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Chapter 2
2.1
Consider the geometry shown below: =11 .. A =1 and B = 0 since the planes 1 and 2
are spaced an infinitesimal distance apart. Now use Snell's Law:
%)-nl sing; = ?nz sindy; For small angles: ni¢; = npd;
andrz = (8 + ¢1) — 2= 0 + ¢1 [1 - (n1/n2)];
Since r1/R =sin(0 + ¢1) = 6 + ¢1
. _ . 't _ﬂ N _Il_ll n_i_v.
<. 01 =11/R-r17; Hence,rp =r; +[1 nz] [ri/R —r171) —{[1 nz]R} r+ - I
Thus, the ray matrix is as shown on the side of the diagram.
¢\z
1 0
1 n
[1 - n1/n2]§ ;121'
2.2
Consider the geometry shown below:
Since the distance between the two planes — 0, thenrp =rjand A=1B =0
Use Snell's law for the interface: %)- n; sinf; = % sinf7 and now use the small angle
approximation:
G Or=par Mg D1
..ez—rz—nzel-nzrl or: I
I
L h I I T2
' 1 0
0, L] .
L] 9, Tl oo o
n2
I I
0 1 I |
o @

Notice that AD-BC #1 because of the different indices of refraction.
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2.4

2.5
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Consider the diagram shown below and apply the results of problem 2.2 to reduce the
number of matrices to be derived. The matrix for the last interface comes first with the
interchange of nj and nj, followed by the matrix for the length d, and finally by the matrix

for the first interface.

r 1 d ni

2 1 0 10 1 0 1 Bg | my
_ , , _ |t m
B n2 o | n2 B

Iy O aidlo 14LO n 0 o 0o U 0 1

Notice that the determinant, AD —-BC=1 even though the optical path does include a

different index.

Figure for problem 2.3

Combine problems 2.1 and 2.3

1 0 1 d 1 0 1 d 1 0
T= . . - .
0 2 -yl m o 12 ol om
B ni 0 1 n2/JR mp nj n ) R np.
i njyd m
1+(1-n2)R o d
T= Note: AD-BC=1
n_N\1L 1
_ (nl )R

For the purpose of this solution, we will use "t" rather than 1 ("el") to avoid confusing it
with one (1). We include the GRIN-to-air exit interface as the first matrix, then
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Eq.2.12.11 for the GRIN lens, and the last matrix represent the air-to-entrance interface
where the results of Prob. 2.2 has been used.

(1.0 cos(dt)  tsin(d/t) J[ 1 O
T= 1 1
L 0 ng - Tsin (d/t)  cos(d/t) 0 o
- d/ L in (d/ o L
cos (d/t) ng Sin (d/t) >
T= = ford =nt/2
| - HTO sin (d/t) cos(d/t) _ nTO 0

‘Now consider the following simple lens centered between the input and output planes
with d=f and use Eq. 2.3.2 to represent the two components so as to minimize the chore of

matrix multiplication.

Thus the focal length is f = t/ng

The only way to have difficulties with this problem is to arrange the matrices in wrong
order. Let's evaluate Eq. 2.3.2 for the negative lens + distance d combination (i.e. change

the sign on f), multiply by the matrix for the postive lens, and evaluate for d=f.
1 d 1 0 0o f

1 d 3 L
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2.7
The ray matrix for a flat mirror is A=D=1 and B=C=0 which is the limit for that of a curved
mirror with R—oo. Hence one could insert three extra matrices in the unit cell and go
through the excercise of matrix multiplication to prove the altermative of ignoring the flat
mirrors, as being just re-directors of the optic axis, and measuring distances along that line.

This viewpoint leads to the following:

3d 3d

2.8

M
~q¢——Unit Cell |
Thus the matrices appear in the order indicated by"#".

1 dl ‘ 1 2d2 1 dl
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2d; 2d; . 2did, dy 2d1dy
1- = -2y (l—fX2d1+2d2——f )

2 _dy 241 24y, 2d1dy
(1-) 1SR

Note: A =D as it should since there is a plane of symmetry (M).

Stability: 05131 - B2 9—% <10r:0$(1 -d?l)( _d—fz-)51

d,

|

|

I

I

|

L
unit cell >

impossible:

Figures for problem 2.8
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(d/R) =(1/2); .. d=f; 4-Round trips as the figure below indicates

- d |«¢————unit cell
) ~ ‘ :
‘ I
& I
I

One can do this the hard way using the figure at the right: T =

- (27"

A-D
a (T) + Bm

1
T (1-

cos = 6%12:0; ~0=m/2; o.=tan"!

Foraninputslopem:O;A—;Q=0; ‘—A—ER=%= 1; o =tan~1(1) = /4,

3 . T T
Tinitial = I'max S1I0 0L = l’max/\l2; I'max = V2 I0 311-{57 + Z]

A D]z 172
- 1} ;

+
2
[A + D]= 1- % for both cases;

Now d/R = 1.01; d/f=2.02 - [A : D]:-l.oz;

—~10-
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F1=-0.8190; F; =-1.2210;
Let r = ra(F1)s + rp(F2)S;
Unit Cell #1: B=p—p L 5 (a(F1 - A)) = 0.5x10°%
fa= Fli—Fz (a(F2 - A)} = 0.5%10-2;
Thus the position of the ray after s round-trips is:
15 = 0.5x1072{(0.819)8 + (~1.221)8}; 15> 1 cm after s = 15.

Unit Cell #2: rp = 0.5525; r; =-0.4525;

1s = — 0.4525 (0.819)% + 0.5525(-1.221)s
ats=6; r=1.694 cm « misses spherical mirror after 12 round-trips plus 1 more pass to
the spherical mirror; .. Poy =1 W X G13 = 1220 watts!

The effective focal lengths are:

fx—Rcos9~£R(0 30°); f=—R -

- Stability: 0<1-4d/3fxy<1;

or 2B _ 0.577R 0r0.7698 R:

3T

<xlw

~d < 0577R

d——(—

—11-
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This is a situation that can and has happened in a gas discharge excited laser with the
current heating the gas on the axis to a higher temperature than at the walls which are
cooled by convection or by an intentional water jacket. In order for the pressure to be a
constant across the radius, there is a greater density of atoms near the wall than on the axis
and hence one has a negative gas lens. At first glance, one would guess that this would
push the system towards instability away from the borderline situation as specified. Not

so!
i 2d -’
Negative Lens Negative Lens
! f=R/2 f=R/2
~4+—(]=R > - unit cell >
2d .. 2d
10 coshT-  Lsinh - cosh 2L—d (not needed)
=l B 2d L 2d
F 1 % sinh 21§ cosh %d. (not needed) cosh T - Fsinh T~

A+D+2 1 2d Ly ., 2d
=S = 5{1 + cosh - Z(ﬁ)smh T }
Let % = 6 and recognize that the lens is a "small" effect implying that L is large
and that 0 is small. For small 6:

02 04 ) 93 o5
cosh9=1+—2-+ﬁ ands1nh9=9+-3—!-+§-

sclfii1.9 fﬁz_[e 02 fﬁ] _1[_% fﬁ]-ej_igz
) R T TR R TR 3 N ) 2-3"12'3(L)

Stability becomes positive, i.e. the cavity is more stable by virtue of the de-focusing

element.

-12-
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Temperature distribution: T(r) = Ty + (Tc—Tw) [1 - (t/2)2];

. 2.69x10+19 273
ndbutabieh 16 ~m—3
Density of [He] at 1 Torr,23°C = 760 " 596 = 3.26x10%10 cm

. .. . 1
Specific refractivity of a Helium atom = m =1.338x10-24 cm3
Atoms must be conserved:
N(r) = Ny -and 27t/N(r)rdr = 122Ny in all cases

-]

) Tc—Tw 1 _ _ 16 — 16 am=3
. Ni = T, In (To/Tw) No = 0.834 Ng = 0.834 x 3.26x10+10 =2 7x10+ 6 cor

For helium: n(r) — 1 =N1{1 + Te=Tw) ( )}xl 338x10-24

Te
2A r2 ) a2 1
n(r) =1+1.58x10-8 (5) A2 -2
a 212 2 1.58x10-8

For CO,, the specific refractivity = 1.67x10-23cm?3; Ny = 2.7x10*18 cm—3 (100 Torr)

2
n@=1+1.96x105 a2 8 1+

=7.88x10*6; L = 2.81x10*3 cm
L =79.7 cm; gas heating is more pronounced.

2 2 2
n(r) =ng - s éno 1 - L 2o 2=An£—;
a 212 212 a2

lf 2An 3 22; Jr=9.68a = 1.94x10~2 cm

r(z) =ry cos E +rlf sin = l_f’ Thus, when z ~ T lf, the ray crosses axis or z ~ 6.08x10~2 cm.

Thus, in 1 km = 105 cm, the ray would cross ~ 1.64x10*6 times (more—or—less).
One always starts and stops at the same point. Hence, AD-BC=1

Excellent paper and is highly recommended in order to introduce the students to the
literature.
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2.17

One can use the arithmetic in Sec. 2.4 by substituting f; = —f, and f3 = +f.
Eq. 2.5.3 becomes: 0<S=1- [%]2 <1

2.18
A simple sketch of a general optical system points out that ra(b—a) = —ra(a—b) and
likewise for rp(b—a) = — rp(a—b). Use that fact and solve for the matrix for the reverse

direction to obtain the desired result.

2.19
For a system with a plane of symmetry, one can use the result of problem 2.18.
A1 Bj D; B; AiD1+B1Cy 2A1B1
C: D Ci1 A 2C1Dg A1D1+B1Cy
2.20
10 1 &d 10 1-8d/f 8d
T = . . =
-Uf 1 0 1 “f 1 ~1/H(1-8d/f) -1/f  1-0d/f

1 0
Take the limit as dd/f—0 yields: T = [ ]
=2if 1

—14-
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Consider the diagram shown below. If we consider a positive rp as being measured counter-
clockwise with respect to the chief ray as in (a), then A = D = -1 is the choice. If we consider
a positive ry to be above the incident chief ray as in (b), then A =D =1 is the choice. Both
have selling points. For instance, using the A = D = -1 is most logical for grazing incidence
on a mirror because it indicates an output position on the "other side" of the chief ray. Choice

(b) is more intuitive for mirrors excited at near normal incidence since the ray stays on the same
side of the axis. In any case, stability always involves the product of AD and is not affect by
which option is chosen, except to require that the choice be maintained throughout.

2.22

2.23

(a)

" Source ¢

AtTIR: %)nw cos 0 = % (0g=1) cos(6=0) . cos 6 = /n. 0 =41.2".

(@) (10/a)=tan 6 ;a=(10/tan 0) =a=11.4 cm. (b) The Fresnel reflectivity depends on

polarization but at the Brewster's angle, there is no reflection. Thus the transmission for
TM waves is a maximum. (c) tanf = n for Brewster's angle. ¢ = 53.1°, 6, = 36.9".

D, B; A, Bj ADa+B,.Ca 2B.D,
Tunit cell=|: :ll: ]=[ :l
C A C D, 2A.C AaDa+B,Csy

-15-
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AaDa - BaCa =1
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= 0<

.. BaCa = AaDa - 1;

AzD;+B,Catl
2

<1

Stability — 0< AaDa<1

We use the results of the last problem and abbreviate:

|

2A1C;

where A, = D,; Now stability require that: 0 < ﬂ_“*‘_?l"‘_z <1;0<

A1D1+B1Cy

2B1D1 :|

|

A1D1+B1Cq

Aa  Ba

Ca

If

Da

Substitute BC = AD —1; A2 + D? + 2(ADg-1)+ 2 = (Ag + Do)

Aa + D2

) 0< [——2—]

Now Az =A1D1+B1C; =2A1D1-1; . -1 <2A1D1-1<1;0r0<2A1D1-1 <2;

<1 = 0<A’<lor-1<A,<l;Since A;=D,

IO <Ai;D; < 1!

(c) Unfold the cavity around the mid-plane:
unit cell

A2+B,Ca  AB+B.D,

Aa(:a’*‘DaCa D§+B aca
AZ+D242B,Co+2
7 <

(d) Evaluate the transmission matrix between the mid-plane O and 2 and apply the above

results:
1 dp
T =
0 1
1-dy/f
T = 1
- f

di+dp(1-di/f)

1 o[ !
1

T 1

. 0

or
(1-dy.f)

— 16—

d; 1 d

1 0 1 -
dy dy

0<(1- f)(l— f)<1

)



