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2.1 SOLUTIONS

Notes: The definition here of a matrix product AB gives the proper view of AB for nearly all matrix
calculations. (The dual fact about the rows of 4 and the rows of AB is seldom needed, mainly because vectors
here are usually written as columns.) I assign Exercise 13 and most of Exercises 17-22 to reinforce the

definition of 4B.

Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem, in Section 2.3. Exercises
23-25 are mentioned in a footnote in Section 2.2. A class discussion of the solutions of Exercises 23-25 can
provide a transition to Section 2.2. Or, these exercises could be assigned after starting Section 2.2.

Exercises 27 and 28 are optional, but they are mentioned in Example 4 of Section 2.4. Outer products also
appear in Exercises 31-34 of Section 4.6 and in the spectral decomposition of a symmetric matrix, in Section 7.1.
Exercises 29-33 provide good training for mathematics majors.

2 0 -1 -4 0 2
1. 24=(-2) = . Next, use B—24 =B + (-24):
4 -5 2 -8 10 -4

7 =5 1] |4 0 2 3 -5 3
B-24= + = .
1 4 3] |-8 10 4| |[-7 6 -7
The product AC is not defined because the number of columns of 4 does not match the number of rows

1 2| 3 5 1-3+42(-1) 1-5+2-4 1 13 ,
of C. CD= = = . For mental computation, the
-2 1|-1 4] |-2-3+1(-1) -2-5+1-4| |-7 -6

row-column rule is probably easier to use than the definition.

2 0 -1 7 =5 1 2414 0-10 -—-1+2 16 -10 1
2. A+2B= +2 = =
4 -5 2 1 4 3 442 -5-8 2-6 6 -13 4
The expression 3C — E is not defined because 3C has 2 columns and —£ has only 1 column.

cgo| 27 S TL[ BTl 1924 12 [ 9 <13 S
=2 1|1 -4 3 |27+ 1 =2(=5)+1(-4) —2-1+1(=3)| [-13 6 -5

The product EB is not defined because the number of columns of £ does not match the number of rows
of B.
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{3 o} {4 —1} {3—4 0—(—1)} [—1 1}
3.3,-A= - = =
0 3| |5 —2]]0-5 3-(=2)| |-5 5

siya=3na=3 e
(2)—(2)— 5 _2—15 _6,01'

3 0][4 -1] [3-4+0 3(-D)+0] [12 -3
(31,)4 = - -
0 3|5 2| |0+3-5 0+43(-2)| |15 -6
9 -1 3] [5 0 0] [4 -1 3
4. A-5I,=|-8 7 —6|-|0 5 0|=|-8 2 -6

—4 1 0 0 5 —4 3
9 3 -5 15
(51;)A=5(1;4)=54=5{-8 7 —6|=|-40 35 -=30|,or
8 5 40
5 0 0 5:9+0+0 5(-1)+0+0 5-3+0+0
(51;)A=|0 5 O0f - =|0+5(-8)+0 0+5-7+0 0+5(-6)+0
0 0 5|4 0+0+5(-4) 0+0+5-1 0+0+5-8
45 -5  15]
=|-45 35 =30
20 5 40|
-1 ] —7 -1 2 4
3 -2
5. a. 4Ab=| 5 4{2} 71, A4b,=| 5 4[ } -6
2 3 12 2 3 -7
-7 4
B=[4b, 4b,|=| 7 -6
12 -7
-1 2 [—1-34+2(=2) -1(=2)+2-1 -7 4

b. | 5 4{3 _2} 5.3+4(=2)  S5(=2)+4-1|=| 7 -6
| 23-3(2)  2-2)-3-1] |12 -7

4 2 0 4 2 14
6. a. Ab;=|-3 0 mz -3|, 4b,=|-3 0 [_ﬂ: -9
35 |13 3.5 4

0 14

AB=[4b, 4b,]=|-3 -9

13 4
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10.

11.

12.

13.

14.

15.

2.1 + Solutions 2-3

2], g [41-22 43-2en] [0
b.|-3 0 {2 }: -3-140-2 —-3-3+0(-1)|=|-3 -9
35 3-145-2  3:3+5-1)| |13 4

Since 4 has 3 columns, B must match with 3 rows. Otherwise, 4B is undefined. Since AB has 7 columns,
so does B. Thus, B is 3x7.

The number of rows of B matches the number of rows of BC, so B has 3 rows.

2 5[4 5] [23 -10+5k . 4 5[ 2 5 23 15
. AB= = , while BA= 3 = .

13 k] |[-9 15+k k]|-3 1 6-3k 15+k
Then AB = BA if and only if —10 + 5k = 15 and -9 = 6 — 3k, which happens if and only if £ = 5.

2 =318 4] | 1 -7 2 35 =21 [ 1 =7
AB = = , AC = =
-4 6 [5 50 |2 14} [—4 6}{3 1} -2 14}

1 1 12 0o o] [2 3 5]
AD=[1 2 3|0 3 0|=[2 6 15
1 4 5][0 0 5] |2 12 25]
2 0 o]t 1 1] [2 2 2]
DA=|0 3 0|1 2 3|=[3 6 9
0 0 51 4 5] |5 20 25|

Right-multiplication (that is, multiplication on the right) by the diagonal matrix D multiplies each column
of A by the corresponding diagonal entry of D. Left-multiplication by D multiplies each row of 4 by the
corresponding diagonal entry of D. To make 4B = BA, one can take B to be a multiple of /5. For instance,
if B =41, then AB and BA are both the same as 4A4.

Consider B = [b; b;]. To make AB = 0, one needs Ab; = 0 and 4b, = 0. By inspection of A4, a suitable

12 i 2 2 6
b, is L}, or any multiple of { J. Example: B =[ { 3}.

Use the definition of 4B written in reverse order: [4b; - -- Ab,]=A[b, --- b,]. Thus

[Or) - Or,]=0OR,whenR=1[r; --- r,].
By definition, UQ = U[q, - - q4] =[Uq, - - - Uqs]. From Example 6 of Section 1.8, the vector
Uq, lists the total costs (material, labor, and overhead) corresponding to the amounts of products B and
C specified in the vector q;. That is, the first column of UQ lists the total costs for materials, labor, and
overhead used to manufacture products B and C during the first quarter of the year. Columns 2, 3,
and 4 of UQ list the total amounts spent to manufacture B and C during the 2"d, 3rd, and 4" quarters,
respectively.
a. False. See the definition of 4B.
b. False. The roles of 4 and B should be reversed in the second half of the statement. See the box after
Example 3.
¢. True. See Theorem 2(b), read right to left.
d. True. See Theorem 3(b), read right to left.
e. False. The phrase “in the same order” should be “in the reverse order.” See the box after Theorem 3.
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16.

17.

CHAPTER 2 -« Matrix Algebra

a. False. AB must be a 3x3 matrix, but the formula for 4B implies that it is 3x1. The plus signs should
be just spaces (between columns). This is a common mistake.

True. See the box after Example 6.

False. The left-to-right order of B and C cannot be changed, in general.
False. See Theorem 3(d).

True. This general statement follows from Theorem 3(b).

e e T

-1 2 -1
Since [ 6 —9 3} =AB=[Ab, Ab, Ab,], the first column of B satisfies the equation

-1 ) 1 -2 -1 1 0 7 70 ..
Ax = . Row reduction:[4  4b, ]~ ~ .Sob, = . Similarly,
6 -2 5 6] |0 1 4 4

1 =2 2] [1 0 -8 -8
[4  4b,]|~ ~ and b, = .
-2 5 9] [0 1 -5 -5

Note: An alternative solution of Exercise 17 is to row reduce [4 Ab; Ab,] with one sequence of row
operations. This observation can prepare the way for the inversion algorithm in Section 2.2.

18.

19.

20.

21.

The first two columns of AB are Ab; and 4b,. They are equal since b, and b, are equal.

(A solution is in the text). Write B =[b; b, b;]. By definition, the third column of AB is 4b;. By
hypothesis, b; = b; + b,. So Ab; = A(b, + b,) = Ab; + Ab,, by a property of matrix-vector multiplication.
Thus, the third column of AB is the sum of the first two columns of 4AB.

The second column of AB is also all zeros because Ab, = 40 = 0.

Let b, be the last column of B. By hypothesis, the last column of 4B is zero. Thus, 4b, = 0. However,
b, is not the zero vector, because B has no column of zeros. Thus, the equation 4b, = 0 is a linear
dependence relation among the columns of 4, and so the columns of 4 are linearly dependent.

Note: The text answer for Exercise 21 is, “The columns of 4 are linearly dependent. Why?” The Study Guide
supplies the argument above in case a student needs help.

22.

23.

24.

If the columns of B are linearly dependent, then there exists a nonzero vector x such that Bx = 0. From

this, A(Bx) = A0 and (4B)x = 0 (by associativity). Since x is nonzero, the columns of 4B must be linearly
dependent.

If x satisfies Ax = 0, then CAx = C0 = 0 and so /,x = 0 and x = 0. This shows that the equation Ax =0
has no free variables. So every variable is a basic variable and every column of 4 is a pivot column.

(A variation of this argument could be made using linear independence and Exercise 30 in Section 1.7.)
Since each pivot is in a different row, 4 must have at least as many rows as columns.

Take any b in R" . By hypothesis, ADb = I,,b = b. Rewrite this equation as 4(Db) = b. Thus, the

vector x = Db satisfies Ax = b. This proves that the equation Ax = b has a solution for each b in R" .
By Theorem 4 in Section 1.4, 4 has a pivot position in each row. Since each pivot is in a different
column, 4 must have at least as many columns as rows.
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25.

26.

27.

28.

29.

30.

31.

32.

2.1 + Solutions 2-5

By Exercise 23, the equation CA =/, implies that (number of rows in 4) > (number of columns), that is,
m > n. By Exercise 24, the equation AD = [,, implies that (number of rows in 4) < (number of columns),
that is, m < n. Thus m = n. To prove the second statement, observe that DAC = (DA)C = 1,C = C, and
also DAC = D(AC) = DI,, = D. Thus C = D. A shorter calculation is

C=1,C=(DA)C=DAC)=DI, =D

Write I; =[e; e, e;]and D=[d; d, d;]. By definition of AD, the equation 4D = [; is equivalent |to the
three equations 4d, = e, Ad, = e,, and Ad; = e;. Each of these equations has at least one solution because

the columns of 4 span R*. (See Theorem 4 in Section 1.4.) Select one solution of each equation and use
them for the columns of D. Then AD = I;.

The product u’v is a 1x1 matrix, which usually is identified with a real number and is written without the
matrix brackets.

a -2
u'v=[-2 3 -4]|b|=-2a+3b-4c, vViu=[a b c] 3|=-2a+3b-4c
C _4
) 2a -2b -2c
w’=| 3lla b c|]=| 3¢ 3 3
-4 —4a -4b —4c
[a -2a 3a —4a
v’ =|b|[-2 3 —4]=|-2b 3b -4b
Lc —2c 3¢ -4c

Since the inner product u’v is a real number, it equals its transpose. That is,

u’'v=(u'v)"=v'(u")" = v'u, by Theorem 3(d) regarding the transpose of a product of matrices and by
Theorem 3(a). The outer product uv’ is an z xn matrix. By Theorem 3, (uv’)’ = (v)"u’ = vu’.

The (i, j)-entry of A(B + C) equals the (i, j)-entry of AB + AC, because
z ay (b,g + ck]) Z a,kb,g + Za,kc,g

The (i, j)-entry of (B + C)A4 equals the (i, j)-entry of BA + CA, because
Zn:(bik + ¢y )akj = Zn:bikakj + Zn:cikakj

k=1 k=1 k=1

The (i, j))-entries of "(A4B), (rA)B, and A(rB) are all equal, because rz ayby,; = Z(m )by = Za x (rby) -

k=1 k=1

Use the definition of the product /,,4 and the fact that /,x = x for x in R" .
ImA :Im[al T an] = [Imal e Iman] = [al T an] =4
Let e; and a; denote the jth columns of /, and 4, respectively. By definition, the jth column of 47, is Ae;,

which is simply a; because e; has 1 in the jth position and zeros elsewhere. Thus corresponding columns
of Al, and A are equal. Hence A/, = A.
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34.
35.

36.

37.

38.
39.

40.

CHAPTER 2 Matrix Algebra

The (i, j)-entry of (4B)" is the (j, i)-entry of AB, which is ab;+---+a;,b,

The entries in row i of B" are by, ... , b,;, because they come from column 7 of B. Likewise, the entries in

column j of A" are a, ..., @, because they come from row j of 4. Thus the (i, j)-entry in B4 is
a;b;+---+a;,b,, as above.

Use Theorem 3(d), treating x as an nx 1 matrix: (4Bx)" = x"(4B)" =x"B"A".

[M] The answer here depends on the choice of matrix program. For MATLAB, use the help
command to read about zeros, ones, eye, and diag. For other programs see the
appendices in the Study Guide. (The TI calculators have fewer single commands that produce
special matrices.)

[M] The answer depends on the choice of matrix program. In MATLAB, the command rand (6, 4)
creates a 6x4 matrix with random entries uniformly distributed between 0 and 1. The command
round (19* (rand (6, 4) —.5) ) creates a random 6x4 matrix with integer entries between —9 and 9.
The same result is produced by the command randomint inthe Laydata Toolbox on text website.
For other matrix programs see the appendices in the Study Guide.

[M] (4 + I)(4 —I) — (4> — I) = 0 for all 4x4 matrices. However, (4 + B)(4 — B) — A* — B* is the zero
matrix only in the special cases when 4B = BA. In general,(4 + B)(A — B) = A(A — B) + B(4 - B)
=AA— AB+ BA — BB.

[M] The equality (4B)" = A’B" is very likely to be false for 4x4 matrices selected at random.

[M] The matrix S “shifts” the entries in a vector (a, b, ¢, d, e) to yield (b, ¢, d, e, 0). The entries in s?
result from applying S to the columns of S, and similarly for S*, and so on. This explains the patterns
of entries in the powers of S:

0 01 0 0 00 0 1 0 000 0 1
00 0 1 0 00 0 0 1 00 0 0 0
$?’=l0 0 0 0 1[,8=l0 0 0 0 0[S*=[0 0 0 0 O
0 0 0 0 0 00 0 0 0 00 0 0 0
0 0 0 0 0 0 0 0 0 0 00 0 0 0
S° is the 5%5 zero matrix. S° is also the 5%5 zero matrix.
3318 3346 3336 333337 333330 .333333
[M] A°=|.3346 3323 .3331|,4'"=|.333330 .333336 .333334
3336 3331 .3333 333333 333334 333333

The entries in 4% all agree with .3333333333 to 9 or 10 decimal places. The entries in A°° all agree with
.33333333333333 to at least 14 decimal places. The matrices appear to approach the matrix

/3 1/3 1/3
1/3 1/3 1/3 . Further exploration of this behavior appears in Sections 4.9 and 5.2.
/3 1/3 1/3

Note: The MATLAB box in the Study Guide introduces basic matrix notation and operations, including
the commands that create special matrices needed in Exercises 35, 36 and elsewhere. The Study Guide
appendices treat the corresponding information for the other matrix programs.
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2.2 SOLUTIONS

Notes: The text includes the matrix inversion algorithm at the end of the section because this topic is popular.
Students like it because it is a simple mechanical procedure. The final subsection is independent of the
inversion algorithm and is needed for Exercises 35 and 36.

Key Exercises: 8, 11-24, 35. (Actually, Exercise 8 is only helpful for some exercises in this section.
Section 2.3 has a stronger result.) Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem
(IMT) in Section 2.3, along with Exercises 23 and 24 in Section 2.1. I recommend letting students work on
two or more of these four exercises before proceeding to Section 2.3. In this way students participate in the
proof of the IMT rather than simply watch an instructor carry out the proof. Also, this activity will help
students understand why the theorem is true.

J[8 ST 4 ][ 2 3
|5 4] 32-30|-5 8 |-5/2 4
- -1
,[3 2[4 2] [2
174 12-14]-7 3| |7/2 -3/2
K 1[5 =] 1[-5 -5] 1o
3. - = or
-7 5| —40-(=35 7 8] 5.7 8] [-14 -16

4'3 47! 1 -8 4] 1[-8 4 S
7 8|  —24-(=28)|-7 3] 4|-7 3 —7/4 3/4

6
4

y 2 =3 2 7
x=A'b= 52 allt = 9 . Thus x; =7 and x, = -9.

8 5 -9
6. The system is equivalent to Ax = b, where 4 = { . 5} and b = [ . 1} , and the solution is x =4 'b. To

8 2
5. The system is equivalent to Ax = b, where 4 = [5 } and bI{ J , and the solution is

compute this by hand, the arithmetic is simplified by keeping the fraction 1/det(4) in front of the matrix
for A", (The Study Guide comments on this in its discussion of Exercise 7.) From Exercise 3,

a 11-5 -5 -9 11-10 2
x=4 b=—§ . gl 11 =—§ 55 = s . Thus x; =2 and x, = -5.
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2-8 CHAPTER2 -+ Matrix Algebra

12 -2 6 -1
or
=5 1 =25 5

}. Similar calculations give

1
b.[4 by by by by]=
[1234]{5123—565

1 2 -r 1 2 3 (1 2 -1 1 2 3
0 2 8 -10 -4 -10 o 1 4 -5 -2 -5

1 0 -9 11 6 13
o 1 4 -5 =2 -5

. -9 11 6 13 )
The solutions are { 4}, { 5}, { 2}, and { 5}, the same as in part (a).

Note: The Study Guide also discusses the number of arithmetic calculations for this Exercise 7, stating that
when 4 is large, the method used in (b) is much faster than using A"

8. Left-multiply each side of the equation AD = I by 4" to obtain
A'AD =4I, ID=4",and D=4"".
Parentheses are routinely suppressed because of the associative property of matrix multiplication.

9. a. True, by definition of invertible. b. False. See Theorem 6(b).
1 1
c. False. If A= [0 0} ,then ab—cd =1 -0 # 0, but Theorem 4 shows that this matrix is not invertible,

because ad — bc = 0.
d. True. This follows from Theorem 5, which also says that the solution of Ax = b is unique, for each b.
e. True, by the box just before Example 6.

10. a. False. The product matrix is invertible, but the product of inverses should be in the reverse order.

See Theorem 6(b).
b. True, by Theorem 6(a). ¢. True, by Theorem 4.
d. True, by Theorem 7. e. False. The last part of Theorem 7 is misstated here.

11. (The proof can be modeled after the proof of Theorem 5.) The n xp matrix B is given (but is arbitrary).
Since 4 is invertible, the matrix 4B satisfies AX = B, because A(4 'B)=A A"'B = IB = B. To show this
solution is unique, let X be any solution of AX = B. Then, left-multiplication of each side by 4™ shows
that X must be 4'B: Thus 4~ (AX)=A"'B, so [X=A4"'B, and thus X =A"'B.
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13.

14.

15.

16.
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If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate the
proof of Theorem 7. The solution in the Instructor’s Edition follows this hint. Here is another solution,
based on the idea at the end of Section 2.2.

Write B=[b; --- b,] and X=[u, --- u,]. By definition of matrix multiplication,

AX=[Au, --- Au,]. Thus, the equation AX = B is equivalent to the p systems:

Au;=by, ... Au,=b,

Since A4 is the coefficient matrix in each system, these systems may be solved simultaneously, placing the
augmented columns of these systems next to 4 to form [4 b, --- b,]=[4 B]. Since 4 is

invertible, the solutions uy, ..., u, are uniquely determined, and [4 b; - - - b,] must row reduce to
[/ w ---uw,]=[/ X].ByExercise 11, Xis the unique solution A'Bof AX = B.

Left-multiply each side of the equation AB = AC by A" to obtain 4 'AB = A"'AC, so IB=1IC,and B = C.

This conclusion does not always follow when A4 is singular. Exercise 10 of Section 2.1 provides a
counterexample.

Right-multiply each side of the equation (B — C)D = 0 by D' to obtain(B — C)DD "' = 0D, so (B — C)I
=(,thus B—C=0,and B =C.

The box following Theorem 6 suggests what the inverse of ABC should be, namely, C"'B'4™". To verify
that this is correct, compute:

(ABC) C'B'A"'=ABCC'B'A"' =ABIB'A"' =ABB'A"' =AI4"' = 44" =T and
C'B'A'(4BC)=C'B'4a'aBC=C'B'IBC=C'B'BC=C'IC=C'C=1

Let C = AB. Then CB' = ABB ™', so CB ™' = AI = A. This shows that 4 is the product of invertible
matrices and hence is invertible, by Theorem 6.

Note: The Study Guide warns against using the formula (4B) ' = B'A™" here, because this formula can be
used only when both 4 and B are already known to be invertible.

17.

18.

19.

Right-multiply each side of AB=BC by B, thus ABB' = BCB', so Al =BCB',and A=BCB .

Left-multiply each side of 4 = PBP ' by P"': thus P'A =P 'PBP ', so P'A=IBP"',and P'4A = BP"'
Then right-multiply each side of the result by P: thus P'4P=BP'P,so P'AP=BI,and P'4P =B

Unlike Exercise 17, this exercise asks two things, “Does a solution exist and what is it?” First, find what
the solution must be, if it exists. That is, suppose X satisfies the equation C"'(4 + X)B ' = I. Left-multiply
each side by C, and then right-multiply each side by B: thus CC'(4 + X)B™' = CI, so (4 + X)B' = C,
thus (4 +X)B'B=CB, and (4 + X)I= CB

Expand the left side and then subtract 4 from both sides: thus 47/ + XI = CB, so A + X = CB, and
X=CB-4

If a solution exists, it must be CB — 4. To show that CB — A4 really is a solution, substitute it for X:
C'[A+(CB-A)B'=C'[CBIB'=C"'CBB ' =1I=1.

Note: The Study Guide suggests that students ask their instructor about how many details to include in their
proofs. After some practice with algebra, an expression such as CC'(4 + X)B"' could be simplified directly to
(4 + X)B' without first replacing CC™' by I. However, you may wish this detail to be included in the
homework for this section.
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20.

a. Left-multiply both sides of (4 — 4X)"' = X 'B by X to see that B is invertible because it is the product
of invertible matrices.

b. Invert both sides of the original equation and use Theorem 6 about the inverse of a product (which
applies because X ' and B are invertible): 4 —AX=X"'B)'=B'(X")'=B"'X
Then A = AX+ B'X=(4 + B")X. The product (4 + B)X is invertible because 4 is invertible. Since
X is known to be invertible, so is the other factor, 4 + B, by Exercise 16 or by an argument similar
to part (a). Finally, A+ B ") '"A=UA+B)'4+B X=X

Note: This exercise is difficult. The algebra is not trivial, and at this point in the course, most students will
not recognize the need to verify that a matrix is invertible.

21.

22.

23.

24.

25.

26.

Suppose 4 is invertible. By Theorem 5, the equation Ax = 0 has only one solution, namely, the zero
solution. This means that the columns of 4 are linearly independent, by a remark in Section 1.7.

Suppose 4 is invertible. By Theorem 5, the equation Ax = b has a solution (in fact, a unique solution) for
each b. By Theorem 4 in Section 1.4, the columns of 4 span R".

Suppose 4 is nxn and the equation Ax = 0 has only the trivial solution. Then there are no free variables
in this equation, and so 4 has n pivot columns. Since A4 is square and the n pivot positions must be in
different rows, the pivots in an echelon form of 4 must be on the main diagonal. Hence A4 is row
equivalent to the n xn identity matrix.

If the equation Ax = b has a solution for each b in R", then 4 has a pivot position in each row, by
Theorem 4 in Section 1.4. Since 4 is square, the pivots must be on the diagonal of 4. It follows that 4 is
row equivalent to /,. By Theorem 7, 4 is invertible.

a b ) 0 0} x 0 .
J and ad — bc = 0. If a = b = 0, then examine = 0 This has the

Suppose 4 =
PP { c d|lx,

c

} . This solution is nonzero, except when a = b = ¢ = d. In that case, however, 4 is the
—c

solution x; = {

b
} . Then

zero matrix, and Ax = 0 for every vector x. Finally, if a and b are not both zero, set x, = [_
a

a bl||l-b —ab+ ba 0
Ax, = = = , because —cb + da = 0. Thus, x, is a nontrivial solution of Ax = 0.
c d a —cb+da 0

So, in all cases, the equation 4x = 0 has more than one solution. This is impossible when A4 is invertible
(by Theorem 5), so A4 is not invertible.

d -bl|a b da—bc 0 . )
= . Divide both sides by ad — bc to get CA = 1.
- allc d 0 —cb+ad

a bl d -b ad —bc 0 . ) ) Ly
= . Divide both sides by ad — bc. The right side is /. The left
c d-c a 0 —cb+da

L 1 a bl d -b a b 1 d -b
side is AC, because = =AC.
ad—bclc d|—-c a ¢ dlad—-bc|-c a
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27. a. Interchange 4 and B in equation (1) after Example 6 in Section 2.1: row; (BA4) = row; (B)-A. Then
replace B by the identity matrix: row; (4) = row; (IA) = row; (/)-A.
b. Using part (a), when rows 1 and 2 of 4 are interchanged, write the result as
row, (A4) row,([)-A4 row, (1)
row,(4) |=| row,(/)-4 |=| row,() |A=EA ™
row,(A) row,(/)-4 row, (/)
Here, E is obtained by interchanging rows 1 and 2 of /. The second equality in (*) is a consequence of
the fact that row; (EA) = row; (£)-A.
¢. Using part (a), when row 3 of A is multiplied by 5, write the result as
row, (A) row,(1)-4 row, (1)
row,(A4) |=| row,([)-4 |=| row,([) |A=FEA
5-row,(4) 5-row,([)-A4 5-row, (1)

Here, E is obtained by multiplying row 3 of / by 5.
28. When row 3 of 4 is replaced by rows(4) — 4-row(4), write the result as

row,(A4) row,(1)-4
row,(A4) row,([)-4
row;(A4)—4-row,(A4) row;([)-4—4-row,(])-A4

row,(/)-4 row, (/)
= row,(/)-4 row, (/) A=FEA
[row;(I)—4-row,()]-4 row;(l)—4-row,({)

Here, E is obtained by replacing rows(/) by row;(/) — 4-row,(/).

1 2 1 0]t 2 1 o]t 2 1 0]t o -7 2
29. [4 I]= ~ ~ ~
4 7 0 1110 -1 -4 1] ]0 1 4 -1]]0 1 4 -1

30[14[]_51010 1 2 1/5 o] [1 2 1/5 0
‘ 4 7 0 1|4 7 0o 1] |0 -1 -4/5 1

1 2 1/5 0] 1 o -7/5 2 A_]_—7/5 2
0 1 4/5 -1l |0 1 4/5 -1 | o4/5 -1
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1 0 =2 1 0 0 1 0 =2 1 0 0
3. [4 II=|-3 1 4 0 1 0|~|0 1 =2 3
2 -3 4 0 0 1|0 -3 8 =2 0
1 0 =2 1 0 0 1 0 0 8 3 1
~l0 1 =2 3 1 0|~/0 1 0 10 4 1
o 0o 2 7 3 1]|0 0o 2 7 3 1
1 0 0 8 3 1 8 3 1
~l0 1 0 10 4 1| 4'=]10 4 1
0 0 1 7/2 3/2 1/2 7/2 3/2 1/2
-2 0 0 1 =2 1 1 0 0

32. [4 Il1=| 4 -7 3 0 1 0(~0 1 -1 -4 1 0
-2 6 -4 0 0 1 o 2 -2 2 0 1

~10 1 -1 -4 1 0 |. The matrix A4 is not invertible.

1 0 0 0
-1 0 0
33. LetB=| 0 -1 1 ,and forj =1, ..., n, let a;, b;, and e; denote the jth columns of 4, B,
0 0 - -1 1]
and /, respectively. Note that forj =1, ..., n— 1, a; — a;,; = ¢; (because a; and a;;, have the same entries

except for the jth row), b;=¢;—e;;; anda,=b, =e,.

To show that 4B = I, it suffices to show that 4b; = e; for eachj. Forj=1, ...,n—1,

Ab; = A(e; — e;;) = Ae; — Ae;,; = a,— a;,, = ¢;and Ab, = e, = a, = e,. Next, observe thata;=e¢; +-- - + e,
for eachj. Thus, Ba,=B(e;+---+e,)=b;+---+b,=(¢—¢€y1) T (€1 —€p)+---+(e,.1—e,)te,=¢
This proves that B4 = I. Combined with the first part, this proves that B=A4"".

Note: Students who do this problem and then do the corresponding exercise in Section 2.4 will appreciate the
Invertible Matrix Theorem, partitioned matrix notation, and the power of a proof by induction.

1 0 0 - 0 1 0 0 0
1 2 0 0 -1/2 1/2 0
34, Let A=|1 2 3 O, andB=| 0 -1/3 1/3
12 3 - n] . 0 0 -1/n 1/n]
and forj =1, ..., n, let a;, b;, and e; denote the jth columns of 4, B, and /, respectively. Note that for
. . 1 1 1
j=1,..,n-1,a,=j(e+---+e,) b= ;ej _ﬁeﬁl’ and b, —;en.
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To show that 4B = I, it suffices to show that 4b; = e; for eachj. Forj=1, ..., n—1,

1 1 1 1
AijA(;ej _ﬁe.ﬁ'lj = ;aj —ﬁaj+1 :(ej—i- .. '+en)_(ej+l 4., +en):ej

1 1
Also, Ab, = A(—enj =—a, =e,.Finally, forj=1, ..., n, the sumb; + - - - + b, is a “telescoping sum”
n n

.1 1
whose value is ;ej. Thus, Ba;=j(Be;+---+Be,)=j(b;+---+b,)= j[;e]) =e;

which proves that B4 = I. Combined with the first part, this proves that B=A"".

Note: If you assign Exercise 34, you may wish to supply a hint using the notation from Exercise 33: Express
each column of 4 in terms of the columns ey, ..., e, of the identity matrix. Do the same for B.

35. Rowreduce [4 e;

36.

37.

38.

2 -7 -9
2 5

]:

0 1 3 4 1 1 3 4 1 1 3 4 1
0|~ 2 5 6 O0~/0 -1 -2 =2|~|0 -1 -2 =2
1

6
1 3 4 -2 -7 -9 0 0o -1 -1 2 0 o0 1 4
1 3 0 -15 1 3 0 -15 1 0 0 3
~l0 -1 0 6/~10 1 0 —-6|~/0 1 0 -6|.
0 0 1 4 0 0 1 4 0 0 1 4
3
Answer: The third column of 4™ is | —6 |.
4

[M] Write B=[A F], where F consists of the last two columns of /5, and row reduce:
25 -9 =27 0 O 1 0 O 3/2 -9/2

B=|546 180 537 1 0| ~|0 1 0 -—433/6 439/2
154 50 149 0 1 0 0 1 68/3 -69
1.5000  —4.5000
The last two columns of 4" are | =72.1667  219.5000
22.6667 —69.0000
1 1
-1 1

With only three possibilities for each entry, the construction of C can be done by trial and error. This is
probably faster than setting up a system of 4 equations in 6 unknowns. The fact that 4 cannot be
invertible follows from Exercise 25 in Section 2.1, because 4 is not square.

1

-1
There are many possibilities for C, but C = { 0} is the only one whose entries are 1, —1, and 0.

0
Write AD = A[d; d,] =[Ad, Ad,]. The structure of 4 shows that D =

- O O O

0
[There are 25 possibilities for D if entries of D are allowed to be 1, —1, and 0.] There is no 4x2 matrix C
such that CA4 = I. If this were true, then CAx would equal x for all x in R*. This cannot happen because

Copyright © 2016 Pearson Education, Inc.



2-14 CHAPTER2 -+ Matrix Algebra

the columns of 4 are linearly dependent and so Ax = 0 for some nonzero vector x. For such an x,
CAx = C(0) = 0. An alternate justification would be to cite Exercise 23 or 25 in Section 2.1.

.005 .002 .001 || 30 27
39. y=Df=].002 .004 .002 | 50 |=].30|. The deflections are .27 in., .30 in., and .23 in. at points 1, 2,
.001 .002 .005 || 20 23

and 3, respectively.

2 -1 0
40. [M] The stiffness matrix is D™'. Use an “inverse” command to produce D' =125/ -1 3 -1
0 -1 2

To find the forces (in pounds) required to produce a deflection of .04 cm at point 3, most students will
use technology to solve Df = (0, 0, .04) and obtain (0, -5, 10).

Here is another method, based on the idea suggested in Exercise 42. The first column of D™ lists the
forces required to produce a deflection of 1 in. at point 1 (with zero deflection at the other points). Since

the transformation y — D'y is linear, the forces required to produce a deflection of .04 cm at point 3 is
given by .04 times the third column of D', namely (.04)(125) times (0, -1, 2), or (0, -5, 10) pounds.

41. To determine the forces that produce a deflections of .08, .12, .16, and .12 cm at the four points on the
beam, use technology to solve Df =y, where y = (.08, .12, .16, .12). The forces at the four points are 12,
1.5, 21.5, and 12 newtons, respectively.

42. [M] To determine the forces that produce a deflection of .24 c¢m at the second point on the beam, use
technology to solve Df =y, where y = (0, .24, 0, 0). The forces at the four points are —104, 167, —113,
and 56.0 newtons, respectively. These forces are .24 times the entries in the second column of D™

Reason: The transformation y — D'y is linear, so the forces required to produce a deflection of .24 cm
at the second point are .24 times the forces required to produce a deflection of 1 cm at the second point.
These forces are listed in the second column of D™

Another possible discussion: The solution of Dx = (0, 1, 0, 0) is the second column of D
Multiply both sides of this equation by .24 to obtain D(.24x) = (0, .24, 0, 0). So .24x is the solution
of Df = (0, .24, 0, 0). (The argument uses linearity, but students may not mention this.)

Note: The Study Guide suggests using gauss, swap, bgauss, and scale toreduce [4 /], because
I prefer to postpone the use of ref (or rref) until later. If you wish to introduce ref now, see the
Study Guide’s technology notes for Sections 2.8 or 4.3. (Recall that Sections 2.8 and 2.9 are only covered
when an instructor plans to skip Chapter 4 and get quickly to eigenvalues.)

2.3 SOLUTIONS

Notes: This section ties together most of the concepts studied thus far. With strong encouragement from an
instructor, most students can use this opportunity to review and reflect upon what they have learned, and form
a solid foundation for future work. Students who fail to do this now usually struggle throughout the rest of the
course. Section 2.3 can be used in at least three different ways.

(1) Stop after Example 1 and assign exercises only from among the Practice Problems and Exercises 1
to 28. I do this when teaching “Course 3” described in the text's “Notes to the Instructor. ” If you did not
cover Theorem 12 in Section 1.9, omit statements (f) and (i) from the Invertible Matrix Theorem.
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(2) Include the subsection “Invertible Linear Transformations” in Section 2.3, if you covered Section 1.9.
I do this when teaching “Course 1” because our mathematics and computer science majors take this class.
Exercises 29—40 support this material.

(3) Skip the linear transformation material here, but discuss the condition number and the Numerical
Notes. Assign exercises from among 1-28 and 4145, and perhaps add a computer project on the condition
number. (See the projects on our web site.) I do this when teaching “Course 2” for our engineers.

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem (Theorem 8).

5 7
1. The columns of the matrix { 3 6} are not multiples, so they are linearly independent. By (e) in the

IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the
determinant is nonzero.

-4 6
. The fact that the columns of { 6 9} are multiples is not so obvious. The fastest check in this case

may be the determinant, which is easily seen to be zero. By Theorem 4 in Section 2.2, the matrix is
not invertible.

. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations:
5 0 0 5 0 0 5 0 0

-3 -7 0|~|0 =7 0|~|0 =7 0| The 3x3 matrix has 3 pivot positions and hence is
8 5 -1 0 5 -1 0 0 -1
invertible, by (¢) of the IMT. [Another explanation could be given using the transposed matrix. But see
the note below that follows the solution of Exercise 14.]

-7 0 4
. Thematrix | 3 0 —1| obviously has linearly dependent columns (because one column is zero), and
2 0 9

so the matrix is not invertible (or singular) by (e) in the IMT.

o 3 5] [ 1 0 2 1 0 2 1 0 2
511 0 2|~ 0 3 -5/~/0 3 =5|~|0 3 -5
-4 -9 7] |4 -9 7] |0 -9 15] [0 0 O

1 -5 4] [1 -5 -4 1 -5 —4
6.| 0 3 4(~/0 3 41~l0 3 4
-3 6 0| |0 =9 -12/ (0 0 0

-1 -3 0 1 -1 -3 0 1 -1 -3 0 1

- 3 5 8 3 B 0 4 8 0 B 0 4 8 0
-2 -6 3 2 0 0 3 0 0 0 3 0

0 -1 2 1 0o -1 2 1 0 0 0 1

The matrix is not invertible because it is not row equivalent to the identity matrix.

The matrix is not invertible because it is not row equivalent to the identity matrix.

The 4x4 matrix has four pivot positions and so is invertible by (c) of the IMT.
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1 3 7 4
105 9 6|, . . . . i
8. The 4x4 matrix 0 0 2 8 is invertible because it has four pivot positions, by (c) of the IMT.
0 0 0 10

4 0 -7 -7 -1 2 3 -1 -1 2 3 -1 -1 2 3 -1
9. [M] — 119 B -6 1 11 9 B 0o -11 -7 15]N 0 8 5 -1
7 -5 10 19 7 -5 10 19 0 9 31 12 0 9 31 12
-1 2 3 -1 4 0 -7 -7 0 8 5 -11 0o -11 -7 15
-1 2 3 -1 -1 2 3 -1 -1 2 3 -1
0 8 5 -11 0 8 5 -11 0 8 5 -11
Lo 0 25375 24375 | 0 0 25375 24375 | 0 0 1 1
L 0 0 —-.1250 -.1250 0 o0 1 1 0 0 25375 24375
-1 2 3 -1
0 8 5 -11
o 0o 11
10 0 0 -1
The 4x4 matrix is invertible because it has four pivot positions, by (c) of the IMT.
53 1 7 9 5 3 1 7 9 5 3 1 7 9
6 4 2 8 -8 0 4 .8 -4 -18.8 0 4 8 -4 -188
10. M] |7 5 3 10 9|~|0 .8 1.6 2 =36(~0 0 0 1 34
9 6 4 -9 -5 0 6 22 =216 -212 0 0 1 =21 7
18 5 2 11 4] [0 2 4 -2 -104] [0 0 O 0 -1
5 3 1 7 9]
0 4 8 -4 -188
~/0 0 1 =21 7
0 0 0 1 34
10 0 0 0 —1]
The 5x5 matrix is invertible because it has five pivot positions, by (c) of the IMT.
11. a. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b).

b. True. If statement (h) of the IMT is true, then so is statement (e).

c¢. False. Statement (g) of the IMT is true only for invertible matrices.

d. True, by the IMT. If the equation 4x = 0 has a nontrivial solution, then statement (d) of the IMT is
false. In this case, all the lettered statements in the IMT are false, including statement (c), which
means that 4 must have fewer than » pivot positions.

e. True, by the IMT. If A" is not invertible, then statement (1) of the IMT is false, and hence statement
(a) must also be false.

12. a. True. If statement (k) of the IMT is true, then so is statement ( j).

True. If statement (e) of the IMT is true, then so is statement (h).

c¢. True. See the remark immediately following the proof of the IMT.
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d. False. The first part of the statement is not part (i) of the IMT. In fact, if 4 is any nxn matrix, the

linear transformation x > Ax maps R"into R", yet not every such matrix has » pivot positions.

e. True, by the IMT. If there is a b in R" such that the equation Ax = b is inconsistent, then statement
(g) of the IMT is false, and hence statement (f) is also false. That is, the transformation x — 4x
cannot be one-to-one.

Note: The solutions below for Exercises 13-30 refer mostly to the IMT. In many cases, however, part or all
of an acceptable solution could also be based on various results that were used to establish the IMT.

13. If a square upper triangular n xn matrix has nonzero diagonal entries, then because it is already in echelon
form, the matrix is row equivalent to /, and hence is invertible, by the IMT. Conversely, if the matrix is
invertible, it has » pivots on the diagonal and hence the diagonal entries are nonzero.

14. If 4 is lower triangular with nonzero entries on the diagonal, then these n diagonal entries can be used as
pivots to produce zeros below the diagonal. Thus 4 has n pivots and so is invertible, by the IMT. If one
of the diagonal entries in 4 is zero, 4 will have fewer than » pivots and hence be singular.

Notes: For Exercise 14, another correct analysis of the case when A has nonzero diagonal entries is to apply
the IMT (or Exercise 13) to 4. Then use Theorem 6 in Section 2.2 to conclude that since 4" is invertible so is
its transpose, 4. You might mention this idea in class, but I recommend that you not spend much time
discussing A" and problems related to it, in order to keep from making this section too lengthy. (The transpose
is treated infrequently in the text until Chapter 6.)

If you do plan to ask a test question that involves A" and the IMT, then you should give the students some
extra homework that develops skill using 4”. For instance, in Exercise 14 replace “columns” by “rows.”
Also, you could ask students to explain why an z xn matrix with linearly independent columns must also have
linearly independent rows.

15. If 4 has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that
A cannot be invertible.

16. Part (h) of the IMT shows that a 5x5 matrix cannot be invertible when its columns do not span R’.

17. If 4 is invertible, so is 4™, by Theorem 6 in Section 2.2. By (e) of the IMT applied to 4™, the columns of
A" are linearly independent.

18. By (g) of the IMT, C is invertible. Hence, each equation Cx = v has a unique solution, by Theorem 5 in
Section 2.2. This fact was pointed out in the paragraph following the proof of the IMT.

19. By (e) of the IMT, D is invertible. Thus the equation Dx = b has a solution for each b in R, by (g) of

the IMT. Even better, the equation Dx = b has a unique solution for each b in R’, by Theorem 5 in
Section 2.2. (See the paragraph following the proof of the IMT.)

20. By the box following the IMT, E and F are invertible and are inverses. So FE = = EF, and so E and F
commute.

21. The matrix G cannot be invertible, by Theorem 5 in Section 2.2 or by the box following the IMT. So (g),
and hence (h), of the IMT are false and the columns of G do not span R".

22. Statement (g) of the IMT is false for H, so statement (d) is false, too. That is, the equation Hx = 0 has a
nontrivial solution.
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23. Statement (b) of the IMT is false for K, so statements (¢) and (h) are also false. That is, the columns of K
are linearly dependent and the columns do not span R".

24. No conclusion about the columns of L may be drawn, because no information about L has been given.
The equation Lx = 0 al/ways has the trivial solution.

25. Suppose that 4 is square and AB = I. Then 4 is invertible, by the (k) of the IMT. Left-multiplying each
side of the equation 4B = I by A' onehas A 'AB=4""1, IB=4"' andB=4"

By Theorem 6 in Section 2.2, the matrix B (which is 4" is invertible, and its inverse is (4 '), which is
A.

26. If the columns of 4 are linearly independent, then since 4 is square, 4 is invertible, by the IMT. So 4%,
which is the product of invertible matrices, is invertible. By the IMT, the columns of 4> span R" .

27. Let W be the inverse of AB. Then ABW = I and A(BW) = 1. Since 4 is square, 4 is invertible, by (k) of the
IMT.

Note: The Study Guide for Exercise 27 emphasizes here that the equation A(BW) = I, by itself, does not show
that A4 is invertible. Students are referred to Exercise 38 in Section 2.2 for a counterexample. Although there is
an overall assumption that matrices in this section are square, I insist that my students mention this fact when
using the IMT. Even so, at the end of the course, I still sometimes find a student who thinks that an equation
AB = [ implies that 4 is invertible.

28. Let W be the inverse of AB. Then WAB = [ and (WA)B = I. By (j) of the IMT applied to B in place of 4,
the matrix B is invertible.

29. Since the transformation X > AX is not one-to-one, statement (f) of the IMT is false. Then (i) is also

false and the transformation x > Ax does not map R" onto R". Also, 4 is not invertible, which implies
that the transformation x — Ax is not invertible, by Theorem 9.

30. Since the transformation x — Ax is one-to-one, statement (f) of the IMT is true. Then (i) is also true and

the transformation x — Ax maps R" onto R". Also, 4 is invertible, which implies that the
transformation x > 4x is invertible, by Theorem 9.

31. Since the equation Ax = b has a solution for each b, the matrix 4 has a pivot in each row (Theorem 4 in
Section 1.4). Since 4 is square, 4 has a pivot in each column, and so there are no free variables in the
equation Ax = b, which shows that the solution is unique.

Note: The preceding argument shows that the (square) shape of 4 plays a crucial role. A less revealing proof
is to use the “pivot in each row” and the IMT to conclude that A is invertible. Then Theorem 5 in Section 2.2
shows that the solution of Ax = b is unique.

32. If Ax =0 has only the trivial solution, then 4 must have a pivot in each of its n columns. Since 4 is
square (and this is the key point), there must be a pivot in each row of A. By Theorem 4 in Section 1.4,

the equation Ax = b has a solution for each b in R".
Another argument: Statement (d) of the IMT is true, so 4 is invertible. By Theorem 5 in Section 2.2,

the equation Ax = b has a (unique) solution for each b in R".
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34.

3s.

36.

37.

38.

39.
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-5 9
(Solution in Study Guide) The standard matrix of 7'is 4 =[ 4 7}, which is invertible because

det 4 # 0. By Theorem 9, the transformation 7T is invertible and the standard matrix of 7' is 4", From

7 9
the formula for a 2X2 inverse, A= L 5}. So

T (x,x,) = 79 —(7x +9x,,4x +5x)
e %, =07x 2> %X 2

6 -8
The standard matrix of T'is 4 :[ s 7}, which is invertible because det 4 =2 # 0. By Theorem 9, T

7 8
1s invertible, and T _l(x) = Bx, where B = A7 :%L ‘

- 1|7 8|l x 7 5
Tl(xl,xz)zz{s 6}Lj2[gxl+4x2,5xl+3x2j

(Solution in Study Guide) To show that T is one-to-one, suppose that 7(u) = 7(v) for some vectors u and
vin R". Then S(7(u)) = S(T(v)), where S is the inverse of T. By Equation (1), u = S(7(u)) and S(7(v)) =
v, so u =v. Thus 7 is one-to-one. To show that T is onto, suppose y represents an arbitrary vector in R”
and define x = S(y). Then, using Equation (2), 7(x) = T(S(y)) = y, which shows that 7' maps R" onto R"
Second proof: By Theorem 9, the standard matrix 4 of 7 is invertible. By the IMT, the columns of 4 are

} . Thus

linearly independent and span R". By Theorem 12 in Section 1.9, T is one-to-one and maps R" onto R”

If T maps R" onto R", then the columns of its standard matrix 4 span R" by Theorem 12 in Section 1.9.
By the IMT, 4 is invertible. Hence, by Theorem 9 in Section 2.3, 7'is invertible, and A" is the standard

matrix of 7. Since A" is also invertible, by the IMT, its columns are linearly independent and span R”.
Applying Theorem 12 in Section 1.9 to the transformation 7", we conclude that 7' is a one-to-one

mapping of R" onto R".

Let A and B be the standard matrices of 7"and U, respectively. Then AB is the standard matrix of the
mapping x — T(U(x)), because of the way matrix multiplication is defined (in Section 2.1). By

hypothesis, this mapping is the identity mapping, so AB = I. Since 4 and B are square, they are invertible,
by the IMT, and B = A" Thus, B4 = I. This means that the mapping x — U(T(x)) is the identity

mapping, i.e., U(T(x)) = x for all x in R".

Let A4 be the standard matrix of 7. By hypothesis, T is not a one-to-one mapping. So, by Theorem 12 in
Section 1.9, the standard matrix 4 of 7 has linearly dependent columns. Since 4 is square, the columns

of A4 do not span R". By Theorem 12, again, T cannot map R" onto R"
Given any v in R", we may write v = 7(x) for some x, because T is an onto mapping. Then, the assumed

properties of S and U show that S(v) = S(T(x)) = x and U(v) = U(T(x)) = x. So S(v) and U(v) are equal for
each v. That is, S and U are the same function from R"into R"
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40. Givenu,vin R" let x =S(u) and y = S(v). Then T(x)=7(S(u)) = u and 7(y) = T(S(v)) = v, by
equation (2). Hence
S(u+v)=S(TX)+T(y))

=S(T(x+Yy)) Because T'islinear
=x+y By equation (1)
=S(u)+S(v)

So, S preserves sums. For any scalar 7,

S(ru)=S(rT(x))=S(T(rx)) Because Tislinear
=rx Byequation (1)
=rS(u)

So S preserves scalar multiples. Thus S ia a linear transformation.
41. [M]

a. The exact solution of (3) is x; = 3.94 and x, = .49. The exact solution of (4) is x; = 2.90 and
x; =2.00.

b. When the solution of (4) is used as an approximation for the solution in (3) , the error in using the
value of 2.90 for x, is about 26%, and the error in using 2.0 for x, is about 308%.

¢. The condition number of the coefficient matrix is 3363. The percentage change in the solution from
(3) to (4) is about 7700 times the percentage change in the right side of the equation. This is the same
order of magnitude as the condition number. The condition number gives a rough measure of how
sensitive the solution of 4x = b can be to changes in b. Further information about the condition
number is given at the end of Chapter 6 and in Chapter 7.

Note: See the Study Guide’s MATLAB box, or a technology appendix, for information on condition number.
Only the TI-83+ and TI-89 lack a command for this.

42. [M] MATLAB gives cond(4) = 23683, which is approximately 10*. If you make several trials with
MATLAB, which records 16 digits accurately, you should find that x and x; agree to at least 12 or 13
significant digits. So about 4 significant digits are lost. Here is the result of one experiment. The vectors
were all computed to the maximum 16 decimal places but are here displayed with only four decimal

places:
9501 -3.8493 9501
21311 5.5795 . 2311
x =rand(4,1) = ,b=4x= . The MATLAB solution is x; = A\b = .
.6068 20.7973 .6068
4860 .8467 4860
0171
4858 1 . . .
However, x — x; = 2360 x107*. The computed solution x; is accurate to about 12 decimal places.
2456

Copyright © 2016 Pearson Education, Inc.



2.5 + Solutions 2-21

43. [M] MATLAB gives cond(4) = 68,622. Since this has magnitude between 10* and 10°, the estimated
accuracy of a solution of Ax = b should be to about four or five decimal places less than the 16 decimal
places that MATLAB usually computes accurately. That is, one should expect the solution to be accurate
to only about 11 or 12 decimal places. Here is the result of one experiment. The vectors were all
computed to the maximum 16 decimal places but are here displayed with only four decimal places:

2190 | [15.0821] 2190 |
.0470 8165 .0470
x =rand(5,1)=|.6789 |, b=Ax = 19.0097 |. The MATLAB solution is x; = A\b = | .6789 |.
6793 -5.8188 6793
1.9347 | | 14.5557 | 1.9347 |
[ 3165
—-.6743
However, X —x; = | .3343 |x10™"". The computed solution X, is accurate to about 11 decimal places.
.0158
| —.0005 |

44. [M] Solve Ax = (0, 0, 0, 0, 1). MATLAB shows that cond(4) = 4.8x10°. Since MATLAB computes

numbers accurately to 16 decimal places, the entries in the computed value of x should be accurate to at
least 11 digits. The exact solution is (630, —12600, 56700, —88200, 44100).

45. [M] Some versions of MATLAB issue a warning when asked to invert a Hilbert matrix of order 12 or
larger using floating-point arithmetic. The product A4~ should have several off-diagonal entries that are
far from being zero. If not, try a larger matrix.

Note: All matrix programs supported by the Study Guide have data for Exercise 45, but only MATLAB and
Maple have a single command to create a Hilbert matrix. The HP-48G data for Exercise 45 contain a program
that can be edited to create other Hilbert matrices.

Notes: The Study Guide for Section 2.3 organizes the statements of the Invertible Matrix Theorem in a table
that imbeds these ideas in a broader discussion of rectangular matrices. The statements are arranged in three
columns: statements that are logically equivalent for any m xn matrix and are related to existence concepts,
those that are equivalent only for any n*n matrix, and those that are equivalent for any n Xp matrix and are
related to uniqueness concepts. Four statements are included that are not in the text’s official list of
statements, to give more symmetry to the three columns. You may or may not wish to comment on them.

I believe that students cannot fully understand the concepts in the IMT if they do not know the correct
wording of each statement. (Of course, this knowledge is not sufficient for understanding.) The Study
Guide’s Section 2.3 has an example of the type of question I often put on an exam at this point in the course.
The section concludes with a discussion of reviewing and reflecting, as important steps to a mastery of linear
algebra.

2.4 SOLUTIONS

Notes: Partitioned matrices arise in theoretical discussions in essentially every field that makes use of
matrices. The Study Guide mentions some examples (with references).

Every student should be exposed to some of the ideas in this section. If time is short, you might omit
Example 4 and Theorem 10, and replace Example 5 by a problem similar to one in Exercises 1-10. (A sample

Copyright © 2016 Pearson Education, Inc.



2-22 CHAPTER2 -+ Matrix Algebra

replacement is given at the end of these solutions.) Then select homework from Exercises 1-13, 15, and 21—
24.

The exercises just mentioned provide a good environment for practicing matrix manipulation. Also,
students will be reminded that an equation of the form 4B = I does not by itself make 4 or B invertible. (The
matrices must be square and the IMT is required.)

1. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
14+0C IB+OD}_{ 4 B }

"|EA+C EB+D

I 0|4 B
entry of the left block-matrix on the /eft. =
E EA+IC EB+ID

I1{|{C D

2. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
[EA +0C EB+ OD} ~ [EA EB}

[E o][4 B
entry of the left block-matrix on the /eft. }[ }: 04+ FC OB+FD FC FD

0o Fllc D

3. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
ow+1y 0x+I1zZ| |Y Z
IW+0Y IX+0Z| |W X

_ o Il[w Xx
entry of the left block-matrix on the lef?. =
I 0jlY Z

4. Apply the row-column rule as if the matrix entries were numbers, but for each product always write the
entry of the left block-matrix on the left.

I 0][4 B)| [14+0C B+0D| [ 4 B
-X I|lc D| |-xX4+IC -XB+ID| |-X4+C -XB+D
Al + BX AO+BY}

C 0j|X Y

A B||I O
5. Compute the left side of the equation: =
CI+0X CO0+0Y

Set this equal to the right side of the equation:
[A+BX BY}_{O I A+BX=0 BY=I

so that
C 0 Z 0 C=Z7 0=0

Since the (2, 1) blocks are equal, Z = C. Since the (1, 2) blocks are equal, BY = I. To proceed further,
assume that B and Y are square. Then the equation BY =/ implies that B is invertible, by the IMT, and
Y = B, (See the boxed remark that follows the IMT.) Finally, from the equality of the (1, 1) blocks,

BX=-A, B'BX=B'(-4), and X=-B'A.
The order of the factors for X is crucial.

Note: For simplicity, statements (j) and (k) in the Invertible Matrix Theorem involve square matrices
C and D. Actually, if 4 is nxn and if C is any matrix such that AC is the n*xn identity matrix, then C must be
n*n, too. (For AC to be defined, C must have n rows, and the equation 4C = [ implies that C has n columns.)
Similarly, DA = I implies that D is nxn. Rather than discuss this in class, I expect that in Exercises 5—8, when
students see an equation such as BY = [, they will decide that both B and Y should be square in order to use
the IMT.

. . X 0}4 0 XA+0B X0+0C XA 0
6. Compute the left side of the equation: = =

Y Z||B C YA+ZB Y0+ZC YA+7ZB ZC
) _ , . XA 0 I 0 XA=1 0=0
Set this equal to the right side of the equation: = so that
YA+ZB ZC 0 7 YA+ZB=0 ZC=1
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To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation

XA =I implies that 4 is invertible and X = 4", (See the boxed remark that follows the IMT.) Similarly,
if C and Z are assumed to be square, then the equation ZC = [ implies that C is invertible, by the IMT,
and Z= C'. Finally, use the (2, 1) blocks and right-multiplication by 4™ to get Y4 =—ZB =—C'B, then
YAA' =(-C'B)4™", and Y=-C"'BA™". The order of the factors for Y is crucial.

{XA+0+OB XZ+O+OI}

YA+0+IB YZ+0+1I

0 0
7. Compute the left side of the equation: [Y 0 J 0 0=
B

Set this equal to the right side of the equation:

XA XZ I 0 that XA=1 XZ=0
= so tha
YA+B YZ+1 0 7 YA+B=0 YZ+I=1

To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation X4 =/
implies that 4 is invertible and X = 4"'. (See the boxed remark that follows the IMT) Also, X is
invertible. Since XZ = 0, X 'XZ =X '0 =0, so Z must be 0. Finally, from the equality of the (2, 1)
blocks, Y4 = —B. Right-multiplication by 4™ shows that Y44 =—BA ™' and Y=-BA™". The order of the
factors for Y is crucial.

0 70 0 [ 0X+10 O0Y+10 0zZ+1

. . A B||X Y Z AX+B0 AY+B0 AZ+BI
8. Compute the left side of the equation: =
) . , . AX AY AZ+B I 0 0
Set this equal to the right side of the equation: =
0 0 1 0 0 [

To use the equality of the (1, 1) blocks, assume that 4 and X are square. By the IMT, the equation X4 =/
implies that 4 is invertible and X = 4". (See the boxed remark that follows the IMT. Since 4Y = 0, from
the equality of the (1, 2) blocks, left-multiplication by 4™ gives 4 '4Y=4"0=0, so ¥ = 0. Finally, from
the (1, 3) blocks, AZ = —B. Left-multiplication by A" gives 4'4Z = A™'(-B), and Z=— A™'B. The order
of the factors for Z is crucial.

Note: The Study Guide tells students, “Problems such as 5-10 make good exam questions. Remember to
mention the IMT when appropriate, and remember that matrix multiplication is generally not commutative.”
When a problem statement includes a condition that a matrix is square, I expect my students to mention this
fact when they apply the IMT.

9. Compute the left side of the equation:
I 0 04, A4, 1A, +04,, +04;, 14,404, +04;,

X I 0| A4y Ay|=| X4, +14, +04, XA, +1dy, +04s,
Y 0 I|| Ay Ay| | YA, +04y, +14y, YA, +0A, +1dy,

4, 4, By,
Set this equal to the right side of the equation: | X4, + 4,, XA, +4,, |=
YA, + 4y, YA, + 4,

& ® W

S}

0
0
4, =B, 4, =B,

so that X4, +4,, =0 XA, + 4, =B,, .
YA, + 45, =0 YA, + A4y, =By,
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10.

11.

12.

13.

Since the (2,1) blocks are equal, X4,, + 4,, = 0 and X4, = —4,,. Since 4, is invertible, right
multiplication by 4 gives X =—4,,4;]. Likewise since the (3,1) blocks are equal,

YA, + 45, =0 and YA, = —4;,. Since A4, is invertible, right multiplication by A gives Y =—4;,4;].
Finally, from the (2,2) entries, X4, + 4y, = B,,. Since X =—4,, 4, By, = A, — 4y, 45 4,,.

I 0 07 0 O I 0 O
Since the two matrices are inverses, |C [ 0| Z [ O0(=/0 [ 0
A B I|I|X Y I 0 0 I

Compute the left side of the equation:
I 0 07 O O 1I1+0Z+0X 10+0/+0Y [10+00+0/7

C I 0yZ I O0|=|CI+IZ+0X CO+II+0Y CO+10+01
A B I||X Y I Al +BZ+1X A0+BI+1Y A0+BO+11

1 0 0 I 0 0
Set this equal to the right side of the equation: C+7 1 0(=(0 [ O
A+BZ+X B+Y I 0 0 I
I1=1 0=0 0=0
so that C+7Z=0 I=1 0=0.

A+BZ+X=0 B+Y=0 I=1]

Since the (2,1) blocks are equal, C+Z =0and Z =—C . Likewise since the (3, 2) blocks are equal,
B+Y =0 and Y =-B. Finally, from the (3,1) entries, 4+ BZ+ X =0and X =—A4—- BZ.
SinceZ=-C, X=—A-B(-C)=—A+BC.

a. True. See the subsection Addition and Scalar Multiplication.
b. False. See the paragraph before Example 3.

a. True. See the paragraph before Example 4.
b. False. See the paragraph before Example 3.
You are asked to establish an if and only if statement. First, supose that 4 is invertible,

4 |D E B 0D E BD BE I 0
andlet 4 = . Then = =
F G 0 CIl||F G CF CG 0 I/

Since B is square, the equation BD = [ implies that B is invertible, by the IMT. Similarly, CG = I implies
that C is invertible. Also, the equation BE = 0 imples that £ = B'o=0. Similarly # = 0. Thus

L [B o' [p E] [B' o0
=0 ¢ TlE o - )
0 C

This proves that A4 is invertible only if B and C are invertible. For the “if” part of the statement, suppose
that B and C are invertible. Then (*) provides a likely candidate for A~ which can be used to show that

L B 0]B" 0 BB 0 I 0
A is invertible. Compute: = = .
0 Cjlo (! o cct'| |0 1
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15.

16.

2.5 + Solutions 2-25

Since A is square, this calculation and the IMT imply that A4 is invertible. (Don’t forget this final
sentence. Without it, the argument is incomplete.) Instead of that sentence, you could add the equation:

B 0B 0] |B'B 0 [ [I 0
o c'|lo ¢]| o cl'c| |0 I
You are asked to establish an if and only if statement. First suppose that 4 is invertible. Example 5 shows

that A, and Ay, are invertible. This proves that 4 is invertible only if A\ and 4, are invertible. For the if’
part of this statement, suppose that 4;; and A,; are invertible. Then the formula in Example 5 provides a

likely candidate for A" which can be used to show that 4 is invertible . Compute:

Ay Ay || A7 A7 A4y A A+ A0 Ay (A7) A A+ A A5
0 Ayl o A3 04+ 4,0 0(=A)ApAsy+ 4545

|1 A4y A A At A Ay
10 I

__[ ~ApAp+A,45 |10
0 I 0 I

Since 4 is square, this calculation and the IMT imply that A4 is invertible.
Compute the right side of the equation:
(104, Oof1 Y] [ 4, o1 Y] | 4y A,Y
| x 1]l o sjo 1] [x4, S|0 I] |X4, XA,Y+S
Set this equal to the left side of the equation:

[ 4, A4, Y |4y A4y so that A=Ay A4, Y =4,
| XAy, XA Y +S] |4y Ay XAy =4y XA, Y+S=4y

Since the (1, 2) blocks are equal, 4,,Y = 4,,. Since 4, is invertible, left multiplication by A1_11 gives
Y= Al_l1 A,,. Likewise since the (2,1) blocks are equal, X 41, = 4y,. Since A, is invertible, right

multiplication by A4, gives that X = 4, 4. One can check that the matrix S as given in the exercise
satisfies the equation X 4,,Y + S = A4,, with the calculated values of X and Y given above.

_ . _ I 0| I O I 0
Suppose that 4 and A4, are invertible. First note that = and
X I||-X 1 0 7
I Y\|I -Y| |[I O . . I 0 1Y
= . Since the matrices and are square, they are both
0 7|0 [ 0 7 X I 0 7

-1

I 0
invertible by the IMT. Equation (7) may be left multipled by {X J and right multipled by

1 v 4, 0] [1 o' [1 YT
to find = A .
0 7 0 S X I 0 7
N T U : : . : :
Thus by Theorem 6, the matrix 0 s is invertible as the product of invertible matrices. Finally,

Exercise 13 above may be used to show that S is invertible.
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17. The column-row expansions of G, and Gy, are:
G, =X X/
=col, (X, ) row, (X[ ) +-+col, (X, ) row, (X} )
and
Gy = Xk+1XkT+1
= col, (X, ) TOW, (X)) + oot Ol (X, ) 1ow (X)) + ol (X ) Tow,,, (X))
= col, (X, ) row, (X)) + -+ coly (X, ) row , (X ) +coly, (X p ) row, (X))
=Gy +coly, (X, ) Tow, (X))
since the first &£ columns of X}, are identical to the first £ columns of X;. Thus to update G, to produce
Gi+1, the number coliy (Xj+1) rowgs (X ,f ) should be added to G.

T T T

x’ X'x  X'x
18. Since W = [X XO] , the product W' W = [X x,]= °|. By applying the formula for S
X, X, X X)X,

from Exercise 15, S may be computed:
S=x{x, - xg X(X"X)"'X"x,
=x, (I, - X(X"X)" Xx")x,

—
=X, Mx,

19. The matrix equation (8) in the text is equivalent to (4 —s/,)x+Bu=0 and Cx+u=y
Rewrite the first equation as (4 —s/,)x =—Bu. When 4 — s/, is invertible,
x=(A4-sl, Y (~Bu)=—(4- sl, )" Bu
Substitute this formula for x into the second equation above:
c(—(4 —s]n)leu) +u=y,sothat 7/, u-C(4 —S],1)7lBu =y
Thus y=(/,, —C(A-sl, Y B If W(s)= 1, —C(A-sl, Y' B, then y = W (s)u. The matrix W(s) is the
Schur complement of the matrix 4 — s/, in the system matrix in equation (8)

A-BC—3sl,

B
c 7 } . By applying the formula for S from Exercise 15, S may

m

20. The matrix in question is {

be computed:
S=1,-(-C)(A-BC~-sl,)"'B
=1,+C(A-BC~-sI,)"'B

o g1 O] o]_[1+0 040] [1 0
SR Y| R | i R

Y B B 0] |4°+0 0+0 | [7 ©
' L -4l T -4 | 4-4 0+(-ap| |0 I
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22. Let C be any nonzero 2x3 matrix. Following the pattern in 21(a) with block matrices instead of numbers,
I; 0 . , |43 0 ||; O I;+0 0+0 I; 0
set M = and verify M~ = = , = .
¢ -1 C -L|C - CL-1,C 0+(=1) 0 I

23. The product of two 1x1 “lower triangular” matrices is “lower triangular.” Suppose that for n = £, the
product of two k xk lower triangular matrices is lower triangular, and consider any (k+1)x (k+1) matrices

r T
A, and B,. Partition these matrices as 4, = a 0 , B = b0
v A w B

where A and B are kxk matrices, v and w are in R", and @ and b are scalars. Since 4; and B, are lower
triangular, so are 4 and B. Then

Ap =@ O |fb 0T tab+ 0'w a0’ +0'B| | ab 0"
vy 4l|lw B vb+Aw  v0' + AB bv+Aw AB
Since A and B are kxk, AB is lower triangular. The form of 4,8, shows that it, too, is lower triangular.

Thus the statement about lower triangular matrices is true for n = k£ +1 if it is true for n = k. By the
principle of induction, the statement is true for all n > 1.

Note: Exercise 23 is good for mathematics and computer science students. The solution of Exercise 23 in the
Study Guide shows students how to use the principle of induction. The Study Guide also has an appendix on
“The Principle of Induction,” at the end of Section 2.4. The text presents more applications of induction in
Section 3.2 and in the Supplementary Exercises for Chapter 3.

1 0 0 - 0 1 0 0 -+ 0

110 0 -1 1 0 0
24 Let 4,=[1 1 1 0, B,=| 0 -1 1 0].

11 e 1] |0 Sl

By direct computation 4,8, = I,. Assume that for n = k, the matrix A,B; is I;, and write

1 0 1 0
A= and B ,, =
AT
where vand warein R, v/=[1 1 --- 1],andw'=[-1 0 --- 0]. Then
1 o']1 o] |[1+0'w 0" +0'B, 1 0
Ak+1Bk+1 = = T = = 1k+l
v A4 ||w B v+A4w v0 + 4B, 0 7
The (2,1)-entry is 0 because v equals the first column of 4., and 4;w is —1 times the first column of 4;.

By the principle of induction, 4,B, = I, for all n > 2. Since 4, and B, are square, the IMT shows that
these matrices are invertible, and B, = 4,".
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Note: An induction proof can also be given using partitions with the form shown below. The details are
slightly more complicated.

P L I B, 0
= an =
k+1 VT 1 k+1 WT 1

4, 0|[B. 0] | 4B +0w" A0+0| [I, ©
A B =| T =l 7 T T =l aT =L
v 1w V' B, +wW v 0+1 0" 1
The (2,1)-entry is 0" because v’ times a column of B, equals the sum of the entries in the column, and all

of such sums are zero except the last, which is 1. So v'B, is the negative of w’. By the principle of
induction, 4,8, = I, for all n > 2. Since 4, and B, are square, the IMT shows that these matrices are

invertible, and B, = 4"

25. First, visualize a partition of 4 as a 2x2 block—diagonal matrix, as below, and then visualize the
(2,2)-block itself as a block-diagonal matrix. That is,

1 2|0 0 O
A 2
3 5/0 0 0 4, 0 0 0 » 0
A=00200=OA,WhereA22=078=OB
0 0/0 7 8 2. 05 6
0 0[O0 5 6]
3 4
Observe that B is invertible and B = 95 3 5} . By Exercise 13, the block diagonal matrix 4,; is
5 0 0
invertible, and 4, = =0 3 -4
0 -25 35

-5 2
Next, observe that 4,; is also invertible, with inverse { 3 J . By Exercise 13, 4 itself is invertible,

and its inverse is block diagonal:

5 2 . 5 2 0 0 0
i 3 ] 3 .10 0 0

1 "4]11 0
A= = 5 0 0(=l0 05 0 0
0 4y 0 0 3 -4 0 0 0 3 -4
0 25 35[0 0 0 -25 35|

26. [M] This exercise and the next, which involve large matrices, are more appropriate for MATLAB,
Maple, and Mathematica, than for the graphic calculators.

a. Display the submatrix of 4 obtained from rows 15 to 20 and columns 5 to 10.
MATLAB: A(15:20, 5:10)
Maple: submatrix (A, 15..20, 5..10)
Mathematica: Takel[ A, {15,20}, {5,10} 1
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A
. To create B = 0

A 0 || x
. The algebra needed comes from the block matrix equation { ! }{ ! } :[

2.5 + Solutions 2-29

. Insert a 5x10 matrix B into rows 10 to 14 and columns 20 to 29 of matrix 4:

MATLAB: A(10:14, 20:29) = B ; The semicolon suppresses output display.
Maple: copyinto(B, A, 10, 20): The colon suppresses output display.
Mathematica: For [ i=10, i<=14, i++,
For [ j=20, j<=29, j++,
ALl i,7 11 = BII[ i-9, j-19 11 1 1; Colon suppresses output.

0
r} with MATLAB, build B out of four blocks:
A

B = [A zeros(30,20); zeros(20,30) A’];
Another method: first enter B = A ; and then enlarge B with the command
B(21:50, 31:50) = A’;
This places 4" in the (2, 2) block of the larger B and fills in the (1, 2) and (2, 1) blocks with zeros.
For Maple:
B := matrix(50,50,0):
copyinto(A, B, 1, 1):
copyinto( transpose(A), B, 21, 31):
For Mathematica:

B = BlockMatrix[ {{A, ZeroMatrix[30,20]}, {ZeroMatrix[20,30],
Transpose[A] }} ]

. [M] Construct 4 from four blocks, say Ci;, Ci», Cy1, and Cy,, for example with Cy; a 30x30 matrix

and C,; a 20x20 matrix.

MATLAB: Cll1 = A(1:30, 1:30) + B(1:30, 1:30)
Cl2 = A(1:30, 31:50) + B(1:30, 31:50)
C21 = A(31:50, 1:30)+ B(31:50, 1:30)
C22 = A(31:50, 31:50) + B(31:50, 31:50)

C = [Cl1l Cl1l2; cC21 c22]

The commands in Maple and Mathematica are analogous, but with different syntax. The first
commands are:

Maple: Cll := submatrix(A, 1..30, 1..30} + submatrix(B, 1..30, 1..30)
Mathematica: ¢11 := Takel A, {1,30}, {1,30} 1 + TakelB, {1,30), {1,30} 1

. The algebra needed comes from block matrix multiplication:

AB = {An 4 }{Bn B, } _ |:A11B11 +A4,B,y Ay B, + A By }
Ay Ay || By By Ay By + 4By, Ay By + Ay, By,
Partition both 4 and B, for example with 30x30 (1, 1) blocks and 20x20 (2, 2) blocks. The four
necessary submatrix computations use syntax analogous to that shown for (a).
b,
b,
are in R” and x, and b, are in R*’. Then 4,,x; = b, which can be solved to produce x;. Once X is

found, rewrite the equation A,;x; + 4»X, = b, as 4,Xx; = ¢, where ¢ = b, — 451Xy, and solve 4A»x, = ¢
for x,.

} , where x; and b,

b Ay |1 X,

Copyright © 2016 Pearson Education, Inc.



2-30 CHAPTER2 -+ Matrix Algebra

Notes: The following may be used in place of Example 5:

Example 5: Use equation (*) to find formulas for X, Y, and Z in terms of 4, B, and C. Mention any
assumptions you make in order to produce the formulas.

e
Y Z||4 B c 1
Solution:
This matrix equation provides four equations that can be used to find X, ¥, and Z:
X+0=1, 0=0
YI+ZA =C, YO+ZB=1 (Note the order of the factors.)

The first equation says that X = I. To solve the fourth equation, ZB = I, assume that B and Z are square.
In this case, the equation ZB = I implies that B and Z are invertible, by the IMT. (Actually, it suffices to
assume either that B is square or that Z is square.) Then, right-multiply each side of ZB = I to get

ZBB' =IB" and Z = B"'. Finally, the third equationis Y + Z4 = C.So, Y+ B'4=C,and Y = C— B 4.

The following counterexample shows that Z need not be square for the equation (*) above to be true.

1 0| 0 O
1 00 O O
O 1[0 O
0 0 0 O
1 1| 2 5=
I 201 3 1
1 1|(-1 -3
3 411 0 -1
1 -1 2 4
Note that Z is not determined by 4, B, and C, when B is not square. For instance, another Z that works in
. . 3 5 0
this counterexample is Z = .
-1 -2 0

2.5 SOLUTIONS

Notes: Modern algorithms in numerical linear algebra are often described using matrix factorizations. For
numerical work, this section is more important than Sections 4.7 and 5.4, even though matrix factorizations
are explained nicely in terms of change of bases. Computational exercises in this section emphasize the use of
the LU factorization to solve linear systems. The LU factorization is performed using the algorithm explained
in the paragraphs before Example 2, and performed in Example 2. The text discusses how to build L when no
interchanges are needed to reduce the given matrix to U. An appendix in the Study Guide discusses how to
build L in permuted unit lower triangular form when row interchanges are needed. Other factorizations are
introduced in Exercises 22-26.

1 0 0 3 -7 =2 -7
1. L=|-1 1 0l,U=|0 =2 1[,b=| 5|.First,solve Ly =b.
0
1

2 =5 1 0 0 1 2
1 0 0 -7 0 -7
[L b]=|-1 1 0 5|~/0 0 =2 | The only arithmetic is in column 4
2 -5 1 2 0 -5 1 16
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1 0 0 -7 -7
~0 1 0 2|, soy=|-2|
0 0 1 6 6
Next, solve Ux =y, using back-substitution (with matrix notation)
3 -7 =2 3 -7 =2 - -7 0 -19
W yl=|0 2 -1 =2(~|0 2 - -2 0 -8
0 0 -1 6 0 -6 0 -6
3 -7 0 -197[3 0 0 1 0 0 3
~|0 1 0 4/~10 1 0 4|~/0 1 0 4|, sox=|4
0 0 1 -6 0 0 1 -6 0 0 I -6 -6
To confirm this result, row reduce the matrix [4 b]'
3 -7 =2 71 [3 -7 =2 -2 7]
[4 b]=|-3 5 1 5|~0 2 - -1 2
6 4 0 2] |0 -1 6]
From this point the row reduction follows that of [U y] above, yielding the same result.
1 0 0 4 3 -5 2
.L={-1 1 0,U=|0 =2 2 |{,b=|-4|. First, solve Ly =b:
2 0 1 0o o0 2 6
1 0 0 2 1 0 0 2 2
[L b]=|-1 1 0 —4|~/0 1 0 -2|,s0oy=|-2]|

2 01 6] |0 0 1 2 2

Next solve Ux =y, using back-substitution (with matrix notation):
4 3 -5 2 4 3 -5 2 4 3 0 7
U yl=l0 -2 2 =2|~|0 -2 2 2|~|0 -2 0 -4
o o0 2 2 0 O 1 1 0 0 1 1

4 3 0 7 4 0 0 1 1 0 0 1/4 1/4
~0 1 0 2|~]0 1 0 2(~/0 1 0 2|,sox=| 2
0 0 1 1 0 0 1 1 0 0 1 1 1

To confirm this result, row reduce the matrix [4 b]:
4 3 -5 2 4 3 -5 2

[4 b]=|4 -5 7 —-4|-|0 2 2 =2
8 6 -8 6 o o 2 2

From this point the row reduction follows that of [U y] above, yielding the same result.
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1 0 0 2 -1 2 1
3. L=|-3 1 0 ,U: 0 -3 4|,b=|0]. First, solve Ly =b:
4 -1 1 0 1 4
1 1 1 1 0 0 1 1
[L b]=|-3 1 0 0|~ 103~0103,soy:3.
4 -1 -1 10 0 013 3
Next solve Ux =y, using back-substitution (with matrix notation):
-1 -1 0 5] [2 -1 0 -5 2 0
[Uu y]— 0 -3 4 3 -3 0 9|~{0 1 0 3|~/0 1
0 1 3 0 1 3]0 0 1 3 0 0
1 0 0 2 2 4 0]
4. L=|1/2 1 0L,U=|{0 -2 -1|,b=|-5|.First,solve Ly =h:
3/2 =5 1 0 0 -6 7]
1 0 0 1 0 0 O 1 0 0 0
[L b]=|1/2 1 0 =5|~|0 I 0 =5(~|0 1 0 -5|,s0y=
3/2 =5 1 7 0o -5 1 7 0 0 1 -18
Next solve Ux =y, using back-substitution (with matrix notation):
2 2 4 0 2 2 4 0 2 =2 0 -12
w y=0 -2 -1 -5(~|0 -2 -1 -5|~0 -2 0 =2
0 0 -6 -I18 0o o0 1 3 0 0 1 3
2 2 0 -12 2 0 0 -10 1 0 0 =5 =5
~10 1 0 1j~j0 1 0 I{~/0 1 0 1|, sox=| 1
0 o0 3 0 0 1 3 0 0 1 3 3
1 0 0 0 1 2 -4 -3 1]
2 1 0 0 0 -3 1 0 7 )
5. L= ,U = , b= . First solve Ly =b
-1 0 1 0 0o o0 2 1 0
-4 3 -5 1 0o 0 0 1 3]
1o o0 0 1] ]1 0 00 1] 1 O 00 1
21 0 0 7 0o 1 0 0 5 0 1 0 0 5
[L b]= ~ ~
-1 0 1 0 O 0 0 1 0 1 0 0 1 0 1
-4 3 -5 1 3 06 3 -5 1 7] |0 0 -5 1 -8
1
5 . o . . .
sOy= 1.NwmdwLk=yumgbmkwMMMmﬂwMummxmmmmy
-3
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Solutions

2.5

=h:

First, solve Ly

[L b]

0 0 O
0
1
0

1
0
0
0

y, using back-substitution (with matrix notation):

Next solve Ux

_Q_,.A_u|11_
o o o —
o o — o
N n o o
- o o o
l
1

1
-1
1
1

34 0
5 0
0
1

1
0 3
0
0

S AN o -
45A/_.O
cn o oon o O
- o o O
e —— |

Il

—

>

=)

—

Copyright © 2016 Pearson Education, Inc.



2-34 CHAPTER2 -+ Matrix Algebra

2
7. Place the first pivot column of {

5
4} into L, after dividing the column by 2 (the pivot), then add

3/2 times row 1 to row 2, yielding U.

B e
o [
{—3} (7/2)

+2  +7/2

v

1 10
, L=
[—3/2 J {—3/2 1}

8.Row reduce A4 to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L.

T g
© L

-3 {@

9 -2 @]

+3 +-3 +-8

1 1 0 0
-1 1 , L=|-1 1 0
3 2/3 1 3 2/3 1
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= 3 4] [-5 3 4[5 3 4
10. 4=|10 -8 —9|~| 0 €2 -1|~| 0 =2 —-1|=U

15 1 2 0 10 14 o 0 (©
|

D a1 |
10 | [€D)
15 LO} (@]
+-5+-2+9
I
1 1 0
-2 1 , L=-2 0
-3 -5 1 -3 -5 1

R -6 3] [3 -6 3] [3 -6 3
11. 4=| 6 -7 2|~ 3 -4|~|0 5 —4|=U
-1 7 0] |0 5 1] ]0 0
6 {@}l
-1 5] [
=3 =5 =5
1 1 0 0
2 1 , L= 2 1 0
-1/3 1 1 -1/3 1 1
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12. Row reduce 4 to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L. Use the last column of /3 to make L unit lower triangular.

13.

-10

(@ -4 2] [2 -4 2 -4 2
A= 1 5 —4|~lo0 @ -5|~|l0 7 -5|=U

-6 -2 4] [0 -14 10/ [0 0 O

| |

@1

L@

|6 [—14}

12 17

1 1 0

12 1 |, L=[12 1

-3 2 -3 2

-5 371 3 -5 =3 3 5 =3
5 8 4|0 & 3 1 2 3 1 ,

~ =U No more pivots!

2 -5 -7| |0 -10 15 5 0 0
4 7 5|10 2 =3 -1 0 0 0

2| Use the last two columns of /, to make L unit lower triangular.

+-2

}

5 1,
-1 0

S = O O

- O O O
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Solutions

2.5

5
)
6
12

-1

1
-1
-2

4

)
5

10

1
0
0
0

-2
1
-1

7
-3
6

U

2 -4 4 =2
~lo 3 -5 3
00 0

-2
3
-1

4
10

—4
0 ® -5
-6

2
0

@ -4 4 2
6 -9 7 -3|~
-1 -4 8 0

{

15. 4

0

-10|~| 0

14
~14

10

-1({~|0

5

3

16. 4

Copyright © 2016 Pearson Education, Inc.



2-38 CHAPTER2 -+ Matrix Algebra

_é_ éﬁ
14

—4
3
-6 -14
L & 21] Use the last three columns of 5 to make L unit lower triangular.
+2 =+
[ l1 i ] 1 0 0 0 0]
-2 1 -2 0 0 O
3/2 =2 1 Yo, L=(3/2 =2 1 0 0
-3 2 0 1 -3 2 0 1 0
| 4 -3 0 0 1] | 4 -3 0 0 1]
1 0 0 4 3 -5
17. L=|-1 1 0|, U=|0 -2 2| Tofind L™, use the method of Section 2.2; that is, row
2 0 1 0o o0 2
reduce [L []:
1 0 0 1 0 O 1 0 0 1 0 0
[L I]=|-1 1 0 O 1 O|~/0 1 O 1 1 of=[7 L],
2 0 1 0 0 1 0 01 -2 0 1
1 0 O
so L'=| 1 1 0].Likewise to find U ", row reduce [U I]:
-2 0 1
4 3 -5 1 0 0 30 1 0 5/2
[U I]=|0 -2 2 0 1 0|~ -2 0 0 1 -1
2 0 0 1

4 0 0 1 3/2 1 1
~0 =2 0 0 1 -1|~|0
0 0 2 0 0 1 0

0 1/4 3/8 1/4]
0 0 -1/2 1/2|=[1 U™,
1 0 0 1/2

4
0
o o0 2 0 0 1] (0 O
0
1
0

1/4  3/8 1/4

soU'=| 0 -1/2 1/2/|.Thus
0 0 1/2
1/4 3/8 1/4][ 1 0 0 1/8 3/8 1/4
A'=U"r'=| 0 -1/2 /2| 1 1 0|=[-3/2 -1/2 1/2
0 0 1/2/|-2 0 1 -1 0 1/2
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1 0 O 2 -1 2
L=|-3 1 0, U=|0 -3 4| TofindL", rowreduce[L I]:
4 -1 1 0 0 1
1 0 0 1 0 O 1 0 O 1 0 0
[L I]=|-3 1 0 0 1 Of~[0 1 0 3 1 0
4 -1 1 0 0 1 0 -1 1 -4 0 1
1 0 0 0 0
~lo 1 0 3 1 o:[l L‘l],
0 0 1 -1 1 1
1 0 0
so L= 3 1 O].Likewisetoﬁnd U™, row reduce [U I]:
-1 1 1
2 -1 2 1.0 O} |2 -1 0 1 0 =2 2 -1 0 1 0o 2
[U I]=|0 3 4 0 1 0|~/0 -3 0 0 1 —4|~/0 1 0 0 -1/3 4/3
0 0 1 0 0 1 0 0 1 0 O 1 0 0 1 0 0 1
2 0 0 I -1/3 -2/3 1 0 0 1/2 -1/6 -1/3
~0 1 0 0 -1/3 4/3|~|0 1 0 0 -1/3 4/3|=[1 U],
0 0 1 0 0 1 0 0 1 0 0 1
/2 -1/6 -1/3
soU'=| 0 -1/3 4/3|.Thus
0 0 1
/2 -1/6 -1/3)] 1 0 O /3 -1/2 -1/3
A'=UuT'r'=) 0 -1/3 4/3] 3 1 0(=|-7/3 1 4/3
0 0 Ifj-1 1 1 -1 1 1
Let 4 be a lower-triangular # X n matrix with nonzero entries on the diagonal, and consider the

augmented matrix [4 [].

The (1, 1)-entry can be scaled to 1 and the entries below it can be changed to 0 by adding multiples of
row 1 to the rows below. This affects only the first column of 4 and the first column of /. So the (2, 2)-
entry in the new matrix is still nonzero and now is the only nonzero entry of row 2 in the first #» columns
(because 4 was lower triangular).

The (2, 2)-entry can be scaled to 1, the entries below it can be changed to 0 by adding multiples of row 2
to the rows below. This affects only columns 2 and # + 2 of the augmented matrix. Now the (3, 3) entry
in 4 is the only nonzero entry of the third row in the first n columns, so it can be scaled to 1 and then
used as a pivot to zero out entries below it. Continuing in this way, 4 is eventually reduced to /, by
scaling each row with a pivot and then using only row operations that add multiples of the pivot row to
rows below.

The row operations just described only add rows to rows below, so the / on the right in [4 /] changes into
a lower triangular matrix. By Theorem 7 in Section 2.2, that matrix is A4 .
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20.

21.

22.

Let A = LU be an LU factorization for 4. Since L is unit lower triangular, it is invertible by Exercise 19.
Thus by the Invertible Matrix Theroem, L may be row reduced to /. But L is unit lower triangular, so it
can be row reduced to / by adding suitable multiples of a row to the rows below it, beginning with the top
row. Note that all of the described row operations done to L are row-replacement operations. If
elementary matrices £, E», ... E, implement these row-replacement operations, then

E,.EEA=(E,. EE)LU=IU=U
This shows that 4 may be row reduced to U using only row-replacement operations.

(Solution in Study Guide.) Suppose A = BC, with B invertible. Then there exist elementary matrices
E\, ..., E, corresponding to row operations that reduce B to /, in the sense that £, ... E\B = 1. Applying
the same sequence of row operations to 4 amounts to left-multiplying 4 by the product E, ... E;. By
associativity of matrix multiplication.

E,.EA=E,. EBC=IC=C
so the same sequence of row operations reduces 4 to C.

First find an LU factorization for 4. Row reduce A4 to echelon form using only row replacement
operations:

@ -4 2 3] [2 -4 =2 3] [2 -4 - 3] [2 -4 -2 3]

6 9 -5 8/ |0 ® 1 -1] |0 -1} |0 3 1 -1
A=| 2 -7 -3 9|~|0 -3 -1 6/|~|0 @ ~lo0 0o o0 s5|=U
4 =2 =2 -1 |0 6 2 -7| |0 0 0
-6 3 3 4] |0 -9 -3 13| |0 10/ ([0 0 0 0

\S]

S O O W
S O O =
|
(9}
[w)
S

then follow the algorithm in Example 2 to find L. Use the last two columns of /5 to make L unit lower
triangular.

4 6|5
|1—6] (-9 10

+2 =3 =5

bl
! ] 1 0 0 0 O]
3 1 3 0 0 O
1 -1 1 , L= 1 -1 0 0
2 2 -1 1 2 2 -1 1 0
3 3 20 1] [-3 3 2 0 1

Now notice that the bottom two rows of U contain only zeros. If one uses the row-column method to find
LU, the entries in the final two columns of L will not be used, since these entries will be multiplied zeros
from the bottom two rows of U. So let B be the first three columns of L and let C be the top three rows of
U. That is,
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10 0
3 0 2 4 2 3
B=| 1 -1 1,c={0 3 1 -1
2 2 -l 0 0 0 5
3 3 2]

Then B and C have the desired sizes and BC = LU = A. We can generalize this process to the case where
Ainm xn, A= LU, and U has only three non-zero rows: let B be the first three columns of L and let C be
the top three rows of U.

23. a. Express each row of D as the transpose of a column vector. Then use the multiplication rule for
partitioned matrices to write

Fal

A=CD=[¢, ¢, ¢ ¢, =¢d] +c,d] +edl +e,d!

d
dg

which is the sum of four outer products.

b. Since 4 has 400 x 100 = 40000 entries, C has 400 x 4 = 1600 entries and D has 4 x 100 = 400 entries,
to store C and D together requires only 2000 entries, which is 5% of the amount of entries needed to
store A4 directly.

24. Since Q is square and Q'Q = I, O is invertible by the Invertible Matrix Theorem and O ' = Q". Thus 4 is
the product of invertible matrices and hence is invertible. Thus by Theorem 5, the equation 4x =b has a
unique solution for all b. From Ax = b, we have ORx = b, O’ORx = Q'b, Rx = Q'b, and finally
x=R"'Q"b. A good algorithm for finding x is to compute O’b and then row reduce the matrix [ R Q'b ].
See Exercise 11 in Section 2.2 for details on why this process works. The reduction is fast in this case
because R is a triangular matrix.

25. A=UDV".Since Uand V" are square, the equations U’ U=1Iand V' V=T imply that U and " are
invertible, by the IMT, and hence U'=U"and (VT)*l = V. Since the diagonal entries o,,...,0, in D are
nonzero, D is invertible, with the inverse of D being the diagonal matrix with o7 ' 0, 'on the diagonal.

Thus 4 is a product of invertible matrices. By Theorem 6, 4 is invertible and
A'=wprHt='pD'u'=vD'U".

1 0 0
26. If A= PDP', where P is an invertible 3 x 3 matrix and D is the diagonal matrix D=|0 1/2 0
0 0 1/3

Then 4% =(PDP"\(PDP™")=PD(P"'P)DP™' = PDIDP™' = PD*P™" and since

1 0 o1 0 0 1 0 0 1 0 0
D*=|0 1/2 0o 1/2 ol=l0 1/2° 0l=l0 1/4 0
0 0 1/3]l0 0 1/3]| |o o 1/32| |0 0 1/9

1 0 0
A=P|l0 1/4 0P
0 0 1/9
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1 0 0 1 0 0
Likewise, 4°=PD’P ' soA*=P|0 1/2° 0|P'=P/0 1/8 0P
0 0o 1/3° 0 0 1/27
1 0 0
In general, 4" = PD'P',s0 4*=P|0 1/2* 0[P
0 0 1/3

First consider using a series circuit with resistance R, followed by a shunt circuit with resistance R, for
the network. The transfer matrix for this network is

1oofft -rR] [ 1 R,
~1/R, 1][0 1 | |-1/R, (R +R)/R,

For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must
satisfy

1 R, 12] 12-6R, [
~1/R, (R +R)/R, || 6| |(~12+6R +6R,)/R,| |4

Equate the top entries and obtain R, = %ohm. Substitute this value in the bottom entry and solve to

obtain R, =%0hms. The ladder network is

<

Next consider using a shunt circuit with resistance R, followed by a series circuit with resistance R, for
the network. The transfer matrix for this network is

1 -R, 1 0] |(R+R)/R -R,

0 1 ||-1/R 1| | -1/R 1
For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix must
satisfy

(R +R,)/R  -R,|[12] [(2R +12R,)/R —6R,] [9
~1/R, 16| ~12/R, +6 14

Equate the bottom entries and obtain R; = 6 ohms. Substitute this value in the top entry and solve to

obtain R, :%Ohms. The ladder network is

b. i1 e R i2 i2 e g i3
! 5 1 \ 3/4 ohm |
v [} ] v [} ] V
1 | Sohms | 2 | | 3
[} ] [} ]
[} ] [} ]
| SR - | SRR o |
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28. The three shunt circuits have transfer matrices
1 o] 1 0] 1 0]
, , and
|-1/R, 1]|-l/R, 1] | -1/R; 1]
respectively. To find the transfer matrix for the series of circuits, multiply these matrices

1 o[ 1 0] 1 0] 1 0

, and =
| -1/Ry 1]|-1/R, 1] -U/R 1] |-(1/R +1/R, +1/Ry) 1

b

Thus the resulting network is itself a shunt circuit with resistance 1/R, +1/R, +1/R;.

0
29. a. The first circuit is a shunt circuit with resistance R; ohms, so its transfer matrix is { UR J . The
- 1

. .o . . . . . . .. YY) .
second circuit is a series circuit with resistance R, ohms, so its transfer matrix is {0 { } The third

circuit is a shunt circuit with resistance R; ohms so its transfer matrix is { 1} .The transfer
—liy

matrix of the network is the product of these matrices, in right-to-left order:

1ot R 1 0] (R +R,) /R, ~R,
~1/R, 1)|0 1 ||-1/R, 1| |—~(R+R,+R)/RR,) (R,+R;)/R,

b. To find a ladder network with a structure like that in part (a) and with the given transfer matrix 4, we

4/3 12| (R, +R))/R, -R,
-1/4 3 }_{—(Rl +R +R)/R, (R, +R3)/Rj
From the (1, 2) entries, R, = 12 ohms. The (1, 1) entries now give (R, +12)/R, =4/3, which may be
solved to obtain R, = 36 ohms. Likewise the (2, 2) entries give (R; +12)/R, =3, which also may be
solved to obtain R; = 6 ohms. Thus the matrix 4 may be factored as

1 0|1 =R, 1 0 1 o1 -12 1 0 )
A= = . The ladder network is
-1/R; 1]/0 1 -1/R, 1 -1/6 110 1 ||-1/36 1

must find resistances R;, R», and R; such tha A = {
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The transfer matrix of this network is the product of the individual transfer matrices, in right-to-left

4 1 -R, 1 0|1 -R (R, +R))/R, —R,—R(R,+Ry)/R,
order. =

0 1 ||-1/R, 1[0 1 -1/R, (R +R))/R,

By setting the matrix 4 from the previous exercise equal to this matrix, one may find that

(Ry+Ry)/R, —Ry—R(R,+Ry)/R, | | 43 -12

~1/R, (R, +Ry)/R, |-1/4 3

Set the (2, 1) entries equal and obtain R, = 4 ohms. Substitute this value for R,, equating the (2, 2) entries
and solving gives R; = 8 ohms. Likewise equating the (1, 1) entries gives R; = 4/3 ohms.

The ladder network is

Note: The Study Guide’s MATLAB box for Section 2.5 suggests that for most LU factorizations in this
section, students can use the gauss command repeatedly to produce U, and use paper and mental
arithmetic to write down the columns of L as the row reduction to U proceeds. This is because for Exercises
7—16 the pivots are integers and other entries are simple fractions. However, for Exercises 31 and 32 this is
not reasonable, and students are expected to solve an elementary programming problem. (The Study Guide
provides no hints.)

31. [M] Store the matrix 4 in a temporary matrix B and create L initially as the 88 identity matrix. The
following sequence of MATLAB commands fills in the entries of L below the diagonal, one column at a
time, until the first seven columns are filled. (The eighth column is the final column of the identity
matrix.)

L(2:8,1) = B(2:8,1)/B(1, 1)
B = gauss (B, 1)
L(3:8,2) = B(3:8, 2)/B(2, 2)
B = gauss (B, 2)

L(8:8,7) = B(8:8,7)/B(7,7)
U = gauss(B,7)
Of course, some students may realize that a loop will speed up the process. The for..end syntax is
illustrated in the MATLAB box for Section 5.6. Here is a MATLAB program that includes the initial
setup of B and L:
B = A
L eye (8)
for j=1:7
L(j+1:8, j) = B(j+1:8, j)/B(3, 3)
B = gauss (B, j)
end
U =B

a. To four decimal places, the results of the LU decomposition are
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!
-.25
-.25

- 0
0
0
0

| 0

4
0
0

. 0
0
0
0
0

0 0 0 0 0 0 0
1 0 0 0 0 0 0
—.0667 1 0 0 0 0 0
-2667 -.2857 1 0 0 0 0
0 -2679 -.0833 1 0 0 0
0 0 -2917 -2921 1 0 0
0 0 0 -2697 -.0861 1 0
0 0 0 0 —-2948 -2931 1|
-1 -1 0 0 0 0 0 |
375 =25 -1 0 0 0 0
0 3.7333 -1.0667 -1 0 0 0
0 0 3.4286  -.2857 -1 0 0
0 0 0 3.7083 -1.0833 -1 0
0 0 0 0 33919  -2921 .|
0 0 0 0 0 3.7052  -1.0861
0 0 0 0 0 0 3.3868 |

b. The result of solving Ly = b and then Ux =Yy is

x = (3.9569, 6.5885, 4.2392, 7.3971, 5.6029, 8.7608, 9.4115, 12.0431)
- 0318
.0227
.1045
.0591
3271
.1093
.0945

32.a. [M]

matrices, produce L =

2953 0866
0866 .2953
0945 .0509
0509 .0945
0318 .0227
0227 .0318
0010 .0082
1.0082 .0100

3 -1

-1 3

A=| 0 -1

0 0

0 0

.0945
.0509
3271
.1093
.1045
.0591
.0318
0227

0 0

-1 0

3 -1

-1 3

0 -1

.0509
.0945
.1093
3271
.0591
.1045
0227
.0318

.0509

- o O O O

b. Let s;+1 be the solution of Lsy.; =t, for k=0, 1, 2,
2, .... The results are

0227
0318

.0591

.1045
.1093
3271
.0509
.0945

3
0
and U=|0
0
0

.0010
.0082
0318
0227
.0945
.0509
.2953
.0866

S O O wiwe

.0082 |
.0100
0227
.0318
.0509
.0945
.0866
2953

0 O
-1 0
g
0o %
0 O

2.5

144

55 |

Solutions

. The commands shown for Exercise 31, but modified for 5x5

2-45

.... Then t;; is the solution of Uty = sy for k=0, 1,
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[10.0000 | [ 6.5556 ] [ 6.5556] [4.7407 |
15.3333 9.6667 11.8519 7.6667

s, =|17.7500 |,t, =| 10.4444 |,s, =| 14.8889 |,t, =| 8.5926 |,
18.7619 9.6667 15.3386 7.6667

[17.1636 | | 6.5556 | | 12.4121 | | 4.7407 |

[ 4.7407] [3.5988] [3.5988] [2.7922]
9.2469 6.0556 7.2551 4.7778

s, =[12.0602 |,t, =| 6.9012 |,s, =| 9.6219 |,t, =| 5.4856 |.
12.2610 6.0556 9.7210 4.7778

| 9.4222 3.5988 | | 7.3104 | 2.7922 |

2.6 SOLUTIONS

Notes: This section is independent of Section 1.10. The material here makes a good backdrop for the series
expansion of (I-C) ' because this formula is actually used in some practical economic work. Exercise 8 gives
an interpretation to entries of an inverse matrix that could be stated without the economic context.

1. The answer to this exercise will depend upon the order in which the student chooses to list the sectors.
The important fact to remember is that each column is the unit consumption vector for the appropriate
sector. If we order the sectors manufacturing, agriculture, and services, then the consumption matrix is

.10 .60 .60
C=(30 20 O
30 .10 .10

The intermediate demands created by the production vector x are given by Cx. Thus in this case the
intermediate demand is

10 .60 .60 0 60
Cx=|.30 .20 .00|{100|=]|20
30 .10 .10 0 10

2. Solve the equation x = Cx + d for d:
X, 10 .60 .60 || x, 9x, —.6x, —.6x, 0
d=x-Cx=|x, |—|.30 20 .00(x,|= —-.3x, +.8x, =118
X5 30 .10 10| x, =3x, —.1x, + .9x; 0
90 -60 -.60 0 1 0 0 3333
This system of equations has the augmented matrix| =30 .80 .00 18|~|0 1 0 35.00
-30 =10 9 O 0 0 I 1500
3333
Sox = |35.00].
15.00
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3. Solving as in Exercise 2:

X 10 .60 .60 || x, 9x, —.6x, —.6x;
d=x-Cx =|x, |—[.30 20 .00 x, |= —3x1+ 8x,
X, 30 .10 10| x4 =3x, —.1x, +. 9x3
This system of equations has the augmented matrix
90 -60 —-.60 18] [1 0 0O 40.00 40.00
-30 8 .00 O0|~[0 1 O 15.00]|, sox=|15.00
-30 —-10 90 O 0 0 1 15.00 15.00
4. Solving as in Exercise 2:
X, 10 .60 .60 || x, 9x, — —.6x;4
d=x-Cx=|x,|—-|.30 20 .00 x, |=|-3x,+. Sx2
X5 30 .10 10| x4 =3x, —.1x, + .9x;,
This system of equations has the augmented matrix
90 -60 -.60 18] [1 0 0 7333 73.33
-30 .80 .00 18(~/0 1 O 50.00(, sox=|50.00].
-30 =10 90 O 0 0 1 30.00 30.00

Note: Exercises 2—4 may be used by students to discover the linearity of the Leontief model.
., 1 =5 [50] [1.6 1][50] [110
5. x=(I-C) d= = =
-6 8] |30 1.2 2|30 120
L. [ 9 -6]]18 40/21 30/21|18 50
6. x=(/-C) 'd= = =
-5 8] [I1 25/21 45/21]11 45

. Lo [1e 1 ., 1.6 1][1] [1.6
7. a. From Exercise 5,(/ -C) " = sox,=(/-C) 'd, = =
1.2 2 1.2 210 1.2

which is the first column of (I =C)™".
o 1.6 1][51] [111.6
b. x,=/-C)"d, = =
1.2 230 121.2

50 110
c¢. From Exercise 5, the production x corressponding to d = {20}15 X= {120}'

Note that d, =d +d,. Thus
=(- C)ildz
=(I-C)"'(d+d,)
=(I-C)'d+({I-C)'d,

=X+X1
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8.

10.

11.

12.

13.

a. Given (/-C)x=d and (/ —C)Ax=Ad,
I-O)(x+Ax)=(-C)x+({-C)Ax=d+Ad
Thus x+Ax is the production level corresponding to a demand of d +Ad.

b. Since Ax =(/—C)"'Ad and Ad is the first column of 7, Ax will be the first column of (/ —C)™".

g =2 0

. Inthiscase/-C=[-3 9 -3|. Rowreduce [/ —C d] to find

-1 0 8

Z =2 .0 40.0 1 0 0 828
-3 9 -3 600|~(0 1 0 131.0|. Sox=(82.8,131.0, 110.3).
-1 .0 .8 80.0 0 0 1 1103

From Exercise 8, the (i, /) entry in (/ — C) ' corresponds to the effect on production of sector i when the
final demand for the output of sector j increases by one unit. Since these entries are all positive, an
increase in the final demand for any sector will cause the production of all sectors to increase. Thus an
increase in the demand for any sector will lead to an increase in the demand for all sectors.

(Solution in study Guide) Following the hint in the text, compute p’x in two ways. First, take the
transpose of both sides of the price equation, p = C"p + v, to obtain

p  =(C"p+v) =(C"p) +v =p"C+v"and right-multiply by x to get

px =(p'C+v)x=p’Cx+v'x

Another way to compute p’x starts with the production equation x = Cx + d. Left multiply by p” to get
p’x=p’ (Cx+d)=p"Cx+p’d. The two expression for p’x show thatp’ Cx+ v x=p’Cx+p’d so
v’x = p’d. The Study Guide also provides a slightly different solution.

Since D, =I+C+C*+..+C"" =I+C(I+C+..+C")=1+CD,,, D,,, may be found iteratively
by D, =1+CD,.
[ 0.8412 -0.0064 -0.0025 -0.0304 -0.0014 -0.0083 —0.1594]
-0.0057  0.7355 -0.0436 -0.0099 -0.0083 -0.0201 -0.3413
-0.0264 -0.1506  0.6443 -0.0139 -0.0142 -0.0070 -0.0236
[M] The matrix / — Cis| —=0.3299 —-0.0565 —0.0495  0.6364 -0.0204 —-0.0483 —0.0649 |so

-0.0089 -0.0081 -0.0333 -0.0295  0.6588 —0.0237 —0.0020
-0.1190 -0.0901 -0.0996 -0.1260 -0.1722  0.7632 -0.3369
| —0.0063 —-0.0126 -0.0196 -0.0098 -0.0064 —0.0132  0.9988

the augmented matrix [/ —C d] may be row reduced to find
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[ 0.8412
-0.0057
—0.0264
-0.3299
—0.0089
—0.1190
| —0.0063
10

S O O o o O
S O O O =

0

S O O = O O

0

—-0.0064

0.7355
-0.1506
—0.0565
—0.0081
-0.0901
-0.0126

S O = O O

0

S = O O O O

0

-0.0025
—-0.0436

0.6443
—-0.0495
—-0.0333
-0.0996
—-0.0196

-_- o O O O O

0

0
0
0
0
0
0
1

~0.0304
—0.0099
—0.0139
0.6364
-0.0295
—0.1260
-0.0098
99576 |
97703
51231
131570
49488
329554
13835 |

-0.0014
—0.0083
-0.0142
-0.0204

0.6588
-0.1722
—-0.0064

—-0.0083
-0.0201
-0.0070
—0.0483
—-0.0237

0.7632
-0.0132

—-0.1594
—-0.3413
—-0.0236
—-0.0649
—-0.0020
-0.3369

0.9988

2.6

74000 |
56000
10500
25000
17500
196000

5000 |

Solutions

2-49

so x = (99576, 97703, 51321, 131570, 49488, 329554, 13835). Since the entries in d seem to be accurate

to the nearest thousand, a more realistic answer would be x = (100000, 98000, 51000, 132000, 49000,

330000, 14000).

14. [M] The augmented matrix [/ —C d] in this case may be row reduced to find
-0.0025

[ 0.8412
—0.0057
—0.0264
—0.3299
—0.0089
—0.1190
| —0.0063

1 0

l
S O O o O
S O O O =

0 0

S O O = O O

0

—-0.0064

0.7355
—-0.1506
—0.0565
—0.0081
-0.0901
-0.0126

0

S O O = O O

S = O O O O

0

—-0.0304

—-0.0436 —0.0099

0.6443
—0.0495
—-0.0333

-0.0139
0.6364
—-0.0295

-0.0996 —0.1260

—-0.0196

S = O O O O O

0
0
0
0
0
0
1

—-0.0098

134034 |
131687
69472
176912
66596
443773
18431 |

—-0.0014
—0.0083
-0.0142
—-0.0204

0.6588
-0.1722
—-0.0064

—0.0083
—-0.0201
-0.0070
—0.0483
—-0.0237

0.7632
-0.0132

—-0.1594
—-0.3413
-0.0236
-0.0649
-0.0020
-0.3369

0.9988

99640 |
75548
14444
33501
23527
263985

6526

so x = (134034, 131687, 69472, 176912, 66596, 443773, 18431). To the nearest thousand, x = (134000,
132000, 69000, 177000, 67000, 444000, 18000).
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15. [M] Here are the iterations rounded to the nearest tenth:

x? =(74000.0, 56000.0, 10500.0, 25000.0, 17500.0, 196000.0, 5000.0)
x =(89344.2, 77730.5, 26708.1, 72334.7, 30325.6, 265158.2, 9327.8)
x? =(94681.2, 87714.5, 37577.3,100520.5, 38598.0, 296563.8, 11480.0)
x® =(97091.9, 92573.1, 43867.8, 115457.0, 43491.0, 312319.0, 12598.8)
x¥ =(98291.6, 95033.2, 47314.5, 123202.5, 46247.0, 320502.4, 13185.5)
x® =(98907.2, 96305.3, 49160.6, 127213.7, 47756.4, 324796.1, 13493.8)
x® =(99226.6, 96969.6, 50139.6, 129296.7, 48569.3, 327053.8, 13655.9)
x" =(99393.1, 97317.8, 50656.4, 130381.6, 49002.8, 328240.9, 13741.1)
x® =(99480.0, 97500.7, 50928.7, 130948.0, 49232.5, 328864.7, 13785.9)
x? =(99525.5,97596.8, 51071.9, 131244.1, 49353.8, 329192.3, 13809.4)
x" = (99549 .4, 97647.2, 51147.2,131399.2, 49417.7, 329364.4, 13821.7)
x" =(99561.9, 97673.7, 51186.8, 131480.4, 49451.3, 329454.7, 13828.2)
x"? =(99568.4, 97687.6, 51207.5, 131523.0, 49469.0, 329502.1, 13831.6)

so x1? is the first vector whose entries are accurate to the nearest thousand. The calculation of x'? takes

about 1260 flops, while the row reduction above takes about 550 flops. If C is larger than 20 x 20, then
fewer flops are required to compute x"'? by iteration than by row reduction. The advantage of the
iterative method increases with the size of C. The matrix C also becomes more sparse for larger models,
so fewer iterations are needed for good accuracy.

2.7 SOLUTIONS

Notes: The content of this section seems to have universal appeal with students. It also provides practice with
composition of linear transformations. The case study for Chapter 2 concerns computer graphics — see this
case study (available as a project on the website) for more examples of computer graphics in action. The
Study Guide encourages the student to examine the book by Foley referenced in the text. This section could
form the beginning of an independent study on computer graphics with an interested student.

1. Refer to Example 5. The representation in homogenous coordinates can be written as a partitioned matrix

A 0
of the form L)T J, where A 1s the matrix of the linear transformation. Since in this case

|
= {O J , the representation of the transformation with respect to homogenous coordinates is
1 25 0
0 1 0
0 0 1
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A 0 X
Note: The Study Guide shows the student why the action of L)T J on the vector L} corresponds to the

action of 4 on x.

-1

2. The matrix of the transformation is A :{ J , 5o the transformed data matrix is

-1 0[5 2 4] [-5 2 -4
AD: =
{01}{023}{0 2 3}

Both the original triangle and the transformed triangle are shown in the following sketch.

272 =272 0 V272 272 2

1 0 3
3. Following Examples 4-6, [~2/2  ~2/2 00 1 1|=[v2/2 272 242
0 0 110 0 1 0 0 1

L 0 Ofj1 0 =2 g 0 -16
4.0 12 00 1 3|=/0 12 3.6
0 0 1)(0 O 0 o0 1

(32 -2 olrr o ol [N3/2 12 0
5.1 12 J3/2 ollo -1 ol=| 172 =3/2 0

0 0 10 0 1] 0 0
1o ollv3/2 -12 ol [V3/2  -1/2 0]
6.10 -1 0ol 172 3/2 o0l=|-1/2 —3/2 0

0o o0 1y} O 0 1 0 0 1

7. A 60° rotation about the origin is given in homogeneous coordinates by the matrix
1/2 —3/2 0

V372 1/2 0. To rotate about the point (6, 8), first translate by (—6, —8), then rotate about the
0 0 1

origin, then translate back by (6, 8) (see the Practice Problem in this section). A 60° rotation about (6, 8)
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10.

is thus given in homogeneous coordinates by the matrix

10 6]l 172 =B/2 01 o 6 1/2 —3/2 3+43
0 1 8|[\3/2 /2 ol[o 1 -8|=[3/2  1/2 4-33
0 0 1 0 0 1|0 0 1 0 0 1

. A 45° rotation about the origin is given in homogeneous coordinates by the matrix

V272 =272 0

V272 \2/2 0. To rotate about the point (3, 7), first translate by (-3, —7), then rotate about the
0 0 1

origin, then translate back by (3, 7) (see the Practice Problem in this section). A 45° rotation about (3, 7)
is thus is given in homogeneous coordinates by the matrix

o 31vV2/2 272 olrp o 31 [V2/2 V272 3+242

1
0 1 7||v2/2 272 ollo 1 —7|=|V2/2 2/2 7-5{2
0 0 1 0 0 1/0 o 1 0 0 1

To produce each entry in BD two multiplications are necessary. Since BD is a 2 X 200 matrix, it will take
2x2x200 =800 multiplications to compute BD. By the same reasoning it will take 2x2x200= 800
multiplications to compute A(BD). Thus to compute A(BD) from the beginning will take 800 + 800 =
1600 multiplications.

To compute the 2 X2 matrix AB it will take 2X2x2 =8 multiplications, and to compute (4B)D it will
take 2x2x200=_800 multiplications. Thus to compute (4B)D from the beginning will take

8 + 800 = 808 multiplications.

For computer graphics calculations that require applying multiple transformations to data matrices, it is
thus more efficient to compute the product of the transformation matrices before applying the result to
the data matrix.

Let the transformation matrices in homogeneous coordinates for the dilation, rotation, and translation be
called respectively D, and R, and T. Then for some value of s, ¢, A, and &,

s 0 0 cosp —sing 0 1 0 &
D=0 s O|,R=|sing <cos¢p 0|, T=[0 1 %k
0 0 1 0 0 1 0 0 1

Compute the products of these matrices:
scosp —ssing 0 scosp —ssing 0
DR=|ssing scos¢p 0|, RD=|ssing scos¢p O],
0 0 1 0 0 1
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s 0 sh s 0 h
DT=|0 s sk|,TD=|0 s k]|,
0 0 1 0 0 1
cos@ —sing hcos@—ksing cos@p —sing h

RT =|sing cos@ hsing+kcose|,TR=|singp cos@p k
0 0 1 0 0 1

Since DR =RD, DT # TD and RT # TR, D and R commute, D and T do not commute and R and 7 do not
commute.

To simplify 4,4, completely, the following trigonometric identities will be needed:

1. —tang@cosp = —%cos(ﬂ =—sing

_ . _ 1 __ sing - _l-sin’¢p _ cos’g
2. secqp tan¢)sm¢7——cow s SINQ = —2TE =

=cosQ
Using these identities,
secp —tang O 1 0 0 secp—tan@sing —tan@cosep O
A4 = 0 1 Ofsing cosp Of= sin @ cos @ 0
0 0 1 0 0 1 0 0 1

cosp —sing 0
=|sing cosg 0|, which is the transformation matrix in homogeneous coordinates for a rotation in
0 0 1

RZ
To simplify this product completely, the following trigonometric identity will be needed:
l-cosp  sing

tang/2 =—
sin@ 1+ cos@

This identity has two important consequences:

1—cos¢

1-(tang@/2)(sing)=1- sing =cos @
sin@

(cos@)(—tan@/2)—tan@/2 =—(cos@ +1)tan@/2 =—(cos@ +1)
1+cos@

=—sin@

The product may be computed and simplified using these results:
1 —tang/2 0 1 0 0 —tan@/2 0
0 1 Ollsinp 1 O 1 0
0 0 L) O 0 1 0 1

—_

0 1 0
0 0 1

= sin@ 1

0

0
1-(tang/2)(singp) —tang@/2 O 1 —tan@/2 0

0

0 0 1
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13.

14.

15.

16.

[cosp —tang/2 01 —tanp/2 0 cosp (cos@)(—tang/2)—tangp/2 0
=| sin@ 1 010 1 0|=|sing —(sin@)(tang/2)+1 0
0 0 1](0 0 1 0 0 1

[cosp —sing 0
=|sing cos¢ 0|, which is the transformation matrix in homogeneous coordinates for a rotation in
0 0 1

RZ

Consider first applying the linear transformation on R’ whose matrix is 4, then applying a translation by
the vector p to the result. The matrix representation in homogeneous coordinates of the linear

transformation is { }, while the matrix representation in homogeneous coordinates of the

OT

translation is [OT } Applying these transformations in order leads to a transformation whose matrix

o , | Lopj4 0 14 p| , ,
representation in homogeneous coordinates is o 1ler 1 = o 1 which is the desired matrix.

172 —3/2 3+4/3

The matrix for the transformation in Exercise 7 was found to be \/5 /2 1/2 4- 3\/5 This matrix
0 0 1

172 =372 [3+43
NEYS IR V5 I PO N Y

I pijl4 0
written as L)T JL}T , that is, the composition of a linear transformation on R* and a translation.

The matrix 4 is the matrix of a rotation about the origin in R*. Thus the transformation in Exercise 7 is

3+43
4-33 |

Since (X, Y, Z, H)=(3,—4,1,2;), the corresponding point in R’ has coordinates

(x Z)_(iﬁé)_
VI )T

The homogeneous coordinates (1, -2, 3, 4) represent the point (1/4, —2/4,3/4)=(1/4,-1/2,3/4)

A
is of the form L)T T}, where 4 = { } . By Exercise 13, this matrix may be

the composition of a rotation about the origin and a translation by p = [

1 _1 1
%9%:% = (12,_6,3)
24 24 24

while the homogeneous coordinates (10, —20, 30, 40) represent the point
(10/40, -20/40,30/40)=(1/4,-1/2,3/4)

so the two sets of homogeneous coordinates represent the same point in R*.
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Follow Example 7a by first constructing that 3 X3 matrix for this rotation. The vector e; is not changed
by this rotation. The vector e, is rotated 60° toward the positive z-axis, ending up at the point (0, cos 60°,

sin 60°) = (0,1/2, NEY. 2). The vector e; is rotated 60° toward the negative y-axis, stopping at the point
(0, cos 150°, sin 150°) = (0, —\/5/2, 1/2). The matrix A for this rotation is thus

1 0 0
A=|0 1/2 —J3/2|. soin homogeneous coordinates the transformation is represented by the
0 32 1/2
1 0 0 0
mam{A 0}: 0 1/2 —3/2 0
0" 1) jo 32 12 0
0 0 0 1

First construct the 3 X3 matrix for the rotation. The vector e, is rotated 30° toward the negative y-axis,

ending up at the point (cos(-30)°, sin (-=30)°, 0) = (\/5 /2,-1/2,0). The vector e, is rotated 60° toward

the positive x-axis, ending up at the point (cos 60°, sin 60°, 0) =(1/2, J3/2, 0). The vector e; is not
Y32 12 0

changed by the rotation. The matrix 4 for the rotation is thus 4 =| —1/2 32 0 , SO In

0 0 1
J3i2 12 0 0
A 0 _
homogeneous coordinates the rotation is represented by the matrix{ . J= /2 3720 0
0 0 1 0
0 0 0 1
Following Example 7b, in homogeneous coordinates the translation by the vector (5, —2, 1) is represented
1 0 0 5
. 1 0 - .. .
by the matrix 0 o0 1 | . Thus the complete transformation is represented in homogeneous
0 0 0 1
10 0 5]V3/2 1/2 0 0] |[V3/2 1/2 0 5
0 1 0 2| - - _
coordinates by the matrix /2 3720 0 -| “I/2 V3720 2.
0 0 1 1 0 0 1 0 0 0 1 1
0 0 0 I 0 0 0 1 0 00 1

Referring to the material preceding Example 8 in the text, we find that the matrix P that performs a

1 0 0 0

. S . . .10 0 0
perspective projection with center of projection (0, 0, 10) is o 0 0 ol

0 0 -1 1
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The homogeneous coordinates of the vertices of the triangle may be written as (4.2, 1.2, 4, 1), (6,4, 2, 1),

42 6 2
. .| 1.2 . .
and (2, 2, 6, 1), so the data matrix for S is and the data matrix for the transformed triangle
1 1 1
1 0 0 042 6 2 42 6 2
10 1 0 0|12 4 2 1.2 4 2 . ) .
18 = . Finally, the columns of this matrix may be converted
0 0 0 0 4 2 6 0 0 0
0 0 -1 1 1 1 1 6 8 4

from homogeneous coordinates by dividing by the final coordinate:
(42,1.2,0,.6)—>(4.2/.6,1.2/.6,0/.6)=(7, 2,0)

(6,4,0,.8) —(6/.8,4/8,0/.8) =(7.5,5,0)

2,2,0,4) —(2/.4,2/4,0/.4)=(5,5,0)

So the coordinates of the vertices of the transformed triangle are (7, 2, 0), (7.5, 5, 0), and (5, 5, 0).

1 0 0 0
. . . . . . .. .10 1 0
20. As in the previous exercise, the matrix P that performs the perspective projection is 0 0 0
0 0 -1 1
The homogeneous coordinates of the vertices of the triangle may be written as (9, 3, -5, 1), (12, 8, 2, 1),

9 12 1.8

3 8 27
and (1.8, 2.7, 1, 1), so the data matrix for S is s o | and the data matrix for the transformed

I 1 1
1 0 0 0 9 12 18 9 12 1.8
0 1 0 o) 3 8 27 3 8 2
triangle is = . Finally, the columns of this matrix may
0 0 0)l-5 2 1 0 0 0

0 0 -1 1| 1 1 1 1.5 8 9
be converted from homogeneous coordinates by dividing by the final coordinate:
9,3,0,1.5) —(9/1.5,3/1.5,0/1.5)=(6, 2, 0)
12,8,0,.8) —(12/.8,8/.8,0/.8)=(15,10, 0)
(1.8,2.7,0,.9)—>(1.8/.9,2.7/.9,0/.9)=(2, 3, 0)
So the coordinates of the vertices of the transformed triangle are (6, 2, 0), (15, 10, 0), and (2, 3, 0).
21. [M] Solve the given equation for the vector (R, G, B), giving
R 61 29 15T'[x 22586 —1.0395 -3473| X
G|=|.35 .59 .063 Y |=]-1.3495 23441 0696 || Y
B .04 12 787 Z 0910 -3046 1.2777| Z

Copyright © 2016 Pearson Education, Inc.



2.8 + Solutions 2-57

22. [M] Solve the given equation for the vector (R, G, B), giving
R 299 587 1141y 1.0031 9548 6179 Y
G|=].596 -275 =321 I|=] 9968 —-2707 -.6448| I
B 212 =528 311| | Q 1.0085 —1.1105 1.6996 || QO

2.8 SOLUTIONS

Notes: Cover this section only if you plan to skip most or all of Chapter 4. This section and the next cover
everything you need from Sections 4.1-4.6 to discuss the topics in Section 4.9 and Chapters 57 (except for
the general inner product spaces in Sections 6.7 and 6.8). Students may use Section 4.2 for review, particu-
larly the Table near the end of the section. (The final subsection on linear transformations should be omitted.)
Example 6 and the associated exercises are critical for work with eigenspaces in Chapters 5 and 7. Exercises
31-36 review the Invertible Matrix Theorem. New statements will be added to this theorem in Section 2.9.

Key Exercises: 5-20 and 23-26.

1. The set is closed under sums but not under multiplication
by a negative scalar. A counterexample to the subspace
condition is shown at the right.

(-u

Note: Most students prefer to give a geometric counterexample, but some may choose an algebraic calcu-
lation. The four exercises here should help students develop an understanding of subspaces, but they may be
insufficient if you want students to be able to analyze an unfamiliar set on an exam. Developing that skill
seems more appropriate for classes covering Sections 4.1-4.6.

2. The set is closed under scalar multiples but not sums.
For example, the sum of the vectors u and v shown
here is not in H.

\' u+v
3.  No. The set is not closed under sums or scalar multiples. The subset / u” 3
consisting of the points on the line x, = x; is a subspace, so any / v Uty
“counterexample” must use at least one point not on this line.
Here are two counterexamples to the subspace conditions:
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4. No. The set is closed under sums, but not under multiplication by a
negative scalar.

5. The vector w is in the subspace generated by v, and v, if and
only if the vector equation x,v; + x,v, = w is consistent. The row
operations below show that w is not in the
subspace generated by v; and v,.

2 4 8] [2 -4 8] [@ -4 8
[v, v, wl~| 3 =5 2|~|0 1 -10|~l0 @ -10
-5 8 -9/ |0 =2 11| [0 0

-

/ ‘
(-Du

6. The vector u is in the subspace generated by {vi, v,, v3} if and only if the vector equation x;v; + x,v, +
X3v3 = u is consistent. The row operations below show that u is not in the subspace generated by

{V13V25V3}'
1 4 5 411 4 5 41 [ 4
-2 -7 -8 10| |0 1 2 2 |0 @©
[vi v, v5 u]~ ~ ~
4 9 6 7| |0 =7 -14 9] |0 0
3 7 5 =50 10 -5 -10 7] |0 0

S O N W

—4
2

®

17

Note: For a quiz, you could use w = (1, -3, 11, 8), which is in Span{vy, v,, v3}.

7. a. There are three vectors: vy, v, and v; in the set {vy, v, v3}.
b. There are infinitely many vectors in Span{vy, v, v;} = Col 4.

¢. Deciding whether p is in Col A4 requires calculation:

(2 -3 —4 6] [2 3 -4 6] [ -3
[4 p]~|-8 8 6 -10(~|0 -4 -10 14|~|0 &
6 -7 -7 11| |0 2 5 =71 ]0 0 0

The equation 4x = p has a solution, so p is in Col 4.

(3 2 0 11 [3 =2 0 1713 =2 o
8.[4 pl=| 0 2 -6 14|~ 0 2 -6 14|~ 0 Q@ -6
6 3 3 9/ |0 -1 3 -7 0 0 0

Yes, the augmented matrix [4

—4
-10 1

1
14
0

6
4
0

p] corresponds to a consistent system, so p is in Col 4.

9. To determine whether p is in Nul 4, simply compute Ap. Using 4 and p as in Exercise 7,

2 3 4 6 -2
Ap=|-8 8 6| -10|=|-62|. Since Ap # 0, p is not in Nul 4.
6 -7 7| 11 29
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11.

12.

13.
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To determine whether u is in Nul 4, simply compute 4u. Using A4 as in Exercise 7 and u = (-2, 3, 1),
-3 -2 0f-2 0
Au=| 0 2 —6| 3|=|0/|. Yes, uisin Nul 4.
6 3 3| 1 0

p=4and g =3. Nul 4 is a subspace of R* because solutions of Ax = 0 must have 4 entries, to match the
columns of 4. Col 4 is a subspace of R’ because each column vector has 3 entries.

p=3andq=4. Nul 4 is a subspace of R’ because solutions of Ax = 0 must have 3 entries, to match the

columns of 4. Col 4 is a subspace of R* because each column vector has 4 entries.

To produce a vector in Col 4, select any column of 4. For Nul 4, solve the equation Ax = 0. (Include an
augmented column of zeros, to avoid errors.)

32 1 =5 0] [3 2 1 -5 0] [3 2 -5 0
9 -4 1 7 0|~[0 2 4 -8 0|~[0 2 4 -8 0
9 2 -5 1 0| |0 -4 -8 16 0/ |0 0 0 0 O
32 1 -5 0] [ o -1 1 0] ® - xm+ ox=0
~l0 1 2 -4 of~l0 D 2 -4 0|, () + 2x; — 4xy =0
0 0 0 0 0|0 0 0 0 0 0=0

The general solution is x| = x3 — x4, and x, = —2x3 + 4x,, with x; and x, free. The general solution in
parametric vector form is not needed. All that is required here is one nonzero vector. So choose any
values for x; and x4 (not both zero). For instance, set x; = 1 and x; = 0 to obtain the vector (1, -2, 1, 0) in
Nul 4.

Note: Section 2.8 of Study Guide introduces the ref command (or rre£, depending on the technology),
which produces the reduced echelon form of a matrix. This will greatly speed up homework for students who
have a matrix program available.

14.

15.

16.

To produce a vector in Col 4, select any column of 4. For Nul 4, solve the equation Ax = 0:
1 2 3 0 1 2 3 0 1 2 3 0 0 -1/3 0
4 5 7 0|10 =3 =5 ol o 1 53 ofllo @ 53 o0
-5 -1 0 0 0 9 15 0 0 0 O 0 0 0 0 0
2 7 11 0 0 3 5 0 0 0 O 0 0 0 0 0
The general solution is x; = (1/3)x; and x, = (-=5/3) x3, with x; free. The general solution in parametric
vector form is not needed. All that is required here is one nonzero vector. So choose any nonzero value
of x;. For instance, set x; = 3 to obtain the vector (1, -5, 3) in Nul 4.

Yes. Let 4 be the matrix whose columns are the vectors given. Then 4 is invertible because its

determinant is nonzero, and so its columns form a basis for R’ by the Invertible Matrix Theorem (or by
Example 5). (Other reasons for the invertibility of 4 could be given.)

No. One vector is a multiple of the other, so they are linearly dependent and hence cannot be a basis for
any subspace.
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17. Yes. Place the three vectors into a 3x3 matrix 4 and determine whether 4 is invertible:
0 5 6 1 -7 31 [1 -7 31 [@® -7 3
A= 1 =7 3|~ 0 5 6|~|0 5 6/~[0 B 6
2 4 5] |2 4 5] |0 -10 11] [0 0 @)

The matrix 4 has three pivots, so 4 is invertible by the IMT and its columns form a basis for R* (as
pointed out in Example 5).

18. Yes. Place the three vectors into a 3%3 matrix 4 and determine whether A4 is invertible:
1 -5 771 [1 =5 7] [ -5 7
A= 1 -1 0|~l0 4 -7|~0 @ -7
2 2 -5/ 10 -8 9] |0 0 &

The matrix A has three pivots, so 4 is invertible by the IMT and its columns form a basis for R* (as
pointed out in Example 5).

19. No. The vectors cannot be a basis for R’ because they only span a plane in R*. Or, point out that the

3 6
columns of the matrix | =8 2 | cannot possibly span R’ because the matrix cannot have a pivot in
1 -5

every row. So the columns are not a basis for R”.
Note: The Study Guide warns students NOT to say that the two vectors here are a basis for R”.

20. No. The vectors are linearly dependent because there are more vectors in the set than entries in each
vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.

21. False. See the definition at the beginning of the section. The critical phrases “for each” are missing.
True. See the paragraph before Example 4.
True. See Theorem 12.

True. See Example 5.

e a6 o

True. See the first part of the solution of Example 8.

22.

®

False. See the definition at the beginning of the section. The condition about the zero vector is only
one of the conditions for a subspace.

True. See Example 3.
True. See Theorem 12.
False. See the paragraph after Example 4.

e 0T

False. See the Warning that follows Theorem 13.

Copyright © 2016 Pearson Education, Inc.



2.8 + Solutions 2-61

4 5 9 21 [ 2 6 -5
23. (Solution in Study Guide) A={6 5 1 12|~|0 (1) 5 -6|.The echelon form identifies
3 4 8 -3 0 0 0 O

4115
columns 1 and 2 as the pivot columns. A basis for Col 4 uses columns 1 and 2 of 4: | 6 |,| 5 |. This is not
3114

the only choice, but it is the “standard” choice. A wrong choice is to select columns 1 and 2 of the
echelon form. These columns have zero in the third entry and could not possibly generate the columns
displayed in 4.

For Nul 4, obtain the reduced (and augmented) echelon form for 4x = 0:

o -4 7 0 @) —4x3+Tx, =0

0 @ 5 -6 0. This corresponds to: @)+ Sx3 — 6x4 = 0.
10 0 0 0 O 0=0
Solve for the basic variables and write the solution of 4x = 0 in parametric vector form:
[ x, 4x, —Tx, 4 -7 41 [-7

X, —5x;+6x, =5 6 ) =5

= =X + x4 . Basis for Nul 4: ,
X3 X3 1 0
Xy Xy 0 1 0 1

Notes: (1) A basis is a set of vectors. For simplicity, the answers here and in the text list the vectors without
enclosing the list inside set brackets. This style is also easier for students. I am careful, however, to
distinguish between a matrix and the set or list whose elements are the columns of the matrix.

(2) Recall from Chapter 1 that students are encouraged to use the augmented matrix when solving Ax =0,
to avoid the common error of misinterpreting the reduced echelon form of 4 as itself the augmented matrix
for a nonhomogeneous system.

(3) Because the concept of a basis is just being introduced, I insist that my students write the parametric
vector form of the solution of Ax = 0. They see how the basis vectors span the solution space and are
obviously linearly independent. A shortcut, which some instructors might introduce later in the course, is only
to solve for the basic variables and to produce each basis vector one at a time. Namely, set all free variables
equal to zero except for one free variable, and set that variable equal to a suitable nonzero number.

3 9 =2 7] [@® -3 6 9 -3 [-2
24. A= 2 -6 4 8|~|0 0 (@ 5|.BasisforCold:| 2|| 4/.
3 -9 =2 210 0 0 O 3112
For Nul 4, obtain the reduced (and augmented) echelon form for 4x = 0:
-3 0 150 0] GD-3x, +1.50x, =0
0o o @ 125 0] This corresponds to: ®+ 1.25x4 = 0.
0 0 O 0 0 0=0

Solve for the basic variables and write the solution of 4x = 0 in parametric vector form:
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X 3x, —1.5x, 3 -1.5 31| -1.5
1 0 1 0
. n =X |[+x, . Basis for Nul 4: , .
X, -1.25x, 0 -1.25 0| ]-1.25
Xy | X4 0 1 0 1
1 4 8 3 =71 [ 4 8 0 5 1| | 4]]-3
-1 2 7 3 4/ 10 @ 5 0 -1 _ 1| |2]] 3
25. A= ~ . Basis for Col 4: , ,
2 2 9 5 5010 0 o (D 4 =201 20| 5
|3 6 9 -5 -2 0 0 0 0 O 3]16]|-5
For Nul 4, obtain the reduced (and augmented) echelon form for Ax = 0:
o =2 o0 7 0 @ - 2x + 7x5 =0
4 0] 0 25 0 -5 0 +25% = .5x5 =0
0o 0 o O 4 of G+ 4x5 =0
0 0 0 O 0 0 0=0
[l [ 25-7x | [ 2] [-7]
X, —2.5x; +.5x5 -2.5 5
Thesolution of 4x = 0in parametric vector form: | x; | = X, =x; 1 |+x5| O
Xy —4x; 0 -4
x| | X5 | | 0 | | 1]
u v

Basis for Nul 4: {u, v}.

Note: The solution above illustrates how students could write a solution on an exam, when time is precious,
namely, describe the basis by giving names to appropriate vectors found in the calculations.

3 -1 7 3 9] [® -1 7 0 6 31[-1]73
2 2 =2 7 510 @ 4 0 3 _ =2 2|7
26. A= ~ . Basis for Col 4: , ,
-5 3 4/ 10 0 o (D 1 -5 9/’|3
-2 6 3 7,10 0 0 0 O 2] 6/|3
For Nul 4,
o 3 0 25 0 () +3x +25x5 =0
0 2 0 1.5 0 + 2x + 1.5x5 = 0
[A O]N @ ) @ 3 5
00 0O 1 0 + x5 =0
000 0 00 0=0

The solution of Ax = 0 in parametric vector form:
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28.

29.

30.

31.

32.

33.

34.

3S.

36.

37.
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(x| [=3x; —2.5x; | [-3] [—2.5]
X, —2x5 —1.5x;5 -2 -1.5
Xy |= X3 =x;| 1 |+x5 0
X4 —Xs 0 —1|. Basis for Nul 4: {u, v}.
xs | | X5 | | 0 | L 1]
IS

Construct a nonzero 3x3 matrix 4 and construct b to be almost any convenient linear combination of the
columns of 4.

The easiest construction is to write a 3x3 matrix in echelon form that has only 2 pivots, and let b be any

. 3 . .
vector in R™ whose third entry is nonzero.

(Solution in Study Guide) A simple construction is to write any nonzero 3x3 matrix whose columns are
obviously linearly dependent, and then make b a vector of weights from a linear dependence relation
among the columns. For instance, if the first two columns of 4 are equal, then b could be (1, -1, 0).

Since Col 4 is the set of all linear combinations of ay, ... , a,, the set {a,, ..., a,} spans Col 4. Because
{a;, ..., a,} is also linearly independent, it is a basis for Col 4. (There is no need to discuss pivot
columns and Theorem 13, though a proof could be given using this information.)

If Col F# IR, then the columns of F do not span R’. Since F is square, the IMT shows that F is not
invertible and the equation Fx = 0 has a nontrivial solution. That is, Nul F contains a nonzero vector.
Another way to describe this is to write Nul /' # {0}.

If Nul R contains nonzero vectors, then the equation Rx = 0 has nontrivial solutions. Since R is square,
the IMT shows that R is not invertible and the columns of R do not span R°. So Col R is a subspace of
R, but Col R # R°®.

If Col O = R*, then the columns of Q span R*. Since Q is square, the IMT shows that Q is invertible

and the equation Ox = b has a solution for each b in R*. Also, each solution is unique, by Theorem 5 in
Section 2.2.

If Nul P = {0}, then the equation Px = 0 has only the trivial solution. Since P is square, the IMT shows

that P is invertible and the equation Px = b has a solution for each b in R’. Also, each solution is unique,
by Theorem 5 in Section 2.2.

If the columns of B are linearly independent, then the equation Bx = 0 has only the trivial (zero) solution.
That is, Nul B = {0}.

If the columns of 4 form a basis, they are linearly independent. This means that 4 cannot have more

columns than rows. Since the columns also span R", 4 must have a pivot in each row, which means that
A cannot have more rows than columns. As a result, 4 must be a square matrix.

[M] Use the command that produces the reduced echelon form in one step (ref or rref depending
on the program). See the Section 2.8 in the Study Guide for details. By Theorem 13, the pivot columns of
A form a basis for Col 4.
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3 -5 0 -1 31 [ 0 25 -45 35 3115
-7 9 -4 9 -1 0 1.5 25 15 -7
A= ~ @ Basis for Col 4: ,
-5 7 =2 5 -7 0 0 0 0 0 -5
3 -7 -3 4 0 0 0 0 0 0 3117
For Nul 4, obtain the solution of 4x = 0 in parametric vector form:
@ + 2.5x; — 45x4 +3.5x5 =0
Solution: {x, = =1.5x; + 2.5x, — 1.5x5

38.

X3, X, and x5 are free

x| [-2.5x%+4.5x,-35x, | [-25] [45] [-3.5]
X, —1.5x; +2.5x, —1.5x5 -1.5 2.5 -1.5
X=|x; |= X3 =x;0 1 |+x,0 0 [+x5] O | =x3u+xav+asw
Xy Xy 0 1 0
x5 | | Xs ] L 0 | L 0 1]

By the argument in Example 6, a basis for Nul 4 is {u, v, w}.

5 2 0 -8 8] [ 0o 0o 60 122
4 1 2 -8 -9/ |0 (O 0 -154 -309
[M] A= ~ .
5 1 3 190 10 0o (O -47 -9
-8 -5 6 5 0 0 0 0 0
5 2110
The pivot columns of 4 form a basis for Col 4: , , i .
=8| |-5]]6
@ + 60x4 + 122x5 = 0
ForNul 4, solve Ax=0:  (x) — 154x;, — 309x5 = 0
(x9 - 47x, — 94x5 =0
x = —60x; — 122x5
. x, = 154x, + 309x;
Solution:
X3 = 47x, + 94x;
x4 and x5 are free
(x| [-60x, —122x5] [-60] [-122]
X, 154x, +309x; 154 309
X=|x; |=| 47x,+%x; |=x,| 47 |+x5| 94 | =xsu+xsv. By the method of Example 6, a basis
Xy Xy 1 0
Xs Xs | | 0 | |1 ]

for Nul 4 is {u, v}.
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Note: The Study Guide for Section 2.8 gives directions for students to construct a review sheet for the
concept of a subspace and the two main types of subspaces, Col 4 and Nul 4, and a review sheet for the
concept of a basis. I encourage you to consider making this an assignment for your class.

2.9 SOLUTIONS

Notes: This section contains the ideas from Sections 4.4—4.6 that are needed for later work in Chapters 5-7.
If you have time, you can enrich the geometric content of “coordinate systems” by discussing crystal lattices
(Example 3 and Exercises 35 and 36 in Section 4.4.) Some students might profit from reading Examples 1-3
from Section 4.4 and Examples 2, 4, and 5 from Section 4.6. Section 4.5 is probably not a good reference for
students who have not considered general vector spaces.

Coordinate vectors are important mainly to give an intuitive and geometric feeling for the isomorphism
between a k-dimensional subspace and R*. If you plan to omit Sections 5.4, 5.6, 5.7 and 7.2, you can safely
omit Exercises 1-8 here. Exercises 1-16 may be assigned after students have read as far as Example 2.
Exercises 19 and 20 use the Rank Theorem, but they can also be assigned before the Rank Theorem is
discussed.

The Rank Theorem in this section omits the nontrivial fact about Row 4 which is included in the Rank
Theorem of Section 4.6, but that is used only in Section 7.4. The row space itself can be introduced in Section
6.2, for use in Chapter 6 and Section 7.4.

Exercises 9-16 include important review of techniques taught in Section 2.8 (and in Sections 1.2 and 2.5).
They make good test questions because they require little arithmetic. My students need the practice here.

Nearly every time I teach the course and start Chapter 5, I find that at least one or two students cannot
find a basis for a two-dimensional eigenspace!

3
1. If [X]B = {2}, then x is formed from b, and b, using

weights 3 and 2:

X=3b; + 2D, = 3{ ﬂ”[—ﬂ:[ 71}

20f [x] = [ ;

=27 [3] [11 t
x=(1)b1+3b2=(—1)[ J+3H:[2} I
X 1

} , then x is formed from b; and b, using weights —1 and 3:

3. To find ¢, and ¢, that satisfy x = ¢1b; + ¢;b,, row reduce the augmented matrix:

1 2 -3 1 -2 =3 10 7 . . .
[b; b, x]= ~ ~ . Or, one can write a matrix equation as
-4 7 7,10 -1 =5] [0 1 5
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suggested by Exercise 7 and solve using the matrix inverse. In either case,

Nl

. . 1 -3 -7
4. Asin Exercise 3, [b, b, x]= ~
-3 5 5

1 =3 471 -3 4
5.[b, b, x]=| 5 =7 10|~[0 8 -10
3 5 -7 o 4 5

-3 7 11 1 5§ 0
0|~0 22 11|~
-4 -6 7 0 14 7

2
7. Fig. 1 suggests that w = 2b; — b, and x = 1.5b; + .5b,, in which case,[w]8= [ J and [X]B

b

3
confirm [X]B, compute 1.5b, +.5b, :1.5{0}#5[

f\\\\
\\\

Figure 1

N

o

0
0

3

<
]

1/4
—5/41, [X]B
0
-5/2
1721, [x], =
0

5|

1

MK

=
o

0

g

Figure 2

Note: Figures 1 and 2 display what Section 4.4 calls B -graph paper.

8. Fig. 2 suggests that x = 2b; — b,, y = 1.5b; + b,, and z =—b, — .5b,. If so, then

[x], - {_ﬂ [v], = Bﬂ and [2], = [‘IS]TO confirm [y],, and [2], , compute

men L meon- {3

Copyright © 2016 Pearson Education, Inc.

-1
-2.5

}

[lﬂ. To



2.9 « Solutions 2-67

1 3 2 4] [O-3 2 —4
, _ -3 9 -1 5,10 0 &)-7].
9. The information 4= ~ is enough to see that columns 1, 3, and 4
2 -6 4 -3 0 0 O

-4 12 2 7 0O 0 0 o0
1 2|4
) =311-1 5

of A form a basis for Col 4: , , .

2 41 -3
-4 2 7

10.

For Nul 4, use the reduced echelon form, augmented with a zero column to insure that the equation
Ax =0 is kept in mind:

O -3 0 0 0] *@-3x =0 x| [3x, 3 3
0 0 0 0 =0 1 1
) . @ , X= i P R X, | So is
0 0 0 (O o =0 X3 0 0 0
0o 0 0 0 O X, is the free variable X4 0 0 0

a basis for Nul 4. From this information, dim Col 4 = 3 (because A4 has three pivot columns) and dim Nul
A =1 (because the equation Ax = 0 has only one free variable).

1 2 9 5 4 (D=2 9 5 4
1 -1 6 5 =3 |0 -3 0 -7
The information 4 = ~ O shows that columns 1, 2,
-2 0 -6 1 =210 0 0 (O -2
4 1 9 1 -9, [0 0 0 0 O
1| -21]|5
. 1| -1]|5
and 4 of A form a basis for Col A4: S ol 1l For Nul 4,
4 1|]1
0 3 0 0 0] () +3x =0
4 o] 0o -3 0 -7 o0 -3y —Tx=0
00 0o @D -2 of () = 2% = 0
0 0 0 0 0 O x; and x5 are free variables
(x] [ -3x | [-3] [0] (=311 0]
X, 3x;+ 7xs 3 7 317
X=|x|= X, =x;| 1|+x5]0|. BasisforNul4:| 1},| 0.
Xy 2x5 0 2 0] 2
| X5 | X5 | | 0] 1] | 0| 1]

From this, dim Col 4 = 3 and dim Nul 4 = 2.
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12.
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1 2 -5 0 1] [ 2 -5 0
. : 5 -8 4 3110 O 2 4
The information A4 = ~
3 9 9 -7 2010 0o o (D
3 10 =7 11 7 0 0 0 O
1 2 0
and 4 of 4 form a basis for Col A4: i , ; , . For Nul 4,
31110] [ 11
0 -9 0 5 0] -9 +5x=0
(4 O]No @ 2 0 3 0] (M+2y -3x5=0
o0 o0 @ 2 o (@) + 2x5 =0
0o 0 0 0 0 O x3 and x5 are free variables
[x ] [9%-5x ] [ 9] [-5] F 9|
X, —2x; + 3x; -2 3 -2
X=|x |= X =x;| 1|+x5| O BasisforNul4:| 1],
Xy —2X;5 0 -2
| Xs | X5 ] 0] 1] | 0] |

From this, dim Col 4 =3 and dim Nul 4 = 2.

1 2 -4 3 3 2 -4 3
100 -9 -7 8 0 0 -2
The information 4 = ~ @
4 8 -9 -2 7 0 0 0 0
-2 -4 5 0 -6 [0 0 0 O
1| |4 3
. 501-9 8
5 of A form a basis for Col A4: alloo || 7| For Nul 4
-2 5] -6
2 0 -5 0 0 P+ 2x, -—5x =0
(4 0 00 -2 0 0 @-2x, =0
000 o Q@ of @=0
0 0 0 0 0 O X, and x, are free variables
[x] [=2x, +5x,] 2] 5] 21T
X, X, 1 0 1
X=|x; |= 2x, =x,| O0|+x,| 2| BasisforNul4:| 0],
X, Xy 0 1 0
| X5 | 0 | 0 0 L 0] |

From this, dim Col 4 = 3 and dim Nul 4 = 2.
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13. The four vectors span the column space H of a matrix that can be reduced to echelon form:
1 3 2 4 1 3 2 -4 1 3 2 -4 -3 2 4
-3 9 -1 5 0o o0 5 -7 0o o0 5 -7 0o 0 ® -7
“lo 0o 0o s|jo 0o 0o 5/ lo 0 o0 @
-4 12 2 7 0 0 10 -9 0 0 0 5 0 0 0 0

Columns 1, 3, and 4 of the original matrix form a basis for H, so dim H = 3.

Note: Either Exercise 13 or 14 should be assigned because there are always one or two students who confuse
Col A4 with Nul 4. Or, they wrongly connect “set of linear combinations” with “parametric vector form” (of
the general solution of Ax = 0).

14. The five vectors span the column space H of a matrix that can be reduced to echelon form:
1 2 0 -1 3 1 2 0 -1 3 [ 2 o0 -1 3

-1 -3 2 4 =8/ |0 -1 2 3 -=5/|0 (=) 2 3 -5
2 -1 -6 -7 9/ |0 3 -6 -9 15/ [0 0 0 0 0
5.6 8 7 -5/ |0 -4 8 12 -200]10 0 0 0 0

Columns 1 and 2 of the original matrix form a basis for H, so dim H =2.

15. Col4= R’ because 4 has a pivot in each row and so the columns of 4 span R’. Nul 4 cannot equal

R’ , because Nul 4 is a subspace of R’°. 1t is true, however, that Nul 4 is two-dimensional. Reason: the
equation Ax = 0 has two free variables, because 4 has five columns and only three of them are pivot
columns.

16. Col A4 cannot be R’ because the columns of 4 have four entries. (In fact, Col 4 is a 3-dimensional

subspace of R**, because the 3 pivot columns of 4 form a basis for Col 4.) Since 4 has 7 columns and
3 pivot columns, the equation Ax = 0 has 4 free variables. So, dim Nul 4 = 4.

17. a. True. This is the definition of a B-coordinate vector.

b. False. Dimension is defined only for a subspace. A line must be through the origin in R" to be a
subspace of R".

¢. True. The sentence before Example 1 concludes that the number of pivot columns of 4 is the rank of
A, which is the dimension of Col 4 by definition.

d. True. This is equivalent to the Rank Theorem because rank 4 is the dimension of Col 4.
e. True, by the Basis Theorem. In this case, the spanning set is automatically a linearly independent set.

18. a. True. This fact is justified in the second paragraph of this section.
b. True. See the second paragraph after Fig. 1.

¢. False. The dimension of Nul 4 is the number of free variables in the equation Ax = 0.
See Example 2.

d. True, by the definition of rank.
e. True, by the Basis Theorem. In this case, the linearly independent set is automatically a spanning set.

19. The fact that the solution space of Ax = 0 has a basis of three vectors means that dim Nul 4 = 3. Since a
5x7 matrix A has 7 columns, the Rank Theorem shows that rank 4 =7 — dim Nul 4 = 4.
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Note: One can solve Exercises 19-22 without explicit reference to the Rank Theorem. For instance, in
Exercise 19, if the null space of a matrix 4 is three-dimensional, then the equation Ax = 0 has three free
variables, and three of the columns of 4 are nonpivot columns. Since a 5x7 matrix has seven columns, 4 must
have four pivot columns (which form a basis of Col 4). So rank 4 = dim Col 4 = 4.

20.

21.

22.

23.

24.

25

26.

27.

A 4x5 matrix 4 has 5 columns. By the Rank Theorem, rank 4 =5 — dim Nul 4. Since the null space is
three-dimensional, rank 4 = 2.

A 7x6 matrix has 6 columns. By the Rank Theorem, dim Nul 4 = 6 — rank 4. Since the rank is four, dim
Nul 4 = 2. That is, the dimension of the solution space of Ax = 0 is two.

Suppose that the subspace H = Span{vy, ..., vs} is four-dimensional. If {vy, ..., vs} were linearly
independent, it would be a basis for A. This is impossible, by the statement just before the definition of
dimension in Section 2.9, which essentially says that every basis of a p-dimensional subspace consists of
p vectors. Thus, {vy, ..., vs} must be linearly dependent.

A 3x4 matrix 4 with a two-dimensional column space has two pivot columns. The remaining two
columns will correspond to free variables in the equation 4x = 0. So the desired construction is possible.

W O * k%
There are six possible locations for the two pivot columns, one of whichis |0 B * *| A simple
0 0 0 O

construction is to take two vectors in R’ that are obviously not linearly dependent, and put two copies of
these two vectors in any order. The resulting matrix will obviously have a two-dimensional column
space. There is no need to worry about whether Nul 4 has the correct dimension, since this is guaranteed
by the Rank Theorem: dim Nul 4 = 4 — rank 4.

A rank 1 matrix has a one-dimensional column space. Every column is a multiple of some fixed vector.

To construct a 4x3 matrix, choose any nonzero vector in R, and use it for one column. Choose any
multiples of the vector for the other two columns.

. The p columns of 4 span Col 4 by definition. If dim Col 4 = p, then the spanning set of p columns is
automatically a basis for Col 4, by the Basis Theorem. In particular, the columns are linearly
independent.

If columns a,, as, as, and as of 4 are linearly independent and if dim Col 4 = 4, then {a,, a3, as, a5} is a
linearly independent set in a 4-dimensional column space. By the Basis Theorem, this set of four vectors
is a basis for the column space.

a. Start withB=[b, --- b,Jand4=[a; --- a,], where g > p. Forj=1, ..., g, the vector a; is
in W. Since the columns of B span ¥, the vector a; is in the column space of B. That is, a; = Bc; for

some vector ¢; of weights. Note that ¢; is in R” because B has p columns.

b. Let C=[¢; --- ¢,]. Then Cis a pxg matrix because each of the ¢ columns is in R”.
By hypothesis, g is larger than p, so C has more columns than rows. By a theorem, the columns of C
are linearly dependent and there exists a nonzero vector u in R’ such that Cu = 0.

¢. From part (a) and the definition of matrix multiplication 4 = [a; --- a,]=[Be; --- Bey]=BC.

From part (b), Au = (BC)u = B(Cu) = B0 = 0. Since u is nonzero, the columns of 4 are linearly
dependent.
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28. If A contained more vectors than 13, then A would be linearly dependent, by Exercise 27, because B
spans . Repeat the argument with B and A interchanged to conclude that B cannot contain more
vectors than A .

29. [M] Apply the matrix command ref or rref to the matrix [v; v, Xx]:
11 14 19 0 -1.667

5 -8 -13| |0 O 2667

10 13 18 0 0 0
7 10 15 0 0 0

The equation c;v; + c,v, = X is consistent, so x is in the subspace H. The decimal approximations suggest
¢1 =-5/3 and ¢, = 8/3, and it can be checked that these values are precise. Thus, the BB -coordinate of x is
(=573, 8/3).

30. [M] Apply the matrix command ref or rref to the matrix [v; v, v; X]:
-6 8 -9 41 [ o o0 3

4 -3 5 7110 Do 5

9 7 -8 -8/ |0 0o @ 2

4 -3 3 3 0 0 0 O

The first three columns of [v; v, v; X] are pivot columns, so vy, v, and v; are linearly independent.
Thus vy, v, and v; form a basis B for the subspace H which they span. View [v; v, v; x]asan

augmented matrix for ¢;v; + ¢,v, + ¢3v; = X. The reduced echelon form shows that x is in A and

3

[X]BZ 5.
2

Notes: The Study Guide for Section 2.9 contains a complete list of the statements in the Invertible Matrix
Theorem that have been given so far. The format is the same as that used in Section 2.3, with three columns:
statements that are logically equivalent for any m xn matrix and are related to existence concepts, those that
are equivalent only for any » xn matrix, and those that are equivalent for any n xp matrix and are related to
uniqueness concepts. Four statements are included that are not in the text’s official list of statements, to give
more symmetry to the three columns.

The Study Guide section also contains directions for making a review sheet for “dimension” and “rank.”

Chapter 2 SUPPLEMENTARY EXERCISES

1. a. True. If 4 and B are m xn matrices, then B has as many rows as 4 has columns, so AB" is defined.
Also, A’B is defined because A” has m columns and B has m rows.

b. False. B must have 2 columns. 4 has as many columns as B has rows.

¢. True. The ith row of A4 has the form (0, ..., d;, ..., 0). So the ith row of ABis (0, ..., d,, ..., 0)B, which
is d; times the ith row of B.

d. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has
nontrivial solutions, and construct C and D so that C # D and the columns of C — D satisfy the
equation Bx =0. Then B(C — D) =0 and BC = BD.
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1 0 0 0
e. False. Counterexample: 4 = and C= .
0 0 0 1

f. False. (4 + B)(4 — B) =A% — AB + BA — B*. This equals 4> — B’ if and only if 4 commutes with B.

g. True. An n*n replacement matrix has n + 1 nonzero entries. The nxn scale and interchange matrices
have n nonzero entries.

h. True. The transpose of an elementary matrix is an elementary matrix of the same type.
i. True. An nxn elementary matrix is obtained by a row operation on /,.

False. Elementary matrices are invertible, so a product of such matrices is invertible. But not every
square matrix is invertible.

Qo o

. True. If 4 is 3%3 with three pivot positions, then 4 is row equivalent to /5.
False. A must be square in order to conclude from the equation 4B = I that 4 is invertible.
.False. 4B is invertible, but (4B) ' = B'4"", and this product is not always equal to 4 'B .
. True. Given AB = BA, left-multiply by 4" to get B =A 'BA, and then right-multiply by 4" to obtain
BA'=4"B.
False. The correct equation is (r4) ' =7"'4"", because (r4)(r'4™") = (A4 =11=1

1
p. True. If the equation Ax = | 0 | has a unique solution, then there are no free variables in this equation,
0

which means that 4 must have three pivot positions (since 4 is 3x3). By the Invertible Matrix
Theorem, A is invertible.

s c=(c‘)1=i{ 7 —5}_{—7/2 5/2}

= 58 = r

e

-2|-6 4 3 2
0 0 O 0 0 0jj0 0 O 0 0 O
3. A=|1 0 0|, 4*=1 0 Of|f1 0 0|=|0 0 0
0 1 0 0 1 0jf0 1 0 1 0 0

[e)

1 0 0

0 0 oJ[o o o] [0 o

A=4-42=[1 0 0[/0 0 0|=/0 0

1 0 0| |0 0O

Next, [—A)I+A+A) =T+ A+ A — AT+ A+ A2) =1+ A+ A> - A4- A - =1-4.
Since A°=0, (I-A)I+A+A4>)=1.

4. From Exercise 3, the inverse of ] — A is probably / + A + 4>+ - - - + A" To verify this, compute
U-ADI+A++A")=T+ A+ -+ A" — AU+ A+ + A" =1-44"" =1- 4"
If A" =0, then the matrix B=1+ A4 + A>+ - -- + A" satisfies (/ — 4)B = I. Since ] — 4 and B are square,
they are invertible by the Invertible Matrix Theorem, and B is the inverse of / — A.
5. 4> =24 -1 Multiply by A: 4> = 24> — A. Substitute A* =24 —I: A =24 —1) —A=34-2I.
Multiply by 4 again: A* = 4(34 — 2I) = 34% — 24. Substitute the identity 4> = 24 — I again.
Finally, 4* =324 — 1) - 24 =44 - 31I.
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1 0 0 1 . . 2 2 0 1
6. Let A= 0 ) and B= L ol By direct computation, A =1, B =1, and AB = L 0 =—BA.

7. (Partial answer in Study Guide) Since A™'B is the solution of AX = B, row reduction of [4 B]to [I X]
will produce X = A™'B. See Exercise 12 in Section 2.2.

1 3 8|3 5 1 3 8 -3 5 1 3 8 -3 5
[4 B]=|2 4 11 1 5|~|0 =2 -5 7 =5|~|0 1 3 -6 1

1 2 5| 3 4 0 -1 3 6 -1 0 -2 -5 7 =5
1 3 8 -3 5 1 3 0 37 29 1 0 0 10 -1 10 -1
~0 1 3 -6 I[~]0 1. 0 9 10|~[0 1 0 9 10|. Thus,4'B=| 9 10].
0 01 -5 -3 0 01 -5 3 0 01 -5 3 -5 3

1 2 1 3
8. By definition of matrix multiplication, the matrix 4 satisfies AL’ 7} = [1 J.
. . . . 1 2 .
Right-multiply both sides by the inverse of 3 7| The left side becomes A. Thus,
1 3] 7 =21 [-2 1
A= = .
1 1{-3 1] 4 -1

5 4]
-2 3]

B {1 —3} . [s 4}[1 —3} [—3 13}
B = andA=(4AB)B™ = =
-2 7 -2 3|2 7 -8 27

Note: Variants of this question make simple exam questions.

7 3
9. Given AB= { and B = L J , notice that ABB™' = 4. Since det B=7 — 6 =1,

10. Since 4 is invertible, so is A”, by the Invertible Matrix Theorem. Then 4”4 is the product of invertible
matrices and so is invertible. Thus, the formula (4”4) '4” makes sense. By Theorem 6 in Section 2.2,

(ATA)*I'AT:A*I(AT)*IAT:A*II:A*l

An alternative calculation: (474)'4"-4 = (474) ' (4"4) = I. Since 4 is invertible, this equation shows that
its inverse is (474) '4".
%
11. a. Fori=1,...,np(x)=co+cx;+---+ cn_lxi”_l =row;(V)-| : |=row;(V)c.
Co1

By a property of matrix multiplication, shown after Example 6 in Section 2.1, and the fact that ¢ was
chosen to satisfy Ve=y, row;(V)e=row;(Ve)= row,;(y) =y,
Thus, p(x;) = y;. To summarize, the entries in V¢ are the values of the polynomial p(x) at xi, ..., x,.

b. Suppose xi, ..., x, are distinct, and suppose Ve = 0 for some vector ¢. Then the entries in ¢ are the
coefficients of a polynomial whose value is zero at the distinct points x, ..., x,. However, a nonzero
polynomial of degree n — 1 cannot have n zeros, so the polynomial must be identically zero. That is,
the entries in ¢ must all be zero. This shows that the columns of " are linearly independent.
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12.

13.

14.

15.

16.

17.

Matrix Algebra

¢. (Solution in Study Guide) When x, ..
(b). By the Invertible Matrix Theorem, ¥ is invertible and its columns span R". So, for every

., X, are distinct, the columns of V" are linearly independent, by

y =01, ..., y,) in R" there is a vector ¢ such that Ve =y. Let p be the polynomial whose coefficients
are listed in ¢. Then, by (a), p is an interpolating polynomial for (x1, y1), ..., (Xu, Y0)-

If A= LU, then col,(4) = L-col;(U). Since col;(U) has a zero in every entry except possibly the first,

L-col;(U) is a linear combination of the columns of L in which all weights except possibly the first are

zero. So col;(4) is a multiple of col;(L).

Similarly, coly(4) = L-coly(U), which is a linear combination of the columns of L using the first two

entries in coly(U) as weights, because the other entries in col,(U) are zero. Thus col,(4) is a linear
combination of the first two columns of L.

a. P’ = (uu”)(uu’) = u(u’u)u’ = u(l)u” = P, because u satisfies u’u = 1.
b. P'=@u’) =u"u"=uu’=pP
¢. O*=(-2P)I-2P)=1-12P)—-2PI+2P(2P)

=] — 4P + 4P* = I, because of part (a).

0
Given u=| 0 |, define P and Q as in Exercise 13 by
1
0 0 0 0] 1 00 0 0 0] [1 0 o0
P=uu’=0|0 0 1]=[0 0 0|, O9=7-2P=|0 1 0|-2(0 0 0|=[0 1 O
1 0 0 1] 0 0 1 0 0 1| |0 0 -1
1 0 0 off1] [o 1 0 o0]1 1
If x=|5|,thenPx={0 0 0 {5 =|0| and Ox= 1 0 5]{ 51.
3 0 0 1]3] |3 0 0 -1|3| |-3

Left-multiplication by an elementary matrix produces an elementary row operation:
B~EB~E,EB~E;E,E.B=C,so Bisrow equivalent to C. Since row operations are reversible, C is

row equivalent to B. (Alternatively, show C being changed into B by row operations using the inverse of
the E,‘ )

Since 4 is not invertible, there is a nonzero vector v in R" such that Av = 0. Place n copies of v into an
n*n matrix B. Then AB=A[v --- v]=[4v --- Av]=0.

Let A be a 6x4 matrix and B a 4x6 matrix. Since B has more columns than rows, its six columns are
linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = 40 = 0. This shows that the
matrix 4B is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22 in
Section 2.1.)

Note: (In the Study Guide) It is possible that BA is invertible. For example, let C be an invertible 4x4 matrix

C
and construct 4 = [ 0} and B=[C™" 0]. Then BA = L, which is invertible.
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By hypothesis, 4 is 5x3, Cis 3x5, and AC = 5. Suppose x satisfies 4x = b. Then C4Ax = Cb. Since
CA = I, x must be Cb. This shows that Cb is the only solution of Ax = b.

(4 2 3 31 .26 .30
[M] Let A=|3 .6 .3|.Then 4>=|.39 .48 .39|.Instead of computing 4> next, speed up the
|3 2 4 30 26 .31
calculations by computing
(2875 2834 2874 2857 2857 .2857
A' = AA4% =| 4251 4332 4251, A% =4"A%=|.4285 4286 .4285
|.2874 2834 2875 2857 2857 .2857
2857 2857 .2857
To four decimal places, as k increases, AF | 4286 4286 4286 |, or, in rational format,
2857 2857 .2857
(277 2/7 2/7
AF 1317 3/7 3/7).
12/7 2/7 217
[0 2 3 29 .18 .18 2119 .1998  .1998
If B=|.1 .6 3|, then B>=|.33 44 33|, B*'=|.3663 .3764 .3663|
19 2 4 38 .38 .49 4218 4218 4339
2024 2022 2022 2022 2022 2022
B®=|.3707 3709 .3707|. To four decimal places, as k increases, B¥ —|.3708 3708 3708 |,
4269 4269 4271 4270 4270 4270
18/89 18/89 18/89

or, in rational format, B —[33/89 33/89 33/89|.
38/89 38/89 38/89

[M] The 4x4 matrix A4 is the 4x4 matrix of ones, minus the 4x4 identity matrix. The MATLAB

command is A4 = ones(4) - eye(4).Fortheinverse, use inv (A4).
[0 1 1 1 -2/3  1/3  1/3  1/3
1 0 1 1 . 1/3 -2/3 1/3 1/3
4, = A=
1 1 0 1 1/3 1/3 -2/3 1/3
1111 0 1/3 1/3 1/3 -2/3
0o 1 1 1 1] [=3/4 174 1/4 1/4 1/4]
1 0 1 1 1 1/4 -3/4 1/4 1/4 1/4
A={1 1 0 1 1}, AS_1= 1/4 1/4 -3/4 1/4 1/4
1 1 1 0 1 1/4 1/4 1/4 -3/4 1/4
11 1 1 1 0] | 1/4 1/4 1/4 1/4 -3/4|
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0 1 1 1 1 1 —4/5 1/5 /5 1/5 1/5 1/5]

1 0 1 1 1 1 1/5 —-4/5 1/5 1/5 15 1/5

S R U TR U Y 1/5 1/5 -4/5 1/5 1/5 1/5
/1t 110 1 1 °° /5 1/5 1/5 -4/5 1/5 1/5
1 11 10 1 /5 15 15 1/5 —-4/5 1/5

1 11110 /5 15 U5 15 1/5 -4/5]

The construction of 4¢ and the appearance of its inverse suggest that the inverse is related to /. In fact,

At + I is 1/5 times the 6x6 matrix of ones. Let J denotes the 7 xn matrix of ones. The conjecture is:
1

n—

Proof: (Not required) Observe that J* =nJ and 4,J = (J—1)J =J > —J = (n— 1) J. Now compute

A((n=1Y'"J-D=m-1)"4,J —4,=J—(J-I)=1 Since 4, is square, 4, is invertible and its inverse
is(n—1)y"'J-1.

A,=J—1, and 4,'=

J-1,
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