Contents

1	Vec	ctor Spaces	1	
	1.1	Introduction	1	
	1.2	Vector Spaces	1	
	1.3	Subspaces	1	
	1.4	Linear Combinations and Systems of Linear Equations	2	
	1.5	Linear Dependence and Linear Independence	2	
	1.6	Bases and Dimension	2	
2	Line	ear Transformations and Matrices	4	
	2.1	Linear Transformations, Null Spaces, and Ranges	4	
	2.2	The Matrix Representation of a Linear Transformation	4	
	2.3	Composition of Linear Transformations and Matrix Multiplication	5	
	2.4	Invertibility and Isomorphisms	5	
	2.5	The Change of Coordinate Matrix	5	
	2.6	Dual Spaces	6	
	2.7	Homogeneous Linear Differential Equations with Constant Coefficients	6	
3	Elementary Matrix Operations and Systems of Linear Equations			
	3.1	Elementary Matrix Operations and Elementary Matrices	7	
	3.2	The Rank of a Matrix and Matrix Inverses	7	
	3.3	Systems of Linear Equations—Theoretical Aspects	8	
	3.4	Systems of Linear Equations—Computational Aspects	8	
4	Det	erminants	10	
	4.1	Determinants of Order 2	10	
	4.2	Determinants of Order n	10	
	4.3	Properties of Determinants	10	
	4.4	Summary-Important Facts about Determinants	11	
	4.5	A Characterization of the Determinant	11	
5	Dia	gonalization	12	
	5.1	Eigenvalues and Eigenvectors	12	
	5.2	Diagonalizability	13	
	5.2	Matrix Limits and Markov Chains	13	
	5.4	Invariant Subspaces and the Cayley-Hamilton Theorem		

6	Inner Product Spaces		
	6.1	Inner Products and Norms	15
	6.2	The Gram-Schmidt Ortogonalization Process and Orthogonal Complements	15
	6.3	The Adjoint of a Linear Operator	16
	6.4	Normal and Self-Adjoint Operators	16
	6.5	Unitary and Orthogonal Operators and Their Matrices	17
	6.6	Orthogonal Projections and the Spectral Theorem	17
	6.7	The Singular Value Decomposition and the Pseudoinverse	18
	6.8	Bilinear and Quadratic Forms	19
	6.10	Conditioning and the Rayleigh Quotient	19
	6.11	The Geometry of Orthogonal Operators	19
7	Can	onical Forms	20
	7.1	Jordan Canonical Form I	20
	7.2	Jordan Canonical Form II	20
	7.3	The Minimal Polynomial	21
	7.4	Rational Canonical Form	

Vector Spaces

1.1 INTRODUCTION

2. (b)
$$x = (2,4,0) + t(-5,-10,0)$$
 (d) $x = (-2,-1,5) + t(5,10,2)$

3. **(b)**
$$x = (3, -6, 7) + s(-5, 6, -11) + t(2, -3, -9)$$

(d) $x = (1, 1, 1) + s(4, 4, 4) + t(-7, 3, 1)$

4. (0,0)

1.2 VECTOR SPACES

4. (b)
$$\begin{pmatrix} 1 & -1 \\ 3 & -5 \\ 3 & 8 \end{pmatrix}$$
 (d) $\begin{pmatrix} 30 & -20 \\ -15 & 10 \\ -5 & -40 \end{pmatrix}$
(f) $-x^3 + 7x^2 + 4$ (h) $3x^5 - 6x^3 + 12x + 6$

5.
$$\begin{pmatrix} 8 & 3 & 1 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 9 & 1 & 4 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 17 & 4 & 5 \\ 6 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}$$

16. Yes **18.** No, (VS 1) fails. **19.** No, (VS 8) fails.

1.3 SUBSPACES

2. (b)
$$\begin{pmatrix} 0 & 3 \\ 8 & 4 \\ -6 & 7 \end{pmatrix}$$
 (d) $\begin{pmatrix} 10 & 2 & -5 \\ 0 & -4 & 7 \\ -8 & 3 & 6 \end{pmatrix}$ (f) $\begin{pmatrix} -2 & 7 \\ 5 & 0 \\ 1 & 1 \\ 4 & -6 \end{pmatrix}$

(h)
$$\begin{pmatrix} -4 & 0 & 6 \\ 0 & 1 & -3 \\ 6 & -3 & 5 \end{pmatrix}$$

The trace is 2.

8. (b) No (d) Yes (f) No

9.
$$W_1 \cap W_3 = \{0\}, \quad W_1 \cap W_4 = W_1,$$

 $W_3 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \colon a_1 = -11a_3 \text{ and } a_2 = -3a_3\}$

1.4 LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS

2. (b)
$$(-2, -4, -3)$$

(d)
$$\{x_3(-8,3,1,0) + (-16,9,0,2): x_3 \in R\}$$

(f)
$$(3,4,-2)$$

3. (a)
$$(-2,0,3) = 4(1,3,0) - 3(2,4,-1)$$

(b)
$$(1,2,-3) = 5(-3,2,1) + 8(2,-1,-1)$$

(f)
$$(-2,2,2) = 4(1,2,-1) + 2(-3,-3,3)$$

4. (a)
$$x^3 - 3x + 5 = 3(x^3 + 2x^2 - x + 1) - 2(x^3 + 3x^2 - 1)$$

(c)
$$-2x^3 - 11x^2 + 3x + 2 = 4(x^3 - 2x^2 + 3x - 1) - 3(2x^3 + x^2 + 3x - 2)$$

(d)
$$x^3 + x^2 + 2x + 13 = -2(2x^3 - 3x^2 + 4x + 1) + 5(x^3 - x^2 + 2x + 3)$$

(f) No

11. The span of $\{x\}$ is $\{0\}$ if x = 0 and is the line through the origin of \mathbb{R}^3 in the direction of x if $x \neq 0$.

17. if W is finite

1.5 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

- 2. (b) Linearly independent
- (d) Linearly dependent
- (f) Linearly independent
- (h) Linearly independent
- (j) Linearly dependent
- **10.** (1,0,0), (0,1,0), (1,1,0)

1.6 BASES AND DIMENSION

- **2. (b)** Not a basis
- (d) Basis

3. (b) Basis

- (d) Basis
- **4.** No, $\dim(P_3(R)) = 4$.
- 5. No, $\dim(\mathbb{R}^3) = 3$.

- 8. $\{u_1, u_3, u_5, u_7\}$
- 10. (b) 12 3x

- (d) $-x^3 + 2x^2 + 4x 5$
- **14.** $\{(0,1,0,0,0), (0,0,0,0,1), (1,0,1,0,0), (1,0,0,1,0)\}$ and $\{(-1,0,0,0,1), (0,1,1,1,0)\}; \dim(W_1) = 4 \text{ and } \dim(W_2) = 2.$
- **16.** $\dim(W) = \frac{1}{2}n(n+1)$

1.6 Bases and Dimension

18. Let σ_j be the sequence such that

$$\sigma_j(i) = \begin{cases} 0 & i = j \\ 1 & i \neq j. \end{cases}$$

Then $\{\sigma_j\colon\ j=1,2,\ldots\}$ is a basis for the vector space in Example 5 of Section 1.2.

- 22. $W_1 \subseteq W_2$
- **23.** (a) $v \in W_1$

(b) $\dim(W_2) = \dim(W_1) + 1$

- **25.** mn
- 27. If n is even, then $\dim(W_1) = \dim(W_2) = \frac{n}{2}$; and if n is odd, then $\dim(W_1) = \frac{n+1}{2}$ and $\dim(W_2) = \frac{n-1}{2}$.
- **32.** (a) Take $W_1 = R^3$ and $W_2 = \text{span}(\{e_1\})$.
 - (b) Take $W_1 = \text{span}(\{e_1, e_2\})$ and $W_2 = \text{span}(\{e_3\})$.
 - (c) Take $W_1 = \text{span}(\{e_1, e_2\})$ and $W_2 = \text{span}(\{e_2, e_3\})$.
- **35. (b)** $\dim(V) = \dim(W) + \dim(V/W)$

Linear Transformations and Matrices

2.1 LINEAR TRANSFORMATIONS, NULL SPACES, AND RANGES

- 3. The nullity is 0, and the rank is 2. Thus T is one-to-one, but not onto.
- **6.** The nullity is n-1, and the rank is 1. Thus T is not one-to-one unless n=1, and T is not onto unless n=1.
- **11.** T(8,11) = (5,-3,16)
- **18.** T(a,b) = (b,0). $N(T) = span\{(1,0)\} = R(T)$.
- 19. Define T = I and U = 2I.
- 23. All of R^3 or a plane in R^3 through the origin
- **24.** (a) T(a,b) = (0,b) (b) T(a,b) = (0,b-a)
- **25. (b)** T(a, b, c) = (0, 0, c)
- **26.** (a) $T = I_V$ (d) $T = T_0$
- **27.** (b) See (a) and (b) of Exercise 22.
- **31.** (c) Let V = P(F) and $V = \operatorname{span}(\{1\})$. Define T first on the standard basis of V by T(1) = T(x) = 0, and $T(x^k) = x^{k-1}$ for $k \ge 2$. Now extend T to a linear transformation from V to V. Then $N(T) = \operatorname{span}(\{1, x\})$, and $R(T) = \operatorname{span}(\{x^k : k \ge 1\})$. So $V = R(T) \oplus W$, but $W \ne N(T)$.

2.2 THE MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION

2. (b)
$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 3 \end{pmatrix}$$
 (e) $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$

$$\mathbf{4.} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

5. (c)
$$(1\ 0\ 0\ 1)$$
 (d) $(1\ 2\ 4)$ (f) $\begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix}$ (g) (a)

2.3 Composition of Linear Transformations and Matrix Multiplication

2.3 COMPOSITION OF LINEAR TRANSFORMATIONS AND MATRIX MULTIPLICATION

2. (a)
$$(AB)D = \begin{pmatrix} 29 \\ -26 \end{pmatrix}$$

(b)
$$A^t = \begin{pmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{pmatrix}, BC^t = \begin{pmatrix} 12 \\ 16 \\ 29 \end{pmatrix}, CA = \begin{pmatrix} 20 & 26 \end{pmatrix}$$

3. (b)
$$[h]_{\beta} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, [U(h)]_{\gamma} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$$

4. (b)
$$\begin{pmatrix} -6\\2\\0\\6 \end{pmatrix}$$
 (d) (12)

9.
$$\mathsf{T}(a_1, a_2) = (0, a_1 + a_2), \qquad \mathsf{U}(a_1, a_2) = (0, a_1),$$

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ BC^t = \begin{pmatrix} 12 \\ 16 \\ 29 \end{pmatrix}, \ CA = \begin{pmatrix} 20 & 26 \end{pmatrix}$$

20. (a)
$$B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
, $B^3 = \begin{pmatrix} 0 & 2 & 0 & 3 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 2 & 0 \end{pmatrix}$ There are no cliques.

(b)
$$B = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \ B^3 = \begin{pmatrix} 2 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 2 & 3 \\ 3 & 0 & 3 & 2 \end{pmatrix}$$

Persons 1, 3, and 4 belong to a clique.

23.
$$\frac{n^2-n}{2}$$

2.4 INVERTIBILITY AND ISOMORPHISMS

14.
$$\mathsf{T}\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = (a,b,c)$$

2.5 THE CHANGE OF COORDINATE MATRIX

2. (b)
$$\begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$
 (d) $\begin{pmatrix} 2 & -1 \\ 5 & -4 \end{pmatrix}$

3. (b)
$$\begin{pmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$
 (d) $\begin{pmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ -1 & 3 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} -2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2 \end{pmatrix}$

6. (b)
$$Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $[L_A]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$
(d) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix}$, $[L_A]_{\beta} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 18 \end{pmatrix}$

7. **(b)**
$$T(x,y) = \frac{1}{m^2+1}(x+my, mx+m^2y)$$

2.6 DUAL SPACES

3. (b)
$$f_1(a+bx+cx^2)=a$$
, $f_2(a+bx+cx^2)=b$, $f_3(a+bx+cx^2)=c$

4. The basis for V is
$$\{(.4, -.3, -.1), (.6, .3, .1), (.2, .1, -.3)\}$$

6. (a)
$$\mathsf{T}^t(f)(x,y) = 7x + 4y$$
 (b) $[\mathsf{T}^t]_{\beta^*} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$ (c) $[\mathsf{T}]_{\beta} = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$ and $([\mathsf{T}]_{\beta})^t = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$

2.7 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFI-CIENTS

3. (b)
$$\{1, e^t\}$$
 (d) $\{e^{-t}, te^{-t}\}$

4.
$$\{t, te^t, t^2e^t\}$$

16. (a)
$$\theta(t) = c_1 \cos\left(\sqrt{\frac{g}{l}}t\right) + c_2 \sin\left(\sqrt{\frac{g}{l}}t\right)$$

(b)
$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}}t\right)$$

17.
$$y(t) = c_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + c_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

18. (a) Case 1:
$$r^2 = 4km$$
. $y(t) = e^{-(r/2m)t}[c_1 + c_2 t]$

Case 2:
$$r^2 > 4km$$
. $y(t) = c_1 e^{at} + c_2 e^{bt}$, where

$$a = \frac{-r}{2m} + \frac{\sqrt{r^2 - 4mk}}{2m}, \quad b = \frac{-r}{2m} - \frac{\sqrt{r^2 - 4mk}}{2m}$$

Case 3:
$$r^2 < 4km$$
. $y(t) = e^{at}[c_1 \cos bt + c_2 \sin bt]$, where

$$a = \frac{-r}{2m}, \quad b = \frac{\sqrt{4mk - r^2}}{2m}$$

(b) Referring to the three cases listed in (a):

Case 1:
$$y(t) = v_0 t e^{-(r/2m)t}$$

Case 2:
$$y(t) = \frac{v_0 m}{\sqrt{r^2 - 4mk}} [e^{at} - e^{bt}]$$

Case 3:
$$y(t) = \frac{v_0}{b}e^{at}\sin bt$$