This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

3rd Edition

Michael S. Mamlouk Arizona State University

John P. Zaniewski West Virginia University

Solution Manual

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

FOREWORD

This solution manual includes the solutions to numerical problems at the end of various chapters of the book. It does not include answers to word questions, but the appropriate sections in the book are referenced. The procedures used in the solutions are taken from the corresponding chapters and sections of the text. Each step in the solution is taken to the lowest detail level consistent with the level of the text, with a clear progression between steps. Each problem solution is self-contained, with a minimum of dependence on other solutions. The final answer of each problem is printed in bold.

The instructors are advised not to spread the solutions electronically among students in order not to limit the instructor's choice to assign problems in future semesters.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

CHAPTER 1. MATERIALS ENGINEERING CONCEPTS

- **1.2.** Strength at rupture = **45 ksi** Toughness = $(45 \times 0.003) / 2 = 0.0675$ ksi
- 1.3. $A = 0.36 \text{ in}^2$ $\sigma = 138.8889 \text{ ksi}$ $\epsilon_A = 0.0035 \text{ in/in}$ $\epsilon_L = -0.016667 \text{ in/in}$ E = 39682 ksiv = 0.21
- 1.4. $A = 201.06 \text{ mm}^2$ $\sigma = 0.945 \text{ GPa}$ $\epsilon_A = 0.002698 \text{ m/m}$ $\epsilon_L = -0.000625 \text{ m/m}$ E = 350.3 GPav = 0.23
- **1.5.** $A = \pi d^2/4 = 28.27 \text{ in}^2$ $\sigma = P / A = -150,000 / 28.27 \text{ in}^2 = -5.31 \text{ ksi}$ $E = \sigma / \epsilon = 8000 \text{ ksi}$ $\epsilon_A = \sigma / E = -5.31 \text{ ksi} / 8000 \text{ ksi} = -0.0006631 \text{ in/in}$ $\Delta L = \epsilon_A L_o = -0006631 \text{ in/in} (12 \text{ in}) = -0.00796 \text{ in}$ $L_f = \Delta L + L_o = 12 \text{ in} 0.00796 \text{ in} = \textbf{11.992 in}$ $v = -\epsilon_L / \epsilon_A = 0.35$ $\epsilon_L = \Delta d / d_o = -v \epsilon_A = -0.35 (-0.0006631 \text{ in/in}) = 0.000232 \text{ in/in}$ $\Delta d = \epsilon_L d_o = 0.000232 (6 \text{ in}) = 0.00139 \text{ in}$ $d_f = \Delta d + d_o = 6 \text{ in} + 0.00139 \text{ in} = \textbf{6.00139 in}$

 $d_f = \Delta d + d_o = 0.5 \text{ in } -0.000168 \text{ in } = 0.49998 \text{ in}$

1.6. $A = \pi d^2/4 = 0.196 \text{ in}^2$ $\sigma = P / A = 2,000 / 0.196 \text{ in}^2 = 10.18 \text{ ksi (Less than the yield strength. Within the elastic region)}$ $E = \sigma / \epsilon = 10,000 \text{ ksi}$ $\epsilon_A = \sigma / E = 10.18 \text{ ksi } / 10,000 \text{ ksi} = 0.0010186 \text{ in/in}$ $\Delta L = \epsilon_A L_o = 0.0010186 \text{ in/in } (12 \text{ in}) = 0.0122 \text{ in}$ $L_f = \Delta L + L_o = 12 \text{ in} + 0.0122 \text{ in} = 12.0122 \text{ in}$ $v = -\epsilon_L / \epsilon_A = 0.33$ $\epsilon_L = \Delta d / d_o = -v \epsilon_A = -0.33 (0.0010186 \text{ in/in}) = -0.000336 \text{ in/in}$ $\Delta d = \epsilon_L d_o = -0.000336 (0.5 \text{ in}) = -0.000168 \text{ in}$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.7.
$$L_x = 30$$
 mm, $L_y = 60$ mm, $L_z = 90$ mm $\sigma_x = \sigma_y = \sigma_z = \sigma = 100$ MPa $E = 70$ GPa $v = 0.333$

$$\begin{split} & \epsilon_x = \left[\sigma_x - \nu \left(\sigma_y + \sigma_z\right)\right] / E \\ & \epsilon_x = \left[100 \text{ x } 10^6 - 0.333 \left(100 \text{ x } 10^6 + 100 \text{ x } 10^6\right)\right] / 70 \text{ x } 10^9 = 4.77 \text{ x } 10^{-4} = \epsilon_y = \epsilon_z = \epsilon \\ & \Delta L_x = \epsilon \text{ x } L_x = 4.77 \text{ x } 10^{-4} \text{ x } 30 = 0.01431 \text{ mm} \\ & \Delta L_y = \epsilon \text{ x } L_y = 4.77 \text{ x } 10^{-4} \text{ x } 60 = 0.02862 \text{ mm} \\ & \Delta L_z = \epsilon \text{ x } L_z = 4.77 \text{ x } 10^{-4} \text{ x } 90 = \textbf{0.04293 mm} \\ & \Delta V = \text{New volume - Original volume} = \left[\left(L_x - \Delta L_x \right) \left(L_y - \Delta L_y \right) \left(L_z - \Delta L_z \right) \right] - L_x L_y L_z \\ & = (30 - 0.01431) \left(60 - 0.02862 \right) \left(90 - 0.04293 \right) \right] - \left(30 \text{ x } 60 \text{ x } 90 \right) = 161768 - 162000 \\ & = \textbf{-232 mm}^3 \end{split}$$

1.8.
$$L_x$$
 =4 in, L_y = 4 in, L_z = 4 in $\sigma_x = \sigma_y = \sigma_z = \sigma = 15,000$ psi $E = 1000$ ksi $v = 0.49$

$$\begin{split} & \epsilon_x = \left[\sigma_x - \nu \left(\sigma_y + \sigma_z\right)\right] / E \\ & \epsilon_x = \left[15 - 0.49 \left(15 + 15\right)\right] / \ 1000 = \ 0.0003 = \epsilon_y = \epsilon_z = \epsilon \\ & \Delta L_x = \ \epsilon \ x \ L_x = 0.0003 \ x \ 15 = 0.0045 \ in \\ & \Delta L_y = \ \epsilon \ x \ L_z = 0.0003 \ x \ 15 = 0.0045 \ in \\ & \Delta L_z = \epsilon \ x \ L_z = 0.0003 \ x \ 15 = 0.0045 \ in \\ & \Delta V = \ \text{New volume - Original volume} = \left[\left(L_x - \Delta L_x\right) \left(L_y - \Delta L_y\right) \left(L_z - \Delta L_z\right)\right] - L_x \ L_y \ L_z \\ & = \left(15 - 0.0045\right) \left(15 - 0.0045\right) \left(15 - 0.0045\right)\right] - \left(15 \ x \ 15 \ x \ 15\right) = 3371.963 - 3375 \\ & = \textbf{-3.037 in}^3 \end{split}$$

1.9.
$$\varepsilon = 0.3 \times 10^{-16} \, \sigma^3$$

At $\sigma = 50,000 \, \text{psi}$, $\varepsilon = 0.3 \times 10^{-16} \, (50,000)^3 = 3.75 \times 10^{-3} \, \text{in./in.}$
Secant Modulus $= \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{50,000}{3.75 \times 10^{-3}} = 1.33 \times 10^7 \, \text{psi}$
 $\frac{d\varepsilon}{d\sigma} = 0.9 \times 10^{-16} \, \sigma^2$
At $\sigma = 50,000 \, \text{psi}$, $\frac{d\varepsilon}{d\sigma} = 0.9 \times 10^{-16} \, (50,000)^2 = 2.25 \times 10^{-7} \, \text{in.}^2/\text{lb}$
Tangent modulus $= \frac{d\sigma}{d\varepsilon} = \frac{1}{2.25 \times 10^{-7}} = 4.44 \times 10^6 \, \text{psi}$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.11.
$$\varepsilon_{\text{lateral}} = \frac{-3.25 \times 10^{-4}}{1} = -3.25 \times 10^{-4} \text{ in./in.}$$

$$\varepsilon_{\text{axial}} = \frac{2 \times 10^{-3}}{2} = 1 \times 10^{-3} \text{ in./in.}$$

$$v = -\frac{\varepsilon_{\text{lateral}}}{\varepsilon_{\text{axial}}} = -\frac{-3.25 \times 10^{-4}}{1 \times 10^{-3}} = \mathbf{0.325}$$

1.12.
$$\varepsilon_{lateral} = 0.05 / 50 = 0.001$$
 in./in.

$$\varepsilon_{axial} = v \times \varepsilon_{lateral} = 0.33 \times 0.001 = 0.00303 \text{ in.}$$

$$\Delta d = \varepsilon_{\text{axial}} \times d_0 = -0.00825 \text{ in. (Contraction)}$$

1.13.
$$L = 380 \text{ mm}$$

$$D = 10 \text{ mm}$$

$$P = 24.5 \text{ kN}$$

$$\sigma = P/A = P/\pi r^2$$

$$\sigma = 24,500 \text{ N/} \pi (5 \text{ mm})^2 = 312,000 \text{ N/mm}^2 = 312 \text{ MPa}$$

$$\sigma = 24,500 \text{ N/} \pi \text{ (5 mm)}^2 = 312,000 \text{ N/mm}^2 = 312 \text{ MPa}$$

$$\delta = \frac{PL}{AE} = \frac{24,500 lbx 380 mm}{\pi (5mm)^2 E(kPa)} = \frac{118,539}{E(MPa)} \text{ mm}$$

Material	Elastic Modulus	Yield Strength	Tensile Strength	Stress	δ
	(MPa)	(MPa)	(MPa)	(MPa)	(mm)
Copper	110,000	248	289	312	1.078
Al. alloy	70,000	255	420	312	1.693
Steel	207,000	448	551	312	0.573
Brass	101,000	345	420	312	1.174
alloy					

The problem requires the following two conditions:

- a) No plastic deformation ⇒ Stress < Yield Strength
- b) Increase in length, $\delta < 0.9$ mm

The only material that satisfies both conditions is **steel**.

1.14. a. $E = \sigma / \epsilon = 40,000 / 0.004 = 10 \text{ x } 10^6 \text{ psi}$

- b. Tangent modulus at a stress of 45,000 psi is the slope of the tangent at that stress = 4.7 x 10^6 psi
- c. Yield stress using an offset of 0.002 strain = **49,000** psi
- d. Maximum working stress = Failure stress / Factor of safety = 49,000 / 1.5 = 32,670 psi

3

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

- 1.15.a. Modulus of elasticity within the linear portion = 20,000 ksi.
 - **b.**Yield stress at an offset strain of 0.002 in./in. ≈ **70.0 ksi**
 - c. Yield stress at an extension strain of 0.005 in/in. \approx 69.5 ksi
 - d. Secant modulus at a stress of 62 ksi. ≈ 18,000 ksi
 - e. Tangent modulus at a stress of 65 ksi. ≈ 6,000 ksi
- **1.16.**a. Modulus of resilience = the area under the elastic portion of the stress strain curve = $\frac{1}{2}(50 \times 0.0025) \approx 0.0625$ ksi
 - b. Toughness = the area under the stress strain curve (using the trapezoidal integration technique) $\approx 0.69 \text{ ksi}$
 - c. σ = 40 ksi , this stress is within the elastic range, therefore, E = **20,000 ksi** ϵ_{axial} = 40/20,000 = 0.002 in./in.

$$v = -\frac{\varepsilon_{lateral}}{\varepsilon_{axial}} = -\frac{-0.00057}{0.002} = \mathbf{0.285}$$

d. The permanent strain at 70 ksi = 0.0018 in./in.

1.17.

	Material A	Material B	
a. Proportional limit	51 ksi	40 ksi	
b. Yield stress at an offset strain	63 ksi	52 ksi	
of 0.002 in./in.			
c. Ultimate strength	132 ksi	73 ksi	
d. Modulus of resilience	0.065 ksi	0.07 ksi	
e. Toughness	8.2 ksi	7.5 ksi	
f.	Material B is more ductile as it undergoes more		
	deformation before failure		

1.18. Assume that the stress is within the linear elastic range.

$$\sigma = \varepsilon.E = \frac{\delta.E}{l} = \frac{0.3x16,000}{10} = 480 \text{ ksi}$$

Thus $\sigma > \sigma_{\text{vield}}$

Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.

4

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.19. Assume that the stress is within the linear elastic range.

$$\sigma = \varepsilon.E = \frac{\delta.E}{l} = \frac{7.6x105,000}{250} = 3,192 \text{ MPa}$$

Thus $\sigma > \sigma_{vield}$

Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.

- **1.20.** At $\sigma = 60,000$ psi, $\varepsilon = \sigma / E = 60,000 / (30 x <math>10^6) = 0.002$ in./in.
 - a. For a strain of 0.001 in./in.:

$$\sigma = \epsilon \ E = 0.001 \ x \ 30 \ x \ 10^6 = \textbf{30,000 psi}$$
 (for both i and ii)

b. For a strain of 0.004 in./in.:

$$\sigma = 60,000 \text{ psi (for i)}$$

 $\sigma = 60,000 + 2 \times 10^6 (0.004 - 0.002) = 64,000 \text{ psi (for ii)}$

1.21. a. Slope of the elastic portion = $600/0.003 = 2x10^5$ MPa

Slope of the plastic portion =
$$(800-600)/(0.07-0.003) = 2,985$$
 MPa

Strain at 650 MPa =
$$0.003 + (650-600)/2,985 = 0.0198$$
 m/m

Permanent strain at 650 MPa =
$$0.0198 - 650/(2x10^5) =$$
0.0165 m/m

- b. Percent increase in yield strength = = 100(650-600)/600 = 8.3%
- c. The strain at $625 \text{ MPa} = 625/(2x10^5) = \mathbf{0.003125} \text{ m/m}$ This strain is elastic.
- **1.22.** See Sections 1.2.3, 1.2.4 and 1.2.5.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.23. The stresses and strains can be calculated as follows:

$$\sigma = P/A_o = 150 / (\pi \times 2^2) = 11.94 \text{ psi}$$

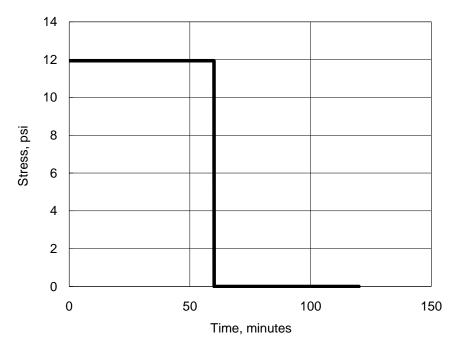
 $\epsilon = (H_o-H)/H_o = (6-H)/6$

The stresses and strains are shown in the following table:

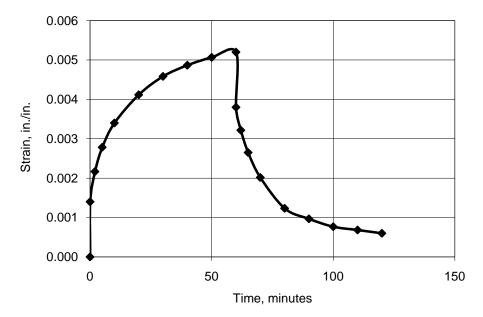
Time	Н	Strain	Stress
(min.)	(in.)	(in./in.)	(psi)
0	6	0.00000	11.9366
0.01	5.9916	0.00140	11.9366
2	5.987	0.00217	11.9366
5	5.9833	0.00278	11.9366
10	5.9796	0.00340	11.9366
20	5.9753	0.00412	11.9366
30	5.9725	0.00458	11.9366
40	5.9708	0.00487	11.9366
50	5.9696	0.00507	11.9366
60	5.9688	0.00520	11.9366
60.01	5.9772	0.00380	0.0000
62	5.9807	0.00322	0.0000
65	5.9841	0.00265	0.0000
70	5.9879	0.00202	0.0000
80	5.9926	0.00123	0.0000
90	5.9942	0.00097	0.0000
100	5.9954	0.00077	0.0000
110	5.9959	0.00068	0.0000
120	5.9964	0.00060	0.0000

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

a. Stress versus time plot for the asphalt concrete sample



Strain versus time plot for the asphalt concrete sample



- b. Elastic strain = 0.0014 in./in.
- c. The permanent strain at the end of the experiment = 0.0006 in./in.
- d. The phenomenon of the change of specimen height during static loading is called **creep** while the phenomenon of the change of specimen height during unloading called is called **recovery**.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.24. See Figure 1.12(a).

1.25 See Section 1.2.7.

1.27. a. For
$$P = 5 \text{ kN}$$

Stress = P / A =
$$5000 / (\pi \times 5^2) = 63.7 \text{ N/mm}^2 = 63.7 \text{ MPa}$$

Stress / Strength =
$$63.7 / 290 = 0.22$$

From Figure 1.16, an **unlimited number** of repetitions can be applied without fatigue failure.

b. For
$$P = 11 \text{ kN}$$

Stress = P / A =
$$11000 / (\pi \times 5^2) = 140.1 \text{ N/mm}^2 = 140.1 \text{ MPa}$$

Stress / Strength =
$$140.1 / 290 = 0.48$$

From Figure 1.16, N ≈**700**

1.28 See Section 1.2.8.

1.29.

Material	Specific Gravity	
Steel	7.9	
Aluminum	2.7	
Aggregates	2.6 - 2.7	
Concrete	2.4	
Asphalt cement	1 - 1.1	

1.30 See Section 1.3.2.

1.31.
$$\delta L = \alpha_L x \ \delta T \ x \ L = 12.5 \text{E} - 06 \ x \ (115 - 15) \ x \ 200 / 1000 = 0.00025 \ \text{m} = 250 \ \text{microns}$$

Rod length = L + $\delta L = 200,000 + 250 = 200,250 \ \text{microns}$

Compute change in diameter linear method

$$\delta d = \alpha_d x \, \delta T x \, d = 12.5 \text{E-}06 \, \text{x} \, (115 \text{-}15) \, \text{x} \, 20 = 0.025 \, \text{mm}$$

Final d = 20.025 mm

Compute change in diameter volume method

$$\delta V = \alpha_V x \ \delta T x \ V = (3 \ x \ 12.5\text{E}-06) \ x \ (115-15) \ x \ \pi \ (10/1000)^2 \ x \ 200/1000 = 2.3562 \ x \ 10^{11}$$
 m³

Rod final volume =
$$V + \delta V = \pi r^2 L + \delta V = 6.28319 \times 10^{13} + 2.3562 \times 10^{11} = 6.31 \times 10^{13} \text{ m}^3$$

Final d = **20.025 mm**

There is no stress acting on the rod because the rod is free to move.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.32. Since the rod is snugly fitted against two immovable nonconducting walls, the length of the rod will not change, L = 200 mm

From problem 1.25, $\delta L = 0.00025 \text{ m}$

 $\varepsilon = \delta L / L = 0.00025 / 0.2 = 0.00125 \text{ m/m}$

 $\sigma = \epsilon E = 0.00125 \text{ x } 207,000 = 258.75 \text{ MPa}$

The stress induced in the bar will be compression.

1.33. a. The change in length can be calculated using Equation 1.9 as follows:

$$\delta L = \alpha_L x \, \delta T x L = 1.1 \text{E-5 x (5 - 40) x 4} = \textbf{-0.00154 m}$$

b. The tension load needed to return the length to the original value of 4 meters can be calculated as follows:

$$\varepsilon = \delta L / L = -0.00154 / 4 = -0.000358 \text{ m/m}$$

$$\sigma = \varepsilon E = -0.000358 \times 200,000 = -77 \text{ MPa}$$

$$P = \sigma \times A = -77 \times (100 \times 50) = -385,000 \text{ N} = -385 \text{ kN (tension)}$$

- c. Longitudinal strain under this load = 0.000358 m/m
- **1.34.** If the bar was fixed at one end and free at the other end, the bar would have contracted and no stresses would have developed. In that case, the change in length can be calculated using Equation 1.9 as follows.

$$\delta L = \alpha_L x \, \delta T x L = 0.000005 \, \text{x} \, (0 - 100) \, \text{x} \, 50 = -0.025 \, \text{in}.$$

$$\varepsilon = \delta L / L = 0.025 / 50 = 0.0005 \text{ in./in.}$$

Since the bar is fixed at both ends, the length of the bar will not change. Therefore, a tensile stress will develop in the bar as follows.

$$\sigma = \varepsilon E = -0.0005 \times 5,000,000 = -2,500 \text{ psi}$$

Thus, the tensile strength should be larger than 2,500 psi in order to prevent cracking.

- **1.36** See Section 1.7.
- **1.37** See Section 1.7.1

1.38.
$$H_0$$
: $\mu \geq 32.4$ MPa

$$H_1$$
: μ < 32.4 MPa

$$\alpha = 0.05$$

$$T_{o} = \frac{\overline{x} - \mu}{(\sigma / \sqrt{n})} = -3$$

Degree of freedom = v = n - 1 = 15

From the statistical t-distribution table, $T_{\alpha, \nu} = T_{0.05, 15} = -1.753$

$$T_o < T_{\alpha, \nu}$$

Therefore, **reject** the hypothesis. The contractor's claim is not valid.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.39. H_o:
$$\mu \ge 5,000$$
 psi
H₁: $\mu < 5,000$ psi
 $\alpha = 0.05$
 $T_o = \frac{\bar{x} - \mu}{(\sigma / \sqrt{n})} = -2.236$

Degree of freedom = v = n - 1 = 19

From the statistical t-distribution table, $T_{\alpha, \nu} = T_{0.05, 19} = -1.729$

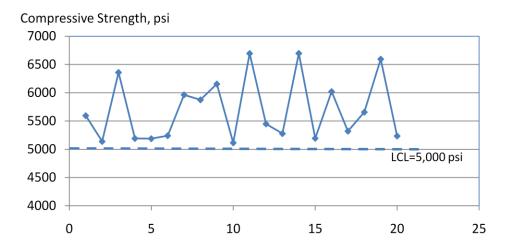
 $T_o < T_{\alpha,\,\upsilon}$

Therefore, **reject** the hypothesis. The contractor's claim is not valid.

1.40.
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{20} x_i}{20} = \frac{113,965}{20} = 5,698.25 psi$$

$$s = \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}\right)^{1/2} = \left(\frac{\sum_{i=1}^{20} (x_i - 5698.25)^2}{20 - 1}\right)^{1/2} = 571.35 psi$$
Coefficient of Variation = $100\left(\frac{s}{\bar{x}}\right) = 100\left(\frac{571.35}{5698.25}\right) = 10.03\%$

b. The control chart is shown below.



The target value is any value above the specification limit of 5,000 psi. The plant production is meeting the specification requirement.

10

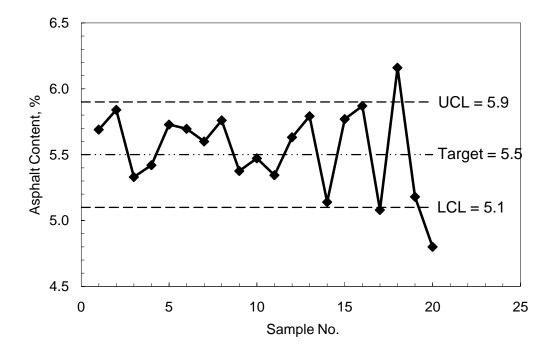
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.41. a.
$$x = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{20} x_i}{20} = \frac{110.7}{20} = 5.5 \%$$

$$s = \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}\right)^{1/2} = \left(\frac{\sum_{i=1}^{20} (x_i - 5.5)^2}{20 - 1}\right)^{1/2} = 0.33 \%$$

$$C = 100 \left(\frac{s}{x}\right) = 100 \left(\frac{0.33}{5.5}\right) = 6 \%$$

b. The control chart is shown below.



The control chart shows that most of the samples have asphalt content within the specification limits. Only few samples are outside the limits. The plot shows no specific trend, but large variability especially in the last several samples.

1.42 See Section 1.8.2.

1.43 See Section 1.8.

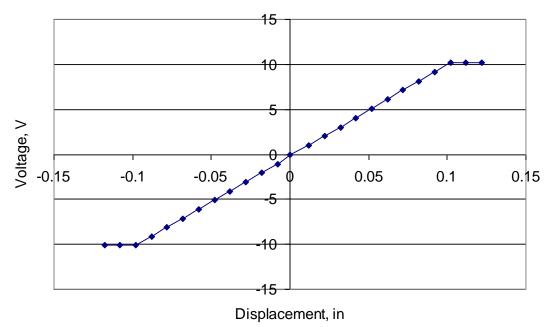
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.44. a. No information is given about accuracy.

- b. Sensitivity == 0.001 in.
- c. Range = 0 1 inch
- d. Accuracy can be improved by calibration.
- **1.45.** a. 0.001 in.
 - b. 100 psi
 - c. 100 MPa
 - d. 0.1 ge. 10 psi
 - f. 0.1 %
 - g. 0.1 %
 - h. 0.001
 - i. 100 miles
 - j. 10⁻⁶ mm

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1.46 The voltage is plotted versus displacement is shown below.

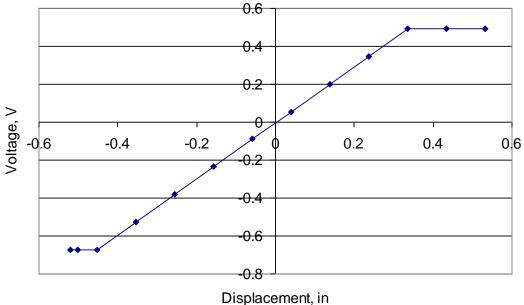


From the figure:

Linear range = ± 0.1 in.

Calibration factor = 101.2 Volts/in.

1.47 The voltage is plotted versus displacement is shown below.



From the figure:

Linear range = ± 0.3 in.

Calibration factor = 1.47 Volts/in.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

CHAPTER 2. NATURE OF MATERIALS

- 2.1. See Section 2.2.1.
- 2.2. See Section 2.1.
- 2.3. See Section 2.1.1.
- 2.4. See Section 2.1.1.
- 2.5. See Section 2.1.2.
- 2.6. See Section 2.2.1.
- 2.7. See Section 2.1.2.
- 2.8. See Section 2.2.1.
- 2.9. See Section 2.2.1.
- **2.10.** For the face-center cubic crystal structure, number of equivalent whole atoms in each unit cell = 4

By inspection the diagonal of the face of a FCC unit cell = 4r

Using Pythagorean theory:

$$(4r)^2 = a^2 + a^2$$

 $16r^2 = 2 a^2$
 $8r^2 = a^2$

$$16r^2 = 2 a^2$$

$$8r^2 = a^2$$

$$a = 2\sqrt{2}r$$

- **2.11.** a. Number of equivalent whole atoms in each unit cell in the BCC lattice structure = 2
 - b. Volume of the sphere = $(4/3) \pi r^3$

Volume of atoms in the unit cell = $2 \times (4/3) \pi r^3 = (8/3) \pi r^3$

By inspection, the diagonal of the cube of a BCC unit cell

$$=4r = \sqrt{a^2 + a^2 + a^2} = a\sqrt{3}$$

- a = Length of each side of the unit cell = $\frac{4r}{\sqrt{3}}$
- c. Volume of the unit cell = $\left[\frac{4r}{\sqrt{3}}\right]^3$

$$APF = \frac{volume \quad of \quad atoms \quad in \quad the \quad unit \quad cell}{total \quad unit \quad volume \quad of \quad the \quad cell} = \frac{(8/3)\pi r^3}{(4r/\sqrt{3})^3} = \mathbf{0.68}$$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2.12. For the BCC lattice structure:
$$a = \frac{4r}{\sqrt{3}}$$

Volume of the unit cell of iron =
$$\left[\frac{4r}{\sqrt{3}}\right]^3 = \left[\frac{4x0.124x10^{-9}}{\sqrt{3}}\right]^3 = 2.349 \times 10^{-29} \text{ m}^3$$

2.13. For the FCC lattice structure:
$$a = 2\sqrt{2}r$$

Volume of unit cell of aluminum = $(2\sqrt{2}r)^3 = (2\sqrt{2}x0.143)^3 = 0.06616725 \text{ nm}^3 = 6.6167x10^{-29} \text{ m}^3$

2.14. From Table 2.3, copper has an FCC lattice structure and r of 0.1278 nm

Volume of the unit cell of copper = $(2\sqrt{2}r)^3 = (2\sqrt{2}x0.1278)^3 = 0.04723 \text{ nm}^3 = 4.723 \text{ x}10^{-29} \text{ m}^3$

2.15. For the BCC lattice structure:
$$a = \frac{4r}{\sqrt{3}}$$

Volume of the unit cell of iron = $\left[\frac{4r}{\sqrt{3}}\right]^3 = \left[\frac{4x0.124x10^{-9}}{\sqrt{3}}\right]^3 = 2.349 \times 10^{-29} \,\mathrm{m}^3$

Density =
$$\rho = \frac{nA}{V_C N_A}$$

n = Number of equivalent atoms in the unit cell = 2

A = Atomic mass of the element = 55.9 g/mole N_A = Avogadro's number = 6.023×10^{23}

$$\rho = \frac{2x55.9}{2.349x10^{-29}x6.023x10^{23}} = 7.9 \text{ x } 10^6 \text{ g/m}^3 = 7.9 \text{ Mg/m}^3$$

2.16. For the FCC lattice structure: $a = 2\sqrt{2}r$

Volume of unit cell of aluminum = $(2\sqrt{2}r)^3 = (2\sqrt{2}x0.143)^3 = 0.06616725 \text{ nm}^3 = 6.6167x10^{-29} \text{ m}^3$

Density =
$$\rho = \frac{nA}{V_C N_A}$$

For FCC lattice structure, n = 4

A = Atomic mass of the element = 26.98 g/mole

$$N_A$$
= Atomic mass of the element = 20.36 g/mole
 N_A = Avogadro's number = 6.023 x 10²³
 $\rho = \frac{4x26.98}{6.6167x10^{-29}x6.023x10^{23}} = 2.708 \text{ x } 10^6 \text{ g/m}^3 = 2.708 \text{ Mg/m}^3$

2.17.
$$\rho = \frac{nA}{V_C N_A}$$

For FCC lattice structure, n = 4

$$V_{c} = \frac{4x63.55}{8.89x10^{6}x6.023x10^{23}} = 4.747 \times 10^{-29} \text{ m}^{3}$$

APF =
$$0.74 = \frac{4x(4/3)\pi . r^3}{4.747 x 10^{-29}}$$

 $r^3 = 0.2097 \times 10^{-29} \text{ m}^3$

$$r^3 = 0.2097 \times 10^{-29} \text{ m}^3$$

$$r = 0.128 \times 10^{-9} \text{ m} = 0.128 \text{ nm}$$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2.18. a.
$$\rho = \frac{nA}{V_C N_A}$$

For FCC lattice structure, n = 4

$$V_c = \frac{4x40.08}{1.55x10^6 x6.023x10^{23}} = 1.717 \times 10^{-28} \text{ m}^3$$

b. APF =
$$0.74 = \frac{4x(4/3)\pi . r^3}{1.717 x 10^{-28}}$$

 $r^3 = 0.7587 \times 10^{-29} \text{ m}^3$

$$r^3 = 0.7587 \times 10^{-29} \text{ m}^3$$

$$r = 0.196 \times 10^{-9} \text{ m} = 0.196 \text{ nm}$$

- **2.19.** See Section 2.2.2.
- **2.20.** See Section 2.2.2.
- **2.21.** See Section 2.2.2.
- **2.22.** See Figure 2.14.
- **2.23.** See Section 2.2.5.

2.24.
$$m_t = 100 \text{ g}$$

$$P_B = 65 \%$$

$$P_{lB} = 30 \%$$

$$P_{sB} = 80 \%$$

From Equations 2.4 and 2.5,

$$m_l + m_s = 100$$

$$30 m_l + 80 m_s = 65 \times 100$$

Solving the two equations simultaneously, we get:

 m_1 = mass of the alloy which is in the liquid phase = 30 g

 $m_s = \text{mass of the alloy which is in the solid phase} = 70 \text{ g}$

2.25.
$$m_t = 100 \text{ g}$$

$$P_B = 45 \%$$

$$P_{lB} = 17 \%$$

$$P_{sB} = 65 \%$$

From Equations 2.4 and 2.5,

$$m_l + m_s = 100$$

$$17 m_l + 65 m_s = 45 \times 100$$

Solving the two equations simultaneously, we get:

 m_1 = mass of the alloy which is in the liquid phase = **41.67** g

 $m_s = \text{mass of the alloy which is in the solid phase} = 58.39 \text{ g}$

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

```
2.26. m_t = 100 \text{ g}
P_B = 60 \%
P_{lB} = 25 \%
P_{sB} = 70 \%
From Equations 2.4 and 2.5,
m_l + m_s = 100
25 m_l + 70 m_s = 60 \times 100
Solving the two equations simultaneously, we get:
m_l = \text{mass of the alloy which is in the liquid phase} = 22.22 \text{ g}
m_s = \text{mass of the alloy which is in the solid phase} = 77.78 \text{ g}
```

2.27.
$$m_t = 100 \text{ g}$$
 $P_B = 40 \%$
 $P_{lB} = 20 \%$
 $P_{sB} = 50 \%$
From Equations 2.4 and 2.5,
 $m_l + m_s = 100$
 $40 m_l + 50 m_s = 40 \times 100$
Solving the two equations simultaneously, we get:
 $m_l = \text{mass of the alloy which is in the liquid phase} = 33.33 \text{ g}$
 $m_s = \text{mass of the alloy which is in the solid phase} = 66.67 \text{ g}$

- **2.28.**a. Spreading salt reduces the melting temperature of ice. For example, at a salt composition of 5%, ice starts to melt at -21°C. When temperature increases more ice will melt. At a temperature of -5°C, all ice will melt.
 - b. **-21°C**
 - c. -21°C
- **2.29.** See Section 2.3.
- **2.30.** See Section 2.3.
- **2.31.** See Section 2.4.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

CHAPTER 3. STEEL

- **3.1** See Section 3.1.
- **3.2** See Section 3.2.
- **3.3** See Section 3.2.
- **3.4** See Section 3.2.
- **3.5.** At a temperature just higher than 727°C all the austenite will have a carbon content of 0.77% and will transform to pearlite. The ferrite will remain as primary ferrite. The proportions can be determined from using the lever rule.

Primary
$$\alpha$$
: 0.022% C, Percent primary $\alpha = \left[\frac{0.77 - 0.10}{0.77 - 0.022}\right] \times 100 = 89.6\%$

Percent pearlite =
$$\left[\frac{0.25 - 0.022}{0.77 - 0.022} \right] = 10.4\%$$

At a temperature just below 727°C the phases are ferrite and iron carbide. The ferrite will have 0.022% carbon.

Percentferrite,
$$\alpha$$
: $(0.022\% \ C) = \left[\frac{6.67 - 0.25}{6.67 - 0.022}\right] \times 100 = 98.8\%$

Percent pear lite =
$$\left[\frac{0.25 - 0.022}{6.67 - 0.022}\right] = 1.2\%$$

- **3.6.** See Section 3.3.
- **3.7.** See Section 3.4.
- **3.8.** See Section 3.4.
- **3.9.** A wide-flange shape that is nominally 36 in. deep and weighs 182 lb/ft
- **3.10.** See Section 3.5.3.
- **3.11.** See Section 3.6.
- **3.12.** See Section 3.6.
- **3.13.** Cold forming will almost double the yield strength to 66 ksi.
- **3.14.** See Section 3.7.