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CHAPTER 2
ATOMIC STRUCTURE AND INTERATOMIC BONDING

PROBLEM SOLUTIONS

Electrons in Atoms

Problem 2.1

Cite the difference between atomic mass and atomic weight.

Answer 2.1

Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of the

atomic masses of an atom's naturally occurring isotopes.



Problem 2.2

Silicon has three naturally occurring isotopes: 92.23% of *Si, with an atomic weight of 27.9769 amu,
4.68% of *°Si, with an atomic weight of 28.9765 amu, and 3.09% of *’Si, with an atomic weight of 29.9738 amu. On
the basis of these data, confirm that the average atomic weight of Si is 28.0854 amu.

Solution 2.2

The average atomic weight of silicon (4) is computed by adding fraction-of-occurrence/atomic weight
products for the three isotopes—i.e., using Equation 2.2. (Remember: fraction of occurrence is equal to the percent

of occurrence divided by 100.) Thus

"Sl :.f'\ -'L\ -f.‘u “'w +.[‘~n "‘“‘

Si SN

= (0.9223)(27.9769 amu) + (0.0468)(28.9765 amu) + (0.0309)(29.9738 amu) = 28.0854 amu



Problem 2.3

Zinc has five naturally occurring isotopes: 48.63% of “Zn with an atomic weight of 63.929 amu, 27.90%
of %Zn with an atomic weight of 65.926 amu, 4.10% of “’Zn with an atomic weight of 66.927 amu; 18.75% of *Zn
with an atomic weight of 67.925 amu; and 0.62% of "°Zn with an atomic weight of 69.925 amu. Calculate the

average atomic weight of Zn.

Solution 2.3

The average atomic weight of zinc Azn is computed by adding fraction-of-occurrence—atomic weight
products for the five isotopes—i.e., using Equation 2.2. (Remember: fraction of occurrence is equal to the percent

of occurrence divided by 100.) Thus

Ay =f, A, +f. A, f, A, +f A, +f, A
/n 70 Mzn %20 2t 20 Yn  T%za %z 20 ™24

Including data provided in the problem statement we solve for ~ Zn as

A, =(0.4863)(63.929 amu) + (0.2790)(65.926 amu)

+(0.0410)66.927 amu) + (0. 1875)(67.925 amu) + (0.0062)(69.925 amu)

= 65.400 amu



Problem 2.4
Indium has two naturally occurring isotopes: '*In with an atomic weight of 112.904 amu, and '"In with an
atomic weight of 114.904 amu. If the average atomic weight for In is 114.818 amu, calculate the fraction-of-

occurrences of these two isotopes.

Solution 2.4

The average atomic weight of indium (4y,) is computed by adding fraction-of-occurrence—atomic weight

products for the two isotopes—i.e., using Equation 2.2, or

A =S, A+ s, Aus
In In

In In

Because there are just two isotopes, the sum of the fracture-of-occurrences will be 1.000; or

flli +f;l,~ =]000
In In

which means that

fus = 1.000-

In In

S
Substituting into this expression the one noted above for ! In, and incorporating the atomic weight values

provided in the problem statement yields

14818amu=f,,, A, +f. 4.
In In “In

A,
"in

114818 amu = (1000~ s )45 + /i
n

In In

]l4.818amu=(l,000-fmI N112.904 amu)+ £ . (114.904 amu)
n In

114818 amu =112.904 amu— f . (112.904 amu)+fmI (114.904 amu)
n

In

N . fis. . Sye =0957
Solving this expression for In yields In . Furthermore, because



fmm - l.OOO—fIlslll

then
j;”ln = 1.000-0.957=0.043



Problem 2.5
(a) How many grams are there in one amu of a material?
(b) Mole, in the context of this book, is taken in units of gram-mole. On this basis, how many atoms are

there in a pound-mole of a substance?

Solution 2.5
(a) In order to determine the number of grams in one amu of material, appropriate manipulation of the

amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

( 1 g/mol }
L6.022 x 102 atoms /\ 1 amu/atom

1 mol

#g/lamu =

=1.66 x 1024 g/amu

(b) Since there are 453.6 g/lb_,

I Ib-mol = (453.6 g/lb_ )(6.022 x 102 atoms/g-mol)

=2.73 x 1026 atoms/lb-mol



Problem 2.6
(a) Cite two important quantum-mechanical concepts associated with the Bohr model of the atom.

(b) Cite two important additional refinements that resulted from the wave-mechanical atomic model.

Answer 2.6

(a) Two important quantum-mechanical concepts associated with the Bohr model of the atom are (1)
electrons are particles moving in discrete orbitals, and (2) electron energy is quantized into shells.

(b) Two important refinements resulting from the wave-mechanical atomic model are (1) that electron
position is described in terms of a probability distribution, and (2) electron energy is quantized into both shells and

subshells--each electron is characterized by four quantum numbers.



Problem 2.7

Relative to electrons and electron states, what does each of the four quantum numbers specify?

Answer 2.7
The n quantum number designates the electron shell.
The / quantum number designates the electron subshell.

The m; quantum number designates the number of electron states in each electron subshell.

The m quantum number designates the spin moment on each electron.



Problem 2.8

For the K shell, the four quantum numbers for each of the two electrons in the s state, in the order of

1

)
nlmmg, are 100 2 and 100 2 . Write the four quantum numbers for all of the electrons in the L and M shells,

and note which correspond to the s, p, and d subshells.

Answer 2.8

For the L state, n =2, and eight electron states are possible. Possible / values are 0 and 1, while possible m /

1
+2. 200()
values are 0 and £1; and possible mg values are 2 Therefore, for the s states, the quantum numbers are 2
1 1 1 1 1 1
200(--) 210(=) 210(-=) 211(=) 211(-=) 21(-1}=)
and 2" For the p states, the quantum numbers are 27, 2°, 2, 27 2" and
1
21(-1) —:)

For the M state, n = 3, and 18 states are possible. Possible / values are 0, 1, and 2; possible m / values are 0,

L 300(2)
+1, and £2; and possible mg values are 2 Therefore, for the s states, the quantum numbers are 27,
R | R | B 1, 1, I, 1 . |
JOO(—:) 310(=) 3|0(—:) 311(=) 311(-=) 3I(-1)=) J“—l)(—:)
=, for the p states they are 27 <, 27 27, 2" and = ; forthe d

1 1 1 1
320(:) 330(—; 321(;) 321(—;

1 | 1 1 |
32(-1)=) 32(-1)(-=) 322(=) 322(-—=) 32(-2)(-)
states they are 2", 27 27, 27, 2 2 2",

> > >

1
32(-2)(-=)
and 27,



Problem 2.9

Give the electron configurations for the following ions: P*, P, sn*", Se”, I', and Ni*".

Solution 2.9

The electron configurations for the ions are determined using Table 2.2 (and Figure 2.8).

P°*: From Table 2.2, the electron configuration for an atom of phosphorus is 1522s22p63s23p3. In order to

become an ion with a plus five charge, it must lose five electrons—in this case the three 3p and the two 3s. Thus,
the electron configuration for a P> ion is 1S22s22p6.

P> From Table 2.2, the electron configuration for an atom of phosphorus is 1s22322p63s23p3. In order to

become an ion with a minus three charge, it must acquire three electrons—in this case another three 3 p. Thus, the
electron configuration for a P> ion is 1s22s22p63s23p6.
Sn*": From the periodic table, Figure 2.8, the atomic number for tin is 50, which means that it has fifty

electrons and an electron configuration of 1s22s22p63sz_’>p63d1 04s24p64d 105525172. In order to become an ion with a

plus four charge, it must lose four electrons—in this case the two 4s and two 5p. Thus, the electron configuration
for an Sn*" ion is 1522s22p63s23p63d104s24p64d10.

Se>™: From Table 2.2, the electron configuration for an atom of selenium is 1s22s22p63sz3p63d l04s24p4. In
order to become an ion with a minus two charge, it must acquire two electrons—in this case another two 4p. Thus,
the electron configuration for an Se? ion is 1s22s22p63s23p63d104s24p6.

I': From the periodic table, Figure 2.8, the atomic number for iodine is 53, which means that it has fifty

three electrons and an electron configuration of 1s22s22p63s23p63d 104s24p64d 105s25p5 . In order to become an ion

with a minus one charge, it must acquire one electron—in this case another Sp. Thus, the electron configuration for
anI ionis 1s22s22p63s23p63d1O4s24p64d105s25p6.
2+, . p p 2~ 2~ 6727 647 8,2
Ni“": From Table 2.2, the electron configuration for an atom of nickel is 1572s“2p~353p~3d4s”. In order
to become an ion with a plus two charge, it must lose two electrons—in this case the two 4s. Thus, the electron

configuration for a Ni?" ion is 1s22s22p63s23p63d8.



Problem 2.10

Potassium iodide (KI) exhibits predominantly ionic bonding. The K and I” ions have electron structures

that are identical to which two inert gases?

Solution 2.10
The K ion is just a potassium atom that has lost one electron; therefore, it has an electron configuration the
same as argon (Figure 2.8).

The I ion is an iodine atom that has acquired one extra electron; therefore, it has an electron configuration

the same as xenon.



The Periodic Table

Problem 2.11
With regard to electron configuration, what do all the elements in Group IIA of the periodic table have in

common?

Answer 2.11

Each of the elements in Group IIA has two s electrons.



Problem 2.12

To what group in the periodic table would an element with atomic number 112 belong?

Solution 2.12

From the periodic table (Figure 2.8) the element having atomic number 112 would belong to group IIB.
According to Figure 2.8, Ds, having an atomic number of 110 lies below Pt in the periodic table and in the right-
most column of group VIII. Moving two columns to the right puts element 112 under Hg and in group IIB.

This element has been artificially created and given the name Copernicium with the symbol Cn. It was
named after Nicolaus Copernicus, the Polish scientist who proposed that the earth moves around the sun (and not

vice versa).



Problem 2.13

Without consulting Figure 2.8 or Table 2.2, determine whether each of the following electron
configurations is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your
choices.

(a) 1525 2p°3s°3p°

(b) 1525 2p%3s?3p°3d’4s*

(c) 1s°2s°2p3s°3p°3d'"4s°4p°

(d) 1s°2s°2p°3s?3p°4s’

(e) 157257 2p°3s°3p°3d' 45’ 4p°4d’ 55°

(H) 1s°2s°2p°3s’

Solution 2.13

(a) The ls22522p63523p5 electron configuration is that of a halogen because it is one electron deficient

from having a filled p subshell.

(b) The 1s22s22p63s2311763d74s2 electron configuration is that of a transition metal because of an

incomplete d subshell.

(¢c) The 1522s22p63>s23p63dl04324p6 electron configuration is that of an inert gas because of filled 4s and
4p subshells.

(d) The 1s22322p63s23p64s1 electron configuration is that of an alkali metal because of a single s electron.

(e) The 1522s22p63s23»p63c17104524p64d55s2 electron configuration is that of a transition metal because of

an incomplete d subshell.

(f) The 1s22s22p63s2 electron configuration is that of an alkaline earth metal because of two s electrons.



Problem 2.14
(a) What electron subshell is being filled for the rare earth series of elements on the periodic table?

(b) What electron subshell is being filled for the actinide series?

Solution 2.14
(a) The 4fsubshell is being filled for the rare earth series of elements.
(b) The 5f'subshell is being filled for the actinide series of elements.



Bonding Forces and Energies

Problem 2.15

Calculate the force of attraction between a Ca™" and an O*~ ion whose centers are separated by a distance
of 1.25 nm.

Solution 2.15
To solve this problem for the force of attraction between these two ions it is necessary to use Equation 2.13,

which takes on the form of Equation 2.14 when values of the constants e and &, are included—that is

- (231 x 10728 N-mz)(|ll|)‘

A 2

r

Z

)

If we take ion 1 to be Ca2" and ion 2 to be 02_, then Z; = +2 and Z, = -2; also, from the problem statement » = 1.25

nm = 125 x 107 m. Thus, using Equation 2.14, we compute the force of attraction between these two ions as
follows:
(2.31 x 10728 N-m?)(|+2])(|-2|)
(125 x 107° m)?

A

591 x 100N



Problem 2.16
The atomic radii of Mg>" and F~ ions are 0.072 and 0.133 nm, respectively.

(a) Calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e.,
when the ions just touch one another).

(b) What is the force of repulsion at this same separation distance?

Solution 2.16
This problem is solved in the same manner as Example Problem 2.2.

a) The force of attraction F', is calculated using Equation 2.14 taking the interionic separation 7 to be 7, the
A g Lq g p 0

equilibrium separation distance. This value of 7, is the sum of the atomic radii of the MgZ" and F~ ions (per

Equation 2.15)—that is

= VMng + VF

=0072nm+0.133nm=0205nm=0205 x 107 m

We may now compute /4 using Equation 2.14. If was assume that ion 1 is Mg?" and ion 2 is F~ then the respective

Z\p-" =+2 Z-=-1 .
VE , whereas Z, = “F . Therefore, we determine F', as follows:

charges on these ions are Z; =

(231 x 107 N-m?)(124]) (125

4 2
)

(231 x 10728 Nem?) (|42])(]-1))
- (0.205 x 107 m)>

=1.10 x 108 N

(b) At the equilibrium separation distance the sum of attractive and repulsive forces is zero according to

Equation 2.4. Therefore

=—(1.1I0x 108N)=—1.10x 108 N



Problem 2.17

The force of attraction between a divalent cation and a divalent anion is 1.67 x 1 08 N. If the ionic radius

of the cation is 0.080 nm, what is the anion radius?

Solution 2.17

To begin, let us rewrite Equation 2.15 to read as follows:
=Te*Ty
in which "Cand A represent, respectively, the radii of the cation and anion. Thus, this problem calls for us to
determine the value of 'A. However, before this is possible, it is necessary to compute the value of ’:'using

Equation 2.14, and replacing the parameter » with 0. Solving this expression for "0 leads to the following:

\/(2.31 x 1072 N-m?) (| Z¢]) (|74 )
By =
Fy

Here l(' and [A_\ represent charges on the cation and anion, respectively. Furthermore, inasmuch as both ion are

Z,=-2

> _ 19 y )
Zo=+2 . The value of "0is determined as follows:

divalent means that “¢ and

\/(2.31 x 10728 N-m2) (|+2])(|-2))
7=
’ 1.67 x 1078 N

=0235 x 10°? m=0235nm

Using the version of Equation 2.15 given above, and incorporating this value of "0and also the value of "¢ given in

the problem statement (0.080 nm) it is possible to solve for Ta
r=rn-r

A

=0.2351m—0.080 nm = 0.155 nm



Problem 2.18

The net potential energy between two adjacent ions, Ey, may be represented by the sum of Equations 2.9

and 2.11; that is,

Ey=—+

A B
r "

(2.17)

Calculate the bonding energy E in terms of the parameters A, B, and n using the following procedure:

1. Differentiate E\y with respect to r, and then set the resulting expression equal to zero, because the curve
of Ey versus r is a minimum at E,,

2. Solve for r in terms of A, B, and n, which yields r,, the equilibrium interionic spacing.

3. Determine the expression for E by substitution of r into Equation 2.17.

Solution 2.18
Differentiation of Equation 2.17 yields

+
dr dr dr
4 nB 0
IR R
Now, solving for » (= ro)
A4 _  nB
2 "t 1)

or
( 4 Jl/(l —n)
o=
0 nB

Substitution of this expression for "o into Equation 2.17 and solving for E (= EO) yields



A B

B / - [
(A)l(l—n) (Ajn(l—n)
nB nB



Problem 2.19

For a Na*—CI ion pair, attractive and repulsive energies E 4 and E ,, respectively, depend on the distance

between the ions r, according to

For these expressions, energies are expressed in electron volts per Na'—CI pair, and r is the distance in
nanometers. The net energy Ey is just the sum of the preceding two expressions.

(a) Superimpose on a single plot Ey, Ex, and E, versus r up to 1.0 nm.

(b) On the basis of this plot, determine (i) the equilibrium spacing ry between the Na™ and CI ions, and (ii)
the magnitude of the bonding energy E, between the two ions.

(c) Mathematically determine the ro and Ey values using the solutions to Problem 2.18, and compare these

with the graphical results from part (b).

Solution 2.19

(a) Curves of £ o Ep and £  are shown on the plot below.

6.0
4.0 1
E
Z 20 N\
@ J
2
S 00
on
= 1
=
§ 20
g 2
] ry= 0.24 nm
4.0 1
,==53eV—> ---—----—--- y
6.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Interionic Separation, nm

(b) From this plot:

Fo= 0.24 nm



Ey=-53eV

(¢) From Equation 2.17 for £ N

A=1.436
B=732x107°
n=2_.
Thus,
( 4 Jl/(l —-n)
h = JR—
0 nB
1/(1 - 8)
o146 ~ 0236 nm
(8)(7.32 x 10°)
and

1.436 7.32x107°

/1 -8 8/(1 -8
1.436 =9 1.436 =9
(8)(7.32x107°) (8)(7.32x1079)

=-532eV

These values are in excellent agreement with the values determined from the plot in part (b).



Problem 2.20
Consider a hypothetical X'—Y ion pair for which the equilibrium interionic spacing and bonding energy
values are 0.38 nm and —5.37 eV, respectively. If it is known that n in Equation 2.17 has a value of 8, using the

results of Problem 2.18, determine explicit expressions for attractive and repulsive energies E , and Ey, of Equations

29and 2.11.

Solution 2.20
(a) This problem gives us, for a hypothetical Xty ion pair, values for "o (0.38 nm), E, (-5.37¢eV),and n

(8), and asks that we determine explicit expressions for attractive and repulsive energies of Equations 2.9 and 2.11.

In essence, it is necessary to compute the values of 4 and B in these equations. Expressions for "o and E0 in terms

of n, 4, and B were determined in Problem 2.18, which are as follows:

PRYCE
]"0 = E

A B

/ * /
(Ajl(l—n) (A)n(l_n)
nB nB

Thus, we have two simultaneous equations with two unknowns (viz. 4 and B). Upon substitution of values for "o

E(): -

and E, in terms of n, the above two equations become

1/(1 - 8) -1/7
038 nm = | L (A
8B 8B

A B

TN 8/(1-8)
4 4
8B 8B

and

—-537eV= -




We now want to solve these two equations simultaneously for values of 4 and B. From the first of these two

equations, solving for 4/8B leads to

A -7
— =(0.38 nm
B ( )

Furthermore, from the above equation the A4 is equal to

A=8B(0.38 nm)~’ (S2.20)

When the above two expressions for 4/8B and A are substituted into the above expression for E, (— 5.37 eV), the

following results

—537eV==—

8B(0.38 nm)~’ N B
[038nm)7] "7 [©38nm) 7]

8B(0.38 nm)”’ . B
0.38 nm (0.38 nm)®

—537eV==— 85 + B = B

038nm)®  (038nm)®  (0.38 nm)®

Solving for B from this equation yields

B=334 x 10°* eV-nm®

Furthermore, the value of 4 is determined from Equation S2.20 as follows:

A=8B(0.38 nm)~’ =(8)(3.34 x 107* eV-nm®)(0.38 nm)~’

= 2.34 eV-nm
Thus, Equations 2.9 and 2.11 become



Of course these expressions are valid for » and £ in units of nanometers and electron volts, respectively.



Problem 2.21

The net potential energy Ey between two adjacent ions is sometimes represented by the expression

Ey :—£+Dexp[—1]

r P (2.18)

in which r is the interionic separation and C, D, and p are constants whose values depend on the specific material.

(a) Derive an expression for the bonding energy E , in terms of the equilibrium interionic separation r, and

the constants D and p using the following procedure:

(i) Differentiate Ey with respect to r, and set the resulting expression equal to zero.

(ii) Solve for C in terms of D, p, and r,,

(iii) Determine the expression for Ey by substitution for C in Equation 2.18.

(b) Derive another expression for E in terms of r,, C, and p using a procedure analogous to the one

outlined in part (a).

Solution 2.21
(a) Differentiating Equation 2.18 with respect to r yields

i 5) apelr

dr dr dr

Atr= o dE/dr =0, and

(2.18a)

Solving for C yields

Substitution of this expression for C into Equation 2.18 yields an expression for E as



(b) Now solving for D from Equation 2.18a above yields

Cp exp(roj
D= _\PJ

1

Substitution of this expression for D into Equation 2.18 yields an expression for Eas

c Cp exp(roj ;
Ey=—+ 72/0 exp(——oj
Ty 0 Y

0= —| & -
"\



Primary Interatomic Bonds

Problem 2.22
(a) Briefly cite the main differences among ionic, covalent, and metallic bonding.

(b) State the Pauli exclusion principle.

Answer 2.22
(a) The main differences between the various forms of primary bonding are:
Ionic--there is electrostatic attraction between oppositely charged ions.
Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a
stable electron configuration.
Metallic--the positively charged ion cores are shielded from one another, and also "glued" together
by the sea of valence electrons.
(b) The Pauli exclusion principle states that each electron state can hold no more than two electrons, which

must have opposite spins.



Problem 2.23

Make a plot of bonding energy versus melting temperature for the metals listed in Table 2.3. Using this

plot, approximate the bonding energy for molybdenum, which has a melting temperature of 2617 °C.

Solution 2.23
Below is plotted the bonding energy versus melting temperature for these four metals. From this plot, the

bonding energy for molybdenum (melting temperature of 2617°C) should be approximately 680 kJ/mol. The

experimental value is 660 kJ/mol.
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Secondary Bonding or van der Waals Bonding

Problem 2.24

Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride (HCI) (19.4
vs. —=85°C), even though HF has a lower molecular weight.

Solution 2.24

The intermolecular bonding for HF is hydrogen, whereas for HCI, the intermolecular bonding is van der

Waals. Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting temperature.



Mixed Bonding

Problem 2.25
Compute the %IC of the interatomic bond for each of the following compounds: MgO, GaP, CsF, CdS, and
FeO.

Solution 2.25

The percent ionic character is a function of the electron negativities of the ions X A and Xp according to

Equation 2.16. The electronegativities of the elements are found in Figure 2.9.

For MgO, XMg =1.2and XO = 3.5, and therefore,

%IC = [1 —exp(—o.zs)(3.5—1.z)2] x 100 = 73.4%

For GaP, XGa =1.6 and XP = 2.1, and therefore,

%IC = [I —cxp{—O.ZS)(ll—l_b):] x 100=6.1%

For CsF, XCs =0.7 and XF = 4.0, and therefore,

%IC = [1 —cxp(—O..’.SlHO—O.?):j' x 100 =93.4%

For CdS, XCd =1.7 and XS = 2.5, and therefore,

°ulc=[| -cxm—o.zsxz.S—l.ﬂl} x 100 =14.8%

For FeO, XFe =1.8 and XO = 3.5, and therefore,

"ulc‘:[l —cxp(—O.BS)(lS—l.S):} x 100 = 51.4%



Problem 2.26

(a) Calculate %IC of the interatomic bonds for the intermetallic compound Al ;Mn

(b) On the basis of this result what type of interatomic bonding would you expect to be found in Al Mn?

Solution 2.26

(a) The percent ionic character is a function of the electron negativities of the ions X A and Xp according to

Equation 2.16. The electronegativities for Al and Mn (Figure 2.9) are both 1.5 and. Therefore the percent ionic
character is determined using Equation 2.16 as follows:

mc=[1 —cxp{—O,ZSNI,S—l.S):} x 100=0%

(b) Because the percent ionic character is zero and this intermetallic compound is composed of two metals,

the bonding is completely metallic.



Bonding Type-Material Classification Correlations

Problem 2.27
What type(s) of bonding would be expected for each of the following materials: solid xenon, calcium
fluoride (CaF 2), bronze, cadmium telluride (CdTe), rubber, and tungsten?

Solution 2.27
For solid xenon, the bonding is van der Waals since xenon is an inert gas.

For CaF,, the bonding is predominantly ionic (but with some slight covalent character) on the basis of the

relative positions of Ca and F in the periodic table.

For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin).

For CdTe, the bonding is predominantly covalent (with some slight ionic character) on the basis of the
relative positions of Cd and Te in the periodic table.

For rubber, the bonding is covalent with some van der Waals. (Rubber is composed primarily of carbon and
hydrogen atoms.)

For tungsten, the bonding is metallic since it is a metallic element from the periodic table.



FUNDAMENTALS OF ENGINEERING QUESTIONS AND PROBLEMS

Problem 2.1FE
Which of the following electron configurations is for an inert gas?
(A) 1525 2p°3s*3p°
(B) 1s°2s*2p°3s®
(C) 1s°2572p°35?3p4s’
(D) 1s°2s*2p3s°3p°3d°4s’

Solution 2.1FE
The correct answer is A. The 15?2s*2p°35?3p® electron configuration is that of an inert gas because of filled

3s and 3p subshells.



Problem 2.2FE
What type(s) of bonding would be expected for bronze (a copper-tin alloy)?
(A) lonic bonding
(B) Metallic bonding
(C) Covalent bonding with some van der Waals bonding
(D) van der Waals bonding

Solution 2.2FE

The correct answer is B. For bronze, the bonding is metallic because it is a metal alloy.



Problem 2.3FE
What type(s) of bonding would be expected for rubber?
(A) lonic bonding
(B) Metallic bonding
(C) Covalent bonding with some van der Waals bonding
(D) van der Waals bonding

Solution 2.3FE
The correct answer is C. For rubber, the bonding is covalent with some van der Waals bonding. (Rubber is

composed primarily of carbon and hydrogen atoms.)



