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CHAPTER 1

Vector Spaces

Suppose a and b are real numbers, not both 0. Find real numbers ¢ and d
such that

1/(a + bi) = c + di.

SoLuTiON: Multiplying both the numerator and the denominator of the
left side of the equation above by a — bi gives

o b =c+di
a2 +b ’
Thus we must have

a -}
a? + b2 and d= a? 4- b2’

because a and b are not both 0, we are not dividing by 0.

COoMMENT: Note that these formulas for ¢ and d are derived under the
assumption that a + bi has a multiplicative inverse. However, we can forget
about the derivation and verify (using the definition of complex multiplica-
tion) that

. a b\
(a+ln)(a2+b2 - a2+b2z) =1

which shows that every nonzero complex number does indeed have a multi-
plicative inverse.
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Show that

-1+ 3i
2

is a cube root of 1 (meaning that its cube equals 1).

SOLUTION: Using the definition of complex multiplication, we have

-1+ 3 -1 —/3i
( 1-; 3)2= 12 3'

Thus

( 1+fz)

( ) ()

Prove that —(—v) = v for every v € V.
SOLUTION: Let v € V. By the definition of additive inverse, we have
v+ (—v)=0.

The additive inverse of —v, which by definition is —(—v), is the unique vector
that when added to —v gives 0. The equation above shows that v has this
property. Thus —(—v) = v.

COMMENT: Using 1.6 twice leads to another proof that —( —v) = v. How-
ever, the proof given above uses only the additive structure of V, whereas a
proof using 1.6 also uses the multiplicative structure.

Prove that if a€ F,v€ V,and av =0, then a = 0 or v = 0.
SOLUTION: Suppose that a € F, v G.V, and
av = (.

We want to prove that a = 0 or v = 0. If @ = 0, then we are done. So
suppose that a # 0. Multiplying both sides of the equation above by 1 /o
gives

%(av) =
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The associative property shows that the left side of the equation above equals
1v, which equals v. The right side of the equation above equals 0 (by 1.5).
Thus v = 0, completing the proof.

For each of the following subsets of F3, determine whether it is a subspace
of F3:

(a)  {(z1,72,73) € F3: 21 + 215 + 323 = 0};
(b) {(z1,72,2z3) € F?: 3y + 279 + 333 = 4};
() {(z1,72,73) € F3: 217975 = 0};
(d) {(z1,z2,73) € F3: 3) = 5x3}.
SoLuTioN: (a) Let
U = {(z1,22,23) € F?: 21 + 225 4 323 = 0}.

To show that U is a subspace of F3, first note that (0,0,0) e U, so U is
nonempty.

Next, suppose that (z;,z2,z3) € U and (¥1,%2,¥3) € U. Then

Ty + 229+ 323 =10
y1+2y2 +3y3 =0.

Adding these equations, we have
(z1 +y1) + 2(z2 + 32) + 3(z3 + y3) =0,
which means that (z; + 1,22 + y2,23 + y3) € U. Thus U is closed under
addition.
Next, suppose that (z;,z2,z3) € U and a € F. Then
T1 + 2z + 323 = 0.
Multiplying this equation by a, we have
(ax1) + 2(axs) + 3(az3) = 0,

which means that (az;,azs,azx3) € U. Thus U is closed under scalar multi-
plication.

Because U is a nonempty subset of F3 that is closed under addition and
scalar multiplication, U is a subspace of F3.
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(b) Let
U = {(z1,z2,23) € F? : 2, + 229 + 323 = 4}.

Then (4,0,0) € U but 0(4,0,0), which equals (0,0,0), is not in U. Thus U
is not closed under scalar multiplication. Thus U is not a subspace of F3.
(c) Let

U= {(.’131,322, 3:3) € F3 IT1T9T3 = O}

Then (1,1,0) € U and (0,0,1) € U, but the sum of these two vectors, which
equals (1,1,1), is not in U. Thus U is not closed under addition. Thus U is
not a subspace of F3,

(d) Let

U={(z1,z0,23) € F3: 5, = 5z3}.

To show that U is a subspace of F3, first note that (0,0, 0)eU,soUis
nonempty.
Next, suppose that (z1,z2,23) € U and (y3,y2,¥3) € U. Then

I = 51133
Y1 = Sys.
Adding these equations, we have
71+ y1 = 5(x3 + y3),

which means that (z1 + y1,22 + y2,%3 + y3) € U. Thus U is closed under
addition.
Next, suppose that (z;,z2,z3) € U and a € F. Then

I = 512;.3
Multiplying this equation by a, we have
az; = 5(azxs),

which means that (ez;,azs,az3) € U. Thus U is closed under scalar multi-
plication.

Because U is a nonempty subset of F3 that is closed under addition and
scalar multiplication, U is a subspace of F3.
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Give an example of a nonempty subset U of R2? such that U is closed under
addition and under taking additive inverses (meaning —u € U whenever
u € U), but U is not a subspace of R2.

SoLuTION: Let U = {(m,n) : m and n are integers}. Then clearly
U is closed under addition and under taking additive inverses. However,
(1,1) € U but §(1,1), which equals (3, ), is not in U, so U is not closed
under scalar multiplication. Thus U is not a subspace of R2.

Of course there are also many other examples.

Give an example of a nonempty subset U of R2 such that U is closed under
scalar multiplication, but U is not a subspace of R2.

SOLUTION: Let U be the union of the two coordinate axes in R2. More
precisely, let

U={(z,0):ze R}U{(0,y) : ¥y € R}.

Then clearly U is closed under scalar multiplication. However, (1,0) and
(0,1) are in U but their sum, which equals (1,1) is not in U, so U is not
closed under addition. Thus U is not a subspace of R2.

Of course there are also many other examples.

Prove that the intersection of any collection of subspaces of V is a subspace
of V.

SoLUTION: Suppose {Us}acr is a collection of subspaces of V; here I'
is an arbitrary index set. We need to prove that [, . Ua, which equals the
set of vectors that are in U, for every a € I, is a subspace of V.

The additive identity 0 is in U, for every a € T' (because each U, is a
subspace of V). Thus 0 € {\,¢p Ua- In particular, Naer Ua is 2 nonempty
subset of V.

Suppose u,v € [\,epUa- Then u,v. € U, for every @ € . Thus
u+v €Uy for every a € T' (because each U, is a subspace of V). Thus
u+v € (yer Ua- Thus Naer Ua is closed under addition.

Suppose u € [\,er Ua and @ € F. Then u € U, for every a € I". Thus
au € U, for every a € T (because each U, is a subspace of V). Thus
au € (yer Ua- Thus (N, Ua is closed under scalar multiplication.

Because () wcr Ua is a nonempty subset of V' that is closed under addition
and scalar multiplication, (|, Us is a subspace of V.

CoMMENT: For many students, the hardest part of this exercise is un-
derstanding the meaning of an arbitrary intersection of sets. Instructors who
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10.

11.

do not want to deal with this issue should change the exercise to “Prove that
the intersection of any finite collection of subspaces of V is a subspace of V.”
Many students will then prove that the intersection of two subspaces of V
is a subspace of V' and use induction to get the result for finite collections
of subspaces.

Prove that the union of two subspaces of V is.a subspace of V if and only if
one of the subspaces is contained in the other.

SoLUTION: Suppose U and W are subspaces of V such that UUW is a
subspace of V. We will use proof by contradiction to show that U C W or
W C U. Suppose that our desired result is false. Then U ¢ W and W ¢ U.
This means that there exists u € U such that u ¢ W and there exists w € W
such that w ¢ U. Because u and w are both in U UW, which is a subspace
of V, we can conclude that u+w e UUW. Thusu+w e U orut+w e W.

First consider the possibility that u+w € U. In this case w, which equals
(v + w) + (—u), would be in the sum of two elements of U and hence we
would have w € U, contradicting our assumption that w ¢ U.

Now consider the possibility that u+w € W. In this case u, which equals
(u + w) + (—w), would be in the sum of two elements of W and hence we
would have u € W, contradicting our assumption that u ¢ W.

The two paragraphs above show that u + w ¢ U and u+w ¢ W, con-
tradicting the final sentence of the first paragraph of this solution. This
contradiction completes our proof that U C W or W C U.

The other direction of this exercise is trivial: if we have two subspaces
of V, one of which is contained in the other, then the union of these two
subspaces equals the larger of them, which is a subspace of V.

Suppose that U is a subspace of V. What is U + U?

SoLuTION: By definition, U+U = {u+v: u,v € U}. Clearly U c U+U
because if u € U, then u equals u + 0, which expresses « as a sum of two
elements of U. Conversely, U +U C U because the sum of two elements of U
is an element of U (because U is a subspace of V). Conclusion: U +U = U.

Is the operation of addition on the subspaces of V commutative? Associa-
tive? (In other words, if Uy, Uy, Us are subspaces of V., is Uy + Us = Uy + U ?
Is(Uy + ) +Us =Uy + (Us + Us3)?)

SoLUTION: Suppose Uy, Uy, U; are subspaces of V.
A typical element of U; + U, is a vector of the form u; +u3, where u; € U;
and up € Us. Because addition of vectors is commutative, u; + uy equals
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up +uy, which is a typical element of U + U;. Thus Uy + Uy = Uy +U;. In
other words, the operation of addition on the subspaces of V' is commutative.

A typical element of (U; +Us) +Us is a vector of the form (u; 4 ug) +ua,
where u; € Uy, up € Us, and uz € Us. Because addition of vectors is
associative, (u1 + u2) + u3 equals u; + (uz + u3), which is a typical element
of Uy + (Uz + Us). Thus (Uy + Uz) + Us = Uy + (U2 + Us). In other words,
the operation of addition on the subspaces of V is associative.

Does the operation of addition on the subspaces of V have an additive
identity? Which subspaces have additive inverses?

SoLuTION: The subspace {0} is an additive identity for the operation
of addition on the subspaces of V. More precisely, if U is a subspace of V,
then U+ {0} = {0} +U =U.

For a subspace U of V' to have an additive inverse, there would have to
be another subspace W of V such that U + W = {0}. Because both U/ and
W are contained in U + W, this is possible only if U = W = {0}. Thus {0}
is the only subspace of V that has an additive inverse.

Prove or give a counterexample: if Uy, U, W are subspaces of V such that
Ui+ W=U+W,
then Uy = Us.

SoLuTION: To construct a counterexample for the assertion above,
choose V' to be any nonzero vector space. Let U, = {0}, Uy = V, and
W =V. Then U; + W and U; + W are both equal to V, but U, # Us.

Of course there are also many other examples.

Suppose U is the subspace of P(F) consisting of all polynomials p of the
form

p(2) = az? + b25,
where ¢,b € F. Find a subspace W of P(F) such that P(F) =U & W.

SOLUTION: Let W be the set of all polynomials (with coefficients in F)
whose z2-coefficient and z%-coefficient both equal 0. Then every polynomial

in P(F) can be written uniquely in the form p + ¢, where pEUandge W.
Thus P(F)=Uo® W.
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COMMENT: There are other passible choices for W that give a correct
solution to this exercise, but the choice for W made above is certainly the
most natural one.

Prove or give a counterexample: if U, Us, W are subspaces of V such that
V=U®W and V=U,®W,
then U; = Us.

SoLuTioN: To construct a counterexample for the assertion above, let
V=FletU ={(z0):z€F}letUp={(0,y): y € F}, and let
W ={(2,z) : z € F}. Then

F?’=U,&6W and F’=U,@W,

as is easy to verify, but U; # Us.
Of course there are also many other examples.
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Finite-Dimensional
Vector Spaces

Prove that if (v1,...,v,) spans V, then so does the list
(vl — U2,V — U3,...,Upn—1 — Uy, vn)

obtained by subtracting from each vector (except the last one) the following
vector.

SoLuTiON: Suppose (v1,...,v,) spans V. Let v € V. To show that
v € span(vy — v2,V2 — U3,...,Upn—1 — ¥Un,Uy), we need to find ay,...,a, € F
such that

v=a1(v1 —v2) +a2(v2 —v3) +...0n_1(Vn_1 — vp) + QnVn.

Rearranging terms of the equation above, we see that we need to find
ai,...,a; € F such that

(a) v=a1v1 + (a2 —a1)ve + (a3 —ag)vs + -+ - + (an — @n_1)Vn.
Because (vy,...,vy,) spans V, there exist by,...,b, € F such that

(b) v =byv; + bavy + b3v3 + - - - + bpuy,.

Comparing equations (a) and (b), we see that (a) will be satisfied if we

choose a; to equal b; and then choose a; to equal b + a; and then choose
a3 to equal b3 + a9, and so on.
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Prove that if (vj,...,v,) is linearly independent in V, then so is the list
(v1 —v2,¥2 — v3,...,Un_1 — VUn, Up)

obtained by subtracting from each vector (except the last one) the following
vector.

SoLUTION: Suppose (vy,...,v,) is linearly independent in V. To prove
that the list displayed above is linearly independent, suppose a1,...,a, € F
are such that

a1(vy —v2) +ag(va — v3) + - - + @n-1(Vn—1 — Vp) + anv, =0.
Rearranging terms, the equation above can be rewritten as
a1vy + (a2 — a1)ve + (a3 — a2)vg + - - + (@n — @n—1)vn = 0.
Because (vy,...,vn) is linearly independent, the equation above implies that

a1=0
az—a; =0
az—as =0

ap —ap—1 =0.

The first equation above tells us that a; = 0. That information, combined
with the second equation, tells us that as = 0. That information, combined
with the third equation, tells us that a3 = 0. Continue in this fashion,
getting a; = -+ = an, = 0. Thus (v; — v2,v2 — V3,...,Un_1 — Uy, Vy) is
linearly independent.

Suppose (vi,...,vy,) is linearly independént in V and w € V. Prove that if
(v1 +w,...,vn +w) is linearly dependent, then w € span(vy, ..., vs).

SoLuTION: Suppose (v) + w,...,v, + w) is linearly dependent. Then
there exist scalars a,,...,a,, not all 0, such that

ai(vi +w) + -+ + an(ve + w) = 0.
Rearranging this equation, we have

a1v; + -+ antp = —(a1 + - + an)w.
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If a; +--- + a,, were 0, then the equation above would contradict the linear
independence of (v1,...,0s). Thus a; + -+ + an # 0. Hence we can divide
both sides of the equation above by —(a; + --- + a,), showing that w €
span(vy, ..., Up)-

Suppose m is a positive integer. Is the set consisting of 0 and all polynomials
with coefficients in F' and with degree equal to m a subspace of P(F)?

SoLuTION: The set consisting of 0 and all polynomials with coefficients
in F and with degree equal to m is not a subspace of P(F') because it is not
closed under addition. Specifically, the sum of two polynomials of degree m
may be a polynomial with degree less than m. For example, suppose m = 2.
Then 7 + 4z + 522 and 1 + 22 — 522 are both polynomials of degree 2 but
their sum, which equals 8 + 6z, is a polynomial of degree 1.

Prove that F* is infinite dimensional.

SoLuTION: For each positive integer m, let e, be the element of F®

whose m!! coordinate equals 1 and whose other coordinates equal O:
em = (0,...,0,1,0,...).
T
m® coordinate
Then (ey, ..., em) is a linearly independent list of vectors in F°, as is easy

to verify. This implies, by the marginal comment attached to 2.6, that F>®
is infinite dimensional.

Prove that the real vector space consisting of all continuous real-valued
functions on the interval [0, 1] is infinite dimensional.

SoLuTtioN: Let V denote the real vector space of all continuous real-
valued functions on the interval [0, 1]. For each positive integer m, the list
(1,z,...,2™) is linearly independent in V (because if ag,...,am € R are
such that

atar+t---+anzm =0

for every z € [0,1], then the polynomial above has infinitely many roots
and hence all its coefficients must equal 0). This implies, by the marginal
comment attached to 2.6, that V is infinite dimensional.
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Prove that V is infinite dimensional if and only if there is a sequence
v1,vg,... of vectors in V such that (v),...,v,) is linearly independent for
every positive integer n.

SoLUTION: First suppose that V is infinite dimensional. Choose v;
to be any nonzero vector in V. Choose v9,v3,... by the following induc-
tive process: suppose that vy,...,v,—1 have been chosen; choose any vector
vn € V such that v, & span(vy,...,v,—1)—because V is not finite dimen-
sional, span(vy,...,vn—;) cannot equal V so choosing v, in this fashion is
possible. The linear dependence lemma (2.4) implies that (v1,...,v,) is
linearly independent for every positive integer n, as desired.

Conversely, suppose there is a sequence v;,vs,... of vectors in V such
that (vi,...,vs) is linearly independent for cvery positive integer n. This
implies, by the marginal comment attached to 2.6, that V is infinite dimen-
sional.

Let U be the subspace of R defined by
U = {(z1, %2, 73,24,25) € R® : 7; = 3z and 73 = Tz4}.
Find a basis of U.

SoLuTioN: Obviously
U = {(3z2, 2, 724,74, %5) : 2,24, 75 € R}.
From this representation of U, we see casily that
(3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1))

is a basis of U.
Of course there are also other possible choices of bases of U.

Prove or disprove: there exists a basis (po, p1, p2, p3) of P3(F) such that none
of the polynomials pg, p1, p2, p3 has degree 2.

SoLuTioN: Define py, p1,p2,p3 € P3(F) by

po(z) =1,

n(z) =z,
pa(z) = 2% + 22,
p3(z) = 25
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None of the polynomials pg,p;1, p2,p3 has degree 2, but (pg,p;,p2,p3) is a
basis of P3(F), as is easy to verify.

Of course there are also other possible choices of bases of P3(F) without
using polynomials of degree 2.

Suppose that V is finite dimensional, with dimV = n. Prove that there
exist one-dimensional subspaces Uj,...,Uy of V such that

V=Ui&---®U,.

SoLuTION: Let (v1,...,vs) be a basis of V. For each j, let U; equal
span(v;); in other words, U; = {av; : a € F}. Because (vy,...,v,) is a basis
of V, each vector in V can be written uniquely in the form

a1V + -+ apy,

where a1,...,a, € F (see 2.8). By definition of direct sum, this means that
V=U:8---0U,.

Suppose that V is finite dimensional and U is a subspace of V such that
dimU =dimV. Prove that U = V.

SoLuTION: Let (ui,...,un) be a basis of U. Thus n = dimU, and
by hypothesis we also have n = dimV. Thus (uy,...,u,) is a linearly
independent (because it is a basis of U) list of vectors in V with length
dimV. From 2.17, we see that (u;,...,u,) is a basis of V. In particular
every vector in V is a linear combination of (u1,...,u,). Because each
u; € U, this implies that U = V.

Suppose that po,p1,...,pm are polynomials in Pp,(F) such that p;(2) =0
for cach j. Prove that (po,p1,...,Pm) is not linearly independent in Py, (F).

SoLuTiON: Because p;j(2) = O for each j, the constant polynomial 1 is
not in span(po, . . ., pm)- Thus (pp,...,pm) is not a basis of P,,(F). Because
(P0,--.+Pm) is a list of length m + 1 and P,,(F) has dimension m + 1, this
implies (by 2.17) that (pp,...,pm) is not linearly independent.

Suppose U and W are subspaces of R® such that dimU = 3, dimW = 5,
and U + W = R3. Prove that U NnW = {0}.

SoLUTION: We know (from 2.18) that

dim(U + W) = dimU + dim W — dim(U N W).
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Because dim(U + W) = 8, dimU = 3, and dimW = 5, this implies that
dim(UNWY) =0. Thus UNW = {0}.

Suppose that U and W are both five-dimensional subspaces of R?. Prove
that Un W # {0}.

SoLuTION: Using 2.18 we have
9 > dim(U + W)

=dimU + dim W — dim(U N W)
=10 — dim(U N W).

Thus dim(U N W) > 1. In particular, U N W # {0}.

You might guess, by analogy with the formula for the number of elements
in the union of three subsets of a finite set, that if U;, Uy, Us are subspaces
of a finite-dimensional vector space, then

dim(U; + Uz + Us)
=dimU; +dim U + dim Us
— dim(U; NU3) — dim(U; N U3) — dim(Us N U;)
+ dim(U1 NU; N U3).

Prove this or give a counterexample.
SoLuTioN: To give a counterexample, let V = R2, and let

U = {(z,0): z € R},
Uz ={(0,y) : y € R},
Us = {(z,z) : z € R}.

Then U; + Us + Us = R2, so dim(U, + Us + Us) = 2. However,
dimU; = dimU, = dimUs = 1
and
dim(U; NUs) = dim(Uy NUs) = dim(Up N Us) = dim(U; N Uy N U3) = 0.

Thus in this case our guess would reduce to the formula 2 = 3, which
obviously is false.
Of course there arc also many other examples.
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16. Prove that if V is finite dimensional and Uj,...,U,, are subspaces of V,
then ,
dim(Uy +--- + Up) <dimU; + - - + dim Up,.
SoLuTiON: For each j = 1,...m, choose a basis for U;. Put these
bases together to form a single list of vectors in V. Clearly this list spans
Ui+ -+Up,. Hence the dimension of U +- - - +Uy, is less than or equal to the
number of vectors in this list (by 2.10), which equals dim U} + - -+ + dim Up,.
In other words,
dim(U; + -+ Up) <dimUj + - - - + dim Uy,.
17.  Suppose V is finite dimensional. Prove that if Uy, ..., U, are subspaces of V

such that V=U; ®--- ®U,,, then
dimV =dimU, +--- +dimU,,.

CoOMMENT: This exercise deepens the analogy between direct sums of
subspaces and disjoint unions of subsets. Specifically, compare this exercise
to the following obvious statement: if a finite set is written as a disjoint
union of subsets, then the number of elements in the set equals the sum of
the number of elements in the disjoint subsets.

SoLuTIiON: Suppose that Uy,..., U, are subspaces of V such that V =
Ui®---®Uy,. For each j =1,...m, choose a basis for U;. Put these bases
together to form a single list B of vectorsin V. Clearly B spans U;+- - ++Up,
which equals V. If we show that B is also linearly independent, then it will
be a basis of V. Thus the dimension of V will equal the number of vectors B.
In other words, we will have

dimV =dimU; +--- +dim Up,,

as desired. :

We still need to show that B is lincarly independent. To do this, suppose
that some linear combination of B equals 0. Write this linear combination
as u; + - - - + u;m, where we have grouped together the terms that come from
the basis vectors of U; and called their sum w;, and similarly up to up,.
Thus we have

uy+---+uyp =0,

where each u; € U;. Because V =U; @ - - - @ U, this implies that each v;
equals 0. Becausc cach u; is a linear combination of our basis of Uj, all the
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coefficients in the linear combination defining u; must equal 0. Thus all the
coefficients in our original linear combination of B must equal 0. In other
words, B is linearly independent, completing our proof.
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Linear Maps

Show that every linear map from a one-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dimV = 1 and
T € L(V,V), then there exists a € F such that Tv =av forallv e V.

SoLUTION: Suppose dimV =1 and T € L(V, V). Let u be any nonzero
vector in V. Then every vector in V is a scalar multiple of u. In particular,
Tu =au for some a € F.

Now consider a typical vector v € V. There exists b € F such that
v = bu. Thus

Tv = T'(bu)
= bT'(u)
= b(au)
= a(bu)

= av.
Give an example of a function f: R? — R such that
fav) = af(v)
for all e € R and all v € R? but f is not linear.
SoLuTiON: Define f: R? —» R by
flz,y) = (= +y°) 2

Then f(av) = af(v) for all e € R and all v € R2. However, f is not lincar
because f(1,0) =1 and f(0,1) =1 but
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f((1,00+(0,1)) = £(1,1)
—91/3

# £(1,0) + £(0,1).
Of course there are also many other examples.

CoMMENT: This exercise shows that homogeneity alone is not enough
to imply that a function is a linear map. Additivity alone is also not enough
to imply that a function is a linear map, although the proof of this involves
advanced tools that are beyond the scope of this book.

Suppose that V is finite dimensional. Prove that any linear map on a sub-
space of V can be extended to a linear map on V. In other words, show that
if U is a subspace of V and S € L(U, W), then there exists T € L(V, W)
such that Tu = Su for all u € U.

SoLuTION:  Suppose U is a subspace of V and S € L(U,W). Let
(u1,...,um) be a basis of U. Then (u1,...,un) is a linearly independent list
of vectors in V, and so can be extended to a basis (u1,...,%Umn,v1,...,vp)
of V (by 2.12). Define T € L(V,W) by

T(alul +...anum + v+ ... bnvn) =a;8u; +-+-+ A Sum,.
ThenTu=SuforallueU.
COMMENT: Defining T: V — W by

Sv ifveU;
Ty =
0 ifvgU.

does not work because this map is not linear.

Suppose that T is a linear map from V to F. Prove that if » € V is not in
null 7', then ,

V=nullT® {av:a€F}.

SOLUTION: Suppose u € V is not in nullT". If ¢ € F and au € null T,
then 0 = T'(au) = aTu, which implies that a = 0 (because Tu # 0). Thus

nullT'N {eu: a € F} = {0}.

If v e V, then



