The instance has the name “An adolescent”
and the age 9.
• createTeenager—a static method that returns a special instance of the class
to represent a teenager. The instance has the name “A teenager” and the age
15.

Notes:

This project demonstrates a class that uses static methods to create special instances of
the class. Test cases are in the main method

References:

Exercise 6.10

Solution:

See the code in Person.java.

7. Write a Temperature class that represents temperatures in degrees in both
Celsius and Fahrenheit. Use a floating-point number for the temperature and
a character for the scale: either 'C' for Celsius or 'F' for Fahrenheit. The class
should have
• Four constructors: one for the number of degrees, one for the scale, one for
both the degrees and the scale, and a default constructor. For each of these
constructors, assume zero degrees if no value is specified and Celsius if no
scale is given.
• Two accessor methods: one to return the temperature in degrees Celsius,
the other to return it in degrees Fahrenheit. Use the formulas from
Programming Project 5 of Chapter 3 and round to the nearest tenth of a
degree.
• Three set methods: one to set the number of degrees, one to set the scale,
and one to set both.
• Three comparison methods: one to test whether two temperatures are
equal, one to test whether one temperature is greater than another, and one to
test whether one temperature is less than another.

Write a driver program that tests all the methods. Be sure to invoke each of
the constructors, to include at least one true and one false case for each
comparison method, and to test at least the following three temperature pairs
for equality: 0.0 degrees C and 32.0 degrees F, −40.0 degrees C and −40.0
degrees F, and 100.0 degrees C and 212.0 degrees F.

Notes:

This project’s requirements include two accessor methods to read the temperature, one
in degrees F and the other in degrees C. From this description it is not clear if the
“two accessor methods to read the temperature…” should display or return the
temperature in the specified units. Also, note the confusing terminology: methods that
display values are actually “write” methods. The solution in this manual includes
both types of accessor, two write methods to display (“read”) the temperature and
units, and two get methods that return just the temperature in either degrees C or
degrees F. An added feature of the solution is that it displays or returns temperatures
rounded to one decimal place. The expression
Math.round(degrees*10)/10.0 is used, where the divisor is 10.0 (rather than
10) to force the division results to be floating point instead of an integer and not lose
the decimal place. Also, as described in the prologue, units is not guaranteed to be a
legitimate value (c, C, f, or F). The read methods give an error message if it is not a
legitimate value, but the set methods allow any character and the get methods default
to a return value of the variable degrees (no conversion is performed) if units is
anything other than one of the legitimate values.

Getting the equals method to work properly highlights the problem of comparing
two floating point values. One consequence of using a fixed number of bits to
encode floating point values is that they cannot always be encoded precisely. Two
mathematical expressions that have the same result when done by hand may
actually have slightly different values (in the last decimal place or so) when stored
in memory. For example the calculation

double a = 51.8 /1 0;
is likely to give a slightly different value than

double a = 0.518 * 10;
because each number is stored as an approximate value. Because of this comparisons
of floating point values in conditional expressions do not always return the expected
results. A way to get around it is to decide how many decimal place accuracy we
want to compare, multiply the floating point numbers by the appropriate power of 10,
then round the results to get integers. This is the approach taken in the comparison
methods, equals, isGreaterThan, and isLessThan: First the methods make
sure both temperatures are in the same units (degrees C, but degrees F would be
equally valid) using the getC() method. Since getC() returns a value with one
decimal place, the temperatures are then multiplied by 10 and rounded using
Math.round(), which returns an integer value (you can think of it as comparing an
integer number of tenths of degrees)
References:

Practice Program 3.5

Solution:

See the code in Temperature.java and TemperatureTest.java.

8. Repeat Programming Project 7 of the previous chapter, but include
constructors.

Notes:

This project extends the ConcertPromoter class from the previous chapter to use
constructors. Instructors may want to point out that often defining a good constructor
is preferable to having an initialize method as the previous version did.

References:

Project 5.7

Solution:

See the code in ConcertPromoter.java.

9. Write and fully test a class that represents rational numbers. A rational
number can be represented as the ratio of two integer values, a and b, where
b is not zero. The class has attributes for the numerator and denominator of
this ratio. The ratio should always be stored in its simplest form. That is, any
common factor of a and b should be removed. For example, the rational
number 40/12 should be stored as 10/3.
The class has the following constructors and methods:
• A default constructor that sets the rational number to 0/1.
• A constructor that has parameters for the numerator and denominator, and
converts the resulting ratio to simplified form.
• simplify—a private method that converts the rational number to simplified
form.
• getGCD(x, y)—a private static method that returns the largest common
factor of the two positive integers x and y, that is, their greatest common
divisor. For example, the greatest common divisor of 40 and 12 is 4.
• value—returns the rational number as a double value.
• toString—returns the rational number as a string in the form a/b.

Notes:

This project demonstrates a class that uses a couple private methods to accomplish
some small tasks.

Solution:

See the code in Rational.java.

10. Write a program that will record the votes for one of two candidates by
using the class VoteRecorder, which you will design and create.
VoteRecorder will have static variables to keep track of the total votes for
candidates and instance variables to keep track of the votes made by a single
person. It will have the following attributes:
•

nameCandidatePresident1—a static string that holds the name of the first
candidate for president
• nameCandidatePresident2—a static string that holds the name of the
second candidate for president
• nameCandidateVicePresident1—a static string that holds the name of the
first candidate for vice president
• nameCandidateVicePresident2—a static string that holds the name of the
second candidate for vice president
• votesCandidatePresident1—a static integer that holds the number of
votes for the first candidate for president

• votesCandidatePresident2—a static integer that holds the number of
votes for the second candidate for president
• votesCandidateVicePresident1—a static integer that holds the number
of votes for the first candidate for vice president
• votesCandidateVicePresident2—a static integer that holds the number
of votes for the second candidate for vice president
• myVoteForPresident—an integer that holds the vote of a single individual
for president (0 for no choice, 1 for the first candidate, and 2 for the second
candidate)
• myVoteForVicePresident—an integer that holds the vote of a single
individual for vice president (0 for no choice, 1 for the first candidate, and 2
for the second candidate)
In addition to appropriate constructors, VoteRecorder has the following
methods:
•

setCandidatesPresident(String name1, String name2)—a static
method that sets the names of the two candidates for president
• setCandidatesVicePresident(String name1, String name2)—a
static method that sets the names of the two candidates for vice president
• resetVotes—a static method that resets the vote counts to zero
• getCurrentVotePresident—a static method that returns a string with the
current total number of votes for both presidential candidates
• getCurrentVoteVicePresident—a static method that returns a string
with the current total number of votes for both vice presidential candidates
• getAndConfirmVotes—a nonstatic method that gets an individual’s votes,
confirms them, and then records them.

• getAVote(String name1, String name2)—a private method that returns
a vote choice for a single race from an individual (0 for no choice, 1 for the
first candidate, and 2 for the second candidate)
• getVotes—a private method that returns a vote choice for president and
vice president from an individual

• confirmVotes—a private method that displays a person’s vote for president
and vice president, asks whether the voter is happy with these choices, and
returns true or false according to a yes or no response
• recordVotes—a private method that will add an individual’s votes to the
appropriate static variables

Create a program that will conduct an election. The candidates for president
are Annie and Bob. The candidates for vice president are John and Susan.
Use a loop to record the votes of many voters. Create a new VoteRecorder
object for each voter. After all the voters are done, present the results.

Notes:

This project demonstrates how static variables/methods can be used to record
common information for a class of objects. In this case, we can have many instances
of the vote recorder class getting votes and keep a cumulative total in static variables.
While the description looks complicated, many of the methods are similar in nature.

Solution:

See the code in VoteRecorder.java.

11. Repeat Programming Project 10 of the previous chapter, but include
constructors.

Notes:

This project involves adding constructors to the Movie class.

References:

Listing 5.10

Solution:

See the code in Movie.java.

12. Create a JavaFX application with two buttons and two labels. Add an
Image Icon of your choice to the first button and the first label.

Notes:

This project uses a VBox layout and the same image used in the text chapter. A
different image could be used for either the button or the label.

Solution:

See the code in ButtonLabels.java

Exercises:

1. Write a program in a class NumberAboveAverage that counts the number
of days that the temperature is above average. Read ten temperatures from
the keyboard and place them in an array. Compute the average temperature
and then count and display the number of days on which the temperature
was above average.

Solution:

See the code in NumberAboveAverage.java.

2. Write a program in a class CountFamiles that counts the number of
families whose income is below a certain value. Read an integer k from the
keyboard and then create an array of double values of size k. Read k values
representing family income from the keyboard and place them into the array.
Find the maximum income among these values. Then count the families that
make less than 10 percent of this maximum income. Display this count and
the incomes of these families.

Solution:

See the code in CountFamilies.java.

3. Write a program in a class CountPoor that counts the number of families
that are considered poor. Write and use a class Family that has the attributes
• income—a double value that is the income for the family
• size—the number of people in the family and the following methods:
• Family(income, size)—a constructor that sets the attributes
• isPoor(housingCost, foodCost)—a method that returns true if housingCost
+ foodCost * size is greater than half the family income (foodCost is the
average food cost for an individual, while housingCost is for the family)
• toString—a method that returns a string containing the information about
the family The program should read an integer k from the keyboard and then
create an array of size k whose base type is Family. It should then create k
objects of type Family and put them in the array, reading the income and
size for each family from the keyboard. After reading an average housing
cost and average food cost from the keyboard, it should display the families
that are poor.

Solution:

See the code in Family.java and CountPoor.java.

4. Write a program in a class FlowerCounter that computes the cost of
flowers sold at a flower stand. Five kinds of flowers—petunia, pansy, rose,
violet, and carnation— are stocked and cost, respectively, 50¢, 75¢, $1.50,
50¢, and 80¢ per flower. Create an array of strings that holds the names of
these flowers. Create another array that holds the cost of each corresponding
flower. Your program should read the name of a flower and the quantity
desired by a customer. Locate the flower in the name array and use that
index to find the cost per stem in the cost array. Compute and print the total
cost of the sale.

Solution:

See the code in FlowerCounter.java.

5. Write a program in a class CharacterFrequency that counts the number of
times a digit appears in a telephone number. Your program should create an
array of size 10 that will hold the count for each digit from 0 to 9. Read a
telephone number from the keyboard as a string. Examine each character in
the phone number and increment the appropriate count in the array. Display
the contents of the array.

Solution:

See the code in CharacterFrequency.java.

6. Create a class Ledger that will record the sales for a store. It will have the
attributes
• sale—an array of double values that are the amounts of all sales
• salesMade—the number of sales so far
• maxSales—the maximum number of sales that can be recorded
and the following methods:
• Ledger(max)—a constructor that sets the maximum number of sales to
max
• addSale(d)—adds a sale whose value is d
• getNumberOfSales—returns the number of sales made
• getTotalSales—returns the total value of the sales

Solution:

See the code in Ledger.java.

7. Define the following methods for the class Ledger, as described in the
previous exercise:
• getAverageSale()—returns the average value of all the sales
• getCountAbove(v)—returns the number of sales that exceeded v in value

Solution:

See the code in Ledger.java.

8. Write a static method isStrictlyIncreasing(double[] in) that returns
true if each value in the given array is greater than the value before it, or
false otherwise.

Solution:

public static boolean isStrictlyIncreasing(double[] in) {

boolean result = true;

for(int i=0; i< (in.length - 1); i++){

if(in[i+1] <= in[i])

result = false;

 }

 return result;

}

9. Write a static method removeDuplicates(Character[] in) that returns a
new array of the characters in the given array, but without any duplicate
characters. Always keep the first copy of the character and remove
subsequent ones. For example, if in contains b, d, a, b, f, a, g, a, a, and f, the
method will return an array containing b, d a, f, and g. Hint: One way to
solve this problem is to create a boolean array of the same size as the given
array in and use it to keep track of which characters to keep. The values in
the new boolean array will determine the size of the array to return.

Solution:

See the code in Fragments.java.

10. Write a static method remove(int v, int[] in) that will return a new array
of the integers in the given array, but with the value v removed. For
example, if v is 3 and in contains 0, 1, 3, 2, 3, 0, 3, and 1, the method will
return an array containing 0, 1, 2, 0, and 1.

Solution:

See the code in Fragments.java.

11. Suppose that we are selling boxes of candy for a fund-raiser. We have
five kinds of candy to sell: Mints, Chocolates with Nuts, Chewy Chocolates,
Dark Chocolate Creams, and Sugar Free Suckers. We will record a
customer’s order as an array of five integers, representing the number of
boxes of each kind of candy. Write a static method combineOrder that takes
two orders as its arguments and returns an array that represents the
combined orders. For example, if order1 contains 0, 0,
3, 4, and 7, and order2 contains 0, 4, 0, 1, and 2, the method should return an
array containing 0, 4, 3, 5, and 9.

Solution:

public static int[] combineOrder(int[] order1, int[] order2){

 // Find the number of values that will be in the result

 int[] combinedOrder = new int[5];

 for(int i=0; i<5; i++){

 combinedOrder[i] = order1[i] + order2[i];

 }

 return combinedOrder;

 }

12. Create a class Polynomial that is used to evaluate a polynomial function
of x: P x  a0  a1x a2x2   an1x

n1  anx
n The coefficients ai are floating-

point numbers, the exponents of x are integers, and the largest exponent n—
called the degree of the polynomial—is greater than or equal to zero. The
class has the attributes
• degree—the value of the largest exponent n
• coefficients—an array of the coefficients ai
and the following methods:
• Polynomial(max)—a constructor that creates a polynomial of degree max
whose coefficients are all zero
• setConstant(i, value)—sets the coefficient ai to value
• evaluate(x)—returns the value of the polynomial for the given value x

For example, the polynomial
P(x) = 3 + 5 x + 2 x3 is of degree 3 and has coefficients a0 = 3, a1 = 5, a2 =
0, and a3 = 2. The invocation
evaluate(7) computes 35 70 72 2 73  3 350686  724 and
returns the result 724.

Solution:

See the code in Polynomial.java.

15. Write a static method for selection sort that will sort an array of
characters.

Solution:

See the code in Fragments.java.

20. Write a static method findFigure(picture, threshold), where picture is
a two-dimensional array of double values. The method should return a new
twodimensional array whose elements are either 0.0 or 1.0. Each 1.0 in this
new array indicates that the corresponding value in picture exceeds threshold
times the average of all values in picture. Other elements in the new array
are 0.0.

For example, if the values in picture are the average value is 5.55. The
resulting array for a threshold of 1.4 would be and the resulting array for a
threshold of 0.6 would be

Solution:

See the code in TwoDArrayMethods.java.

21. Write a static method blur(double[][] picture) that you could use on a
part of a picture file to obscure a detail such as a person’s face or a license
plate number. This method computes the weighted averages of the values in
picture and returns them in a new two-dimensional array. To find a weighted
average of a group of numbers, you count some of them more than others.
Thus, you multiply each item by its weight, add these products together, and
divide the result by the sum of the weights.

For each element in picture, compute the weighted average of the element
and its immediate neighbors. Store the result in a new two-dimensional array
in the same position that the element occupies in picture. This new array is
the one the method returns. The neighbors of an element in picture can be
above, below, to the left of,
and to the right of it, either vertically, horizontally, or diagonally. So each
weighted average in the new array will be a combination of up to nine values
from the array picture. A corner value will use only four values: itself and
three neighbors. An edge value will use only six values: itself and five
neighbors. But an interior value will use nine values: itself and eight
neighbors. So you will need to treat the corners and edges separately from
the other cells.

Solution:

See the code in TwoDArrayMethods.java.

Practice Programs:

1. Write a program that reads integers, one per line, and displays their sum.
Also, display all the numbers read, each with an annotation giving its
percentage contribution to the sum. Use a method that takes the entire array
as one argument and returns the sum of the numbers in the array. Hint: Ask
the user for the number of integers to be entered, create an array of that
length, and then fill the array with the integers read. A possible dialogue
between the program and the user follows:

How many numbers will you enter?
4
Enter 4 integers, one per line:
2
1
1
2
The sum is 6.
The numbers are:
2, which is 33.3333% of the sum.
1, which is 16.6666% of the sum.
1, which is 16.6666% of the sum.
2, which is 33.3333% of the sum.

Notes:

This project is very much like ArrayOfTemperatures, Listing 7.1. Just add code
to prompt for and read in the length of the array, and, instead of finding the average,
divide each element by the sum to obtain its percent.

References:

Listing 7.1

Solution:

See the code in PercentOfSum.java.

Programming Projects:

1. Write a program that will read a line of text that ends with a period, which
serves as a sentinel value. Display all the letters that occur in the text, one
per line and in alphabetical order, along with the number of times each letter
occurs in the text. Use an array of base type int of length 26, so that the
element at index 0 contains the number of a’s, the element at index 1
contains the number of b’s, and so forth. Allow both uppercase and
lowercase letters as input, but treat uppercase and lowercase versions of the
same letter as being equal. Hints: Use one of the methods toUpperCase or
toLowerCase in the wrapper class Character, described in Chapter 6. You
will find it helpful to define a method that takes a character as an argument
and returns an int value that is the correct index for that character. For
example, the argument 'a' results in 0 as the return value, the argument 'b'
gives 1 as the return value, and so on. Note that you can use a type cast, such
as (int)letter, to change a char to an int. Of course, this will not get the
number you want, but if you subtract (int)'a', you will then get the right
index. Allow the user to repeat this task until the user says she or he is
through.

Notes:

This project is a bit challenging to get the loop conditions right. The objective is to
keep the array index within bounds and count only letters. Another little problem is
how to get the printable character code from the array index after the letter counts
have been determined. The "trick" is to know that adding 65 decimal to the array
index will produce the ASCII code for the character.

Solution:

See the code in CountLettersInLine.java.

2. A palindrome is a word or phrase that reads the same forward and
backward, ignoring blanks and considering uppercase and lowercase
versions of the same letter to be equal. For example, the following are
palindromes:
• warts n straw

• radar
• Able was I ere I saw Elba
• xyzczyx
Write a program that will accept a sequence of characters terminated by a
period and will decide whether the string—without the period—is a
palindrome. You may assume that the input contains only letters and blanks
and is at most 80 characters long. Include a loop that allows the user to
check additional strings until she or he requests that the program end. Hint:
Define a static method called isPalindrome that begins as follows:
/**
Precondition: The array a contains letters and
blanks in positions a[0] through a[used − 1].
Returns true if the string is a palindrome and
false otherwise.
*/
public static boolean isPalindrome(char[] a, int used)

Your program should read the input characters into an array whose base type
is char and then call the preceding method. The int variable used keeps track
of how much of the array is used, as described in the section entitled
“Partially Filled Arrays.”

Notes:

The solution to this project reads in a line of text using the String class, then passes
the string to the palindrome method which performs the test, returning true if the
phrase is a palindrome, or false if not. A note in the source code's prologue calls
attention to its behavior in the degenerate case where the phrase has no letters (either
all blanks or a null String). Given the requirements in the problem statement that
the palindrome method is passed the original line of text and returns a Boolean
value, it cannot return an indication that the file was empty. As the note in the
prologue states, it returns true in these situations. The palindrome method uses a
character array to parse the array, getting rid of white spaces and saving only the
letters (actually, it saves anything other than white space characters). Then it
analyzes the letters to see if it a palindrome. The parsing technique can be borrowed
from Project 2, so the interesting part of this problem is figuring out the algorithm to

get the correct characters to compare. The algorithm is described in comments in the
palindrome code. An easy way to make the palindrome test insensitive to case (it
should ignore whether the characters are upper or lower case) is to make all the
characters the same case, either upper or lower. The solution shown here uses the
toUpperCase method in the Character wrapper class, but it would be equally
correct to use toLowerCase.

Solution:

See the code in Palindrome.java.

3. Add a method bubbleSort to the class ArraySorter, as given in Listing
7.10, that performs a bubble sort of an array. The bubble sort algorithm
examines all adjacent pairs of elements in the array from the beginning to
the end and interchanges any two elements that are out of order. Each
interchange makes the array more sorted than it was, until it is entirely
sorted. The algorithm in pseudocode follows:
Bubble sort algorithm to sort an array a
Repeat the following until the array a is sorted:
for (index = 0; index < a.length − 1; index++)

if (a[index] > a[index + 1])
Interchange the values of a[index] and a[index + 1].

The bubble sort algorithm usually requires more time than other sorting
methods.

Notes:

This project requires an extension of the bubble sort algorithm outlined in the problem
description because it gives pseudo-code for just one pass through the array, which
puts only the highest remaining number in its correct slot. Additional passes
(repetitions of the algorithm) are necessary until the array is completely sorted.
Playing around with some simple examples can reveal how bubble sort works and the
criteria for ending the loop and is a good exercise for students. Best case is when the
array is already sorted (nothing needs to be swapped), worst case is when it is exactly
backwards (everything needs to be swapped), and other orderings are somewhere in
between. An efficient algorithm will detect when the loop is sorted and stop
processing it. A flag can be used to detect the situation where the array is already
sorted; set the flag to true before executing the swap loop and change it to false if a
swap occurs - whenever the array is processed without doing a swap it is obviously
sorted. At the other extreme, the worst case ordering shows that there is an upper
limit to the number of iterations after which the array is guaranteed sorted. Notice
that, for a loop with n elements, only n-1 comparisons of adjacent elements are
required to move the largest element into its proper place. The next iteration should
process the remaining n-1 elements (after the nth element which is correctly
positioned), so it will process n-2 elements and result in the last two elements being
properly placed, etc. Following this scenario leads to the conclusion that n-1 passes
for an n-element array guarantees the array has been sorted, and each iteration needs
to process one less element (the last element in the previous iteration). Combining
these two criteria gives an efficient algorithm for sorting an array of n elements:
repeat the swap loop until the swap flag stays true for the iteration, up to a maximum
of n-1 times. Following the approach in the text, an additional class,
BubbleSortDemo, is used to demonstrate the bubble sort method with a sample
array.

References:

Listing 7.10, 7.11

Solution:

See the code in BubbleSort.java and BubbleSortDemo.java.

4. Add a method insertionSort to the class ArraySorter, as given in Listing
7.10, that performs an insertion sort of an array. To simplify this project,
our insertion sort algorithm will use an additional array. It copies elements
from the original given array to this other array, inserting each element into
its correct position in the second array. This will usually require moving a
number of elements in the array receiving the new elements. The algorithm
in pseudocode is as follows:
Insertion sort algorithm to sort an array a
for (index = 0; index < a.length; index++)

Insert the value of a[index] into its correct position in the array temp,
so that all the elements copied into the array temp so far are sorted.
Copy all the elements from temp back to a.

The array temp is partially filled and is a local variable in the method sort.

Notes:

1. This project also requires an extension of the algorithm in the problem statement.

In these descriptions the word "up" is used to mean a higher subscript in the array.
(It could just as easily be called "down;" the important thing is to use the
directions consistently in all descriptions.) The sorted array, temp, is created one
element at a time, then, when all elements have been inserted correctly, temp
needs to be copied back into the original array:

For each element in the original array:

{
Get next value.
Find its insertion point:
{

Compare next value to each element of temp, in order, starting at the lowest.
The insertion point is found either when next value > element in temp,
or the end of temp is reached.

}
Starting at the end of temp and working backward through the insertion point,

move the elements in temp up one place. (You need to start at the top and
work backward to avoid overwriting data in temp, and the value at the
insertion point needs to be moved so next value can be inserted.)

Insert next value into temp at the insertion point.
}

Copy temp array into original array: the original array is now sorted.

Following the approach in the text, an additional class, InsertionSortDemo, is
used to demonstrate the bubble sort method with a sample array.

References:

Listing 7.10, 7.11

Solution:

See the code in InsertionSort.java and InsertionSortDemo.java.

5. The class TimeBook in Listing 7.14 is not really finished. Complete the
definition of this class in the way described in the text. In particular, be sure
to add a default constructor, as well as set and get methods that change or
retrieve each of the instance variables and each indexed variable of each
array instance variable. Be sure you replace the stub setHours with a method
that obtains values from the keyboard.

You should also define a private method having two int parameters that
displays the first parameter in the number of spaces given by a second
parameter. The extra spaces not filled by the first parameter are to be filled
with blanks. This will let you write each array element in exactly four
spaces, for example, and so will allow you to display a neat rectangular
arrangement of array elements. Be sure that the main method in Listing 7.14
works correctly with these new methods. Also, write a separate test program
to test all the new methods. Hint: To display an int value n in a fixed number
of spaces, use Integer.toString(n) to convert the number to a string value,
and then work with the string value. This method is discussed in Chapter 6
in the section “Wrapper Classes.”

Notes:

The solution to this project is based on TimeBook.java, Listing 7.14. A good
approach to this problem is to add one feature at a time to NewTimeBook, then add
the code to test the feature in NewTimeBookDemo.java. The default constructor
was written to have just one employee. The features were added in the order that the
tests appear in NewTimeBookDemo.java, with the method to align the numbers in
the table done last.

References:

Listing 7.14

Solution:

See the code in NewTimeBook.java and NewTimeBookDemo.java.

6. Define a class called TicTacToe. An object of type TicTacToe is a single
game of tic-tac-toe. Store the game board as a single two-dimensional array
of base type char that has three rows and three columns. Include methods to
add a move, to display the board, to tell whose turn it is (X or O), to tell
whether there is a winner, to say who the winner is, and to reinitialize the
game to the beginning. Write a main method for the class that will allow two
players to enter their moves in turn at the same keyboard.

Notes:

This project is one of the most sophisticated problems in the text and is complex
enough that a good, disciplined step-wise approach is particularly useful. The
challenge is to break up the actions into manageable pieces and write methods for
them. The goal is to create methods that are easy to use, logically written, and make
main easy to write and read. It is helpful to write main as a sequence of method calls
to do things (like clear the board for a new game, draw the board, enter an X or O on
the board, check for a winner, etc.) without actually writing complete code for the
methods. Instead, just write stubs with just a line that prints out its method name and,
if it has a return type other than void, returns a fixed value. Then proceed to add
functionality one method at a time. A good approach is to write the code to display
the board first, then the code to clear it to start a new game, then the code to get an
entry and insert it into the board, etc. The test for a winning move can be the last part
implemented – it is easier work on that algorithm and code if everything is working.

Solution:

See the code in TicTacToe.java.

7. Repeat Programming Project 10 from Chapter 5 but use an array to store
the movie ratings instead of separate variables. All changes should be
internal to the class so the main method to test the class should run
identically with either the old Movie class or the new Movie class using
arrays.

Notes:

This project involves re-doing the Movie rating class with arrays instead of hard-
coding five separate rating values. An even better version would be to re-do the
Programing Project from chapter 6, which is the same Movie class but adds
constructors.

References:

Programming Project 5.10 (optionally, Programming Project 6.7)
Solution:

See the code in MovieArrays.java.

8. Traditional password entry schemes are susceptible to “shoulder surfing”
in which an attacker watches an unsuspecting user enter their password or
PIN number and uses it later to gain access to the account. One way to
combat this problem is with a randomized challenge-response system. In
these systems the user enters different information every time based on a
secret in response to a randomly generated challenge. Consider the
following scheme in which the password consists of a five-digit PIN number
(00000 to 99999). Each digit is assigned a random number that is 1, 2, or 3.
The user enters the random numbers that correspond to their PIN instead of
their actual PIN numbers.

For example, consider an actual PIN number of 12345. To authenticate the
user would be presented with a screen such as:
PIN: 0 1 2 3 4 5 6 7 8 9

NUM: 3 2 3 1 1 3 2 2 1 3

The user would enter 23113 instead of 12345. This doesn’t divulge the
password even if an attacker intercepts the entry because 23113 could
correspond to other PIN numbers, such as 69440 or 70439. The next time
the user logs in, a different sequence of random numbers would be
generated, such as:
PIN: 0 1 2 3 4 5 6 7 8 9

NUM: 1 1 2 3 1 2 2 3 3 3

Write a program to simulate the authentication process. Store an actual PIN
number in your program. The program should use an array to assign random
numbers to the digits from 0 to 9. Output the random digits to the screen,
input the response from the user, and output whether or not the user’s
response correctly matches the PIN number.

Notes:

This solution inputs the PIN as a string and extracts the digits using the
Unicode/ASCII representation, but a student could also input the number as an integer
and extract the digits using division and modulus.

The actual PIN in the solution is 99508.

This project is somewhat difficult as it requires an understanding of arrays storing
numbers that are used as an index in another array.

Solution:

See the code in Authenticate.java.

9. Write a JavaFX application that displays a picture of a pine tree formed by
drawing a triangle on top of a small rectangle that makes up the visible
trunk. The tree should be green and have a gray trunk.

Notes:

This project is a short application program that draws a pine tree. It uses four arrays
of int values. One array holds the x-coordinates of the branches, the second holds the
y-coordinates of the branches, and the last two hold the x- and y-coordinates of the
trunk.

Solution:

See the code in PineTree.java

10. ELIZA was a program written in 1966 that parodied a psychotherapist
session. The user typed sentences and the program used those words to
compose a question. Create a simple applet based on this idea. The applet
will use a label to hold the program’s question, a text field into which the
user can type an answer, a button for the user to signal that the answer is
complete, and a quit button. The initial text for the question label should
read: “What would you like to talk about?” When the user presses a button,
get the text from the text field. Now extract the words from the text one at a
time and find the largest word of length 4 or more. Let’s call this largest
word X for now. In response, create a question based on the length of the
word. If the word is length 4, the new question is: “Tell me more about X.”
If the word is length 5, the new question is: “Why do you think X is
important?” If the word is length 6 or more, the new question is: “Now we
are getting somewhere. How does X affect you the most?” If there is no
word of length 4, the new question is: “Maybe we should move on. Is there
something else you would like to talk about?” Hint: You can use the class
Scanner to extract the words from a string, assuming blanks separate the
words. For example, the following statements
String text = “ one potato two potato “;
Scanner parser = new Scanner(text);
System.out.println(parser.next());
System.out.println(parser.next());
display one and potato on separate lines.

Notes:

This programming project should be moved to Chapter 8 since event handling is
not discussed at this point in the text, so processing button clicks hasn’t been
covered.

This project looks at a tiny piece of computing history and can be used to introduce
questions of artificial intelligence. The actual implementation of our application is
pretty simple. Extending this applet to do a more complicated parsing of the input
would be interesting. It would probably be a good idea as the action becomes more
complicated move the parsing code out of setOnAction into its own dedicated
method or methods.

Solution:

See the code in Eliza.java.

11. Sudoku is a popular logic puzzle that uses a 9 by 9 array of squares that
are organized into 3 by 3 subarrays. The puzzle solver must fill in the
squares with the digits 1 to 9 such that no digit is repeated in any row, any
column, or any of the nine 3 by 3 subgroups of squares. Initially, some
squares are filled in already and cannot be changed. For example, the
following might be a starting configuration for a sudoku puzzle:

Create a class SudokuPuzzle that has the attributes
• board—a 9 by 9 array of integers that represents the current state of the
puzzle, where zero indicates a blank square
• start—a 9 by 9 array of boolean values that indicates which squares in
board are given values that cannot be changed and the following methods:
• SudokuPuzzle—a constructor that creates an empty puzzle
• toString—returns a string representation of the puzzle that can be printed
• addInitial(row, col, value)—sets the given square to the given value as an
initial value that cannot be changed by the puzzle solver
• addGuess(row, col, value)—sets the given square to the given value; the
value can be changed later by another call to addGuess
• checkPuzzle—returns true if the values in the puzzle do not violate the
restrictions
• getValueIn(row, col)—returns the value in the given square
• getAllowedValues(row, col)—returns a one-dimensional array of nine
booleans, each of which corresponds to a digit and is true if the digit can be
placed in the given square without violating the restrictions
• isFull—returns true if every square has a value
• reset—changes all of the nonpermanent squares back to blanks (zeros)

Write a main method in the class Sudoku that creates a SudokuPuzzle object
and sets its initial configuration. Then use a loop to allow someone to play
sudoku. Display the current configuration and ask for a row, column, and
value. Update the game board and display it again. If the configuration does
not satisfy the restrictions, let the user know. Indicate when the puzzle has
been solved correctly. In that case, both checkPuzzle and isFull would return
true. You should also allow options for resetting the puzzle and displaying
the values that can be placed in a given square.

Notes:

This project creates a class that could be used to implement Sudoku. It uses three
different patterns for accessing values in a two dimensional array. The hardest part of
this class is getting the logic for check rows, columns and subsquares correct. It is
strongly recommended that the checking logic be implemented in separate methods
that are checked one at a time. A text based interface that allows you to play a game
of Sudoku is implemented in the main method.

Solution:

See the code in SudokuPuzzle.java.

12. Create a JavaFX application that draws the following picture of a magic
wand, using polygons and polylines:

Notes:

This project implements a simple application that draws a picture of a magic wand. It
is designed to demonstrate the use of strokePolygon with arrays. The solution also
use strokePolyline to outline the figures in black. Creating and testing it iteratively is
strongly recommended.

Solution:

See the code in MagicWand.java.

Exercises:

1. Consider a program that will keep track of the items in a school’s library.
Draw a class hierarchy, including a base class, for the different kinds of
items. Be sure to also consider items that cannot be checked out.

Solution:

2. Implement your base class for the hierarchy from the previous exercise.

Solution:

See the code in LibraryItem.java.

3. Draw a hierarchy for the components you might find in a graphical user
interface. Note that some components can trigger actions. Some components
may have graphics associated with them. Some components can hold other
components.

Solution:

Here is part of a such a hierarchy. There are many other types of components.

4. Suppose we want to implement a drawing program that creates various
shapes using keyboard characters. Implement an abstract base class
DrawableShape that knows the center (two integer values) and the color (a
string) of the object. Give appropriate accessor methods for the attributes.
You should also have a mutator method that moves the object by a given
amount.

Solution:

See the code in DrawableShape.java.

5. Create a class Square derived from DrawableShape, as described in the
previous exercise. A Square object should know the length of its sides. The
class should have an accessor method and a mutator method for this length.
It should also have methods for computing the area and perimeter of the
square. Although characters are taller than they are wide—so the number of
characters in the vertical sides will differ from the number in the horizontal
sides—you need not worry about this detail when drawing the square.

Solution:

See the code in Square.java.

6. Create a class SchoolKid that is the base class for children at a school. It
should have attributes for the child’s name and age, the name of the child’s
teacher, and a greeting. It should have appropriate accessor and mutator
methods for each of the attributes.

Solution:

See the code in SchoolKid.java.

7. Derive a class ExaggeratingKid from SchoolKid, as described in the
previous exercise. The new class should override the accessor method for
the age, reporting the actual age plus 2. It also should override the accessor
for the greeting, returning the child’s greeting concatenated with the words
“I am the best.”

Solution:

See the code in ExaggeratingKid.java.

8. Create an abstract class PayCalculator that has an attribute payRate given
in dollars per hour. The class should also have a method computePay(hours)
that returns the pay for a given amount of time.

Solution:

See the code in PayCalculator.java.

9. Derive a class RegularPay from PayCalculator, as described in the
previous exercise. It should have a constructor that has a parameter for the
pay rate. It should not override any of the methods. Then derive a class
HazardPay from PayCalculator that overrides the computePay method. The
new method should return the amount returned by the base class method
multiplied by 1.5.

Solution:

See the code in RegularPay.java.
See the code in HazardPay.java.

10. Create an abstract class DiscountPolicy. It should have a single abstract
method computeDiscount that will return the discount for the purchase of a
given number of a single item. The method has two parameters, count and
itemCost.

Solution:

See the code in DiscountPolicy.java.

11. Derive a class BulkDiscount from DiscountPolicy, as described in the
previous exercise. It should have a constructor that has two parameters,
minimum and percent. It should define the method computeDiscount so that
if the quantity purchased of an item is more than minimum, the discount is
percent percent.

Solution:

See the code in BulkDiscount.java.

12. Derive a class BuyNItemsGetOneFree from DiscountPolicy, as
described in Exercise 10. The class should have a constructor that has a
single parameter n. In addition, the class should define the method
computeDiscount so that every nth item is free. For example, the following
table gives the discount for the purchase of various counts of an item that
costs $10, when n is 3:

Solution:

See the code in BuyNItemsGetOneFree.java.

13. Derive a class CombinedDiscount from DiscountPolicy, as described in
Exercise 10. It should have a constructor that has two parameters of type
DiscountPolicy. It should define the method computeDiscount to return the
maximum value returned by computeDiscount for each of its two private
discount policies. The two discount policies are described in Exercises 11
and 12.

Solution:

See the code in CombinedDiscount.java.

14. Define DiscountPolicy as an interface instead of the abstract class
described in Exercise 10.

Solution:

See the code in DiscountPolicy.java.

15. Create an interface MessageEncoder that has a single abstract method
encode(plainText), where plainText is the message to be encoded. The
method will return the encoded message.

Solution:

See the code in MessageEncoder.java.

16. Create a class SubstitutionCipher that implements the interface
MessageEncoder, as described in the previous exercise. The constructor
should have one parameter called shift. Define the method encode so that
each letter is shifted by the value in shift. For example, if shift is 3, a will be
replaced by d, b will be replaced by e, c will be replaced by f, and so on.
Hint: You may wish to define a private method that shifts a single character.

Solution:

See the code in SubstitutionCipher.java.

17. Create a class ShuffleCipher that implements the interface
MessageEncoder, as described in Exercise 15. The constructor should have
one parameter called n. Define the method encode so that the message is
shuffled n times. To perform one shuffle, split the message in half and then
take characters from each half alternately. For example, if the message is
“abcdefghi”, the halves are “abcde” and “fghi”. The shuffled message is
“afbgchdie”. Hint: You may wish to define a private method that performs
one shuffle.

Solution:

See the code in ShuffleCipher.java.

Practice Programs:

1. Define a class named Employee whose objects are records for employees.
Derive this class from the class Person given in Listing 8.1. An employee
record inherits an employee’s name from the class Person. In addition, an
employee record contains an annual salary represented as a single value of
type double, a hire date that gives the year hired as a single value of type int,
and an identification number that is a value of type String. Give your class a
reasonable complement of constructors, accessor methods, and mutator
methods, as well as an equals method. Write a program to fully test your
class definition.

Notes:

This project should be pretty straightforward. The solution shown here has nine
constructors, including a default that specifies nothing. Since it did not seem
reasonable to have salary, hire date or social security numbers without a name, the
remaining constructors all require at least the name to be specified. Note the use of
methods from the base class, Person. For example, super.writeOutput()is
used to write just the name (and avoid using the local version in Employee that
writes out all the parameters).

References:

Listing 8.1

Solution:

See the code in Employee.java and EmployeeTest.java.

2. Define a class named Doctor whose objects are records for a clinic’s
doctors. Derive this class from the class Person given in Listing 8.1. A
Doctor record has the doctor’s name—defined in the class Person—a
specialty as a string (for example Pediatrician, Obstetrician, General
Practitioner, and so on), and an office visit fee (use the type double). Give
your class a reasonable complement of constructors and accessor methods,
and an equals method as well. Write a driver program to test all your
methods.

Notes:

This project is a simple variation of Practice Program 1. Note that two of the
Doctor constructors have the same two parameter types, String and double, but
in opposite order, so they are clearly distinct to the compiler.

References:

Practice Program 8.1

Solution:

See the code in Doctor.java and DoctorTest.java.

3. Create a base class called Vehicle that has the manufacturer’s name (type
String), number of cylinders in the engine (type int), and owner (type Person
given in Listing 8.1). Then create a class called Truck that is derived from
Vehicle and has additional properties: the load capacity in tons (type double,
since it may contain a fractional part) and towing capacity in tons (type
double).
Give your classes a reasonable complement of constructors and accessor
methods, and an equals method as well. Write a driver program (no pun
intended) that tests all your methods.

Notes:

This project requires most of the same type of thinking as previous problems to write
constructors, accessor and mutator methods except that one of Vehicle’s data
members is an instance of a class rather than a fundamental data type (owner is an
instance of the class Person). Operations involving the owner, therefore, must use
the methods of the Person class. NOTE: early editions of the text may have an error
in the definition of sameName()in Person. If the method definition is

return (this.name.equalsIgnoreCase(otherPerson.name));

it should be changed to
return

(this.name.equalsIgnoreCase(otherPerson.gettName()));

The sameName() method is called in the code for the equals method of
Vehicle to test if two vehicles have the same owner.

 A methodical approach that makes this problem manageable is to develop one
method in Vehicle, then write a test for the method in VehicleTest and run it.
Add the next method to Vehicle only when VehicleTest runs successfully. When
all the methods for Vehicle have been written and tested with VehicleTest,
then do a similar piece-wise development for Truck and TruckTest, first testing
all the methods inherited from Vehicle, then writing one new method at a time and
testing it before going on to the next.

References:

Listing 8.1

Solution:

See the code in Vehicle.java, VehicleTest.java, Truck,java, and TruckTest.java.

4. Create a new class called Dog that is derived from the Pet class given in
Listing 6.1 of Chapter 6. The new class has the additional attributes of breed
(type String) and boosterShot (type boolean), which is true if the pet has had
its booster shot and false if not. Give your classes a reasonable complement
of constructors and accessor methods. Write a driver program to test all your
methods, then write a program that reads in five pets of type Dog and
displays the name and breed of all dogs that are over two years old and have
not had their booster shots.

Notes:

This project would be easier to do with an array of type Dog, but how to write class
constructors for arrays has not been covered, so the code to process one dog has to be
repeated five times.

References:

Listing 6.1

Solution:

See the code in Dog.java, DogTest.java, and DogBoosterShotList,java.

Programming Projects:

2. Define two derived classes of the abstract class ShapeBase in Listing 8.19.
Your two classes will be called RightArrow and LeftArrow. These classes
will be like the classes Rectangle and Triangle, but they will draw arrows
that point right and left, respectively. For example, the following arrow
points to the right:

The size of the arrow is determined by two numbers, one for the length of
the “tail” and one for the width of the arrowhead. (The width is the length of
the vertical base.) The arrow shown here has a length of 12 and a width of 7.
The width of the arrowhead cannot be an even number, so your constructors
and mutator methods should check to make sure that it is always odd. Write
a test program for each class that tests all the methods in the class. You can
assume that the width of the base of the arrowhead is at least 3.

Notes:

The problem description requires that the base width be an odd number so the triangle
is symmetrical, but it does not say exactly how to ensure this. One option is to test the
user’s input and display an error message if it is even, then prompt for re-entry of an
odd number. Another approach is to adjust the width by adding or subtracting one if
it is even, making sure it does not go below 3 if subtraction is used. The approach
taken in the solution shown here is to add 1 if the user inputs an even number and,
since it is always a good idea to keep the user informed, a message tells the user that
the width was adjusted. Getting the display right on this one is tricky! It may take
some trial and error to get it worked out, so it is especially helpful to implement it one
step at at time, being patient and using System.out.println and
System.out.print to obtain the right output. Consider doing the
implementation in the following steps:

• tail of right arrow
• lines before the tail for a base width of at least 5
• lines after the tail for the same base width
• first line of left arrow for a base width of at least 5
• top lines of left arrow for the same base width
• line including the tail for the same base number
• bottom lines for the same base number

References:

Listing 8.19

Solution:
See the code in LeftArrow.java, LeftArrowTest.java, RightArrow.java, and
RightArrowTest.java.

3. Define two classes, Patient and Billing, whose objects are records for a
clinic. Derive Patient from the class Person given in Listing 8.1. A Patient
record has the patient’s name (defined in the class Person) and identification
number (use the type String). A Billing object will contain a Patient object
and a Doctor object (from Practice Program 2). Give your classes a
reasonable complement of constructors and accessor methods, and an equals
method as well. First write a driver program to test all your methods, then
write a test program that creates at least two patients, at least two doctors,
and at least two Billing records and then displays the total income from the
Billing records.

Notes:

This project sounds reasonable until an attempt is made to put Doctor and
Patient objects in the Billing class. A Billing object actually needs just the
doctor’s name, patient’s name, and doctor’s office fee. The approach taken in the
solution shown here is to require a Doctor and a Patient object in the constructor
for a Billing object, then use Doctor and Patient accessor methods to set the
parameter values for the Billing object.

References:

Listing 8.1, Practice Program 1, 2

Solution:

See the code in Patient.java, PatientTest.java, Billing,java, and BillingTest.java.

4. Create the classes RightTriangle and Rectangle, each of which is derived
from the abstract class ShapeBase in Listing 8.19. Then derive a class
Square
from the class Rectangle. Each of these three derived classes will have two
additional methods to calculate area and circumference, as well as the
inherited methods. Do not forget to override the method drawHere. Give
your classes a reasonable complement of constructors and accessor methods.
The Square class should include only one dimension, the side, and should
automatically set the height and width to the length of the side. You can use
dimensions in terms of the character width and line spacing even though
they are undoubtedly unequal, so a square will not look square (just as a
Rectangle object, as discussed in this chapter, won’t look square.) Write a
driver program that tests all your methods.

Notes:

This project is most easily written by modifying the programs in the text. Base
RightTriangle.java on Triangle.java (Listing 8.14),
Rectangle.java on Rectangle.java (Listing 8.13), and
MoreGraphicsDemo.java on TreeDemo.java (Listing 8.15).
Square.java is derived from Rectangle, so it is just a matter of using the
parent’s methods with both height and width set to the length of the side of the square.
Note that special attention is required to draw the correct figures when the base,
width, or height values are either 0 or 1.

References:

Listing 8.13, Listing 8.14, Listing 8.15

Solution:

See the code in RightTriangle.java, Rectangle.java, SquarePr7,java, and
MoreGraphicsDemo.java.

5. Create an interface MessageDecoder that has a single abstract method
decode(cipherText), where cipherText is the message to be decoded. The
method will return the decoded message. Modify the classes
SubstitutionCipher and ShuffleCipher, as described in Exercises 16 and 17,
so that they implement MessageDecoder as well as the interface
MessageEncoder that Exercise 15 describes. Finally, write a program that
allows a user to encode and decode messages entered on the keyboard.

Notes:

This project demonstrates creating multiple concrete classes that implement two
related interfaces. The most difficult part of this implementation is handling
characters in the substitution cipher.

References:

Exercise 8.16, Exercise 8.17

Solution:

See the code in MessageDecoder.java, ShuffleCipher.java, SubstitutionCipher.java,
and CodeProgram.java.

6. For this Programming Project, start with implementations of the Person,
Student, and Undergraduate classes as depicted in Figure 8.4 and the
polymorphism demo in Listing 8.6. Define the Employee, Faculty, and Staff
classes as depicted in Figure 8.2. The Employee class should have instance
variables to store the employee ID as an int and the employee’s department
as a String. The Faculty class should have an instance variable to store the
faculty member’s title (e.g. "Professor of Computer Science") as a String.
The Staff class should have an instance variable to store the staff member’s
pay grade (a number from 1 to 20) as an int. Every class should have
appropriate constructors, accessors, and mutators, along with a writeOutput
method that outputs all of the instance variable values.

Modify the program in Listing 8.6 to include at least one Faculty object and
at least one Staff object in addition to the Undergraduate and Student
objects. Without modification to the for loop, the report should output the

name, employee ID, department, and title for the Faculty objects, and the
name, employee ID, department, and pay grade for the Staff objects.

Notes:

The solution uses the class Employee2 to distinguish it from the Employee class from
Practice Program 1.

References:

Listing 8.6, Figure 8.2, Figure 8.4

Solution:

See the code in Employee2.java, Faculty.java, Staff.java, and
PolymorphismDemo.java.

7. Modify the Student class in Listing 8.2 so that it implements the
Comparable interface. Define the compareTo method to order Student
objects based on the value in studentNumber. In a main method create an
array of at least 5 Student objects, sort them using Arrays.sort, and output
the students. They should be listed by ascending student number. Next,
modify the compareTo method so it orders Student objects based on the
lexicographic ordering of the name variable. Without modification to the
main method, the program should now output the students ordered by name.

Notes:

This solution uses the class Student2 to distinguish it from the listing in the textbook.
The solution is similar to Listing 8.18 and Listing 8.19.

References:

Listing 8.2, Listing 8.18, Listing 8.19

Solution:

See the code in Student2.java, StudentDemo.java

8. Create a JavaFX application that uses a TextField to get a message and
encode or decode it using the classes described in the previous programming
project. Use four buttons to control the kind of cipher used and to specify
whether to encode or decode the message. Also, use a TextField to get the
number used in the constructor for the ciphers.

Notes:

In this project, we create an application that will encode and decode messages. It is
relatively straightforward using the classes from the previous project. To do this, we
will want variables of MessageEncoder and MessageDecoder interface types. When
the cipher button is pressed, create a new cipher instance of the appropriate type and
assign it to the variables.

References:

Project 8.7

Solution:

See the code in CoderGUI.java

10. Create an application in a JFrame GUI that will draw a spiral using line
segments. The equations for the points on a spiral are
You should draw 150 points. Start θ at 0 and increase it by 0.1 for each new
point. Let k be 15. Set the size of the window to 500 by 500.

Notes:

This project is a simple Swing application that will draw a spiral. It requires
familiarity with polar coordinates. To draw the spiral, override the paint method.

Solution:

See the code in Spiral.java.

Exercises:

1. Write a program that allows students to schedule appointments at either 1,
2, 3, 4, 5, or 6 o’clock p. m. Use an array of six strings to store the names for
the time slots. Write a loop that iterates as long as the array has a free space.
Within a try block, allow the user to enter a time and a name. If the time is
free, put the name in the array. If the time is not free, throw a
TimeInUseException. If the time is not valid, throw an
InvalidTimeException. Use a catch block for each different kind of
exception.

Solution:

See the code in TimeInUseException.java, InvalidTimeException.java, and
Scheduler.java.

2. Write a program that allows the user to compute the remainder after the
division of two integer values. The remainder of x / y is x % y. Catch any
exception thrown and allow the user to enter new values.

Solution:

See the code in ModProgram.java.

3. Write an exception class that is appropriate for indicating that a time
entered by a user is not valid. The time will be in the format hour:minute
followed by “am” or “pm.”

Solution:

See the code in InvalidTimeFormatException.java.

4. Derive exception classes from the class you wrote in the previous
exercise. Each new class should indicate a specific kind of error. For
example, InvalidHourException could be used to indicate that the value
entered for hour was not an integer in the range 1 to 12.

Solution:

See the code in InvalidHourException.java, InvalidMinuteException.java,
InvalueFormattingException.java.

5. Write a class TimeOfDay that uses the exception classes defined in the
previous exercise. Give it a method setTimeTo(timeString) that changes the
time if timeString corresponds to a valid time of day. If not, it should throw
an exception of the appropriate type.

Solution:

See the code in TimeOfDay.java.

6. Write code that reads a string from the keyboard and uses it to set the
variable myTime of type TimeOfDay from the previous exercise. Use try-
catch blocks to guarantee that myTime is set to a valid time.

Solution:

See the code in TimeProgram.java.

7. Create a class SongCard that represents a gift card for the purchase of
songs online.
It should have the following private attributes:
• songs—the number of songs on the card
• activated—true if the card has been activated
and the following methods:

• SongCard(n)—a constructor for a card with n songs.
• activate()—activates the gift card. Throws an exception if the card has
already been activated.
• buyASong()—records the purchase of one song by decreasing the number
of songs left for purchase using this card. Throws an exception if the gift
card is either completely used or not active.
• songsRemaining()—returns the number of songs that can be purchased
using the gift card.

Solution:

See the code in SongCard.java,
CardNotActivatedException.java,CardEmptyException.java.

8. Create a class Rational that represents a rational number. It should have
private attributes for
• The numerator (an integer)
• The denominator (an integer)
and the following methods:
• Rational(numerator, denominator)—a constructor for a rational number.
• Accessor methods getNumerator and getDenominator and mutator methods
setNumerator and setDenominator for the numerator and the denominator.
You should use an exception to guarantee that the denominator is never zero.

Solution:

See the code in Rational.java.

9. Revise the class Rational described in the previous exercise to use an
assertion instead of an exception to guarantee that the denominator is never
zero.

Solution:

See the code in RationalWithAssert.java.

10. Suppose that you are going to create an object used to count the number
of people in a room. We know that the number of people in the room can
never be negative.
Create a RoomCounter class having three public methods:
• addPerson—adds one person to the room
• removePerson—removes one person from the room
• getCount —returns the number of people in the room
If removePerson would make the number of people less than zero, throw a
NegativeCounterException.

Solution:

See the code in RoomCounter.java.

11. Revise the class RoomCounter described in the previous exercise to use
an assertion instead of an exception to prevent the number of people in the
room from becoming negative.

Solution:

See the code in RoomCounterWithAssert.java.

12. Show the modifications needed to add exponentiation to the class
Calculator in Listing 9.12. Use ^ to indicate the exponentiation operator and
the method Math.pow to perform the computation.

Solution:

case '^': // THIS IS NEW CODE

 answer = Math.pow(n1, n2);

 break;

13. Write a class LapTimer that can be used to time the laps in a race. The
class should have the following private attributes:
• running—a boolean indication of whether the timer is running
• startTime—the time when the timer started
• lapStart—the timer’s value when the current lap started
• lapTime—the elapsed time for the last lap
• totalTime—the total time from the start of the race through the last
completed lap
• lapsCompleted—the number of laps completed so far
• lapsInRace—the number of laps in the race
The class should have the following methods:
• LapTimer(n)—a constructor for a race having n laps.
• start —starts the timer. Throws an exception if the race has already started.
• markLap—marks the end of the current lap and the start of a new lap.
Throws an exception if the race is finished.
• getLapTime—returns the time of the last lap. Throws an exception if the
first lap has not yet been completed.
• getTotalTime—returns the total time from the start of the race through the
last completed lap. Throws an exception if the first lap has not yet been
completed.
• getLapsRemaining—returns the number of laps yet to be completed,
including the current one.

Express all times in seconds.
To get the current time in milliseconds from some baseline date, invoke
Calendar.getInstance().getTimeInMillis() This invocation returns a primitive
value of type long. By taking the difference between the returned values of
two invocations at two different times, you will know the elapsed time in
milliseconds between the invocations. Note that the class Calendar is in the
package java.util.

Solution:

See the code in TimerException.java, LapTimer.java.

Practice Programs:

1. Use the exception class MessageTooLongException of Self-Test Question
16 in a program that asks the user to enter a line of text having no more than
20 characters. If the user enters an acceptable number of characters, the
program should display the message, “You entered x characters, which is an
acceptable length” (with the letter x replaced by the actual number of
characters). Otherwise, a MessageTooLongException
should be thrown and caught. In either case, the program should repeatedly
ask whether the user wants to enter another line or quit the program.

Notes:

This project has exactly the same organization as ExceptionDemo, Listing 9.2

References:

Listing 9.2, Self-Test Question 16

Solution:

See the code in MessageTooLongException.java and
MessageTooLongExceptionDemo.java.

2. A method that returns a special error code can sometimes cause problems.
The caller might ignore the error code or treat the error code as a valid return
value. In this case it is better to throw an exception instead. The following
class maintains an account balance and returns a special error code.

public class Account
{

private double balance;
public Account()
{
 balance = 0;
}
public Account(double initialDeposit)
{

 balance = initialDeposit;
}
public double getBalance()
{
 return balance;
}
// returns new balance or -1 if error
public double deposit(double amount)
{

if (amount > 0)
 balance += amount;
else

 return -1; // Code indicating error
 return balance;

}
// returns new balance or -1 if invalid amount
public double withdraw(double amount)
{
 if ((amount > balance) || (amount < 0))

 return -1;

 else
 balance -= amount;

 return balance;
 }
}
Rewrite the class so that it throws appropriate exceptions instead of
returning -1 as an error code. Write test code that attempts to withdraw and
deposit invalid amounts and catches the exceptions that are thrown.

Notes:

This solution throws a NegativeAmount and InsufficientBalance exception. It is worth
pointing out to the students the problems that would occur if negative account
balances were desirable.

Solution:

See the code in Account.java.

Programming Projects:

1. Write a program that converts a time from 24-hour notation to 12-hour
notation. The following is a sample interaction between the user and the
program:

Enter time in 24-hour notation:
13:07
That is the same as
1:07 PM
Again? (y/n)
y

Enter time in 24-hour notation:
10:15
That is the same as
10:15 AM
Again? (y/n)
y

Enter time in 24-hour notation:
10:65
There is no such time as 10:65
Try Again:
Enter time in 24-hour notation:
16:05
That is the same as
4:05 PM
Again? (y/n)
n
End of program

Define an exception class called TimeFormatException. If the user enters an
illegal time, like 10:65, or even gibberish, like 8&*68, your program should
throw and handle a TimeFormatException.

Notes:

1. It is helpful to follow the author's suggestion to get the normal case working first,
and then add exception handling. There are a number of issues to work out to do
the transformation from 24-hour to 12-hour format. The first problem is to decide
how to parse the input with a colon separating the hours and minutes integers. All
of the methods introduced so far parse text that is delimited with spaces. The
solution used here is to read the input one character at a time and use a switch
structure to convert the hours and minutes to integers. But this leads to another
problem, how to deal with variations on the input format. For example, the
number of hours could have zero, one or two digits, e.g. :10, 0:10, or 00:10
for ten minutes after midnight. To make the solution easier, a requirement is
imposed on the input: It must be in xx.xx format, i.e. it must have two digits, a
semicolon, and then another two digits. Any other format is flagged as a
formatting error. So leading zeros are required for times earlier than 10:00.
Another problem is obtaining and saving the input so it can be reprinted in the
error message. The solution resolves this by reading in five characters
individually (note the first one is with readNonwhiteChar) and any remaining
characters as a string. The next steps check each character to see if they are valid:
only 0, 1 or 2 are allowed for the first character, etc. Additional processing of
legitimate times is needed to subtract 12 from hours that are over 12, print "noon"
for 12:00, change "AM" to "PM" for hours greater than 11, and conditionally print
a leading zero for minutes that are less than ten.

After the code to parse and process the input is done, the easiest way to add
exception handling is to modify the code in the
DivideByZeroException.java and
DivideByZeroExceptionDemo.java files. Just change the names in the
exception definition file, replace the body of the demo file with the code
developed above, and add the code in catch to get the correct printout.
This is an excellent example to work on test case development since there are a
number of situations that need special attention in the code. Here are some good
examples:

•

Insufficient number of characters in hh field - should cause an exception.
• 00:00 - Should print "0:00 AM".
• 12:00 - Should print "12:00 noon".
• 12:01 - Should print "12:01 PM".
• 11:59 - Should print "11:59 AM".
• 23:59 - Should print "11:59 PM".
• 24:00 - Should cause an exception.
• 11:60 - Should cause an exception.
• Combinations with all correct values except in one of the five positions (for

example, a1:15, 1a:15, 11a15, 11:a5, and 11:1a) - Should cause an exception.
• A completely wrong input (for example f*!bc%) – Should cause and

exception.
A correct input with additional characters (for example 11:15%xyz) – Should cause an
exception.

Solution:

See the code in TimeFormatException.java and TimeFormatExceptionDemo.java.

2. Write a program that uses the class Calculator in Listing 9.12 to create a
more powerful calculator. This calculator will allow you to save one result in
memory and call the result back. The commands the calculator takes are
• e for end
• c for clear; sets result to zero
• m for save in memory; sets memory equal to result
• r for recall memory; displays the value of memory but does not change
result. You should define a derived class of the class Calculator that has one
more instance variable for the memory, a new main method that runs the
improved calculator, a redefinition of the method
handleUnknownOpException, and anything else new or redefined that you
need. A sample interaction with the user is shown next. Your program need
not produce identical output, but it should be similar and just as clear or even
clearer.
Calculator on:
result = 0.0
+ 4
result + 4.0 = 4.0
updated result = 4.0
/ 2
result / 2.0 = 2.0
updated result = 2.0
m
result saved in memory
c
result = 0.0
+ 99
result + 99.0 = 99.0
updated result = 99.0
/ 3
result / 3.0 = 33.0
updated result = 33.0
r
recalled memory value = 2.0
result = 33.0
+ 2
result + 2.0 = 35.0
updated result = 35.0
e
End of program

Notes:

Create a new class that extends Calculator, add an instance variable for memory,
and add the code to implement the new features. Note that you should use the
setResult() and resultValue()methods to access the instance variable
result from the parent class. There should be a space between the operator and the
number. The program does not catch the exceptions that occur when a non-numeric
value is entered instead of a number.

References:

Listing 9.5, Listing 9.10, Listing 9.12

Solution:

See the code in Calculator.java, ImprovedCalculator.java,
DivideByZeroException.java, and UnknownOpException.java.

3. Write a program that converts dates from numerical month–day format to
alphabetic month–day format. For example, input of 1/31 or 01/31 would
produce January 31 as output. The dialogue with the user should be similar
to that shown in Programming Project 2. You should define two exception
classes, one called MonthException and another called DayException. If the
user enters anything other than a legal month number (integers from 1 to
12), your program should throw and catch a MonthException. Similarly, if
the user enters anything other than a valid day number (integers from 1 to
either 29, 30, or 31, depending on the month), your program should throw
and catch a DayException. To keep things simple, assume that February
always has 28 days.

Notes:

The big problem that influences the design of this project is that the numbers entered
are ASCII strings and not integers. The processing that needs to be done (check for
valid month numbers, check for valid day numbers, and translate from month numbers
to month names) is much easier if the month and day are integers, so that is the
approach taken in the solution shown here. The first problem is to parse the input to
get the one or two ASCII character digits for each of the data items, month and day.
The program uses String methods to find the position of the slash character, /, that
separates the two, then usees it to obtain the one or two characters before it for the
month, and the one or two characters after it for the day. Next it converts the one- or
two-character digits to the decimal integers they represent. A relatively “clean”
solution is to write a helper method that converts one ASCII digit-character into its
integer value, then use the helper method to convert the one- or two-character month
and day values to integers. The code to convert an ASCII integer character to a
decimal integer value is written as a switch structure. The month must be converted
before day because it is used to determine if the day value is valid. Once the month
input is converted to a number it is easy to do the remaining processing. The month
can be easily checked for validity (only 1 through 12 are valid values), used as an
index into a String array to get the month’s name, and used to check the day
number for validity (e.g. if the month number is 1, 3, 5, 7, 8, 10, or 12, the day
number must be in the range 1 – 31). The switch structure is also a very good choice
for the day-check since it is very compact and readable. Organizing the steps to keep
month processing separate from day processing allows the try/catch blocks for the two
exceptions to be cleanly and clearly separated. So the solution here is organized as
follows:

• Parse the input string to get the month part and the day part.

• Convert the month part to an integer, if possible.

• Check the month for validity: convert day number only if month is valid.
It is in this block that a MonthException is thrown for any invalid

input for month or if the slash character that separates month and day is
missing. Note that any 3-character number for day or month is considered
invalid. So, while 01/01 is accepted and converted to January 1, 001/01
and 01/001 are flagged as invalid.

If month is a valid number, convert day to its integer value and check for validity. It
is here that a DayException is thrown for any invalid day input.
Solution:

See the code in MonthException.java, DayException.java, and
DateFormatConverter.java.

5. Define an exception class called DimensionException to use in the driver
program from Programming Project 4 in Chapter 8. Modify that driver
program to throw and catch a DimensionException if the user enters
something less than or equal to zero for a dimension.

Notes:

This project is fairly simple. The DimensionException class is written to accept
a String and an integer so the message can be more helpful (it can display which
dimension is invalid and its value). The MoreGraphicsDemo program from
Chapter 8 Programming Project 4 is modified to create the version using
DimensionException and to be interactive so the exception code can be
exercised.

References:

Project 8.4, Listing 8.15

Solution:

See the code in DimensionException.java, DimensionExceptionDemo.java,
SquarePr7.java, Rectangle.java, and RightTriangle.java. Uses ShapeBase.java.

6. Write a program to enter employee data, including social security number
and salary, into an array. The maximum number of employees is 100, but
your program should also work for any number of employees less than 100.
Your program should use two exception classes, one called
SSNLengthException for when the social security number entered—without
dashes or spaces—is not exactly nine characters and the other called
SSNCharacterException for when any character in the social security
number is not a digit. When an exception is thrown, the user should be
reminded of what she or he entered, told why it is inappropriate, and asked
to reenter the data. After all data has been entered, your program should
display the records for all employees, with an annotation stating whether the
employee’s salary is above or below average. You will also need to define
the classes Employee, SSNLengthException, and SSNCharacterException.
Derive the class Employee from the class Person in Listing 8.4 of Chapter
8. Among other things, the class Employee should have input and output
methods, as well as constructors, accessor methods, and mutator methods.
Every Employee object should record the employee’s name, salary, and
social security number, as well as any other data you need or think is
appropriate.

Notes:

It may be useful to review arrays of objects before doing this project. For example,
even after creating the array of EmployeeCh8 objects, it is necessary to create each
element with a new statement inside the loop that reads in the employee’s
information. Note that it is useful to use the same variable for the array subscript and
the employee’s number, except that the subscript begins with 0 and the employee
number begins with 1. So, whenever the employee number needs to be displayed,
simply use the expression (subscript variable + 1).

References:

Listing 8.4, Practice Program 8.1

Solution:

See the code in EmployeeCh9.java, EmployeeCh9Demo.java,
SSNLengthException.java, and SSNCharacterException.java. Uses Person.java.

7. Create a JavaFX application that implements a short survey. The first
question should ask the user for his or her favorite color and present the
choices “red”, “orange”, “blue”, and “green” in radio buttons. The second
question should ask the user for his or her age and present the choice in a
spinner with the range 10–100. The third and final question should ask the
user to select his or her favorite programming language from the choices
“Java”, “C++”, “Python”, and “C#” presented in a choice box. Add a button,
that when clicked, summarizes the user’s selections.

Notes:

The solution is similar to the Additional Controls Demo given in the text.

References:

Listing 9.12

Solution:

See the code in SurveyForm.java

10. Suppose that you are in charge of customer service for a certain business.
As phone calls come in, the name of the caller is recorded and eventually a
service representative return the call and handles the request.

Write a class ServiceRequests that keeps track of the names of callers. The
class should have the following methods:
• addName(name)—adds a name to the list of names. Throws a
ServiceBackUpException if there is no free space in the list.
• removeName(name)—removes a name from the list. Throws a
NoServiceRequestException if the name is not in the list.
• getName(i)—returns the ith name in the list.
• getNumber—returns the current number of service requests.

Write a program that uses an object of type ServiceRequests to keep track of
customers that have called. It should have a loop that, in each iteration,
attempts to add a name, remove a name, or print all names. Use an array of
size 10 as the list of names.

Notes:

This project is fairly straightforward. ServiceRequests is really a queue.
RemoveName is the only complicated methods in the class. An iterative approach
that leaves it for last would be a good idea. The program is a basic while loop with
multiple cases for each of the operations of the Service request class.

Solution:

See the code in ServiceBackUpException.java, NoServiceRequestException.java,
ServiceRequests.java, ServiceProgram.java.

11. Write an application that implements a trip-time calculator. Define and
use a class TripComputer to compute the time of a trip. TripComputer
should have the private attributes
• totalTime—the total time for the trip
• restStopTaken—a boolean flag that indicates whether a rest stop has been
taken at the end of the current leg and the following methods:
• computeLegTime(distance, speed)—computes the time for a leg of the trip
having a given distance in miles and speed in miles per hour. If either the
distance or the speed is negative, throws an exception.
• takeRestStop(time)—takes a rest stop for the given amount of time. If the
time is negative, throws an exception. Also throws an exception if the client
code attempts to take two rest stops in a row.
• getTripTime—returns the current total time for the trip.

Notes:

This structure of this project is similar to project 9. Even though the class
TripComputer is pretty simple, developing and testing it first is advisable.

Solution:

See the code in TripComputerException.java, TripComputer.java,
TripComputerApp.java.

Exercises:

1. Write a program that will write the Gettysburg address to a text file. Place
each sentence on a separate line of the file.

Solution:

See the code in Gettysburg.java.

2. Modify the program in the previous exercise so that it reads the name of
the file from the keyboard.

Solution:

See the code in Gettysburg2.java.

4. Write a program that will record the purchases made at a store. For each
purchase, read from the keyboard an item’s name, its price, and the number
bought. Compute the cost of the purchase (number bought times price), and
write all this data to a text file. Also, display this information and the current
total cost on the screen. After all items have been entered, write the total cost
to both the screen and the file. Since we want to remember all purchases
made, you should append new data to the end of the file.

Solution:

See the code in RecordASale.java.

5. Modify the class LapTimer, as described in Exercise 13 of the previous
chapter, as follows:
• Add an attribute for a file stream to which we can write the times
• Add a constructor
LapTimer(n, person, fileName) for a race having n laps. The name of the
person and the file to record the times are passed to the constructor as
strings. The file should be opened and the name of the person should be
written to the file. If the file cannot be opened, throw an exception.

Solution:

See the code in LapTimer.java.

6. Write a class TelephoneNumber that will hold a telephone number. An
object of this class will have the attributes
• areaCode—a three-digit integer
• exchangeCode—a three-digit integer
• number—a four-digit integer
and the methods
• TelephoneNumber(aString)—a constructor that creates and returns a new
instance of its class, given a string in the form xxx-xxx-xxxx or, if the area
code is missing, xxx-xxxx. Throw an exception if the format is not valid.
Hint: To simplify the constructor, you can replace each hyphen in the
telephone number with a blank. To accept a telephone number containing
hyphens, you could process the string one character at a time or learn how to
use Scanner to read words separated by a character—such as a hyphen—
other than whitespace.
• toString—returns a string in either of the two formats shown previously for
the constructor.

Using a text editor, create a text file of several telephone numbers, using the
two formats described previously. Write a program that reads this file,
displays the data on the screen, and creates an array whose base type is
TelephoneNumber. Allow the user to either add or delete one telephone
number. Write the modified data on the text file, replacing its original
contents. Then read and display the numbers in
the modified file.

Solution:

See the code in InvalidTelephoneFormatException.java, TelephoneNumber.java,
TelephoneProgram.java. Input is in numbers.txt

7. Write a class ContactInfo to store contact information for a person. It
should have attributes for a person’s name, business phone, home phone,
cell phone, email address, and home address. It should have a toString
method that returns this data as a string, making appropriate replacements
for any attributes that do not have values. It should have a constructor
ContactInfo(aString) that creates and returns a new instance of the class,
using data in the string aString. The constructor should use a format
consistent with what the toString method produces. Using a text editor,
create a text file of contact information, as described in the previous
paragraph, for several people. Write a program that reads this file, displays
the data on the screen, and creates an array whose base type is ContactInfo.
Allow the user to do one of the following: change some data in one contact,
add a contact, or delete a contact. Finally, write over the file with the
modified contacts.

Solution:

See the code in InvalidContactException.java, ContactInfo.java,
ContactProgram.java. Input is in contacts.txt

8. Write a program that reads every line in a text file, removes the first word
from each line, and then writes the resulting lines to a new text file.

Solution:

See the code in FirstWordRemover.java.

10. Write a program that will make a copy of a text file, line by line. Read
the name of the existing file and the name of the new file—the copy—from
the keyboard. Use the methods of the class File to test whether the original
file exists and can be read. If not, display an error message and abort the
program. Similarly, see whether the name of the new file already exists. If
so, display a warning message and allow the user to either abort the
program, overwrite the existing file, or enter a new name for the file.

Solution:

See the code in FileCopier.java.

11. Suppose you are given a text file that contains the names of people.
Every name in the file consists of a first name and last name. Unfortunately,
the programmer that created the file of names had a strange sense of humor
and did not guarantee that each name was on a single line of the file. Read
this file of names and write them to a new text file, one name per line. For
example, if the input file contains
Bob Jones Fred
Charles Ed
Marston
Jeff
Williams
the output file should be
Bob Jones
Fred Charles
Ed Marston
Jeff Williams

Solution:

See the code in RecoverNames.java.

12. Suppose that you have a binary file that contains numbers whose type is
either int or double. You don’t know the order of the numbers in the file, but
their order is recorded in a string at the beginning of the file. The string is
composed of the letters i (for int) and d (for double) in the order of the types
of the subsequent numbers. The string is written using the method writeUTF.
For example, the string "iddiiddd" indicates that the file contains eight
values, as follows: one integer, followed by two doubles, followed by two
integers, followed by three doubles. Read this binary file and create a new
text file of the values, written one to a line.

Solution:

See the code in UTFBinaryFileReader.java. The code in UTFBinaryFileWriter
allows one to create a file with the appropriate format.

13. Suppose that we want to store digitized audio information in a binary
file. An audio signal typically does not change much from one sample to the
next. In this case, less memory is used if we record the change in the data
values instead of the actual data values. We will use this idea in the
following program. Write a program StoreSignal that will read positive
integers, each of which must be within 127 of the previous integer, from the
keyboard (or from a text file, if you prefer). Write the first integer to a binary
file. For each subsequent integer, compute the difference between it and the
integer before it, cast the difference to a byte, and write the result to the
binary file. When a negative integer is encountered, stop writing the file.

Solution:

See the code in StoreSignal.java.

14. Write a program RecoverSignal that will read the binary file written by
StoreSignal, as described in the previous exercise. Display the integer values
that the data represents on the screen.

Solution:

See the code in RecoverSignal.java.

15. Even though a binary file is not a text file, it can contain embedded text.
To find out if this is the case, write a program that will open a binary file and
read it one byte at a time. Display the integer value of each byte as well as
the character, if any, that it represents in ASCII.
Technical details: To convert a byte to a character, use the following code:
char[] charArray = Character.toChars(byteValue);
The argument byteValue of the method toChars is an int whose value equals
that of the byte read from the file. The character represented by the byte is
charArray[0]. Since an integer is four bytes, byteValue can represent four
ASCII characters. The method toChars tries to convert each of the four bytes
to a character and places them into a char array. We are interested in just the
character at index 0. If a byte in the file does not correspond to a character,
the method will throw an IllegalArgumentException. If the exception is
thrown, display only the byte value and continue on to the next byte.

Solution:

See the code in ByteReader.java.

Practice Programs:

1. Write a program that searches a file of numbers and displays the largest
number, the smallest number, and the average of all the numbers in the file.
Do not assume that the numbers in the file are in any special order. Your
program should obtain the file name from the user. Use either a text file or a
binary file. For the text-file version, assume one number per line. For the
binary-file version, use numbers of type double that are written using
writeDouble.

Notes:

This project is deceptive: it requires more programs than the ones listed in the
problem definition to process binary and text files containing floating point numbers;
additional programs are required to create and view the data files. The solution shown
here has separate programs to create and view data files, one for text and another for
binary files. The program to process text files requires a method to translate the
numbers from a String to type double. The easiest way is to use the wrapper
class Double’s parseDouble method.

1) Develop the class to create and view binary data files. Good models to follow
are Doubler, Listing 10.8, for the overall program organization, and
BinaryOutputDemo, Listing 10.5, for showing the file contents.

2) Develop the class to process the data in a binary file (display the high, low and
average), again using Doubler, Listing 10.8, as the model.

Use the programs from these two steps to develop similar programs for text files, but
use TextFileOutputDemo, Listing 10.1, and TextFileInputDemo, Listing
10.2, as models for writing to and reading from text files.

References:

Listing 10.1, Listing 10.2, Listing 10.5, Listing 10.8

Solution:

See the code in WriteRealNumberBinaryFile.java,
RealNumberHighLowAverageBinary.java, WriteRealNumberTextFile.java, and
RealNumberHighLowAverageText.java.

2. Write a program that reads a file of numbers of type int and writes all the
numbers to another file, but without any duplicate numbers. Assume that the
numbers in the input file are already ordered from smallest to largest. After
the program is run, the new file will contain all the numbers in the original
file, but no number will appear more than once in the file. The numbers in
the output file should also be sorted from smallest to largest. Your program
should obtain both file names from the user. Use either a text file or a binary
file. For the text-file version, assume one number per line. For the binary-file
version, use numbers of type int that are written using writeInt.

Notes:

This project is similar to Practice Program 1: data files need to be created before any
processing can be done and it is easier to work with binary files than text. So a good
approach is start with the binary file classes from Project 1 and modify them so data
files can be created and displayed, then write the program to process the binary data
files. Note that a separate program to display data files is necessary to view the files
created by the program that removes the duplicates. If students do not have the
programs from Project 1 to work from, then they could start with files from the text,
BinaryOutputDemo.java (Listing 10.5) and Doubler.java (Listing 10.8).
After all the binary file programs are written and tested, it is easier to develop the
programs to create, read and process text files. Just as with Project 1, the code for
setting up the input and output streams needs to be changed, the while-loop condition
needs to be changed to end when a null string is read, and text Strings in the data
file must be changed to ints by using the parseInt method in the Integer class
References:

Practice Program 10.1, Listing 10.1, Listing 10.5, Listing 10.8

Solution:

See the code in WriteIntegerNumberBinaryFile.java,
DisplayIntegerNumberBinaryFile.java, SortedIntegerNoDuplicatesBinaryFile.java,
WriteIntegerNumberTextFile.java, DisplayIntegerNumberTextFile.java, and
SortedIntegerNoDuplicatesTextFile.java.

3. The following is an old word puzzle: “Name a common word, besides
tremendous, stupendous and horrendous, that ends in dous.” If you think
about this for a while it will probably come to you. However, we can also
solve this puzzle by reading a text file of English words and outputting the
word if it contains “dous” at the end. The text file “words.txt” contains
87314 English words, including the word that completes the puzzle. This
file is available online with the source code for the book. Write a program
that reads each word from the text file and outputs only those containing
“dous” at the end to solve the puzzle.

Notes:

Fairly short text-file program. The dictionary of words can be used for many other
puzzle-based programs involving words.

Solution:

See the code in WordPuzzle.java.

Programming Projects:

1. Write a program that checks a text file for several formatting and
punctuation matters. The program asks for the names of both an input file
and an output file. It then copies all the text from the input file to the output
file, but with the following two changes: (1) Any string of two or more blank
characters is replaced by a single blank; (2) all sentences start with an
uppercase letter. All sentences after the first one begin after either a period, a
question mark, or an exclamation mark that is followed by one or more
whitespace characters.

Notes:

This project is deceptively simple. The problem statement is clear enough, with only
a couple ambiguities to clarify. The solution shown here assumes that there is at least
one line in the file to process and keeps all tabs and newlines unless they precede the
first word on the first line. A helper method processes the first part of the first line to
remove all leading white space and capitalize the first letter. After that, main simply
reads one line of text at a time until it gets a null string, and uses another helper
method to process the remaining text. This helper method is where most of the work
is done: It processes each line, character by character, and uses flags to control the
processing; to print only one space when there more than one in sequence, and to
capitalize the first word in each sentence. Notice how the helper method to convert a
character to upper case is written. The code first checks to see if the character is a
lower case letter, and, if it is, it does integer arithmetic to convert the ASCII lower
case code to the ASCII upper case code. A check of an ASCII chart will show that
the upper case codes are 32 less than those for lower case. After doing the subtraction
it is necessary to cast the integer result back to char to match the method’s return
type, char.

References:

Practice Program 10.1, Practice Program 10.2

Solution:

See the code in WriteSentenceTextFile.java, DisplaySentenceTextFile.java, and
EditSentenceTextFile.java.

2. Write a program similar to the one in Listing 10.10 that can write an
arbitrary number of Species objects to a binary file. (Species appears in
Listing 5.19 of Chapter 5.) Read the file name and the data for the objects
from a text file that you create by using a text editor. Then write another
program that can search a binary file created by your first program and show
the user the data for any requested endangered species. The user gives the
file name and then enters the name of the species. The program either
displays all the data for that species or gives a message if that species is not
in the file. Allow the user to either enter additional species’ names or quit.

Notes:

This project requires careful placement of try/catch blocks to gracefully respond to
file names and Species that do not exist, and, at the same time, allow the user to
continue looking for Species in a file or choose another file to search.

References:

Listing 10.9, Listing 10.10

Solution:

See the code in WriteSpeciesFile.java, DisplaySpeciesFile.java, and
FindSpeciesRecords.java. Uses Species.java.

3. Write a program that reads from a file created by the program in the
previous programming project and displays the following information on the
screen: the data for the species having the smallest population and the data
for the species having the largest population. Do not assume that the objects
in the file are in any particular order. The user gives the file name.

Notes:

This project requires only one new file since the classes to build and view Species
files are provided in the text. Populations, of course, are not unique, so more than one
species may have the same smallest or largest population. If more than Species has
the smallest or largest population the solution simply displays the record for the first
one it encounters it its sequential search through the records in the file. Test data files
should include the following situations:

• multiple records with the smallest and largest populations,

• populations that are out of order numerically,

• records with largest and smallest values in various positions in the file (the
first record, the last record, and an intermediate position),

• the record with the smallest population placed before the one with the
largest, and

• the record with the largest population placed before the one with the
smallest.

References:

Project 10.2, Listing 10.9, Listing 10.10

Solution:

See the code in SpeciesPopulationRange.java. Uses Species.java and files created by
WriteSpeciesFile.java from the previous project.

4. Programming Project 2 asks you, among other things, to write a program
that creates a binary file of objects of the class Species. Write a program that
reads from a file created by that program and writes the objects to another
file after modifying their population figures as they would be in 100 years.
Use the method predict- Population of the class Species, and assume that
you are given each species’ growth rate.

Notes:

This project requires only one file to be written. This solution is organized as a
sequence of just four method calls in main, one to open an input file for reading
Species records, one to open an output file for writing new records, one to do the
processing (read a record from the input file and write a record to the output file with
the population changed to the projected population after 100 years), and one to close
the input and output files.

References:

Project 10.2, Listing 10.9, Listing 10.10

Solution:

See the code in SpeciesPopulationsIn100Years.java. Uses Species.java and files
created by WriteSpeciesFile.java from project 2.

5. Text messaging is a popular means of communication. Many
abbreviations are in common use but are not appropriate for formal
communication. Suppose the abbreviations are stored, one to a line, in a text
file named abbreviations.txt. For example, the file might contain these lines:
lol
:)
iirc
4
u
ttfn

Write a program that will read a message from another text file and surround
each occurrence of an abbreviation with <> brackets. Write the marked
message to a new text file.
For example, if the message to be scanned is
How are u today? Iirc, this is your first free day. Hope you are having fun! :)
the new text file should contain
How are <u> today? <Iirc>, this is your first free day. Hope you are having
fun!
<:)>

Notes:

The solution for this project makes use of a couple methods that break out the
processing of a line. The major method processes and marks a line for a single
abbreviation. It finds the index of the abbreviation in the line and then breaks the line
up into 3 parts. It then gets the character immediately before and after the
abbreviation and checks to see if either is a letter or digit. If so, then we assume that
the abbreviation is part of a legal word and don’t mark it. Otherwise, we splice in the
<> marker. This is done in a while loop that processes the remaining part of the line
until the abbreviation is not found.

Solution:

See the code in AbbreviationMarker.java.

6. Modify the TelephoneNumber class described in Exercise 6 so that it is
serializable. Write a program that creates an array whose base type is
TelephoneNumber by reading data from the keyboard. Write the array to a
binary file using the method writeObject. Then read the data from the file
using the method readObject and display the information to the screen.
Allow the user to change, add, or delete any telephone number until he or
she indicates that all changes are complete. Then write the modified
telephone numbers to the file, replacing its original contents.

Notes:

One difficulty in the solution to this project is that we have not yet seen the collection
classes. We will read the telephone numbers into an array. We either need to
determine the number of objects in the file or expand the array as we read the objects.
This solution reads the file twice, once to determine the number of objects and then to
read the objects into an appropriately sized array.

Once this is done, we make a single change and then write the file back out.

References:

Exercise 10.6

Solution:

See the code in SerializedTelephoneNumber.java, SerializedTelephoneProgram.java,
MissingTelephoneInputFileException.java and the data file numbers.data.

7. Revise the class Pet, as shown in Listing 6.1 of Chapter 6, so that it is
serializable. Write a program that allows you to write and read objects of
type Pet to a file. The program should ask the user whether to write to a file
or read from a file. In either case, the program next asks for the file name. A
user who has asked to write to a file can enter as many records as desired. A
user who has asked to read from a file is shown all of the records in the file.
Be sure that the records do not scroll by so quickly that the user cannot read
them. Hint: Think of a way to pause the program after a certain number of
lines are displayed.

Notes:

This project can be written by making modifications to ClassObjectIODemo,
Listing 10.9, however the PetRecord class does not have the useful
readInput() and toString() methods as Species, so they have been added.
Also, note that PetRecord must implement Serializable.

References:

Listing 6.1, Listing 10.9, Listing 10.10

Solution:

See the code in PetRecord.java and PetFileReadOrWrite.java

8. Write a program that reads records of type Pet from a file created by the
program described in the previous programming project and displays the
following information on the screen: the name and weight of the heaviest
pet, the name and weight of the lightest pet, the name and age of the
youngest pet, and the name and age of the oldest pet.

Notes:

This project requires only one file and has a structure similar to Project 6 (in fact it
has the same code for getInputFile() and closeFile() methods.

References:

Project 10.9. Listing 6.1. Listing 10.10

Solution:

See the code in PetAgeAndWeightRange.java. Uses PetRecord.

9. The UC Irvine Machine Learning repository contains many datasets for
conducting computer science research. One dataset is the Haberman’s
Survival dataset, available at
http://archive.ics.uci.edu/ml/datasets/Haberman's+Survival and also included
online with the source code for the book. The file “haberman.data” contains
survival data for breast cancer patients in comma-separated value format.
The first field is the patient’s age at the time of surgery, the second field is
the year of the surgery, the third field is the number of positive axillary
nodes detected, and the fourth field is the survival status. The survival status
is 1 if the patient survived 5 years or longer and 2 if the patient died within 5
years.

Write a program that reads the CSV file and calculates the average number
of positive axillary nodes detected for patients that survived 5 years or
longer, and the average number of positive axillary nodes detected for
patients that died within 5 years. A significant difference between the two
averages suggests whether or not the number of positive axillary nodes

detected can be used to predict survival time. Your program should ignore
the age and year fields for each record.

Notes:

The case study in Listing 10.4 shows how to process a CSV file and makes a good
starting point for this project.

References:

Listing 10.4

Solution:

See the code in Haberman.java. Files in haberman.names, haberman.data

12. Write a Java program that serves as a primitive web browser. For this
assignment it merely needs to input a server name and display the HTML
that is sent by the webserver. A web server normally listens on port 80.
Upon connection the server expects to be sent a string that identifies what
webpage to receive (use / for the root) and what protocol is used. The next
line is the Host and then a blank line. For example, to get the default page
on Wikipedia the Java program would connect to port 80 and send:

GET / HTTP/1.1

Host: www.wikipedia.org

(blank line)

The Wikipedia server would then send back the HTML for the site which
your program should display in text. For a more challenging program, parse
and render the HTML in a human-friendly format instead of printing out the
raw HTML.

Notes:

The code closely follows the example given in the book for the URL class. In the
implementation we needed to add try/catch and the appropriate import statements.

Solution:

See the code in Browser.java

http://www.wikipedia.org

14. Write a JavaFX application uses a text field to get the name of a file,
reads the file byte by byte, and displays the bytes as characters. (Exercise 15
describes how to convert a byte value to a character.) Display the first 20
characters in a label. If a byte does not correspond to a legal character,
display a space instead.
Clicking the Next button reads and displays the next 20 characters in the file.
The GUI might look like the sketch in Figure 10.8.

Notes:

Important note: This program will only read a binary file created using
ObjectOutputStream. This is because it sues ObjectInputStream to read the file,
which won’t work on text files. The chapter doesn’t cover material on reading
an arbitrary file as bytes.

This project creates a JavaFX application that will let students explore the formatting
of various kinds of files. It is very helpful to have a couple methods that process the
file. This solution has two such methods. The first method gets 20 bytes and converts
them into characters. It uses the method toChars from the Character class to create an
array of 8 characters of which the only one we want is the first. The second method
opens the file and calls the first method to get the initial 20 bytes for the display.

Solution:

See the code in FileByByte.java.

15. Write a JavaFX application that implements a simple text editor. Use a
text field and a button to get the file. Read the entire file as characters and
display it in a TextArea. The user will then be able to make changes in the
text area. Use a Save button to get the contents of the text area and write that
over the original file.
Technical Details: Read each line from the file and then use the method
append(aString) to display the line in the text area. The method getText will
return all of the text in the text area in a string that then can be written to the
file.

Notes:

Surprisingly, using just the built-in text area component of Java a simple editor can be
created. The text editing is done via the operating system on the text in the
component. What is left for us to do is to read and write the file, which is
accomplished with a pair of methods.

Solution:

See the code in SimpleEditor.java.

Exercises:

1. What output will be produced by the following code?
public class Demo {

 public static void main(String[] args) {

 System.out.println("The output is:");

foo(23);

System.out.println();

 }

 public static void foo(int number) {

 if (number > 0) {

foo(number / 2);

System.out.print(number % 2);

}

 }

}

Solution:

The output is:
10111

This code is in Demo1.java.

2. What output will be produced by the following code?
public class Demo {

 public static void main(String[] args) {

System.out.println("The output is:");

bar(11156);

System.out.println();

}

public static void bar(int number) {

if (number > 0) {

int d = number % 10;

boolean odd = (number / 10) % 2 == 1;

bar(number / 10);

if (odd)

System.out.print(d / 2 + 5);

else

 System.out.print(d / 2);

 }

}

}

Solution:

The output is:
05578

This code is in Demo2.java.

3. Write a recursive method that will compute the number of odd digits in a
number.

Solution:

public static long countOdd(long number){

long result;

if(number == 0)

// base case

result = 0;

else {

long digit = number % 10;

if(digit < 0)

 digit = -1 * digit;

if(digit % 2 == 1)

 result = countOdd(number/10) + 1;

else

 result = countOdd(number/10);

}

return result;

}

This code is in Methods.java.

4. Write a recursive method that will compute the sum of the digits in a
positive number.

Solution:

public static long sumDigits(long number){

long result;

if(number == 0)

// base case

result = 0;

else {

long digit = number % 10;

if(digit < 0)

 digit = -1 * digit;

 result = digit + sumDigits(number/10);

}

return result;

}

This code is in Methods.java.

5. Complete a recursive definition of the following method:
/**
Precondition: n >= 0.
Returns 10 to the power n.
*/
public static int computeTenToThe(int n)
Use the following facts about xn:
xn = (xn/2)2 when n is even and positive
xn = x (x(n - 1)/2)2 when n is odd and positive
x0 = 1

Solution:

/**

* Precondition: n >= 0.

* Returns 10 to the power n.

*/

public static int tenToThe(int n){

int result;

if(n==0){

 result = 1;

 } else {

result = tenToThe(n/2);

result = result * result;

if(n%2 == 1){

// n is odd we need to square then multiply by 10

result = result * 10;

}

 }

 return result;

 }

This code is in Methods.java.

6. Write a recursive method that will compute the sum of all the values in an
array.

Solution:

 public static int sumArray(int [] data){

return sumArray(data, data.length-1);

}

public static int sumArray(int [] data, int last){

int result;

if(last < 0)

result = 0; // only one value in the subarray

else{

result = data[last] + sumArray(data, last-1);

 }

return result;

}

This code is in Methods.java.

7. Write a recursive method that will find and return the largest value in an
array of integers. Hint: Split the array in half and recursively find the largest
value in each half. Return the larger of those two values.

Solution:

public static int max(int [] data){

 return max(data, 0, data.length-1);

}

public static int max(int [] data, int first, int last){

int result;

if(first == last)

result = data[first]; // only one value in the subarray

else{

int mid = (last + first)/2;

int max1 = max(data, first, mid);

int max2 = max(data, mid+1, last);

if(max1 > max2)

 result = max1;

else

 result = max2;

}

return result;

}

This code is in Methods.java..

8. Write a recursive ternary search algorithm that splits the array into three
parts instead of the two parts used by a binary search.

Solution:
 public static int trinarySearch(int data[], int target){

 return trinarySearch(data, target, 0, data.length-1);

}

//Uses trinary search to search for target in a[first] through

//a[last] inclusive. Returns the index of target if target

//is found. Returns -1 if target is not found.

public static int trinarySearch(int data[], int target,

int first, int last) {

int result;

if (first > last)

result = -1;

else {

int mid1 = (2*first + last)/3;

int mid2 = (first + 2*last)/3;

if (target == data[mid1])

 result = mid1;

else if (target == data[mid2])

 result = mid2;

else if (target < data[mid1])

 result = trinarySearch(data, target, first, mid1 - 1);

else if (target < data[mid2])

 result = trinarySearch(data, target, mid1 + 1, mid2-1);

else

result = trinarySearch(data, target, mid2 + 1, last);

 }

return result;

}

This code is in Methods.java.

9. Write a recursive method that will compute cumulative sums in an array.
To find the cumulative sums, add to each value in the array the sum of the
values that precede it in the array. For example, if the values in the array are
[2, 3, 1, 5, 6, 2, 7], the result will be [2, (2) + 3, (2 + 3) + 1, (2 + 3 + 1) + 5,
(2 + 3 + 1 + 5) + 6, (2 + 3 + 1 + 5 + 6) + 2, (2 + 3 + 1 + 5 + 6 + 2) + 7] or [2,
5, 6, 11, 17, 19, 26]. Hint: The parenthesized sums in the previous example
are the results of a recursive call.

Solution:

public static void cumulativeSum(int data[]){

cumulativeSum(data, 1);

}

public static void cumulativeSum(int data[], int n) {

if (n == data.length)

return;

else {

data[n] += data[n-1];

cumulativeSum(data, n+1);

}

 }

This code is in Methods.java.

10. Suppose we want to compute the amount of money in a bank account
with compound interest. If the amount of money in the account is m, the
amount in the account at the end of the month will be 1.005m. Write a
recursive method that will compute the amount of money in an account after
t months with a starting amount of m.

Solution:

public static double compoundInterest(double start, int months){

double result;

if(months <= 0){

 result = start;

} else {

 result = 1.005 * compoundInterest(start, months-1);

}

return result;

}

This code is in Methods.java.

11. Suppose we have a satellite in orbit. To communicate to the satellite, we
can send messages composed of two signals: dot and dash. Dot takes 2
microseconds to send, and dash takes 3 microseconds to send. Imagine that
we want to know the number of different messages, M(k), that can be sent in
k microseconds.
• If k is 0 or 1, we can send 1 message (the empty message).
• If k is 2 or 3, we can send 1 message (dot or dash, respectively).
• If k is larger than 3, we know that the message can start with either dot or
dash. If the message starts with dot, the number of possible messages is M(k
- 2). If the message starts with dash, the number of possible messages is M(k
- 3). Therefore the number of messages that can be sent in k microseconds is
M(k - 2) + M(k - 3).
Write a program that reads a value of k from the keyboard and displays the
value of M(k), which is computed by a recursive method.

Solution:

 public static int messages(int time){

int result;

if(time <= 3)

result = 1;

else

result = messages(time - 2) + messages(time - 3);

return result;

 }

This code is in Methods.java.

12. Write a recursive method that will count the number of vowels in a
string. Hint: Each time you make a recursive call, use the String method
substring to construct a new string consisting of the second through last
characters. The final call will be when the string contains no characters.

Solution:

public static int countVowels(String s){

int result;

if(s.length() == 0)

result = 0;

else {

if(isVowel(s.charAt(0)))

 result = 1 + countVowels(s.substring(1));

else

result = countVowels(s.substring(1));

}

return result;

 }

public static boolean isVowel(char c){

return c=='a' || c=='e' || c=='i' || c=='o' || c=='u'

|| c=='A' || c=='E' || c=='I' || c=='O' || c=='U';

 }

This code is in Methods.java.

13. Write a recursive method that will remove all the vowels from a given
string and return what is left as a new string. Hint: Use the + operator to
perform string concatenation to construct the string that is returned.

Solution:

public static String removeVowels(String s){

String result;

if(s.length() == 0)

result = "";

else {

if(isVowel(s.charAt(0)))

 result = removeVowels(s.substring(1));

else

result = s.charAt(0) + removeVowels(s.substring(1));

 }

 return result;

 }

This code is in Methods.java.

14. Write a recursive method that will duplicate each character in a string
and return the result as a new string. For example, if "book" is the argument,
the result would be "bbooookk".

Solution:

public static String doubleEachLetter(String s){

 String result;

 if(s.length() == 0)

 result = "";

 else {

String doubled = "" + s.charAt(0) + s.charAt(0);

result = doubled + doubleEachLetter(s.substring(1));

}

return result;

}

This code is in Methods.java.

15. Write a recursive method that will reverse the order of the characters in a
given string and return the result as a new string. For example, if "book" is
the argument, the result would be "koob".

Solution:

public static String reverse(String s){

 String result;

if(s.length() == 0)

result = "";

else {

result = reverse(s.substring(1)) + s.charAt(0);

}

return result;

}

This code is in Methods.java.

Practice Programs:

1. Write a static recursive method that returns the number of digits in the
integer passed to it as an argument of type int. Allow for both positive and
negative arguments. For example, −120 has three digits. Do not count
leading zeros. Embed the method in a program, and test it.

Notes:

A technique similar to that in RecursionDemo2, Listing 11.4, can be used for this
Project First change the number to positive if it is negative. The base case is when
the number has just one digit, which returns 1 if the result of the truncated division of
the number by 10 is zero. If non-zero, a recursive call is made to the method, but with
the original number reduced by one digit, and (1 + the value returned by the recursive
call) is returned. In this fashion, each recursive call will add 1, but not until the base
case is executed. The base case returns a 1 and the stacked calls can now “unwind,”
each call executing in turn and adding 1 to the total. The first call is the last to
execute and, when it does, it returns the number of digits.

References:

Listing 11.4

Solution:

See the code in NumberOfDigitsDemo.java.

2. Write a static recursive method that returns the sum of the integers in the
array of int values passed to it as a single argument. You can assume that
every indexed variable of the array has a value. Embed the method in a test
program.

Notes:

The insight for this problem is to realize that the array passed each iteration must be
diminished by one element and the base case is when the passed array has just one
element. In order to pass a diminished array, another, temporary, array must be
created that is a copy of all but the highest-index value of the passed array. The return
value should be the sum of the value at the highest-index of the passed array plus the
return value from the call to sumOfInts.

Solution:

See the code in SumOfIntsDemo.java.

3. One of the most common examples of recursion is an algorithm to
calculate the factorial of an integer. The notation n! is used for the factorial
of the integer n and is defined as follows:
0! is equal to 1
1! is equal to 1
2! is equal to 2 _ 1 = 2
3! is equal to 3 _ 2 _ 1 = 6
4! is equal to 4 _ 3 _ 2 _ 1 = 24
. . .
n! is equal to n _ (n − 1) _ (n − 2) _ ... _ 3 _ 2 _ 1

An alternative way to describe the calculation of n! is the recursive formula
n * (n − 1)!, plus a base case of 0!, which is 1. Write a static method that
implements this recursive formula for factorials. Place the method in a test
program that allows the user to enter values for n until signaling an end to
execution.

Notes:

This problem is very easy to write as a recursive algorithm. The base case returns one
for n = 0 or n = 1. All other cases multiply the number passed by the return value of a
recursive call for the passed number minus one. Note that the program loops until the
user enters a non-negative number. One word of caution: it is easy to enter a number
that will result in a calculated value too large to store. An interesting little project
would be to have the students find out what the largest integer value is for the
platform they are using, then determine which values to enter to bracket the maximum
value, and run the program to see what happens when the those values are entered.

Solution:

See the code in Factorial.java.

4. A common example of a recursive formula is one to compute the sum of
the first n integers, 1 + 2 + 3 + … + n. The recursive formula can be
expressed as 1+2+3+…+n=n+(1+2+3+…+(n – 1))
Write a static method that implements this recursive formula to compute the
sum of the first n integers. Place the method in a test program that allows the
user to enter the values of n until signaling an end to execution. Your
method definition should not use a loop to add the first n integers.

Notes:

This Project is also very easy to write as a recursive algorithm. The base case returns
one and any other case adds the number passed to it to the number returned by a
recursive call with the number passed to it reduced by one. Note that the program
loops until the user enters a positive integer since the progression is defined only for
positive integers.

Solution:

See the code in ArithmeticProgression.java.

Programming Projects:

1. A palindrome is a string that reads the same forward and backward, such
as "radar". Write a static recursive method that has one parameter of type
String and returns true if the argument is a palindrome and false otherwise.
Disregard spaces and punctuation marks in the string, and consider upper-
and lowercase versions of the same letter to be equal. For example, the
following strings should be considered palindromes by your method:
"Straw? No, too stupid a fad, I put soot on warts."
"xyzcZYx?"

Your method need not check that the string is a correct English phrase or
word. Embed the method in a program, and test it.

Notes:

The algorithm for this Project is a bit tricky. The recursive algorithm leads to some
inefficiency. For example, the problem statement asks for a method that takes a string
with spaces and punctuation, but only looks at the letters and returns a Boolean value.
So the method must parse the input string and eliminate everything but letters.
Although the string needs to be parsed just once, a recursive algorithm must be
identical each iteration, so the parsing occurs each iteration. The base case either
returns TRUE if the string has zero or one characters, or, if the string has two or more
characters, it checks the first and last characters and has a more complex algorithm to
determine whether to return TRUE or FALSE. If the two letters (the first and last) are
different it returns FALSE. But it the two are the same, it returns the result of a
recursive call with a smaller string, with the first and last letters removed. So each
iteration reduces the string by a pair of letters until the string is down to zero or one
character (even or odd number of letters, respectively, in the original string). The
base case returns TRUE and starts unraveling the stacked method calls. The base
method always returns TRUE, but each return after that ANDs it with the Boolean
result of the test for a pair of letters that must be the same if it is a palindrome. If any
pair is not equal, a FALSE is ANDed and, by definition of the AND operation, the
result will be FALSE. The method, after all iterations are done, will return TRUE
only if every iteration returned TRUE (the letters in each pair were the same).

An alternative approach would be to write a second recursive method that looks at
each character in the string recursively and appends it to the result if it is not space or
punctuation.

Solution:

See the code in PalindromeTestDemo.java.

2. A geometric progression is defined as the product of the first n integers,
and is denoted as
geometric(n) = <formula omitted>
where this notation means to multiply the integers from 1 to n. A harmonic
progression is defined as the product of the inverses of the first n integers,
and is denoted as
harmonic(n) = <formula omitted>
Both types of progression have an equivalent recursive definition:
geometric(n) = <formula omitted>
harmonic(n) = <formula omitted>
Write static methods that implement these recursive formulas to compute
geometric(n) and harmonic(n). Do not forget to include a base case, which
is not given in these formulas, but which you must determine. Place the
methods in a test program that allows the user to compute both geometric(n)
and harmonic(n) for an input integer n. Your program should allow the user
to enter another value for n and repeat the calculation until signaling an end
to the program. Neither of your methods should use a loop to multiply n
numbers.

Notes:

This is another easy program to write as a recursive algorithm. One little detail is to
avoid integer division truncation when calculating the harmonic progression by
casting the numerator (1) in the division to double. Also note that it is easy to enter
a value that will cause either an overflow for the geometric progression calculation or
underflow for the harmonic progression calculation. Students should be made aware
of these common pitfalls, especially because the system does not flag them as errors.

Solution:

See the code in GeometricAndHarmonicProgressions.java.

3. The Fibonacci sequence occurs frequently in nature as the growth rate for
certain idealized animal populations. The sequence begins with 0 and 1, and
each successive Fibonacci number is the sum of the two previous Fibonacci
numbers. Hence, the first ten Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13,
21, and 34. The third number in the series is 0 + 1, which is 1; the fourth
number is 1 + 1, which is 2; the fifth number is 1 + 2, which is 3; and so on.

Besides describing population growth, the sequence can be used to define
the form of a spiral. In addition, the ratios of successive Fibonacci numbers
in the sequence approach a constant, approximately 1.618, called the
“golden mean.” Humans find this ratio so aesthetically pleasing that it is
often used to select the length and width ratios of rooms and postcards.

Use a recursive formula to define a static method to compute the nth
Fibonacci number, given n as an argument. Your method should not use a
loop to compute all the Fibonacci numbers up to the desired one, but should
be a simple recursive method. Place this static recursive method in a
program that demonstrates how the ratio of Fibonacci numbers converges.
Your program will ask the user to specify how many Fibonacci numbers it
should calculate. It will then display the Fibonacci numbers, one per line.
After the first two lines, it will also display the ratio of the current and
previous Fibonacci numbers on each line. (The initial ratios do not make
sense.) The output should look something like the following if the user
enters
5:
Fibonacci #1 = 0
Fibonacci #2 = 1
Fibonacci #3 = 1; 1/1 = 1
Fibonacci #4 = 2; 2/1 = 2
Fibonacci #5 = 3; 3/2 = 1.5

Notes:

The recursive algorithm for Fibonacci numbers is a little more involved than the series
calculations in the previous Projects. Base cases for 0, 1 or two numbers simply
return a value, and all other numbers make two recursive calls to get the previous two
Fibonacci numbers to add together to obtain the current number. The method to
calculate a Fibonacci number is recursive, but the code to print the output is not; it
uses a for-loop to cycle through the Fibonacci numbers and ratios.

Solution:

See the code in Fibonacci.java.

4. Imagine a candy bar that has k places where it can be cut. You would like
to know how many different sequences of cuts are possible to divide the bar
into pieces. For example, if k is 3, you could cut the bar at location 1, then
location 2, and finally at location 3. We indicate this sequence of cuts by
123. So if k is 3, we have six ways to divide the bar: 123, 132, 213, 231,
312, or 321. Notice that we have k possibilities for making the first cut. Once
we make the first cut we have k - 1 places where a cut must be made.
Recursively, this can be expressed as
C(k) = k C(k - 1)
Lets make this a bit more interesting by adding a restriction. You must
always cut the leftmost pieces that can be cut. Now if k is 3, we can cut the
bar at locations 123, 132, 213, 312, or 321. A cutting sequence of 231 would
not be allowed, because after the cut at 2 we would have to make the cut at
location 1, since it is the leftmost piece. We still have k possibilities for
making the first cut, but now we have to count the number of ways to cut
two pieces and multiply. Recursively, this can be expressed as
<formulas omitted>

Develop a program that will read a value of k from the keyboard and then
display C(k) and D(k). (D(k) is interesting because it turns out to be the
number of ways that we can parenthesize an arithmetic expression that has k
binary operators.)

Notes:

The recursive algorithm for C(k) is easy to implement and should be familiar. The
recursive algorithm for D(k) is slightly more complicated, but can be based on C(k).
Instead of making a single recursive call, loop and make the recursive calls. As with
previous projects, this one can experience overflow if the input value k is too large.

Solution:

See the code in Cuts.java.

5. Once upon a time in a kingdom far away, the king hoarded food and the
people starved. His adviser recommended that the food stores be used to
help the people, but the king refused. One day a small group of rebels
attempted to kill the king, but were stopped by the adviser. As a reward, the
adviser was granted a gift by the king. The adviser asked for a few grains of
wheat from the king’s stores to be distributed to the people. The number of

grains were to be determined by placing them on a chessboard. On the first
square of the chessboard, he placed one grain of wheat. He then placed two
grains on the second square, four grains on the third square, eight grains on
the fourth square, and so forth.
Compute the total number of grains of wheat that were placed on k squares
by writing a recursive method getTotalGrains(k, grains). Each time
getTotalGrains is called, it “places” grains on a single square; grains is the
number of grains of wheat to place on that square. If k is 1, return grains.
Otherwise, make a recursive call, where k is reduced by 1 and grains is
doubled. The recursive call computes the total number of grains placed in
the remaining k - 1 squares. To find the total number of grains for all k
squares, add the result of the recursive call to grains and return that sum.

Notes:

This demonstrates a recursion where a partial solution is being built up on the way
down the recursion. What makes this interesting is that it is not just a tail recursion
(the partial solution becomes the complete solution at the bottom of the recursive
chain), but that it computes an answer using each of the partial solutions.

Solution:

See the code in Grain.java.

6. There are n people in a room, where n is an integer greater than or equal
to 2. Each person shakes hands once with every other person. What is the
total number of handshakes in the room? Write a recursive method to solve
this problem with the following header:

public static int handshake(int n)
where handshake(n) returns the total number of handshakes for n people in
the room. To get you started, if there are only one or two people in the room,
then:
 handshake(1) = 0

handshake(2) = 1

Notes:

This is a short and relatively straightforward recursive problem.

Solution:

See the code in Handshake.java.

7. Given the definition of a 2D array such as the following:

String[][] data = {

 {"A","B"},

 {"1","2"},
 {"XX","YY","ZZ"}
};

Write a recursive Java program that outputs all combinations of each
subarray in order. In the above example the desired output (although it
doesn’t have to be in this order) is:

A 1 XX
A 1 YY
A 1 ZZ
A 2 XX
A 2 YY
A 2 ZZ
B 1 XX
B 1 YY
B 1 ZZ
B 2 XX
B 2 YY
B 2 ZZ

Your program should work with arbitrarily sized arrays in either dimension.
For example, the following data:
 String[][] data = {

 {"A"},
 {"1"},
 {"2"},
 {"XX","YY"}
};

Should output:
A 1 2 XX
A 1 2 YY

Notes:

This is a more complex recursive problem than the others in this chapter and has
many possible solutions. The solution given here recursively fill in a oneline[] array
that represents one entry of the product of sets. The array is filled in by iterating
through each subarray for each recursive call. That is, the first recursive call iterates
through the elements in data[0], the second recursive call iterates through the elements
in data[1], etc.

Solution:

See the code in ArrayProduct.java.

10. Create an application in a JavaFX GUI that will draw a fractal curve
using line segments. Fractals are recursively defined curves. The curve you
will draw is based on a line segment between points p1 and p2: To draw the
curve from p1 to p2, you first split the segment into thirds. Then add
two segments and offset the middle segment to form part of a square, as
shown in the following picture:
Note that you would not draw the arrowheads, but we use them here to
indicate the direction of drawing. If the order of p1 and p2 were reversed,
the square would be below the original line segment. This process is
recursive and is applied to each of the five new line segments, resulting in
the following curve: The fractal is given by repeating this recursive process
an infinite number of times. Of course, we will not want to do that and will
stop the process after a certain number of times.
To draw this curve, use a recursive method drawFractal(p1x, p1y, p2x, p2y,
k). If k is zero, just draw a line from p1 to p2. Otherwise, split the line
segment into five segments, as described previously, and recursively call
drawFractal for each of these five segments. Use k - 1 for the last argument
in the recursive calls.
For convenience, you may assume that the segments are either vertical or
horizontal. The initial call should be drawFractal(50, 800, 779, 800, 5). Set
the size of the window to 1000 by 1000.

Notes:

The hardest part of this recursive algorithm is getting arguments of recursive calls for
each segment correct. Part of the complication is that Java’s coordinate system has y
positive in the downward direction. One can work on the horizontal case first and
then do the vertical. It is recommended that k=1 be used when developing the
algorithm as well.

Solution:

See the code in Fractal.java.

Exercises:

1. Repeat Exercise 2 in Chapter 7, but use an instance of ArrayList instead
of an array. Do not read the number of values, but continue to read values
until the user enters a negative value.

Solution:

See the code in CountFamilies.java.

2. Repeat Exercise 3 in Chapter 7, but use an instance of ArrayList instead
of an array. Do not read the number of families, but read data for families
until the user enters the word done.

Solution:

See the code in Family.java and CountPoor.java.

3. Repeat Exercise 5 in Chapter 7, but use an instance of ArrayList instead
of an array.

Solution:

See the code in CharacterFrequency.java.

4. Repeat Exercises 6 and 7 in Chapter 7, but use an instance of ArrayList
instead of an array. We will no longer need to know the maximum number
of sales, so the methods will change to reflect this.

Solution:

See the code in Ledger.java.

5. Write a static method removeDuplicates(ArrayList<Character> data)
that will remove any duplicates of characters in the object data. Always keep
the first copy of a character and remove subsequent ones.

Solution:

public static void removeDuplicates(ArrayList<Character> data){

for(int i=0; i<data.size(); i++){

int j = i+1;

while(j<data.size()){

 if(data.get(i) == data.get(j))

data.remove(j);

else

 j++;

 }

 }

 }

This code is in Methods.java.

6. Write a static method getCommonStrings(ArrayList<String> list1,
ArrayList<String> list2) that returns a new instance of ArrayList containing
all of the strings common to both list1 and list2.

Solution:

public static ArrayList<String>

getCommonStrings(ArrayList<String> list1,

 ArrayList<String> list2){

 ArrayList<String> result = new ArrayList<String>();

 for(int i=0; i<list1.size(); i++){

 for(int j=0; j<list2.size(); j++){

 if(list1.get(i).equals(list2.get(j)))

 result.add(list1.get(i));

 }

 }

 // Remove the duplicates

 for(int i=0; i<result.size(); i++){

 int j = i+1;

 while(j<result.size()){

 if(result.get(i) == result.get(j))

 result.remove(j);

else

 j++;

 }

 }

 return result;

 }

This code is in Methods.java. An alternate solution is also given.

7. Write a program that will read sentences from a text file, placing each
sentence in its own instance of ArrayList. (You will create a sentence object
by adding words to it one at a time as they are read.) When a sentence has
been completely read, add the sentence to another instance of ArrayList.
Once you have read the entire file, you will have an instance of ArrayList
that contains several instances of ArrayList, one for each sentence read. Now
ask the user to enter a sentence number and a word number. Display the
word that occurs in the given position. If the sentence number or word
number is not valid, provide an appropriate error message.

Solution:

See the code in WordInFile.java.

8. Repeat Exercise 12 in Chapter 7, but use an instance of ArrayList instead
of an array. Make the following slight changes to the methods to reflect that
an ArrayList object can grow in size:
• Change the constructor’s parameter from the maximum degree to the
desired degree.
• The method setConstant might need to add zero-valued coefficients before
ai. For example, if a0 = 3, a1 = 5, a2 = 0, a3 = 2, a4 = 0, and a5 = 0, the
polynomial would be of degree 3, since the last nonzero constant is a3. The
invocation setConstant(8, 15) would need to set a6 and a7 to 0 and a8 to 15.

Solution:

See the code in Polynomial.java.

9. Write a program that will read a text file that contains an unknown
number of movie review scores. Read the scores as Double values and put
them in an instance of ArrayList. Compute the average score.

Solution:

See the code in MovieScores.java.

10. Revise the class StringLinkedList in Listing 12.5 so that it can add and

remove items from the end of the list.

Solution:

See the code in ListNode.java, StringLinkedList.java, StringLinkedListDemo.java.

11. Suppose we would like to create a data structure for holding numbers
that can be accessed either in the order that they were added or in sorted
order. We need nodes having two references. If you follow one trail of
references, you get the items in the order they were added. If you follow the
other trail of references, you get the items in numeric order. Create a class
DualNode that would support such a data structure. Do not write the data
structure itself.

Solution:

See the code in DualNode.java.

12. Draw a picture of an initially empty data structure, as described in the
previous exercise, after adding the numbers 2, 8, 4, and 6, in this order.

Solution:

Head and link1 gives the values in the order they were added. Sorted and link2 give the
values in sorted order.

13. Write some code that will use an iterator to duplicate every item in an
instance of StringLinkedListWithIterator in Listing 12.9. For example, if the
list contains "a", "b", and "c", after the code runs, it will contain "a", "a",
"b", "b", "c", and “c”.

Solution:

// Make sure the iterator is at the front of the list

list.resetIteration();

while(list.moreToIterate()){

 String data = list.getDataAtCurrent();

 list.insertNodeAfterCurrent(data);

 // Skip over the data just inserted and the next

 list.goToNext();

 list.goToNext();

 }

System.out.println("Every value in the list should be”

 + “ repeated now");

list.showList();

This code is in StringLinkedIteratorFragments.java.

14. Write some code that will use an iterator to move the first item in an
instance of StringLinkedListWithIterator (Listing 12.9) to the end of the list.
For example, if the list contains "a", "b", "c", and "d", after the code runs, it
will contain "b", "c", "d", and "a".

Solution:

 list.resetIteration();

String data = list.getDataAtCurrent();

list.deleteCurrentNode();

// Iterate to the node at the end of the list

for(int i=0; i<list.length()-1; i++){

list.goToNext();

}

list.insertNodeAfterCurrent(data);

System.out.println("First value should now be moved to the”

 + “ end of the list");

list.showList();

This code is in StringLinkedIteratorFragments.java.

15. Write some code that will use an iterator to interchange the items in
every pair of items in an instance of StringLinkedListWithIterator in Listing
12.9. For example, if the list contains "a", "b", "c", "d", "e", and "f", after the
code runs, it will contain "b", "a", "d", "c", "f", and "e". You can assume that
the list contains an even number of strings.

Solution:

list.resetIteration();

while(list.moreToIterate()){

String toSwitch = list.getDataAtCurrent();

list.deleteCurrentNode();

list.insertNodeAfterCurrent(toSwitch);

list.goToNext();

list.goToNext();

}

System.out.println("Every pair of strings should have their”

+ “ order swapped.");

list.showList();

This code is in StringLinkedIteratorFragments.java.

17. Write a program that creates two instances of the generic class
LinkedList given in Listing 12.12. The first instance is stadiumNames and
will hold items of type String. The second instance is gameRevenue and will
hold items of type Double. Within a loop, read data for the ball games
played during a season. The data for a game consists of a stadium name and
the amount of money made for that game. Add the game data to
stadiumNames and gameRevenue. Since more than one game could be
played at a particular stadium, stadiumNames might have duplicate entries.
After reading the data for all of the games, read a stadium name and display
the total amount of money made for all the games at that stadium.

Solution:

See the code in Revenue.java.

Practice Programs:

2. Repeat the previous practice program, but instead write a method
bubbleSort that performs a bubble sort, as described in Programming Project
3 of Chapter 7.

Notes:

An easy way to develop this program is to start with the code to bubble sort an array
from Chapter 7 Programming Project 3. Change the array references to list syntax. If
the code for bubble sorting an array is not available, then it is a matter of making
modifications to StringSelectionSort to implement the bubble sort algorithm
instead of selection sort.

References:

Project 7.3

Solution:

See the code in StringBubbleSort.java and StringBubbleSortDemo.java.

3. Repeat Practice Program 1, but instead write a method insertionSort that
performs an insertion sort, as described in Programming Project 4 of Chapter
7.

Notes:

As with the previous project, an easy way to develop the program is to start with the
insertion sort code for an array, Chapter 7 Programming Project 4. Note, however,
that the list code, unlike that for the array, does not need a helper method to move the
elements when a new element is added to the temporary list; the ArrayList class
has a method, add(int, T), that does it for you.

References:

Project 7.4

Solution:

See the code in StringInsertionSort.java and StringInsertionSortDemo.java.

5. Write a program that uses a HashMap to compute a histogram of positive
numbers entered by the user. The HashMap’s key should be the number that
is entered, and the value should be a counter of the number of times the key
has been entered so far. Use -1 as a sentinel value to signal the end of user
input. For example, if the user inputs:
5
12
3
5
5
3
21
-1
Then the program should output the following (not necessarily in this order):
The number 3 occurs 2 times.
The number 5 occurs 3 times.
The number 12 occurs 1 times.
The number 21 occurs 1 times.

Notes:

The solution is a fairly straightforward implementation of a
HashMap<Integer,Integer> to map a number to a counter. It may be worth
mentioning that equals and hashcode must be overwritten if the student wants to use
HashMap with their own set. Note that Java will automatically unbox/box between
an int and Integer. This solution takes advantage of this feature.

Solution:

See the code in HashMapHistogram.java.

Programming Projects:

1. Write a program that creates Pet objects from data read from the
keyboard. Store these objects into an instance of ArrayList. Then sort the Pet
objects into alphabetic order by pet name, and finally display the data in the
sorted Pet objects on the screen. The class Pet is given in Chapter 6, Listing
6.1.

Notes:

This Project has the potential for being more difficult than the Practice Programs since
it uses a list of elements other than Strings, which the author states can lead to
subtle problems. The PetRecord variable nextPet must be declared inside the
while-loop so it is created fresh each iteration. It must be redeclared each time to
ensure that PetRecords previously added to the list are not overwritten with data
entered on the next iteration. If nextPet is created only once, outside the while-
loop (before entering it), the new values entered are written to same address each time
and all the PetRecords in the list will end up with identical data, the values entered
in the last iteration.

Solution:

See the code in PetRecordsSortedByName.java. Uses PetRecord.java.

2. Repeat the previous programming project, but sort the Pet objects by pet
weight instead of by name. After displaying the sorted data on the screen,
write the number and percentage of pets that are under 5 pounds, the number
and percentage of pets that are 5 to 10 pounds, and the number and
percentage of pets that are over 10 pounds.

Notes:

This project is related to the next project. It does the same task, but reads/writes pet
records from/to a file.

3. Repeat the previous programming project, but read the input data from a
file and send the output to another file. If you have covered binary files, use
binary files; otherwise, use text files. Read the file names from the user.

Notes:

This Project can be done in many different ways. The solution shown here reads
records from the user-specified input file into a list, then sorts the elements by the
pets’ weights using bubble sort, and also sends the output to a file.

References:

Listing 6.1, Project 10.2

Solution:

See the code in PetRecordsSortedByName.java. Uses PetRecord.java and
PetFileReadOrWrite.java.

4. Use the class ClassObjectIODemo shown in Listing 10.10 of Chapter 10
to create a file of Species objects. The class Species is given in Chapter 10,
Listing 10.9. Then write a program that reads the Species objects from the
file you created into an instance of ArrayList, sorts these instances
alphabetically by Species name, and then writes the sorted data to both the
screen and a file. Read all file names from the user.

Notes:

This Project can be done in many different ways. The solution shown here reads
records from the user-specified input file into a list, then sorts the elements
alphabetically by name using bubble sort. Note that Species has methods
specifically for reading records from and writing records to a file, so that part of the
program is especially easy to write.

References:

Listing 10.9, Listing 10.10

Solution:

See the code in SpeciesSortedByNameToFile.java. Uses Species.java,
WriteSpeciesFile.java, and DisplaySpeciesFile.java.

5. Define a variation on StringLinkedListSelfContained from Listing 12.7
that stores objects of type Species, rather than of type String. Write a
program that uses that linked-list class to create a linked list of Species
objects, asks the user to enter a Species name, and then searches the linked
list and displays one of the following messages, depending on whether the
name is or is not on the list:
Species Species_Name is one of the
Number_Of_Species_Names_On_List species on the list.
The data for Species_Name is as follows:
Data_For_Species_Name
or
Species Species_Name is not a species on the list.

The user can enter more Species names until indicating an end to the
program. The class Species is given in Listing 5.19 of Chapter 5. (If you
prefer, you can use the serialized version of Species in Listing 10.9 of
Chapter 10.)

Notes:

This is closely related to the solution of the next project which reads and writes to a
file.

6. Repeat the previous programming project, but read the input data from a
file and send the output to another file. If you have covered binary files, use
binary files; otherwise, use text files. Read the file names from the user.

Notes:

The solution shown here gets Species records from a file rather than the keyboard.

References:

 Listing 12.7

Solution:

See the code in SpeciesLinkedListSelfContained.java, and
SpeciesLinkedListSearch.java. Uses Species.java, WriteSpeciesFile.java, and
DisplaySpeciesFile.java

7. Define a variation on StringLinkedListSelfContained from Listing 12.7
that stores objects of type Employee, rather than objects of type String.
Write a program that uses this linked-list class to create a linked list of
Employee objects, asks the user to enter an employee’s social security
number, and then searches the linked list and displays the data for the
corresponding employee. If no such employee exists, display a message that
says so. The user can enter more social security numbers until indicating an
end to the program. The class Employee is described in Programming
Project 6 of Chapter 9. If you have not already done that project, you will
need to define the class Employee as described there.

Notes:

This project is closely related to the next one, which uses a file.

8. Repeat the previous programming project, but read the input data from a
file and send the output to another file. If you have covered binary files, use
binary files; otherwise, use text files. Read the file names from the user.

Notes:

This Project is complicated by the absence of a program to read and write files with
employee records, so one has to be created. Note that the employee class from
Chapter 9 must be modified to implement Serializable and the resulting class is
renamed EmployeeCh12.java. Also, note that the program gets records from a file
and not the keyboard.

References:

Project 9.6, Listing 12.7

Solution:

See the code in EmployeeCh12.java, EmployeeCh12FileReadOrWrite,java,
EmployeeCh12LinkNode.java, EmployeeCh12LinkedListSelfContained.java,
EmployeeCh12LinkedListSearch.java. Uses Person.java,

9. Write a parameterized class definition for a doubly linked list that has a
parameter for the type of data stored in a node. Make the node class an inner
class. Choosing which methods to define is part of this project. Also, write a
program to thoroughly test your class definition.

Notes:

This program is based on code from Listing 12.9. The solution given here includes
support for iteration, both forward and reverse. Both forward and reverse iteration use
the moreToIterate method, but backward iteration uses the
resetIterationReverse rather than resetIteration. The ListNode
class includes a previous instance variable which makes the previous variable
in the outer class unnecessary. To make reverse iteration (especially
resetIterationReverse) easier to write, there is a reference to the tail of the
list as well as to the head of the list. An additional method, findInList, looks for
an element in the list and sets current to point to that element if it is found. If it is
not found, current is set to null. The method showListState is for testing and
debugging purposes and prints the head of the list, the current element, the tail, and
the number of elements in the list.

References:

Listing 12.9

Solution:

See the code in DoublyLinkedList.java, and DoublyLinkedListDemo.java.

10. Create an application that will keep track of several groups of strings.
Each string will be a member of exactly one group. We would like to be able
to see whether two strings are in the same group as well as perform a union
of two groups. Use a linked structure to represent a group of strings. Each
node in the structure contains a string and a reference to another node in the
group. For example, the group {"a", "b", "d", "e"} is represented by the
following structure: One string in each group—"d" in our example—is in a
node that has a null reference. That is, it does not reference any other node in
the structure. This string is the representative string of the group.

Create the class GroupHolder to represent all of the groups and to perform
operations on them. It should have the private instance variable items to hold
the nodes that belong to all of the groups. The nodes within each group are
linked together as described previously. Make items an instance of ArrayList
whose base type is GroupNode, where GroupNode is a private inner class of
GroupHolder. GroupNode has the following private instance variables:
• data—a string
• link—a reference to another node in the group, or null
Define the following methods in the class GroupHolder:
• addItem(s)— adds a string s to an empty group. First search items for s; if
you find s, do nothing; if you do not find s, create a new GroupNode object
that has s as its string and null as its link and add it to items. The new group
will contain only the item s.
• getRepresentative(s)—returns the representative string for the group
containing s. To find the representative string, search items for s. If you do
not find s, return null. If you find s, follow links until you find a null
reference. The string in that node is the representative string for the group.
• getAllRepresentatives—returns an instance of ArrayList that contains
the representative strings of all the groups in this instance of GroupHolder.
(A representative string is in an instance of GroupNode that contains a null
reference.)
• inSameGroup(s1, s2)—returns true if the representative string for s1 and
the representative string for s2 are the same and not null, in which case the
strings s1 and s2 are in the same group.
• union(s1, s2)—forms the union of the groups to which s1 and s2 belong.
Hint: Find the representative strings for s1 and s2. If they are different and
neither is null, make the link of the node containing s1’s representative
string reference the node for s2’s representative string.
For example, suppose that we call addItem with each of the following strings
as an argument: "a", "b", "c", "d", "e", "f", "g", and "h". Next, let’s form

groups by using these union operations:
union("a", "d"), union("b", "d"), union("e", "b"),
union("h", "f")
We will have four groups—{"a", "b", "d", "e"}, {"c"}, {"f", "h"}, and
{"g"}—represented by the following structure:
The representative strings for these groups are "d", "c", "f", and "g",
respectively.

Now the operation inSameSet("a", "e") would return true because both
getRepresentative("a") and getRepresentative("e") return d. Also,
inSameSet("a", "f") would return false because getRepresentative("a")
returns d, and getRepresentative("f") returns f. The operation union("a", "f")
would make the node containing the representative string of the group to
which "a" belongs—which is "d"—reference the node containing the
representative string of the group to which "f" belongs, which is "f". This
reference would be represented by an arrow from "d" to "f" in the previous
diagram. Your application should create an instance of GroupHolder and
allow the user to add an arbitrary number of strings, each to its own group. It
should then perform an arbitrary number of union operations to form several
groups. Finally, it should demonstrate the other operations.

Notes:

This program implements a simplified version of a linked structure that can be used to
detect cycles while building a minimum spanning tree. To really be efficient, we
should use a hash table instead of an ArrayList to store the elements. We should also
keep track of the height of our trees and always link the shorter tree to the taller tree.

This implementation uses one private method to determine if the element is one that is
in our group. Otherwise the implementation is fairly straightforward. The method
GetRepresentative follows pointers until it finds null. Union will make a link as long
as both arguments are in the group and are not in the same set. Notice that once a link
is made, we never need to change it.

Solution:

See the code in GroupHolder.java.

11. For this project, we will create a data structure known as a queue. A
queue can be thought of as a line. Items are added at the end of the line and
are taken from the front of the line. You will create a class LinkedQueue
based on one of the linkedlist classes given in this chapter. It should have
private attributes for
• front—a reference to the first node in the linked list of queue items
• count—the number of items in the queue
and the following operations:
• addToQueue(item)—adds item to the end of the queue. (Add it at the end
of the linked list.)
• removeFromQueue()—removes the first item from the queue and returns
it. If the queue is empty, returns null.
• isEmpty—returns true if the queue contains no items; otherwise, returns
false.

Create a program that demonstrates the functions of the LinkedQueue class.

Notes:

This program is just a simple modification of the existing programs in this chapter.
The solution is loosely based on the generic version of the linked list given in Listing
12.12.

References:

Listing 12.12

Solution:

See the code in LinkedQueue.java, LinkedQueueDemo.java.

13. Suppose that we would like to perform a bird survey to count the number
of birds of each species in an area. Create a class BirdSurvey that is like one
of the linked-list classes given in this chapter. (The linked list you use will
affect what your new class can do, so give some thought to your choice.)
Modify the inner node class to add room for a count.
BirdSurvey should have the following operations:
• add(bird)—adds the bird species bird to the end of the list, if it is not
already there, and sets its count to 1; otherwise, adds 1 to the count for bird.
• getCount(bird)—returns the count associated with the species bird. If bird
is not on the list, returns zero.
• getReport—displays the name and count for each bird species on the list.

Write a program that uses BirdSurvey to record the data from a recent bird
survey. Use a loop to read bird names until done is entered. Display a report
when finished.

Notes:

The solution is loosely based on the generic version of the linked list given in Listing
12.12. The definition of node needs to be changed to include an extra piece of data
(the count). The add method must be modified to do a search first and increment the
count if the bird is already in the list. Notice that once a link is set, it never needs to
be changed.

References:

Listing 12.12

Solution:

See the code in BirdSurvey.java.

14. Consider a text file of names, with one name per line, that has been
compiled from several different sources. A sample is shown below:

Brooke Trout
Dinah Soars
Jed Dye
Brooke Trout
Jed Dye
Paige Turner

There are duplicate names in the file. We would like to generate an
invitation list but don’t want to send multiple invitations to the same person.
Write a program that eliminates the duplicate names by using a HashSet.
Read each name from the file, add it to the HashSet, and then output all
names in the HashSet to generate the invitation list without duplicates.

Notes:

The solution is a fairly straightforward implementation of a HashSet<String> that
holds each name and we loop through the file checking to see if a name is in the set
before adding it. It may be worth mentioning that equals and hashcode must be
overwritten if the student wants to use HashSet with their own set.

Solution:

See the code in InviteList.java and data in names.txt

15. You have a list of student ID’s followed by the course number
(separated by a space) that the student is enrolled in. The listing is in no
particular order. For example, if student 1 is in CS100 and CS200 while
student 2 is in CS105 and MATH210 then the list might look like this:

1 CS100
2 MATH210
2 CS105
1 CS200

Write a program that reads data in this format from the console. If the ID is -
1 then stop inputting data. Use the HashMap class to map from an Integer

(the student ID) to an ArrayList of type String that holds each class that the
student is enrolled in. The declaration should look like this:

HashMap<Integer, ArrayList<String>> students = new

HashMap<Integer, ArrayList<String>>();

After all data is input, iterate through the map and output the student ID and
all classes stored in the vector for that student. The result should be a list of
classes organized by student ID.

Notes:

This solution uses an ArrayList as the data value for a HashMap.

Solution:

See the code in HashMapStudentIDs.java

Exercises:

1. Write a GUI application that creates two windows. In the first window,
display the label Where is John?, and in the second window, display John is
water skiing. Hint: Use a single class for both windows, but give an
argument to the constructor that determines the string displayed in the label.

Solution:

See the code in Exercise1.java, LabelDisplayWindow.java.

2. Write a GUI application that creates three windows. Each window should
be a different color, and each title should match the color. Use the colors
MAGENTA, ORANGE, and GREEN.

Solution:

See the code in Exercise2.java, ColorWindow.java.

3. Write a GUI application that creates a single window, using a border
layout. Place the following five labels in the window: Northern Location,
Southern Location, Western Location, Eastern Location, and Central
Location. Put each label in the appropriate place.

Solution:

See the code in Exercise3.java, BorderDisplayWindow.java.

4. Write a GUI application that creates a single window, using a flow layout.
Place the following seven labels in the window: Location one, Location two,
Location three, Location four, Location five, Location six, and Location
seven. Add each label in numeric order.

Solution:

See the code in Exercise4.java, FlowDisplayWindow.java.

5. Repeat the previous exercise, using a 2 by 2 grid layout instead of a flow
layout.

Solution:

See the code in Exercise5.java, GridDisplayWindow.java.

6. Write a GUI application that creates a single window containing one
button— whose label is Change— in the north position. Set the background
color to red initially. Each time a user clicks the button, change the
background color from red to white, from white to blue, or from blue to red.

Solution:

See the code in Exercise6.java, ColorChangingWindow.java.

7. Suppose we want to write a stopwatch application that has a GUI. As a
start, we will write stubs that create buttons for the application. These
buttons will simply indicate which one was pressed, but will not cause any
other actions. Create a GUI application that has a single window, three
buttons—Start, Stop, and Reset—and one label. When Start is pressed,
change the foreground color of the label to green and its text to Start was
pressed. When Stop is pressed, change the foreground color of the label to
red and its text to Stop was pressed. When Reset is pressed, change the
foreground color of the label to orange and its text to Reset was pressed.

Solution:

See the code in Exercise7.java, StopWatchWindow.java.

8. Write an application that models a telephone keypad. Use a JPanel panel
to hold twelve buttons—1, 2, 3, 4, 5, 6, 7, 8, 9, *, 0, #—in the center of a
grid layout. Place a label in the south locations. As each number is pressed,
append that digit to the text of the label.

Solution:

See the code in Exercise8.java, KeypadWindow.java.

9. Write an application that creates a substitution code. You will need a text
area in the center of the screen that cannot be edited. The text area will
display the code, using a format like A->C, B->Q, C->F, This means
that A would be replaced by C, B would be replaced by Q, C would be
replaced by F, and so on. The code will be generated one letter at a time,
starting with A and ending with Z. You will have 26 buttons, each labeled
with a letter of the alphabet. The first button pressed indicates the letter to be
substituted for A, the second button pressed indicates the letter to be
substituted for B, and so forth. For example, to create the previous
substitution code, you would press the buttons C, Q, F, and so on. As each
button is pressed, add the code to the text area and make the button invisible.

Solution:

See the code in Exercise9.java, CodeWindow.java.

10. Write an application that creates a list of names. You will need a text
area in the center of the screen capable of holding ten lines that cannot be
edited. Place a text field and an Accept button in the south position. After a
user enters a name into the text field and clicks the Accept button, take the
name from the text field and add it to the text area. Then clear the text field.

Solution:

See the code in Exercise10.java, NamesWindow.java.

11. Write a small application with a GUI that could be the basis of a larger
application. Your application should accept a credit card number entered
into a text field. When the user clicks an Accept button, you should check
whether the number entered contains exactly 16 digits. If so, display the
message Number accepted: as well as the card number in a label, and then
clear the text field. If not, display the message Number rejected in the label.
(Note: Credit card numbers have fancier format requirements that depend on
the issuer of the card and are beyond the scope of this exercise.)

Solution:

See the code in Exercise11.java, CreditCardWindow.java.

12. Write a small application with a GUI that could be the basis of a larger
application. Your application will allow someone to enter a user name and
password into separate text fields. When the user clicks the Login button,
you should check whether the string in the name field matches "John" and
the string in the password field matches "myPassword". If both match, put
the message You have been logged in. on a result label. If they don’t match,
put the message Sorry, that password is not valid. on the result label.

Solution:

See the code in Exercise12.java, LoginWindow.java.

13. Write a small application with a GUI that could be the basis of a larger
application. Your application will allow someone to change a password. The
user will enter the new password into each of two text fields and then press a
Change button. You should check whether the strings in the two fields
match. If they both match, display the message Your password has been
updated. on a result label and make the button invisible. If they don’t match,
display the message Sorry, the passwords do not match each other. on the
result label.

Solution:

See the code in Exercise13.java, PasswordChangeWindow.java.

14. Write a small application with a GUI that could be the basis of a larger
application. Your application will ask the user three questions. You will
need three labels for the questions and three corresponding text fields for the
user’s answers. When the user presses an Accept button, you should check
whether each text area contains a nonempty string. If each does, display the
message Your answers have been recorded. on a result label. If not, change
the color of the label holding the question for the blank text field to red and
display the message You must answer all questions on the result label.

Solution:

See the code in Exercise14.java, QuestionaireWindow.java.

15. Write a small application with a GUI that could be the basis of a larger
application. Your application will accept a string indicating the size of a
garment. The valid sizes are S, M, L, XL, and XXL. When the user enters a
size into a text field and presses an Accept button, you should check whether
the size is one of the valid sizes. If the size is valid, display the message Size
accepted: as well as the size in a label and then clear the text field. If not,
display the message Size rejected: in the label.

Solution:

See the code in Exercise15.java, SizeWindow.java.

16. Write a small application with a GUI that could be the basis of a larger
application. Your application will ask whether the user is over 16 years of
age. Display the text Are you at least 16 years old? in a label. If the user
clicks the Yes button, display the message The user is 16 years old. in a
result label. Otherwise, display The user is not yet 16 years old. in the result
label. In both cases, make the two buttons invisible.

Solution:

See the code in Exercise16.java, SizeWindow.java.

Projects:

1. Rewrite the program in Listing 13.9 so that the panel with the buttons
changes to pink when the larger panel turns red. Similarly, when the larger
panel turns green, the panel with the buttons changes to blue. Also add a
label to the larger panel that says Watch this panel!, and add a button to the
button panel that is labeled Change. When the Change button is clicked, the
colors change (from pink and red to blue and green, respectively, or vice
versa). The Change button has no effect on the initial configuration, in
which the big panel is blue and the button panel is gray.

Notes:

This program can be written by making a few changes to PanelDemo, Listing 13.9.
One little extra detail is that buttonPanel must be visible in the
actionPerformed method, so it is declared outside the constructor block. A
character flag is used to keep track of the background color settings so the click-on-
Change event can determine the new background colors (and not change them if they
are the initial colors).

References:

Listing 13.2, Listing 13.9

Solution:

See the code in PanelDemo2.java. Uses WindowDestroyer.java.

2. Rewrite the program in Listing 13.10 so that it has all of the following
changes:
•

The class name is MemoSaver2.

• There are six buttons instead of five at the bottom of the GUI. They are
arranged as follows: <diagram omitted>
Hint: Use the GridLayout manager on the button panel.
• When the user saves the text as the first memo, the text area changes so
that it says Memo 1 saved, and when the second memo is saved, the text area
changes to say Memo 2 saved. (See Self-Test Question 43 for a hint.)
• When the Exit button is clicked, the program ends, and the window goes
away. The close-window button also ends the program. So the Exit button
and the close-window button perform the same action.
• In addition to the default constructor, another constructor produces the
same display, except that the text area can accommodate a given number of
lines and characters per line. This constructor has the following form:
public MemoSaver2(int lineCount, int charCount)
• The text area has line wrap, so that if more characters are entered than will
fit on the line, the extra characters automatically go on the next line.
• The method main constructs two windows, one using the default
constructor and one using the added constructor with arguments 5 and 60, in
that order.

Notes:

This program can be created by modifying MemoSaver.java, Listing 13.10, but
there is one potential problem with the display. Depending on the resolution of the
user’s screen, the window size may be too small to show the complete text panel. If
that happens, the first few characters typed into the text box will not be visible. This
is a little disconcerting; unless enough characters are typed it will appear that the text
box is not letting the user enter anything. Increasing the width of the window from
600 should fix the problem (changing it to 700 works for a screen resolution of 1024
by 768).
References:

 Listing 13.10

Solution:

See the code in MemoSaver2.java. Uses WindowDestroyer.java.

3. (You should do Programming Project 2 before doing this one.) Write a
GUI, using Swing, that behaves as follows: When the program is run, a
window appears and asks the user for the desired number of lines and
characters per line for the memo saver. If the user clicks the close-window
button, the program ends. More typically, the user enters these two numbers
in two text fields. A Continue button is available that, if clicked, causes the
window to disappear and another window to open. This second window is
just like the memo saver in Programming Project 2, except that the text area
has the number of lines and characters per line specified by the user in the
previous window.

Notes:

This Project requires a few new techniques in addition to those in Project 2.
JTextField is used for the text input boxes (instead of JTextArea) since the
input will be on a single line, the original window must be hidden when the memo
window is created, and consideration must be given to what happens if nothing is
entered in the text boxes when “Continue” is clicked. Note that the window size may
need to be adjusted, depending on the monitor resolution, to show all the window’s
objects completely. Also note that the solution does not include code to detect errors
in data entry by catching NumberFormatException exceptions.

References:

 Project 13.2, Listing 13.10

Solution:

See the code in MemoSaver3.java. Uses WindowDestroyer.java.

4. (The Swing part of this project is quite straightforward, but you do need to
know a little about how to convert numbers from one base to another.) Write
a program that converts numbers from base-10 (ordinary decimal) notation
to base-2 notation. The program uses Swing to perform input and output via
a window interface. The user enters a base-10 number in one text field and
clicks a Convert button. The equivalent base-2 number then appears in
another text field. Be sure that the two text fields are labeled. Include a Clear
button that clears both text fields when clicked. Also be sure that the close-
window button works correctly.

Notes:

This Project has some interesting challenges even if the student knows how to convert
from decimal to binary. The solution shown here is designed to work for non-
negative decimal integers only and uses the successive division by 2 algorithm, which
is probably the easiest to program. However, there are several details that need
special attention. For example, what if the user clicks the “Convert” button before
anything is entered in the decimal text field? And what if the user does not enter a
valid non-negative decimal number? The solution shown here displays a message in
the binary number field for the first case, but does not check the decimal field input
for incorrect input (a better implementation would detect errors in data entry by
catching NumberFormatException exceptions and would also print an error
message if the number entered was not a non-negative integer). The algorithm used to
convert decimal to binary by successive division is as follows:

quotient = decimal number
while(quotient is not zero)

next binary digit = remainder(decimal number/2)
quotient = integer part of (quotient/2) //Throw away the fractional part.

Each iteration of the while loop produces one binary digit. The first iteration
produces the least significant bit and each successive iteration produces the next
higher significant bit, with the most significant bit produced in the last iteration. The
loop ends when the quotient is zero, since all divisions after that will just add leading
zeros. Note that the last digit is, necessarily, 1. The algorithm is simple to program
with the modulo operator (%) and truncating integer division, but, unfortunately, the
bits are obtained in the reverse order we need to print (the most significant bit must be
printed first but it is the last obtained). The approach taken in the solution shown here
puts the bit values in a character array, one at a time, from least significant bit to most
significant bit, which makes the conversion process easy to code. Then the character
array is read in reverse order, appending each character to a String so it will print in
the correct order, with most significant bit on the left
Solution:

See the code in DecimalToBinary.java. Uses WindowDestroyer.java.

5. (It would probably help to do Programming Project 4 before doing this
one.) Write a program that converts numbers from base-2 notation to base-
10 (ordinary decimal) notation. The program uses Swing to perform input
and output via a window interface. The user enters a base-2 number in one
text field and clicks a Convert button. The equivalent base-10 number then
appears in another text field. Be sure that the two text fields are labeled.
Include a Clear button that clears both text fields when clicked. Also, be sure
that the close-window button works correctly.
Hint: Include a private method that converts the string for a base-2 number
to an equivalent int value.

Notes:

Positional weighting is used to convert from binary to decimal; the binary string is
processed one character at a time and the weight for that position added to a running
total until all digits have been processed, so the final value is the decimal equivalent
of the binary number. Just as with the conversion from decimal to binary in the
previous Project, a slight complication arises from the order of the bits. The first
binary digit is the most significant digit, so that weight must be determined first and
the weight of each successive digit must be reduced by a factor of 2.

Solution:

See the code in BinaryToDecimal.java. Uses WindowDestroyer.java.

6. (It would help to do Programming Projects 4 and 5 before doing this one.)
Write a program that converts numbers from base-2 notation to base-10
(ordinary decimal) notation and vice versa. The program uses Swing to
perform input and output via a window interface. There are two text fields—
one for base-2 numbers and one for base-10 numbers—and three buttons
labeled To Base 10, To Base 2, and Clear. If the user enters a base-2 number
in the base-2 text field and clicks the To Base 10 button, the equivalent base-
10 number appears in the base 10 text field. Similarly, if the user enters a
base-10 number in the base-10 text field and clicks the To Base 2 button, the
equivalent base-2 number appears in the base-2 text field. Be sure that the
two text fields are labeled. The Clear button should clear both text fields
when clicked. Also be sure that the close-window button works correctly.

Notes:

This program is easily obtained by inserting the action listener code from Project 4
into the program for Project 5 and changing the labels.

References:

Project 13.4, Project 13.5

Solution:

See the code in BinaryDecimalConverter.java. Uses WindowDestroyer.java.

7. Write a program that produces a GUI with the functionality and look of a
handheld calculator. Your calculator should allow for addition, subtraction,
multiplication, and division. It should allow you to save and later recall two
different values. Use the program in Listing 13.13 as a model. If you have
not studied Listing 13.13, use Listing 13.12 as a model.

Notes:

It may take some trial and error to get the additional buttons to fit into the window and
look nice. If all the buttons do not show up, try resizing the window.

References:

Listing 13.12

Solution:

See the code in Calculator.java. Uses WindowDestroyer.java.

9. In Exercise 8, you created an application that modeled a telephone
keypad. We would like to improve the operation of the application. Here is a
list of the improvements to be made:
• The first number in the number cannot be 0. If the user types 0 as the first
number, do nothing with it.
• Format the number using dashes, as follows:
• 1-000-000-0000 if the first digit entered is a 1.
• (000) 000-0000 if ten digits are entered.
• 000-0000 if seven digits are entered.
• Do not accept extra digits.

Notes:

This application is pretty simple for the most part. A number of buttons must be
created and multi-way switch used to detect which button on the keypad was pressed.
But if we set an integer value, the rest of the code is simple. Create a method that
checks to see if the digit entered is valid. Create methods that format the number in
the different ways.

References:

Exercise 13.8

Solution:

See the code in TelephoneKeypad.java..

10. Write an application called Scramble that has a GUI to play a game of
word anagrams. Create two arrays of strings. The first array will hold words,
and the second will hold scrambled versions of those words. Your Java code
can initialize these arrays directly with the words. Display the scrambled
version of the word in a label. The user will enter a guess for the word in a
text field and press a Check button, You should see whether the guess is
correct. If it is not correct, change the guess in the text field to Sorry, that is
incorrect. Please try again. If the guess is correct, change it to “That is
correct. Here is a new word to try.” And display a new scramble. Also
provide a Give Up button. If it is pressed, display the unscrambled word and
provide a new scrambled word.

Here are some extensions that can be made to improve this application:
• Read the words from a file.
• Do not use a second array of scrambled words, but instead use Java’s
random number generator to swap letters in the word just before you display
the scrambled word.
• Randomly decide which word to display.
• Keep a score. Award 5 points if the user gets the word on the first guess, 3
points for getting it on the second guess, or 1 point for getting it on the third
guess.
Divide the total points scored by the number of words presented.

Notes:

This application keeps the possible words in an array and sets it directly within the
code. It also has a couple private variables to remember the word it is on and the
number of guesses made. It has a method to scramble the word. There are a number
of different ways the scrambling could be done. This implementation repeatedly
removes a random character from the word and adds that character to a result string.

Solution:

See the code in Scramble.java.

11. Write an application with a GUI that will convert numbers from binary
to octal. Binary numbers are composed of just the digits 0 and 1. Octal
numbers use the digits 0, 1, 2, 3, 4, 5, 6, and 7. Note that each octal digit
corresponds to a three-bit binary number, as follows:
Binary Octal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

To convert a number from binary to octal, first group the bits in the binary
number into sets of three and then apply the equivalent octal numbers. For
example, the binary number 001000101110 would be grouped as 001 000
101 110, which corresponds to the octal digits 1, 0, 5, and 6, respectively,
Thus, the octal equivalent of the binary number is 1056. If the number of
bits in the binary number is not divisible by 3, add zeros at its beginning
until it is. For example, since the binary number 1011011100100 has 13 bits,
we would add two zeros before it to get 001011011100100. We would then
group its bits as 001 011 011 100 100 and get 13344 as its octal equivalent.

To convert an octal number to binary, we use our correspondence table in
the reverse direction. For example, the octal number 716 is 111 001 110, or
111 001 110 in binary. Your application can omit the spaces we use to show
the grouping of the bits.
You will need a text field for the user to enter a number and a label for the
results. Provide three buttons: To Octal, To Binary, and Clear. If the user
clicks the Clear button, clear any text in the text field and label. If the user
clicks one of the two conversion buttons, check whether the number in the
text field is in the correct format. If it is not, display the message Bad

Format in the results label. If the format is ok, compute the converted value
and display that in the results label.

Notes:

This application does a conversion between binary and octal. Unlike the binary to
decimal conversion, this can be done without any mathematics. We just need to have
a translation table between octal digits to strings of binary bits. One complication is
that when we translate from binary, we want to have groups of 3 bits. If the length of
the string of binary bits is not divisible by 3, we will add zeros to the front. A couple
methods are used to verify that the input strings are valid. Methods were also created
for the conversions.

Solution:

See the code in BinaryOctalConverter.java.

Exercises:

1. Create an applet that will display the following logo in its upper left
corner. Hint: Draw the logo in the paint method, but remember to call
super.paint().

Solution:

See the code in LogoApplet.java.

2. Create an applet that will draw a starlike figure composed of a given
number of lines. For example, if the number of lines is 8, you would draw a
figure like this: Use a text field to get a number from the user. Then draw the
star when the user clicks a Draw button. Hint: Draw the star in the paint
method, but remember to call super.paint(). You should also call repaint in
the actionPerformed method that listens for the button press.

Solution:

See the code in StarFigureApplet.java.

3. Create an applet that will draw a number of strings based upon an initial
string specified by the user. If the string is n characters long, draw n strings
as follows: The first string is the original one that the user typed in a text
field. Each subsequent string removes the last character from the previous
string. For example, if the user enters the string “Charles”, the applet would
draw
Charles
Charle
Charl
Char
Cha
Ch
C
Use a text field to get a string from the user. Then draw the strings when the
user clicks a Draw button. Hint: Draw the strings in the paint method, but
remember to call super.paint(). You should also call repaint in the
actionPerformed method that listens for the button press.

Solution:

See the code in StringReducerApplet.java.

4. Create an applet that will convert lengths given in feet to lengths in meters
(1 foot = 0.3048 meters). The applet should have a text field for the user to
enter a length in feet. It also should have a Convert button that the user
clicks after entering a length. Display the result in a scrollable text area, and
put each new result on a separate line.

Solution:

See the code in FeetToMetersApplet.java.

5. Create an applet that will calculate an adult’s body mass index (BMI). The
formula for BMI is
703 _ Weight / Height2 where Weight is given in pounds and Height is given
in inches. Your applet should have three text fields, a button, and a label.
The user will enter the weight in one field and the height in feet and inches
in the other two fields. When the button is clicked, the BMI will be
computed and displayed on label.

Solution:

See the code in BMIApplet.java.

6. Create an HTML page to hold the BMI applet you created in the previous
exercise. You should include a link to www.cdc.gov/nccdphp/dnpa/bmi/,
which is a page about BMI on the Website of the Centers for Disease
Control. You should also include the information from the following table
on your page: Indicate that this information was current as of May 2007.

Solution:

See the code in Exercise6.html.

7. Create an applet that will implement a timer. Give it two buttons—Start
and Stop—and a text area that has three lines. When the applet begins, only
the Start button should be visible. When that button is clicked, get the
current time and display it on the first line of the text area. Then make the
Start button invisible and the Stop button visible. When the Stop button is
clicked, get the current time and display it on the second line. Calculate the
difference between the two times and display it on the third line. Finally,
make the Stop button invisible.

Solution:

See the code in TimerApplet.java.

8. Create an applet that will compute sales tax. Give it two text fields, a
Compute tax button, and a label. The user will enter a tax percentage in the
first text field and a value in dollars in the second text field. After the user
clicks the button, the sales tax should be displayed in the label.

Solution:

See the code in SalesTaxApplet.java.

9. Create an applet that has four buttons and a text field. Attach an image to
each of the buttons: a square, a circle, a filled square, and a filled circle,
respectively. The user will enter a length in the text field and then click a
button. If the square button is clicked, display the circumference of a square
whose sides are the given length. If the filled square is clicked, display the
area of the square. If the circle is clicked, display the circumference of a
circle whose diameter is the given length. If the filled circle is clicked,
display the area of the circle.

Solution:

See the code in FigureComputerApplet.java. The associated images are square.jpg,
squareFill.jpg, circle.jpg, circleFill.jpg.

10. Create an applet that has four buttons and a label. On each button attach
an icon that is the flag of some country. When the user clicks a button,
display the name of the country and its capital city in the label.

Solution:

See the code in FlagApplet.java. The associated images are BelgiumFlag.jpg,
FranceFlag.jpg, GermanyFlag.jpg, ItalyFlag.jpg.

11. Create an applet for computing the tip at a restaurant. It will have a text
field where the amount of the bill will be entered and two buttons: Tip 15%
and Tip 20%. When a button is clicked, display the amount of the tip in a
label.

Solution:

See the code in TipApplet.java.

12. Create an HTML page that a restaurant could use to display its daily
specials. Include a price and description for each special. Include the applet
for computing a tip from the previous exercise.

Solution:

See the code in Exercise12.html.

13. Create an applet that computes the user’s gasoline cost. You will need
text fields where the user will enter the number of miles traveled by
highway, the number of miles of city driving, the average fuel consumption
of the vehicle for both highway and city driving, given in miles per gallon,
and the cost of gasoline per gallon. Initially, fill these fields with the values
2000, 10000, 30, 20, and 3, respectively. Your applet should have a
Compute Cost button that, when clicked, causes the cost to the displayed in a
label.

Solution:

See the code in GasCostApplet.java.

14. Convert the substitution-code application from Exercise 9 in the previous
chapter into an applet.

Solution:

See the code in CodeApplet.java.

15. Convert the list-of-names application from Exercise 10 in the previous
chapter into an applet.

Solution:

See the code in NamesApplet.java.

Projects:

2. Convert the Swing application MemoSaver, as given in Listing 13.10 of
the previous chapter, to an applet, and place it in an HTML document.

Notes:

The applet is easily created by following the directions in the text to convert a Swing
application to an applet.

References:

Listing 13.10

Solution:

See the code in MemoSaverApplet.java and MemoSaver.html.

3. Every first-year electrical engineering student learns that two resistors (a
resistor is a common type of electrical component) can be connected in
either of two configurations— series or parallel—and that there are simple
formulas to calculate the equivalent resistance of a single resistor that could
replace the two. If R1 and R2 are the two resistor values, then
Series resistance = R1 + R2, and
Parallel resistance = (R1 * R2) / (R1 + R2).

Write an applet that provides a windowing interface to let a user enter two
resistor values and choose which configuration to calculate. Include two text
fields (label them Resistor 1 and Resistor 2) for the two input values, two
buttons (label them Series and Parallel) to select the configuration, and
another text field (label it Equivalent Resistance) to display the calculated
value and indicate which configuration was selected. For example, if the
user enters 100 for R1 and 50 for R2 and clicks the Series button, the
message would read Series Equivalent = 150. If the user enters the same
values and clicks the Parallel button, the message would read Parallel
Equivalent = 33.3. Put the applet in a Web page that explains the
calculations.

Notes:

The applet can be created by copying code for any of the previously developed GUIs
and may have any number of equally useful layouts. The solution shown here uses a
five-row grid layout and two buttons, one to perform the calculations and another to
clear all the text fields. The solution also tests for a variety of error conditions (e.g.,
no value entered for either or both resistors) and prints an appropriate message if the
calculation cannot be performed.

References:

Solution:

See the code in ResistanceCalculatorAppet.java and ResistanceCalculator.html.

4. Repeat Programming Project 7 in the previous chapter, but write the GUI
calculator as an applet.

Notes:

The applet is easily done if the calculator program from Chapter 13 Programming
Project 7 is available. As with Project 2, just follow the directions in the text to
convert a Swing application to an applet.

References:

Project 13.7

Solution:

See the code in CalculatorApplet.java.

5. Write an applet that converts numbers from base-10 (ordinary decimal)
notation to hexadecimal (base-16) notation. Use Swing for input and output
via an applet interface. The user enters a base-10 integer number in one text
field and clicks a button labeled Convert. The equivalent hexadecimal
number then appears in another text field. Be sure that the two fields are
labeled. Include a Clear button that clears both text fields. (The Swing part
of this exercise is quite straightforward, but you do need to know a little
about how to convert numbers from one base to another.)

Notes:

The applet can be created most easily by modifying the code from Chapter 13 Project
4, DecimalToBinary. Change it from a Swing application to an applet (follow the
steps described in the text), and, of course, modify the binary conversion code so it
converts to hexadecimal, instead. Fortunately, the same successive division algorithm
works, regardless of the base: just change the divisor from 2 to 16 and add code to
translate each remainder from a decimal integer value to a hex character code (a
switch statement works very nicely, is very readable, and also is usually compiled
very efficiently).

References:

Project 13.4

Solution:

See the code in DecimalToHexadecimalApplet.java.

6. Repeat Programming Project 2, but make all of the following changes:
• Name the class MemoApplet.
• Create six buttons instead of five, and arrange them as follows:
<diagram omitted>
The buttons are still at the bottom of the GUI (applet), with the text area
above them. Hint: Use the GridLayout manager on the button panel.
• When the user saves the text as memo 1, the text area should display
Memo 1 saved, and when the user saves the text as memo 2, the text area
should display Memo 2 saved. Hint: See Self-Test Exercise 43 of the
previous chapter.
•

 Give the text area a line wrap, so that if more characters are entered than

will fit on the line, the extra characters automatically go on the next line.

Notes:

The applet is most easily written by making changes to the solution to Chapter 13
Programming Project 2 (MemoSaver2).

References:

Project 14.2

Solution:

See the code in MemoAppket.java.

16. Repeat Programming Project 4 of Chapter 10, but write it as an applet.

Notes:

The first step is to design the user interface with appropriate buttons, labels, and text
boxes and a good next step to write and test just the code to create them. After that,
the action events such as opening a file to read, reading records, opening a file to
write, writing records, etc., can be developed one at a time. Care must be taken to
keep track of whether a file is open or not, and, if a file is open, whether it is a read
file or a write file, so a character flag variable readOrWrite is used and assigned an
appropriate value depending on the action taken. Another design issue to consider is
how to display error messages. One alternative is to use pop-up windows, but the
solution shown here takes a simpler approach by writing the messages to the text field
at the top of the window.

References:

Project 10.4

Solution:

See the code in SpeciesFileReadOrWriteAppket.java.

17. Repeat Programming Project 9 of Chapter 10, but write it as an applet.

Notes:

Similar notes to the previous project apply to this one. Note that the PetRecord
definition must be the one that is serializable and it must be inside the applet
definition since the applet must be self-contained.

References:

Project 10.9

Solution:

See the code in PetRecordFileReadOrWriteApplet.java.

18. Create an applet ScoreKeeper that keeps track of the score in a football
game. To display the scores, the applet will have four labels in the north
area. Two of the labels will display the name of the team. The other two
labels will display the current score of the teams. In the center of the
application will be a number of buttons: one for each team, one for each of
the three basic ways to score—touchdown, field goal, and safety—and three
buttons for the events that can happen after a touchdown— one-point
conversion, two-point conversion, and failed to convert. Initially, there will
just be two text areas and an Accept Names button in the south area of the
applet. The text areas will be used to enter the names of the two teams.
When the button is clicked, the team names will appear in the labels in the
north area of the applet and on the team buttons in the center. You will then
make the components in the south invisible and make the all components in
the north visible. Also, make the two team buttons in the center visible. This
will be the starting configuration. When one of the team buttons is clicked,
make them both invisible and make all three buttons for the ways to score
visible. If the field goal button is then clicked, add three points to the
appropriate team’s score and return to the starting configuration. If the safety
button is clicked, add two points to the appropriate score and return to the
starting configuration. If the touchdown button is clicked, add six points to
the appropriate score and then make the three touchdown conversion event
buttons visible. Once one of these buttons is clicked, add zero, one, or two
points, respectively, to the appropriate score and then return to the starting
configuration.

Notes:

This application looks at how we can change the appearance by making components
visible or invisible. The solution uses a number of methods whose job is just to set
the visibility of the components. This abstraction helps simplify the actionPerformed
method. The solution also uses getSource() to check which component generated the
event as it simplifies the code a bit for the buttons that get labeled with the team
names. It is relatively easy to change it so that it checks for the string instead.

Solution:

See the code in ScoreKeeper.java.

19. Create an applet Nim that will allow two players to play the game of
nim. Initially, there are three rows of coins. During his or her turn, a player
can take as many coins as desired from a single row. The rows have 3, 5, and
7 coins each. The last person to take a coin loses. Use buttons with icons for
the coins. As a player clicks the button, it will become invisible. There
should be a Turn over button that is visible only when a player has taken at
least one coin. Use a label to let the players know whose turn it is and who
has won the game.

Notes:

This application makes use of icons and visibility. One interesting feature of the
solution is that it uses a non-regular two-dimensional array of buttons. Each row in
the array corresponds to a row of coins in the game. You will need to have a state
variable that records the row that the first coin in a turn was removed from.
Subsequent removals must be checked against the row. Determining which coin
button was pressed is an interesting challenge. One way to accomplish this is to set
the label for each of the coin buttons with its location in the array; Example: “Coin
1,3”. You will then need to parse the action command to determine what to do. This
solution takes a slightly different and less efficient approach. It scans the array of
buttons and checks to see if any of them is the source (uses the getSource method).
This gives it the location of the button. Other than that, it is pretty straightforward.

Solution:

See the code in Nim.java. The associated image is coin.jpg

20. Convert the binary to octal translation application from Project 11 in the
previous chapter to an applet.

Notes:

This is just a simple translation exercise provided that a solution to Project 13.11 is
available.

References:

Project 13.11

Solution:

See the code in BinaryOctalConverterApplet.java.

Exercises:

1. Create an application that has a text area with scroll bars. Enable
horizontal scrolling as needed. Always provide vertical scroll bars. Create
two buttons. If the first button is pressed, append a number to the text area.
Start the number at 1, and increase it after the button is pressed. If the second
button is pressed, append a new line to the text area. Put a nice border
around the scroll pane.

Solution:

See the code in Exercise1.java, ScrollTextWindow.java.

2. Create an application that models a simple sales terminal. You should be
able to sell three kinds of items. Have one button for each item, and attach a
picture of the item to the button. Each button should have three labels
associated with it. These labels will display the price of the item, the number
of that item sold in the current transaction, and a subtotal for that item. Each
time a button is pressed, increase the count of that item in the current sale by
one and update the subtotal. A separate tenth label should show the total cost
of the current sale. An “EndSale” menu item ends the current sale and resets
the totals to zero.

Solution:

See the code in TerminalWindow.java. Associated images are in Phone.jpg,
Printer.jpg, Laptop.jpg.

3. Create an application that overrides the action of the methods
windowActivated and windowDeactivated. When the window is activated,
change the background color to white. When it is deactivated, change the
background to gray. Use at least four components in the GUI.

Solution:

See the code in Exercise3.java, ActivatedWindow.java.

4. Create an application that overrides the action of the method
windowIconified. Every time the window is iconified, add one to a counter
and display the counter in a label.

Solution:

See the code in Exercise4.java, IconifierWindow.java.

5. Create an application that uses a card layout with three cards. The first
card—a login card—should have two text fields, one for a user identification
and the other for a password. There are two users—Bob and Fred—whose
passwords are “mubby” and “goolag”, respectively. If Bob logs in, switch to
a card—the bob card— that has a text field, a text area, and two buttons. If
the first button is pressed, get the text from the text field and append it to the
text area. If the second button is pressed, return to the login card. If Fred
logs in, switch to a card—the fred card—that has three buttons. If the first
button is pressed, change the background
color to green. If the second button is pressed, change the background color
to red. If the third button is pressed, return to the login card.

Solution:

See the code in Exercise5.java, SimpleCardWindow.java.

6. Create a GUI that has two buttons on it. When clicked, each button creates
a new window. The first button creates a window that has a single button on
it. Pressing that button will change the window’s background color back and
forth between red and green. The second button creates a window that has
two buttons. Pressing the first button of these two buttons will change the
window’s background color to black. Pressing the second button will change
the background color to white. Make sure that your windows will just
dispose of themselves when they are closed.

Solution:

See the code in Exercise6.java, MultiWindow.java.

7. Create an application that has a text area, a text field and a button. In the
text field you can enter a name. When the button is pressed get the name
from the text field and create a new window. Use the name as the title of the
new window. Also program the window so that when it is closed, it will
append its name to the text area of your application and then dispose of
itself.

Solution:

See the code in Exercise7.java, RecorderWindow.java.

8. Create a GUI that has three buttons, each of which contains the name of a
song. When a button is pressed, create a new window. Title the window with
the name of the song. In a text area in the window, display the lyrics to the
song. When the window is closed, it should dispose of itself, but don't quit
the application.

Solution:

See the code in Exercise7.java, RecorderWindow.java.

9. Create an application that draws a simple stick figure person that looks
something like the following figure:
You should have three buttons: Dress, Hair, and Shoes. Associated with the
Dress button is a window that has four buttons, one for each of the colors
red, green, blue, and orange. Pressing one of these buttons will change the
color of the dress. Similarly, the Hair button is associated with a window
that has three buttons, one for each of the colors black, gray, and pink. And
the Shoes button is associated with a window that has three buttons, one for
each of the colors red, yellow, and blue. When the application starts, create
the windows for the Dress, Hair, and Shoes buttons, and make these
windows invisible. Pressing a button will make the correct window visible.
If the window is closed, just make it invisible.

Solution:

See the code in StickFigureWindow.java.

10. Create an application that will compute the average of a list of numbers.
Begin with two windows. The first window, titled “Display,” should have a
label and a vertically scrollable text area. The second window, titled “Data
entry,” should have a text field and an Enter button. When a user enters an
integer value into the text field and clicks the Enter button, copy the value in
the text field to the text area in the display window. Also, update the label in
this window to indicate the number of values, their sum, and average. If
either window is closed, quit the application.

Solution:

See the code in ComputeAverage.java.

11. Create an application that will display a string of text using different
fonts. Your application should have three menus. The font-name menu will
have five menu items: Serif, SansSerif, Monospaced, Dialog, and
DialogInput. The style menu will have three menu items: Plain, Bold, and
Italic. The size menu will have four menu items: 10, 12, 18, and 24. When a
menu item is chosen, change the font and then repaint the window. Hint: Use
the method drawString to display the sample string. Use the expression new
Font(type, style, size) to create the font you will display. Refer to the API
documentation for the class Font for additional details.

Solution:

See the code in Exercise11.java, FontWindow.java.

12. Modify the application in the previous exercise so that it uses a single
nested menu. The single menu, titled “font,” should have three submenus,
one each for the font-name, style, and size.

Solution:

See the code in Exercise12.java, NestedFontWindow.java.

13. Create an application that uses nested menus to choose an ice cream
sundae. The “Choices” menu will have three submenus. The “Flavor”
submenu will have three menu items: Chocolate, Strawberry, and Vanilla.
The “Toppings” menu will have four menu items: Chocolate chips,
Sprinkles, Nuts, and Peppermint. The “Syrup” menu will have three menu
items: Chocolate, Butterscotch, and Berry. As the choices are made, update a
label in the center of the application. The “Actions” menu will have two
items: Clear will clear the current order, and Quit will exit the
application.

Solution:

See the code in SundaeCreator.java.

14. Create an application that will draw a figure. Your application will have
a Shape menu with three choices: Circle, Square, and Triangle. A Color
menu should have four choices: Black, Cyan, Magenta, and Yellow. When
one of the menu items is chosen, redraw the figure. In the east area of the
application, place three text fields and a button. The text fields will allow
you to enter integer values for the x and y coordinates of the center of the
figure and the size of the figure. When the Change button is pressed, get the
values from the text fields and redraw the figure.

Solution:

See the code in Exercise14.java, ShapeWindow.java.

15. Repeat Exercise 10 of Chapter 13 to use a menu instead of an Accept
button. The menu should contain an “Add Name” item that has the same
function as the Accept button.

Solution:

See the code in Exercise15.java, NamesMenuWindow.java.

Projects:

1. Write a GUI that will let the user sample icons. It should have a menu
named Icons that offers three choices: Smiley Face, Duke Waving, and Duke
Standing. When the user chooses a menu item, the corresponding icon is
displayed (and no other icons are displayed). When the GUI is first
displayed, no icons are visible. The picture files for these icons are available
in the source code for this chapter on the Web.

Notes:

The layout of the window, structure of the code, and technique for updating the
display based on the user’s selection is similar to that for MemoGUI, Listing 15.1. As
with any of the applications that use icons, you will need to make sure that the image
files are in an appropriate folder. This is not always the same as where the source
files are located.

References:

Listing 15.1

Solution:

See the code in IconMenu.java.

2. Enhance the memo saver GUI in Listing 15.1 in all of the following ways:
• Add another menu called Scroll Bars that offers the user three choices:
Never, Always, and As Needed. When the user makes a choice, the scroll
bars are displayed according to the choice.
• When the user clicks the close-window button, another window pops up
and asks the user whether to end the program, as was done in Listing 15.10.

Notes:

This program is best done by adding one feature at a time and judiciously copying
code from examples on the CD that comes with the text.

To obtain the exit pop-up window, start with the code from CloseWindowDemo,
Listing 15.10 and add to it. For example, add a call to ConfirmWindow() in the
actionPerformed method if the ActionEvent is “Exit”. The
setDefaultCloseOperation code is necessary to get the pop-up window
when the exit button (the “X” in the upper left corner of the window) is clicked, and
the call in actionPerformed is necessary to get the window when “Close” in the
“Memos” menu is selected.
Next, add the nested menus and make sure it works before actually coding the events
for the options.

Next, add functionality to the “View” menu options.
Unfortunately, there is no program from which to copy the code to make the “Scroll
Bars” options functional, but it is mostly a matter of going through “The JScrollPane
Class for Scroll Bars” section of Chapter 15 and following the directions. Note that
the following line is necessary to make the change visible immediately after selecting
any of these options:
SwingUtilities.updateComponentTreeUI(this);

References:

Listing 15.1, Listing 15.10

Solution:

See the code in MemoGUIEnhanced.java.

3. Enhance the program you wrote for Programming Project 8 in Chapter 8
to give it a GUI that allows the user to write and read objects of type Pet to a
file. Include a menu with options to create a new file, read an existing one,
or exit. Create two files—named dogRecords and catRecords—and list them
in a submenu under the read option. Hint: You can use this program to create
the files dogRecords and catRecords. This project will require two testing
phases, one before and one after creating the files, but that is not a major
problem.

Notes:

This is one of the more complicated problems in the text. While it is not difficult to
create the menus, building and viewing files is another matter. As is often the case, it
is easier to create the interface first, then add functionality a piece at a time. The user
interface for the solution shown here a main window to display or enter data, and a
pop-up window to enter the file name. The data window does not show text areas
until a file has been opened to read or write. One dilemma is that the view option
cannot be tested unless files with PetRecord records can be built, and, vice versa,
the build option cannot be tested unless it is possible to view the files. One way
around this dilemma is to use PetFileReadOrWrite from Chapter 10
Programming Project 9 to create the files

References:

Project 10.9

Solution:

See the code in PetFilerGUI.java. Uses PetRecord.java.

4. Write a GUI that will let the user sample borders. Include a menu named
Borders that offers three options—beveled border, etched border, and line
border—as submenus with the following options:
• Beveled-border submenu options: raised or lowered.
• Etched-border submenu options: raised or lowered.
• Line-border submenu options: small, medium, or large.
Each of these options should be a submenu with three color options: black,
red, and blue. Put the borders around a label containing text that describes
the border, such as Raised Border, Lowered Etched Border, and so forth. Fix
the highlight and shadow colors for the etched-border options to whatever
colors you like, and make the small line border 5 pixels wide, the medium
one 10 pixels wide, and the large one 20 pixels wide.

Notes:

This Programming Project is fairly easy, especially if done a step at a time. First
create the menu hierarchy, then add the lines in the actionPerformed method to
set the border style and change the label’s text, depending on the style selected. Note
that setActionCommand is used to differentiate selections with the same text (e.g.
“Raised” could be either Beveled or Etched).

Solution:

See the code in BordersMenu.java.

5. Repeat Programming Project 3 using either the BoxLayout manager or the
Box container class to create the GUI. Place two buttons, one to write a file
and the other to read a file, vertically on the left.

Notes:

While this project is similar to Project 3, it has a significantly revised interface. The
interface was designed to display one set of buttons, labels, and text boxes to enter the
file name and a different set of buttons, labels, and text boxes for data viewing or
entry.

References:

Project 15.3

Solution:

See the code in PetFilerBoxLayout.java. Uses PetRecord.java.

6. Write a “skeleton” GUI program that implements the WindowListener
interface. Write code for each WindowListener method that simply displays
a message— in a text field—identifying which event occurred. Recall that
these methods are the same as the ones listed in Figure 13.3 of Chapter 13
for the class Window- Adapter. Note that your program will not end when
the close-window button is clicked, but will instead simply send a message
to the text field saying that the windowClosing method has been invoked.
Include an Exit button that the user can click to end the program.

Notes:

A separate window is used to show the messages each time one of the main window
events are clicked. setDefaultCloseOperation is used to reprogram the
close-window event so that it prints a message instead of closing.

References:

Listing 15.9

Solution:

See the code in WindowListenerSkeleton.java.

7. Create an application that uses a card layout manager to enable two
people to play a guessing game. The initial card will have two text fields in
which the players will enter their names. The StartGame button will bring up
a new card, the numberentry card, that has a text field in which a player can
enter a secret integer value.

The PlayGame button will bring up a second card that has three buttons and
a text field. The player will enter a guess value in the text field and then
press one of the three buttons. The greater button will display true or false
depending on whether the player’s guess value is greater than the secret
value. The less button will display true or false depending on whether the
players guess value is less than the secret value. The equal button will
display true or false depending on whether the players guess value is equal
to the secret value. Once the player correctly guesses the integer value, the
number of guesses made is added to that player’s total score and displayed in
a text field. Pressing the NewNumber button will bring back the number-
entry card. Players should alternate between picking the secret number and
guessing the value of the secret number. You should have labels that will
display each player’s current score.

Notes:

This application demonstrates the use of a card layout. Note that in this game, lower
scores are better. (This is why the score is shown as blots.) To simplify the
actionPerformed method, we break each button’s action out into a method. The setup
code is long, but uncomplicated.

When constructing this application, it would be a good idea to do it iteratively.

1)

Get the card logic to work correctly first (switching between cards)
2) Complete the start card. (Name entry works)
3) Complete the secret number entry card. (A player can enter their secret

number)
4) Do the guess card. (Add each button and make it work.)

Solution:

See the code in in GuessingGame.java..

8. Create an application that will play a simple one-player card game. In this
game, you get four random cards that have values in the range from 1 to 10
and are face down so their values hidden. As the game progresses, you can
press a NewCard button and get a new card with its value shown. Use an
icon and a label to display the card. Getting a new card will cost you one
point from your total score. You can then choose to replace one of your four
cards with the new card. To do so, implement the four cards as buttons with
icons and use a button press to indicate which card you want to replace.
When the card is replaced, use a text label to inform the player of the value
of the card that was replaced. Make sure that only one card can be replaced.
At any point, you can press a Stop button to stop that hand.
All four of your cards should then be displayed face up. Total the values of
the cards and add that to your total score for all hands. You will need two
labels to display the score for the game. The first label will give the total
score the player has earned. The second label will give a total that is par for
the game. To determine the par value for a given hand, add up the values
of the cards in the hand before any replacement is done. Once the hand is
over, add the par value of the hand to a total and display that. You will need
another button, StartNewHand, that will generate four new random cards for
your hand.

Notes:

This application can really look nice with appropriate use of icons. The solution has
an icon for the back of the card and one for each of the faces. It then uses the setIcon
method for a JButton to change the image as needed. The solution uses getSource to
determine which button was pressed, but it could be easily modified to check for an
action string instead. The most complicated part of the application is deciding what to
do for each click as there are a number of possible states that we can be in and we
want to keep track of the score as the player deals out cards.

One interesting thing to do is to analyze this game. Is it advantageous to deal a card?
Once the card is dealt, should we replace one of our known or unknown cards with it?
This game is simple enough that it can be analyzed, but complicated enough to make
it interesting.

Solution:

See the code in CardGame.java. There are a number of jpg files used for the card
images.

9. Enhance Programing Project 11 in Chapter 13 that converts between
binary and octal numbers by adding conversions to and from the
hexadecimal number system and by using menus. A Convert menu should
have four items, the first three of which are submenus. The first submenu—
FromBinary—will have two menu items: “to octal” and “to hexadecimal.”
The second submenu—FromOctal— will have two menu items, “to binary”
and “to hexadecimal.” The third submenu— FromHexadecimal—will have
two menu items, “to binary” and “to octal.”
The final item in the Convert menu is “Clear.” Hexadecimal numbers use the
digits 0 through 9 and the letters A through F. Note that each hexadecimal
digit corresponds to a four-bit binary number, as follows:
Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F
To convert a number from binary to hexadecimal, first group the bits in the
binary number into sets of four and then apply the correspondences. For
example, the binary number 0101110010100110 would be grouped as 0101
1100 1010 0110, which corresponds to the hexadecimal digits 5, C, A, and
6, respectively, Thus, the hexadecimal equivalent of the binary number is
5CA6. If the number of bits in the binary number is not divisible by 4, add
0’s at its beginning until it is. To convert an hexadecimal number to binary,
we use our correspondence table in the reverse direction. For example, the
hexadecimal number 7F6 is 0111 1111 0110, or 01111111 0110 in binary.
Your application can omit the spaces we use to show the grouping of the
bits.
To convert between octal and hexadecimal, first convert to binary.

Notes:

This is an extension of the converter project in the previous chapter. Conceptually the
changes required to add in hexadecimal numbers are easy, but there are some details
that get in the way. Checking the validity of a hexadecimal number is complicated by
the fact that the “digits” now include A through F. The groupings are for 4 bits
instead of 3 bits, which increases the number of cases to consider. Even using an
array to store the mappings is complicated by the alphabetic digits in a hexadecimal
representation. One other factor to consider is how to convert between octal and
hexadecimal. As directed, this code converts to binary first and then converts from
binary to the desired base using existing methods. This makes those two conversions
trivial.

Solution:

See the code in BaseConverter.java.

	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Practice Programs
	Programming Projects
	Exercises
	Projects
	Exercises
	Projects
	Exercises
	Projects

