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Chapter 1 Problem Set Solutions

1. Consider a non-relativistic particle of mass M in one dimension, confined in
a potential that vanishes for —a < x < a, and becomes infinite at x = *a,
so that the wave function must vanish at x = £ a.

e Find the energy values of states with definite energy, and the corresponding
normalized wave functions.

e Suppose that the particle is placed in a state with a wave function pro-
portional to a> — x?. If the energy of the particle is measured, what is the
probability that the particle will be found in the state of lowest energy?

The states of definite energy are those which are solutions of the time-
independent Schrodinger equation

n* d?

" 2M dx?

The potential for the infinite square well is given by

Y (x) + VY ) = EY(x).

Vi) = 0 for|x|<a
oo for|x| > a.

This potential requires that the wave function vanishes outside the well
y(x)=0  for|x|=a,
while inside the well the Schrodinger equation becomes

d? 2ME
a2V =T

The solution of this differential equation takes the form

¥(x) for |x| < a.

Y (x) = Asin(kx) + B cos(kx),
where we have defined

2ME
P

Continuity of the wave function requires that we impose the boundary
conditions

k

Y(x ==+a) =0,
and so

0 = Asin(ka) + B cos(ka),
0 = —Assin(ka) + B cos(ka).
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Adding these two equations gives
0 = 2B cos(ka),

which requires that

B=0ork="" wheren=2,4.6. ...
2a

and subtracting the equations gives
0 = 2Asin(ka),

which requires that
nmw
A=0ork=—wheren=1,3,5,....
2a
In either case, the energy levels are given by
h2k2 n2h2n2
oM~ 8Ma
Next, we need to normalize the wave functions in the sense of Eq. (1.5.4),
such that

n =

/Oo WP dx = 1.

For n odd, we have

“ nx
/ Bcos(nz— dx = |BJ? / cos’ dx_|B|a_1
—a a

which requires that

B=—,
Ja

where we have fixed the arbitrary complex phase for convenience. For n even,
the normalization condition takes the form

@ ) nnx
/ Asm(— dx = |A]? / sin’ dx_|A|a_1
_ 2a

a

which requires that

A=—,
Ja
where we have again fixed the arbitrary complex phase for convenience.
Summarizing our results, the normalized wave functions of states with
definite energy are
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Cos(ﬂ) for x| <aandn =1,3,5,...

1

Ja a

Yn(x) = | Zzsin (%) for|x| <aandn=2,4,6,...
0 for |x| > a

and the energy levels are

n*hm?

E, = .
8Ma

Since these states are normalized and the energy level is determined by n,
the argument below Eq. (1.4.26) proves that the states of definite energy are
orthonormal

/ w;(x)Wn(x)dx = Smn'

Let us define a state which vanishes for |x| > a, while for |x| < a it is
given by

d(x,t =0)=C (a* — x?).

We must normalize this state in order to determine C.

a 5 2 2.3 a 16 5
f \C(az—xz)lzdx=|6|2[%— 5 +a4x] = —=lcP=1.

—a

and so we find (after fixing an arbitrary phase)
[ 15
C=,—-s:,
16a°

d(x,t =0) = %(cﬂ—xz).

which then gives

Since the states of definite energy that we found above form a complete
orthonormal set on the interval —a < x < a, we can express ® in terms
of those states

O(x, t =0)= Y cathun(x),

and the probability of measuring the state ® to have energy E,,, following
Eq. (1.5.18), is given by
a 2
P(@(x,1=0) = Yu(x) = lcnl’ = l Y, ()P (x, 1 =0)dx

—a
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For the state of lowest energy this gives
a1 TX 5 ., )
c1=/_aﬁcos<z) o (a —x)dx
[151 | 24® | /wx\ 8xa? X T2 . mx ’
=,/ —— | —sin (—) — cos (—) — ————sin (—)
16a | 7 2a 2 2a sl 2a
—a
151 [4d®  4d° N 32a°
Vi6ad | 7 b4 3

_8J/15

73

’

and so the probability of finding ® in the lowest energy state is
, 960
P(@(x,t=0) = y1(x)) = |a1]” = — =~ 0.9986.
b4

. Consider a non-relativistic particle of mass M in three dimensions, described
by a Hamiltonian
P’ M a)g )
H=—+—X"
2M 2
e Find the energy values of states with definite energy, and the number of
states for each energy.
e Find the rate at which a state of next-to-lowest energy decays by photon
emission into the state of lowest energy.

Hint: You can express the Hamiltonian as a sum of three Hamiltonians for
one-dimensional oscillators, and use the results given in Section 1.4 for the
energy levels and x-matrix elements for one-dimensional oscillators.

First, we will rewrite the Hamiltonian in components

H:p_2 M_a)(z)z
2M 2
2 2 2 2 2 2
_ (P Moy , P Moy , P3 Moy ,
_<2M+ 2)Cl)+<2M“L 2362)+(2MJr 2
=H, + H, + H;,

where H;, H,, and H; are the one-dimensional harmonic oscillator Hamil-
tonians for x;, x,, and x3, respectively. Now, we will assume a separable
solution of the form

Y (x) = Y1 (x)P2(x2)¥3(x3),
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where

Hiyri (x1) = Ey ¥ (x1)
Hyy(x2) = Ey,¥2(x2)
H3y3(x3) = Eyy¥r3(x3)
Hiyn(x2) =0
Hiy3(x3) =0

and the E, are given by the energies of the one-dimensional harmonic

2 0

where n =0, 1, 2, . ... We therefore find for the three-dimensional harmonic
oscillator

Hy(x) = Eny(X)
= Hiy1 (x1)¥2(x2)¥3(x3) + Y1 (x1) Hara (x2) Y3 (x3)
+ ¥ (x1) Y2 (x2) H3 93 (x3)
= Ey Y1 (x1) Y2 (x2) Y3 (x3) + Y1 (x1) Eny Y2 (x2) Y3 (x3)
+ Y1 (x) Y2 (x2) Eny 3 (x3),

and so
3
EN=En1 +Enz+En3 = n1+n2+n3+§ hwo’

where ny, ny, and n3 are each non-negative integers. If we define
N = niy + ny + ns,

then the energy levels for states of definite energy are
3
Eny=|N+ 5 hawy,

where N =0,1,2,....

Now we must count the number of states with each energy. For a definite
value of N, the integer n; can take values 0, 1, ..., N, then n, will take
values 0, 1, ..., N — n; (which represents N — n| + 1 possibilities), and n3
is fixed to be N — n; — n;. Then for each energy E there is a degeneracy

N 1 1
gv =Y (N—ni+1) = NN+D=2N(N+D+N+1L = Z(N+D(N+2).

n1=0
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The rate of spontaneous emission of photons carrying energy hwp, = E, —
E, is given by Eq. (1.4.5) to be

2.3
n_4ewnm

2
m 3C3h |[X]nm| .

In three dimensions, we have E; = %hwo and Ey) = %hwo, SO Wy = wyp.
The relevant matrix elements for the one-dimensional harmonic oscillator
are given by Eq. (1.4.15) to be

Cion (DR
[x]:+1,n =[xlypy1 =€ of Tea)().

Since the wave function for the three-dimensional harmonic oscillator is just
a product of three one-dimensional harmonic oscillator wave functions, we
can also take these matrix elements to represent the matrix elements of a
single spatial component xp, x;, Or X3

[xi]mn = [-x]mn

The first excited state has nj, n,, or n3 equal to 1 with the others equal to
zero, and so the rate of spontaneous emission from the first excited state to
the ground state for the three-dimensional harmonic oscillator is given by

A0 4e’wp, h _ 2620)(2)‘
! 3c3h \ 2m,wo 3c¢3m,

. Suppose the photon had three polarization states rather than two. What
difference would that make in the relations between Einstein’s A and B
coefficients?

For black-body radiation in a cubical box with side L, the frequency of a
normal mode is given by Eq. (1.1.2) as v = |n|c/L. The number of normal
modes N (v)dv in a range of frequencies between v and v + dv is three times
the volume of a spherical shell in frequency space (the factor of three here
comes from the assumed three polarization states of the photon)

_ 2 _ Ly’ 2
NWw)dv =3 x4x|n|"dn| = 12n (—) v-dv.
c

Assuming that the energies of the light quanta are integer multiples of Av,
the mean energy is

>, exp (7{2}}”) nhv B Iy
>, exp (;Z}’T“) exp (;;—“T) -1

E =
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Then the energy density in radiation between v and v 4 dv is given by

EN®Ww)d 127h 3d
p(v)dv = v) v_ 12m v dv

3 3 )
L ¢ exp(k’;T>—1

Now assume that we have black-body radiation in equilibrium with atoms at
a temperature 7. The transition rate for atoms to go from state m to state n
must equal the rate for the transition from state n to state m, so

N [A}, + By oW, T)] = Ny B p (Vs T).

Using the Boltzmann distribution for the atoms gives

Nm (Em - En) _hvnm
— =eXp| ————F—F—— ) =€Xp .
N, kgT kgT

We can then rearrange the condition of equilibrium to give
" 127ch v3dv —hv,, m "
A m = 3 P exXp ﬁ B n Bm .
C v
exp <kB—T> -1 B
Requiring that the Einstein coefficients A and B are temperature independent
then gives

B} = B

A — (1277111),3””) B
m C3 m*

This conclusion gives a value for A which is larger than the usual expression
Eq. (1.2.16) by a factor of 3/2.

and

. Show that the solution (X, t) of the time-dependent Schrodinger equa-
tion for a particle in a real potential has the property that 3|yr|>/dt is the
divergence of a three-vector.

We wish to calculate

J 2
P 4SS

for some 1 (x, t) which is a solution of the time-dependent Schrodinger
equation, which reads

0 —h?
i h— )= —V2(x, 1)+ Vix,t ,1).
[ ati/f(x,) i Yx, )+ Vx,DY(x, 1)
Taking the complex conjugate of the Schrodinger equation gives

. ad * _ _hz 2.1 % *
il 1) = VR 0+ VDY ),
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Recall that |/ (x, ¢)|? can be rewritten as ¥ (x, 1)y *(x, t), and so we have

a 2k ad .,
3 VDI =700 D O, 1) + 9 (6, D27 (x, 1),

Using the Schrédinger equation to replace the time derivatives (now dropping
space and time arguments), this becomes

2y =y (ﬂvzw - ivw) +y (_—mvzw* + 5vw*)
ot 2M h 2M h
= ety g Ly s Ly
2.]7\14 2M h h
l *v72 2 0%
= o (VY — YY)
= ﬂv (VY — YY),
2M

We see that we can identify a three-vector
—ih ,
j=— Vi — ¢y VYT,
j=o VY -y VYY)
such that
3 0
i =_V.-.i.
a7 g J

Notice that this is a continuity equation which implies that probability is con-
served in quantum mechanics. The time rate of change of probability density
|¥|? in some infinitesimal volume is equal to the rate at which the probability
current j flows into the same infinitesimal volume.



