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Chapter 1

Vectors

1.1 The Geometry and Algebra of Vectors

-2.3)
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plotting those vectors gives
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CHAPTER 1. VECTORS

4. Since the heads are all at (3,2,1), the tails are at

3 0 3 3 3 0 3 1 2 3 —1 4
2| — 2] = |o], 2| — |2] = |o], 2| — |—2| = |4/, 2| — |-1]| = |3
1 0 1 1 1 0 1 1 0 1 —2 3

5. The four vectors A‘é are

(b) AB=1[2-0,-1—(-2)] = [2,1]
(@) AB=[3-23-4] = [}
@ AB= [543 44 =[4 ¢




1.1.

THE GEOMETRY AND ALGEBRA OF VECTORS )

. Recall the notation that [a, b] denotes a move of a units horizontally and b units vertically. Then during

the first part of the walk, the hiker walks 4 km north, so a = [0,4]. During the second part of the
walk, the hiker walks a distance of 5 km northeast. From the components, we get

2 2
b = [5cos45°, 55in45°] = [M, 5\[1 .
2 2
Thus the net displacement vector is
c=a+b= [5\@74+5\@]'
2 2
13 21 [3+2| |5 o
o= [ B - B3] B
| a+b
1 b
2 -2 [2—-(=2)] |4 3
= [-[5)- P 5) -]
b —c
b-c
3 -2 5 : ; ; ;
oa-e= |3 =[] -]
1 d
3 d-c -c

B]Jr{—ﬂ - [01?—32)} = ——

|: 6:| “1t d
—21 a+d

b

11. 2a+3c =2[0,2,0] +3[1,—-2,1] = [2:0,2-2,2-0] + [3-1,3- (=2),3-1] = [3, -2, 3.

12.

3b—2c+d=3[3,2,1] —2[1,-2,1] + [-1, -1, 2]
=[3-3,3-2,3-1]+[-2-1,-2-(=2),—2-1] + [-1,—1,-2]
=1[6,9,—1].
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13. u = [cos60°,sin60°] = [%, @], and v = [c0s210°,sin 210°] = [——3, —%], so that

14. (a) AB=b—a.
(b) SinceO_C}:A_B: wehaveB—C):O_(;fb:(bfa)fb:fa.
(c) AD = —2a.
(d) CF = —20C = —24B = —2(b —a) = 2(a— b).
(e) AC=AB+BC =(b—a)+(-a)=b—2a.
(f) Note that FA and OB are equal, and that DE = —AB. Then

BC+DE+FA=-a— AB+0OB=-a—(b—a)+b=0.

property e. property b.
distributivity ( associativity

15. 2(a—3b) + 3(2b + a) 2a — 6b) + (6b + 3a) = (2a + 3a) + (—6b + 6b) = 5a.

16.

property e.
distributivity (

—3(a—c) +2(a+2b) +3(c —b) —3a+ 3c) + (2a + 4b) + (3¢ — 3b)

prop?r;cy 1%
Y (—3a + 2a) + (4b — 3b) + (3¢ + 3¢)
=—a+b+6c.

17. x—a=2(x—2a)=2x—4da=x—-2x=a—4a= —x=—-3a=x=3a.
18.

x+2a—b=3x+a)—22a—b)=3x+3a—-4a+2b =
x—3x=-a—2a+2b+b =
—2x=-3a+3b =
3

3
—2a—°p.
=875

19. We have 2u+3v =2[1,-1]+3[1,1] =[2-14+3-1,2- (—1)+3- 1] = [5, 1]. Plots of all three vectors are

x » >
Va N v AN , AN
V2 N AN Y A
X 1 > w
N v N v N
\ N N
N >\
1 1 3 4 5 6
7 7 v N 7
s u s AN N
N 7
x 1 >
A
N e v 7
N\ v u N ,
» >
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20. We have —u—2v = —[-2,1] = 2[2,-2] = [-(-2) — 2-2,—-1 — 2 - (—2)] = [-2,3]. Plots of all three
vectors are

N \\
N NN
~
-v J, N ~
~ ~ R
~ ~ - N
N S
N ~ ~ N
N b8 N
NS N N
NN N NS N
~ \ NN
N SN oy < N
N R N
NN N NN N
NS N N NS N N
S . NN
-3 - 1 2
N Q - N N - N ANN -
N NI <N N\
<
N N A y \\\ N
- N N N~
~ ~
NN o~ \\
NN O
N N N
~ ~
N AN N
N
N N\ AN N
3 , NI NI N
21. From the diagram, we see that w = K N A
N N
—2u + 4v. / N = ’ N
/ Y Y N
A S N P 2N
N N 20 , .
N |/ N Y
7/
P w N /\
soN s 0N N ,
s Ny A v N .
X sk X
N , N AN . N
N |/ A v AN Y A
N S
2 . > >
7 N , Y
7 N v N N
X it > >
N N s N
Ve
N v N, N , N
i i N i N i >\
=1 1 2 3 4 5 6
. PRERN PRSAN ,
VA u s N , A ,
X -1 > \/
\ s , .
\ \ ~ \ N
M L ~
22. From the diagram, we see that w = 2u+ A - \
P
3 o N
V. % N
\ - \ u \ ~
A7 TN /\/
-
\ \ ~ \
-
\ T oW ~ \
\ N7 \
\ T <
~
\ \ u
~
AR \
~
\ - \ \ -
~ sl -~
~ \ <
. \ \ N
r \ < \
u \ v \
'l < \
v \ \
-2 -1 1 2 \3 4 s\ 6 7

23. Property (d) states that u+ (—u) = 0. The first diagram below shows u along with —u. Then, as the
diagonal of the parallelogram, the resultant vector is O.

Property (e) states that ¢(u+ v) = cu + cv. The second figure illustrates this.
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24. Let u = [uy,us,...,u,] and v = [v1,va,...,v,], and let ¢ and d be scalars in R.

Property (d):

u+ (—u) = [ug,ug, ..., uy] + (—1ug, ug, ..., up])
= [up, ug, ..., Up| + [—u1, —Usz, ..., —Uy]
= [ug — up, U — Uy .oy Uy — Uy
=1[0,0,...,0]=0

Property (e):

clu+v) =c(fug,ug, ..., uy] + [v1,02,...,0,])
= c([ug + v1,u2 + V2, ..o Uy + Uy))
= [e(ug + v1), c(uz + va), ..., c(u, + vp)]
= [cu1 + cvy, cug + cvg, . . ., cuy, + cvy]
= [cuy, cug, ..., cuy] + [cvr, cva, . . ., cuy]
= cluy, ug, ..., U] + c[v1,v2, ..., vp]
=cu-+cv.

Property (f):

(c+d)yu= (c+d)[u,usz, ..., up]
= [(C+ d)ula (C+d)u27 SRR (C+d)un}
= [cuy + duy, cug + dua, . . ., cu, + duy]
=

CUL, CUg, . . ., ClUy| + [dug, dug, . . ., du,]
= C[u17u27 . ')u"} + d[“lv’”’?v e 7un]
= cu + du.

Property (g):

c(du) = c(dur, uz, . .., up))

clduy, dug, . . ., duy)
[eduq, cdus, . . ., cduy,]
[(ed)uq, (ed)ug, . .., (cd)uy]

cd)[u, ug, . .., Up)
cd)u.

= (
= (
25. u+v=[0,1+[1,1] = [1,0].

26. u+v=[1,1,0] +[1,1,1] = [0,0, 1].
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27. u+v=1[1,0,1,1]+[1,1,1,1] = [0,1,0,0].
28. u+v=1[1,1,0,1,0] +[0,1,1,1,0] = [1,0,1,0,0].

29.
+]0 1 2 3 10 1 2 3
0/0 1 2 3 0/0 0 0O
111 2 30 110 1 2 3
212 3 01 210 2 0 2
313 01 2 310 3 2 1

30.
+]0 1 2 3 4 01 2 3 4
0(0 1 2 3 4 0/0 0 0 0O
111 2 3 40 110 1 2 3 4
212 3 4 0 1 210 2 4 1 3
313 401 2 3/0 3 1 4 2
414 01 2 3 410 4 3 21

31. 24+242=6=0in Zs.
32.2.2.2=3-2=0in Zs.

33.22+142)=2-2=3-1+1=11inZs.

34.341+42+3=4-241=11inZ.

35.2-3-2=4-3+0=0inZ.

36. 3(3+3+2)=4-6+0=0inZ,.

37. 24+ 1+2+424+1=2in%3,2+14+2+2+1=0inZ2+1+2+2+1=3inZs.
38. (3+4)(3+2+4+2)=2-1=2inZs.

39. 8(6+4+3)=8-4=5in Z.

40. 2100 — (210) = (1024)10 = 110 = 1 in Z,,.

41. [2,1,2] + [2,0,1] = [1,1,0] in Z3.

42.2(2,2,1]=2-2,2-2,2-1] =1, 1, 2] in Z3.

43. 2([

44. =2+ (-3)=2+2=41in Zs.
45. 1 =1+ (-5)=1+1=2in Zg
46. z =21 =2in Zs.

47. No solution. 2 times anything is always even, so cannot leave a remainder of 1 when divided by 4.
48. =271 =3 in Zs.
49. 1 =3"14=2.4=3in Zs.

50. No solution. 3 times anything is always a multiple of 3, so it cannot leave a remainder of 4 when
divided by 6 (which is also a multiple of 3).

51. No solution. 6 times anything is always even, so it cannot leave an odd number as a remainder when
divided by 8.
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52.
53.
54.

55.
56.
57.

1.2

CHAPTER 1. VECTORS

r=819=7.9=8inZ1;
r=2"12+(-3))=3(2+2) =2in Zs.

No solution. This equation is the same as 4o =2 —5 = —3 = 3 in Zg. But 4 times anything is even,
so it cannot leave a remainder of 3 when divided by 6 (which is also even).

Add 5 to both sides to get 6z = 6, so that z =1 or x =5 (since 6-1 =6 and 6 -5 =30 = 6 in Zg).
(a) All values. (b) All values. (¢) Al values.

(a) All @ # 0 in Zs have a solution because 5 is a prime number.
(b) a =1 and a = 5 because they have no common factors with 6 other than 1.

(¢) a and m can have no common factors other than 1; that is, the greatest common divisor, ged, of
a and m is 1.

Length and Angle: The Dot Product

. Following Example 1.15, u-v = [_1] . [3} =(-1)-34+2-1=-3+2=-1.

2 1

. Following Example 1.15, u-v = { 3] . [4} =3-44(-2)-6=12-12=0.

-2 6

1 2

.u-v=|2|-|3]| =1-242-343-1=2464+3=11.

3 1

cu-v=32-15+4(—0.6) 41+ (—1.4)- (=0.2) = 4.8 — 2.46 + 0.28 = 2.62.

(1 4
Cueve V2] 0V2 =1-44+v2-(—vV2)+V3-04+0-(-5)=4—-2=2.
V3 0
0 -5
[ 1.12 -2.29
—3.25 1.72
cuev= |0 g = 11202.20 - 325 1.72 4+ 2.07- 4.33 — 1.83 - (—1.54) = 3.6265.
|—1.83] |-154

Finding a unit vector v in the same direction as a given vector u is called normalizing the vector u.

Proceed as in Example 1.19:
Jull = VD2 +22 = V5,

so a unit vector v in the same direction as u is

S SRS U ) B e
I VE | o) T2 )

. Proceed as in Example 1.19:

lufl = /3% +(-2)2 = Vo +4 = V13,

so a unit vector v in the direction of u is

S SRS S 1 I
I U VAT - R -



1.2. LENGTH AND ANGLE: THE DOT PRODUCT

9. Proceed as in Example 1.19:
lu] = V12422 +32 =14

so a unit vector v in the direction of u is

1 1

1
= —u = —= 2 =
[ull ™ V14 5

ﬁ‘wﬁ‘w ﬁ"d
= = =

10. Proceed as in Example 1.19:

[ul| = v/3.22 + (=0.6)2 + (—1.4)2 = v/10.24 + 0.36 + 1.96 = v/12.56 ~ 3.544,

so a unit vector v in the direction of u is

. . 15 0.903
=~ u=——1| 04| ~ |-0.169
luf = 3544 5 ~0.395

11. Proceed as in Example 1.19:

V) 0= V&

Jull = Jm (va) +

So a unit vector v in the direction of u is

/N

1 L L V6

A 5] (%

2 1 3

3 1 V2

(ARG V) I ) B I
0 0 0 0

12. Proceed as in Example 1.19:

[ul| = \/1.122 + (=3.25)% + 2.072 + (—1.83)% = /1.2544 + 10.5625 + 4.2849 + 3.3489

= 19.4507 =~ 4.410,
so a unit vector v in the direction of u is
1 1
— 1.12 —-3.25 2.07 —1.83| ~ [0.254 —0.737 0.469 —0.415].
Vial™ ~ 2410 [ I~ ]

13. Following Example 1.20, we compute: u — v = {_ﬂ — {ﬂ = [_ﬂ, SO

d(u,v) = [lu—v] = y/(-4)* +12 = V1T,

14. Following Example 1.20, we compute: u —v = [_g} — E} = [_;], SO

d(u,v) = u = v = /(=1)* + (-8)* = V/65.

1 2 -1
15. Following Example 1.20, we compute: u—v = |2 — |3| = |—1], so
3 1 2

d(u,v) = f[u— v = /(=1)? + (-1)® + 22 = V6.
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3.2 1.5 1.7
16. Following Example 1.20, we compute: u—v = [—-06| — [ 4.1| = [—-4.7{, so
-14 -0.2 —-1.2
d(u,v) = lu—v| = V1.72 + (—4.7)2 + (—1.2)2 = v/26.42 ~ 5.14.
17. (a) u-v is a real number, so ||u- v|| is the norm of a number, which is not defined.
(b) u- v is a scalar, while w is a vector. Thus u-v + w adds a scalar to a vector, which is not a
defined operation.
(c) uis a vector, while v - w is a scalar. Thus u- (v - w) is the dot product of a vector and a scalar,
which is not defined.
(d) ¢ (u+v) is the dot product of a scalar and a vector, which is not defined.
18. Let € be the angle between u and v. Then
cosf= 2V __ 3-(-1)+0-1 __3 ffﬁ
lullvll — Vv3Z+02/(-1)2+12  3v2 2
Thus cosf < 0 (in fact, § = 2T), so the angle between u and v is obtuse.
19. Let 6 be the angle between u and v. Then
0 u-v 2-1+(=1)-(=2)+1-(-1) 1
cosf = = _—
MVl ~ V2T (2 + Byt (224 12 2
Thus cos > 0 (in fact, & = %), so the angle between u and v is acute.
20. Let 0 be the angle between u and v. Then
cosf = LY _ 4-14+3-(-1)+(-1)-1 0 —0
Jul vl 22432+ (—1)2/12+ (-1)2+ 12 V2613
Thus the angle between u and v is a right angle.
21. Let 0 be the angle between u and v. Note that we can determine whether 6 is acute, right, or obtuse
by examining the sign of m, which is determined by the sign of u - v. Since
u-v=09-(-45)+21-26+12-(-0.8) =0.45 >0,
we have cos@ > 0 so that 6 is acute.
22. Let 0 be the angle between u and v. Note that we can determine whether 6 is acute, right, or obtuse
by examining the sign of m, which is determined by the sign of u - v. Since
u-v=1-(-3)+2-143-24+4-(-2) =-3,
we have cosf < 0 so that 6 is obtuse.
23. Since the components of both u and v are positive, it is clear that u-v > 0, so the angle between
them is acute since it has a positive cosine.
24. From Exercise 18, cos = —?, so that § = cos™! (—%ﬁ) = %Tﬂ = 135°.
25. From Exercise 19, cos = %, so that 6§ = cos™! % = £ =060°.
26. From Exercise 20, cos = 0, so that § = 5 = 90° is a right angle.
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27. As in Example 1.21, we begin by calculating u - v and the norms of the two vectors:

28.

29.

30.

W-v =09 (—45)+2.1-2.6+1.2-(—0.8) = 0.45,
[u]| = v/0.9% + 2.12 + 1.22 = V/6.66,
V]| = /(—4.5)2 + 2.62 + (—0.8)2 = /27.65.

So if @ is the angle between u and v, then

u-v 0.45 N 0.45

cosf = = ~ ;
lull[[v]  6.66v/27.65 /182.817

so that

0.45
6 = cos™? ( ~ 1.5375 ~ 88.09°.
s/182.817>

Note that it is important to maintain as much precision as possible until the last step, or roundoff
errors may build up.

As in Example 1.21, we begin by calculating u - v and the norms of the two vectors:

u-v=1-(-3)+2-14+3-24+4-(-2)=-3,
[ul| = V12 + 22 + 32 + 42 = V30,
Ivil = V=3P + 124 22 5 (-2 = VIS,

So if 8 is the angle between u and v, then

u-v 3 1 1
cosf = = — = — sothat 6 =cos™ ! | ——— | ~ 1.7 ~ 97.42°.
[[all |v]l V30118 2v/15 ( 2\/15>

As in Example 1.21, we begin by calculating u - v and the norms of the two vectors:
u-v=1-54+2-64+3-7+4-8=70,
[uf = V12 + 22 4 32 + 42 = /30,
[v]| = V/52 + 62 + 72 4 82 = V/174.

So if @ is the angle between u and v, then

u-v 70 35 35
cosf = = = so that 6 = cos™*! < ) ~ 0.2502 ~ 14.34°.
lull vl +/30v174 3145 3v/145

To show that AAB_C’> is right, we need only show that one pair of its sides meets at a right angle. So
let u= AB, v = B(C, and w = AC. Then we must show that one of u-v, u-w or v-w is zero in
order to show that one of these pairs is orthogonal. Then

—_—>

u=AB=[1-(-3),0-2=[4,-2], v=BC=[4—-1,6-0]=[3,6],
w=AC=[4—(-3),6—2 =[7,4],
and
u-v=4-3+4(-2)-6=12-12=0.

Since this dot product is zero, these two vectors are orthogonal, so that AB 1 BC and thus AABC is
a right triangle. It is unnecessary to test the remaining pairs of sides.
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31.

32.

33.

34.

35.
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To show that AABC is right, we need only show that one pair of its sides meets at a right angle. So
let u = AB v = BC and w = AC. Then we must show that one of u-v, u-w or v-w is zero in
order to show that one of these pairs is orthogonal. Then

I
s

u=AB=[-3-1,2—1, (-2) — (-1)] = [-4,1,—1],
v=BC=[2—(-3),2-2, —4— (-2)] = [5,0,—2],
w=AC=[2-1,2-1,-4—(-1)] =[1,1,-3)],

and

uve=-—4-5+1-0—1-(-2)=-18
uw=-4-1+1-1-1-(-3)=0.

Since this dot product is zero, these two vectors are orthogonal, so that AB L AC and thus AABC is
a right triangle. It is unnecessary to test the remaining pair of sides.

As in Example 1.22, the dimensions of the cube do not matter, so we work with a cube with side length
1. Since the cube is symmetric, we need only consider one diagonal and adjacent edge. Orient the cube
as shown in Figure 1.34; take the diagonal to be [1, 1, 1] and the adjacent edge to be [1,0,0]. Then the
angle 6 between these two vectors satisfies

1-1+1-04+1-0 1

1
cosf = = —, SO 6 = cos ! <> ~ 54.74°.
V3Vl V3 V3

Thus the diagonal and an adjacent edge meet at an angle of 54.74°.

As in Example 1.22, the dimensions of the cube do not matter, so we work with a cube with side length
1. Since the cube is symmetric, we need only consider one pair of diagonals. Orient the cube as shown
in Figure 1.34; take the diagonals to be u = [1,1,1] and v = [1,1,0] —[0,0,1] = [1,1,—1]. Then the
dot product is

u-v=1-141-141-(-1)=1+1-1=1=#£0.

Since the dot product is nonzero, the diagonals are not orthogonal.

To show a parallelogram is a rhombus, it suffices to show that its diagonals are perpendicular (Euclid).
But

2 1
dy-dy= [2] - |-1| =2-142-(-1)40-3=0.
0 3

To determine its side length, note that since the diagonals are perpendicular, one half of each diagonal
are the legs of a right triangle whose hypotenuse is one side of the rhombus. So we can use the
Pythagorean Theorem. Since

ldif* =22+ 22 +0* =8, |dof® =17+ (-1)° +3° =11,

2 2
o _ (lIdall Idof \"_8 11 _ 19
s‘( > ) "2 ) Titai T

Since ABCD is a rectangle, opposite sides BA and C'D are parallel and congruent. So we can_use
the method of Example 1.1 in Section 1.1 to find the coordmates of vertex D: we compute BA =
1-3,2-6,3—(—-2)] =[-2,—-4,5]. If BA is then translated to C’D where C' = (0,5, —4), then

we have for the side length

so that s = @ ~ 2.18.

D= (0+(—2), 5+ (—4), —4+5) = (=2,1,1).
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36.

37.

38.

39.

40.

The resultant velocity of the airplane is the sum of the velocity of the airplane and the velocity of the

wind:
200 0 200
r=pew = [0 L] = [ 2]

Let the = direction be east, in the direction of the current, and the y direction be north, across the
river. The speed of the boat is 4 mph north, and the current is 3 mph east, so the velocity of the boat

” <[4

Let the = direction be the direction across the river, and the y direction be downstream. Since vt = d,
use the given information to find v, then solve for ¢t and compute d. Since the speed of the boat is 20

km/h and the speed of the current is 5 km/h, we have v = {250} . The width of the river is 2 km, and

the distance downstream is unknown; call it y. Then d = B] . Thus

20 2
vi= Mt_ M
Thus 20t = 2 so that ¢ = 0.1, and then y = 5- 0.1 = 0.5. Therefore

(a) Ann lands 0.5 km, or half a kilometer, downstream;

(b) It takes Ann 0.1 hours, or six minutes, to cross the river.

Note that the river flow does not increase the time required to cross the river, since its velocity is
perpendicular to the direction of travel.

We want to find the angle between Bert’s resultant vector, r, and his velocity vector upstream, v. Let
the first coordinate of the vector be the direction across the river, and the second be the direction

upstream. Bert’s velocity vector directly across the river is unknown, say u = [ﬂ . His velocity vector

upstream compensates for the downstream flow, so v = [g] So the resultant vector isr = u+v =
T 0 T . , .
ol T 1l = 1] Since Bert’s speed is 2 mph, we have |r|| = 2. Thus

22 +1=|r|>=4, sothat z=+3.

If 0 is the angle between r and v, then

We have

== o | =2 )

A graph of the situation is (with proj, v in gray, and the perpendicular from v to the projection also
drawn)
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Pproj, (v)

41. We have
3 4 3
. u-v $1+(-3-2) 5 1
proj, v = u= =—-u=—u
e T DD T
A graph of the situation is (with proj, v in gray, and the perpendicular from v to the projection also
drawn)
proj, )

42. We have

1 1 4

1 1 1

proj V:u.vu:1 15'2:1'21_5'(_12) 1 _i _§ _i = _g

u 4 4 3

u-u gegt(-g) (1) +(=3)(=3) | 1] 3| 1 i

2 2 3
43. We have

1 1 3

oo ouv 124 (1) (=3)+1- (=) +(=1)-(=2) |-1| 6 |-1| |-3| 3
proj, v=——u= : — : — =- = 3| =sw
u-u 1-14+(-1)- (=) +1-14+(-1)-(-1) 1 41 1 5 2

3

~1 ~1 —3
44. We have

. _u-v_ 05-21+15-1.2[05] 285 (0.5 [0.57 14
PO Y = " T 0505+ 15-15 [15] 25 [15)  [171] T ™
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45. We have

u-v  3.01-134—033 425+252.(~1.66) | 0L

proj, v = u= —0.33
u 3.01-3.01 —0.33- (—0.33) + 2.52 - 2.52 959
3.01 —0.301
1.552
= — 5523 —-0.33| = 0.033| =~ ——nu.
15.5194 10

2.52 —0.252

O - A I PO S A

(a) To compute the projection, we need

Thus

_ v._3 | g
T vV = — = — =
p o.]u u 5 3 % ’

so that
3 3 12
5 5

Then

2 2
12 4 410
Jull = VIS = VIO, v - proiuvll =y (£) 4 (3) =15

so that finally

W10 _,
— =4

1 . 1
A= 3 |l v = proj, vi| = 5VI0

(b) We already know u-v = 6 and |Ju|| = v/10 from part (a). Also, ||v| = v/32 4+ 12 = v/10. So

cosf = wy _ 6 —§
ulllv] viovio 5

so that
. 3 2 4
sinf = /1 —cos20 = /1 — =) ==
Thus . ) \
A= |u||[v]sind = =v10vV10- - = 4.
= 1-3 1] [ 5-3 [ 2
6—4 2 9_ 4 9

(a) To compute the projection, we need

1 2 1
u-v=|—1 1| =-3, u-u= -1 -1 =6
| 2] -2 2] 2
Thus
1 1
. v 3 ?
prOJuv:—u:—é —-1| = AR
2 -1
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48.

49.
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so that

— NI Nt

2[4
V — proj, v = 1| — % =
Then

2 2
ol = VT =gty = (2) (1) e Y22

so that finally

1 ~ 1 V30 3v5
A= Ll v = proj, v = 1v6. Y20 2V
(b) We already know u-v = —3 and |Jul| = v/6 from part (a). Also, |v| = /22 +12 + (-2)2 = 3.
So
cosf = =YV _ ;3__@
[all{vll 3v6 6’
so that
sinf = /1 — cos20 =
Thus

1 1 30  3vVH
A=§Hu|| [v] sin = 5\/63\/%27\[

Two vectors u and v are orthogonal if and only if their dot product u-v = 0. So we set u-v =0 and
solve for k:

1
u-v= [g}{:fﬂ =0 = 2k+1)+3(k—-1)=0 = 5k—1=0 :>k:5.

Substituting into the formula for v gives

As a check, we compute

ol [ 8|12 12,
u-v= . = — = — =
3 |-4 "5 5

and the vectors are indeed orthogonal.

Two vectors u and v are orthogonal if and only if their dot product u-v = 0. So we set u-v =0 and
solve for k:

1 k>
uv=|-1|-|1k|=0=k-k-6=0= (k+2)(k—3)=0 = k=2,-3.
2 -3
Substituting into the formula for v gives
(—2)? 4 [32] 9
k=2: V] = -2 = [-2 s k=-3: Vo = 3 = 3
-3 -3 | —3] -3
As a check, we compute
1 4 1 [ 9]
u-vy=|-1|-|1-2|=14-1-(-2)+2-(-3)=0, u-vy=|-1|-| 3| =1-9-1-34+2-(-3)=0
2 -3 2 -3

and the vectors are indeed orthogonal.
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50. Two vectors u and v are orthogonal if and only if their dot product u-v = 0. So we set u-v =0 and
solve for y in terms of x:

u-v= [ﬂB] =0 = 3r+y=0 = y=-3z.

Substituting y = —3x back into the formula for v gives

il =R B}

Thus any vector orthogonal to ﬁ] is a multiple of [_é] As a check,

3 z
u-v= [J . {—31‘] = 3z — 3z = 0 for any value of z,

so that the vectors are indeed orthogonal.

51. As noted in the remarks just prior to Example 1.16, the zero vector 0 is orthogonal to all vectors in
R2. So if [ﬂ = 0, any vector [ﬂ will do. Now assume that [Z} # 0; that is, that either a or b is
nonzero. Two vectors u and v are orthogonal if and only if their dot product u-v = 0. So we set
u-v =0 and solve for y in terms of z:

al |z
u-v= [b} : [y} =0 = ar+by=0.

First assume b # 0. Then y = —¢x, so substituting back into the expression for v we get

S IR R

Next, if b = 0, then a # 0, so that z = —gy, and substituting back into the expression for v gives

RO

So in either case, a vector orthogonal to {a} , if it is not the zero vector, is a multiple of {—a} . Asa

b
check, note that

{a} . { rb} = rab — rab = 0 for all values of r.
b —ra

52. (a) The geometry of the vectors in Figure 1.26 suggests that if ||[u+ v|| = ||u|| + ||v]|, then u and v
point in the same direction. This means that the angle between them must be 0. So we first prove

Lemma 1. For all vectors u and v in R? or R®, u-v = |[u||||v| if and only if the vectors point
in the same direction.

Proof. Let 0 be the angle between u and v. Then

cosf = ﬁ,
([l [[v]]
so that cos@® = 1 if and only if u-v = ||lu||||v||. But cos§ =1 if and only if § = 0, which means

that u and v point in the same direction. O
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(b)
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We can now show

Theorem 2. For all vectors u and v in R? or R3, |[u+ v|| = |[u| + ||v|| if and only if u and v
point in the same direction.

Proof. First assume that u and v point in the same direction. Then u-v = ||ul| ||v]|, and thus

lu+v|]]>=u-u+2u-v4+v-v By Example 1.9
=lul® +2u-v+|v|? Since w - w = ||w||? for any vector w

2 2
= [lall” + 2{[ul[[[v]| +[lv[” By the lemma

2

= ([[ull + vl
Since ||lu + v|| and ||u||+||v|| are both nonnegative, taking square roots gives ||u + v|| = ||ul|+||v]].
For the other direction, if ||u + v|| = [lu| + [|v||, then their squares are equal, so that

2 2 2
(all +1vID™ = [[all” + 2 {[ul {[v]} + [[v[|" and

lu+v|’=u-u+2u-v+v-v

are equal. But |lu/|*> = u - u and similarly for v, so that canceling those terms gives 2u - v =
2||u|| ||v]| and thus u-v = ||u|| ||v]|. Using the lemma again shows that u and v point in the same
direction. 0O

The geometry of the vectors in Figure 1.26 suggests that if |ju + v|| = ||u]| — ||v||, then u and v
point in opposite directions. In addition, since ||u+ v| > 0, we must also have |u|| > ||v]. If
they point in opposite directions, the angle between them must be 7. This entire proof is exactly
analogous to the proof in part (a). We first prove

Lemma 3. For all vectors u and v in R? or R®, u-v = — ||ul| ||v|| if and only if the vectors point
in opposite directions.

Proof. Let 0 be the angle between u and v. Then

cosf = l,
[ul[fIv]
so that cos§ = —1 if and only if u-v = — [Jul| ||v||. But cos@ = —1 if and only if § = 7, which
means that u and v point in opposite directions. O
We can now show
Theorem 4. For all vectors u and v in R? or R3, |[u+v|| = ||u|| — ||v| if and only if u and v

point in opposite directions and |[u| > ||v]|.

Proof. First assume that u and v point in opposite directions and |lu|| > ||v||. Then u-v =
~ Jull ], and thus

lu+v|)’=u-u+2u-v+v-v By Example 1.9
=lul?+2u-v+|v|? Since w - w = ||w||® for any vector w
=lul* =2l Iv| + Iv|® By the lemma
= (lull = [IvI)*.
Now, since |lu]| > ||v| by assumption, we see that both |ju+ v|| and |Ju|| — ||v| are nonnegative,

so that taking square roots gives |[lu+v|| = |lu]| — ||v]|. For the other direction, if |ju+ v|| =
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|lul] — ||v||, then first of all, since the left-hand side is nonnegative, the right-hand side must be
as well, so that ||u|| > ||v]|. Next, we can square both sides of the equality, so that

2 2 2
(lall = 1IvID)™ = [hall” = 2{fal[ [v]l + [[v]" and
lu+v[’=u-u+2u-v+v-v
are equal. But Hu||2 = u - u and similarly for v, so that canceling those terms gives 2u-v =

=2||lu|l|Iv|| and thus u-v = —|ju| ||v|]. Using the lemma again shows that u and v point in
opposite directions. O

53. Prove Theorem 1.2(b) by applying the definition of the dot product:
u-v=— Ul(vl + wl) + UQ(U2 + w2) + -+ Un(vn + wn)
= U1V1 + UTW1 + U2V2 + UsW3 + - - - 4+ Up Uy + UpWy,
= (u1v1 + ugva + - + Upvp) + (Urwy + Ugwa + -+ UpWy,)
=u-v+u-w.

54. Prove the three parts of Theorem 1.2(d) by applying the definition of the dot product and various
properties of real numbers:

Part 1: For any vector u, we must show u-u > 0. But
u~u:u1u1—|—u2uQ+-~+unun:u%+u§+~~—|—u%.

Since for any real number = we know that 22 > 0, it follows that this sum is also nonnegative, so
that u-u > 0.

Part 2: We must show that if u = 0 then u-u = 0. But u = 0 means that u; = 0 for all ¢, so that
u-u=0-0+0-04---4+0-0=0.
Part 3: We must show that if u-u = 0, then u = 0. From part 1, we know that
u-u:u%—i—u%—i—u-—i—ui,

and that u? > 0 for all i. So if the dot product is to be zero, each u? must be zero, which means
that u; = 0 for all ¢ and thus u = 0.

55. We must show d(u,v) = |Jlu—v| = ||v—u| = d(v,u). By definition, d(u,v) = ||u — v||. Then by
Theorem 1.3(b) with ¢ = —1, we have ||—w|| = ||w]|| for any vector w; applying this to the vector u—v
gives

lu=v]=[-(a=v)||=v—ul,
which is by definition equal to d(v,u).

56. We must show that for any vectors u, v and w that d(u, w) < d(u,v)+d(v,w). This is equivalent to
showing that |ju — w|| < |ju — v|| 4 ||v — w]||. Now substitute u — v for 2 and v — w for y in Theorem
1.5, giving

lu—w[=[l(a=v)+(v-w)<|a-v|]+]v-w].

57. We must show that d(u,v) = |lu—v| = 0 if and only if u = v. This follows immediately from
Theorem 1.3(a), ||w|| = 0 if and only if w = 0, upon setting w = u — v.

58. Apply the definitions:

u-ev = [ug,ug, ..., U] - [cvr, cog, ..., cop]

= u1cv1 + U2cvy + - - - + UpCU,

cu1v1 + cugvy + - - - 4 cup vy,
= c(ujvy + ugva + -+ - + unvy)

=c(u-v).
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59. We want to show that |ju — v|| > ||u|| — ||v||. This is equivalent to showing that ||u|| < |Jju—v||+ V]
This follows immediately upon setting x = u — v and y = v in Theorem 1.5.

60. If u-v = u-w, it does not follow that v = w. For example, since 0 - v = 0 for every vector v in R",
the zero vector is orthogonal to every vector v. So if u = 0 in the above equality, we know nothing
about v and w. (as an example, 0-[1,2] = 0-[—17,12]). Note, however, that u-v = u - w implies
that u-v —u-w =u(v —w) =0, so that u is orthogonal to v — w.

61. We must show that (u+ v)(u —v) = |[u||® — ||v||* for all vectors in R™. Recall that for any w in R"
that w - w = ||w|?, and also that u-v = v - u. Then

(u+viu—v)=u-u+v-u—u-v-v-v=|ul+u-v—u-v—|v|*=ul’-|v|>.

62. (a) Let u,v € R”. Then
latv[* +u=v[* = (u+v)- (@t v)+(@=v) - (u-v)
=(u-ut+v-v+2u-v)+(u-u+v-v—-2u-v)
(Irall® + 1v)1?) + 2w v+ (il + Iv]]*) = 2u-v

2 2
=2]uf” +2]v]".

(b) Part (a) tells us that the sum of the
squares of the lengths of the diagonals
of a parallelogram is equal to the sum
of the squares of the lengths of its four
sides.

63. Let u,v € R". Then

1 2 2 1

Flu vl = F vl = J e v) - () = (=) - (=)
=i[(u~u—|—v~v+2u-v)—(u-u+v.v_2u.v)]
=[Ol = ) + (101 = 1v]) + 4w -]

64. (a) Let u,v € R". Then using the previous exercise,
2 2
[lut vl =llu=v] & utv|" = [u-v]|
2 2
S utv|"=flu-v|"=0
1 1
& gl v]® = 2 Ju=v]* =0

sSu-v=_0
< u and v are orthogonal.
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(b) Part (a) tells us that a parallelogram is
a rectangle if and only if the lengths of
its diagonals are equal.

65. (a) By Exercise 55, (u+v)-(u—v) = ||[uf”>=||v]*>. Thus (u+v)-(u—v) = 0if and only if lu||* = |v|>.

66.

67.

68.

It follows immediately that u 4+ v and u — v are orthogonal if and ouly if ||u]| = ||v].

(b) Part (a) tells us that the diagonals of a
parallelogram are perpendicular if and
only if the lengths of its sides are equal,
i.e., if and only if it is a rhombus.

From Example 1.9 and the fact that w-w = ||w]|?>, we have |u+ v||* = ||u|* + 2u - v + ||v|*. Taking

the square root of both sides yields |[[u+ v|| = \/||uH2 +2u-v+||v|®. Now substitute in the given

values ||ul| =2, ||v|]| = V3, and u-v = 1, giving

u+v|=\/22+2~1+(\/§)2=m=¢§=3.

From Theorem 1.4 (the Cauchy-Schwarcz inequality), we have |u-v| < [ju] ||v]. If |Ju|| = 1 and
[lv]] =2, then |u-v| <2, so we cannot have u-v = 3.
(a) If u is orthogonal to both v and w, then u-v =u-w = 0. Then

u-(v+w)=u-v+u-w=0+0=0,
so that u is orthogonal to v 4+ w.

(b) If u is orthogonal to both v and w, then u-v =u-w = 0. Then
u-(sv+tw)=u-(sv)+u-(tw)=s(u-v)+t(u-w)=s-0+¢t-0=0,

so that u is orthogonal to sv + tw.

69. We have
u-(v—projuv)zu-(V—(E_Z)u)
u-v
=u-v—u (ﬁ)u
e (e
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u-v

70. (a) proj,(proj, v) = proj, (Hu) = 2 proj, u = S¥u = proj, v.
(b) Using part (a),

. , . u-v u-v u-v .
proj, (v — proj, v) = proj, (v - ﬁu) = (—) u— ( ) proj, u

(c) From the diagram, we see that
proj, vl|lu, so that proj, (proj,v) =
proj, v. Also, (v —proj,v) L u, so
that proj,, (v — proj, v) = 0.

proj,(v)

v = proj,(v) —proj,(»)

71. (a) We have

2 (2 1 2 2 2,2 2,2 2,2 2,2 2,2 2,2
(uf + u3)(v] + v3) — (u1v1 + ugv2)” = uiv] + uvs + UusV] + V5 — UTV] — 2UIV ULV — USVS
2,2 2,2
= ujv; + usv] — 2U1U2V1 V2
2
= (ulvg — U2U1) .
But the final expression is nonnegative since it is a square. Thus the original expression is as well,
showing that (u? + u3)(v? + v3) — (u1v1 + ugva)? > 0.
(b) We have
2 2 W2 4 2 2 2
(ui + uz 4+ u3)(vf +v3 +v3) — (W1v1 + U202 + usvs)
2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
= ujvy + ujvy +ujvy +upvy + upvy + uavs + uzvy + uzvy + uzv;
— u%vf — 2U1V1UVy — u%vg — 2ujviugvy — u%vg — 2ugvou3v3
2,2 2,2 2,2 2,2 2,2 2,2
= U0 + ujvz + ujvy +upvs + uzvy + uzv;
— 2U1UQ’011}2 — 2’11,1’()1’11,31}3 — 2’LL2’U2U3’03
2 2 2
= (ul’Ug — UQ’Ul) + (Ulvg — U3U1) + (U31)2 — ’LLQ’Ug) .
But the final expression is nonnegative since it is the sum of three squares. Thus the original

expression is as well, showing that (u? + u3 + u3) (v} + v3 + v3) — (ugv1 + ugva + uzvz)? > 0.

72. (a) Since proj, v = 2¥u, we have

. ( i v) u-v u-v
proj,v - (v —proj,v)= —u- (v— —u
" " u-u u-u
u-v u-v
=—(u-v—-—u-u
u-u ‘u
u-v
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so that proj,, v is orthogonal to v — proj,, v. Since their vector sum is v, those three vectors form
a right triangle with hypotenuse v, so by Pythagoras’ Theorem,

. 2 . 2 . 2 2
[projy vII” < [[proj, v[|” + [[v — proj, v[” = [Iv]".

Since norms are always nonnegative, taking square roots gives ||proj, v| < ||v||.

(b)

. u-v
Iproj vl < vl = || (5 ) uf < vl
u-v
u-v
> Tl [[ull < vl
<

= |u-v[<[ulv],

which is the Cauchy-Schwarcz inequality.

73. Suppose proj, v = cu. From the figure, we see that cosf = C‘ltlu”. But also cosf = m Thus these
two expressions are equal, i.e.,
c¢|[ul| u-v u-v u-v u-v
= sc¢u|=—=2c="——+—=—.
vl [hal vl [[ull [af[{ul uw-u

74. The basis for induction is the cases n = 1 and n = 2. The n = 1 case is the assertion that ||v1]| < ||va]|,
which is obviously true. The n = 2 case is the Triangle Inequality, which is also true.

Now assume the statement holds for n = k > 2; that is, for any vy, va,..., Vg,
[vi+va+ -+ vl < [lvall + [[vall + -+ [[vill-
Let vy, vo,..., Vi, Vi41 be any vectors. Then

lvi+ve+ - +vi+vipl =vi+ve+- 4+ (Vi + vig1)]l
< il =+ [Fvall + - 4 [[vi 4 Vi |

using the inductive hypothesis. But then using the Triangle Inequality (or the case n = 2 in this
theorem), ||[vi + Vit1l < ||Ve]l + ||[Ve+1]|. Substituting into the above gives

lvi+ve+- -+ v+ vl <|vill+ [[vell + -+ Ve + Vil
< |vill + [Ivall + -+ + [[vell + [[visall s

which is what we were trying to prove.

Exploration: Vectors and Geometry

1. As in Example 1.25, let p = OP. Then p—a= AP = %E =i(b—a),sothatp=a+3(b—a)=
%%+ b). More generally, if P is the point + of the way from A to B along AB, thenp —a= AD =
LAB=1(b-a),sothatp=a+ i(b—a)=21((n—1)a+b).

2. Use the notation that the vector OX is written x. Then from exercise 1, we have p = %(a + ¢) and
q= %(b + ¢), so that

PQ:q—p:§(b—|—c)—§(a—|—c):i(b—a)ziAB.
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. Draw AC. Then from exercise 2, we have P_Q> = %A_B> = SR. Also draw BD. Again from exercise 2,

we have PS = %B_D> = Cﬁ%’ Thus opposite sides of the quadrilateral PQRS are equal. They are also
parallel: indeed, ABPQ and ABAC are similar, since they share an angle and BP : BA = BQ : BC.
Thus ZBPQ = £ZBAC; since these angles are equal, PQ|AC. Similarly, SR||AC so that PQ|SR. In
a like manner, we see that PS||RQ. Thus PQRS is a parallelogram.

. Following the hint, we find m, the point that is two-thirds of the distance from A to P. From exercise

1, we have

1 1 1 1 1
:§(b+c), sothatm:3(2p—|—a):3(2-2(b+c)+a> :§(a+b—|—c).

Next we find m’, the point that is two-thirds of the distance from B to Q). Again from exercise 1, we
have

1 1 1 1 1
q= -(a+c), so that m’=§(2q—|—b): 3 (2-(a—|—c)—|—b) :§(a—|—b+c).

2 2

Finally we find m”, the point that is two-thirds of the distance from C to R. Again from exercise 1,
we have

1 1 1 1 1
rzi(aqtb), so that m":§(21‘+c):g <2.2(a+b)+c> :g(a+b+c).

Since m = m’ = m”, all three medians intersect at the centroid, G.

- With notation as in the ﬁgure we know that AH is orthogonal to BC that is, AH - BC = 0. Also

BH is orthogonal to AC that is, BH - AC = 0. We must show that CH - AB = 0. But

AH~BC:O:>(h—a)~(b—c):0:>h~b—h-c—a-b+a~c:0
B_H>~A—C):O:>(h—b)~(c—a):O:>h~c—h~a—b-c+b~a:0.

Adding these two equations together and canceling like terms gives
O:h~b—h-a—c~b—|—a-c:(h—c)-(b—a):C’vﬁ-ZE7

so that these two are orthogonal. Thus all the altitudes intersect at the orthocenter H.

. We are given that QK is orthogonal to AC and that PK is orthogonal to C’B and must show that

RK is orthogonal to AB. By exercise 1, we have q = 2(a+c), p= 1(b+c), and r = 3(a+b). Thus
—> > 1
QKoACO:>(kq)~(ca)Oé(kQ(a+c)>-(ca)O
_— —» 1
PK-C’B:O:>(k—p)-(b—c):O:><k—2(b+c)>-(b—c):0.

Expanding the two dot products gives

koc—k-a-sa-cto lcictiaic=0
(¢ a 2aC Qaa 2CC 2ac—

1 1 1 1
k~b—k-c—§b-b—|—§b~c—§c~b+§c-c:0.

Add these two together and cancel like terms to get

O:k~b7k-af%b~b+%a~a: (k;(b+a)).(ba)—(kr).(ba)—R_K’.E;’.

Thus RK and AB are indeed orthogonal, so all the perpendicular bisectors intersect at the circumcen-
ter.
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7. Let O, the center of the circle, be the origin. Then b = —a and |ja||* = ||c||* = 72 where r is the radius
of the circle. We want to show that AC' is orthogonal to BC. But

_— —

AC-BC=(c—a)-(c—Db)
—(c—a)-(c+a)
~ el +c-a—[al*~a-e

=(a-c—c-a)+ (" —r%) =0.
Thus the two are orthogonal, so that ZAC'B is a right angle.

8. As in exercise 5, we first find m, the point that is halfway from P to R. We have p = %(a + b) and
r = 1(c+d), so that

mzé(p—&-r):;(;(a+b)+;(c+d)> :i(a—i—b—&-c—&-d).

Similarly, we find m’, the point that is halfway from @ to S. We have q = %(b +c¢)and s = %(a—l— d),
so that

m’:;(q+s):;(;(b+c)+é(a+d)> :i(a+b+c+d).

Thus m = m’, so that PR and CTS: intersect at their mutual midpoints; thus, they bisect each other.
1.3 Lines and Planes
. 3 0
1. (a) The normal form isn- (x —p) =0, or {2] . <x - {J) = 0.
(b) Letting x = B] , we get
3 z 0 3 z
o) (G- [o]) - - [ o200
The general form is 3z + 2y = 0.
. 3 1
2. (a) The normal form isn- (x —p) =0, or {_4} - <X - [2}) =0.

(b) Letting x = B] , we get

(BB -] ] o -awma -0

Expanding and simplifying gives the general form 3x — 4y = —5.

3. (a) In vector form, the equation of the line is x = p 4+ td, or x = Ll)] +t [_:ﬂ .

(b) Letting x = [Zﬂ and expanding the vector form from part (a) gives Lﬂ = [1 _tt] , which yields

the parametric form x =1 — ¢, y = 3t.

4. (a) In vector form, the equation of the line is x = p + td, or x = {_ﬂ +t [ﬂ .

(b) Letting x = Lx/] and expanding the vector form from part (a) gives the parametric form x = —4+¢,
y=4+41.
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0 1
(a) In vector form, the equation of the lineis x =p+td,or x= (0| +¢ |—1].
0 4
x
(b) Letting x = |y| and expanding the vector form from part (a) gives the parametric form z = ¢,
z
y = —t, z =4t.
3 2
(a) In vector form, the equation of the lineisx =p+t¢td,orx= | 0| +¢|5].
2 0
x x 3+2t
(b) Letting x = |y| and expanding the vector form from part (a) gives |y| = 5t |, which
Z z -2
yields the parametric form x = 3 + 2t, y = 5¢, z = —2.
3 0
(a) The normal formisn-(x—p)=0,or (2| -[x—|1]| | =0.
1 0
x
(b) Letting x = |y|, we get
z
3 z 0 3 z
2] - y| — |1 = (2] - |ly—1| =3z+2(y—1)+2=0.
1 z 0 1 z

Expanding and simplifying gives the general form 3z 4 2y + z = 2.

2 3
(a) The normal formisn-(x—p)=0,or |5 -|x—| 0| | =0.
0 -2
x
(b) Letting x = |y|, we get
z
2 T 3 2 z—3
501 lyl—=1 0l )=15]-| vy | =2(x—3)+5y=0.
0 z -2 0 z+2

Expanding and simplifying gives the general form 2z + 5y = 6.

(a) In vector form, the equation of the line is x = p + su + tv, or

0 2 -3
x=|0| +s|1| +t| 2
0 2 1
x
(b) Letting x = |y| and expanding the vector form from part (a) gives
z
T 2s — 3t
yl =1 s+2t
z 25 +1

which yields the parametric form the parametric form x = 2s — 3t, y = s + 2t, z = 2s + t.



1.3. LINES AND PLANES 29

10. (a) In vector form, the equation of the line is x = p + su + tv, or

6 0 -1
x=|—4|+s|1|+t| 1
-3 1 1
T
(b) Letting x = |y | and expanding the vector form from part (a) gives the parametric form = 6 —t,
z

y=—-4+s+t,z2=-3+s+t.

11. Any pair of points on ¢ determine a direction vector, so we use P _ar)ld Q. We choose P to represent
the point on the line. Then a direction vector for the line is d = PQ = (3,0) — (1,-2) = (2,2). The

vector equation for the line is x = p + td, or x = [_;] +t ;] .

12. Any pair of points on ¢ determine a direction vector, so we use P and Q. We choose P to represent the
point on the line. Then a direction vector for the line is d = PQ = (-2,1,3) — (0,1,-1) = (—2,0,4).

0] —2
The vector equation for the line is x = p 4+ td, or x = 11 +t| Of.
-1 4

13. We must find two direction vectors, u and v. Since P, @), and R lie in a plane, we compute We get
two direction vectors

u=P@=q-p=(40,2) - (1,1,1) = (3,-1,1)
v=PR=r—p=(0,1,—1)— (1,1,1) = (1,0, —2).

Since u and v are not scalar multiples of each other, they will serve as direction vectors (if they were
parallel to each other, we would have not a plane but a line). So the vector equation for the plane is

1 3 -1
x=p+su+itv,orx= |1|+s|-=1[+t| O].
1 1 -2

14. We must find two direction vectors, u and v. Since P, @), and R lie in a plane, we compute We get
two direction vectors

u=PQ@=q-p=(101)-(1,1,0) = (0,-1,1)
v=PR=r—-p=(0,1,1) - (1,1,0) = (~1,0,1).

Since u and v are not scalar multiples of each other, they will serve as direction vectors (if they were
parallel to each other, we would have not a plane but a line). So the vector equation for the plane is

1 0 -1
x=p+su+itv,orx= |1|+s|-=1[+t| O].
0 1 1

15. The parametric and associated vector forms x = p + td found below are not unique.

(a) As in the remarks prior to Example 1.20, we start by letting = ¢. Substituting z = ¢ into
y=3x — 1 gives y = 3t — 1. So we get parametric equations z = t, y = 3t — 1, and corresponding

T 0 1
vector form [y} = [J +t {3]

(b) In this case since the coefficient of y is 2, we start by letting = 2¢. Substituting x = 2¢ into
3z 42y = 5 gives 3-2t+ 2y = 5, which gives y = -3t + % So we get parametric equations x = 2t,
Yy = % — 3t, with corresponding vector equation
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16.

17.

18.
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Note that the equation was of the form azx + by = ¢ with @ = 3, b = 2, and that a direction vector

was given by [_2] . This is true in general.

Note that x = p + ¢t(q — p) is the line that passes through p (when ¢ = 0) and q (when ¢t = 1). We
write d = q — p; this is a direction vector for the line through p and q.

(a) As noted above, the line p + td passes through P at t =0 and through @ at ¢ = 1. So as ¢ varies
from 0 to 1, the line describes the line segment PQ).

(b) As shown in Exploration: Vectors and Geometry, to find the midpoint of PQ, we start at P
and travel half the length of PQ in the direction of the vector P—Cé = q—p. That is, the midpoint
of PQ is the head of the vector p + %(q —p). Since x = p+t(q — p), we see that this line passes
through the midpoint at ¢ = %, and that the midpoint is in fact p + %(q —p) = %(p +q).

(c) From part (b), the midpoint is  ([2, —3] 4 [0,1]) = £[2, —2] = [1, —1].

(d) From part (b), the midpoint is 3 ([1,0,1] +[4,1,-2]) = 3[5,1,-1] = 13, 3, 3]

(e) Again from Exploration: Vectors and Geometry, the vector whose head is % of the way from
P to Q along PQ is x; = %(2p + q). Similarly, the vector whose head is % of the way from P to
Q along PQ is also the vector one third of the way from @ to P along QP; applying the same
formula gives for this point x, = %(Qq + p). When p =[2,-3] and q = [0, 1], we get

1 1 4 5
x1 = 3(202,-3]+ 0.1) = 34,5 = |3, -]

Xg = é(Q[O, 114+ [2,-3]) = %[2, —1] = E, ;] .

(f) Using the formulas from part (e) with p =[1,0,—1] and q = [4,1, —2] gives

1 1 1 4
= —(2[1,0,-1 4,1,-2])==[6,1,-4] = |2, =, —=
xi= 3210, -1+ [4.1,-2) = 316,14 = [2. 3, -3
1 1 2 5
= —(2[4,1,-2 1,0,—1)) ==19,2,—-5] = (3, =, —=| .
X2 3([7a ]+[va ]) 3[7a ] |:333 3:|
A line ¢; with slope m; has equation y = myx + by, or —myx + y = by. Similarly, a line ¢ with slope
ms has equation y = maox + ba, or —moax 4+ y = by. Thus the normal vector for £ is n; = [_Tl] , and

the normal vector for /5 is ny = 1

vectors are perpendicular, i.e., if and only if n; - ny = 0. But

mﬂ . Now, ¢; and ¢ are perpendicular if and only if their normal

nj-ng = {_T1:| : |:—71712:| =myma + 1,

so that the normal vectors are perpendicular if and only if myms+1 = 0, i.e., if and only if myms = —1.

Suppose the line ¢ has direction vector d, and the plane &2 has normal vector n. Then if d-n =0 (d
and n are orthogonal), then the line ¢ is parallel to the plane &2. If on the other hand d and n are
parallel, so that d = n, then ¢ is perpendicular to £2.

2
(a) Since the general form of & is 2z 4+ 3y — z = 1, its normal vector isn= | 3|. Since d = In, we
-1
see that /¢ is perpendicular to Z.
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4
(b) Since the general form of & is 4o — y + 5z = 0, its normal vector isn = [—1|. Since
5
2 4
dn=| 3|-|-1[=2-443-(-1)—-1-5=0,
-1 5
{ is parallel to Z.
1
(c) Since the general form of & is  — y — z = 3, its normal vector isn = [—1|. Since
-1
2 1
d-n=| 3 -1l =2-143-(-1)—1-(-1)=0,
-1 -1
¢ is parallel to .
4
(d) Since the general form of & is 4z + 6y — 2z = 0, its normal vector is n = 6. Since
-2
2 4
1 1
—1 -2

¢ is perpendicular to .

31

19. Suppose the plane &7, has normal vector n, and the plane &2 has normal vector n. Then if n; -n =0
(n; and n are orthogonal), then £2; is perpendicular to &. If on the other hand n; and n are
parallel, so that n; = ¢n, then &7, is parallel to &. Note that in this exercise, ?; has the equation

4
dr —y+ 5z =2,s0that n; = | —1|.
5
2
(a) Since the general form of & is 2z + 3y — z = 1, its normal vector isn = | 3|. Since
—1
4 2
n-n=|—-1|-| 3| =4-2-1-3+5-(—-1)=0,
5 -1
the normal vectors are perpendicular, and thus & is perpendicular to Z.
4
(b) Since the general form of & is 4z — y + 5z = 0, its normal vector is n = |—1|. Since n; = n,
5
S is parallel to Z.
1
(c) Since the general form of & is x —y — z = 3, its normal vector isn = [—1|. Since
-1
4 1
n-n=|-1{ -|-1|=4-1-1-(-1)4+5-(-1) =0,
5 -1

the normal vectors are perpendicular, and thus & is perpendicular to .
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20.

21.

22,

23.
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4
(d) Since the general form of & is 4x + 6y — 2z = 0, its normal vector ism = | 6. Since
-2
4 4
n-on=|-1|-| 6] =4-4—1-6+5-(-2)=0,
5) -2

the normal vectors are perpendicular, and thus &7 is perpendicular to Z.

Since the vector form is x = p + td, we use the given information to determine p and d. The general

equation of the given line is 2x — 3y = 1, so its normal vector is n = [ } . Our line is perpendicular

-3

2 . .
} . Furthermore, since our line passes through the

to that line, so it has direction vector d = n = {_3

point P = (2,—1), we have p = { 2} . Thus the vector form of the line perpendicular to 2z — 3y =1

2=

Since the vector form is x = p + td, we use the given information to determine p and d. The general

through the point P = (2,—1) is

2} . Our line is parallel to that

equation of the given line is 2z — 3y = 1, so its normal vector is n = [_3

line, so it has direction vector d = B} (note that d - n = 0). Since our line passes through the point

P =(2,—1), we have p = {
the point P = (2,—1) is

2] , so that the vector equation of the line parallel to 2z — 3y = 1 through

-1
T 2 3
b=l
Since the vector form is x = p + td, we use the given information to determine p and d. A line is
perpendicular to a plane if its direction vector d is the normal vector n of the plane. The general

1
equation of the given plane is x — 3y + 2z = 5, so its normal vector is n = | —3|. Thus the direction
2
1
vector of our line is d = | —3|. Furthermore, since our line passes through the point P = (—1,0, 3), we
2
-1
have p = 0. So the vector form of the line perpendicular to  — 3y + 2z = 5 through P = (—1,0, 3)
3
is
T —1 1
yl = Of +¢t -3
z 3 2

Since the vector form is x = p + td, we use the given information to determine p and d. Since the
given line has parametric equations

r=1—t, y=24+3t, z=-2-—1t, it has vector form

IS NSRS
I

\
N
—+
~
w
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24.

25.

-1
So its direction vector is 3|, and this must be the direction vector d of the line we want, which is
-1
-1
parallel to the given line. Since our line passes through the point P = (—1,0,3), we have p = 0f.
3
So the vector form of the line parallel to the given line through P = (—1,0,3) is
T —1 [—1]
yl| = o +t| 3.
z 3 |—1]

Since the normal form is n-x = n - p, we use the given information to determine n and p. Note that
a plane is parallel to a given plane if their normal vectors are equal. Since the general form of the

6
given plane is 6z — y 4+ 2z = 3, its normal vector is n = | —1|, so this must be a normal vector of the
2
desired plane as well. Furthermore, since our plane passes tflrough the point P = (0,—2,5), we have
0
p = [—2]|. So the normal form of the plane parallel to 6x — y + 2z = 3 through (0, —2,5) is
5
6 x 6 0 6 x
-1 yl =1-1 -2 or —1 yl =12
2 z 2 5 2 z

Using Figure 1.34 in Section 1.2 for reference, we will find a normal vector n and a point vector p for
each of the sides, then substitute into n-x = n - p to get an equation for each plane.

(a) Start with &7; determined by the face of the cube in the zy-plane. Clearly a normal vector for

1
P isn = |0|, or any vector parallel to the x-axis. Also, the plane passes through P = (0,0, 0),
0
0
so we set p = |0|. Then substituting gives
0
1 x 1 0
0 y|l =10[-10 or z=0.
0 z 0 0

So the general equation for & is x = 0. Applying the same argument above to the plane &,
determined by the face in the zz-plane gives a general equation of y = 0, and similarly the plane
P53 determined by the face in the zy-plane gives a general equation of z = 0.

Now consider &, the plane containing the face parallel to the face in the yz-plane but passing

1
through (1,1,1). Since &, is parallel to &1, its normal vector is also |0|; since it passes through
0
1
(1,1,1), we set p = |1|. Then substituting gives
1
1 x 1 1
0] -yl =10]-]1 or z=1.
0 z 0 1

So the general equation for &2, is * = 1. Similarly, the general equations for &5 and Hg are
y=1and z = 1.
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(b)

(c)
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T

Let n = |y| be a normal vector for the desired plane &. Since & is perpendicular to the
z

zy-plane, their normal vectors must be orthogonal. Thus

x 0
yl - |0 =2-04+y-04+2-1=2=0.
z 1

Thus z = 0, so the normal vector is of the form n

x
y|. But the normal vector is also
0

perpendicular to the plane in question, by definition. Since that plane contains both the origin
and (1,1,1), the normal vector is orthogonal to (1,1,1) — (0,0,0):

T 1
Y 1| =2-14y-1+2-0=2+y=0.
0 1
x
Thus x + y = 0, so that y = —x. So finally, a normal vector to & is given by n = |—x| for
0
1
any nonzero x. We may as well choose x = 1, giving n = [—1|. Since the plane passes through
0
(0,0,0), we let p = 0. Then substituting in n-x =n - p gives
1 T 1 0
—1|-|y| =1|-1|-|0l, or z—y=0.
0 z 0 0

Thus the general equation for the plane perpendicular to the zy-plane and containing the diagonal
from the origin to (1,1,1) is z —y = 0.
As in Example 1.22 (Figure 1.34) in Section 1.2, use u = [0,1, 1] and v = [1,0, 1] as two vectors

x
in the required plane. If n = [y| is a normal vector to the plane, thenn-u=0=n-v:
z
T 0 x 1
n-u= |y 1l =y+2=0=>y=—z2, n-v= |y Ol =x+2=0=>2x=—=2.
z 1 z 1
—7] 1
Thus the normal vector is of the form n = |—z| for any z. Taking z = —1 gives n = 1].
z -1
Now, the side diagonals pass through (0, 0,0), so set p=0. Then n-x = n - p yields
1 [= 1] [0]
1] - |yl = 1] - ({0, or z4+y—2z=0.
-1 z -1 0

The general equation for the plane containing the side diagonals is z +y — z = 0.

26. Finding the distance between points A and B is equivalent to finding d(a, b), where a is the vector
from the origin to A, and similarly for b. Given x = [z,y, 2], p = [1,0,—2], and q = [5, 2, 4], we want
to solve d(x,p) = d(x, q); that is,

dx,p) = V(@ =12+ (y =02+ (z +2)2 = (& =52+ (y - 2)> + ( — 4)* = d(x, Q).
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27.

28.

29.

Squaring both sides gives

(z—124+@w-0>2++2 =@-5°+{Hy—-2>+(z:-4? =
22 =2+ 14+ + 22442 4+4=2>-10c+25+y° —dy+4+22—-824+16 =
8r+4y+12z2=40 =
2z +y + 3z = 10.

Thus all such points (z,y, 2) lie on the plane 2z + y + 3z = 10.

_ lazo+byo—c| . . _ 1 o 1
To calculate d(Q,¢) = %, we first put ¢ into general form. With d = {_1], we get n = L]

since then n-d = 0. Then we have

wxewn = (B[

Thus 2+ y =1 and thus a = b= c=1. Since Q = (2,2) = (9, yo), we have

Q.0 = 1-2+1-2-1 3  3V2
RV e P V22
-2
Comparing the given equation to x = p + td, we get P = (1,1,1) and d = 0|. As suggested by
3

Figure 1.63, we need to calculateﬂl_g length of J@), where R is the point on the line at the foot of the
perpendicular from @Q. So if v = PQ, then

—

PR = projq v, m:v—projd V.

N 0 1 -1
Now,v=PQ=q—-p=|1| — |1| = | 0], so that
0 1 -1
-2 2
_ d-v d —2-(=1)+3-(-1) 0 1?6
rojgv=|—-——= = =
prola d-d —2.(—2)+3-3 ,
3 ~13
Thus
-1 2 _15
13 13
V — Pprojqv = 0| — 0| = 0
-1 _3 _10
13 13

Then the distance d(Q, ¢) from Q to ¢ is

3
5 5 5v13
[v —projg v = = || |0| | = V32 +22 = ="

13 9 13 13

To calculate d(Q, &) = %, we first note that the plane has equation z +y — z = 0, so

that a=b=1, c=—1, and d = 0. Also, Q = (2,2,2), so that g = yo = 20 = 2. Hence
Cjte241.2-1.2-0 2

2
4@ 2) 124124 (—1)2 V3o 3
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To calculate d(Q, &) = %, we first note that the plane has equation x — 2y + 2z = 1, so

that a =1, b= -2, c=2, and d = 1. Also, @ = (0,0,0), so that xg = yo = 20 = 0. Hence

1-0—-2-04+2-0-1 1
a(Q, #) = | L
12 + (—2)2 + 22 3

Figure 1.66 suggests that we let v = P_Cj; then w = PR = projq v. Comparing the given line ¢ to

x=p+itd, weget P=(—1,2) and d = [_H Thenv:P—Q):q—p: B] — [_ﬂ = [g} Next,

AV (134 (=1)-0 1] 3[ 1
—PlaV =gl “\Tarcy- ) [ T2 -y
So )
N -1 3 1
r=p+PR=p+projyv=p+w= ) + _g :lfl
2] 2

So the point R on ¢ that is closest to @ is (%, %)

Figure 1.66 suggests that we let v = P—Q>; then PR = projq v. Comparing the given line £ to x = p+td,

-2 0 1 -1
we get P=(1,1,1)andd=| O|. Thenv=PQ=q-p=|1| —|1| = | 0f. Next,
3 0 1 -1
—9 2
) d-v —2-(-1)+3- (-1 13
= _— d = =
3 ~13
So
2 15
R 1 3 3
r=p+PR=p+projgv=|1| + 0] =11
1 _3 10
13 13
So the point R on £ that is closest to @ is (%, 1, %)
Figure 1.67 suggests we let v = lD_Cj, where P is some point on the plane; then Cﬁ% = proj, v. The
1
equation of the planeisz+y—2=0,s0on = 1|. Setting y = 0 shows that P = (1,0, 1) is a point
-1
on the plane. Then
. 2 1 1
v=PQ=q—p= (2| - |0| =|2{,
2 1 1
so that
1 2
. (n-V) 1-1+1-1—1-1 ) 5
roj,v=|——)n= = 2
Projn n-n 12412 4 (—1)2 g
-1 -2
Finally,
2 4
r=p+PQ+PR=p+v—proj,v= 0| + (2| —| 2| = |4
1 1 -2 g
3 3

~—

Therefore, the point R in &2 that is closest to @ is (%, %, %
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34. Figure 1.67 suggests we let v = P—Q), where P is some point on the plane; then @% = proj, v. The

1
equation of the plane is x — 2y 4+ 2z =1, son = |—2]|. Setting y = z = 0 shows that P = (1,0,0) is a
2
point on the plane. Then __
. o] [1 -1
v=PQ=q—-p=|0| — |0 = Of,
0] 0 0
so that
1 1
, (n-v) 1-(-1) ) 3
T vVv=|——]n-= _ — — 2
PEOIn n-n 12+ (—2)2 1 22 9
2 —5
Finally,
1 1
r=p+PQ+PR=p+v—proj,v= |0| + ol — % = %
0 0 -2 -2
9 9

Therefore, the point R in &2 that is closest to Q is (—%, %, —%).

35. Since the given lines ¢; and ¢ are parallel, choose arbitrary points @ on ¢; and P on {5, say Q = (1,1)
and P = (5,4). The direction vector of ¢3 is d = [—2,3]. Then

v=rg=a-p=[]-[] =[]

rojg v = d-v d= “2-(=4)+3-(=3)\[-2] _ 1 [-2
projg v = d-d - (—2)2 + 32 31 = 713 NE
Then the distance between the lines is given by

st =[5 - - B0

36. Since the given lines ¢; and /5 are parallel, choose arbitrary points ¢ on ¢; and P on /{3, say @ =
(1,0,—1) and P = (0,1,1). The direction vector of ¢5 is d = [1,1,1]. Then

so that

N 1 0 1
v=PQ=q—-p= 0] — (1| = [-1],
-1 1 -2
so that
. dv) _ (Ll+1-(=)+1-(-2) } 2 1
o VvV = = — ——
ProJa d-d 12412+ 12 h 3|,
Then the distance between the lines is given by
1 1 5
) 2 3 1 42
v —projavll = | |-1| + 5 [1]||=| ||| = 55>+ (-1)> + (—4)% = v
3 4 3 3
-2 1 -3

37. Since &, and Py are parallel, we choose an arbitrary point on &1, say @ = (0,0,0), and compute
d(Q, P2). Since the equation of 5 is 2z +y — 2z =5, we have a =2, b =1, c = —2, and d = 5; since
Q = (0,0,0), we have g = yo = zo = 0. Thus the distance is
_lawo +byo +czo—d| _[2-04+1-0-2-0-5] 5

d('@h'@2) = d(Q7gZ2> \/m m g
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Since &7, and P, are parallel, we choose an arbitrary point on Z;, say @ = (1,0,0), and compute
d(Q, Z5). Since the equation of P5 is x +y + 2 = 3, we have a = b = ¢ = 1 and d = 3; since
Q = (1,0,0), we have g = 1, yo = 0, and 29 = 0. Thus the distance is

Camo4+byo+czo—d  [1-1+1-041-0—-3] 2 23

W) =A@ 2 = v a VETTETE VB 3

We wish to show that d(B, ) = l2zotbvo—cl "where n = [

N a},n-a:c,andB:(xo,yo).va:ﬁ:
b — a, then

b

Zo

n-v=n-(b-aj=n-b-n-a= m ' L/o

:|CaI0+by06.

Then from Figure 1.65, we see that

_ n-v n-v| Jaxg+byo — ¢
d(B,¥) = ||proj, v :H(—)nH: =
a
We wish to show that d(B,¢) = mgi‘)—\/%";m, where n = |b|, n-a =d, and B = (x9,y0,20). If
c
v:A_Bbzb—a7 then
a Zo
n-v=n-(b—a)=n-b—n-a=|[b|- |y | —d=axg+ by + czp — d.
C Z0
Then from Figure 1.65, we see that
_n-v| awo + byo + czo — d|

n-v
d(B,{) = ||proj, v :H( )nH_ =
Choose B = (x9,yo) on {1; since ¢; and {5 are parallel, the distance between them is d(B, ¢3). Then
a . Xo
b

v = b —a. Then using the formula in Exercise 39, the distance is

since B lies on £1, we have n-b = { = axg + byg = ¢1. Choose A on /5, so that n-a = ¢y. Set

n-v n-(b—a n-b—n-a c1— ¢
d(€1,£2):d(37€2):| |_| ( )l_‘ ‘_|1 2|

ol ml [

Choose B = (g, Yo, 20) on q; since &1 and H, are parallel, the distance between them is d(B, &2).

a To
Then since B lies on &1, we have n-b = [b| - |yo| = axg + byg + czo = di. Choose A on Py, so
C 20

that n-a = ds. Set v=b — a. Then using the formula in Exercise 40, the distance is

. - (b — b—n- di —d
d(@h (@2) _ d(B7 (@2) _ ‘Il V‘ _ |n ( a)| _ |Il n a| _ | 1 2‘
] ] ] ]
1 2
Since &; has normal vector n; = |1| and &5 has normal vector ny = 1], the angle 8 between
1 -2
the normal vectors satisfies
n; - ny 1-241-1+1-(-2) 1

cosf =

[ 2] VIZ+ 12+ 1222+ 124 (<2)2  3V3
Thus

1
0 = cos™* () ~ 78.9°.
33
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3 1
44. Since &, has normal vector n; = |—1| and &5 has normal vector ny = 41, the angle 6 between
2 -1

the normal vectors satisfies
n;-ny 3-1—-1-442-(-1) B 3 1
[l flm2f] /82 + (=1)2 +22,/12 + 42 + (—1)2 V144/18 V28

This is an obtuse angle, so the acute angle is

cosf =

1
T—0=m—cos ' | ——— ) ~ 79.1°.
( V28)

45. First, to see that & and / intersect, substitute the parametric equations for ¢ into the equation for &,
giving
T+y+22=02+¢)+(1-2t)+2B8+t)=9+t=0,
so that ¢ = —9 represents the point of intersection, which is thus (2 + (=9),1 — 2(=9),3 + (-9)) =

1 1
(=7,19,—6). Now, the normal to & isn = |1|, and a direction vector for £ is d = |—2|. Soif  is
2 1
the angle between n and d, then 6 satisfies
n-d 1-141-(-2)+2-1 1

cosf = = =,
[l ldl  VI2+12+12/12+(-2)2+12 6

1
6 =cos (=] ~804°.
cos (6)

Thus the angle between the line and the plane is 90° — 80.4° ~ 9.6°.

so that

46. First, to see that &2 and / intersect, substitute the parametric equations for ¢ into the equation for &,
giving
dr—y—z=4-t—(1+2t) — (24 3t) = -t —3=6,
so that ¢ = —9 represents the point of intersection, which is thus (=9,14+2-(=9),2+3-(-9)) =

4 1
(-9, —17,-25). Now, the normal to & isn= |—1|, and a direction vector for £ isd = |2|. So if §
-1 3
is the angle between n and d, then 6 satisfies
n-d 4-1-1-2—-1-3 1

cosf =

[ld] ~ VEF 2+ BvVIZ+22 132 VI8V

This corresponds to an obtuse angle, so the acute angle between the two is

0=m— ~ 86.4°.

1
-1
cos —_——
( V18V 14)
Thus the angle between the line and the plane is 90° — 86.4° ~ 3.6°.

47. We have p = v — cn, so that cn = v — p. Take the dot product of both sides with n, giving

(¢cn) n=(v—p)'n =
¢cn-n)=v-n—p-n =
c¢(n-n)=v-n (since p and n are orthogonal) =
n-v

C= ——.
n-n
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Note that another interpretation of the figure is that ¢n = proj, v = (%) n, which also implies that
c= 1.
Now substitute this value of ¢ into the original equation, giving

n-v

p:V—Cl’l:V—(7>H.
n-n

1
48. (a) A normal vector to the plane z + y+ 2z =0isn= [1|. Then
1

1 1
n-v= |1l | 0| =1-141.0+1-(-2)=-1
1] [—2
1] [1
n-n= |1 1l =1-14+41-141-1=3,
1) 1
SO thatc:—é. Then
1 1 3
n-v 1 ‘;’
ooy (" | o +1[| | ]
n-n 3 :
) 1 -3
(b) A normal vector to the plane 3z —y+2z=0isn= |—1|. Then
F a1 11
n-v=|-1|-| 0/ =3-1-1-041-(-2)=1
L 1_ _7_
ST 3]
n-n=|—-1|-|-1] =3-3-1-(-1)+1-1=11,
L 1_ L 1_
S0 thatc:ﬁ. Then
1 3 2
(n~v> 0 1 . L
=V — —_— n= _ — — frng —_
P n-n 11 s
) 1 _2
1
(¢) A normal vector to the plane z —2z =0isn= | 0|. Then
-2
T
n-v=| 0| 0| =1-140.0-2-(-2)=5
__2_ __2_
SR
n-n=| 0| -| 0| =1-140.0-2-(-2) =5,
__2_ __2_
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so that ¢ = 1. Then

Note that the projection is O because the vector is normal to the plane, so its projection onto the
plane is a single point.

2
(d) A normal vector to the plane 22 —3y+ 2z =0isn = |—3|. Then
1
F o1 1
n-v=|-3l-|] 0/ =2-1-3-0+1-(-2)=0
L 1_ _72_
F o1 T o
n-n=|-3|-|-3=2-2-3-(=3)+1-1=14,
L 1_ L 1_
1
so that ¢ = 0. Thus p =v = 0|. Note that the projection is the vector itself because the
-2

vector is parallel to the plane, so it is orthogonal to the normal vector.

Exploration: The Cross Product

_U2U37u3v2_ _1370<*1)_ i 3_
1. (a) uxv= |ugvy —uvg| = 1-3—-0-2 = 3.
| u1v2 — ugv | 10-(=1) —1-3] | —3]
_’Z,LQ’U37U3’U2- _71'172'1- _73_
(b) uxv=|ugv; —uvsz| = 2-0-3-1 = |-3].
| u1v2 — ugv | 3-1—(-1)-0] | 3]
_UQ’Ug - ’ng’l)g- _2 . (76) -3 (*4)
(c) uxv=|usvy —wvz| = [3-2—(-1)-(-6)| =0
| u1v2 — ugvy | | —1-(—4)—-2-2
_UQUS_UBUQ_ _1'3—1 2 1
(d) uxv=|ugvy —uvg| = [1-1-1-3| = |-2].
_ulvg—u2v1_ _1 2—-1-1 1
2. We have
(1] [o] [o-0-0-1] [O]
e xey= |0 x [1[ =10-0—-1-0| = |0] =e3
0] 0] [1-1-0-0] 1]
0] [o] [1-1-0-0] [1]
eoxes= [1| x [0] =[0-0-0-1] = [0] =€y
10 1] 10-0—1-0] 0]
[0] [1] [0-0—1-0] [0]
e3xe; = |0 x [0 =11-1—-0-0f = |1]| =eas.
1] 0] 10-0-0-1] 0]
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3. Two vectors are orthogonal if their dot product equals zero. But

U2V3 — U3V2 U1
(uxv) -u= |usvy —ujvs| - |us
U1V2 — U201 us3

= (ugvs — ugv2)ug + (uzvy — uyvz)ug + (u1ve — usvy )us

= (UQ’UgUl — U1U3’LL2) + (U31)1U2 — U2’1)1U3) + (U11)2'LL3 — U3’U2U1) = 0

U20V3 — U3V2 U1
(uxv) -v=|uzvy —uvs| - [ve
UTV2 — U207 U3

= (u2U3 — U3U2)U1 + (U3’U1 - ul’Ug)’UQ + (uwQ — ugvl)v3

= (’IL2U3’U1 — U2'U1U3> + (U3’Ul’l}2 — U3U2U1) + <U1U2’U3 — U1’1)3’1}2> =0.

4. (a) By Exercise 1, a vector normal to the plane is

0 3 1-2—-1-(-1) 3
n=-uxv=|1]| x|[-1|= 1-3—-0-2 = 3
1 2 0-(-1)—1-3 -3

So the normal form for the equation of this plane isn-x =n"-p, or

3 T 3 1
3 - {y| = 3] - 0f =9.
—3] z -3 -2

This simplifies to 3z +3y —3z2 =9, or x +y — 2 = 3.

2 1
(b) Two vectors in the plane are u = P—Q) — 1| and v = PR = 3|. So by Exercise 1, a vector
1 -2
normal to the plane is
2 1 1-(-2)—1-3 )
n=uxv=|1l{ x| 3[=[1-1-2-(=2)| =] 5
1 -2 2-3—-1-1 5

So the normal form for the equation of this plane isn-x =n"-p, or

) T -5 0
5|yl = 5/ - |—1[ =0.
5 z 5 1

This simplifies to —5x + 5y +5z2=0,or z —y — 2z = 0.

[vaus — vsug Ugv3 — UgVs |
5. (a) vxu= |vsu; —usvi| = — [ugvy —ugvs| = —(u x v).

V1U2 — V2U1 U1V — U2V1
Uy 0 ug - 0— us - 0 0

(b) ux0= |us| x |0 = |ug-0—uy -0 = [0 =0.
us 0 uy - 0-— ug - 0 0
U2U3 — U3UL 0

(¢) uxu= |uzus —uguz| = [0 =0.
Ui1Uz — U2U7 0

Ukag — U3]<31}2 U20V3 — U3V2
(d) ux kv = |ugkvy —uikvs| =k |usvy —ujvz| = k(u x v).
ulk’l)g — UQk’l)l U1V2 — U2V
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() ux ku=k(uxu)=~k(0)=0 by parts (d) and (c).
(f) Compute the cross-product:

—U2(1}3 + wg) — U3(1}2 + ’UJQ)
ux (v+w) = |ug(vi +wi) —u(vs + ws)
_ul(vg +wa) — uz(v1 + wi)

[(ugvs — uzve) + (uows — ugws)
= (’LL3U1 — U1’U3) (U3IU1 - Ulwg)
+( )

_(U1U2 — Ugv1) Urwz — U2wq

= | U3V — uU1vs Uszw; — uU1Ws3
UV2 — U2V1

Ugv3 — U3Va [U2w3 — uzwy

U1W2 — U2W1

=uXVv4+uxw.

6. In each case, simply compute:

(a)

U Vw3 — V3W2
u-(vxw)=|ua| - |vsws —vws
us3 V1w — VW1

= U1V2W3 — UIV3W2 + UV3W] — U2V W3 + U3V W2 — U3V2W1
= (ugus — ugva)wy + (ugvy — uvz)wy + (u1ve — UgVy )ws

=(uxv) w.

(b)
-’U,l VW3 — V3W2
ux (vxw)= |uz| X [vswy —viws
’LL3 V1W2 — VW1
[ua(viws — vowy) — ug(vswi — viws)
= U3(U2U)3 — U3w2> —ur(v1wo — ’Ugwl)
_u1(113w1 - U1w3) — U2(V2W3 — U3w2)

= | (w1wr + ugwy + uzwsz)vy — (u1v1 + Uz + uzvz)ws
| (uaw1 + ugwa + uzwsz)vs — (U1v1 + Uzvs + uzvz)w3

(
(
(
[(urw1 + uows + ugwsz)vy — (urv1 + ugve + uzvs)wy
)
)

U1 w1
= (mw1 + vowy + uzws) [va | — (w1v1 + ugva + ugvy) |wa
U3 w3

=(u-w)v—(u-v)w.

2
U203 — U3V2

[u x V||2 = || [usv1 — u1v3
U1V2 — U2V

= (ugvs — uzv2)? + (uzvy — u1v3)? + (urve — ugwy)?
= (uf + uj + u3)*(v] + 05 + v3)* — (w101 + ugvs + ugvs)”

2 2
= [ul*IvI]" = (u-v)*

43
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7. For problem 2, use the computation in the solution above to show that e; x es = e3. Then

egxegzegx(elxeg)

= (62 . eg)el — (62 . 81)62 6(b)

:1'6170'62 ei~ej:()ifi7éj,e¢~ei:1
=e;.

Similarly,
63X61163X(62Xeg)

= (63 . eg)eg — (83 . eg)eg 6(b)

:1-62—0'63 ei-ej:Oifi;éj,ei-eizl
= €9.

For problem 3, we have u- (uxv) = (uxu)-v by 6(a), and then since u x u = 0 by Exercise 5(c), this
reduces to 0-v = 0. Thus u is orthogonal to u x v. Similarly, v- (uxv) =v:-(—vxu) = —v- (v xu)
by Exercise 5(a), and then as before, —v - (v xu) = —(vxv)-u= —0-u = 0, so that v is also
orthogonal to u x v.

8. (a) We have

s vl? = P v = (a-v)?
= [l )1 = ) v cos® 0
= [l ] (1 — cos6)
= [jul* ][> sin* 6

Since the angle between u and v is always between 0 and m, it always has a nonnegative sine, so
taking square roots gives ||u x v|| = |lul| ||v|| sin 6.

(b) Recall that the area of a triangle is A = J(base)(height). If the angle between u and v is 6, then
the length of the perpendicular from the head of v to the line determined by u is an altitude of
the triangle; the corresponding base is u. Thus the area is

1 1 1
A= Sl (ivising) = 5 l[ull [vi|sing = 5 flux vi.

1 4
(c) Let u= AB = |-1| and v = AC = |—3|. Then from part (b), we see that the area is
-1 2
1 4 -5
1 1 1
-1 2 1

1.4 Applications

1. Use the method of example 1.34. The magnitude of the resultant force r is
Iell = A/l + [1f2]* = V122 + 52 = 13 N,
while the angle between r and east (the direction of f5) is
12
0 = tan™! & 674

Note that the resultant is closer to north than east; the larger force to the north pulls the object more
strongly to the north.
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2. Use the method of example 1.34. The magnitude of the resultant force r is

el = /I )® + [1fa)® = /152 + 202 = 25 N,

while the angle between r and west (the direction of f1) is
20
0 =tan"" — ~53.1°
an” ¢

Note that the resultant is closer to south than west; the larger force to the south pulls the object more
strongly to the south.

3. Use the method of Example 1.34. If we let f; = [(ﬂ’ then f; = {zz?sggo] = [4\4/5] So the resultant

force is
8 4 12
a3
The magnitude of r is ||r|| = /122 + (4\/3)2 = /192 = 8v/3 N, and the angle formed by r and f; is
4v/3 .

6 = tan"* <3 = tan = 30°.

1
V3
Note that the resultant also forms a 30° degree angle with f5; since the magnitudes of the two forces
are the same, the resultant points equally between them.

6 sin 135° 3v/2

e (A5

| = \/(4 —3v2)2 + (3v2)2 = \/52 — 24V2 ~ 4.24 N,

and the angle formed by r and f; is

4. Use the method of Example 1.34. If we let f; = [Eﬂ, then f5 = [6 cos 135 } = [_3\/5

]. So the

resultant force is

The magnitude of r is

1 3V2

~ 93.3°
4—3V2

0 = tan

5. Use the method of Example 1.34. If we let f; = B], then fy = [_g}, and f3 = [izﬁgge} = {2\2/5}

So the resultant force is

2 —6 2 -2
I‘—f1+f2+f3— |:0:| +|: O:| + |:2\/§:| = |:2\/§:|
The magnitude of r is
vl = \/(=2)2 + (2V3)2 = V16 =4 N,
and the angle formed by r and f; is
2
-1 i;’ = tan~!(—V/3) = 120°.

0 = tan

(Note that many CAS’s will return —60° for tan~!(—+/3); by convention we require an angle between
0 and 180°, so we add 180° to that answer, since tan 6 = tan(180° + 6)).
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Use the method of Example 1.34. If we let f; = [100], then f> = [103} fs = [3]7 and f; = [—g] So

the resultant force is

10 0 -5 0 5
r=f +H+f3+f;,= [0} + [13} + [ O] + [8} = [5} .
The magnitude of r is
|| = v/5% + 52 = V50 = 5v2 N,

and the angle formed by r and f; is

f=tan ' = =tan"'1 = 45°.

o] ot

Following Example 1.35, we have the following diagram:

Jy

60°
fe

Here f makes a 60° angle with f,, so that
1£yll = [|£[lcos 60°, ||z || = [|£]| sin 60°.

Thus ||£,]| = 10 - %2 = 5v/3~ 8.66 N and ||f,|| = 10 - 1 =5 N. Finally, this gives

) el

. The force that must be applied parallel to the ramp is the force needed to counteract the component

of the force due to gravity that acts parallel to the ramp. Let f be the force due to gravity; this
acts downwards. We can decompose it into components f,, acting parallel to the ramp, and f,, acting
orthogonally to the ramp. Since the ramp makes an angle of 30° with the horizontal, it makes an angle
of 60° with f. Thus

o 1
]| = [I£]| cos 60° = Z [I£[] = 5 N.

. The vertical force is the vertical component of the force vector f. Since this acts at an angle of 45° to

the horizontal, the magnitude of the component of this force in the vertical direction is

2
£,|| = ||f]| cos 45° = 1500 - £ = 750v/2 ~ 1060.66 N.
Y 2

The vertical force is the vertical component of the force vector f, which has magnitude 100 N and acts
at an angle of 45° to the horizontal. Since it acts at an angle of 45° to the horizontal, the magnitude
of the component of this force in the vertical direction is

2
IlE, 1l = |£]] cos 45° = 100 - % =502~ 70.7 N.
Note that the mass of the lawnmower itself is irrelevant; we are not considering the gravitational force

in this exercise, only the force imparted by the person mowing the lawn.
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11.

12.

13.

14.

Use the method of Example 1.36. Let t be the force vector on the cable; then the tension on the cable
is [|t]|. The force imparted by the hanging sign is the y component of t; call it t,. Since t and t, form
an angle of 60°, we have

. 1
1ty = [It[} cos 60% = Z[jtl]

The gravitational force on the sign is its mass times the acceleration due to gravity, which is 50-9.8 = 490
N. Thus ||t|| = 2]|ty]| =2 - 490 = 980 N.

Use the method of Example 1.36. Let w be the force vector created by the sign. Then ||w| = 1-9.8 = 9.8
N, since the sign weighs 1 kg. By symmetry, each string carries half the weight of the sign, since the
angles each string forms with the vertical are the same. Let s be the tension in the left-hand string.
Since the angle between s and w is 45°, we have

V2

1
S Il = s cos 45° = = 5| .

Thus ||s| = 98 — 4.9v2~6.9N.

2z Iwl = %2

A diagram of the situation is

15kg

The triangle is a right triangle, since 152 + 202 = 625 = 252. Thus if 6, is the angle that the left-hand

wire makes with the ceiling, then sinf; = % = %; likewise, if A5 is the angle that the right-hand wire
makes with the ceiling, then sinf, = %—‘5’ = % Let f; be the force on the left-hand wire and f5 the

force on the right-hand wire. Let r be the force due to gravity acting on the painting. Then following
Example 1.36, we have, using the Law of Sines,

Ifill el ]| 15-9.8
= = = — 147 N.
sinf;  sinfy  sin90° 1
Then A )

Let r be the force due to gravity acting on the painting, f; be the tension on the wire opposite the
30° angle, and f5 be the tension on the wire opposite the 45° angle (don’t these people know to hang
paintings straight?). Then |r|| = 20 -9.8 = 196 N. Note that the remaining angle in the triangle is
105°. Then using the method of Example 1.36, we have, using the Law of Sines,

[ A ¢ Y| I3

sin30°  sin45°  sin 105°°

Thus

[r] -sin30°  196-1
£ = ~ ~101.46 N
161 = =050 0.9659
|r]| - sind5° 196 - %2

sin105°  0.9659

2] = ~ 143.48 N.
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CHAPTER 1. VECTORS

Chapter Review

1. (a)

(b)

(c)

(d)

()
(g)

(h)
(i)
6)

2. LetW:[

True. This follows from the properties of R" listed in Theorem 1.1 in Section 1.1:

u=u+0 Zero Property, Property (c)
=u+ (w+(-w)) Additive Inverse Property, Property (d)
=(u+w)+(—w) Distributive Property, Property (b)
=(vV+w)+(—w) By the given condition u+w =v+w
=v+ (w4 (—w)) Distributive Property, Property (b)
=v+0 Additive Inverse Property, Property (d)
=v Zero Property, Property (c).

False. See Exercise 60 in Section 1.2. For one counterexample, let w = 0 and u and v be arbitrary
vectors. Then u-w = v -w = 0 since the dot product of any vector with the zero vector is zero.
But certainly u and v need not be equal. As a second counterexample, suppose that both u and
v are orthogonal to w; clearly they need not be equal, but u-w=v-w =0.

False. For example, let u be any nonzero vector, and v any vector orthogonal to u. Let w = u.
Then u is orthogonal to v and v is orthogonal to w = u, but certainly u and w = u are not
orthogonal.

False. When a line is parallel to a plane, then d - n = 0; that is, d is orthogonal to the normal
vector of the plane.

True. Since a normal vector n for & and the line ¢ are both perpendicular to &2, they must be
parallel. See Figure 1.62.

True. See the remarks following Example 1.31 in Section 1.3.

False. They can be skew lines, which are nonintersecting lines with nonparallel direction vectors.

1 0 0
For example, let ¢; be the line x = ¢ |0| (the z-axis), and ¢5 be the line x = |0| +¢ [1] (the
0 1 0

line through (0,0, 1) that is parallel to the y-axis). These two lines do not intersect, yet they are
not parallel.
1

False. For example, [0
1

True. If ab =0 in Z/5, then ab must be a multiple of 5. But 5 is prime, so either a or b must be
divisible by 5, so that either a =0 or b =0 in Z5.

False. For example, 2-3 =6 = 0 in Zg, but neither 2 nor 3 is zero in Zg.

—_ O =

10] . Then the head of the resulting vector is

e [ L9

So the coordinates of the point at the head of 4u + v are (9, 12).

3. Since 2x + u = 3(x — v) = 3x — 3v, simplifying gives u + 3v = x. Thus

oo [l 1)

4. Since ABCD is a square, 0C = —(571, so that

_— = ——  —  —>

BC=0C-0B=-0A—-0B=-a—b.
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5. We have
-1 2
u-v= 1] - 1l=-1-24+1-142-(-1)=-3
2 -1

Jull = VEDPF 2 = VB
Iv]| = /22 + 12 4+ (—1)2 = V6.
Then if € is the angle between u and v, it satisfies

u-v 3 1

v~ Veve 2

cosf =

Thus
1
0=cos™' | —= | =120°
COS ( 2)
6. We have

1 1 5
. (u-V) 1-1-2-142-1 5 1 5 5
r0j,V = u= 2| == |=-2|=1]-%
Prolu u-u 1 1-2-(—2)+2-2 9 9
2 2 2

7. We are looking for a vector in the xy-plane; any such vector has a z-coordinate of 0. So the vector we

a
are looking for is u = |b| for some a, b. Then we want
0
1 a 1
u- (2| =|b| 2] =a+2b=0,
3 0 3
so that a = —2b. So for example choose b = 1; then a = —2, and the vector
—2
u= 1
0
1
is orthogonal to |2]. Finally, to get a unit vector, we must normalize u. We have
3

= VT PO = V5

to get

_ 2

1 V5
wW=—u= 1
[[ul] Vs

that is orthogonal to the given vector. We could have chosen any value for b, but we would have gotten

either w or —w for the normalized vector.

8. The vector form of the given line is
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-1

so the line has a direction vector d = | 2|. Since the plane is perpendicular to this line, d is a normal
1

vector n to the plane. Then the plane passes through P = (1,1,1), so equation n-x = n - p becomes

11 [x -17 [t
2l -yl =1 2| |1 =2
1 |z 1 |1

Expanding gives the general equation —x + 2y + z = 2.

2
9. Parallel planes have parallel normals, so the vector n = 3|, which is a normal to the given plane,
-1
is also a normal to the desired plane. The plane we want must pass through P = (3,2,5), so equation
n-x =n-p becomes

2 T 2 3
3 y| = 3 21 =7
-1 z —1 5

Expanding gives the general equation 2x + 3y — 2z = 7.

10. The three points give us two vectors that lie in the plane:

. 1 0
d=AB=1|0| — |1| = |-1],
_1_ _O_ L -
N [0] 1] [—1]
d=BC=|1| -0l =] 1
2] 1] | 1]
a
A normal vector n = |b| must be orthogonal to both of these vectors, so
1 T o
n-di=1|b|-|-1|=-b+c=0 = b=c
_C_ - 1_
1 T
n-dy = |bf - 1l =—a+b4+c=0 = a=b+c
_C_ - 1_
2c
Since b = c and a = b+ ¢, we get a = 2¢, so n = | ¢ | for any value of ¢. Choosing ¢ = 1 gives the
c

2
vector n = |1|. Let P be the point A = (1,1,0) (we could equally well choose B or C'), and compute
1

X=n-p
2

1
1

2
=1 =3.
1

IS IS
O = =

Expanding gives the general equation 2x +y + z = 3.
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11.

12.

13.

14.

15.

Let
. [1—1] [ 0]
u=AB=|0-1| = |-1
[1-0] | 1]
. [0 — 1T [—1]
v=AC=|1-1| = 0
2-0] | 2]

Using the first method from Figure 1.39 (Exercises 46 and 47) in Section 1.2, we have

. u-v 0-(-1)—1-041-2| % 2 7© 0
prOJuv:(—)u: 5 5 5 -1 ==|-1| =1]-1
u-u 02+ (-1)2+1 1 2| 1
-1 0 _
V — proj, v = 0] —|—-1| = 1
2 1 1

Then the area of the triangle is

1 1 1 1
5l v = proj, vi| = 5\/02 T (=12 + 12 /(12 + 12412 = 5\6\/5 = 5\@.

From the first example in Exploration: Vectors and Geometry, we have a formula for the midpoint:

5 3 8 4

1 1 1
m:i(a+b):§ 1 + |—7 =5 —6| =|-3
-2 0 -2 -1

Suppose that ||[u|| = 2 and ||v|| = 3. Then from the Cauchy-Schwarcz inequality, we have
ju- v <ulffv]f=2-3=6.
Thus —6 < u-v <6, so the dot product cannot equal —7.

We will apply the formula
o \amo + byo +czg — d|

d(4, 2) =
Va2 +b% + 2
where A = (zg, Yo, 20) is a point, and a general equation for the plane is ax + by + cz = d. Here, we
have a = 2, b =3, ¢ = —1, and d = 0; since the point is (3,2,5), we have xg = 3, yg = 2, and 2y = 5.
So the distance from the point to the plane is

2-3+3-2-1-5—-0 7 V14

JEIE L () v 2

As in example 1.32 in Section 1.3, we have B = (3,2,5), and the line ¢ has vector form

d(A, 2) =

(
0 1
x=|1{+¢t|1],
2 1
1
so that A = (0,1, 2) lies on the line, and a direction vector for the line is d = |[1|. Then
1

3 0 3
v=AB=|2| - |1] = |1],
5 2 3
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16.

17.

18.

19.

20.

CHAPTER 1. VECTORS

and then
1

oy (A VY g (L3113 |
ProJav=14.q)“~ 12 412 + 12 -

1

WIN WIN W

Then the vector from B that is perpendicular to the line is the vector

7 2

3 3 3

; _ 7| _ 4

vV —projgv=|1| — 3| = |—3
7 2

3 3 3

So the distance from B to £ is

Iv — projq vl = \/(2)2 4 (—4)2 i (2)2 — WVITTETI= 26

‘We have
3—(2+4)34+3?=3-1%-22=3-1-4=-1=4

in Zs. Note that 2+4=6=1inZs,4+3=7=21in Zs, and —1 = 4 in Zs.

3(x +2) =5 implies that 5-3(z +2) =5-5=25=4. But 5-3 =15 =1 in Z7, so this is the same as
r + 2 =4, so that z = 2. To check the answer, we have

3(242)=3-4=12=5in Z.
This has no solutions. For any value of z, the left-hand side is a multiple of 3, so it cannot leave a
remainder of 5 when divided by 9 (which is also a multiple of 3).

Compute the dot product in Z3:

(2,1,3,3] - [3,4,4,2] =2-3+1-4+3-4+43-2=64+4+124+6=1+4+2+1=8=3.
Suppose that
[1,1,170] . [dl,dg,dg,d4] :dl +d2+d3 =0in ZQ.

Then an even number (either zero or two) of dy, do, and d3 must be 1 and the others must be zero. dy
is arbitrary (either 0 or 1). So the eight possible vectors are

[07030?0]’ [07070’ 1]7 []‘717070}? [1’ ]‘70’1]’ [1703 ]"0]7 [1?07 ]'7 1]7 [0’]"]‘70]7 [07 1’ ]‘71]'



