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1.1 SOLUTIONS  

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,…, stand 
for row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section. 

 1. 1 2

1 2

5 7

2 7 5

x x

x x

+ =
− − = −

  
1 5 7

2 7 5

⎡ ⎤
⎢ ⎥− − −⎣ ⎦

 

  Replace R2 by R2 + (2)R1 and obtain: 1 2

2

5 7

3 9

x x

x

+ =
=

 
1 5 7

0 3 9

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Scale R2 by 1/3: 1 2

2

5 7

3

x x

x

+ =
=

 
1 5 7

0 1 3

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Replace R1 by R1 + (–5)R2:  1

2

8

3

x

x

= −
=

 
1 0 8

0 1 3

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  The solution is (x1, x2) = (–8, 3), or simply (–8, 3). 

 2. 1 2

1 2

3 6 3

5 7 10

x x

x x

+ = −
+ =

  
3 6 3

5 7 10

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Scale R1 by 1/3 and obtain:  1 2

1 2

2 1

5 7 10

x x

x x

+ = −
+ =

 
1 2 1

5 7 10

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Replace R2 by R2 + (–5)R1: 1 2

2

2 1

3 15

x x

x

+ = −
− =

 
1 2 1

0 3 15

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Scale R2 by –1/3:  1 2

2

2 1

5

x x

x

+ = −
= −

 
1 2 1

0 1 5

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Replace R1 by R1 + (–2)R2: 1

2

9

5

x

x

=
= −

 
1 0 9

0 1 5

⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  The solution is (x1, x2) = (9, –5), or simply (9, –5). 
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 3. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

2 4

1

x x

x x

+ =
− =

  
1 2 4

1 1 1

⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Replace R2 by R2 + (–1)R1 and obtain: 1 2

2

2 4

3 3

x x

x

+ =
− = −

 
1 2 4

0 3 3

⎡ ⎤
⎢ ⎥− −⎣ ⎦

 

  Scale R2 by –1/3: 1 2

2

2 4

1

x x

x

+ =
=

 
1 2 4

0 1 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Replace R1 by R1 + (–2)R2: 1

2

2

1

x

x

=
=

 
1 0 2

0 1 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  The point of intersection is (x1, x2) = (2, 1). 

 4. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

2 13

3 2 1

x x

x x

+ = −
− =

  
1 2 13

3 2 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Replace R2 by R2 + (–3)R1 and obtain:   1 2

2

2 13

8 40

x x

x

+ = −
− =

 
1 2 13

0 8 40

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Scale R2 by –1/8:  1 2

2

2 13

5

x x

x

+ = −
= −

 
1 2 13

0 1 5

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  Replace R1 by R1 + (–2)R2: 1

2

3

5

x

x

= −
= −

 
1 0 3

0 1 5

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

  The point of intersection is (x1, x2) = (–3, –5). 

 5. The system is already in “triangular” form. The fourth equation is x4 = –5, and the other equations do 
not contain the variable x4. The next two steps should be to use the variable x3 in the third equation to 
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by 
its sum with –4 times R3, and then replace R1 by its sum with 3 times R3. 

 6. One more step will put the system in triangular form. Replace R4 by its sum with –4 times R3, which 

produces 

1 6 4 0 1

0 2 7 0 4

0 0 1 2 3

0 0 0 7 14

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

. After that, the next step is to scale the fourth row by –1/7. 

 7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third 
column. But in this case, the third row of the augmented matrix corresponds to the equation 0 x1 + 0 
x2 + 0 x3 = 1, or simply, 0 = 1. A system containing this condition has no solution. Further row 
operations are unnecessary once an equation such as 0 = 1 is evident.  The solution set is empty. 
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 8. The standard row operations are: 

   

1 5 4 0 0 1 5 4 0 0 1 5 4 0 0 1 5 4 0 0

0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0
~ ~ ~

0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 1 0 0

0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

1 5 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0
~ ~

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦

⎥
⎥

 

  The solution set contains one solution: (0, 0, 0, 0). 

 9. The system has already been reduced to triangular form. Begin by replacing R3 by R3 + (3)R4: 

   

1 1 0 0 5 1 1 0 0 5

0 1 2 0 7 0 1 2 0 7
~

0 0 1 3 2 0 0 1 0 14

0 0 0 1 4 0 0 0 1 4

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  Next, replace R2 by R2 + (2)R3. Finally, replace R1 by R1 + R2: 

   

1 1 0 0 5 1 0 0 0 16

0 1 0 0 21 0 1 0 0 21
~ ~

0 0 1 0 14 0 0 1 0 14

0 0 0 1 4 0 0 0 1 4

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  The solution set contains one solution: (16, 21, 14, 4). 

 10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the 3 
and –2 above it to zeros. That is, replace R2 by R2 + (-3)R4 and replace R1 by R1 + (2)R4. For the 
final step, replace R1 by R1 + (-3)R2. 

   

1 3 0 2 7 1 3 0 0 11 1 0 0 0 47

0 1 0 3 6 0 1 0 0 12 0 1 0 0 12
~ ~

0 0 1 0 2 0 0 1 0 2 0 0 1 0 2

0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The solution set contains one solution: (–47, 12, 2, –2). 

11. First, swap R1 and R2. Then replace R3 by R3 + (–2)R1. Finally, replace R3 by R3 + (1)R2. 

   

0 1 5 4 1 4 3 2 1 4 3 2 1 4 3 2

1 4 3 2 ~ 0 1 5 4 ~ 0 1 5 4 ~ 0 1 5 4

2 7 1 2 2 7 1 2 0 1 5 2 0 0 0 2

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system is inconsistent, because the last row would require that 0 = –2 if there were a solution.  
The solution set is empty. 
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 12. Replace R2 by R2 + (–2)R1 and replace R3 by R3 + (2)R1. Finally, replace R3 by R3 + (3)R2. 

   

1 5 4 3 1 5 4 3 1 5 4 3

2 7 3 2 ~ 0 3 5 4 ~ 0 3 5 4

2 1 7 1 0 9 15 7 0 0 0 5

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system is inconsistent, because the last row would require that 0 = 5 if there were a solution.  
The solution set is empty. 

 13. 

1 0 3 8 1 0 3 8 1 0 3 8 1 0 3 8

2 2 9 7 ~ 0 2 15 9 ~ 0 1 5 2 ~ 0 1 5 2

0 1 5 2 0 1 5 2 0 2 15 9 0 0 5 5

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 0 3 8 1 0 0 5

~ 0 1 5 2 ~ 0 1 0 3

0 0 1 1 0 0 1 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. The solution is (5, 3, –1). 

 14. 

2 0 6 8 1 0 3 4 1 0 3 4 1 0 3 4

0 1 2 3 ~ 0 1 2 3 ~ 0 1 2 3 ~ 0 1 2 3

3 6 2 4 3 6 2 4 0 6 7 8 0 0 5 10

− − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 0 3 4 1 0 3 4 1 0 0 2

~ 0 1 2 3 ~ 0 1 0 1 ~ 0 1 0 1 .

0 0 1 2 0 0 1 2 0 0 1 2

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 The solution is (2, –1, 2). 

15. First, replace R3 by R3 + (1)R1, then replace R4 by R4 + (1)R2, and finally replace R4 by R4 + (–
1)R3.  

  

1 6 0 0 5 1 6 0 0 5 1 6 0 0 5 1 6 0 0 5

0 1 4 1 0 0 1 4 1 0 0 1 4 1 0 0 1 4 1 0
~ ~ ~

1 6 1 5 3 0 0 1 5 8 0 0 1 5 8 0 0 1 5 8

0 1 5 4 0 0 1 5 4 0 0 0 1 5 0 0 0 0 0 8

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system is inconsistent, because the last row would require that 0 = –8 if there were a solution. 

16. First replace R4 by R4 + (3/2)R1 and replace R4 by R4 + (–2/3)R2. (One could also scale R1 and R2 
before adding to R4, but the arithmetic is rather easy keeping R1 and R2 unchanged.) Finally, replace 
R4 by R4 + (–1)R3.

2 0 0 4 10 2 0 0 4 10 2 0 0 4 10 2 0 0 4 10

0 3 3 0 0 0 3 3 0 0 0 3 3 0 0 0 3 3 0 0
~ ~ ~

0 0 1 4 1 0 0 1 4 1 0 0 1 4 1 0 0 1 4 1

3 2 3 1 5 0 2 3 5 10 0 0 1 5 10 0 0 0 9 9

− − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  The system is now in triangular form and has a solution. In fact, using the argument from Example 2, 
one can see that the solution is unique. 
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17. Row reduce the augmented matrix corresponding to the given system of three equations:  

 

2 3 1 2 3 1 2 3 1

6 5 0 ~ 0 4 3 ~ 0 4 3

2 5 7 0 8 8 0 0 2

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The third equation, 0 = 2, shows that the system is inconsistent, so the three lines have no point in 
common. 

18. Row reduce the augmented matrix corresponding to the given system of three equations: 

   

2 4 4 4 2 4 4 4 2 4 4 4

0 1 2 2 ~ 0 1 2 2 ~ 0 1 2 2

2 3 0 0 0 1 4 4 0 0 6 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system is consistent, and using the argument from Example 2, there is only one solution. So the 
three planes have only one point in common.  

19. 
1 4 1 4

~
3 6 8 0 6 3 4

h h

h

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 Write c for 6 – 3h. If c = 0, that is, if h = 2, then the system has no 

solution, because 0 cannot equal –4. Otherwise, when h ≠ 2, the system has a solution. 

20. 
1 5 1 5

~
2 8 6 0 8 2 16

h h

h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 Write c for 8 2 .h− −  If c = 0, that is, if h = –4, then the system 

has no solution, because 0 cannot equal 16. Otherwise, when h ≠ –4, the system has a solution. 

21. 
1 4 2 1 4 2

~
3 6 0 12 0h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 Write c for 12h − . Then the second equation cx2 = 0 has a solution 

for every value of c. So the system is consistent for all h. 

22. 
4 12

4 12
~

2 6 3 0 0 3
2

h
h

h

−⎡ ⎤−⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − +⎣ ⎦ ⎣ ⎦

 The system is consistent if and only if 3
2

h− +  = 0, that is, if 

and only if h = 6. 

23. a. True. See the remarks following the box titled Elementary Row Operations. 

b. False. A 5 × 6 matrix has five rows. 

c. False. The description applies to a single solution. The solution set consists of all possible 
solutions. Only in special cases does the solution set consist of exactly one solution. Mark a 
statement True only if the statement is always true. 

d. True. See the box before Example 2. 

24. a. False. The definition of row equivalent requires that there exist a sequence of row operations that 
transforms one matrix into the other. 

 b.  True. See the box preceding the subsection titled Existence and Uniqueness Questions. 

c. False.  The definition of equivalent systems is in the second paragraph after equation (2). 

d. True. By definition, a consistent system has at least one solution. 
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25. 

1 4 7 1 4 7 1 4 7

0 3 5 ~ 0 3 5 ~ 0 3 5

2 5 9 0 3 5 2 0 0 0 2

g g g

h h h

k k g k g h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Let b denote the number k + 2g + h. Then the third equation represented by the augmented matrix 
above is 0 = b. This equation is possible if and only if b is zero. So the original system has a solution 
if and only if k + 2g + h = 0.  

26. Row reduce the augmented matrix for the given system: 

   
2 4 1 2 / 2 1 2 / 2

~ ~
0 2 ( / 2)

f f f

c d g c d g d c g c f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  This shows that d – 2c must be nonzero, since f and g are arbitary.  Otherwise, for some choices of f 
and g  the second row would correspond to an equation of the form 0 = b, where b is nonzero.  Thus 
d ≠2c. 

27. Row reduce the augmented matrix for the given system. Scale the first row by 1/a, which is possible 
since a is nonzero. Then replace R2 by R2 + (–c)R1. 

   
1 / / 1 / /

~ ~
0 ( / ) ( / )

a b f b a f a b a f a

c d g c d g d c b a g c f a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The quantity d – c(b/a) must be nonzero, in order for the system to be consistent when the quantity  
g – c( f /a) is nonzero (which can certainly happen). The condition that d – c(b/a) ≠ 0 can also be 
written as ad – bc ≠ 0, or ad ≠ bc. 

28. A basic principle of this section is that row operations do not affect the solution set of a linear 
system. Begin with a simple augmented matrix for which the solution is obviously (3, –2, –1), and 
then perform any elementary row operations to produce other augmented matrices. Here are three 
examples. The fact that they are all row equivalent proves that they all have the solution set (3, –2, –
1). 

   

1 0 0 3 1 0 0 3 1 0 0 3

0 1 0 2 ~ 2 1 0 4 ~ 2 1 0 4

0 0 1 1 0 0 1 1 2 0 1 5

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

29. Swap R1 and R3; swap R1 and R3. 

30. Multiply R3 by –1/5; multiply R3 by –5. 

31. Replace R3 by R3 + (–4)R1; replace R3 by R3 + (4)R1. 

32. Replace R3 by R3 + (–4)R2; replace R3 by R3 + (4)R2. 

33. The first equation was given. The others are: 

   2 1 3 2 1 3( 20 40 )/4, or 4 60T T T T T T= + + + − − =  

   3 4 2 3 4 2( 40 30)/4, or 4 70T T T T T T= + + + − − =  

   4 1 3 4 1 3(10 30)/4, or 4 40T T T T T T= + + + − − =  
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  Rearranging, 

   

1 2 4

1 2 3

2 3 4

1 3 4

4 30

4 60

4 70

4 40

T T T

T T T

T T T

T T T

− − =
− + − =

− + − =
− − + =

 

34. Begin by interchanging R1 and R4, then create zeros in the first column: 

   

4 1 0 1 30 1 0 1 4 40 1 0 1 4 40

1 4 1 0 60 1 4 1 0 60 0 4 0 4 20
~ ~

0 1 4 1 70 0 1 4 1 70 0 1 4 1 70

1 0 1 4 40 4 1 0 1 30 0 1 4 15 190

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Scale R1 by –1 and R2 by 1/4, create zeros in the second column, and replace R4 by R4 + R3: 

   

1 0 1 4 40 1 0 1 4 40 1 0 1 4 40

0 1 0 1 5 0 1 0 1 5 0 1 0 1 5
~ ~ ~

0 1 4 1 70 0 0 4 2 75 0 0 4 2 75

0 1 4 15 190 0 0 4 14 195 0 0 0 12 270

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Scale R4 by 1/12, use R4 to create zeros in column 4, and then scale R3 by 1/4: 

   

1 0 1 4 40 1 0 1 0 50 1 0 1 0 50

0 1 0 1 5 0 1 0 0 27.5 0 1 0 0 27.5
~ ~ ~

0 0 4 2 75 0 0 4 0 120 0 0 1 0 30

0 0 0 1 22.5 0 0 0 1 22.5 0 0 0 1 22.5

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The last step is to replace R1 by R1 + (–1)R3: 

   

1 0 0 0 20.0

0 1 0 0 27.5
~ .

0 0 1 0 30.0

0 0 0 1 22.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 The solution is (20, 27.5, 30, 22.5). 

Notes: The Study Guide includes a “Mathematical Note” about statements, “If … , then … .” 
This early in the course, students typically use single row operations to reduce a matrix. As a result, 

even the small grid for Exercise 34 leads to about 80 multiplications or additions (not counting operations 
with zero). This exercise should give students an appreciation for matrix programs such as MATLAB. 
Exercise 14 in Section 1.10 returns to this problem and states the solution in case students have not 
already solved the system of equations. Exercise 31 in Section 2.5 uses this same type of problem in 
connection with an LU factorization. 

For instructors who wish to use technology in the course, the Study Guide provides boxed MATLAB 
notes at the ends of many sections. Parallel notes for Maple, Mathematica, and the TI-83+/84+/89 
calculators appear in separate appendices at the end of the Study Guide. The MATLAB box for Section 
1.1 describes how to access the data that is available for all numerical exercises in the text. This feature 
has the ability to save students time if they regularly have their matrix program at hand when studying 
linear algebra. The MATLAB box also explains the basic commands replace, swap, and scale. 
These commands are included in the text data sets, available from the text web site, 
www.pearsonhighered.com/lay. 
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1.2 SOLUTIONS 

Notes: The key exercises are 1–20 and 23–28. (Students should work at least four or five from Exercises 
7–14, in preparation for Section 1.5.)  

 1. Reduced echelon form: a and b. Echelon form: d. Not echelon: c. 

 2.  Reduced echelon form: a. Echelon form: b and d. Not echelon: c. 

 3. 

1 2 4 8 1 2 4 8 1 2 4 8

2 4 6 8 ~ 0 0 2 8 ~ 0 0 1 4

3 6 9 12 0 0 3 12 0 0 3 12

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   

1 2 4 8 1 2 0 8

~ 0 0 1 4 ~ 0 0 1 4

0 0 0 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.  Pivot cols 1 and 3.  

1 2 4 8

2 4 6 8

3 6 9 12

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 4. 

1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5

2 4 5 4 ~ 0 0 3 6 ~ 0 3 12 18 ~ 0 1 4 6

4 5 4 2 0 3 12 18 0 0 3 6 0 0 3 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   

1 2 4 5 1 2 4 5 1 0 0 1

~ 0 1 4 6 ~ 0 1 0 2 ~ 0 1 0 2

0 0 1 2 0 0 1 2 0 0 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  
Pivot cols
1, 2, and 3    

1 2 4 5

2 4 5 4

4 5 4 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 5. 
* * 0

, ,
0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 6.

* * 0

0 , 0 0 , 0 0

0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 7. 
1 3 4 7 1 3 4 7 1 3 4 7 1 3 0 5

~ ~ ~
3 9 7 6 0 0 5 15 0 0 1 3 0 0 1 3

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Corresponding system of equations:  1 2

3

3 5

3

x x

x

+ = −
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x3. The remaining variable x2 is 
free. Solve for the basic variables in terms of the free variable. The general solution is 

   
1 2

2

3

5 3

 is free

3

x x

x

x

= − −⎧
⎪
⎨
⎪ =⎩

 

Note: Exercise 7 is paired with Exercise 10. 
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8.   
1 3 0 5 1 3 0 5 1 3 0 5 1 0 0 4

~ ~ ~
3 7 0 9 0 2 0 6 0 1 0 3 0 1 0 3

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 Corresponding system of equations:  1

2

4

3

x

x

=
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x2. The remaining variable x3 is 
free. Solve for the basic variables in terms of the free variable. In this particular problem, the basic 
variables do not depend on the value of the free variable.  

  General solution:  
1

2

3

4

3

is free

x

x

x

=⎧
⎪ =⎨
⎪
⎩

 

Note: A common error in Exercise 8 is to assume that x3 is zero. To avoid this, identify the basic 
variables first. Any remaining variables are free. (This type of computation will arise in Chapter 5.) 

 9. 
0 1 2 3 1 3 4 6 1 0 2 3

~ ~
1 3 4 6 0 1 2 3 0 1 2 3

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Corresponding system:  1 3

2 3

2 3

2 3

x x

x x

− =
− =

 

  Basic variables: x1, x2; free variable: x3. General solution: 
1 3

2 3

3

3 2

3 2

is free

x x

x x

x

= +⎧
⎪ = +⎨
⎪
⎩

 

 10. 
1 2 1 4 1 2 1 4 1 2 0 2

~ ~
2 4 5 6 0 0 7 14 0 0 1 2

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Corresponding system:  1 2

3

2 2

2

x x

x

− =
= −

 

  Basic variables: x1, x3; free variable: x2. General solution: 
1 2

2

3

2 2

is free

2

x x

x

x

= +⎧
⎪
⎨
⎪ = −⎩

 

 11. 

3 2 4 0 3 2 4 0 1 2 3 4 3 0

9 6 12 0 ~ 0 0 0 0 ~ 0 0 0 0

6 4 8 0 0 0 0 0 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Corresponding system:  

1 2 3
2 4

0
3 3

0 0

0 0

x x x− + =

=
=
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 Basic variable: x1; free variables x2, x3. General solution: 

1 2 3

2

3

2 4

3 3

 is free

 is free

x xx

x

x

⎧ = −⎪
⎪
⎨
⎪
⎪
⎩

 

 12. Since the bottom row of the matrix is equivalent to the equation 0 = 1, the system has no solutions. 

 13. 

1 3 0 1 0 2 1 3 0 0 9 2 1 0 0 0 3 5

0 1 0 0 4 1 0 1 0 0 4 1 0 1 0 0 4 1
~ ~

0 0 0 1 9 4 0 0 0 1 9 4 0 0 0 1 9 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Corresponding system:  

1 5

2 5

4 5

3 5

4 1

9 4

0 0

x x

x x

x x

− =
− =
+ =

=

   

  Basic variables: x1, x2, x4; free variables: x3, x5. General solution: 

1 5

2 5

3

4 5

5

5 3

1 4

is free

4 9

is free

x x

x x

x

x x

x

= +⎧
⎪ = +⎪⎪
⎨
⎪ = −⎪
⎪⎩

 

Note: The Study Guide discusses the common mistake x3 = 0. 

 14. 

1 0 5 0 8 3 1 0 5 0 0 3

0 1 4 1 0 6 0 1 4 1 0 6
~

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  Corresponding system:  

1 3

2 3 4

5

5 3

4 6

0

0 0

x x

x x x

x

− =
+ − =

=
=

 

  Basic variables: x1, x2, x5; free variables: x3, x4. General solution: 

1 3

2 3 4

3

4

5

3 5

6 4

 is free

 is free

0

x x

x x x

x

x

x

= +⎧
⎪ = − +⎪⎪
⎨
⎪
⎪

=⎪⎩

 

 15.  a.  The system is consistent.  There are many solutions because x3 is a free variable. 

b. The system is consistent.  There are many solutions because x1 is a free variable. 

 16. a. The system is inconsistent. (The rightmost column of the augmented matrix is a pivot column). 
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b. The system is consistent. There are many solutions because x2 is a free variable. 

 17. 
1 1 4 1 1 4

~
2 3 0 1 8h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

 The system has a solution for all values of h since the augmented 

column cannot be a pivot column. 

 18. 
1 3 1 1 3 1

~
6 2 0 3 6 2h h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− + − −⎣ ⎦ ⎣ ⎦

 If 3h + 6 is zero, that is, if h = –2, then the system has a 

solution, because 0 equals 0. When 2,h ≠ −  the system has a solution since the augmented column 
cannot be a pivot column.  Thus the system has a solution for all values of h. 

 19. 
1 2 1 2

~
4 8 0 8 4 8

h h

k h k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

  

a. When h = 2 and 8,k ≠  the augmented column is a pivot column, and the system is inconsistent. 

b. When 2,h ≠  the system is consistent and has a unique solution. There are no free variables.  

c. When h = 2 and k = 8, the system is consistent and has many solutions.  

 20. 
1 3 1 1 3 1

~
2 0 6 2h k h k

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦

 

a. When h = –6 and 2,k ≠  the system is inconsistent, because the augmented column is a pivot 
column. 

b. When 6,h ≠ −  the system is consistent and has a unique solution. There are no free variables. 

c. When h = –6  and k = 2, the system is consistent and has many solutions. 

 21. a. False. See Theorem 1. 

b. False. See the second paragraph of the section. 

c. True. Basic variables are defined after equation (4). 

d. True. This statement is at the beginning of Parametric Descriptions of Solution Sets. 

e. False. The row shown corresponds to the equation 5x4 = 0, which does not by itself lead to a 
contradiction. So the system might be consistent or it might be inconsistent. 
 

 22. a. True. See Theorem 1. 

b. False. See Theorem 2. 

c. False. See the beginning of the subsection Pivot Positions. The pivot positions in a matrix are 
determined completely by the positions of the leading entries in the nonzero rows of any echelon 
form obtained from the matrix. 

d. True. See the paragraph just before Example 4. 

 e. False. The existence of at least one solution is not related to the presence or absence of free 
variables. If the system is inconsistent, the solution set is empty. See the solution of Practice 
Problem 2. 
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23. Since there are four pivots (one in each row), the augmented matrix must reduce to the form 

   

1

2

3

4

1 0 0 0

0 1 0 0
   and so   

0 0 1 0

0 0 0 1

x aa

x bb

x cc

x dd

=⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥ =
⎢ ⎥ =⎣ ⎦

 

  No matter what the values of a, b, c, and d, the solution exists and is unique. 

 24. The system is consistent because there is not a pivot in column 5, which means that there is not a row 
of the form [0   0   0   0   1]. Since the matrix is the augmented matrix for a system, Theorem 2 shows 
that the system has a solution. 

 25. If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom 
row, and there is no room for a pivot in the augmented column. So, the system is consistent, by 
Theorem 2. 

 26. Since the coefficient matrix has three pivot columns, there is a pivot in each row of the coefficient 
matrix. Thus the augmented matrix will not have a row of the form [0   0  0   0   0   1], and the 
system is consistent.  

 27. “If a linear system is consistent, then the solution is unique if and only if every column in the 
coefficient matrix is a pivot column; otherwise there are infinitely many solutions. ”  

  This statement is true because the free variables correspond to nonpivot columns of the coefficient 
matrix. The columns are all pivot columns if and only if there are no free variables. And there are no 
free variables if and only if the solution is unique, by Theorem 2. 

 28. Every column in the augmented matrix except the rightmost column is a pivot column, and the 
rightmost column is not a pivot column. 

 29. An underdetermined system always has more variables than equations. There cannot be more basic 
variables than there are equations, so there must be at least one free variable. Such a variable may be 
assigned infinitely many different values. If the system is consistent, each different value of a free 
variable will produce a different solution, and the system will not have a unique solution.  If the 
system is inconsistent, it will not have any solution. 

 30. Example: 1 2 3

1 2 3

4

2 2 2 5

x x x

x x x

+ + =
+ + =

 

 31. Yes, a system of linear equations with more equations than unknowns can be consistent. 

  Example (in which x1 = x2 = 1): 
1 2

1 2

1 2

2

0

3 2 5

x x

x x

x x

+ =
− =
+ =

 

 32. According to the numerical note in Section 1.2, when n = 20 the reduction to echelon form takes 
about 2(20)3/3 ≈ 5,333 flops, while further reduction to reduced echelon form needs at most (20)2 = 
400 flops. Of the total flops, the “backward phase” is about 400/5733 = .07 or about 7%. When n = 
200, the estimates are 2(200)3/3 ≈ 5,333,333  flops for the reduction to echelon form and (200)2 = 
40,000 flops for the backward phase. The fraction associated with the backward phase is about 
(4×104) /(5.3×106) = .007, or about .7%. 
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 33. For a quadratic polynomial p(t) = a0 + a1t + a2t
2 to exactly fit the data (1, 6), (2, 15), and (3, 28), the 

coefficients a0, a1, a2 must satisfy the systems of equations given in the text. Row reduce the 
augmented matrix: 

   

1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6

1 2 4 15 ~ 0 1 3 9 ~ 0 1 3 9 ~ 0 1 3 9

1 3 9 28 0 2 8 22 0 0 2 4 0 0 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   

1 1 0 4 1 0 0 1

~ 0 1 0 3 ~ 0 1 0 3

0 0 1 2 0 0 1 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  The polynomial is p(t) = 1 + 3t + 2t2. 

 34. [M] The system of equations to be solved is: 

   

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3
0 1 2 3

0 0 0 0 0 0

2 2 2 2 2 2.90

4 4 4 4 4 14.8

6 6 6 6 6 39.6

8 8 8 8 8 74.3

10 10 10

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + 4 5
4 510 10 119a a⋅ + ⋅ =

 

  The unknowns are a0, a1, …, a5. Use technology to compute the reduced echelon of the augmented 
matrix: 

   

2 3 4 5

1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9

1 4 16 64 256 1024 14.8 0 0 8 48 224 960 9
~

1 6 36 216 1296 7776 39.6 0 0 24 192 1248 7680 30.9

1 8 64 512 4096 32768 74.3 0 0 48 480 4032 32640 62.7

0 0 80 960 9920 99840 101 10 10 10 10 10 119

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ 4.5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9

0 0 8 48 224 960 9 0 0 8 48 224 960 9
~ ~

0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9

0 0 0 192 2688 26880 8.7 0 0 0 0 384 7680 6.9

0 0 0 480 7680 90240 14.5 0 0 0 0 1920 42240 24.5

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢

−⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦
⎥
⎥
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1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9

0 0 8 48 224 960 9 0 0 8 48 224 960 9
~ ~

0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9

0 0 0 0 384 7680 6.9 0 0 0 0 384 7680 6.9

0 0 0 0 0 3840 10 0 0 0 0 0 1 .0026

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 2 4 8 16 0 2.8167 0 1 0 0 0 0 1.7125

0 0 8 48 224 0 6.5000 0 0 1 0 0 0 1.1948
~ ~ ~

0 0 0 48 576 0 8.6000 0 0 0 1 0 0 .6615

0 0 0 0 384 0 26.900 0 0 0 0 1 0 .0701

0 0 0 0 0 1 .002604 0 0 0 0 0 1 .0026

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  Thus p(t) = 1.7125t – 1.1948t2 + .6615t3 – .0701t4 + .0026t5, and p(7.5) = 64.6 hundred lb. 

Notes: In Exercise 34, if the coefficients are retained to higher accuracy than shown here, then p(7.5) = 
64.8. If a polynomial of lower degree is used, the resulting system of equations is overdetermined. The 
augmented matrix for such a system is the same as the one used to find p, except that at least column 6 is 
missing. When the augmented matrix is row reduced, the sixth row of the augmented matrix will be 
entirely zero except for a nonzero entry in the augmented column, indicating that no solution exists. 

Exercise 34 requires 25 row operations. It should give students an appreciation for higher-level 
commands such as gauss and bgauss, discussed in Section 1.4 of the Study Guide. The command 
ref (reduced echelon form) is available, but I recommend postponing that command until Chapter 2. 

The Study Guide includes a “Mathematical Note” about the phrase, “If and only if,” used in Theorem 
2. 

1.3 SOLUTIONS 

Notes: The key exercises are 11–16, 19–22, 25, and 26. A discussion of Exercise 25 will help students 
understand the notation [a1   a2   a3], {a1, a2, a3}, and Span{a1, a2, a3}. 

 1. 
1 3 1 ( 3) 4

2 1 2 ( 1) 1

− − − + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v .  

  Using the definitions carefully, 

   
1 3 1 ( 2)( 3) 1 6 5

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− − − − − − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = + − = + = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v , or, more quickly, 

   
1 3 1 6 5

2 2
2 1 2 2 4

− − − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v . The intermediate step is often not written. 
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 2. 
3 2 3 2 5

2 1 2 1 1

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v .  

  Using the definitions carefully, 

   
3 2 3 ( 2)(2) 3 4 1

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = + − = + = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v , or, more quickly, 

   
3 2 3 4 1

2 2
2 1 2 2 4

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u v . The intermediate step is often not written. 

3.   4. 

    
     
 

 5. 1 2

3 5 2

2 0 3

8 9 8

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,    
1 2

1

1 2

3 5 2

2 0 3

8 9 8

x x

x

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,    
1 2

1

1 2

3 5 2

2 3

8 9 8

x x

x

x x

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

   
1 2

1

1 2

3 5 2

2 3

8 9 8

x x

x

x x

+ =
− = −

− =
 

  Usually the intermediate steps are not displayed. 

 6. 1 2 3

3 7 2 0

2 3 1 0
x x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,    31 2

31 2

23 7 0

2 3 0

xx x

xx x

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,    1 2 3

1 2 3

3 7 2 0

2 3 0

x x x

x x x

+ −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− + + ⎣ ⎦⎣ ⎦

 

   2 2 3

1 2 3

3 7 2 0

2 3 0

x x x

x x x

+ − =
− + + =

 

  Usually the intermediate steps are not displayed. 

 7. See the figure below. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 

  To write a vector a as a linear combination of u and v, imagine walking from the origin to a along 
the grid "streets" and keep track of how many "blocks" you travel in the u-direction and how many in 
the v-direction.  

a. To reach a from the origin, you might travel 1 unit in the u-direction and –2 units in the v-
direction (that is, 2 units in the negative v-direction). Hence a = u – 2v. 

b. To reach b from the origin, travel 2 units in the u-direction and –2 units in the v-direction. So  
b = 2u – 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that  
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   b = a + u = (u – 2v) + u = 2u – 2v 

c. The vector c is –1.5 units from b in the v-direction, so 

   c = b – 1.5v = (2u – 2v) – 1.5v = 2u – 3.5v 

d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and –4 units in 
the v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the 
origin to –3v, then move 3 units in the u-direction, and finally move –1 unit in the v-direction. So 

   d = –3v + 3u – v = 3u – 4v 

  Another solution is 

   d = b – 2v + u = (2u – 2v) – 2v + u = 3u – 4v 

     
 

Figure for Exercises 7 and 8 

 8. See the figure above. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 

w. To reach w from the origin, travel –1 units in the u-direction (that is, 1 unit in the negative  
u-direction) and travel 2 units in the v-direction. Thus, w = (–1)u + 2v, or w = 2v – u. 

x. To reach x from the origin, travel 2 units in the v-direction and –2 units in the u-direction. Thus, 
x = –2u + 2v. Or, use the fact that x is –1 units in the u-direction from w, so that 

   x = w – u = (–u + 2v) – u = –2u + 2v 

y. The vector y is 1.5 units from x in the v-direction, so 

   y = x + 1.5v = (–2u + 2v) + 1.5v = –2u + 3.5v 

z. The map suggests that you can reach z if you travel 4 units in the v-direction and –3 units in the 
u-direction. So z = 4v – 3u = –3u + 4v. If you prefer to stay on the paths displayed on the “map,” 
you might travel from the origin to –2u, then 4 units in the v-direction, and finally move –1 unit 
in the u-direction. So  

   z = –2u + 4v – u = –3u + 4v 

 9. 
2 3

1 2 3

1 2 3

5 0

4 6 0

3 8 0

x x

x x x

x x x

+ =
+ − =

− + − =
, 

2 3

1 2 3

1 2 3

5 0

4 6 0

3 8 0

x x

x x x

x x x

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − ⎣ ⎦⎣ ⎦

 

  
2 3

1 2 3

1 2 3

0 5 0

4 6 0

3 8 0

x x

x x x

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 1 2 3

0 1 5 0

4 6 1 0

1 3 8 0

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Usually, the intermediate calculations are not displayed. 

w

x

v

u

a
c

d

2v
b

z

y
–2v –u

–v
0
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Note: The Study Guide says, “Check with your instructor whether you need to “show work” on a 
problem such as Exercise 9.” 

 10.  
1 2 3

1 2 3

1 2 3

3 2 4 3

2 7 5 1

5 4 3 2

x x x

x x x

x x x

− + =
− − + =

+ − =
 , 

1 2 3

1 2 3

1 2 3

3 2 4 3

2 7 5 1

5 4 3 2

x x x

x x x

x x x

− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − ⎣ ⎦⎣ ⎦

 

  
1 2 3

1 2 3

1 2 3

3 2 4 3

2 7 5 1

5 4 3 2

x x x

x x x

x x x

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 , 1 2 3

3 2 4 3

2 7 5 1

5 4 3 2

x x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Usually, the intermediate calculations are not displayed. 

 11. The question 

   Is b a linear combination of a1, a2, and a3? 

  is equivalent to the question 

   Does the vector equation x1a1 + x2a2 + x3a3 = b have a solution? 

  The equation 

   

1 2 3

1 2 3

1 0 5 2

2 1 6 1

0 2 8 6

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

↑ ↑ ↑ ↑
a a a b

  (*)

 

  has the same solution set as the linear system whose augmented matrix is 

   

1 0 5 2

2 1 6 1

0 2 8 6

M

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

   

  Row reduce M until the pivot positions are visible: 

   

1 0 5 2 1 0 5 2

~ 0 1 4 3 ~ 0 1 4 3

0 2 8 6 0 0 0 0

M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and 
therefore b is a linear combination of a1, a2, and a3. 
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 12. The equation 

   

1 2 3

1 2 3

1 2 6 11

0 3 7 5

1 2 5 9

x x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

↑ ↑ ↑ ↑
a a a b

 (*)

 

  has the same solution set as the linear system whose augmented matrix is 

   

1 2 6 11

0 3 7 5

1 2 5 9

M

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  Row reduce M until the pivot positions are visible: 

  

1 2 6 11

~ 0 3 7 5

0 0 11 2

M

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and 
therefore b is a linear combination of a1, a2, and a3. 

 13. Denote the columns of A by a1, a2, a3. To determine if b is a linear combination of these columns, 
use the boxed fact in the subsection Linear Combinations.  Row reduce the augmented matrix  
[a1   a2   a3   b] until you reach echelon form: 

   [a1   a2   a3   b] =

1 4 2 3 1 4 2 3

0 3 5 7 ~ 0 3 5 7

2 8 4 3 0 0 0 3

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

  The system for this augmented matrix is inconsistent, so b is not a linear combination of the columns 
of A. 

 14. Row reduce the augmented matrix  [a1   a2   a3   b] until you reach echelon form: 

 [a1   a2   a3   b] = 

1 0 5 2 1 0 5 2 1 0 5 2

2 1 6 1 ~ 0 1 4 3 ~ 0 1 4 3

0 2 8 6 0 2 8 6 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  

The linear system corresponding to this matrix has a solution, so b is a linear combination of the 
columns of A. 

 15. [a1   a2   b]  = 

1 5 3 1 5 3 1 5 3 1 5 3

3 8 5 ~ 0 7 14 ~ 0 1 2 ~ 0 1 2

1 2 0 3 3 0 3 3 0 0 3h h h h

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The vector b 

is in Span{a1, a2} when h – 3 is zero, that is, when h = 3. 
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 16. [v1   v2   y] = 

1 2 1 2 1 2

0 1 3 ~ 0 1 3 ~ 0 1 3

2 7 5 0 3 5 2 0 0 4 2

h h h

h h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The vector y is in  

Span{v1, v2} when 4 + 2h is zero, that is, when h = –2. 

 17. Noninteger weights are acceptable, of course, but some simple choices are 0·v1 + 0·v2 = 0, and 

   1·v1 + 0·v2 = 

3

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,   0·v1 + 1·v2 = 

4

0

1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  1·v1 + 1·v2 = 

1

1

3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,   1·v1 – 1·v2 = 

7

1

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

    
 

 18. Some likely choices are 0·v1 + 0·v2 = 0, and 

  1·v1 + 0·v2 = 

1

1

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

,   0·v1 + 1·v2 = 

2

3

0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  1·v1 + 1·v2 = 

1

4

2

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

,   1·v1 – 1·v2 = 

3

2

2

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 19. By inspection, v2 = (3/2)v1. Any linear combination of v1 and v2 is actually just a multiple of v1. For 
instance, 

   av1 + bv2 = av1 + b(3/2)v1 = (a + 3b/2)v1 

  So Span{v1, v2} is the set of points on the line through v1 and 0. 

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.  

 20. Span{v1, v2} is a plane in R3 through the origin, because neither vector in this problem is a multiple 
of the other.  

 21. Let y = 
h

k

⎡ ⎤
⎢ ⎥
⎣ ⎦

. Then [u   v   y] = 
2 2 2 2

~
1 1 0 2 / 2

h h

k k h

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

. This augmented matrix 

corresponds to a consistent system for all h and k. So y is in Span{u, v} for all h and k. 

 22. Construct any 3×4 matrix in echelon form that corresponds to an inconsistent system. Perform 
sufficient row operations on the matrix to eliminate all zero entries in the first three columns. 

 23. a. False. The alternative notation for a (column) vector is (–4, 3), using parentheses and commas. 

b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If 
5

2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 were on 

the line through 
2

5

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 and the origin, then 
5

2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 would have to be a multiple of 
2

5

−⎡ ⎤
⎢ ⎥
⎣ ⎦

, which is 

not the case. 

c. True. See the line displayed just before Example 4. 

d. True. See the box that discusses the matrix in (5). 
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e. False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or 
when u is the zero vector. 

 24. a. False. Span{u, v} can be a plane. 

b. True. See the beginning of the subsection Vectors in Rn.  

c. True.  See the comment following the definition of Span{v1, …, vp}. 

d. False. (u – v) + v = u – v + v = u. 

e. False. Setting all the weights equal to zero results in a legitimate linear combination of a set of 
vectors. 
 

25. a. There are only three vectors in the set {a1, a2, a3}, and b is not one of them. 

b. There are infinitely many vectors in W = Span{a1, a2, a3}. To determine if b is in W, use the 
method of Exercise 13. 

  [a1   a2   a3   b] =

1 0 4 4 1 0 4 4 1 0 4 4

0 3 2 1 ~ 0 3 2 1 ~ 0 3 2 1

2 6 3 4 0 6 5 4 0 0 1 2

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system for this augmented matrix is consistent, so b is in W. 

c. a1 = 1a1 + 0a2 + 0a3. See the discussion in the text following the definition of Span{v1, …, vp}. 

 26. a. [a1   a2   a3   b] = 

2 0 6 10 1 0 3 5 1 0 3 5 1 0 3 5

1 8 5 3 ~ 1 8 5 3 ~ 0 8 8 8 ~ 0 8 8 8

1 2 1 7 1 2 1 7 0 2 2 2 0 0 0 4

− −

− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  No, b is not a linear combination of the columns of A, that is, b is not in W.    

b. The second column of A is in W because a2 = 0·a1 + 1·a2 + 0·a3. 

 27. a. 5v1 is the output of 5 days’ operation of mine #1. 

b. The total output is x1v1 + x2v2, so x1 and x2 should satisfy 1 1 2 2

240

2824
x x

⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
v v . 

c. [M] Reduce the augmented matrix 
30 40 240 1 0 1.73

~
600 380 2824 0 1 4.70

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  

  Operate mine #1 for 1.73 days and mine #2 for 4.70 days. (This is an approximate solution.) 

 28. a. The amount of heat produced when the steam plant burns x1 tons of anthracite and x2 tons of 
bituminous coal is 27.6x1 + 30.2x2 million Btu.   

b. The total output produced by x1 tons of anthracite and x2 tons of bituminous coal is given by the 

vector 1 2

27.6 30.2

3100 6400

250 360

x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

c. [M] The appropriate values for x1 and x2 satisfy 1 2

27.6 30.2 162

3100 6400 23,610

250 360 1,623

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  

  To solve, row reduce the augmented matrix: 
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27.6 30.2 162 1.000 0 3.900

3100 6400 23610 ~ 0 1.000 1.800

250 360 1623 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal. 
 
 29. The total mass is 4 + 2 + 3 + 5 = 14. So v = (4v1 +2v2 + 3v3 + 5v4)/14. That is, 

  

2 4 4 1 8 8 12 5 17 14 1.214
1 1

4 2 2 2 3 0 5 6 8 4 0 30 17 7 2.429
14 14

4 3 2 0 16 6 6 0 8 7 1.143

⎛ ⎞− − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + + − = − + + − = − ≈ −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

v  

 30. Let m be the total mass of the system. By definition, 

   1
1 1 1

1
( ) k

k k k

mm
m m

m m m
= + + = + +v v v v v  

  The second expression displays v as a linear combination of v1, …, vk, which shows that v is in  
Span{v1, …, vk}. 

 31. a. The center of mass is 
0 8 2 10/31

1 1 1
1 1 4 23

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ + ⋅ + ⋅ =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

. 

b. The total mass of the new system is 9 grams. The three masses added, w1, w2, and w3, satisfy the 
equation 

   ( ) ( ) ( )1 2 3

0 8 2 21
1 1 1

1 1 4 29
w w w

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ⋅ + + ⋅ + + ⋅ =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
 

  which can be rearranged to  

   ( ) ( ) ( )1 2 3

0 8 2 18
1 1 1

1 1 4 18
w w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ⋅ + + ⋅ + + ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  and 

   1 2 3

0 8 2 8

1 1 4 12
w w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ + ⋅ + ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The condition w1 + w2 + w3 = 6 and the vector equation above combine to produce a system of 
three equations whose augmented matrix is shown below, along with a sequence of row 
operations: 

   

1 1 1 6 1 1 1 6 1 1 1 6

0 8 2 8 ~ 0 8 2 8 ~ 0 8 2 8

1 1 4 12 0 0 3 6 0 0 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

    

1 1 0 4 1 0 0 3.5 1 0 0 3.5

~ 0 8 0 4 ~ 0 8 0 4 ~ 0 1 0 .5

0 0 1 2 0 0 1 2 0 0 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Answer: Add 3.5 g at (0, 1), add .5 g at (8, 1), and add 2 g at (2, 4). 
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Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center 
of mass at (2, 2). Answer: Place 3 g at (0, 1), 1 g at (8, 1), and 2 g at (2, 4). 

 32. See the parallelograms drawn on the figure from the text that accompanies this exercise. Here c1, c2, 
c3, and c4 are suitable scalars. The darker parallelogram shows that b is a linear combination of v1 
and v2, that is 

   c1v1 + c2v2 + 0·v3 = b 

  The larger parallelogram shows that b is a linear combination of v1 and v3, that is,  

   c4v1 + 0·v2 + c3v3 = b 

  So the equation x1v1 + x2v2 + x3v3 = b has at least two solutions, not just one solution. (In fact, the 
equation has infinitely many solutions.)   

  

 33. a. For j = 1,…, n, the jth entry of (u + v) + w is (uj + vj) + wj. By associativity of addition in R, this 
entry equals uj + (vj + wj), which is the jth entry of u + (v + w). By definition of equality of 
vectors, (u + v) + w = u + (v + w). 

b. For any scalar c, the jth entry of c(u + v) is c(uj + vj), and the jth entry of cu + cv is cuj + cvj (by 
definition of scalar multiplication and vector addition). These entries are equal, by a distributive 
law in R. So c(u + v) = cu + cv. 

 34. a. For j = 1,…, n, uj + (–1)uj = (–1)uj + uj = 0, by properties of R. By vector equality, 

   u + (–1)u = (–1)u + u = 0. 

b. For scalars c and d, the jth entries of c(du) and (cd )u are c(duj) and (cd )uj, respectively. These 
entries in R are equal, so the vectors c(du) and (cd)u are equal. 

Note: When an exercise in this section involves a vector equation, the corresponding technology data (in 
the data files on the web) is usually presented as a set of (column) vectors. To use MATLAB or other 
technology, a student must first construct an augmented matrix from these vectors. The MATLAB note in 
the Study Guide describes how to do this. The appendices in the Study Guide give corresponding 
information about Maple, Mathematica, and the TI calculators. 

c2v2

c3v3

0

v3

c4v1

c1v1

v1

v2

b
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1.4 SOLUTIONS 

Notes: Key exercises are 1–20, 27, 28, 31 and 32. Exercises 29, 30, 33, and 34 are harder. Exercise 34 
anticipates the Invertible Matrix Theorem but is not used in the proof of that theorem. 

 1. The matrix-vector Ax is not defined because the number of columns (2) in the 3×2 matrix A does not 
match the number of entries (3) in the vector x. 

 2. The matrix-vector Ax is not defined because the number of columns (1) in the 3×1 matrix A does not 
match the number of entries (2) in the vector x. 

 3. 

1 2 1 2 2 6 4
2

3 1 ( 2) 3 3 1 6 3 9
3

1 6 1 6 2 18 16

A

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − − + = + =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x , and 

  

1 2 1 ( 2) 2 3 4
2

3 1 ( 3) ( 2) 1 3 9
3

1 6 1 ( 2) 6 3 16

A

⋅ − + ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − ⋅ − + ⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ − + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

 4. 

1
1 3 4 1 3 4 1 6 4 3

2 1 2 1
3 2 1 3 2 1 3 4 1 8

1

A

⎡ ⎤
− − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⋅ + ⋅ + ⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x , and 

  

1
1 3 4 1 1 3 2 ( 4) 1 3

2
3 2 1 3 1 2 2 1 1 8

1

A

⎡ ⎤
− ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ + ⋅ + ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x  

 5. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   
1 2 3 1 4

2 1 1 1
2 3 1 1 1

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ − ⋅ + ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 6. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   

2 3 21

3 2 1
3 5

8 5 49

2 1 11

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅ + ⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 7. The left side of the equation is a linear combination of three vectors. Write the matrix A whose 
columns are those three vectors, and create a variable vector x with three entries: 
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4 5 7 4 5 7

1 3 8 1 3 8

7 5 0 7 5 0

4 1 2 4 1 2

A

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 and 
1

2

3

x

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x . Thus the equation Ax = b is  

   
1

2

3

4 5 7 6

1 3 8 8

7 5 0 0

4 1 2 7

x

x

x

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎣ ⎦ ⎣ ⎦

  

  For your information: The unique solution of this equation is (5, 7, 3). Finding the solution by hand 
would be time-consuming. 

Note: The skill of writing a vector equation as a matrix equation will be important for both theory and 
application throughout the text. See also Exercises 27 and 28. 

 8. The left side of the equation is a linear combination of four vectors. Write the matrix A whose 
columns are those four vectors, and create a variable vector with four entries: 

  
2 1 4 0 2 1 4 0

4 5 3 2 4 5 3 2
A

⎡ ⎤− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

, and 

1

2

3

4

z

z

z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

z . Then the equation Az = b  

is 

1

2

3

4

2 1 4 0 5

4 5 3 2 12

z

z

z

z

⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

. 

  For your information: One solution is (8, 7, 1, 3). The general solution is z1 = 37/6 + (17/6)z3 – 
(1/3)z4, z2 = 22/3 +(5/3)z3 – (2/3)z4, with z3 and z4 free.  

 9. The system has the same solution set as the vector equation 

   1 2 3

5 1 3 8

0 2 4 0
x x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  and this equation has the same solution set as the matrix equation 

   
1

2

3

5 1 3 8

0 2 4 0

x

x

x

⎡ ⎤
−⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 10. The system has the same solution set as the vector equation 

   1 2

4 1 8

5 3 2

3 1 1

x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  and this equation has the same solution set as the matrix equation 
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   1

2

4 1 8

5 3 2

3 1 1

x

x

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 11. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear 
system: 

 
 

1 3 4 2 1 3 4 2 1 3 4 2 1 3 0 2 1 0 0 11

1 5 2 4 ~ 0 2 6 6 ~ 0 1 3 3 ~ 0 1 0 3 ~ 0 1 0 3

3 7 6 12 0 2 6 6 0 0 1 0 0 0 1 0 0 0 1 0

− − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  The solution is 
1

2

3

11

3

0

x

x

x

= −⎧
⎪ =⎨
⎪ =⎩

. As a vector, the solution is x = 
1

2

3

11

3

0

x

x

x

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 12. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear 
system: 

   

1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1

3 4 2 2 ~ 0 2 1 5 ~ 0 8 8 8 ~ 0 1 1 1

5 2 3 3 0 8 8 8 0 2 1 5 0 2 1 5

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   

1 2 1 1 1 2 0 4 1 0 0 4

~ 0 1 1 1 ~ 0 1 0 4 ~ 0 1 0 4

0 0 1 3 0 0 1 3 0 0 1 3

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The solution is 
1

2

3

4

4

3

x

x

x

= −⎧
⎪ =⎨
⎪ =⎩

. As a vector, the solution is x = 
1

2

3

4

4

3

x

x

x

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 13. The vector u is in the plane spanned by the columns of A if and only if u is a linear combination of 
the columns of A. This happens if and only if the equation Ax = u has a solution. (See the box 
preceding Example 3 in Section 1.4.) To study this equation, reduce the augmented matrix [A   u] 

  

3 5 0 1 1 4 1 1 4 1 1 4

2 6 4 ~ 2 6 4 ~ 0 8 12 ~ 0 8 12

1 1 4 3 5 0 0 8 12 0 0 0

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The equation Ax = u has a solution, so u is in the plane spanned by the columns of A. 

  For your information: The unique solution of Ax = u is (5/2, 3/2). 

 14. Reduce the augmented matrix [A   u] to echelon form: 

  

2 5 1 4 1 2 0 4 1 2 0 4 1 2 0 4

0 1 1 1 ~ 0 1 1 1 ~ 0 1 1 1 ~ 0 1 1 1

1 2 0 4 2 5 1 4 0 1 1 4 0 0 0 3

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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  The equation Ax = u has no solution, so u is not in the subset spanned by the columns of A. 

 15. The augmented matrix for Ax = b is 1

2

3 1

9 3

b

b

−⎡ ⎤
⎢ ⎥−⎣ ⎦

, which is row equivalent to 1

2 1

3 1

0 0 3

b

b b

−⎡ ⎤
⎢ ⎥+⎣ ⎦

. 

This shows that the equation Ax = b is not consistent when 3b1 + b2 is nonzero. The set of b for 
which the equation is consistent is a line through the origin–the set of all points (b1, b2) satisfying b2 
= –3b1. 

 16. Row reduce the augmented matrix [A   b]: 
1

2

3

1 2 1

2 2 0 , .

4 1 3

b

A b

b

− − ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= − = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

b  

  
1 1

2 2 1

3 3 1

1 2 1 1 2 1

2 2 0 ~ 0 2 2 2

4 1 3 0 7 7 4

b b

b b b

b b b

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  
1 1

2 1 2 1

3 1 2 1 1 2 3

1 2 1 1 2 1

~ 0 2 2 2 0 2 2 2

0 0 0 4 (7 2)( 2 ) 0 0 0 3 (7 2)

b b

b b b b

b b b b b b b

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − + = − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + + + +⎣ ⎦ ⎣ ⎦

 

  The equation Ax = b is consistent if and only if 3b1 + (7/2)b2 + b3 = 0, or 6b1 + 7b2 + 2b3 = 0. The set 
of such b is a plane through the origin in R3. 

 17. Row reduction shows that only three rows of A contain a pivot position: 

  

1 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3

1 1 1 1 0 2 1 4 0 2 1 4 0 2 1 4
~ ~ ~

0 4 2 8 0 4 2 8 0 0 0 0 0 0 0 5

2 0 3 1 0 6 3 7 0 0 0 5 0 0 0 0

A

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Because not every row of A contains a pivot position, Theorem 4 in Section 1.4 shows that the 
equation Ax = b does not have a solution for each b in R4. 

 18. Row reduction shows that only three rows of B contain a pivot position: 

  

1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2

0 1 3 4 0 1 3 4 0 1 3 4 0 1 3 4
~ ~ ~

0 2 6 7 0 2 6 7 0 0 0 15 0 0 0 15

2 9 5 7 0 1 3 11 0 0 0 7 0 0 0 0

B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Because not every row of B contains a pivot position, Theorem 4 in Section 1.4 shows that not all 
vectors in R4 can be written as a linear combination of the columns of B. The columns of B certainly 
do not span R3, because each column of B is in R4, not R3. (This question was asked to alert students 
to a fairly common misconception among students who are just learning about spanning.) 

 19. The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, not all vectors in R4 can be written as a linear combination of the columns 
of A. Also, the columns of A do not span R4. 
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 20. The work in Exercise 18 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, the equation Bx = y does not have a solution for each y in R4, and the 
columns of B do not span R4.  

 21. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  

1 0 1 1 0 1 1 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0 1 0
~ ~ ~ .

1 0 0 0 0 1 0 0 1 0 0 1

0 1 1 0 1 1 0 0 1 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The matrix [v1   v2   v3] does not have a pivot in each row, so the columns of the matrix do not span 
R4, by Theorem 4. That is, {v1, v2, v3} does not span R4. 

Note: Some students may realize that row operations are not needed, and thereby discover the principle 
covered in Exercises 31 and 32. 

 22. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  

0 0 4 3 9 6

0 3 2 ~ 0 3 2

3 9 6 0 0 4

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  The matrix [v1   v2   v3] has a pivot in each row, so the columns of the matrix span R3, by Theorem 4. 
That is, {v1, v2, v3} spans R3. 

 23. a. False. See the paragraph following equation (3). The text calls Ax = b a matrix equation. 

b. True. See the box before Example 3. 

c. False. See the warning following Theorem 4. 

d. True. See Example 4. 
e. True. See parts (c) and (a) in Theorem 4. 

f. True. In Theorem 4, statement (a) is false if and only if statement (d) is also false. 

 24. a. True. This statement is in Theorem 3. However, the statement is true without any "proof" 
because, by definition, Ax is simply a notation for x1a1 + ⋅ ⋅ ⋅ + xnan, where a1, …, an are the 
columns of A. 

b. True. See the box before Example 3. 

c.  True. See Example 2. 

d. False. In Theorem 4, statement (d) is true if and only if statement (a) is true. 

e. True. See Theorem 3. 

f. False. In Theorem 4, statement (c) is false if and only if statement (a) is also false. 

 25. By definition, the matrix-vector product on the left is a linear combination of the columns of the 
matrix, in this case using weights –3, –1, and 2. So c1 = –3, c2 = –1, and c3 = 2. 

 26. The equation in x1 and x2 involves the vectors u, v, and w, and it may be viewed as 

  [ ] 1

2

.
x

x

⎡ ⎤
=⎢ ⎥

⎣ ⎦
u v w  By definition of a matrix-vector product, x1u + x2v = w. The stated fact that  

2u – 3v – w = 0 can be rewritten as 2u – 3v = w. So, a solution is x1 = 2, x2 = –3. 
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 27. The matrix equation can be written as c1v1 + c2v2 + c3v3 + c4v4 + c5v5 = v6, where 

  c1 = –3, c2 = 1, c3 = 2, c4 = –1, c5 = 2, and  

  1 2 3 4 5 6

3 5 4 9 7 11
, , , , ,

5 8 1 2 4 11

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v v v v v  

 28. Place the vectors q1, q2, and q3 into the columns of a matrix, say, Q and place the weights x1, x2, and 
x3 into a vector, say, x. Then the vector equation becomes 

   Qx = v, where Q = [q1   q2   q3] and 
1

2

3

x

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x  

  Note: If your answer is the equation Ax = b, you need to specify what A and b are. 

 29. Start with any 3×3 matrix B in echelon form that has three pivot positions. Perform a row operation 
(a row interchange or a row replacement) that creates a matrix A that is not in echelon form. Then A 
has the desired property. The justification is given by row reducing A to B, in order to display the 
pivot positions. Since A has a pivot position in every row, the columns of A span R3, by Theorem 4. 

 30. Start with any nonzero 3×3 matrix B in echelon form that has fewer than three pivot positions. 
Perform a row operation that creates a matrix A that is not in echelon form. Then A has the desired 
property. Since A does not have a pivot position in every row, the columns of A do not span R3, by 
Theorem 4. 

 31. A 3×2 matrix has three rows and two columns. With only two columns, A can have at most two pivot 
columns, and so A has at most two pivot positions, which is not enough to fill all three rows. By 
Theorem 4, the equation Ax = b cannot be consistent for all b in R3. Generally, if A is an m×n matrix 
with m > n, then A can have at most n pivot positions, which is not enough to fill all m rows. Thus, 
the equation Ax = b cannot be consistent for all b in R3. 

 32. A set of three vectors in R4  cannot span R4. Reason: the matrix A whose columns are these three 
vectors has four rows. To have a pivot in each row, A would have to have at least four columns (one 
for each pivot), which is not the case. Since A does not have a pivot in every row, its columns do not 
span R4, by Theorem 4. In general, a set of n vectors in Rm cannot span Rm when n is less than m. 

 33. If the equation Ax = b has a unique solution, then the associated system of equations does not have 
any free variables. If every variable is a basic variable, then each column of A is a pivot column. So 

the reduced echelon form of A must be 

1 0 0

0 1 0

0 0 1

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Note: Exercises 33 and 36 are difficult in the context of this section because the focus in Section 1.4 is on 
existence of solutions, not uniqueness. However, these exercises serve to review ideas from Section 1.2, 
and they anticipate ideas that will come later. 

34. Given Au1 = v1 and Au2 = v2, you are asked to show that the equation Ax = w has a solution, where  
w = v1 + v2. Observe that w = Au1 + Au2 and use Theorem 5(a) with u1 and u2 in place of u and v, 
respectively. That is, w = Au1 + Au2 = A(u1 + u2). So the vector x = u1 + u2 is a solution of w = Ax. 
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35. Suppose that y and z satisfy Ay = z. Then 5z = 5Ay. By Theorem 5(b), 5Ay = A(5y). So 5z = A(5y), 
which shows that 5y is a solution of Ax = 5z. Thus, the equation Ax = 5z is consistent. 

 36. If the equation Ax = b has a unique solution, then the associated system of equations does not have 
any free variables. If every variable is a basic variable, then each column of A is a pivot column. So 

the reduced echelon form of A must be 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. Now it is clear that A has a pivot position in 

each row. By Theorem 4, the columns of A span R4. 

 37. [M] 

7 2 5 8 7 2 5 8 7 2 5 8

5 3 4 9 0 11/ 7 3/ 7 23/ 7 0 11/ 7 3/ 7 23/ 7
~ ~

6 10 2 7 0 58/ 7 16 / 7 1/ 7 0 0 50 /11 189 /11

7 9 2 15 0 11 3 23 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  or, approximately 

7 2 5 8

0 1.57 .429 3.29

0 0 4.55 17.2

0 0 0 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

, to three significant figures. The original matrix does 

not have a pivot in every row, so its columns do not span R4, by Theorem 4. 

 38. [M] 

4 5 1 8 4 5 1 8 4 5 1 8

3 7 4 2 0 13 / 4 13 / 4 4 0 13 / 4 13 / 4 4
~ ~

5 6 1 4 0 1/ 4 1 / 4 6 0 0 0 82 /13

9 1 10 7 0 49 / 4 49 / 4 11 0 0 0 0

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  With pivots only in the first three rows, the original matrix has columns that do not span R4, by 
Theorem 4. 

 39. [M] 

10 7 1 4 6 10 7 1 4 6

8 4 6 10 3 0 8 / 5 26 / 5 34 / 5 9 / 5
~

7 11 5 1 8 0 61/10 43 /10 9 / 5 19 / 5

3 1 10 12 12 0 11/10 97 /10 54 / 5 51/ 5

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − − −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

  

10 7 1 4 6 10 7 1 4 6

0 8 / 5 26 / 5 34 / 5 9 / 5 0 8 / 5 26 / 5 34 / 5 9 / 5
~ ~

0 0 193 / 8 193 / 8 49 /16 0 0 193 / 8 193 / 8 49 /16

0 0 49 / 8 49 / 8 183 /16 0 0 0 0 4715 / 386

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 40. [M] 

5 11 6 7 12 5 11 6 7 12

7 3 4 6 9 0 62 / 5 62 / 5 19 / 5 39 / 5
~

11 5 6 9 3 0 96 / 5 96 / 5 32 / 5 147 / 5

3 4 7 2 7 0 53 / 5 53 / 5 11/ 5 71/ 5

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦
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5 11 6 7 12 5 11 6 7 12

0 62 / 5 62 / 5 19 / 5 39 / 5 0 62 / 5 62 / 5 19 / 5 39 / 5
~ ~

0 0 0 16 / 31 537 / 31 0 0 0 16 / 31 537 / 31

0 0 0 65 / 62 467 / 62 0 0 0 0 1367 / 62

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 41. [M] Examine the calculations in Exercise 39. Notice that the fourth column of the original matrix, 
say A, is not a pivot column. Let Ao be the matrix formed by deleting column 4 of A, let B be the 
echelon form obtained from A, and let Bo be the matrix obtained by deleting column 4 of B. The 
sequence of row operations that reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it 
shows that Ao has a pivot position in each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 3 of A instead of column 4. In this case, the fourth column of A 
becomes a pivot column of Ao, as you can see by looking at what happens when column 3 of B is 
deleted. For later work, it is desirable to delete a nonpivot column. 

Note: Exercises 41 and 42 help to prepare for later work on the column space of a matrix. (See Section 
2.9 or 4.6.) The Study Guide points out that these exercises depend on the following idea, not explicitly 
mentioned in the text: when a row operation is performed on a matrix A, the calculations for each new 
entry depend only on the other entries in the same column. If a column of A is removed, forming a new 
matrix, the absence of this column has no affect on any row-operation calculations for entries in the other 
columns of A. (The absence of a column might affect the particular choice of row operations performed 
for some purpose, but that is not being considered here.) 

 42. [M] Examine the calculations in Exercise 40. The third column of the original matrix, say A, is not a 
pivot column. Let Ao be the matrix formed by deleting column 3 of A, let B be the echelon form 
obtained from A, and let Bo be the matrix obtained by deleting column 3 of B. The sequence of row 
operations that reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it shows that Ao has 
a pivot position in each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 2 of A instead of column 3. (See the remark for Exercise 41.) 
However, only one column can be deleted. If two or more columns were deleted from A, the 
resulting matrix would have fewer than four columns, so it would have fewer than four pivot 
positions. In such a case, not every row could contain a pivot position, and the columns of the matrix 
would not span R4, by Theorem 4. 

Notes: At the end of Section 1.4, the Study Guide gives students a method for learning and mastering 
linear algebra concepts. Specific directions are given for constructing a review sheet that connects the 
basic definition of “span” with related ideas: equivalent descriptions, theorems, geometric interpretations, 
special cases, algorithms, and typical computations. I require my students to prepare such a sheet that 
reflects their choices of material connected with “span”, and I make comments on their sheets to help 
them refine their review. Later, the students use these sheets when studying for exams. 

The MATLAB box for Section 1.4 introduces two useful commands gauss and bgauss that 
allow a student to speed up row reduction while still visualizing all the steps involved. The command 
B = gauss(A,1) causes MATLAB to find the left-most nonzero entry in row 1 of matrix A, and use 
that entry as a pivot to create zeros in the entries below, using row replacement operations. The result is a 
matrix that a student might write next to A as the first stage of row reduction, since there is no need to 
write a new matrix after each separate row replacement. I use the gauss command frequently in lectures 
to obtain an echelon form that provides data for solving various problems. For instance, if a matrix has 5 
rows, and if row swaps are not needed, the following commands produce an echelon form of A: 

 B = gauss(A,1),  B = gauss(B,2),  B = gauss(B,3),  B = gauss(B,4) 
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If an interchange is required, I can insert a command such as B = swap(B,2,5) . The command 
bgauss uses the left-most nonzero entry in a row to produce zeros above that entry. This command, 
together with scale, can change an echelon form into reduced echelon form. 

The use of gauss and bgauss creates an environment in which students use their computer 
program the same way they work a problem by hand on an exam. Unless you are able to conduct your 
exams in a computer laboratory, it may be unwise to give students too early the power to obtain reduced 
echelon forms with one command—they may have difficulty performing row reduction by hand during an 
exam. Instructors whose students use a graphic calculator in class each day do not face this problem. In 
such a case, you may wish to introduce rref earlier in the course than Chapter 4 (or Section 2.8), which 
is where I finally allow students to use that command.  

1.5 SOLUTIONS  

Notes: The geometry helps students understand Span{u, v}, in preparation for later discussions of sub-
spaces. The parametric vector form of a solution set will be used throughout the text. Figure 6 will appear 
again in Sections 2.9 and 4.8.  

For solving homogeneous systems, the text recommends working with the augmented matrix, al-
though no calculations take place in the augmented column. See the Study Guide comments on Exercise 7 
that illustrate two common student errors. 

All students need the practice of Exercises 1–14. (Assign all odd, all even, or a mixture. If you do not 
assign Exercise 7, be sure to assign both 8 and 10.) Otherwise, a few students may be unable later to find 
a basis for a null space or an eigenspace. Exercises 28–36 are important. Exercises 35 and 36 help 
students later understand how solutions of Ax = 0 encode linear dependence relations among the columns 
of A. Exercises 37–40 are more challenging. Exercise 37 will help students avoid the standard mistake of 
forgetting that Theorem 6 applies only to a consistent equation Ax = b. 

 1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of the 
coefficient matrix is not a pivot column, the corresponding variable is free and the system of 
equations has a nontrivial solution. Otherwise, the system has only the trivial solution. 

  

2 5 8 0 2 5 8 0 2 5 8 0

2 7 1 0 ~ 0 12 9 0 ~ 0 12 9 0

4 2 7 0 0 12 9 0 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The variable x3 is free, so the system has a nontrivial solution. 

 2. 

1 2 3 0 1 2 3 0

2 3 4 0 ~ 0 7 2 0

2 4 9 0 0 0 3 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

  There is no free variable; the system has only the trivial solution. 

 3. 
3 4 8 0 3 4 8 0

~
2 5 4 0 0 7 / 3 28 / 3 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. The variable x3 is free; the system has nontrivial 

solutions. An alert student will realize that row operations are unnecessary. With only two equations, 
there can be at most two basic variables. One variable must be free. Refer to Exercise 29 in Section 
1.2. 
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 4. 
5 3 2 0 5 3 2 0

~
3 4 2 0 0 29 / 5 16 / 5 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

. The variable x3 is free; the system has nontrivial 

solutions. As in Exercise 3, row operations are unnecessary. 

 5. 

2 2 4 0 2 2 4 0 1 1 2 0 1 0 1 0

4 4 8 0 ~ 0 0 0 0 ~ 0 1 1 0 ~ 0 1 1 0

0 3 3 0 0 3 3 0 0 0 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  
1 3

2 3

0

0

0 0

x x

x x

+ =
+ =

=
. The variable x3 is free, x1 = –x3, and x2 = –x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

1

1

1

x x

x x x

x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x . 

 6. 

1 2 3 0 1 2 3 0 1 2 3 0 1 0 1 0

2 1 3 0 ~ 0 3 3 0 ~ 0 1 1 0 ~ 0 1 1 0

1 1 0 0 0 3 3 0 0 0 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  
1 3

2 3

0

0

0 0

x x

x x

− =
− =

=
. The variable x3 is free, x1 = x3, and x2 = x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

1

1

1

x x

x x x

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x . 

 7. 
1 3 3 7 0 1 0 9 8 0

~
0 1 4 5 0 0 1 4 5 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

.   
1 3 4

2 3 4

9 8 0

4 5 0

x x x

x x x

+ − =
− + =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = –9x3 + 8x4, and x2 = 4x3 – 5x4. The 
general solution is 

  

1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

9 8 89 9 8

4 5 54 4 5

0 1 0

0 0 1

x x x xx

x x x xx
x x

x x x

x x x

− + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

 8. 
1 3 8 5 0 1 0 2 7 0

~
0 1 2 4 0 0 1 2 4 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

.   
1 3 4

2 3 4

2 7 0

2 4 0

x x x

x x x

− − =
+ − =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = 2x3 + 7x4 and x2 = –2x3 + 4x4. The 
general solution in parametric vector form is 
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1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

2 7 72 2 7

2 4 42 2 4

0 1 0

0 0 1

x x x xx

x x x xx
x x

x x x

x x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

 9. 
3 6 6 0 1 2 2 0 1 2 2 0 1 2 0 0

~ ~ ~
2 4 2 0 2 4 2 0 0 0 2 0 0 0 1 0

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   

1 2

3

2 0

0

x x

x

− =
=

. 

  The solution is x1 = 2x2 , x3 = 0, with x2 free. In parametric vector form, 

  
2 2

2 2 2

3

2 2 2

1

0 0

x x

x x x

x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

x . 

 10. 
1 4 0 4 0 1 4 0 4 0 1 4 0 4 0 1 0 0 4 0

~ ~ ~
2 8 0 8 0 2 8 0 8 0 0 1 0 0 0 0 1 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

1 4

2

4 0

0

x x

x

+ =
=

. 

  The basic variables are x1 and x2, so x3 and x4 are free. (Note that x3 is not zero.) Also, x1 = –4x4. The 
general solution is 

  

1 4 4

2
3 4

3 3 3

4 4 4

4 40 0 4

0 00 0 0

0 1 0

0 0 1

x x x

x
x x

x x x

x x x

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

 11.
 

1 4 2 0 3 5 0 1 4 2 0 0 7 0 1 4 0 0 0 5 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0
~ ~

0 0 0 0 1 4 0 0 0 0 0 1 4 0 0 0 0 0 1 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  

1 2 6

3 6

5 6

4 5 0

0

4 0

0 0

x x x

x x

x x

− + =
− =
− =

=

.   

The basic variables are x1, x3, and x5. The remaining variables are free. In particular, x4 is free (and 
not zero as some may assume). The solution is x1 = 4x2 – 5x6, x3 = x6, x5 = 4x6, with x2, x4, and x6 free. 
In parametric vector form, 
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1 2 6 62

2 2 2

3 6 6
2 4

4 4 4

5 6 6

6 6 6

4 5 54 0 4 0

00 1 0

0 0 0 0

00 0

4 40 0 0

0 0 0

x x x xx

x x x

x x x
x x

x x x

x x x

x x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = = + + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x 6

5

0

1

1 0

0 4

0 1

x

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Note: The Study Guide discusses two mistakes that students often make on this type of problem. 

 
 12. 

1 2 3 6 5 0 0 1 2 3 6 5 0 0 1 2 3 0 29 0 0

0 0 0 1 4 6 0 0 0 0 1 4 0 0 0 0 0 1 4 0 0
~ ~

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  

1 2 3 5

4 5

6

2 3 29 0

4 0

0

0 0

x x x x

x x

x

− + + =
+ =

=
=

. 

  The basic variables are x1, x4, and x6; the free variables are x2, x3, and x5. The general solution is 
x1 = 2x2 – 3x3 – 29x5, x4 = – 4x5, and x6 = 0. In parametric vector form, the solution is 

  

1 2 3 5 2 3 5

2 2 2

3 3 3
2

4 5 5

5 5 5

6

2 3 29 2 3 29 2

0 0 1

0 0 0

4 0 0 4 0

0 0 0

0 0 0 0 0

x x x x x x x

x x x

x x x
x

x x x

x x x

x

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = = + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x 3 5

3 29

0 0

1 0

0 4

0 1

0 0

x x

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥ ⎢ ⎥
⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

13. To write the general solution in parametric vector form, pull out the constant terms that do not 
involve the free variable: 

  

1 3 3

2 3 3 3 3

3 3 3

5 4 5 4 5 4

2 7 2 7 2 7 .

0 0 1

x x x

x x x x x

x x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − − = − + − = − + − = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

↑ ↑

x p q

p q

 

  Geometrically, the solution set is the line through 

5

2

0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 in the direction of 

4

7

1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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14. To write the general solution in parametric vector form, pull out the constant terms that do not 
involve the free variable: 

  

1 4 4

2 4 4
4 4

3 4 4

4 4 4

5 50 0 5

3 2 23 3 2

2 5 52 2 5

0 0 1

x x x

x x x
x x

x x x

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = + = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
↑ ↑

x p q

p q

 

  The solution set is the line through p in the direction of q. 

15. Solve x1 + 5x2 – 3x3 = –2 for the basic variable: x1 = –2 – 5x2 + 3x3, with x2 and x3 free. In vector 
form, the solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

2 5 3 2 5 3 2 5 3

0 0 0 1 0

0 0 0 0 1

x x x x x

x x x x x

x x x

− − + − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + + = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

  The solution of x1 + 5x2 – 3x3= 0 is x1 = – 5x2 + 3x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

5 3 5 3 5 3

0 1 0

0 0 1

x x x x x

x x x x x

x x x

− + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by 
u and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through 

the point p = 

2

0

0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

16. Solve x1 – 2x2 + 3x3 = 4 for the basic variable: x1 = 4 + 2x2 – 3x3, with x2 and x3 free. In vector form, 
the solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

4 2 3 4 2 3 4 2 3

0 0 0 1 0

0 0 0 0 1

x x x x x

x x x x x

x x x

+ − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + + = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

  The solution of x1 – 2x2 + 3x3 = 0 is x1 = 2x2 – 3x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

2 3 2 3 2 3

0 1 0

0 0 1

x x x x x

x x x x x

x x x

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by u and 
v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through the 

point p = 

4

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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17. Row reduce the augmented matrix for the system:   
2 2 4 8 2 2 4 8 2 2 4 8 1 1 2 4 1 0 1 8

4 4 8 16 ~ 0 0 0 0 ~ 0 3 3 12 ~ 0 1 1 4 ~ 0 1 1 4

0 3 3 12 0 3 3 12 0 0 0 0 0 0 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
   1 3

2 3

8

4

0 0

x x

x x

+ =
+ = −

=

.   Thus x1 = 8 – x3, x2 =  –4 – x3, and x3 is free. In parametric vector form,  

  
1 3 3

2 3 3 3

3 3 3

8 8 8 1

4 4 4 1

0 0 1

x x x

x x x x

x x x

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − − = − + − = − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

  The solution set is the line through 

8

4

0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, parallel to the line that is the solution set of the 

homogeneous system in Exercise 5. 

   

18. Row reduce the augmented matrix for the system: 

  

1 2 3 5 1 2 3 5 1 2 3 5 1 0 1 7

2 1 3 13 ~ 0 3 3 3 ~ 0 1 1 1 ~ 0 1 1 1

1 1 0 8 0 3 3 3 0 0 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  1 3

2 3

7

1

0 0

x x

x x

− =
− = −

=

. Thus x1 = 7 + x3, x2 =  –1 + x3, and x3 is free. In parametric vector form,  

  
1 3 3

2 3 3 3

3 3 3

7 7 7 1

1 1 1 1

0 0 1

x x x

x x x x

x x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − + = − + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

  The solution set is the line through 

7

1

0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, parallel to the line that is the solution set of the 

homogeneous system in Exercise 6. 

19. The line through a parallel to b can be written as x = a + t b, where t represents a parameter: 

  x = 1

2

2 5

0 3

x
t

x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

, or 1

2

2 5

3

x t

x t

= − −⎧
⎨ =⎩

 

20. The line through a parallel to b can be written as x = a + tb, where t represents a parameter:  

  x = 1

2

3 7

2 6

x
t

x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

, or 1

2

3 7

2 6

x t

x t

= −⎧
⎨ = − +⎩

 



1.5 • Solutions   37 

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley. 

21. The line through p and q is parallel to q – p. So, given  
3 4

 and
3 1

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

p q , form 

4 3 1

1 ( 3) 4

−⎡ ⎤ ⎡ ⎤
− = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

q p , and write the line as x = p + t(q – p) = 
3 1

3 4
t

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. 

22. The line through p and q is parallel to q – p. So, given 
3 0

 and 
2 3

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

p q , form 

0 ( 3) 3

3 2 5

− −⎡ ⎤ ⎡ ⎤
− = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

q p , and write the line as x = p + t(q – p) = 
3 3

2 5
t

−⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Note: Exercises 21 and 22 prepare for Exercise 26 in Section 1.8. 

23. a. True. See the first paragraph of the subsection titled Homogeneous Linear Systems. 

b. False. The equation Ax = 0 gives an implicit description of its solution set. See the subsection 
entitled Parametric Vector Form. 

c. False. The equation Ax = 0 always has the trivial solution. The box before Example 1 uses the 
word nontrivial instead of trivial. 

d. False. The line goes through p parallel to v. See the paragraph that precedes Fig. 5. 

e. False. The solution set could be empty! The statement (from Theorem 6) is true only when there 
exists a vector p such that Ap = b. 

24. a. False. The trivial solution is always a solution to a homogeneous system of linear equations. 
b. False. A nontrivial solution of Ax = 0 is any nonzero x that satisfies the equation. See the 
 sentence before Example 2. 

c. True. See the paragraph following Example 3. 

d. True. If the zero vector is a solution, then b = Ax = A0 = 0. 
e. True. See Theorem 6. 

25. Suppose p satisfies Ax = b. Then Ap = b. Theorem 6 says that the solution set of Ax = b equals the 
set S ={w : w = p + vh for some vh such that Avh = 0}. There are two things to prove: (a) every vector 
in S satisfies Ax = b, (b) every vector that satisfies Ax = b is in S. 

a. Let w have the form w = p + vh, where Avh = 0. Then 
   Aw = A(p + vh) = Ap + Avh. By Theorem 5(a) in section 1.4 

        = b + 0 = b 
  So every vector of the form p + vh satisfies Ax = b. 

b. Now let w be any solution of Ax = b, and set vh = w − p. Then 

   Avh = A(w – p) = Aw – Ap = b – b = 0 

  So vh satisfies Ax = 0. Thus every solution of Ax = b has the form w = p + vh. 

26. When A is the 3×3 zero matrix, every x in R3 satisfies Ax = 0. So the solution set is all vectors in R3. 

27. (Geometric argument using Theorem 6.) Since Ax = b is consistent, its solution set is obtained by 
translating the solution set of Ax = 0, by Theorem 6. So the solution set of Ax = b is a single vector if 
and only if the solution set of Ax = 0 is a single vector, and that happens if and only if Ax = 0 has 
only the trivial solution. 
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  (Proof using free variables.) If Ax = b has a solution, then the solution is unique if and only if there 
are no free variables in the corresponding system of equations, that is, if and only if every column of 
A is a pivot column. This happens if and only if the equation Ax = 0 has only the trivial solution. 

28. a. When A is a 3×3 matrix with three pivot positions, the equation Ax = 0 has no free variables and 
hence has no nontrivial solution.  

b. With three pivot positions, A has a pivot position in each of its three rows. By Theorem 4 in 
Section 1.4, the equation Ax = b has a solution for every possible b. The term "possible" in the 
exercise means that the only vectors considered in this case are those in R3, because A has three 
rows. 

29. a. When A is a 4×4 matrix with three pivot positions, the equation Ax = 0 has three basic variables  
  andone free variable.  So Ax = 0 has a nontrivial solution.   

b. With only three pivot positions, A cannot have a pivot in every row, so by Theorem 4 in Section 
1.4, the equation Ax = b cannot have a solution for every possible b (in R4). 

30. a. When A is a 2×5 matrix with two pivot positions, the equation Ax = 0 has two basic variables and 
  three free variables. So Ax = 0 has a nontrivial solution. 

b. With two pivot positions and only two rows, A has a pivot position in every row. By Theorem 4 
in Section 1.4, the equation Ax = b has a solution for every possible b (in R2). 

31. a. When A is a 3×2 matrix with two pivot positions, each column is a pivot column. So the equation 
  Ax = 0 has no free variables and hence no nontrivial solution. 

b. With two pivot positions and three rows, A cannot have a pivot in every row. So the equation Ax 
= b cannot have a solution for every possible b (in R3), by Theorem 4 in Section 1.4. 

32. No. If the solution set of Ax = b contained the origin, then 0 would satisfy A0= b, which is not true 
since b is not the zero vector. 

33. Look for A = [a1   a2   a3] such that 1·a1 + 1·a2 + 1·a3 = 0. That is, construct A so that each row sum 
(the sum of the entries in a row) is zero. 

34. Look for A = [a1   a2   a3] such that 2·a1 – 1·a2 + 1·a3 = 0. That is, construct A so that subtracting the 
third column from the second column is twice the first column. 

35. Look at 1 2

1 3

7 21

2 6

x x

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 and notice that the second column is 3 times the first. So suitable values 

for x1 and x2 would be 3 and –1 respectively. (Another pair would be 6 and –2, etc.) Thus 
3

1

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

x

satisfies Ax = 0.  

36. Inspect how the columns a1 and a2 of A are related. The second column is –2/3 times the first. Put 

another way, 2a1 + 3a2 = 0. Thus 
2

3

⎡ ⎤
⎢ ⎥
⎣ ⎦

 satisfies Ax = 0. 

Note: Exercises 35 and 36 set the stage for the concept of linear dependence.
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37. Since the solution set of Ax = 0 contains the point (4,1), the vector x = (4,1) satisfies Ax = 0. Write 
this equation as a vector equation, using a1 and a2 for the columns of A: 

   4·a1 + 1·a2 = 0 

  Then a2 = –4a1. So choose any nonzero vector for the first column of A and multiply that column by 

– 4 to get the second column of A. For example, set 
1 4

1 4
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

.  

  Finally, the only way the solution set of Ax = b could not be parallel to the line through (1,4) and the 
origin is for the solution set of Ax = b to be empty. This does not contradict Theorem 6, because that 
theorem applies only to the case when the equation Ax = b has a nonempty solution set. For b, take 
any vector that is not a multiple of the columns of A. 
 

Note: In the Study Guide, a “Checkpoint” for Section 1.5 will help students with Exercise 37. 

38. If w satisfies Ax = 0, then Aw = 0. For any scalar c, Theorem 5(b) in Section 1.4 shows that 
A(cw)=cAw = c0 = 0. 

39. Suppose Av = 0 and Aw = 0. Then, since A(v + w) = Av + Aw by Theorem 5(a) in Section 1.4, 

   A(v + w) = Av + Aw = 0 + 0 = 0.  

  Now, let c and d be scalars. Using both parts of Theorem 5,  

   A(cv + dw) = A(cv) + A(dw) = cAv + dAw = c0 + d0 = 0. 

40. No. If Ax = b has no solution, then A cannot have a pivot in each row. Since A is 3×3, it has at most 
two pivot positions. So the equation Ax = y for any y has at most two basic variables and at least one 
free variable. Thus, the solution set for Ax = y is either empty or has infinitely many elements. 

Note: The MATLAB box in the Study Guide introduces the zeros command, in order to augment a 
matrix with a column of zeros. 

1.6 SOLUTIONS 

 1. Fill in the exchange table one column at a time. The entries in a column describe where a sector's 
output goes. The decimal fractions in each column sum to 1.  

 

Distribution of 

Output From:

Goods Services Purchased by:

output input

.2 .7 Goods

.8 .3 Services

↓ ↓
→
→

 

  Denote the total annual output (in dollars) of the sectors by pG and pS. From the first row, the total 
input to the Goods sector is .2 pG + .7 pS. The Goods sector must pay for that. So the equilibrium 
prices must satisfy 

   
income expenses

= .2 .7G G Sp p p+
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  From the second row, the input (that is, the expense) of the Services sector is .8 pG + .3 pS.  
The equilibrium equation for the Services sector is 

   
income expenses

= .8 .3S G Sp p p+
 

  Move all variables to the left side and combine like terms: 

  
.8 .7 0

.8 .7 0
G S

G S

p p

p p

− =
− + =

 

  Row reduce the augmented matrix: 

.8 .7 0 .8 .7 0 1 .875 0
~ ~

.8 .7 0 0 0 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The general solution is pG = .875 pS, with pS free. One equilibrium solution is pS = 1000 and pG = 
875.  If one uses fractions instead of decimals in the calculations, the general solution would be 
written pG = (7/8) pS, and a natural choice of prices might be pS = 80 and pG = 70. Only the ratio of 
the prices is important: pG = .875 pS. The economic equilibrium is unaffected by a proportional 
change in prices. 

 2. Take some other value for pS, say 200 million dollars. The other equilibrium prices are then  
pC = 188 million, pE = 170 million. Any constant nonnegative multiple of these prices is a set of 
equilibrium prices, because the solution set of the system of equations consists of all multiples of one 
vector. Changing the unit of measurement to another currency such as Japanese yen has the same 
effect as multiplying all equilibrium prices by a constant. The ratios of the prices remain the same, 
no matter what currency is used. 

 3. a. Fill in the exchange table one column at a time. The entries in a column describe where a sector’s 
   output goes. The decimal fractions in each column sum to 1. 
 

  

Distribution of Output From  :

Purchased by :Fuels and Power Manufacturing Services

output input

.10 .10 .20 Fuels and Power

.80 .10 .40 Manufacturing

.10 .80 .40 Services

↓ ↓ ↓
→
→
→

 

 
   

b. Denote the total annual output (in dollars) of the sectors by pF, pM, and pS. From the first row of 
the table, the total input to the Fuels & Power sector is .1pF + .1pM + .2pS. So the equilibrium 
prices must satisfy 

   
income expenses

= .1 .1 .2F F M Sp p p p+ +
 

  From the second and third rows of the table, the income/expense requirements for the 
Manufacturing sector and the Services sector are, respectively, 

   
.8 .1 .4

.1 .8 .4
M F M S

S F M S

p p p p

p p p p

= + +
= + +
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  Move all variables to the left side and combine like terms: 

  

.9 – .1 – .2 0

–.8 .9 – .4 0

–.1 – .8 .6 0

F M S

F M S

F M S

p p p

p p p

p p p

=
+ =

+ =
   

.9 .1 .2 0

.8 .9 .4 0

.1 .8 .6 0

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

c. [M] You can obtain the reduced echelon form with a matrix program.   

 

.9 .1 .2 0 1 0 .301 0 The number of decimal

.8 .9 .4 0 ~ 0 1 .712 0 places displayed is

.1 .8 .6 0 0 0 0 0 somewhat arbitrary.

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  The general solution is pF = .301 pS, pM = .712 pS, with pS free. If pS is assigned the value of  100, 
then pF = 30.1 and pM = 71.2. Note that only the ratios of the prices are determined. This makes 
sense, for if they were converted from, say, dollars to yen or Euros, the inputs and outputs of each 
sector would still balance. The economic equilibrium is not affected by a proportional change in 
prices. 

 

 4. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1. 

  

Distribution of Output From  :

Purchased by :Mining Lumber Energy Transportation

output input

.30 .15 .20 .20 Mining

.10 .15 .15 .10 Lumber

.60 .50 .45 .50 Energy
0 .20 .20 .20 Transportation

↓ ↓ ↓ ↓
→
→
→
→

 

b. [M] Denote the total annual output of the sectors by pM, pL, pE, and pT, respectively. From the first 
row of the table, the total input to Agriculture is .30pM + .15pL + .20pE + .20 pT. So the 
equilibrium prices must satisfy 

  
income expenses

.30  .15  .20  .20M M L E Tp p p p p= + + +
 

  From the second, third, and fourth rows of the table, the equilibrium equations are 

   

T

.10 .15 .15 .10

.60 .50 .45 .50

.20 .20 .20

L M L E T

E M L E T

T L E

p p p p p

p p p p p

p p p p

= + + +
= + + +
= + +

 

  Move all variables to the left side and combine like terms: 

   

.70 .15 .20 .20 0

.10 .85 .15 .10 0

.60 .50 .55 .50 0

.20 .20 .80 0

M L E T

M L E T

M L E T

L E T

p p p p

p p p p

p p p p

p p p

− − − =
− + − − =
− − + − =

− − + =

 

  Reduce the augmented matrix to reduced echelon form: 
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.70 .15 .20 .20 0 1 0 0 1.37 0

.10 .85 .15 .10 0 0 1 0 .84 0
~

.60 .50 .55 .50 0 0 0 1 3.16 0

0 .20 .20 .80 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  Solve for the basic variables in terms of the free variable pT, and obtain pM = 1.37pT, pL = .84pT, 
and pE = 3.16pT. The data probably justifies at most two significant figures, so take pT = 100 and 
round off the other prices to pM = 137, pL = 84, and pE = 316. 

 5. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1. 

Distribution of Output From  :

Purchased by :Agriculture Manufacturing Services Transportation

output input

.20 .35 .10 .20 Agriculture

.20 .10 .20 .30 Manufacturing

.30 .35 .50 .20 Services

.30 .20 .20 .30 Transportation

↓ ↓ ↓ ↓
→
→
→
→

 

 b. [M] Denote the total annual output of the sectors by pA, pM, pS, and pT, respectively. The 
equilibrium equations are 

   

T

.20 .35 .10 .20

.20 .10 .20 .30

.30 .35 .50 .20

.30 .20 .20 .30

A A M S T

M A M S T

S A M S T

T A M S

p p p p p

p p p p p

p p p p p

p p p p p

= + + +
= + + +
= + + +
= + + +

 

  Move all variables to the left side and combine like terms: 

   

.80 .35 .10 .20 0

.20 .90 .20 .30 0

.30 .35 .50 .20 0

.30 .20 .20 .70 0

A M S T

A M S T

A M S T

A M S T

p p p p

p p p p

p p p p

p p p p

− − − =
− + − − =
− − + − =
− − − + =

 

  Reduce the augmented matrix to reduced echelon form: 

  

.80 .35 .10 .20 0 1 0 0 .799 0

.20 .90 .20 .30 0 0 1 0 .836 0
~

.30 .35 .50 .20 0 0 0 1 1.465 0

.30 .20 .20 .70 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

  Solve for the basic variables in terms of the free variable pT, and obtain pA = .799pT, pM = .836pT, 
and pS = 1.465pT. Take pT = $10.00 and round off the other prices to pA = $7.99,  pM = $8.36, and  

pS = $14.65 per unit. 

 c. Construct the new exchange table one column at a time. The entries in each column must sum to 1. 
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Distribution of Output From  :

Purchased by :Agriculture Manufacturing Services Transportation

output input

.20 .35 .10 .20 Agriculture

.10 .10 .20 .30 Manufacturing

.40 .35 .50 .20 Services

.30 .20 .20 .30 Transportation

↓ ↓ ↓ ↓
→
→
→
→

 

 

d. [M] The new equilibrium equations are 

   

T

.20 .35 .10 .20

.10 .10 .20 .30

.40 .35 .50 .20

.30 .20 .20 .30

A A M S T

M A M S T

S A M S T

T A M S

p p p p p

p p p p p

p p p p p

p p p p p

= + + +
= + + +
= + + +
= + + +

 

  Move all variables to the left side and combine like terms: 

   

.80 .35 .10 .20 0

.10 .90 .20 .30 0

.40 .35 .50 .20 0

.30 .20 .20 .70 0

A M S T

A M S T

A M S T

A M S T

p p p p

p p p p

p p p p

p p p p

− − − =
− + − − =
− − + − =
− − − + =

 

  Reduce the augmented matrix to reduced echelon form: 

  

.80 .35 .10 .20 0 1 0 0 .781 0

.10 .90 .20 .30 0 0 1 0 .767 0
~

.40 .35 .50 .20 0 0 0 1 1.562 0

.30 .20 .20 .70 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

  Solve for the basic variables in terms of the free variable pT, and obtain pA = .781pT, pM = .767pT, 
and  

  pS = 1.562pT. Take pT = $10.00 and round off the other prices to pA = $7.81, pM = $7.67, and 

   pS = $15.62 per unit.  The campaign has caused unit prices for the Agriculture and 
Manufacturing sectirs to go down slightly, while increasing the unit price for the Services sector 
to increase by $.10 per unit.  The campaign has benefited the Services sector the most. 

 

 6. The following vectors list the numbers of atoms of aluminum (Al), oxygen (O), and carbon (C): 

   2 3 2

2 0 1 0 aluminum

Al O : 3 , C: 0 , Al: 0 , CO : 2 oxygen

0 1 0 1 carbon

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The coefficients in the equation x1⋅Al2O3  +  x2⋅C   →    x3⋅Al  +  x4⋅CO2 satisfy 
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   1 2 3 4

2 0 1 0

3 0 0 2

0 1 0 1

x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors) 
and row reduce the augmented matrix of the homogeneous system: 

   

2 0 1 0 0 1 0 1/ 2 0 0 1 0 1/ 2 0 0

3 0 0 2 0 ~ 3 0 0 2 0 ~ 0 0 3 / 2 2 0

0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

   

1 0 1/ 2 0 0 1 0 1/ 2 0 0 1 0 0 2 / 3 0

~ 0 1 0 1 0 ~ 0 1 0 1 0 ~ 0 1 0 1 0

0 0 3 / 2 2 0 0 0 1 4 / 3 0 0 0 1 4 / 3 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The general solution is x1 = (2/3)x4, x2 = x4, x3 = (4/3)x4, with x4 free. Take x4 = 3. Then x1 = 2, 
x2 = 3, and x3 = 4. The balanced equation is 

   2Al2O3  +  3C   →    4Al  +  3CO2 

 7. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C), and 
oxygen (O): 

   3 3 6 5 7 3 6 5 7 2 2

1 0 3 0 0 sodium

1 8 5 2 0 hydrogen
NaHCO : , H C H O : , Na C H O : , H O : , CO :

1 6 6 0 1 carbon

3 7 7 1 2 oxygen

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The order of the various atoms is not important. The list here was selected by writing the elements in 
the order in which they first appear in the chemical equation, reading left to right: 

   x1 ·  NaHCO3  + x2 ·  H3C6H5O7   →   x3 ·  Na3C6H5O7  +  x4 ·  H2O  +  x5 ·  CO2. 

  The coefficients x1, …, x5 satisfy the vector equation 

   1 2 3 4 5

1 0 3 0 0

1 8 5 2 0

1 6 6 0 1

3 7 7 1 2

x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Move all the terms to the left side (changing the sign of each entry in the third, fourth, and fifth 
vectors) and reduce the augmented matrix: 

   

1 0 3 0 0 0 1 0 0 0 1 0

1 8 5 2 0 0 0 1 0 0 1/ 3 0
~

1 6 6 0 1 0 0 0 1 0 1/ 3 0

3 7 7 1 2 0 0 0 0 1 1 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

  The general solution is x1 = x5, x2 = (1/3)x5, x3 = (1/3)x5, x4 = x5, and x5 is free. Take x5 = 3. Then x1 = 
x4 = 3, and x2 = x3 = 1. The balanced equation is 

   3NaHCO3  + H3C6H5O7   →   Na3C6H5O7  +  3H2O  +  3CO2 
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 8. The following vectors list the numbers of atoms of hydrogen (H), oxygen (O), calcium (Ca), and 
carbon (C): 

   3 3 2 2

3 0 2 0 0

1 3 1 0 2
H O: ,   CaCO : ,   H : ,   Ca: ,   CO : 

0 1 0 1 0

0 1 0 0 1

hydrogen

oxygen
O

calcium

carbon

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The coefficients in the chemical equation 

   x1⋅H3O +  x2⋅CaCO3  →    x3⋅H2O +  x4⋅Ca  +  x5⋅CO2 

  satisfy the vector equation 

  1 2 3 4 5

3 0 2 0 0

1 3 1 0 2

0 1 0 1 0

0 1 0 0 1

x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Move the terms to the left side (changing the sign of each entry in the last three vectors) and reduce 
the augmented matrix: 

  

3 0 2 0 0 0 1 0 0 0 2 0

1 3 1 0 2 0 0 1 0 0 1 0
~

0 1 0 1 0 0 0 0 1 0 3 0

0 1 0 0 1 0 0 0 0 1 1 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  The general solution is x1 = 2x5, x2 = x5, x3 = 3x5, x4 = x5, and x5 is free.  Take x5 = 1. Then x1 = 2, and 
x2 = x4 = 1, and x3 = 3. The balanced equation is 

   2H3O + CaCO3  →    3H2O +  Ca  +  CO2 

 9.The following vectors list the numbers of atoms of boron (B), sulfur (S), hydrogen (H), and oxygen 
(O): 

   2 3 2 3 3 2

2 0 1 0 boron

3 0 0 1 sulfur
B S : , H O: , H BO : , H S:

0 2 3 2 hydrogen

0 1 3 0 oxygen

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The coefficients in the equation x1⋅B2S3 + x2⋅H2O  →   x3⋅H3BO3 + x4⋅H2S satisfy 

   1 2 3 4

2 0 1 0

3 0 0 1

0 2 3 2

0 1 3 0

x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Move the terms to the left side (changing the sign of each entry in the third and fourth vectors) and 
row reduce the augmented matrix of the homogeneous system: 

  

2 0 1 0 0 1 0 0 1 / 3 0

3 0 0 1 0 0 1 0 2 0
~

0 2 3 2 0 0 0 1 2 / 3 0

0 1 3 0 0 0 0 0 0 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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  The general solution is x1 = (1/3) x4, x2 = 2x4, x3 = (2/3) x4, with x4 free. Take x4 = 3. Then x1 = 1,  
x2 = 6, and x3 = 2. The balanced equation is 

   B2S3  +  6H2O   →    2H3BO3 + 3H2S 

10.  [M] Set up vectors that list the atoms per molecule. Using the order lead (Pb), nitrogen (N), 
chromium (Cr), manganese (Mn), and oxygen (O), the vector equation to be solved is 

   1 2 3 4 5 6

1 0 3 0 0 0 lead

6 0 0 0 0 1 nitrogen

0 1 0 2 0 0 chromium

0 2 0 0 1 0 manganese

0 8 4 3 2 1 oxygen

x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The general solution is x1 = (1/6)x6, x2 = (22/45)x6, x3 = (1/18)x6, x4 = (11/45)x6, x5 = (44/45)x6, and x6 
is free. Take x6 = 90. Then x1 = 15, x2 = 44, x3 = 5, x4 = 22, and x5 = 88. The balanced equation is 

   15PbN6 + 44CrMn2O8   →    5Pb3O4 + 22Cr2O3 + 88MnO2 + 90NO 

 11.  [M] Set up vectors that list the atoms per molecule. Using the order manganese (Mn), sulfur (S), 
arsenic (As), chromium (Cr), oxygen (O), and hydrogen (H), the vector equation to be solved is 

  1 2 3 4 5 6 7

1 0 0 1 0 0 0

1 0 1 0 0 3 0

0 2 0 0 1 0 0

0 10 0 0 0 1 0

0 35 4 4 0 12 1

0 0 2 1 3 0 2

x x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ + = + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

manganese

sulfur

arsenic

chromium

oxygen

hydrogen

⎥
⎥
⎥
⎥
⎥

  

  In rational format, the general solution is x1 = (16/327)x7, x2 = (13/327)x7, x3 = (374/327)x7, 
x4 = (16/327)x7, x5 = (26/327)x7, x6 = (130/327)x7, and x7 is free. Take x7 = 327 to make the other 
variables whole numbers. The balanced equation is 

  16MnS + 13As2Cr10O35 + 374H2SO4  →   16HMnO4 + 26AsH3 + 130CrS3O12 + 327H2O 

  Note that some students may use decimal calculation and simply "round off" the fractions that relate 
x1, ..., x6 to x7. The equations they construct may balance most of the elements but miss an atom or 
two. Here is a solution submitted by two of my students: 

  5MnS + 4As2Cr10O35 + 115H2SO4  →   5HMnO4 + 8AsH3 + 40CrS3O12 + 100H2O 

  Everything balances except the hydrogen. The right side is short 1 hydrogen atom. Perhaps the 
students thought that it escaped! 

 

12.   Write the equations for each intersection: 

   1 4 2

2 3

3 4

Intersection Flow in Flow out

A

B 100

C 80

x x x

x x

x x

+ =
= +

+ =

 

Rearrange the equations: 
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1 2 4

2 3

3 4

0

100

80

x x x

x x

x x

− + =
− =

− = −
 

  Reduce the augmented matrix: 

  

1 1 0 1 0 1 0 0 0 20

0 1 1 0 100 ~ ~ 0 1 0 1 20

0 0 1 1 80 0 0 1 1 80

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ⋅⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

  The general solution (written in the style of Section 1.2) is 

   

1

2 4

3 4

4

20

20

 = 80 + 

 is free

x

x x

x x

x

=⎧
⎪ = +⎪
⎨ −⎪
⎪⎩

  

Since x3 cannot be negative, the minimum value of x4 is 80.  

 

 13. Write the equations for each intersection: 

   

2 1

3 5 2 4

6 5

4 6

1 3

Intersection Flow in Flow out

A 30 80

B

C 100 40

D 40 90

E 60 20

x x

x x x x

x x

x x

x x

+ = +
+ = +
+ = +
+ = +
+ = +

 

  Rearrange the equations: 

   

1 2

2 3 4 5

5 6

4 6

1 3

50

0

60

50

40

x x

x x x x

x x

x x

x x

− = −
− + − =

− =
− =

− = −

 

  Reduce the augmented matrix: 

   

1 1 0 0 0 0 50 1 0 1 0 0 0 40

0 1 1 1 1 0 0 0 1 1 0 0 0 10

~ ~0 0 0 0 1 1 60 0 0 0 1 0 1 50

0 0 0 1 0 1 50 0 0 0 0 1 1 60

1 0 1 0 0 0 40 0 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅− −
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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a. The general solution is 

1 3

2 3

3

4 6

5 6

6

40

10

 is free

50

60

 is free

x x

x x

x

x x

x x

x

= −⎧
⎪ = +⎪
⎪⎪
⎨ = +⎪
⎪ = +
⎪
⎪⎩

   

b. To find minimum flows, note that since x1 cannot be negative, x3 > 40. This implies that 
x2 > 50. Also, since x6 cannot be negative, x4 > 50 and x5 > 60. The minimum flows are 
x2 = 50, x3 = 40, x4 = 50, x5 = 60 (when x1 = 0 and x6 = 0). 

 

14. Write the equations for each intersection: 

   
1 5

1 2 4

3 2

4 5 3

Intersection Flow in Flow out

A 80

B 100

C 90

D 90

x x

x x x

x x

x x x

= +
+ + =

= +
+ = +

 

  Rearrange the equations: 

   

1 5

1 2 4

2 3

3 4 5

80

100

90

90

x x

x x x

x x

x x x

+ =
+ − = −

− = −
− − = −

 

  Reduce the augmented matrix: 

   

1 0 0 0 1 80 1 0 0 0 1 80

1 1 0 1 0 100 0 1 0 1 1 180
~ ~

0 1 1 0 0 90 0 0 1 1 1 90

0 0 1 1 1 90 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥− − − − −
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

    

a. The general solution is 

1 5

2 4 5

3 4 5

4

5

80

180

 = 90

 is free

 is free

x x

x x x

x x x

x

x

= −⎧
⎪ = + −⎪⎪ + −⎨
⎪
⎪
⎪⎩

   

b. If x5 = 0, then the general solution is 

1

2 4

3 4

4

80

180

= 90

 is free

x

x x

x x

x

=⎧
⎪ = −⎪
⎨ −⎪
⎪⎩

    

c.  Since x2 cannot be negative, the minimum value of x4 when x5 = 0 is 180.  
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15. Write the equations for each intersection. 

   

6 1

1 2

2 3

3 4

4 5

5 6

Intersection Flow in Flow out

A 60

B 70

C 100

D 90

E 80

F 80

x x

x x

x x

x x

x x

x x

+ =
= +

+ =
= +

+ =
= +

 

  Rearrange the equations: 

   

1 6

1 2

2 3

3 4

4 5

5 6

60

70

100

90

80

80

x x

x x

x x

x x

x x

x x

− =
− =

− = −
− =

− = −
− =

 

  Reduce the augmented matrix: 

   

1 0 0 0 0 1 60 1 0 0 0 0 1 60

1 1 0 0 0 0 70 0 1 0 0 0 1 10

0 1 1 0 0 0 100 0 0 1 0 0 1 90
~ ~

0 0 1 1 0 0 90 0 0 0 1 0 1 0

0 0 0 1 1 0 80 0 0 0 0 1 1 80

0 0 0 0 1 1 80 0 0 0 0 0 0 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −

⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  The general solution is 

1 6

2 6

3 6

4 6

5 6

6

60

10

90

80

 is free

x x

x x

x x

x x

x x

x

= +⎧
⎪ = − +⎪
⎪ = +⎪
⎨ =⎪
⎪ = +
⎪
⎪⎩

. 

  Since x2 cannot be negative, the minimum value of x6 is 10. 

 
Note: The MATLAB box in the Study Guide discusses rational calculations, needed for 
balancing the chemical equations in Exercises 10 and 11. As usual, the appendices cover this 
material for Maple, Mathematica, and the TI calculators.
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1.7 SOLUTIONS 

Note: Key exercises are 9–20 and 23–30. Exercise 30 states a result that could be a theorem in the text. 
There is a danger, however, that students will memorize the result without understanding the proof, and 
then later mix up the words row and column. Exercises 37 and 38 anticipate the discussion in Section 1.9 
of one-to-one transformations. Exercise 44 is fairly difficult for my students. 

 1. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are 

the three given vectors. Since 

5 7 9 0 5 7 9 0

0 2 4 0 ~ 0 2 4 0

0 6 8 0 0 0 4 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

, there are no free variables. So 

the homogeneous equation (*) has only the trivial solution. The vectors are linearly independent. 

 2. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are 

the three given vectors.  Since 

0 0 1 0 2 0 3 0

2 0 3 0 ~ 0 8 7 / 2 0

3 8 1 0 0 0 1 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

, there are no free 

variables. So the homogeneous equation (*) has only the trivial solution. The vectors are linearly 
independent. 

 3. Use the method of Example 3 (or the box following the example). By comparing entries of the 
vectors, one sees that the second vector is –2 times the first vector. Thus, the two vectors are linearly 
dependent. 

 4. From the first entries in the vectors, it seems that the second vector of the pair 
1 3

,
3 9

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 may be 3 

times the first vector. But there is a sign problem with the second entries. So neither of the vectors is 
a multiple of the other. The vectors are linearly independent. 

 5. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 
0 3 9 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0

2 1 7 0 2 1 7 0 0 9 3 0 0 9 3 0 0 9 3 0
~ ~ ~ ~

1 4 5 0 1 4 5 0 0 0 7 0 0 0 7 0 0 0 7 0

1 4 2 0 0 3 9 0 0 3 9 0 0 0 8 0 0 0 0 0

− − − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A 
are linearly independent. 

 6. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 

 
4 3 0 0 1 1 5 0 1 1 5 0 1 1 5 0 1 1 5 0

0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0
~ ~ ~ ~

1 1 5 0 4 3 0 0 0 1 20 0 0 0 15 0 0 0 15 0

2 1 10 0 2 1 10 0 0 1 0 0 0 0 5 0 0 0 0 0

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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  There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A 
are linearly independent. 

 7. Study the equation Ax = 0. Some people may start with the method of Example 2: 

  

1 4 3 0 0 1 4 3 0 0 1 4 3 0 0

2 7 5 1 0 ~ 0 1 1 1 0 ~ 0 1 1 1 0

4 5 7 5 0 0 11 5 5 0 0 0 6 6 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  But this is a waste of time. There are only 3 rows, so there are at most three pivot positions. Hence, at 
least one of the four variables must be free. So the equation Ax = 0 has a nontrivial solution and the 
columns of A are linearly dependent. 

 8. Same situation as with Exercise 7. The (unnecessary) row operations are 

  

1 2 3 2 0 1 2 3 2 0 1 2 3 2 0

2 4 6 2 0 ~ 0 0 0 6 0 ~ 0 1 1 3 0

0 1 1 3 0 0 1 1 3 0 0 0 0 6 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Again, because there are at most three pivot positions yet there are four variables, the equation  
Ax = 0 has a nontrivial solution and the columns of A are linearly dependent. 

 9. a. The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find 
out, row reduce [v1   v2   v3], considered as an augmented matrix: 

  

1 3 5 1 3 5

3 9 7 ~ 0 0 8

2 6 0 0 10h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  At this point, the equation 0 = 8 shows that the original vector equation has no solution. So v3 is 
in Span{v1, v2} for no value of h. 
 

b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  

1 3 5 0 1 3 5 0 1 3 5 0

3 9 7 0 ~ 0 0 8 0 ~ 0 0 8 0

2 6 0 0 0 10 0 0 0 0 0h h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial 
solution. Thus {v1, v2, v3} is a linearly dependent set for all h. 
 

 10. a.  The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find 
out, row reduce [v1   v2   v3], considered as an augmented matrix: 

  

1 3 2 1 3 2

3 9 5 ~ 0 0 1

5 15 0 0 10h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

 

  At this point, the equation 0 = 1 shows that the original vector equation has no solution. So v3 is 
in Span{v1, v2} for no value of h. 
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b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  

1 3 2 0 1 3 2 0 1 3 2 0

3 9 5 0 ~ 0 0 1 0 ~ 0 0 1 0

5 15 0 0 0 10 0 0 0 0 0h h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial 
solution. Thus {v1, v2, v3} is a linearly dependent set for all h. 

 11. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  

2 4 2 0 2 4 2 0 2 4 2 0

2 6 2 0 ~ 0 2 0 0 ~ 0 2 0 0

4 7 0 0 1 4 0 0 0 4 0h h h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h + 4 = 0 (which 
corresponds to x3 being a free variable). Thus, the vectors are linearly dependent if and only if h = –4. 

 12. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  

3 6 9 0 3 6 9 0

6 4 0 ~ 0 1 0 0

1 3 3 0 0 0 18 0

h

h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h + 18 = 0 (which 
corresponds to x3 being a free variable). Thus, the vectors are linearly dependent if and only if h = –
18. 

 13. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  

1 2 3 0 1 2 3 0

5 9 0 ~ 0 1 15 0

3 6 9 0 0 0 0 0

h h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what 
the value of h. So the vectors are linearly dependent for all values of h. 
 

 14. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  

1 3 2 0 1 3 2 0 1 3 2 0

2 7 1 0 ~ 0 1 5 0 ~ 0 1 5 0

4 6 0 0 6 8 0 0 0 38 0h h h

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h + 38 = 0 (which 
corresponds to x3 being a free variable). Thus, the vectors are linearly dependent if and only  
if h = –38. 
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 15. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two 
entries in each vector. 

 16. The set is linearly dependent because the second vector is –3/2 times the first vector. 

 17. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 18. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two 
entries in each vector. 

 19. The set is linearly independent because neither vector is a multiple of the other vector. [Two of the 
entries in the first vector are – 4 times the corresponding entry in the second vector. But this multiple 
does not work for the third entries.] 

 20. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 21. a. False. A homogeneous system always has the trivial solution. See the box before Example 2. 

b. False. See the warning after Theorem 7. 

c. True. See Fig. 3, after Theorem 8. 

d. True. See the remark following Example 4. 

 22. a. True. See Theorem 7. 

b. True. See Example 4. 

c. False. For instance, the set consisting of 

1 2

2  and –4

3 6

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 is linearly dependent. See the warning 

after Theorem 8. 

d. False. See Example 3(a). 

 23. 
* 0 0 0

, ,
0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                24. 

* *

0 *

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  25.

* 0

0 0 0
 and 

0 0 0 0

0 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 26. 

* *

0 *

0 0

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. The columns must be linearly independent, by Theorem 7, because the first column is 

not zero, the second column is not a multiple of the first, and the third column is not a linear 
combination of the preceding two columns (because a3 is not in Span{a1, a2}). 

 27. All four columns of the 6×4 matrix A must be pivot columns. Otherwise, the equation Ax = 0 would 
have a free variable, in which case the columns of A would be linearly dependent. 

 28. If the columns of a 4×6 matrix A span R4, then A has a pivot in each row, by Theorem 4. Since each 
pivot position is in a different column, A has four pivot columns. 
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 29. A: any 3×2 matrix with one column a multiple of the other.  
B: any 3×2 matrix with two nonzero columns such that neither column is a multiple of the other. In 
this case the columns are linearly independent and so the equation Bx = 0 has only the trivial 
solution.  
 

 30. a. n   

b. The columns of A are linearly independent if and only if the equation Ax = 0 has only the trivial 
solution. This happens if and only if Ax = 0 has no free variables, which in turn happens if and 
only if every variable is a basic variable, that is, if and only if every column of A is a pivot 
column. 

 31. Think of A = [a1   a2   a3]. The text points out that a3 = a1 + a2. Rewrite this as a1 + a2 – a3 = 0. As a 
matrix equation, Ax = 0 for x = (1, 1, –1). 

 32. Think of A = [a1   a2   a3]. The text points out that a1 –  3a2 = a3. Rewrite this as a1 – 3a2 – a3 = 0. As 
a matrix equation, Ax = 0 for x = (1, –3, –1). 

 33. True, by Theorem 7. (The Study Guide adds another justification.) 

 34. False. The vector v1 could be the zero vector. 

 35. True, by Theorem 9. 

 36. False. Counterexample: Take v1 and v2 to be multiples of one vector. Take v3 to be not a multiple of 
that vector. For example, 

   1 2 3

1 2 1

1 , 2 , 0

1 2 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v v  

 37. True. A linear dependence relation among v1, v2, v3 may be extended to a linear dependence relation 
among v1, v2, v3, v4 by placing a zero weight on v4. 

 38. True. If the equation x1v1 + x2v2 + x3v3 = 0 had a nontrivial solution (with at least one of x1, x2, x3 

nonzero), then so would the equation x1v1 + x2v2 + x3v3 + 0⋅v4 = 0. But that cannot happen because 

{v1, v2, v3, v4} is linearly independent. So {v1, v2, v3} must be linearly independent. This problem can 
also be solved using Exercise 37, if you know that the statement there is true. 
 

 39. If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that the 
equation Ax = 0 has at most one solution. Then the trivial solution is the only solution, and so the 
columns of A are linearly independent. 

 40. An m×n matrix with n pivot columns has a pivot in each column. So the equation Ax = b has no free 
variables. If there is a solution, it must be unique. 
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 41. [M] 

3 4 10 7 4 3 4 10 7 4

5 3 7 11 15 0 29 / 3 29 / 3 2 / 3 25 / 3
~

4 3 5 2 1 0 25 / 3 25 / 3 22 / 3 19 / 3

8 7 23 4 15 0 11/ 3 11/ 3 44 / 3 77 / 3

A

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

 

3 4 10 7 4 3 4 10 7 4

0 29 / 3 29 / 3 2 / 3 25 / 3 0 29 / 3 29 / 3 2 / 3 25 / 3
~ ~

0 0 0 196 / 29 392 / 29 0 0 0 196 / 29 392 / 29

0 0 0 418 / 29 836 / 29 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

  Use the pivot columns of A to form 

3 4 7

5 3 11

4 3 2

8 7 4

B

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

.  Other choices are possible.   

 42. [M] 

12 10 6 8 4 14 12 10 6 8 4 14

7 6 4 5 7 9 0 1/ 6 1 / 2 1 / 3 14 / 3 5 / 6

~ ~9 9 9 9 9 18 0 0 2 2 16 2

4 3 1 0 8 1 0 0 0 0 36 0

8 7 5 6 1 11 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅− − − − −
⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦  

  Use the pivot columns of  A to form 

12 10 6 4

7 6 4 7

9 9 9 9

4 3 1 8

8 7 5 1

B

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥= −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

.  Other choices are possible. 

 43. [M] Make v any one of the columns of A that is not in B and row reduce the augmented matrix 
[B   v]. The calculations will show that the equation Bx = v is consistent, which means that v is a 
linear combination of the columns of B. Thus, each column of A that is not a column of B is in the set 
spanned by the columns of B. 

 44. [M] Calculations made as for Exercise 43 will show that each column of A that is not a column of B 
is in the set spanned by the columns of B. Reason: The original matrix A has only four pivot 
columns. If one or more columns of A are removed, the resulting matrix will have at most four pivot 
columns. (Use exactly the same row operations on the new matrix that were used to reduce A to 
echelon form.) If v is a column of A that is not in B, then row reduction of the augmented matrix 
[B   v] will display at most four pivot columns. Since B itself was constructed to have four pivot 
columns, adjoining v cannot produce a fifth pivot column. Thus the first four columns of [B   v] are 
the pivot columns. This implies that the equation Bx = v has a solution. 

Note: At the end of Section 1.7, the Study Guide has another note to students about “Mastering Linear 
Algebra Concepts.” The note describes how to organize a review sheet that will help students form a 
mental image of linear independence. The note also lists typical misuses of terminology, in which an 
adjective is applied to an inappropriate noun. (This is a major problem for my students.) I require my 
students to prepare a review sheet as described in the Study Guide, and I try to make helpful comments on 
their sheets. I am convinced, through personal observation and student surveys, that the students who 
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prepare many of these review sheets consistently perform better than other students. Hopefully, these 
students will remember important concepts for some time beyond the final exam. 

1.8 SOLUTIONS 

Notes: The key exercises are 17–20, 25 and 31. Exercise 20 is worth assigning even if you normally 
assign only odd exercises. Exercise 25 (and 26) can be used to make a few comments about computer 
graphics, even if you do not plan to cover Section 2.6. For Exercise 31, the Study Guide encourages 
students not to look at the proof before trying hard to construct it. Then the Guide explains how to create 
the proof.  

Exercises 19 and 20 provide a natural segue into Section 1.9. I arrange to discuss the homework on 
these exercises when I am ready to begin Section 1.9. The definition of the standard matrix in Section 1.9 
follows naturally from the homework, and so I’ve covered the first page of Section 1.9 before students 
realize we are working on new material. 

The text does not provide much practice determining whether a transformation is linear, because the 
time needed to develop this skill would have to be taken away from some other topic. If you want your 
students to be able to do this, you may need to supplement Exercises 23, 24, 32 and 33. 

If you skip the concepts of one-to-one and “onto” in Section 1.9, you can use the result of Exercise 31 
to show that the coordinate mapping from a vector space onto Rn (in Section 4.4) preserves linear 
independence and dependence of sets of vectors. (See Example 6 in Section 4.4.) 

 1. T(u) = Au = 
2 0 1 2

0 2 3 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, T(v) = 
2 0 2

0 2 2

a a

b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 2. T(u) = Au =

1 3 0 0 3 1

0 1 3 0 6 2

0 0 1 3 9 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, T(v) = 

1 3 0 0 3

0 1 3 0 3

0 0 1 3 3

a a

b b

c c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

 3. [ ]
1 0 3 2 1 0 3 2 1 0 3 2

3 1 6 3 ~ 0 1 3 3 ~ 0 1 3 3

2 2 1 1 0 2 5 3 0 0 1 3

A

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b  

  

1 0 3 2 1 0 0 7 7

~ 0 1 3 3 ~ 0 1 0 6 6 ,

0 0 1 3 0 0 1 1 1

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  unique solution 

 4. [ ]
1 2 3 6 1 2 3 6 1 2 3 6

0 1 3 4 ~ 0 1 3 4 ~ 0 1 3 4

2 5 6 5 0 1 0 7 0 0 3 3

A

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b  

 

1 2 3 6 1 0 0 17 17

~ 0 1 3 4 ~ 0 1 0 7 7

0 0 1 1 0 0 1 1 1

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x , unique solution 
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 5. [ ] 1 5 7 2 1 5 7 2 1 0 3 3
~ ~

3 7 5 2 0 1 2 1 0 1 2 1
A

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b  

  Note that a solution is not 
3

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. To avoid this common error, write the equations: 

  1 3

2 3

3 3

2 1

x x

x x

+ =
+ =

 and solve for the basic variables: 
1 3

2 3

3

3 3

1 2

is free

x x

x x

x

= −⎧
⎪ = −⎨
⎪
⎩

  

  The general solution is 
1 3

2 3 3

3 3

3 3 3 3

1 2 1 2

0 1

x x

x x x

x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x . For a particular solution, one might 

choose x3 = 0 and 

3

1

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x . 

 6. [ ]

1 3 2 1 1 3 2 1 1 3 2 1 1 0 8 10

3 8 8 6 0 1 2 3 0 1 2 3 0 1 2 3
~ ~ ~

0 1 2 3 0 1 2 3 0 0 0 0 0 0 0 0

1 0 8 10 0 3 6 9 0 0 0 0 0 0 0 0

A

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b  Write the 

equations: 

  1 3

2 3

8 10

2 3

x x

x x

+ =
+ =

 and solve for the basic variables: 
1 3

2 3

3

10 8

3 2

is free

x x

x x

x

= −⎧
⎪ = −⎨
⎪
⎩

  

  The general solution is 
1 3

2 3 3

3 3

10 8 10 8

3 2 3 2

0 1

x x

x x x

x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x . For a particular solution, one might 

choose x3 = 0 and 

10

3

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x . 

 7. The value of a is 5.  The domain of T is R5, because a 6×5 matrix has 5 columns and for Ax to be 
defined, x must be in R5. The value of b is 6.  The codomain of T is R6, because Ax is a linear 
combination of the columns of A, and each column of A is in R6. 

 8. The matrix A must have 7 rows and 5 columns. For the domain of T to be R5, A must have five 
columns so that Ax is defined for x in R5. For the codomain of T to be R7, the columns of A must 
have seven entries (in which case A must have seven rows), because Ax is a linear combination of the 
columns of A. 

 9. Solve Ax = 0: 

1 3 5 5 0 1 3 5 5 0 1 3 5 5 0

0 1 3 5 0 ~ 0 1 3 5 0 ~ 0 1 3 5 0

2 4 4 4 0 0 2 6 6 0 0 0 0 4 0

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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1 0 4 0 0

~ 0 1 3 0 0

0 0 0 1 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

   
1 3

2 3

4

4 0

3 0

0

x x

x x

x

− =
− =

=
,  

1 3

2 3

3

4

4

3

is free

= 0

x x

x x

x

x

=⎧
⎪ =⎪
⎨
⎪
⎪⎩

 

  x = 

1 3

2 3
3

3 3

4

4 4

3 3

1

0 0

x x

x x
x

x x

x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 10. Solve Ax = 0. 

3 2 10 6 0 1 0 2 4 0 1 0 2 4 0

1 0 2 4 0 3 2 10 6 0 0 2 4 6 0
~ ~

0 1 2 3 0 0 1 2 3 0 0 1 2 3 0

1 4 10 8 0 1 4 10 8 0 0 4 8 12 0

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 0 2 4 0 1 0 2 4 0

0 1 2 3 0 0 1 2 3 0
~ ~

0 2 4 6 0 0 0 0 0 0

0 4 8 12 0 0 0 0 0 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

  1 3 4

2 3 4

2 4 0

2 3 0

x x x

x x x

+ − =
+ + =

     

1 3 4

2 3 4

3

4

2 4

2 3

 is free

is free

x x x

x x x

x

x

= − +⎧
⎪ = − −⎪
⎨
⎪
⎪⎩

     

43

43
3 4

3

4

42 2 4

32 2 3

0 1 0

0 0 1

xx

xx
x x

x

x

− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x  

 11. Is the system represented by [A   b] consistent? Yes, as the following calculation shows. 

  

1 3 5 5 1 1 3 5 5 1 1 3 5 5 1

0 1 3 5 1 ~ 0 1 3 5 1 ~ 0 1 3 5 1

2 4 4 4 0 0 2 6 6 2 0 0 0 4 0

− − − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The system is consistent, so b is in the range of the transformation Ax x . 
 
 

 12. Is the system represented by [A   b] consistent? 

  

3 2 10 6 1 1 0 2 4 3 1 0 2 4 3

1 0 2 4 3 3 2 10 6 1 0 2 4 6 10
~ ~

0 1 2 3 1 0 1 2 3 1 0 1 2 3 1

1 4 10 8 4 1 4 10 8 4 0 4 8 12 1

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 0 2 4 3 1 0 2 4 3

0 1 2 3 1 0 1 2 3 1
~ ~

0 2 4 6 10 0 0 0 0 8

0 4 8 12 1 0 0 0 0 5

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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  The system is inconsistent, so b is not in the range of the transformation Ax x . 

 13.  14. 

                            
   A reflection through the origin.  A scaling by the factor 2. 

  The transformation in Exercise 13 may also be described as a rotation of π radians about the origin or 
a rotation of –π radians about the origin. 

 15.  16.  

                                   
A reflection through the line x2 = x1.  A scaling by a factor of 2 and a projection onto the x2 

axis. 

 17. T(2u) = 2T(u) = 
4 8

2
1 2

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
, T(3v) = 3T(v) = 

1 3
3

3 9

− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
, and  

  T(2u + 3v) = 2T(u) + 3T(v) = 
8 3 5

2 9 11

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

18. Draw a line through w parallel to v, and draw a line through w parallel to u. See the left part of the 
figure below. From this, estimate that w = u + 2v. Since T is linear, T(w) = T(u) + 2T(v). Locate T(u) 
and 2T(v) as in the right part of the figure and form the associated parallelogram to locate T(w).  

   

x1

x2

x1

x2

uw

v2v

T(v)

2T(v)

T(u)

T(w)
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 19. All we know are the images of e1 and e2 and the fact that T is linear. The key idea is to write 

  x = 1 2

5 1 0
5 3 5 3

3 0 1
.= − = −

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e  Then, from the linearity of T, write 

   T(x) = T(5e1 – 3e2) = 5T(e1) – 3T(e2) = 5y1 – 3y2 = 
2 1 13

5 3 .
5 6 7

−
− =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  To find the image of 1

2

x

x

⎡ ⎤
⎢ ⎥
⎣ ⎦

, observe that 1
1 2 1 1 2 2

2

1 0

0 1

x
x x x x

x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
x e e . Then 

   T(x) = T(x1e1 + x2e2) = x1T(e1) + x2T(e2) = 1 2
1 2

1 2

22 1

5 65 6

x x
x x

x x

−− ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 20. Use the basic definition of Ax to construct A. Write 

   [ ] 1
1 1 2 2 1 2

2

3 7 3 7
( ) ,    

5 2 5 2

x
T x x A

x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

x v v v v x  

 21. a. True. Functions from Rn to Rm are defined before Fig. 2. A linear transformation is a function 
with certain properties. 

b. False. The domain is R5. See the paragraph before Example 1. 

c. False. The range is the set of all linear combinations of the columns of A. See the paragraph 
before Example 1. 

d. False. See the paragraph after the definition of a linear transformation. 

e. True. See the paragraph following the box that contains equation (4). 

 22. a. True. See the subsection on Matrix Transformations. 
b. True. See the subsection on Linear Transformations. 

c. False. The question is an existence question. See the remark about Example 1(d), following the 
solution of Example 1. 

d. True. See the discussion following the definition of a linear transformation. 

e. True. T(0) = 0. See the box after the definition of a linear transformation. 

23.   a. When b = 0, f (x) = mx. In this case, for all x,y in R and all scalars c and d, 

   f (cx + dy) = m(cx + dy) = mcx + mdy = c(mx) + d(my) = c·f (x) + d·f (y) 

  This shows that f is linear. 

b. When f (x) = mx + b, with b nonzero, f(0) = m(0) = b = b ≠ 0. This shows that f is not linear, 
because every linear transformation maps the zero vector in its domain into the zero vector in the 
codomain. (In this case, both zero vectors are just the number 0.) Another argument, for instance, 
would be to calculate f (2x) = m(2x) + b and 2f (x) = 2mx + 2b. If b is nonzero, then f (2x) is not 
equal to 2f (x) and so f is not a linear transformation. 

c. In calculus, f is called a “linear function” because the graph of f is a line.   

 24. Let T(x) = Ax + b for x in Rn. If b is not zero, T(0) = A0 + b = b ≠  0. Actually, T fails both 
properties  
of a linear transformation. For instance, T(2x) = A(2x) + b = 2Ax + b, which is not the same as 2T(x) 
= 2(Ax + b) = 2Ax + 2b. Also,  

   T(x + y) = A(x + y) + b = Ax + Ay + b 
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  which is not the same as 

   T(x) + T(y) = Ax + b + Ay + b 

 25. Any point x on the line through p in the direction of v satisfies the parametric equation  

  x = p + tv for some value of t. By linearity, the image T(x) satisfies the parametric equation  

   T(x) = T(p + tv) = T(p) + tT(v) 
 (*) 

  If T(v) = 0, then T(x) = T(p) for all values of t, and the image of the original line is just a single 
point. Otherwise, (*) is the parametric equation of a line through T(p) in the direction of T(v). 

 26.  a. From the figure following Exercise 22 in Section 1.5, the line through p and q is in the direction 
of q – p, and so the equation of the line is x = p + t(q – p) = p + tq – tp = (1 – t)p + tq. 

b. Consider x = (1 – t)p + tq for t such that 0 < t < 1. Then, by linearity of T,  

   T(x) = T((1 – t)p + tq) = (1 – t)T(p) + tT(q)      0 < t < 1 
 (*) 

  If T(p) and T(q) are distinct, then (*) is the equation for the line segment between T(p) and T(q), 
as shown in part (a) Otherwise, the set of images is just the single point T(p), because 

   (1 – t)T(p) + tT(q) =(1 – t)T(p) + tT(p) = T(p) 

 27. Any point x on the plane P satisfies the parametric equation x = su + tv for some values of s and t. 
By linearity, the image T(x) satisfies the parametric equation 

   T(x) = sT(u) + tT(v) (s, t in R)   

  The set of images is just Span{T(u), T(v)}. If T(u) and T(v) are linearly independent, Span{T(u), 
T(v)} is a plane through T(u), T(v), and 0. If T(u) and T(v) are linearly dependent and not both zero, 
then Span{T(u), T(v)} is a line through 0. If T(u) = T(v) = 0, then Span{T(u), T(v)} is {0}.  

 28. Consider a point x in the parallelogram determined by u and v, say x = au + bv for 0 < a < 1, 
0 < b < 1. By linearity of T, the image of x is 

   T(x) = T(au + bv) = aT(u) + bT(v), for 0 < a < 1, 0 < b < 1   

  This image point lies in the parallelogram determined by T(u) and T(v).  Special “degenerate” cases 
arise when T(u) and T(v) are linearly dependent. If one of the images is not zero, then the 
“parallelogram” is actually the line segment from 0 to T(u) + T(v). If both T(u) and T(v) are zero, 
then the parallelogram is just {0}. Another possibility is that even u and v are linearly dependent, in 
which case the original parallelogram is degenerate (either a line segment or the zero vector). In this 
case, the set of images must be degenerate, too. 
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 29.  

                
 

 30. Given any x in Rn, there are constants c1, …, cp such that x = c1v1 + ··· cpvp, because v1, …, vp span 
Rn. Then, from property (5) of a linear transformation, 

   T(x) = c1T(v1) + ··· + cpT(vp) = c10 + ·· + cp0 = 0 

 31. (The Study Guide has a more detailed discussion of the proof.) Suppose that {v1, v2, v3} is linearly 
dependent. Then there exist scalars c1, c2, c3, not all zero, such that 

   c1v1 + c2v2 + c3v3 = 0 

  Then T(c1v1 + c2v2 + c3v3) = T(0) = 0. Since T is linear, 

   c1T(v1) + c2T(v2) + c3T(v3) = 0 

  Since not all the weights are zero, {T(v1), T(v2), T(v3)} is a linearly dependent set. 

 32. Take any vector (x1, x2) with x2 ≠  0, and use a negative scalar. For instance, T(0, 1) = (–2, –4), but 
T(–1·(0, 1)) = T(0, –1) = (–2, 4) ≠  (–1)·T(0, 1). 

 33. One possibility is to show that T does not map the zero vector into the zero vector, something that 
every linear transformation does do. T(0, 0) = (0, –3, 0). 

 34. Take u and v in R3 and let c and d be scalars. Then 

  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 

  T(cu + dv) = (cu1 + dv1, cu2 + dv2, – (cu3 + dv3)) = (cu1 + dv1, cu2 + dv2,  cu3 – dv3) 

   = (cu1, cu2, –cu3) + (dv1, dv2, –dv3) = c(u1, u2, –u3) + d(v1, v2, –v3) 

   = cT(u) + dT(v) 

 35. Take u and v in R3 and let c and d be scalars. Then 

  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 

  T(cu + dv) = (cu1 + dv1, 0, cu3 + dv3) = (cu1, 0, cu3) + (dv1, 0, dv3)  

   = c(u1, 0, u3) + d(v1, 0, v3) 

   = cT(u) + dT(v) 

 36. Suppose that {u, v} is a linearly independent set in Rn and yet T(u) and T(v) are linearly dependent. 
Then there exist weights c1, c2, not both zero, such that c1T(u) + c2T(v) = 0 . Because T is linear, 
T(c1u + c2v) = 0. That is, the vector x = c1u + c2v satisfies T(x) = 0. Furthermore, x cannot be the 
zero vector, since that would mean that a nontrivial linear combination of u and v is zero, which is 
impossible because u and v are linearly independent. Thus, the equation T(x) = 0 has a nontrivial 
solution. 
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 37. [M] 

2 3 5 5 0 1 0 1 0 0

7 7 0 0 0 0 1 1 0 0
~ ,

3 4 1 3 0 0 0 0 1 0

9 3 6 4 0 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

  

1 3

2 3

3

4

–

–

is free

0

x x

x x

x

x

=⎧
⎪ =⎪
⎨
⎪
⎪ =⎩

    3

1

1

1

0

x

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x  

 38. [M] 

3 4 7 0 0 1 0 0 1 0

5 8 7 4 0 0 1 0 1 0
~

6 8 6 4 0 0 0 1 1 0

9 7 2 0 0 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,  

1 4

2 4

3 4

4 is free

x x

x x

x x

x

= −⎧
⎪ = −⎪
⎨ = −⎪
⎪⎩

    4

1

1

1

1

x

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

x

 

 39. [M] 

2 3 5 5 8 1 0 1 0 1

7 7 0 0 7 0 1 1 0 2
~ ,

3 4 1 3 5 0 0 0 1 0

9 3 6 4 3 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

yes, b is in the range of the transformation, 

because the augmented matrix shows a consistent system. In fact, 

  the general solution is

1 3

2 3

3

4

1 –

2 –

is free

 0

x x

x x

x

x

=⎧
⎪ =⎪
⎨
⎪
⎪ =⎩

; when x3 = 0 a solution is 

1

2

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x . 

 40. [M] 

3 4 7 0 4 1 0 0 1 1

5 8 7 4 4 0 1 0 1 2
~

6 8 6 4 4 0 0 1 1 1

9 7 2 0 7 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

, yes, b is in the range of the transformation, 

because the augmented matrix shows a consistent system. In fact, 

  the general solution is

1 4

2 4

3 4

4

1

2

1

 is free

x x

x x

x x

x

= −⎧
⎪ = −⎪
⎨ = −⎪
⎪⎩

; when x4 = 0 a solution is 

1

2

1

0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x . 

Notes: At the end of Section 1.8, the Study Guide provides a list of equations, figures, examples, and 
connections with concepts that will strengthen a student’s understanding of linear transformations. I 
encourage my students to continue the construction of review sheets similar to those for “span” and 
“linear independence,” but I refrain from collecting these sheets. At some point the students have to 
assume the responsibility for mastering this material. 

If your students are using MATLAB or another matrix program, you might insert the definition of 
matrix multiplication after this section, and then assign a project that uses random matrices to explore 
properties of matrix multiplication. See Exercises 34–36 in Section 2.1. Meanwhile, in class you can 
continue with your plans for finishing Chapter 1. When you get to Section 2.1, you won’t have much to 
do. The Study Guide’s MATLAB note for Section 2.1 contains the matrix notation students will need for 
a project on matrix multiplication. The appendices in the Study Guide have the corresponding material for 
Mathematica, Maple, and the TI-83+/84+/89 calculators. 

.
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 1. A = [T(e1)   T(e2)] = 

3 5

1 2

3 0

1 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 2. A = [T(e1)   T(e2)   T(e3)] = 
1 2

4 9

−⎡
⎢
⎣

 3. T(e1) = e1 – 3e2 = 
1

3

⎡ ⎤
⎢ ⎥−⎣ ⎦

, T(e2) = e2, A

 4. T(e1) = e1, T(e2) = e2 + 2e1 = 
2

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, A

 5. T(e1) = e2, T(e2) = –e1. A = [ 2 −e e

 6. T(e1) = e2, T(e2) = –e1. A = [ 2 −e e

 7. Follow what happens to e1 and e2. S
circle in the plane, it rotates through

point on the unit circle that lies in th
on the line 2 1x x=  (that is, y x=  in
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1 0
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  line 2 1x x= − , namely, (1 / 2, –1 / 2) . Then this image reflects in the horizontal axis to 

(1 / 2,1 / 2) . When the two calculations described above are written in vertical vector notation, the 
transformation’s standard matrix [T(e1)   T(e2)] is easily seen: 

   1 2

1/ 2 1/ 2 1/ 2 1/ 2
,

1/ 2 1/ 2 1/ 2 1/ 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
→ → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
e e ,  

1/ 2 1/ 2

1/ 2 1/ 2
A

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦  

 8. The horizontal shear maps e1 into e1, and then the reflection in the line x2 = –x1 maps e1 into –e2. (See 
Table 1.) The horizontal shear maps e2 into e2 into e2 + 2e1. To find the image of e2 + 2e1 when it is 
reflected in the line x2 = –x1, use the fact that such a reflection is a linear transformation. So, the 
image of e2 + 2e1 is the same linear combination of the images of e2 and e1, namely,  
–e1 + 2(–e2) = – e1 – 2e2. To summarize, 

  1 1 2 2 2 1 1 2

0 1
  and 2 2 ,  so 

1 2
A

−⎡ ⎤
→ → − → + → − − = ⎢ ⎥− −⎣ ⎦

e e e e e e e e  

 9. 1 1 2 2 2 1 ,
0 1

 and   so
1 0

A→ → → − → −
−⎡ ⎤

− = ⎢ ⎥−⎣ ⎦
e e e e e e  

10. [ ]1 1 2 2 2 1 2 1

0 1
 and ,  so 

1 0
A

−⎡ ⎤
→ → → − → − = − = ⎢ ⎥

⎣ ⎦
e e e e e e e e  

11. The transformation T described maps 1 1 1→ → −e e e  and maps 2 2 2.→ − → −e e e  A rotation through 
π radians also maps e1 into –e1 and maps e2 into –e2. Since a linear transformation is completely 
determined by what it does to the columns of the identity matrix, the rotation transformation has the 

same effect as T on every vector in 2.R  

12. The transformation T in Exercise 10 maps 1 1 2→ →e e e  and maps 2 2 1→ − → −e e e . A rotation about 

the origin through / 2π  radians also maps e1 into e2 and maps e2 into –e1. Since a linear 
transformation is completely determined by what it does to the columns of the identity matrix, the 

rotation transformation has the same effect as T on every vector in 2.R  

13. Since (2, 1)=2 e1+ e2, the image of (2, 1) under T is 2T(e1) + T(e2), by linearity of T. On the figure in 
the exercise, locate 2T(e1) and use it with T(e2) to form the parallelogram shown below. 

 

14. Since [ ]1 2 1 1 2 2 1 2( ) 2T A x x= = = + = −x x a a x a a a a , when x = (1, –2), the image of x is located by 

forming the parallelogram shown below. 
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15. By inspection, 
1 1 2

2 1 3

3 2 3

2 4 0 2 4

1 0 1

0 1 3 3

x x x

x x x

x x x

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

16. By inspection, 
1 2

1
1 2

2
2

3 2 3 2

1 4 4

0 1

x x
x

x x
x

x

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

17. To express T(x) as Ax , write T(x) and x as column vectors, and then fill in the entries in A by 
inspection, as done in Exercises 15 and 16. Note that since T(x) and x have four entries, A must be a 
4×4 matrix. 

  T(x) = 

1 2 1 1

2 2

2 4 3 3

2 4 4 4

2 1 2 0 0

0 0 0 0 0

2 0 2 0 1

0 1 0 1

x x x x

x x
A

x x x x

x x x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

18. As in Exercise 17, write T(x) and x as column vectors. Since x has 2 entries, A has 2 columns. Since 
T(x) has 4 entries, A has 4 rows. 

  

1 2

1 1

1 2 2 2

1

4 1 4

0 0 0

3 1 3

1 0

x x

x x
A

x x x x

x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 

19. Since T(x) has 2 entries, A has 2 rows. Since x has 3 entries, A has 3 columns. 

  
1 1

1 2 3
2 2

2 3
3 3

5 4 1 5 4

6 0 1 6

x x
x x x

A x x
x x

x x

⎡ ⎤ ⎡ ⎤
− + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

20. Since T(x) has 1 entry, A has 1 row. Since x has 4 entries, A has 4 columns. 

  

1 1

2 2
1 3 4

3 3

4 4

[3 4 2 ] [ ] [3 0 4 2]

x x

x x
x x x A

x x

x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − = = −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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21. T(x) = 1 2 1 1

1 2 2 2

1 1

4 5 4 5

x x x x
A

x x x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. To solve T(x) = 
3

8

⎡ ⎤
⎢ ⎥
⎣ ⎦

, row reduce the augmented 

matrix: 
1 1 3 1 1 3 1 0 7 7

~ ~ ,
4 5 8 0 1 4 0 1 4 4

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x . 

22. T(x) = 
1 2

1 1
1 2

2 2
1 2

2 2 1

3 3 1

2 3 2 3

x x
x x

x x A
x x

x x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + = = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. To solve T(x) = 

0

1

4

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

, row reduce the 

augmented matrix:  

  

2 1 0 2 1 0 2 1 0 2 1 0 2 0 2 1 0 1

3 1 1 ~ 0 1 2 1 ~ 0 1 2 ~ 0 1 2 ~ 0 1 2 ~ 0 1 2

2 3 4 0 2 4 0 2 4 0 0 0 0 0 0 0 0 0

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,  

1
.

2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x  

23. a. True. See Theorem 10. 

b. True. See Example 3. 

c. False. See the paragraph before Table 1. 

d. False. See the definition of onto. Any function from Rn to Rm maps each vector onto another 
vector. 

e. False. See Example 5. 

24.  a. False. See Theorem 12. 

b. True. See Theorem 10. 

c. True. See Theorem 10. 

d. False. See the definition of one-to-one. Any function from Rn to Rm maps a vector onto a single 
(unique) vector. 

e. False. See Table 3. 

25. A row interchange and a row replacement on the standard matrix A of the transformation T in 

Exercise 17 produce 

1 2 0 0

0 1 0 1

0 0 0 3

0 0 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. This matrix shows that A has only three pivot positions, so 

the equation Ax = 0 has a nontrivial solution. By Theorem 11, the transformation T is not one-to-one. 
Also, since A does not have a pivot in each row, the columns of A do not span R4. By Theorem 12, T 
does not map R4 onto R4. 

26. The standard matrix A of the transformation T in Exercise 2 is 2×3. Its columns are linearly 
dependent because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, A is 

row equivalent to 
1 2 3

0 17 20

−⎡ ⎤
⎢ ⎥−⎣ ⎦

, which shows that the rows of A span R2. By Theorem 12, T maps 

R3onto R2. 
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27. The standard matrix A of the transformation T in Exercise 19 is 
1 5 4

0 1 6

−⎡ ⎤
⎢ ⎥−⎣ ⎦

. The columns of A 

are linearly dependent because A has more columns than rows. So T is not one-to-one, by Theorem 
12. Also, A has a pivot in each row, so the rows of A span R2. By Theorem 12, T maps R3 onto R2. 

28. The standard matrix A of the transformation T in Exercise 14 has linearly independent columns, 
because the figure in that exercise shows that a1 and a2 are not multiples. So T is one-to-one, by 
Theorem 12. Also, A must have a pivot in each column because the equation Ax = 0 has no free 

variables. Thus, the echelon form of A is 
*

0
.

⎡ ⎤
⎢ ⎥⎣ ⎦

 Since A has a pivot in each row, the columns of A 

span R2. So T maps R2 onto R2. An alternate argument for the second part is to observe directly from 
the figure in Exercise 14 that a1 and a2 span R2. This is more or less evident, based on experience 
with grids such as those in Figure 8 and Exercise 7 of Section 1.3. 

29. By Theorem 12, the columns of the standard matrix A must be linearly independent and hence the 
equation Ax = 0 has no free variables. So each column of A must be a pivot column: 

* *

0 *
~ .

0 0

0 0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Note that T cannot be onto because of the shape of A. 

30. By Theorem 12, the columns of the standard matrix A must span R3. By Theorem 4, the matrix must 

have a pivot in each row. There are four possibilities for the echelon form: 

  

* * * * * * * * * 0 * *

0 * * , 0 * * , 0 0 * , 0 0 *

0 0 * 0 0 0 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Note that T cannot be one-to-one because of the shape of A. 

31. “T is one-to-one if and only if A has n pivot columns.” By Theorem 12(b), T is one-to-one if and only 
if the columns of A are linearly independent. And from the statement in Exercise 30 in Section 1.7, 
the columns of A are linearly independent if and only if A has n pivot columns. 

32. The transformation T maps Rn onto Rm if and only if the columns of A span Rm, by Theorem 12. This 
happens if and only if A has a pivot position in each row, by Theorem 4 in Section 1.4. Since A has m 
rows, this happens if and only if A has m pivot columns. Thus, “T maps Rn onto Rm if and only A has 
m pivot columns.” 

33. Define : n mT →R R  by T(x) = Bx for some m×n matrix B, and let A be the standard matrix for T. 
By definition, A = [T(e1)   ⋅ ⋅ ⋅   T(en)], where ej is the jth column of In. However, by matrix-vector 
multiplication, T(ej) = Bej = bj, the jth column of B. So A = [b1   ⋅ ⋅ ⋅   bn] = B. 

34. Take u and v in Rp and let c and d be scalars. Then 
  T(S(cu + dv)) = T(c⋅S(u) + d⋅S(v)) because S is linear 

     = c⋅T(S(u)) + d⋅T(S(v)) because T is linear 
  This calculation shows that the mapping x →  T(S(x)) is linear. See equation (4) in Section 1.8.
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35. If : n mT →R R  maps nR  onto mR , then its standard matrix A has a pivot in each row, by Theorem 
12 and by Theorem 4 in Section 1.4. So A must have at least as many columns as rows. That is, m < 
n. When T is one-to-one, A must have a pivot in each column, by Theorem 12, so m > n. 

36. The transformation T maps Rn onto Rm if and only if for each y in Rm there exists an x in Rn such that 
y = T(x). 
 

37. [M]  

5 6 5 6 1 0 0 1

8 3 3 8 0 1 0 1
~ ~

2 9 5 12 0 0 1 1

3 2 7 12 0 0 0 0

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. There is no pivot in the fourth column of 

the standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, the 
transformation T is not one-to-one. (For a shorter argument, use the result of Exercise 31.) 

38. [M]  

7 5 9 9 1 0 0 0

5 6 4 4 0 1 0 0
~ ~

4 8 0 7 0 0 1 0

6 6 6 5 0 0 0 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. Yes. There is a pivot in every column of the 

standard matrix A, so the equation Ax = 0 has only the trivial solution. By Theorem 11, the trans-
formation T is one-to-one. (For a shorter argument, use the result of Exercise 31.) 

39. [M]  

4 7 3 7 5 1 0 0 5 0

6 8 5 12 8 0 1 0 1 0

~ ~7 10 8 9 14 0 0 1 2 0

3 5 4 2 6 0 0 0 0 1

5 6 6 7 3 0 0 0 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅− − − −
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

. There is not a pivot in every row, 

so the columns of the standard matrix do not span R5. By Theorem 12, the transformation T does not 
map R5 onto R5. 

40. [M]  

9 43 5 6 1 1 0 0 0 0

14 15 7 5 4 0 1 0 0 0

~ ~8 6 12 5 9 0 0 1 0 0

5 6 4 9 8 0 0 0 1 0

13 14 15 3 11 0 0 0 0 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅− − − −
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. There is a pivot in every row, so the 

columns of the standard matrix span R5. By Theorem 12, the transformation T maps R5 onto R5. 

1.10 SOLUTIONS 

 1. a. If x1 is the number of servings of Cheerios and x2 is the number of servings of 100% Natural 
Cereal, then x1 and x2 should satisfy  

  1 2

nutrients nutrients quantities
per serving per serving of of  nutrients
of Cheerios 100% Natural required

x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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  That is, 

  1 2

110 130 295

4 3 9

20 18 48

2 5 8

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

b. The equivalent matrix equation is 1

2

110 130 295

4 3 9

20 18 48

2 5 8

x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. To solve this, row reduce the 

augmented matrix for this equation. 

  

110 130 295 2 5 8 1 2.5 4

4 3 9 4 3 9 4 3 9
~ ~

20 18 48 20 18 48 10 9 24

2 5 8 110 130 295 110 130 295

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 2.5 4 1 2.5 4 1 0 1.5

0 7 7 0 1 1 0 1 1
~ ~ ~

0 16 16 0 0 0 0 0 0

0 145 145 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of 100% 
Natural Cereal. 

 2. Set up nutrient vectors for one serving of Shredded Wheat (SW) and Kellogg's Crispix (Crp): 

  

Nutrients: SW Crp

calories 160 110

protein 5 2

fiber 6 .1

fat 1 .4

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  

a. Let [ ]

160 110

5 2 3
SW    Crp ,

6 .1 2

1 .4

B

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

u . 

  Then Bu lists the amounts of calories, protein, carbohydrate, and fat in a mixture of three servings 
of Shredded Wheat and two servings of Crispix. 

b. [M]  Let u1 and u2 be the number of servings of Shredded Wheat and Crispix, respectively. Can 

these numbers satisfy the equation 1

2

120

3.2

2.46

.64

B
u

u

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

? To find out, row reduce the augmented 

matrix 
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160 110 130 1 .4 .64 1 .4 .64 1 .4 .64 1 0 .4

5 2 3.2 0 0 0 0 46 27.6 0 1 .6 0 1 .6
~ ~ ~ ~

6 .1 2.46 0 2.3 1.38 0 2.3 1.38 0 0 0 0 0 0

1 .4 .64 0 46 27.6 0 0 0 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Since the system is consistent, it is possible for a mixture of the two creals to provide the desired 
nutrients.  The mixture is .4 servings of Shredded Wheat and .6 servings of Crispix.  

3.     a. [M]  Let x1, x2, and x3 be the number of servings ofAnnies’s Mac and Cheese, broccoli, and 
chicken, respectively, needed for the lunch.  The values of x1, x2, and x3 should satisfy 

1 2 3

nutrients nutrients nutrients quantities
per serving per serving per serving of  nutrients

of Mac and Cheese of broccoli of chicken required
x x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  From the given data, 

   1 2 3

270 51 70 400

10 5.4 15 30

2 5.2 0 10

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  To solve, row reduce the corresponding augmented matrix: 

   

270 51 70 400 1 0 0 .99

10 5.4 15 30 ~ ... ~ 0 1 0 1.54

2 5.2 0 10 0 0 1 .79

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

 

.99 servings of Mac and Cheese

1.54 servings of broccoli

.74 servings of chicken

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≈ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x  

  b. [M]  Changing from Annie’s Mac and Cheese to Annie’s Whole Wheat Shells and White Cheddar 
changes the vector equation to  

 1 2 3

260 51 70 400

9 5.4 15 30

5 5.2 0 10

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  To solve, row reduce the corresponding augmented matrix: 

   

260 51 70 400 1 0 0 1.09

9 5.4 15 30 ~ ... ~ 0 1 0 .88

5 5.2 0 10 0 0 1 1.03

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

 

1.09 servings of Shells

.88 servings of broccoli

1.03 servings of chicken

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≈ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x  

  Notice that the number of servings of broccoli has decreased as was desired. 
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 4. Here are the data, assembled from Table 1 and Exercise 4: 

   

Mg of Nutrients/Unit Nutrients
Requiredsoy soy

Nutrient (milligrams)milk flour whey prot.

protein 36 51 13 80 33

carboh. 52 34 74 0 45

fat 0 7 1.1 3.4 3

calcium 1.26 .19 .8 .18 .8

 

a. Let x1, x2, x3, x4 represent the number of units of nonfat milk, soy flour, whey, and isolated soy 
protein, respectively. These amounts must satisfy the following matrix equation 

  

1

2

3

4

36 51 13 80 33

52 34 74 0 45

0 7 1.1 3.4 3

1.26 .19 .8 .18 .8

x

x

x

x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

b. [M]  

36 51 13 80 33 0 0 0 .641

52 34 74 0 45 0 0 0 .541~ ~
0 7 1.1 3.4 3 0 0 0 .091

1.26 .19 .8 .18 .8 0 0 0 .211

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

  The “solution” is x1 = .64, x2 = .54, x3 = –.09, x4 = –.21. This solution is not feasible, because the 
mixture cannot include negative amounts of whey and isolated soy protein. Although the 
coefficients of these two ingredients are fairly small, they cannot be ignored. The mixture of .64 
units of nonfat milk and .54 units of soy flour provide 50.6 g of protein, 51.6 g of carbohydrate, 
3.8 g of fat, and .9 g of calcium. Some of these nutrients are nowhere close to the desired 
amounts. 

 5. Loop 1: The resistance vector is 

  

1

2 2
1

3

4

Total of RI voltage drops for current 11

Voltage drop for  is negative;  flows in opposite direction5

Current  does not flow in loop 10
Current  does not flow in loop 10

I

I I

I
I

⎡ ⎤
⎢ ⎥
−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

r  

  Loop 2: The resistance vector is  

  

1 1

2
2

3 3

4

5 Voltage drop for  is negative;  flows in opposite direction
10 Total of RI voltage drops for current 

Voltage drop for  is negative;  flows in opposite direction1
Current  d0

I I

I
I I

I

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

r

oes not flow in loop 2

 

  Also, r3 = 

0

1

9

2

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, r4 = 

0

0

2

10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, and R = [r1   r2   r3   r4] = 

5 0 011

5 10 01

0 91 2

0 0 102

⎡ ⎤−
⎢ ⎥
− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

. 
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  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v = 

50

40

30

30

⎡ ⎤
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎣ ⎦

. The voltages in loops 2 and 4 are negative because the battery orientation in 

each loop is opposite to the direction chosen for positive current flow. Thus, the equation Ri = v 
becomes 

  

1

2

3

4

5 0 0 5011

5 10 0 401

0 9 301 2

0 0 10 302

I

I

I

I

⎡ ⎤⎡ ⎤ ⎡ ⎤−
⎢ ⎥⎢ ⎥ ⎢ ⎥

− −− ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥

−−⎣ ⎦ ⎣ ⎦⎣ ⎦

.    [M]: The solution is i = 

1

2

3

4

3.68

1.90

2.57

2.49

I

I

I

I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎣ ⎦⎣ ⎦

. 

 6. Loop 1: The resistance vector is 

  

1

2 2
1

3

4

6 Total of RI voltage drops for current 

1 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1

0 Current  does not flow in loop 1

I

I I

I

I

⎡ ⎤
⎢ ⎥
−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

r  

  Loop 2: The resistance vector is  

  

1 1

2
2

3 3

4

Voltage drop for  is negative;  flows in opposite direction1

9 Total of RI voltage drops for current 

4 Voltage drop for  is negative;  flows in opposite direction

Current  do0

I I

I

I I

I

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

r

es not flow in loop 2

 

  Also, r3 =

0

4

7

2

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, r4 =

0

0

2

7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, and R = [r1   r2   r3   r4]= 

6 1 0 0

1 9 4 0

0 4 7 2

0 0 2 7

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

. Set v = 

30

20

40

10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. Then Ri = 

v becomes 

  

1

2

3

4

6 1 0 0 30

1 9 4 0 20

0 4 7 2 40

0 0 2 7 10

I

I

I

I

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

.  [M]: The solution is i =

1

2

3

4

6.36

8.14

11.73

4.78

I

I

I

I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

. 
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 7. Loop 1: The resistance vector is 

  

1

2 2
1

3

44

Total of RI voltage drops for current 12

7 Voltage drop for  is negative;  flows in opposite direction

0 Current  does not flow in loop 1
Voltage drop for  is negative;  flows4

I

I I

I
I I

⎡ ⎤
⎢ ⎥
−⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

r

in opposite direction

 

  Loop 2: The resistance vector is  

  

11

2
2

3 3

4

Voltage drop for  is negative;  flows in opposite direction7

15 Total of RI voltage drops for current 

6 Voltage drop for  is negative;  flows in opposite direction

0 Current  d

I I

I

I I

I

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

r

oes not flow in loop 2

 

  Also, r3 = 

0

6

14

5

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, r4 = 

4

0

5

13

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

, and R = [r1   r2   r3   r4] = 

12 7 0 4

7 15 6 0

0 6 14 5

4 0 5 13

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥⎣ ⎦

. 

  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v 

40

30

20

10

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

. Note the negative voltage in loop 4. The current direction chosen in loop 4 is 

opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes 

  

1

2

3

4

12 7 0 4 40

7 15 6 0 30

0 6 14 5 20

4 0 5 13 10

I

I

I

I

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. [M]: The solution is i =

1

2

3

4

11.43

10.55

8.04

5.84

I

I

I

I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

. 

 8. Loop 1: The resistance vector is 

  

1

2 2

1
3

4 4

Total of RI voltage drops for current 9

1 Voltage drop for  is negative;  flows in opposite direction

0 Current  does not flow in loop 1

Voltage drop for  is negative;  1

4

I

I I

I
I I

⎡ ⎤
⎢ ⎥
−⎢ ⎥
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎣ ⎦

r

5 5

flows in opposite direction

Voltage drop for  is negative;  flows in opposite directionI I

 

  Loop 2: The resistance vector is  
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1 1

2

2
3 3

Voltage drop for  is negative; flows in opposite direction1

7 Total of RI voltage drops for current 

2 Voltage drop for  is negative;  flows in opposite direction
0 Current 

3

I I

I

I I

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

r

4

5 5

 does not flow in loop 2
Voltage drop for  is negative;  flows in opposite direction

I
I I

 

  Also, r3 = 

0

2

10

3

3

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

, r4 = 

1

0

3

7

2

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, r5 = 

4

3

3

2

12

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, and R = 

9 1 0 1 4

1 7 2 0 3

0 2 10 3 3

1 0 3 7 2

4 3 3 2 12

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

. Set v = 

50

30

20

40

0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

. Note 

the negative voltages for loops where the chosen current direction is opposed by the orientation of 
the voltage source in that loop. Thus Ri = v becomes: 

  

1

2

3

4

5

9 1 0 1 4 50

1 7 2 0 3 30

0 2 10 3 3 20

1 0 3 7 2 40

4 3 3 2 12 0

I

I

I

I

I

− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=− − −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦

.   [M]  The solution is 

1

2

3

4

5

4.00

4.38

.90

5.80

.96

I

I

I

I

I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

. 

 9. The population movement problems in this section assume that the total population is constant, with 
no migration or immigration. The statement that “about 7% of the city’s population moves to the 
suburbs” means also that the rest of the city’s population (93%) remain in the city. This determines 
the entries in the first column of the migration matrix (which concerns movement from the city). 

   

From:

City Suburbs To:

.93 City

.07 Suburbs

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  Likewise, if 5% of the suburban population moves to the city, then the other 95% remain in the 

suburbs. This determines the second column of the migration matrix:, M = 
.93 .05

.07 .95

⎡ ⎤
⎢ ⎥
⎣ ⎦

. The 

difference equation is xk+1 = Mxk  for k = 0, 1, 2, …. Also, x0 = 
800,000

500,000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  The population in 2011 (when k = 1) is x1 = Mx0 = 
.93 .05 800,000 769,000

.07 .95 500,000 531,000

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  The population in 2012 (when k = 2) is x2 = Mx1 = 
.93 .05 769,000 741,720

.07 .95 531,000 558,280

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
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 10. The data in the first sentence implies that the migration matrix has the form: 

   

From:

City Suburbs To:

.04 City

.06 Suburbs

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  The remaining entries are determined by the fact that the numbers in each column must sum to 1. 
(For instance, if 6% of the city people move to the suburbs, then the rest, or 94%, remain in the city.) 

So the migration matrix is M = 
.94 .04

.06 .96

⎡ ⎤
⎢ ⎥
⎣ ⎦

. The initial population is x0 = 
10,000,000

800,000

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

  The population in 2011 (when k = 1) is x1 = Mx0 = 
.94 .04 10,000,000 9,432,000

.06 .96 800,000 1,368,000

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  The population in 2012 (when k = 2) is x2 = Mx1 = 
.94 .04 9,432,000 8,920,800

.06 .96 1,368,000 1,879,200

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 11. The problem concerns two groups of people–those living in California and those living outside 
California (and in the United States). It is reasonable, but not essential, to consider the people living 
inside California first. That is, the first entry in a column or row of a vector will concern the people 
living in California. With this choice, the migration matrix has the form: 

   

From:

Calif. Outside To:

Calif.

Outside

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

a. For the first column of the migration matrix M, compute 

  
{ }

{ }

Calif. persons
who moved 516,100

.016372
Total Calif. pop. 31,524,000

= =  

  The other entry in the first column is 1 – .016372 = .983628. The exercise requests that 5 decimal 
places be used. So this number should be rounded to .98363. Whatever number of decimal places 
is used, it is important that the two entries sum to 1. So, for the first fraction, use .01637. 

  For the second column of M, compute 
{ }

{ }

outside persons
who moved 381,262

.00167
Total outside pop. 228,680,000

= = . The other 

entry is 1 – .00167 = .99833. Thus, the migration matrix is 

  

From:

Calif. Outside To:

.98363 .00167 Calif.

.01637 .99833 Outside

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

b. [M] The initial vector is x0 = (31.524, 228.680), with data in millions of persons. Since x0 
describes the population in 1994, and x1 describes the population in 1995, the vector x6 describes 
the projected population for the year 2000, assuming that the migration rates remain constant and 
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there are no deaths, births, or migration. Here are the vectors x0 through x6 with the first 5 figures 
displayed. Numbers are in millions of persons: 

  x0 =
31.524 31.390 31.258 31.129 31.002 30.877 30.755

, , , , , ,
228.68 228.82 228.95 229.08 229.20 229.33 229.45

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= x6. 

 12. Set M = 0

.97 .05 .10 295

.00 .90 .05   and  55

.03 .05 .85 150

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x . Then x1 = 

.97 .05 .10 295 304

.00 .90 .05 55 57

.03 .05 .85 150 139

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, and 

x2 = 

.97 .05 .10 304 312

.00 .90 .05 57 58

.03 .05 .85 139 130

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The entries in x2 give the approximate distribution of cars on 

Wednesday, two days after Monday. 

 13. [M] The order of entries in a column of a migration matrix must match the order of the columns. For 
instance, if the first column concerns the population in the city, then the first entry in each column 
must be the fraction of the population that moves to (or remains in) the city. In this case, the data in 

the exercise leads to M = 
.95 .03

.05 .97

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and x0 = 
600,000

400,000

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

a. Some of the population vectors are 

  5 10 15 20

523,293 472,737 439,417 417,456
, , ,

476,707 527,263 560,583 582,544

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x x  

  The data here shows that the city population is declining and the suburban population is 
increasing, but the changes in population each year seem to grow smaller. 

b. When x0 = 
350,000

650,000

⎡ ⎤
⎢ ⎥
⎣ ⎦

, the situation is different. Now 

  5 10 15 20

358,523 364,140 367,843 370,283
, , ,

641,477 635,860 632,157 629,717

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x x  

  The city population is increasing slowly and the suburban population is decreasing. No other 
conclusions are expected. (This example will be analyzed in greater detail later in the text.)  

 14. Here are Figs. (a) and (b) for Exercise 13, followed by the figure for Exercise 34 in Section 1.1: 

   

10˚

10˚

40˚

40˚

20˚ 20˚

30˚ 30˚

1 2

4 3

0˚

0˚

0˚

0˚

20˚ 20˚

20˚ 20˚

1 2

4 3

10˚

10˚

40˚

40˚

0˚ 0˚

10˚ 10˚

1 2

4 3

(b) Section 1.1(a)
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  For Fig. (a), the equations are    

1 2 4

2 1 3

3 4 2

4 1 3

4 0 20

4 20 0

4 0 20

4 0 20

T T T

T T T

T T T

T T T

= + + +
= + + +
= + + +
= + + +  

  To solve the system, rearrange the equations and row reduce the augmented matrix. Interchanging 
rows 1 and 4 speeds up the calculations. The first five steps are shown in detail. 

  

4 1 0 1 20 1 0 1 4 20 1 0 1 4 20 1 0 1 4 20

1 4 1 0 20 1 4 1 0 20 0 4 0 4 0 0 1 0 1 0
~ ~ ~

0 1 4 1 20 0 1 4 1 20 0 1 4 1 20 0 1 4 1 20

1 0 1 4 20 4 1 0 1 20 0 1 4 15 100 0 1 4 15 100

− − − − − − − −

− − − − − −

− − − − − − − −

− − − − − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  

1 0 1 4 20 1 0 1 4 20 1 0 0 0 10

0 1 0 1 0 0 1 0 1 0 0 1 0 0 10
~ ~ ~

0 0 4 2 20 0 0 4 2 20 0 0 1 0 10

0 0 4 14 100 0 0 0 12 120 0 0 0 1 10

~

− − − −

− −
⋅ ⋅ ⋅

− −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  For Fig (b), the equations are     

1 2 4

2 1 3

3 4 2

4 1 3

4 10 0

4 0 40

4 40 10

4 10 10

T T T

T T T

T T T

T T T

= + + +
= + + +
= + + +
= + + +

 

  Rearrange the equations and row reduce the augmented matrix: 

  

4 1 0 1 10 1 0 0 0 10

1 4 1 0 40 0 1 0 0 17.5

0 1 4 1 50 0 0 1 0 20

1 0 1 4 20 0 0 0 1 12.5

~ ~

− −

− −

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

a. Here are the solution temperatures for the three problems studied: 

   Fig. (a) in Exercise 14 of Section 1.10: (10,  10,  10,  10) 

   Fig. (b) in Exercise 14 of Section 1.10: (10, 17.5, 20, 12.5) 

   Figure for Exercises 34 in Section 1.1 (20, 27.5, 30, 22.5) 

  When the solutions are arranged this way, it is evident that the third solution is the sum of the first 
two solutions. What might not be so evident is that list of boundary temperatures of the third 
problem is the sum of the lists of boundary temperatures of the first two problems. (The 
temperatures are listed clockwise, starting at the left of T1.) 

   Fig. (a):   (  0, 20, 20,   0,   0, 20, 20,   0) 

   Fig. (b):  (10,   0,   0, 40, 40, 10, 10, 10) 

   Fig. from Section 1.1: (10, 20, 20, 40, 40, 30, 30, 10) 

b. When the boundary temperatures in Fig. (a) are multiplied by 3, the new interior temperatures are 
also multiplied by 3. 

c. The correspondence from the list of eight boundary temperatures to the list of four interior 
temperatures is a linear transformation. A verification of this statement is not expected. However, 
it can be shown that the solutions of the steady-state temperature problem here satisfy a 
superposition principle. The system of equations that approximate the interior temperatures can 
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be written in the form Ax = b, where A is determined by the arrangement of the four interior 
points on the plate and b is a vector in R4 determined by the boundary temperatures.  

Note: The MATLAB box in the Study Guide for Section 1.10 discusses scientific notation and shows 
how to generate a matrix whose columns list the vectors x0, x1, x2, …, determined by an equation  
xk+1 = Mxk for k = 0 , 1, ….   

Chapter 1 SUPPLEMENTARY EXERCISES 

 1. a. False. (The word “reduced” is missing.) Counterexample: 

  
1 2 1 2 1 2

, ,
3 4 0 2 0 1

A B C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  The matrix A is row equivalent to matrices B and C, both in echelon form. 

b. False. Counterexample: Let A be any n×n matrix with fewer than n pivot columns. Then the 
equation Ax = 0 has infinitely many solutions. (Theorem 2 in Section 1.2 says that a system has 
either zero, one, or infinitely many solutions, but it does not say that a system with infinitely 
many solutions exists. Some counterexample is needed.) 

c. True. If a linear system has more than one solution, it is a consistent system and has a free 
variable. By the Existence and Uniqueness Theorem in Section 1.2, the system has infinitely 
many solutions. 

d. False. Counterexample: The following system has no free variables and no solution: 

  
1 2

2

1 2

1

5

2

x x

x

x x

+ =
=

+ =
 

e. True. See the box after the definition of elementary row operations, in Section 1.1. If [A   b] is 
transformed into [C   d] by elementary row operations, then the two augmented matrices are row 
equivalent. 

f. True. Theorem 6 in Section 1.5 essentially says that when Ax = b is consistent, the solution sets 
of the nonhomogeneous equation and the homogeneous equation are translates of each other. In 
this case, the two equations have the same number of solutions. 

g. False. For the columns of A to span Rm, the equation Ax = b must be consistent for all b in Rm, 
not for just one vector b in Rm. 

h. False. Any matrix can be transformed by elementary row operations into reduced echelon form, 
but not every matrix equation Ax = b is consistent. 

i. True. If A is row equivalent to B, then A can be transformed by elementary row operations first 
into B and then further transformed into the reduced echelon form U of B. Since the reduced 
echelon form of A is unique, it must be U. 

j. False. Every equation Ax = 0 has the trivial solution whether or not some variables are free. 

k. True, by Theorem 4 in Section 1.4. If the equation Ax = b is consistent for every b in Rm, then A 
must have a pivot position in every one of its m rows. If A has m pivot positions, then A has m 
pivot columns, each containing one pivot position. 

l. False. The word “unique” should be deleted. Let A be any matrix with m pivot columns but more 
than m columns altogether. Then the equation Ax = b is consistent and has m basic variables and 
at least one free variable. Thus the equation does not does not have a unique solution. 
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m. True. If A has n pivot positions, it has a pivot in each of its n columns and in each of its n rows. 
The reduced echelon form has a 1 in each pivot position, so the reduced echelon form is the n×n 
identity matrix.  

n. True. Both matrices A and B can be row reduced to the 3×3 identity matrix, as discussed in the 
previous question. Since the row operations that transform B into I3 are reversible, A can be 
transformed first into I3 and then into B. 

o. True. The reason is essentially the same as that given for question f. 

p. True. If the columns of A span Rm, then the reduced echelon form of A is a matrix U with a pivot 
in each row, by Theorem 4 in Section 1.4. Since B is row equivalent to A, B can be transformed 
by row operations first into A and then further transformed into U. Since U has a pivot in each 
row, so does B. By Theorem 4, the columns of B span Rm. 

q. False. See Example 5 in Section 1.7. 

r. True. Any set of three vectors in R2 would have to be linearly dependent, by Theorem 8 in 
Section 1.7. 

s. False. If a set {v1, v2, v3, v4} were to span R5, then the matrix A = [v1   v2   v3   v4] would have 
a pivot position in each of its five rows, which is impossible since A has only four columns. 

t. True. The vector –u is a linear combination of u and v, namely, –u = (–1)u + 0v. 

u. False. If u and v are multiples, then Span{u, v} is a line, and w need not be on that line. 

v. False. Let u and v be any linearly independent pair of vectors and let w = 2v. Then w = 0u + 2v, 
so w is a linear combination of u and v. However, u cannot be a linear combination of v and w 
because if it were, u would be a multiple of v. That is not possible since {u, v} is linearly 
independent. 

w. False. The statement would be true if the condition v1 is not zero were present. See Theorem 7 in 
Section 1.7. However, if v1 = 0, then {v1, v2, v3} is linearly dependent, no matter what else might 
be true about v2 and v3. 

x. True. “Function” is another word used for “transformation” (as mentioned in the definition of 
“transformation” in Section 1.8), and a linear transformation is a special type of transformation. 

y. True. For the transformation x  Ax to map R5 onto R6, the matrix A would have to have a pivot 

in every row and hence have six pivot columns. This is impossible because A has only five 
columns. 

z. False. For the transformation x  Ax to be one-to-one, A must have a pivot in each column. 

Since A has n columns and m pivots, m might be less than n.  

 2. If a ≠ 0, then x = b/a; the solution is unique. If a = 0, and b ≠ 0, the solution set is empty, because  
0x = 0 ≠ b. If a = 0 and b = 0, the equation 0x = 0 has infinitely many solutions. 

 3. a. Any consistent linear system whose echelon form is 

   

* * * * * * 0 * *

0 * *  or 0 0 *  or 0 0 *

0 0 0 0 0 0 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

b. Any consistent linear system whose coefficient matrix has reduced echelon form I3. 

c. Any inconsistent linear system of three equations in three variables. 

 4. Since there are three pivots (one in each row), the augmented matrix must reduce to the form 
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* * *

0 * *

0 0 *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. A solution of Ax = b exists for all b because there is a pivot in each row of A. Each 

solution is unique because there are no free variables. 

 5. a. 
1 3 1 3

~
4 8 0 12 8 4

k k

h h k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. If h = 12 and k ≠ 2, the second row of the augmented matrix 

indicates an inconsistent system of the form 0x2 = b, with b nonzero. If h = 12, and k = 2, there is 

only one nonzero equation, and the system has infinitely many solutions. Finally, if h ≠ 12, the 

coefficient matrix has two pivots and the system has a unique solution. 

b. 
2 1 2 1

~
6 2 0 3 1

h h

k k h

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

. If k + 3h = 0, the system is inconsistent. Otherwise, the 

coefficient matrix has two pivots and the system has a unique solution. 

 6. a. Set 1 2 3

4 2 7
, ,

8 3 10

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v v , and 
5

3

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

b . “Determine if b is a linear combination of v1, 

v2, v3.” Or, “Determine if b is in Span{v1, v2, v3}.” To do this, compute 
4 2 7 5 4 2 7 5

~
8 3 10 3 0 1 4 7

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

. The system is consistent, so b is in Span{v1, v2, v3}. 

b. Set A = 
4 2 7 5

,
8 3 10 3

− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

b . “Determine if b is a linear combination of the columns of A.” 

c. Define T(x) = Ax. “Determine if b is in the range of T.”  

 7. a. Set 1 2 3

2 4 2

5 , 1 , 1

7 5 3

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v v v  and 
1

2

3

b

b

b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

b . “Determine if v1, v2, v3 span R3.” To do this, 

row reduce [v1   v2   v3]: 

  

2 4 2 2 4 2 2 4 2

5 1 1 ~ 0 9 4 ~ 0 9 4

7 5 3 0 9 4 0 0 0

− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The matrix does not have a pivot in each row, 

so its columns do not span R3, by Theorem 4 in Section 1.4. 

b. Set A = 

2 4 2

5 1 1

7 5 3

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

. “Determine if the columns of A span R3.” 

c. Define T(x) = Ax. “Determine if T maps R3 onto R3.” 

 8. a. 
* * * * 0 *

, ,
0 * 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 b. 

* *

0 *

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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 9. The first line is the line spanned by 
1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

. The second line is spanned by 
2

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. So the problem is to 

write 
5

6

⎡ ⎤
⎢ ⎥
⎣ ⎦

 as the sum of a multiple of 
1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and a multiple of 
2

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. That is, find x1 and x2 such that 

1 2

2 1 5

1 2 6
x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. Reduce the augmented matrix for this equation: 

  
2 1 5 1 2 6 1 2 6 1 2 6 1 0 4 / 3

~ ~ ~ ~
1 2 6 2 1 5 0 3 7 0 1 7 / 3 0 1 7 / 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Thus, 4 7

3 3

5 2 1

6 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  or  

5 8 / 3 7 / 3

6 4 / 3 14 / 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

 10. The line through a1 and the origin and the line through a2 and the origin determine a “grid” on the  
x1x2-plane as shown below. Every point in R2 can be described uniquely in terms of this grid. Thus, b 
can be reached from the origin by traveling a certain number of units in the a1-direction and a certain 
number of units in the a2-direction. 

     

 11. A solution set is a line when the system has one free variable. If the coefficient matrix is 2×3, then 

two of the columns should be pivot columns. For instance, take 
1 2 *

0 3 *

⎡ ⎤
⎢ ⎥
⎣ ⎦

. Put anything in column 

3. The resulting matrix will be in echelon form. Make one row replacement operation on the second 

row to create a matrix not in echelon form, such as 
1 2 1 1 2 1

~
0 3 1 1 5 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 12. A solution set is a plane where there are two free variables. If the coefficient matrix is 2×3, then only 
one column can be a pivot column. The echelon form will have all zeros in the second row. Use a 

row replacement to create a matrix not in echelon form. For instance, let A =
1 2 3

1 2 3

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 13. The reduced echelon form of A looks like 

1 0 *

0 1 *

0 0 0

E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. Since E is row equivalent to A, the 

equation Ex = 0 has the same solutions as Ax = 0. Thus 

1 0 * 3 0

0 1 * 2 0

0 0 0 1 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  

x1

x2

a2

a1

b
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  By inspection, 

1 0 3

0 1 2

0 0 0

E

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 14. Row reduce the augmented matrix for 1 2

1 0

2 0

a
x x

a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (*). 

   
2

1 01 0 1 0
~

2 0 0 (2 )(1 ) 00 2 0

aa a

a a a aa a

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥+ − ++ −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

  The equation (*) has a nontrivial solution only when (2 – a)(1 + a) = 0. So the vectors are linearly 
independent for all a except a = 2 and a = –1. 

 15. a. If the three vectors are linearly independent, then a, c, and f must all be nonzero. (The converse is 
true, too.) Let A be the matrix whose columns are the three linearly independent vectors. Then A 
must have three pivot columns. (See Exercise 30 in Section 1.7, or realize that the equation  
Ax = 0 has only the trivial solution and so there can be no free variables in the system of 
equations.) Since A is 3×3, the pivot positions are exactly where a, c, and f are located. 

b. The numbers a, …, f can have any values. Here's why. Denote the columns by v1, v2, and v3. 
Observe that v1 is not the zero vector. Next, v2 is not a multiple of v1 because the third entry of v2 
is nonzero. Finally, v3 is not a linear combination of v1 and v2 because the fourth entry of v3 is 
nonzero. By Theorem 7 in Section 1.7, {v1, v2, v3} is linearly independent. 

 16. Denote the columns from right to left by v1, …, v4. The “first” vector v1 is nonzero, v2 is not a 
multiple of v1 (because the third entry of v2 is nonzero), and v3 is not a linear combination of v1 and 
v2 (because the second entry of v3 is nonzero). Finally, by looking at first entries in the vectors, v4 
cannot be a linear combination of v1, v2, and v3. By Theorem 7 in Section 1.7, the columns are 
linearly independent. 

 17. Here are two arguments. The first is a “direct” proof. The second is called a “proof by contradiction.” 

i. Since {v1, v2, v3} is a linearly independent set, v1 ≠ 0. Also, Theorem 7 shows that v2 cannot be a 
multiple of v1, and v3 cannot be a linear combination of v1 and v2. By hypothesis, v4 is not a linear 
combination of v1, v2, and v3. Thus, by Theorem 7, {v1, v2, v3, v4} cannot be a linearly dependent 
set and so must be linearly independent. 

ii. Suppose that {v1, v2, v3, v4} is linearly dependent. Then by Theorem 7, one of the vectors in the 
set is a linear combination of the preceding vectors. This vector cannot be v4 because v4 is not in 
Span{v1, v2, v3}. Also, none of the vectors in {v1, v2, v3} is a linear combinations of the preceding 
vectors, by Theorem 7. So the linear dependence of {v1, v2, v3, v4} is impossible. Thus {v1, v2, v3, 
v4} is linearly independent. 

 18. Suppose that c1 and c2 are constants such that  

   c1v1 + c2(v1 + v2) = 0      (*) 

  Then (c1 + c2)v1 + c2v2 = 0. Since v1 and v2 are linearly independent, both c1 + c2 = 0 and c2 = 0. It 
follows that both c1 and c2 in (*) must be zero, which shows that {v1, v1 + v2} is linearly independent. 

 19. Let M be the line through the origin that is parallel to the line through v1, v2, and v3. Then v2 – v1 and  
v3 – v1 are both on M. So one of these two vectors is a multiple of the other, say v2 – v1 = k(v3 – v1). 
This equation produces a linear dependence relation (k – 1)v1 + v2 – kv3 = 0. 
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  A second solution: A parametric equation of the line is x = v1 + t(v2 – v1). Since v3 is on the line, 
there is some t0 such that v3 = v1 + t0(v2 – v1) = (1 – t0)v1 + t0v2. So v3 is a linear combination of v1 
and v2, and {v1, v2, v3} is linearly dependent. 

 20. If T(u) = v, then since T is linear, 

   T(–u) = T((–1)u) = (–1)T(u) = –v. 

 21. Either compute T(e1), T(e2), and T(e3) to make the columns of A, or write the vectors vertically in the 
definition of T and fill in the entries of A by inspection: 

  
1 1

2 2

3 3

? ? ? 1 0 0

? ? , 0 1 0

? ? ? 0 0 1

x x

A A x x A

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

 22. By Theorem 12 in Section 1.9, the columns of A span R3. By Theorem 4 in Section 1.4, A has a pivot 
in each of its three rows. Since A has three columns, each column must be a pivot column. So the 
equation Ax = 0 has no free variables, and the columns of A are linearly independent. By Theorem 12 
in Section 1.9, the transformation x  Ax is one-to-one. 

 23. 
4 5 4 3 5

 implies that  
3 0 3 4 0

a b a b

b a a b
=

− − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. Solve:  

  
4 3 5 4 3 5 4 3 5 4 0 16 / 5 1 0 4 / 5

~ ~ ~ ~
3 4 0 0 25 / 4 15 / 4 0 1 3/ 5 0 1 3/ 5 0 1 3/ 5

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  Thus a = 4/5 and b = –3/5. 

 24. The matrix equation displayed gives the information 2 4 2 5a b− =  and 4 2 0.a b+ =  Solve for a and 

b: 
2 4 2 5 1 2 5 1 0 1/ 52 4 2 5

~ ~ ~
4 2 0 0 10 4 5 0 1 2/ 5 0 1 2/ 5

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ − −−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  So 1/ 5, 2 / 5.a b= = −  

 25. a. The vector lists the number of three-, two-, and one-bedroom apartments provided when x1 floors 
of plan A are constructed. 

b. 1 2 3

3 4 5

7 4 3

8 8 9

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

c. [M]  Solve 1 2 3

3 4 5 66

7 4 3 74

8 8 9 136

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  
1 3

2 3

3 4 5 66 1 0 1/ 2 2 (1/ 2) 2

7 4 3 74 ~ 0 1 13/8 15    (13/8) 15

8 8 9 136 0 0 0 0 0 0

x x

x x

− − =⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎣ ⎦ ⎣ ⎦

 

  The general solution is 
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1 3

2 3 3

3 3

2 (1/ 2) 2 1/ 2

15 (13/8) 15 13/8

0 1

x x

x x x

x x

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

  However, the only feasible solutions must have whole numbers of floors for each plan. Thus, x3 
must be a multiple of 8, to avoid fractions. One solution, for x3 = 0, is to use 2 floors of plan A 
and 15 floors of plan B. Another solution, for x3 = 8, is to use 6 floors of plan A , 2 floors of plan 
B, and 8 floors of plan C. These are the only feasible solutions. A larger positive multiple of 8 for 
x3 makes x2 negative. A negative value for x3, of course, is not feasible either. 

 



 

 

 


