CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS

1.1 The Vector Space of 1 X 1 Matrices
Problems begin on page 16
True-False Questions
1. T, Let the set be A = {A1,...,A,} and the subset be B = {Ay,..., Ap}. If
B were dependent, then one iof its elements is a combination of the others; say

Ap = coAg+- -+ Ag. Butthen Ay = cg Ao+ -+ A +0Ak11+... 04,
which contradicts the independence of A. .

2. F, For example let the dependent be {A,2A} where A # 0 and the subset be
{4}

3. F, The same example as in 2 works.
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2 SYSTEMS OF LINEAR EQUATIONS

4. T, See the proof in 1.
5. F, For example the set might be { A, B, 2B} where {A, B} is independent.

6. T, Let the set be S. If S = {0}, then it is dependent by definition. Otherwise S
contains {0, A} where A # 0, which is dependent since 0 = 0A.

7. F, It will be dependent unless X = A; for some 3.
8. F, For example the set might be {X, A, A, 3A} where {X, A} is independent.

9. T Each matrix has a non-zero entry in a position where the others have zeros.
10. F. The third is twice the first plus the second.)

11. T. If A; is a linear combination of the other A;, then Afj is a linear combination
of the other A; with the same cosfficients.

12. F. tan? x = sec? +1.

EXERCISES
1.1.
[ -1 —4 -7 —10 —4
a) 1 -2 -5 -8 [,[3,0,-3,-6], | —2
3 -3 -6 0

0
18 8
b) | 4 32 |.[9,72], | 32

9 72 72
L _1 1
2 2 2
C) _% _% ,[—1,0], —%
-1 0 0
1.2
3 1 3 3 1 3 6 2 6
4 2 =2 4 2 -2 8 4 —4
(A+B)+C = + =
4 3 3 4 3 3 8 6 6
2 4 -1 2 4 -1 4 8 =2
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11 2 5 1 4 6 2 6
01 -2 8 3 -2 8 4 —4
A+(B+C)= + =
2 0 1 6 6 5 8 6 6
3.2 1 1 6 -3 4 8 —2
1.3. C=A+B.

14. D = x A+ yB = zC for any specifc choice aof a, b, ¢

1.5.
a)
[1,1,4] = [1,1,2] + 2[0,0, 1]
b)
[1,2,3] = [1,0,0] + 2[0,1,0] + 3[0,0, 1],
)
1 2 00 10 0 1
=0 + +2
0 0 1 0 00 0 0
d
3 9
2 |=|5]|-]3]|+0] 12
3 15
e)
2 1 (1 0 00 0 0
= + +3 —4
3 —4 100 10 0 1
f) _
a3 -t 2|9 3 -6
0 1 4| 0 -3 —12
2) )
11 11 1 2 0 —1
=0 + +
lo1_ l2 3] [0 o] [0 1]

1.6. P, = P; — P, — P; — P, where P, is the ith row of P.
1.6. P, = P; — P, — P; — Py, where P, is the ith row of P.
1.7. LetPibetheithrow: Pg :P5—P1 —PS—P4

1.8. A; cannot be a linear combination of A5, A3 and A4 because all such linear
combinations will have their (2, 1) entry equal to zero.
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1.9.

1.10.

1.11.
1.12.

1.13.

1.14.

1.15.
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Each vector has a nonzero entry in the positions where the other two vectors
have zeros.

Suppose first that A3 = £A; + yAs. Then [0,0,8] = [z, 2z + 5y, 3z + 6y].
Equating the first two entries shows first that x = 0, then that y = 0, which
is impossible due to the third entry. If A = xA; + yAs, then [0,5,6] =
[x, 22, 3z + 8y]. Equating the first entry shows that © = 0, which is impossible
due to the second entry. Finally, if A1 = ©A2+yAs, [1,2,3] = [0, 5z, 62 + 8y]
which is impossible due to the first entry.

See the solution to problem 1.10.

[1,-1,0],[1,0,0],[2,—2,0], and [4, —1, 0] all belong to the span. [1,1, 1] does
not because its last entry is nonzero.

a) —2X +Y = [1,1, 4] (other answers are possible). b) Let [z,y, 2] = aX +
bY = [—a — b,a + 3b, —a + 2b] and substitute into 5z + 3y — 2z. You should
get 0. ¢) Any point [z, y, z] that does not solve the equation 5z + 3y — 2z = 0
will work—for example’ [1,1, 1].

Finding elements of the span is easy; any linear combination will work. We
note that the sum of the entries of each of the given vectors is zero. The same
is true for any element of their span. To see his, let Z be an element of the span
so that

Z =a[l,1,-1,-1]" +b[2,-1,-3,2]" + ¢[1,3, -2, -2]*
=la+2b+c,a—b+3c,—a—3b—2¢c,—a+ 2b— 2]
The sum of the entries of Z are
(a+2b+c)+(a—b+3c)+(—a—3b—2¢c)+ (—a+2b—2¢) =0

Thus, any vector such as [1, 1, 1, 1]* whose entries don’t total to zero cannot be
in the span.

The general element Z of the span is
Z =a[-1,2,1]" + b[2,5,1]" = [—a + 2b,2a + 5b,a + b]*

The third entry will equal zero if a = —b. For example, we might try a = 1,
b = —1 which makes Z = [—3,-3,0]". This, however, does not have its
first two entries positive. However, if we let a = —1 and b = 1, we find that
Z =[3,3,0]*, which does work.

1.16. No. From the second and third entries a X + bY has positive entries only if both

1.17.

a and b are negative; hence the first entry is negative.

No. For aX + bY to have only positive entries we require a — b > 0 and
—2a + 2b > 0 which contradict each other.
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1.18. Yes. aX + bY has positive entries if, for example, a and b are positive and
a>b.

1.19. a) f(z) = 2 +sinz, b) f(z) = 2+ cosz, ¢) No. If f(z) = acosz + bsinz
then f(0) = a and f(7m) = —a would both be positive which is impossible.

1.20. a) aX 4 QY forany a € R. b) aX + bY for any non-zero a,b € R for which
4a 4+ 3b = 0. c) Since the intersection of two planes through the origin is a line,
the span of {X, Y} must be a line. Hence let X = [x,y, z] where z # 0 any
Y = ¢X where ¢ # 1.

1.21. For s,t € Rlet sX +tY = Z = [x3,y3, 23]. Then

axrs + bys + czz = a(sxy + txa) + b(syr + ty2)e(s21 + t22)
= s(axy +by1 + cz1) + t(axs + bys + cz2) =0

1.22.

Inl.16,a—b=0anda—c=0soa=b=c#0.In1.17,a —2b+4c=0
and —a + 2b + 3¢ = 0. Hence ¢ = 0 and @ = 2b # 0. The constants exist
because every plane has a normal vector.

1.23. For the first part, use various values of a, b, and ¢ in a X + bY + c¢Z. For the
second part note that for all scalars a, b and c the (2, 1) entry of a X + bY + ¢Z
is zero. Hence any matrix W in M (2, 2) such that W2 ; # 0 will not be in the
span.

1.24.

a) The line containing the origin and the point (1, 2).
b) All of R2.
¢) No. From part b) it appears that if A and B are independent elements of

M (1, 2) then any other element of M (1, 2) will be a linear combination of
them.

d) The plane containing the two given vectors.

e) [1,2,1] =[1,1,0] + [0, 1, 1]. Hence both [1,2, 1] and [0, 1, 1] belong to the
plane from part e) and the planes in parts d) and e) are the same.

f) The span of these vectors is the line through the origin containing each of
them. Two independent vectors will span a plane but two dependent vectors
will span a line.

g) The span is the line through [0, 0, 0] containing [1,1, 1]. The span of two
linearly dependent vectors is a line through the origin.

1.25. Let V and W be elements of the span. Then V = aX +bY and W = cX +dY.
Then for s,t € R, sV +tW = (as + ¢t)X + (bs + dt)Y which belongs to the
spanof X and Y.
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1.26. Let the columns of Abe A;,7 =1,2,3. Then 343 — Ay = A;.
1.27. Let the rows of Abe A;,7=1,2,3. Then A; = 2A, + 2A3.

1.28. It is not possible. If the second row is a multiple of the first then

1.29.

1.31.

1.32.

1.33.
a)
b)
©)
d)

€)

f)

g)
h)

A=

a b
ca c¢b
Let the columns of A be A;,7 = 1,2. If a = b = 0, then the set of columns
is {0}, which is a dependent set. Otherwise either A; = ab™tAy or Ay =

ba~'A;. The argument for the case where the first row is a multiple of the
second is similar.

Let one row be a linear combination of the other rows. This is easily done
keeping all entries non-zero.

a)Yes: D =5A—2B.b)Yes: B=A—-CsoD = 3A+ 2C. c) Nothing.
Given A and B, dependent or not, let C = A — Band D =2A 4+ B + 3C.

a)Yes: D = A—B+3(A—B).b)Yes: D = A—B+3C = A—(C—A)+3C. ¢)
Nothing. Given A and C, dependent ornot, let B = A—C'and D = A—B+3C.

119 (£(3sin®x) — L(—5cos?)) = 119
sinhz = L(e” —e™®) = 1(2e”) — £(3e7")
—sinhz + coshw = J(—€e” + e ") + 1(e" + e %) =e 7,

From the double angle formula for the cosine function

cos(2x) = —sin® x + cos? .

From the double angle formula for the cosine function
cos(2x) = cos® x — sin? z = 2cos? z — 1.
(x4 3)? = 2% + 62 + 9.

2?43z +3=3(z+1)+ 5(22?)

From the angle addition formulas for the sine and cosine functions
. m . . 2 .
sin(x + Z) = sin(mw/4) cosx + cos(m/4) sinx = 7(008 x +sinz)

2
cos(zx + %) = cos(m/4) cosx — sin(n/4) cosx = 7((:0533 —sinx)

sinx = % (sin(x + %) — cos(x + %))



1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.
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In[(z*+1)*/(2* +7)] = 3In(z* + 1) — In(z* +7)

=3In(2* 4+ 1) —2Invazt + 7.

The span is the set of polynomials of degree d < 2. Any pair of such polyno-
mials answers the first question.

The span is the set of polynomials of degree d < 3. Any pair of such polyno-
mials answers the first question.

a)Let B = Y"1 Then
z w
A+ B— r+a y+b _ Ty
z+c w+d z W

Hence,x+a =z,y+b =1y, 2+ c = ¢, and w + d = d, which imply that
=y =2z=w = 0. Hence, B = 0. b) Solved similarly to a).

See Example 1.4 on page 11 of the text. For example to prove i) we let X €

M(n,m), X = [z;;]. For scalars k and {

(k+ D)X = [(k+D)zy]
= [kxij + lzj)
= [kxy] + [log] = kX +1X

In order, we used vector space properties c), e), ), ), g), j).

We used Proposition 2 and vector space properties h) and g).
—(2X +3Y)=(-1)(2X +3Y)

(=1D(2X) + (-1)(3Y)

=(-2)X 4+ (-3)Y

—_—

The steps are as shown below. The vector space properties used were Step 1: a)
and e), Step 2: ¢) and e), Step 3: b), e), and Proposition 2 on page 14, Step 4:
b), e), and g), Step 5: f), Step 6: h), g), Step 7 j).

—(aX)+ (aX + (bY +cZ)) = —(aX)+0
(—(aX) 4+ aX)+ (bY +cZ) = —(aX)
0+ (bY +cZ) = —1(aX)
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bY +cZ = (—a)X
(—a) 7 (BY +¢Z) = (—a) " ((—a)X)
(((—a)'D)Y + ((—a) ') Z) = 1X

()7

1.41. The steps are as shown below. The vector space properties used were Step 1:
given, Step 2: a) and e), Step 3: ¢), e), Step 4: b), e), and e), Step 5: b), e).

X+4Y =0
X+ (X+Y)=-X+0
(X +X)+Y =—-X
0+Y =-X

Y =-X

1.42. The steps are as shown below. The vector space properties used were j) and
i)along with (1.5) on page 12.

X+ ()X = ()X + (-1)X
=1+ (1))X
-0

1.1.2 Applications to Graph Theory |
Problems begin on page 24

Self-Study Questions

1. The matrices for parts a), b), and c) are respectively

01 00 0 OO
01 0 1 2 0 01 00 0O

0 2 01
101 0 1 0001 00O

1 0 0 1
, /0 1.0 1 0],]0 0 0 0 1 0 O

01 0 0
00100 0 000 O0T1TO0

0 010
00010 0 000 O0O01
1111110

2. Possible routes are as in Figure 1.1

3. An airline would not have a flight from a given city A to itself.
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N —

B
(a (b)

Figure 1.1 Exercise 2.

EXERCISES
1.1. When every city is connected by round trip flights.

1.2. If the jth column is zero then there are no flights into city j. If the ith row is
zero, then there are no flights out of city .

1.3. We list the vertices in the order MGM,MGF,PGM,PGFFM,S1,S2,D1,D2.

010001000 0]
0000O0O0O0GO0GO0O0
0001100000
0000100000
0000O0O0DT1T1O00
0000101111
0000O0O0GO0T1 11
0000O0O0O0GO0 11
0000O0O0O0GO0GO0O0
(000000000 O]

1.4. In a dominance relationship if person ¢:dominates person j then person j will
not dominate person j and vice versa. Hence either a;; and a;; equal O.

1.5. The route matrix is

2 0 2 1

1 1 2 1
B=

2 0 2 1

0 3 0 3

Remark. In Section (3.2.2) on page 179 we show that the two step route matrix
is the square of the one step route matrix.
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1.6.

SYSTEMS OF LINEAR EQUATIONS

We list the teams in alphabetical order. The win-loss matrix is

0 01 11
10 010
M=1]0 1 0 1 1
0 0 00O
10 0 10

The number of wins of the jth team is the sume of the entries in the jth row.
The number of losses is the sum of the entries in the jth column. Thus team C
had 3 wins and one loss.

1.2 Systems

Problems begin on page 36

In our solutions, Roman numerals refer to equations in a system. Thus, for exam-
ple “IV” is the fourth equation in a given system.

True-False Questions

1.

w

TR NEY R N

1.1.

1.2.

F. The solution would be a plane if two of the equations are scalar multiples of
the first.

. T. If it has more than one solution, it will have an infinite number of solutions.

. F. The system would have two free variables. Hence the solution would be a

plane.

. F. The equations might be inconsistent.
. F. It would have an infinite number of solutions if the equations are dependent.

. T. The rank is the maximum number of independent equations.

a) and b) are false. The planes described by the last equation in each system do
not intersect. Hence if system i) is consistent, system (ii) will be inconsistent.
c) is false. Translating one of the planes in Figure 1.15 on page 33 could still
produce an inconsistent system.

EXERCISES

X isasolutionsince4-1—-2-1—1—-1=0and1+3-1—-2-1—-2-1=0.
Yisnotsincel +3-2—-2-(-1)—2-1=17.

Let Z = aX +bY = [a+ b,a + 2b,a — b,a + b]. Substituting Z into the left
side of equation I and simplifying produces 0 and substituting Z into the left



1.3.

1.4.

1.5.

1.6.

1.7.
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side of equation I and simplifying produces 7b. Hence Z is a solution to the
system if and only if b = 0.

Let Z = aX +bY = [a + b,a + b,a + 2b,a]’. Substituting Z into the left
sides of both equation I and equation II and simplifying produces 0. Hence Z
is a solution to the system for all a and b.

Let Z = aU + bV = [az + b2, ay + by’, az + bz', aw + bw']". Substituting Z
into the left sides of both equation I and equation II and simplifying produces
0. Hence Z is a solution to the system for all @ and b.

Z =aU +bV = [a+b,a+b,2a+b,—a]'. a+ b= 1. Substituting Z into
the left side of equation I and simplifying produces a + b and substituting Z
into the left side of equation II and simplifying produces 2a + 2b. Hence Z is a
solution if and only if a + b = 1.

Let Z = aU + bV = [ax + bz’ ay + by', az + b2’, aw + bw']t. Since U and V
satisfy equation I, substituting Z into the left side of both equation I produces

a(dr — 2y — 2z —w) + b(4a’ — 2y — 2’ —w') =a+0.
Similarly substituting Z into the left side of both equation I produces
a(z + 3y — 2z — 2w) + b(a’ + 3y’ — 22" — 2w') = 2a + 2b.
Hence Z is a solution if and only if a + b = 1.

In each exercise we give the reduced echelon form of the coefficient matrix
followed by the translation vector and the spanning vectors’

1 -3 2

a ,[2,0%, 3, 1]°.

) 0 00 (2,0]%, [3,1]
1 0 0 —59/9

by | 0 1 0 20/9 |,5[—59,20,8]", 0.
[0 0 1 8/9
1 0 17/2 1]

© |0 1 —=5/2 0,[1,0,00 3[-17,5,2]", 21+ I=IIL
[0 0 0 0 |
1 0 17/2 0]

d) 0 1 —=5/2 0 |,Inconsistent: 2I + II contradicts III
[0 0 0 1 |
1 0 1 11

e |0 1 -1 -6 |,[11,-6,2,0)%, [~1,1,—1,1]*.
[0 0 1 2
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1.8.

1.9.

1.10.

1.11.
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g)

h)

i)

i)

k)

D

1

o O O

o O O =

0

O O = O O O =

1 0 0
01 0

00 1 -
10 1
010 —
00 0
100
010 —
001
1 0 3/4
0 1 1/4
00 0
00 0

10/7 11/7
/7 6/7 |, %[11,6,1,0]", £[-20,—2,23,2].
23/14  1/7

Inconsistent. I + 2II contradicts III.

0
]./3 ’_%[07170}t’ [_1707 1}t
0
6/25
9/25 |, 3:[6,-9,35]%, 0.
7/5
1 5/4
0 —1/4
. / , 5[5, -1,0,0]%, 3[-3,-1,4,0]*,[-1,0,0, 1],
0 0

II=41-1I, IV=I + 2II. Since this is a rank 2 system with 4 variables, there
are two free variables.

3/4 1 0
1/4 0 0 . .

0 0 . Inconsistent. I+ 2II contradicts IV.

0 0 O

1/3 -14/3 3
—-2/3 4/3 -1

/0 /0 ,[3,-1,0,0], [14,-4,0,3]", £[-1,2,3,0],
0 0 0

=1+ 2II, IV=71+3 1L

To find the two different solutions choose two different sets of values for the
arbitrary parameters, e.g. first make all of them O and than make one equal 1
and the rest equal 0.

For rank 2, let 3 of the equations be linear combinations of 2 given indepen-
dent equations. For ranks 1 and 3 begin with 1 and 3 independent equations

respectively.

A point (z,y) solves the system if and only if it lies on both lines. Since the
lines are parallel, there is no solution to the system.

The first two lines meet at (0, 1). The third line passes through (0, a). Hence th
system is consistent if and only if a = 1.
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1.2.2 Applications to Circuit Theory
Problems begin on page 43
Self-Study Questions
1. The new dropis £ =R =3 -7 = 21 volts.
2. The new drop is £ = iR = 2 -5 = 10 volts.
3. The assumed directions are as in Figure 1.2. We obtain the following equations:

Current Law:

11 =13 + 12 (Nodes C and F)
Voltage Law:

0=11+4+3i3+1 (Loop ABCFA)
0=3i3+1—6ty (Loop CFEDC)

11v
A w B
iy i
1lv i3 L
F<+Ik-"VWA—— C

. 30hm
I2 |2
E D

6 ohm

Figure 1.2  Exercise 2 assumed flows.

1.1.

a) We solve the system found in Exercise 3. We find 7; = % amperes from C

to B, iy = % amperes from E to D, i3 = 4 amperes from F to C.
b) The equations are

i1 =iy + 13 (Node C)
0=5+6i3 (Loop ABCFA)
0 = 6io — 10i3+4 (Loop CFEDC)
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5v
Ai-‘;y B
|1 | il
H — A4
6 ohm
. +
g T 4v
ol
i 3
G WA= D
10 ohm
Is 30hm
i

-

3v
(b) (©

Figure 1.3  Exercises 1.1.b and 1.1.c assumed flows.

R, 's
Circuit A Circuit B

Figure 1.5 Exercise 1.3 assumed flows.

yielding the solution i; = —13,is = —5/6, i3 = —1/10.
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¢) The equations are

i1 =iy + 13 (Node C)

i3 =14 + 15 (Node C)

0=5+ 6ty (Loop ABCHA)

0 = 6iy —10¢4 — 4 (Loop CHGDC)
0 =10iy — 3 — 3i5 (Loop CHGDC)

yielding the solution iy = —86/15,is = —5/6,13 = —49/10,44 = —9/10,i5 =
—4.

1.2. The equations are
i1 =ig +i5 (Node A)
i = ig + i3 (Node D)
14 =i + 15 (Node B)
i1 =14 + i3 (Node C) (1.1)
0 =5+44i5+4i5 (Loop EADCE)
0=>5+415+3is (Loop EABCE)
0 =i5 — 2ig — 4i2 (Loop ADBA)

yielding the solution
i1 = —295/152,iy = —75/152,i3 = —115/152,
iy = —45/38,i5 = —55/38,ig = 5/19
1.3. Assumming a clockwise flow of current, the equations are
11 = 19 + i3
0=—-94 Ryis
0= -9+ Ryi3
iy =982t iy = 9/Ry iz = 9/Rs.

On the other hand, in Circuit B, the voltage law yields —9 + i1 R3 = 0 so
i3 = 9/R3 showing the equivalence.

1.3 Gaussian Elimination

Problems begin on page 60
True-False Questions

1. F One of the rows could represent the equation 0 = 1.
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2. F. If the system is consistent, then there are 3 pivot variables; hence no free
variables.
3. T. This is a homogeneous system with more unknowns than equations.
4. F. Four row operations are required.
5. F. Rows III+IV=[0, 0, 0, 2] which corresponds to the inconsistent equation 0 =
2.
EXERCISES
1.1. a) Neither, b) echelon, c) neither, d) echelon e) reduced echelon.

1.2. We give the solutions followed by the reduced forms.

0 9—2¢ 1-2¢
-1 ~3/2
—4—¢ 1 2
1 5/2
a)| —5/24+t |.b) 0 , ©) 12 , d) t ,e) t
3/2—1/2t ) 1
1/2
I t 3 3
(10 2 4 0 1
01 -2 0 3 1 0 10 =20
a) b0 0 1 0
00 2 40 1
0 0 0
(00 0 213
3 1 2 6 0
112 0 5 0 —1/2
0 2/3 1/3 -1 1
c) ,dlo o 1 -2 0 o |,
0 0 2 4 1
0O 0 0 0 1 1
0 0 0 -5/2 —5/4
102 001
01 000 2
€)
00010 1
0000O0T1 3
Lo 1o 3 1 000 —1
0100 1 1o 2
1.3.a)01—101,b)00100,c)Ol1,
00 010 3
00 0 1
1 12 0 5 0 —1/2 Lo
dlo 0 1 -2 0 0 ,e)andf)[()l],
0 0 0 0 1 1



10 -3 0
g0 1 1 0
00 0 1
10 -1/3
o1 7/3
) /
00 0
00 0

GAUSSIAN ELIMINATION

. 1 0 0 0
1
—1 |, h)andi) 0 00 s
0 01 0
2
0 0 0 1
-1/3
4/3
0
0

1.4. e), f), h), and i) represent inconsistent systems. Solutions:

3¢
1+t
a , b
) . )
0
[ 54+1/2t
Y
g . N
9

B —1/2—t/2—bs
t
1 10/3
s ,d
0 c)l 1/3 1 ) 2s
s
1
1
—1/3+1/3t
4/3 - 7/3t

t

17

1.5. We give an echelon form for the coefficient matrix followed by the condition:

1 1 2
a |0 -1 -7
0 0 0
[ -1 -2 3
b) 0 —4 20
0 0 35

[ 2 —3 -2
olo 4 7
0 0 0

b
a—3b |,c=a-+2b,
c—a—2b
b
c—b |, No restrictions,
a—5b+2r
b
—2b+a |,a=c
c—a

1.6. The right side of I+ 2II contradicts III unless a + 2b = c.
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1.7.

1.8.

1.9.

1.10.
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The conditions are 3b + ¢ — 2a = 0 and d — 3a + 2b = 0 since an echelon form
of the augmented matrix is

4 1 3 a

7T 7/2 5/2 b+3/2a

0 0 0 3b+c—2a
0 O 0 d—3a+2b

o O O N

Let A;, 7 = 1,2, 3,4, be the rows of the coefficient matrix. Then 34, + A3 —
2A1 = 0and A4 — 3A1 + 2142 =0.

Let equation (1.30) be written X = T} + tX; + sXa5. As suggested in the
hint, replace ¢ by 1 + r + s obtaining X = (71 + X1) + X1 + s(X7 + Xo)
which is identical with equation (1.29). Conversely, replacing r by —1 + ¢ — s
in equation (1.21) results in equation (1.30).

We give the coefficient matrix, the reduced form, the solution, and the free
variable:

2 2 2 3 4 1 0 -1 0 5
1 11 11 0 1 2 0 —6
R 34 5 20loo 01 2|
i 1 3 5 11 9 ] 0 0 0 0 0
[z,y, z,w]t =[5+, —6 — 2t,t, 2], free variable: 2.
(2 22 3 4] 10 12 0 2
b) 1 11 11 ’ 0 1 1/2 0 -3 ’
2 4 3 5 2 0 0 0 1 2
i 1 5 3 11 9 ] 0 0 0 0 0
[z, vy, z,w]! = [2 —t/2,t,—3 — t/2,2]*, free variable: y.
¢) In a), ¢ = z while in b) 2 = —3 — ¢/2. Hence in a) we replace ¢ with

—3 — t/2 and simplify to get b). In b), ¢t = y while in a) y = —6 — 2t.
Hence in b) we replace ¢ with —6 — 2¢ and simplify to get a).

1.11. From the reduced form below, z is still the free variable. The translation vector

T is the unique solution with z = 0 and the spanning vector is is Y — 7" where
Y is the unique solution with z = 1. Hence the expressions for the solutions
will be the same.

10 2 0 -6
01 -1 0 )
0 0 0 1 2
0 0 0 0 0
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a) For a line we want one free variable, hence four pivot variables. Thus we
need a rank four system of five equations in five unknowns with no zero
coefficients. To create such a system begin with a 5 x 6 matrix that is in
echelon form which has exactly four non-zero rows and as few non-zero en-
tries as possible and perform elementary row operations on it until a matrix
with all non-zero entries is obtained.

b) For a plane we need two free variables, hence three pivot variables. Thus
we need a rank three system of five equations in five unknowns with no zero
coefficients. We produce the system exactly as described in a), except we
begin with matrix that is in echelon form which has exactly threer non-zero
TOWS.

c¢) For a line we want one free variable, hence two pivot variables and rank 2.
We produce the example as in part a) beginning with a 5 x 3 rank 2 echelon
form matrix.

d) Now we make each equation a multiple of one single equation.
a) Since T' = 0, each spanning vector is the solution obtained by setting one

free variable equal to 1 and the other equal to 0. Hence the free variables are z
and w.

1 0 3 -1 0
b)| 0 1 -4 —4 0
0 0 0 0 0

Each spanning vector should each have a 1 in a position corresponding to one
of the free variables while the other spanning vectors have 0’s in this position.

1.15. Since 0 is a solution to the system, there must be an infinite number of solutions.

1.16.

In each part we give the augmented matrix corresponding to the system B =
x1X1 + v9X9 4+ x3.X3, its reduced form, and our conclusion, which is based
upon whether or not the system is consistent.

1 3 1 0 01
a) 0 21 21{,]0 1 0 0 [,inthespan,
-1 11 1] ][00 12
[ 1L a] 100 —c/2+a/2
b) 021 b|,]0 0 —c¢/2—a/2+b |,inthe span,
| -1 1 1 c¢c| [0 01 c+a—1>
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1.17.
1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25.

1.26.
1.27.
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1 1 1 3 1 0 0 1
) 0 2 1 21,0 1 0 0 [,notin the span.
-1 1 1 1 0 0 1 2

Letz = (b+2a)/4 andy = (b — 2a)/4.

This is not hard. Just pick a vector at random. The chances are that it won’t be
in the span. To prove it, reason as in Exercise 1.16.

Since there are five variables and four non-zero rows in the reduced form, there
must be a free variable.

Since there are n variables and at most n — 1 non-zero rows in the reduced form,
there must be a free variable.

B

Each non-zero row has a 1 in its pivot position and all other rows have a zero in
this position.

a) From the answer to 1.5, No. b) It is the 3 x 3 identity augmented by a column
of constants, ¢) No. The reduced form has at most two non-zero rows; hence
two pivot entries. If consistent, it has a free variable; hence an infinite number
of solutions.

If the rows of A are dependent then A has one of the forms below. In either case
the result is clear.

e a b - ec ed
ea eb c d
Our system is equivalent with
z+w=-—-xr=-—5

224+w=—-y=—t
which yields [z, y, z, w]t = s[1,0,1, —2] + ¢[0, 1, —1, 1]%.
No. The equations imply z = —2(z + w) = —2y.

a) We assume that the first column of A is non-zero since this case will take
the largest number of flops to reduce. We interchange rows so that a;; # 0 (0
flops), replace aq; by ai;/a11 for 2 < j < n+ 1 (n flops), and finally replace
a1 by 1(0 flops). b) We replace ag; with as; — agiayj for2 < j < n+1
(2n flops) and set as 1 = 0 (0 flops). ¢) We do b) n — 1 times for a total of
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n + 2n(n — 1) flops. d) After completing c) we are left with a matrix B of
the following form. We may assume that b;5 # 0 for some 7 > 0 since we
are interested in the maximum number of flops to reduce the matrix to echelon
form. We repeat a)-c) for the (n — 1) X n matrix obtained by deleting the first
row and column of B. Doing this repeatedly results in the stated formula.

* * ok 1 * ok
0 =* * ok 0 1 * %

B = C = .
0 = * % 0 O 1 x

d) Now we start with an n x (n + 1) matrix C of the form above. Multiplying
the last row by a scalar takes one flop since a - 1 = a. Subtracting c; ,, times
this row from the jth row takes 1 flop since ¢; ,, — ¢;, = 0. Hence eliminating
the entries above the final 1 in C requires 2(n — 1) flops. Thus e) follows by
successively repeating this operation for each diagonal entry in C. f) is clear.

1.3.1 Applications to Traffic Flow

Problems begin on page 71

Self-Study Questions

1.

t+ s = 350.

2. z+ v =450.

3.0+z=y.

EXERCISES

1.

a) The equations are x + w = 20, z +w = 50, z + y = 50, z + y = 80, and
T +y + 2z +w = 100. We list the variables in the order [x,y, z, w|t. The
corresponding matrix and its reduced form are respectively:

10 0 1 20 100 1 20
0 01 1 50 01 0 -1 30
1100 50 ]|,[0 01 1 50
01 1 0 80 0 0 0 0 0
1 1 1 1 100 0 0 0 0 0

The general solution is [z, y, z, w]’ = [20 — w, 30 + w, 50 — w, w)]
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b) From the given 6 < w < 8. From the solution the largest variable was z
which had a value of 54. Thus West Street had the largest traffic flow. The
traffic on West Street ranged between 52 and 54 cars per minute.

(a) Our assumptions are equivalent with the inequalities

50 —w > 20 — w always true

N—w>ws2>w

50 —w>304+w<< 10> w

Also, since South Street is one way, w > 0. The claim follows.

¢) If West Street is closed then z = 0 so w = 50 and x = —30 which is

impossible since East Street is one way.

2. The equations are y = = + 90, y = 2z + 20, w = z 4+ 30, w = v + 60,
v=x+40,and x + y + z + w + v = 120. We list the variables in the
order X = [z,y, z,w,v]t. The corresponding matrix, its reduced form, and

the general solution are respectively:

11 00 0 9]
01 -1 0 0 20
00 -1 1 0 30
00 01 -1 60|’
-1 0 0 0 1 40
11 1 1 1 120

[—40 + v, 50 + v,30 + v, 60 + v, v]*

o O O O =

o O O = O

o O = O O

o = O O O

—40
50
30
60

a) The equations are z+v = 450, 350 = z+¢, u+300 = y+v, t+y = 50+ s,
40042z = u+450, 200+s = x+300 and z+y+z+v+s+t+u = 1150. We
list the variables in the order [z, ¥, 2, v, s, t, u]t. The corresponding matrix,
its reduced form, and the general solution are respectively:

0 011 0 0 450
001 0 01 0 350
01 01 0 0 -1 300
01 00 —-11 0 o0
1000 00 -1 50

-1 0 0 O 1 0 0 100

| 1 1 1 1 11 1150

SO O O O O O =

o O O O O+~ O

o O O o = O O

O O O = O O O

(125,275 — t,350 — ¢, 100 + ¢, 225, t, 75]

SO O = O O O O

SO =, O O O O O

125
275
350
100
225
75
0
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b) We need to minimize z. It is smallest when ¢ is largest which occurs for
t = 275. In this case

[z,y,2,v,s,t,u] = [125,0, 75,375,225, 275, 75]"

1.4 Column Space and Nullspace

Problems begin on page 82
True-False Questions

Note: The dimension of the nullspace of a matrix is the “nullity.”

1. T. The rank is at most 3 so the nullity is at least 4 — 3 = 1.

2. F. If the rank is 3 the nullity would be 0.

3. T A[L,2,3]" = A([1,2,3]" — [1,2,3]") = 0.

4. T. A[2,3,4]" = A[1,1,1]" + A[1,2,3]" = [2,3]".

5. T.If s = —2, X = 0. Hence O is a solution and the system is homogeneous.

6. F. X = (s+2)[1,2,1]°. Let the system be defined by two independent equations

which both are zero at [1,2,1]",e.g. 20 —y =0and x — y + z = 0.

<

. F. The rank of this system is 1 so it is a line.
8. F. If X; = Xy, for example, then the spans are equal.
9. F. This set satisfies none of the subspace properties.
10. T.
11. F It not closed under scalar multiplication.
12. F. The set {0} is a one element subspace.

1.1. a) [0,5,—11]%,b) [7,10,7,5])%, ©) [x1 + 222 + 33, 4w + Swo + 623]".

EXERCISES

1.3. Compute AX for the general element X in the appropriate R™ and set each
entry of the result equal to a constant. For ¢) , for example, you might choose

r+2y+32=17
dx + 5y + 6z = —4

1.5. The nullspace is spanned by: a) {[-1,1,1,0,0]*,[-3,—1,0,0,1]*}
) {[-10, -1, 3]}, e) {[0,0]}.
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1.2. In each case we give A and B.

1.3.

1.4.

- 1 1
1 -3 2 2
a) , b2 4 7,2
2 6 -4 —4
L 3 10 5 7
[ 1 1 1 3 1
ol 2 2.2 4 7,2
4 10 4 10 9
3 7 2 1 2 -3 271 [
)| 1 -1 1|,l2.D] 1 -6 11],]2
5 5 4 5 -1 -3 -1/ |
1 11 1 1
2 3 -1 )
1 -1 1 211)272 2 3
& ’ ’ 2 -6 3 2|1
3 4
5 =335 |7
1 11 1 1
12 —2 1 2 3
i) ,
2 -6 3 2 1
5 -3 3 5 8

Any equation of the form AX = B where A is the given matrix and B is a
vector of variables of the appropriate length. For example, for c) we might use

r+2y+3z= -1
dr+5y+62= 2

The nullspace of a matrix A is found by computed by augmenting A with a
column of zeros and computing its reduced form R which is the reduced form
of A augmented with a column of zeros. Each basis element of the nullspace is
found by setting one of the free vectors in the system corresponding to R equal
to one and the other free variables equal to 0. In each part we give R and the
basis for the nullspace.

1 00 —4/7 0
a) |01 0 —3/2 0 |,{[4/7,3/2,6/7,1]'},
001 —6/T 0
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100
01 0

b , {[0,0]*},

1o 0 o {[0,0]"}
00 0

(1 0 -1

C 317_271t

N {l I’}

1.5. The process for finding the nullspace is described in the solution to Exercise 1.4.

1.6.
1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

The reduced forms of the matrices R are the matrices in the solution to Exer-
cise 1.3 on page 16 of this manual, augmented by a column of zeros.

a) {[~ 1,1,1,0 0], [~3,-1,0,0, 1]},
b) {[1,-1,0,-1,1]"},
¢) {[-10,-1 3] }
d) {[1/2,0,0,0,~1,1]*,[~5,0,2,1,0,0]",[~1/2,1,0,0,0,0]"},
e) {[0,0]},
[0
-
[
[
[

H {[0,0]},

2 {[-5,1,0,-2,1]t,[1,-2,2,0,0]*},
h){oooo]}

i) {[0,0,0,0]'},

i {[1,-4,0,3]%, [1,-7,3,0]'}.

Let the columns of B be scalar multiples of [1, 2].

According to Theorem 1 on page 74 the columns of B must be scalar multiples
of [1,2, 3]

Let the columns of B be any four vectors which span the same space as the
given vectors.

a) Let the columns of B be any four vectors which span the same space as the
given vectors. b) Each element of the span has a zero in the second position.

Begin with an echelon form 4 x 6 matrix R that represents a consistent rank
three system. Apply elementary row operations to R until a matrix with no zero
entries is obtained. This is easiest if R has as few zero entries as possible.

The zero vector is always a solution. There are an infinity of solutions due to
the more unknowns theorem.

The reduced form R of A is the matrix in (1.20) on page 35 with its fifth column
deleted. The nullspace is found by the process described in the solution to Ex-
ercise 1.4 above. It is the span of [—2,1,1,0]* and [-2, 1,0, 1]*. This exercise
demonstrates the translation theorem.
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1.13.

1.14.

1.15.

1.16.
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a) From the reduced form of A given in Example 1.10 on page 53, the general
solution is the sum of [1, 0,2, 0,0, 1]* and span of the vectors in b) below.

b) The nullspace is the span of the following vectors: ,

[1,1,0,0,0,0], [-2,0,—1,1,0,0]*, [-1,0,1,0,1,0]*.

¢) One checks by substitution that [—1,1,2,1,1,1]* is a particular solution to

the non-homogeneous system. Thus the translation theorem says that the ex-
pression in c) is the general solution to the non-homogenous system.

d) Note that
[1,1,0,0,0,0]" +[-2,0,—1,1,0,0]" = [-1,1,—1,1,0,0]*

Thus, the three vectors on the right in d) span the the nullspace of A. It follows
from the translation theorem that the expression in d) is the general solution to
the system.

a) Let the equation be ax + by + cz = d. Since 0 belongs to the span, the
zero vector solves the equation, showing that d = 0. Substituting [1, 2, 1]* and
[1,0, —3]* into the equation yields the system

a+2b+ ¢ = 0
a —3c = 0

One solutionisc=1,a =3,b = —2.
b) Let each equation be a multiple of the one from a).

c) Substitute [1,1,1]* into the system found in b) producing a vector B. The
desired system is AX = B.

Let the equation be ax + by + ¢z = d. From the translation theorem, [1, 2, 1]?
and [1, 0, —3]* must span the solution set for the homogeneous equation. These
vectors both solve the equation 3z — 2y + z = 0. The vector [1,1,1]" is a
particular solution to 3z — 2y 4+ z = 2. Any system in which each equation is
a multiple of this equation would have the desired solution set.

True. Y7 = 2X; + 2X5, Yo = X; — X5, Hence, Y7 and Y5 belong to the span
of the X;. Since spans are subspaces, the span of the Y; is contained in the span
of the X;. Conversely, X1 = 1Y7 + Y5 and X, = 1Y} — 1Y, showing that
the span of the X is contained in the span of the Y;. Hence, the spans are equal.

1.17. False. Note that Y7 = X; + X5, Y5 = X7 — X5 and Y3 = X, showing that the

span of the Y; is contained in the span of the X;. However X3 is not a linear
combination of the Y; since all of the Y; have their last two entries equal and
the last two entries of X3 are unequal.
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No, the two answers are not consistent. If the answers were consistent, then
the difference of any two solutions to the system would be a solution to the
homogeneous system which, form Group I's, answer is spanned by [—3, 1, 1]
and [—1, 0, 1]*. Thus, there should exist s and ¢ such that the following equation
is true. The corresponding system is, however, inconsistent.

[1707 O]t - [L 717 1}t = 5[737 ]-7 1}t + t[f]woa 1]t

a) For all scalars a, b, ¢, and d,
aX +0Y +cZ+dW =(a+3c)X + (b—2d)Y

showing that the span of X, Y, Z, and W is contained in the span of X and Y.
Conversely,
aX +bY =aX +bY +0Z +0W

showing the equality of the spans.

For span {X,Y, Z, W} = span {Y, W} we would require X = cY for some
scalar c.

a) If W belongs to span {X,Y, Z}, then W = aX + bY + ¢Z = aX +
bY +c(2X +3Y) = (a+2¢)X + (b + 3¢)Y, which belongs to span {X,Y}.
Conversely, if W belongs to span {X,Y}, then W = aX 4+ bY = aX +
bY + 0Z, which belongs to span {X,Y, Z}. Thus, the two sets have the same
elements and are therefore equal.

b) From a) it suffices to prove span {X, Y} = span {X, Z}. This follows from
the observations that Z = 2X 4+ 3Y and Y = %Z - %X.

Let W satisfy the subspace properties. Then VV is non-empty since it contains
the zero vector. If X and Y belong to W and a and b are scalars, then aX and
bY both belong to WW. Hence aX + bY also belongs to VW showing that W is
closed under linear combinations. The converse is clear.

These are all very similar to part a) which is solved in the text.

(c Let X and Y be elements of V. Then

where a+b+c+d =0=a' +b + +d'. Clearly, W contains the zero vector.
If X is as above and k is a scalar, then, 0 = k(a+b+c+d) = ka+kb+ke+kd
which is equivalent with £X belonging to WV. Similarly,

O=(a+bt+c+d) +(d+b++d)
=(a+a)+(0+V)+(+)+(d+d)
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which is equivalent with X + Y belonging to WW. This finishes the proof.
W is the first quadrant in R?. No: W is not closed under scalar multiplication.
W is the integral lattice in R2. No: W is not closed under scalar multiplication.

If the first entry of either X or Y is zero, then X + Y will belong to W.
Otherwise, it will not belong to V.

In this exercise it is easier to use Definition 3 on page 74. Start by noting that
the general upper triangular matrix is

b ¢
d e
0 f

Letting all of the variables equal zero proves that 0 is upper-triangular; hence
T is non-empty.

A:

o O e

Let A’ be another element of T,

a b
A=10d ¢
0 0 f
Then for scalars s and ¢
[ sa sb s ta’ tb  tc
sA+tB = 0 sd se | + 0 td te
0 0 sf 0 0 tf

sa+ta’ sb+th sc+tc
= 0 sd+td  se+te
0 0 sftf

Hence sA + tA’ is upper-triangular, showing that 7 is closed undder linear
combinations; hence a subspace.

X = aA + bB will be unipotent if and only if a + b = 1. Hence the set of
unipotent matrices is not closed under linear combinations and not a subspace.

X = aX + bY is asolution if and only if and only if a + b = 1.
b) Suppose that i and z are two solutions. Then

y'+3y' +2y=0
2" +3274+2z=0
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If we add these two equations, we get (y + 2)” + (y + 2) + 2(y + 2) = 0,
showing that y + z is a solution. Multiplying by c yields (cy)” +(cy)’+2cy = 0
showing that cy is a solution. The other parts are similar.

b) y = 0 satisfies 4" + 3y’ + 2y = 0. The sum of any two solutions will solve
the equation y” + 3y’ + 2y = 2t. Also z = Cy solves 2" + 3z’ + 2z = C't.
The other parts are similar.

If p(x) = p(z) = apz™ + -+ -+ ag and g(x) = byz™ + - - - + by then for scalars
sand t, sp(x) + tq(z) = cpa™ + - - - + ¢o where ¢; = sa; + tb; showing that
Py, is closed under linear combinations.

The set of all polynomial functions is a subspace but the set of polynomial
functions with integral coefficients is not closed under scalar multiplication.

If f and g satisfy f(1) = g(1) = O then for scalars s and ¢, sf(1) +tg(1) =0
showing that W is closed under linear combinations.

If f and g satisfy f'(3) = ¢’(3) = O then for scalars s and ¢, (sf + tg)'(3) =
sf'(3) + t'g(3) = 0 showing that W is closed under linear combinations.

If f and g satisfy f(1) = g(1) = f(2) = g(2) = 0 then for scalars s and ¢, the
same is true for sf + tg showing that WV is closed under linear combinations.

b) a + b = 1. ¢) This is not a subspace.

a) f(z) =2 —3/2.

b) This is clear since for scalars s and ¢,

2 2 2
[ Gt@ i@z =s [ saydose [ gayas

¢) From the preceding formula for f,g € V, sf + tg € V if and only if
s+t = 1. Hence V is not a subspace.

The zero element belongs to S N 7. If X and Y belong to S N7, then X and
Y both belong to S so aX 4 bY belongs to S for any scalars a and b. Similarly,
aX 4+ bY belongs to T; hence to S N 7. Thus, S U T is closed under linear
combinations and is a subspace.

S U T is a subspace only if either S C 7 or 7 C S. For the proof, suppose
that S is not contained in 7. Then S contains an element S which is not in 7.
Thenforall Tin7,U = S + T must be in S U T . But U cannot be in T since
S =T —U and Sisnotin 7. Thus, U belongs to S, proving that 7' = U — S
belongs to S. Hence, 7 C S.

The zero element belongs to S + 7. If X and Y belong to S + 7T, then X =
Xi1+XoandY = Y;+Y5 where X1, Xo € SandY7,Y5 € 7. ThenaX+bY =
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(aX1 + bX5) + (aY1 + bY3) belongs to S + T Thus, S + T is closed under
linear combinations and is a subspace.



