SOLUTIONS TO PROBLEMS

PREFACE

This section of instructor's resource materials contains solutions and answers to
all problems and questions that appear in the textbook. My penmanship leaves
something to be desired; therefore, | generated these solutions/answers using
computer software so that the resulting product would be "readable.” Furthermore, |
endeavored to provide complete and detailed solutions in order that: (1) the instructor,
without having to take time to solve a problem, will understand what principles/skills are
to be learned by its solution; and (2) to facilitate student understanding/learning when
the solution is posted.

| would recommend that the course instructor consult these solutions/answers
before assigning problems and questions. In doing so, he or she ensures that the
students will be drilled in the intended principles and concepts. In addition, the
instructor may provide appropriate hints for some of the more difficult problems.

With regard to symbols, in the text material | elected to boldface those symbols
that are italicized in the textbook. Furthermore, | also endeavored to be consistent
relative to symbol style. However, in several instances, symbols that appear in the
textbook were not available, and it was necessary to make appropriate substitutions.
These include the following: the letter a (unit cell edge length, crack length) is used in
place of the cursive a. And Roman E and F replace script E (electric field in Chapter
18) and script F (Faraday's constant in Chapter 17), respectively.

| have exercised extreme care in designing these problems/questions, and then
in solving them. However, no matter how careful one is with the preparation of a work
such as this, errors will always remain in the final product. Therefore, corrections,
suggestions, and comments from instructors who use the textbook (as well as their
teaching assistants) pertaining to homework problems/solutions are welcomed. These
may be sent to me in care of the publisher.
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CHAPTER 2
ATOMIC STRUCTURE AND INTERATOMIC BONDING
PROBLEM SOLUTIONS

(@) When two or more atoms of an element have different atomic masses, each is termed an
isotope.

(b) The atomic weights of the elements ordinarily are not integers because: (1) the atomic masses
of the atoms generally are not integers (except for 12C), and (2) the atomic weight is taken as the

weighted average of the atomic masses of an atom's naturally occurring isotopes.

2.2 Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of

2.3

2.4

the atomic masses of an atom's naturally occurring isotopes.

(@) In order to determine the number of grams in one amu of material, appropriate manipulation of

the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as

#glamu = [ 1 mol ]( 1 g/mol )
6.023 x 1023 atoms/\1 amu/atom

=1.66 x 1024 g/amu

(b) Since there are 453.6 g/Ibm,

1llb-mol = (453.6 g/ImeG.OZS x 1023 atoms/g—mol)

=273 x 1026 atoms/Ib-mol

(&) Two important quantum-mechanical concepts associated with the Bohr model of the atom are
that electrons are particles moving in discrete orbitals, and electron energy is quantized into shells.

(b) Two important refinements resulting from the wave-mechanical atomic model are that electron
position is described in terms of a probability distribution, and electron energy is quantized into both

shells and subshells--each electron is characterized by four quantum numbers.

2.5 The n quantum number designates the electron shell.



The | quantum number designates the electron subshell.
The m, quantum number designates the number of electron states in each electron subshell.

The m, quantum number designates the spin moment on each electron.

2.6 For the L state, n = 2, and eight electron states are possible. Possible | values are 0 and 1, while

1
possible m, values are 0 and +1. Therefore, for the s states, the quantum numbers are 200(;) and
1 1 1 1 1
200(—5). For the p states, the quantum numbers are 210(;), 210(—5), 211(5), 211(——2),
1 1
21(-1)(5), and 21(-1)(——2).

For the M state, n = 3, and 18 states are possible. Possible | values are 0, 1, and 2;

. . 1
possible m, values are 0, 1, and *2; and possible m_ values are iE' Therefore, for the s states,

S

1 1 1 1 1
the quantum numbers are 300 (E)’ 300(- E)’ for the p states they are 310 (E)’ 310(- E)’ 311(5),

1 1 1 1 1 1
311(——2), 31(-1)(5), and 31(-1)(—5); for the d states they are 320(;), 320(—5), 321(5),

1 1 1 1 1 1 1
321(-3), 32(1)(), 32(-1)(-3), 322 (5), 322 (-3), 32(-2) (5), and 32(-2) (7).

2.7 The electron configurations of the ions are determined using Table 2.2.

Fe2t - 15%25%2pP3s23p03d®
FeS - 15%25%2p%3s23p03d®
cu” - 15225%2p°3s23p034 10

Ba2+ - 1522322p63523p63d104324p64d105325p6

Br - 1522322p63sz3p63d104324p6

s% . 1322322p63323p6

NN

+ . . . .
2.8 The Na ion is just a sodium atom that has lost one electron; therefore, it has an electron
configuration the same as neon (Figure 2.6).
The CI ion is a chlorine atom that has acquired one extra electron; therefore, it has an

electron configuration the same as argon.

2.9 Each of the elements in Group IIA has two s electrons.

2.10 (a) The 1322522p63523p63d7452 electron configuration is that of a transition metal because of an

incomplete d subshell.



(b) The 1522522p6332

3p6 electron configuration is that of an inert gas because of filled 3s and 3p
subshells.

(c) The 1522322p5 electron configuration is that of a halogen because it is one electron deficient
from having a filled L shell.

(d) The 1322522p6332 electron configuration is that of an alkaline earth metal because of two s
electrons.

(e) Thels2 29p035%3p034%

2s"2p 3s"3p 3d 432 electron configuration is that of a transition metal because of an
incomplete d subshell.

2,2.6,2 6,1 , o . .
(f) The 1s72s"2p 3s"3p 4s™ electron configuration is that of an alkali metal because of a single s

electron.

2.11 (a) The 4f subshell is being filled for the rare earth series of elements.

(b) The 5f subshell is being filled for the actinide series of elements.

2.12 The attractive force between two ions F A is just the derivative with respect to the interatomic
separation of the attractive energy expression, Equation (2.8), which is just

A
-2
dEA_ r) A

Eo= _ - A
A dr dr r2

2

The constant A in this expression is defined in footnote 3. Since the valences of the Ca * and 02'

ions (Zl and 22) are both 2, then

!Zle !ZZe )

F, =
A 2
4naor

(2)(2)@.6 x 10719 c)Z

(4)(7:)@.85 x 10712 F/m)Xl.zs x 1079 m)Z

=589 x 1010 N

2.13 (a) Differentiation of Equation (2.11) yields

dEy, A 8 _
dr - r(1+1) r(n+1) -




(b) Now, solving forr (= ro)

A _ _nB

2 - T+l
I fé )

or

_ (A)l/(l- n)

r
0 nB

(c) Substitution for Mo into Equation (2.11) and solving for E (= Eo)

A B
E = ——_— 4 —

r rn

0 (o]

2.14 (a) Curves of EA’ ER’ and EN are shown on the plot below.
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(b) From this plot

r0 =0.24 nm
E =-53eV
[0}
(c) From Equation (2.11) for EN
A=1.436
B=7.32x10"°
n=8
Thus,
s (A)l/(l- n)
o \nB
/(1 -8)
Y R ~ 0236 nm
(8)6.32 X 10'6)
and
- 1.436 . 732 x 1070
0 . -8 T 8/0-8)
| 1.436 | | 1.436 |
L(s) (7.32 x 10‘6)J L(S) (732 x 10‘6”
=-532eV

2.15 This problem gives us, for a hypothetical x*-Y"ion pair, values for o (0.35 nm), EO (-6.13 eV), and

n (10), and asks that we determine explicit expressions for attractive and repulsive energies of
Equations 2.8 and 2.9. In essence, it is necessary to compute the values of A and B in these
equations. Expressions for o and Eo in terms of n, A, and B were determined in Problem 2.13,

which are as follows:

_ [A)ll(l- n)

;
0 nB



A B
E = -

(Ajll(l-n) * (A)n/(l-n)
nB nB

Thus, we have two simultaneous equations with two unknowns (viz. A and B). Upon substitution of
values for o and E, in terms of n, these equations take the forms

A (- 10)
0.35nm = [ﬁj
A B
-6.13eV = - +
A j1/(1— 10) ( A jlol(l ~10)
10B 10B

Simultaneous solution of these two equations leads to A = 2.38 and B = 1.88 x 10'5. Thus,
Equations (2.8) and (2.9) become

Of course these expressions are valid for r and E in units of nanometers and electron volts,
respectively.

2.16 (a) Differentiating Equation (2.12) with respect to r yields
Atr=rg, dE/dr =0, and

_— 2.12b
- - (2.12b)

Solving for C and substitution into Equation (2.12) yields an expression for E0 as



_ r
Eo = De (I'O/p) [l - —Oj
p

(b) Now solving for D from Equation (2.12b) above yields

/
Cpe t,/p)

D= >

o

Substitution of this expression for D into Equation (2.12) yields an expression for E,as

2.17 (a) The main differences between the various forms of primary bonding are:
lonic--there is electrostatic attraction between oppositely charged ions.
Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a

stable electron configuration.

Metallic--the positively charged ion cores are shielded from one another, and also "glued" together

by the sea of valence electrons.
(b) The Pauli exclusion principle states that each electron state can hold no more than two

electrons, which must have opposite spins.

2.18 Covalently bonded materials are less dense than metallic or ionically bonded ones because
covalent bonds are directional in nature whereas metallic and ionic are not; when bonds are

directional, the atoms cannot pack together in as dense a manner, yielding a lower mass density.

2.19 The percent ionic character is a function of the electron negativities of the ions XA and XB

according to Equation (2.10). The electronegativities of the elements are found in Figure 2.7.

For MgO, ng =1.2and XO = 3.5, and therefore,
2
%IC = {1 ~ e(025@5-12) }x 100 = 73.4%

For GaP, xGa =1.6and Xp = 2.1, and therefore,



2
%IC = [1 _ ¢(-025(2.1-1.6) }x 100 = 6.1%
For CsF, XCs =0.7 and XF = 4.0, and therefore,
2
%IC = {1 _ ¢(+029(4.0-0.7) } x 100 = 93.4%
For CdS, XCd =1.7 and XS = 2.5, and therefore,
2
%IC = {1 _ ¢(-029(25-17) }x 100 = 14.8%
For FeO, XFe =1.8 and XO = 3.5, and therefore,

2
WIC = {1 _ (-025(3.5-18) }xlOO = 51.4%

2.20 Below is plotted the bonding energy versus melting temperature for these four metals. From this
plot, the bonding energy for copper (melting temperature of 1084°C) should be approximately 3.6
eV. The experimental value is 3.5 eV.
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2.21 For silicon, having the valence electron structure 3323p2, N' = 4; thus, there are 8 - N' = 4 covalent
bonds per atom.
For bromine, having the valence electron structure 4324p5, N' =7; thus, thereis8-N' =1
covalent bond per atom.
For nitrogen, having the valence electron structure 2522p3, N'=5; thus, thereare 8-N'=3
covalent bonds per atom.
For sulfur, having the valence electron structure 3323p4, N' = 6; thus, there are 8 - N' =

covalent bonds per atom.

2.22 For brass, the bonding is metallic since it is a metal alloy.

For rubber, the bonding is covalent with some van der Waals. (Rubber is composed
primarily of carbon and hydrogen atoms.)

For BasS, the bonding is predominantly ionic (but with some covalent character) on the basis
of the relative positions of Ba and S in the periodic table.

For solid xenon, the bonding is van der Waals since xenon is an inert gas.

For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin).

For nylon, the bonding is covalent with perhaps some van der Waals. (Nylon is composed
primarily of carbon and hydrogen.)

For AIP the bonding is predominantly covalent (but with some ionic character) on the basis

of the relative positions of Al and P in the periodic table.

2.23 The intermolecular bonding for HF is hydrogen, whereas for HCI, the intermolecular bonding is van
der Waals. Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting

temperature.

2.24 The geometry of the H,O molecules, which are hydrogen bonded to one another, is more restricted

2
in the solid phase than for the liquid. This results in a more open molecular structure in the solid, and

a less dense solid phase.

10



CHAPTER 3
THE STRUCTURE OF CRYSTALLINE SOLIDS
PROBLEM SOLUTIONS

3.1 Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as
the number and probability distributions of the constituent electrons. On the other hand, crystal

structure pertains to the arrangement of atoms in the crystalline solid material.

3.2 A crystal structure is described by both the geometry of, and atomic arrangements within, the unit
cell, whereas a crystal system is described only in terms of the unit cell geometry. For example,
face-centered cubic and body-centered cubic are crystal structures that belong to the cubic crystal

system.
3.3 For this problem, we are asked to calculate the volume of a unit cell of aluminum. Aluminum has an

FCC crystal structure (Table 3.1). The FCC unit cell volume may be computed from Equation (3.4)

as
Vo = 16R%Y2 = (16)@.143x 1079 miﬁ = 6.62x1029 m3

3.4 This problem calls for a demonstration of the relationship a = 4R,/_3 for BCC. Consider the BCC

unit cell shown below

Using the triangle NOP

11



2 2 2

(NP)? = 2%+ a% =2a

And then for triangle NPQ,
(NQ?*= @P)* + (NPY

But NQ = 4R, R being the atomic radius. Also, QP =a. Therefore,

2 2

(4R)2 =a” + 2a”,o0r

4R

T

3.5 We are asked to show that the ideal c/a ratio for HCP is 1.633. A sketch of one-third of an HCP unit

cell is shown below.

[1]

Bo
|<

Consider the tetrahedron labeled as JKLM, which is reconstructed as

12



The atom at point M is midway between the top and bottom faces of the unit cell--that is MH = c/2.

And, since atoms at points J, K, and M, all touch one another,
JM=JK=2R=a
where R is the atomic radius. Furthermore, from triangle JHM,
(M) = @H) + (MH)?, or

= @F - (3]

Now, we can determine the JH length by consideration of triangle JKL, which is an equilateral

triangle,

. _ al2_+3
cos 30 ——JH— 2,and

P

- a

JH=—=
V3

Substituting this value for JH in the above expression yields
2. [i]i (sjz_ a, &
3 2 3 4

and, solving for c/a

13



c 8
== J==1.633
a J;

3.6 We are asked to show that the atomic packing factor for BCC is 0.68. The atomic packing factor is

defined as the ratio of sphere volume to the total unit cell volume, or

v
APF = %
C

Since there are two spheres associated with each unit cell for BCC

3

3
4nR 8nR
Vg = 2(sphere volume) = 2( = J= i

3 3

Also, the unit cell has cubic symmetry, thatis V . = a3. But a depends on R according to Equation

C
(3.3), and

v _(ﬁf’_%?’

C (V3 33
Thus,

3
APF = %/3: 68
64R3 /343

3.7 This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total

sphere-unit cell volume ratio. For HCP, there are the equivalent of six spheres per unit cell, and thus

Now, the unit cell volume is just the product of the base area times the cell height, c. This base area

is just three times the area of the parallelepiped ACDE shown below.

14



The area of ACDE is just the length of CD times the height BC. But CD is just a or 2R, and

BC = 2R cos (30°) = %‘6
Thus, the base area is just
_— 2R
AREA = (3)(CD)BC) = (3)(2 R)[T‘@j = 6R2,/§

and since ¢ = 1.633a = 2R(1.633)

Ve = (AREA)(c) = 6R%c3 = (6R2\/§)2)(1.633)R = 1243(1.633)R3

Thus,

v 3
APF = —S= R

Vo 12/3(1.633)R3

0.74

3.8 This problem calls for a computation of the density of iron. According to Equation (3.5)

nAFe
VC NA

p:

For BCC, n = 2 atoms/unit cell, and

15



.J_
|hUS,

(2 atoms/unit cell(55.9 g/mol)

3
{@)@124X1U7cmf/J§}/@mﬂcdb (6.023 x 1023 atoms/mol

=7.90 g/cm3
The value given inside the front cover is 7.87 g/cm3.

3.9 We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal structure.
For FCC, n = 4 atoms/unit cell, and VC = 16R3\/§ [Equation (3.4)]. Now,

nAIr

C A

And solving for R from the above two expressions yields

113
R=¢
16pN ,v2

1/3
(4 atoms/unit cell)192.2 g/mol)

@I‘I 6)(22.4 g/cm3£.023 X ‘IO23 atoms/mol)

8

=1.36x10"° cm =0.136 nm

3.10 This problem asks for us to calculate the radius of a vanadium atom. For BCC, n = 2 atoms/unit cell,

and

_(4R)® _ &4R®
VC—

3/ 33

16



Since,

and solving for R

R:[@]ws

64pN

1/3
(3\/5 XZ atoms/unit cell)(50.9 g/mol)

(64)63.96 g/cm3X5.023 x 1023 atoms/mol)

=1.32x10°8

cm =0.132 nm
3.11 For the simple cubic crystal structure, the value of n in Equation (3.5) is unity since there is only a
single atom associated with each unit cell. Furthermore, for the unit cell edge length, a = 2R.
Therefore, employment of Equation (3.5) yields
nA nA

p - —
VeNa  @RPN,

(1 atom/unit cell)(74.5 g/mol)

3
{[(2)@ 45x 108 cmj /(unit cell)} @.023 x 1023 atoms/mol)

5.07 g/cm3

3.12. (a) The volume of the Ti unit cell may be computed using Equation (3.5) as

nA+:
Ti

VA =—
C pNA

Now, for HCP, n = 6 atoms/unit cell, and for Ti, ATi =47.9 g/mol. Thus,

17



B (6 atoms/unit cell)(47.9 g/mol)
@.51 g/cm3ﬁ.023 X 1023 atoms/mol)

Ve

0'22

= 1.058 x 10°22 cm/unit cell = 1.058 x 10728 m3/unit cell

(b) From the solution to Problem 3.7, since a = 2R, then, for HCP

_ 3\/§a20
Ve = -5
but, since ¢ = 1.58a
3
1. -
Vg = BBESBR oo 1022 gond it cel

2

Now, solving for a

13
(2)(1.058 x 1022 om®)

(3)({3)1.58)

=296 x 1078

cm = 0.296 nm
And finally
¢ =1.58a = (1.58)(0.296 nm) = 0.468 nm

3.13 This problem asks that we calculate the theoretical densities of Al, Ni, Mg, and W.
Since Al has an FCC crystal structure, n = 4, and VC = (2RJ§)3. Also, R =0.143 nm (1.43

8

x 107" cm) and Apl = 26.98 g/mol. Employment of Equation (3.5) yields

(4 atoms/unit cell)(26.98 g/mol)

{[2)(1 43x10°8 cm(ﬁ)T/(unit celI)}(ES.OZB x 1023 atoms/mol)

p:

=2.71 glem®

The value given in the table inside the front cover is 2.71 g/cm3.

18



Nickel also has an FCC crystal structure and therefore

(4 atoms/unit cell)(58.69 g/mol)

p =
{[2)(1 25x10°8 cm(&)f/(unit cell )} @.023 x 1023 atoms/mol)

= 8.82 g/cm®

The value given in the table is 8.90 g/cm3.

Magnesium has an HCP crystal structure, and from Problem 3.7,

V. = 3v3a%c
c 2
and, since ¢ = 1.624a and a = 2R = 2(1.60 x 10" cm) =3.20 x 108 cm
8 3
33 (1.624)6.20 x 108 om)
Vo = > — 1.38 x 10722 cm® /unit cell

Also, there are 6 atoms/unit cell for HCP. Therefore the theoretical density is

o - Mg
VCNA

(6 atoms/unit cell)(24.31 g/mol)
6.38 x 10722 cmdunit cel%.ozcs x 1023

atoms/mol)

=1.75 g/cm3

The value given in the table is 1.74 g/cm3.

4R
Tungsten has a BCC crystal structure for whichn =2 and a = ﬁ ; also AW =183.85 g/mol

and R =0.137 nm. Therefore, employment of Equation (3.5) leads to

19



(2 atoms/unit cell(183.85 g/mol)

3
(4)6 37x108 cm)
7 /(unit cell) @.023 x 1023 atoms/mol)
=19.3 g/cm3
3

The value given in the table is 19.3 g/cm®.

3.14 In order to determine whether Nb has an FCC or BCC crystal structure, we need to compute its
density for each of the crystal structures. For FCC,n =4,anda= 2 R‘/_Z . Also, from Figure 2.6, its

atomic weight is 92.91 g/mol. Thus, for FCC

nANb

) (2R‘/§)3NA

P

(4 atoms/unit cell)(92.91 g/mol)

{[(2)6.43 x 1078 cmXﬁ)}S /(unitcell)} @.023 x10%3 atoms/mol)

=9.33 g/cm3

ForBCC,n=2,anda= % , thus

(2 atoms/unit cell)(92.91 g/mol)

(4)6.43 x 1078 cm) 3/

ﬁ (unitcell) @.023 x10%3 atoms/mol)

=8.57 g/cm3
which is the value provided in the problem. Therefore, Nb has a BCC crystal structure.
3.15 For each of these three alloys we need to, by trial and error, calculate the density using Equation

(3.5), and compare it to the value cited in the problem. For SC, BCC, and FCC crystal structures,

20



the respective values of n are 1, 2, and 4, whereas the expressions for a (since Ve = a3) are 2R,

2RY2,and 4R /43

For alloy A, let us calculate p assuming a BCC crystal structure.

Y
VCNA

(2 atoms/unit cell)(43.1 g/mol)

(4)(1 22 x 108 cm) °

V3

/(unit cell) @.023 x 1023 atoms/mol)

=6.40 g/cm3
Therefore, its crystal structure is BCC.

For alloy B, let us calculate p assuming a simple cubic crystal structure.

(1 atom/unit cell)(184.4 g/mol)

{[(2){.46 x 1078 cm)f/(unit cell)} 6.023 x 1023 atoms/mol]

=123 g/cm3

Therefore, its crystal structure is simple cubic.

For alloy C, let us calculate p assuming a BCC crystal structure.

(2 atoms/unit cell)(91.6 g/mol)

(4)(1.37 x 108 cm) ’

3

/(unit cell) @.023 x 1023 atoms/mol)

=9.60 g/cm3

Therefore, its crystal structure is BCC.
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3.16 In order to determine the APF for U, we need to compute both the unit cell volume (VC) which is

just the product of the three unit cell parameters, as well as the total sphere volume (VS) which is

just the product of the volume of a single sphere and the number of spheres in the unit cell (n). The

value of n may be calculated from Equation (3.5) as

_ PVcNa
Ay

(19.05)(2.86)(5.87)(4.95) 610'2‘%5.023 X 1023)
- 283.03

= 4.01 atoms/unit cell
Therefore
4 3)
4 (— nR
Vs ()3_

APF = —= =
Ve (a)(b)(c)

4 3
_ (4)[5(7:)(0.1385) }
(0.286)(0.587)(0.495)

=0.536

3.17 (a) From the definition of the APF

V. n(ﬁ nst
APF = _S _ 3 J
Vv, aZc

we may solve for the number of atoms per unit cell, n, as

. (APF)ac
ﬁ7:R3
3
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(0.693)(4.59)2(4.95) 60'24 cm3)

%n6.625 x 1078 cmj’

= 4.0 atoms/unit cell

(b) In order to compute the density, we just employ Equation (3.5) as

nAIn

2
a cNA

_ (4 atoms/unit cell)(114.82 g/mol)
[@.59 x 1078 cm)2 (4.95 x 1078 cm)unit cell} @.023 X 1023 atoms/mol)

=7.31 g/cm3
3. 18 (a) We are asked to calculate the unit cell volume for Be. From the solution to Problem 3.7
Vo = 6R%cy3
But, c = 1.568a, and a = 2R, or ¢ = 3.14R, and
Ve = (6)(3.14)R343

= (6)(3.14)(\/§)E.1143x 1077 cmT = 4.87 x 10722 cm® unit cell

(b) The density of Be is determined as follows:

5 = NAR.
VCNA

For HCP, n = 6 atoms/unit cell, and for Be, A =9.01 g/mol. Thus,

Be

(6 atoms/unit cell)(9.01 g/mol)
p =
@.87 x 10723 cmSunit ce|%.023 x 1023

atoms/mol)

23



=1.84 glcm>
The value given in the literature is 1.85 g/cm3.

3.19 This problem calls for us to compute the atomic radius for Mg. In order to do this we must use
Equation (3.5), as well as the expression which relates the atomic radius to the unit cell volume for

HCP; from Problem 3.7 it was shown that

Vo = 6R%Y3

In this case ¢ = 1.624(2R). Making this substitution into the previous equation, and then solving

for R using Equation (3.5) yields

1/3
nAMg

(16241243 )pN ,

1/3
(6 atoms/unit cell)24.31 g/mol )

(1.624)(1243 X.M glom® ﬁ.ozs x 1023 atoms/mol)

8

=1.60x10"° cm = 0.160 nm

3.20 This problem asks that we calculate the unit cell volume for Co which has an HCP crystal structure.

In order to do this, it is necessary to use a result of Problem 3.7, that is
Ve = 6R%3
The problem states that ¢ = 1.623a, and a = 2R. Therefore
Ve = (1.623)(1243)R>

= (1.623)(127/5)(1.253 x 1078 cm)3 = 6.64x 1023 cm? = 6.64 x 102 nm°
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3.21 (a) The unit cell shown in the problem belongs to the tetragonal crystal system since a = b = 0.35
nm, ¢ =0.45nm, and o= =y =90°.
(b) The crystal structure would be called body-centered tetragonal.

(c) As with BCC, n = 2 atoms/unit cell. Also, for this unit cell

Vo = B5x107° cm)2(4.5 x 1078 om)

= 551 x 10723 cm3/unit cell

Thus,

nA

p =
VC NA

(2 atoms/unit cell)(141 g/mol)
23 cm3unit cenXe.ozs x 1023

(’5.51 x 10 atoms/mol)

=8.50 g/cm3

3.22 First of all, open ‘Notepad” in Windows. Now enter into “Notepad” commands to generate the

AuCu3 unit cell. One set of commands that may be used is as follows:

[DisplayProps]
Rotatez=-30
Rotatey=-15

[AtomProps]
Gold=LtRed,0.14
Copper=LtYellow,0.13

[BondProps]
SingleSolid=LtGray

[Atoms]

Au1=1,0,0,Gold
Au2=0,0,0,Gold
Au3=0,1,0,Gold
Au4=1,1,0,Gold
Au5=1,0,1,Gold
Au6=0,0,1,Gold
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Au7=0,1,1,Gold

Au8=1,1,1,Gold

Cu1=0.5,0,0.5,Copper
Cu2=0,0.5,0.5,Copper
Cu3=0.5,1,0.5,Copper
Cu4=1,0.5,0.5,Copper
Cub5=0.5,0.5,1,Copper
Cu6=0.5,0.5,0,Copper

[Bonds]
B1=Au1,Au5,SingleSolid
B2=Au5,Au6,SingleSolid
B3=Au6,Au2,SingleSolid
B4=Au2,Au1,SingleSolid
B5=Au4,Au8,SingleSolid
B6=Au8,Au7,SingleSolid
B7=Au7,Au3,SingleSolid
B8=Au3,Au4,SingleSolid
B9=Au1,Au4,SingleSolid
B10=Au8,Au5,SingleSolid
B11=Au2,Au3,SingleSolid
B12=Au6,Au7,SingleSolid

Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name
followed by a period and "mdf"; for example, “AuCu3.mdf’. And, finally save this file in the “mdf” file
inside of the “Interactive MSE” folder (which may be found in its installed location).

Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then
open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic
Structures” module. Next select “Open” under the “File” menu, and then open the “mdf’ folder.
Finally, select the name you assigned to the item in the window that appears, and hit the “OK”
button. The image that you generated will now be displayed.

3.23 First of all, open ‘Notepad” in Windows.. Now enter into “Notepad” commands to generate the AuCu

unit cell. One set of commands that may be used is as follows:

[DisplayProps]
Rotatez=-30
Rotatey=-15

[AtomProps]
Gold=LtRed,0.14
Copper=LtYellow,0.13

[BondProps]
SingleSolid=LtGray

[Atoms]
Au1=0,0,0,Gold
Au2=1,0,0,Gold
Au3=1,1,0,Gold
Au4=0,1,0,Gold
Au5=0,0,1.27,Gold
Au6=1,0,1.27,Gold
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Au7=1,1,1.27,Gold
Au8=0,1,1.27,Gold
Cu1=0.5,0.5,0.635,Copper

[Bonds]
B1=Au1,Au2,SingleSolid
B2=Au2,Au3,SingleSolid
B3=Au3,Au4,SingleSolid
B4=Au1,Au4,SingleSolid
B5=Au5,Au6,SingleSolid
B6=Au6,Au7,SingleSolid
B7=Au7,Au8,SingleSolid
B8=Au5,Au8,SingleSolid
B9=Au1,Au5,SingleSolid
B10=Au2,Au6,SingleSolid
B11=Au3,Au7,SingleSolid
B12=Au4,Au8,SingleSolid

Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name
followed by a period and "mdf"; for example, “AuCu.mdf’. And, finally save this file in the “mdf” file
inside of the “Interactive MSE” folder (which may be found in its installed location).

Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then
open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic
Structures” module. Next select “Open” under the “File” menu, and then open the “mdf’ folder.
Finally, select the name you assigned to the item in the window that appears, and hit the “OK”
button. The image that you generated will now be displayed.

3.24 A unit cell for the face-centered orthorhombic crystal structure is presented below.

3.25 This problem asks that we list the point coordinates for all of the atoms that are associated with the

FCC unit cell. From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates
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11
000. Coordinates for other atoms in the bottom face are 100, 110, 010, and EEO (The z

coordinate for all these points is zero.)

11
For the top unit cell face, the coordinates are 001, 101, 111, 011, and 551 (These

coordinates are the same as bottom-face coordinates except that the “0” z coordinate has been
replaced by a “1”.)

Coordinates for only those atoms that are positioned at the centers of both side faces, and
centers of both front and back faces need to be specified. For the front and back-center face atoms,

11 11
the coordinates are 155 and OEE , respectively. While for the left and right side center-face atoms,

1.1 1.1
the respective coordinates are EOE and 5 1; .

3.26 (a) Here we are asked list point coordinates for both sodium and chlorine ions for a unit cell of the
sodium chloride crystal structure, which is shown in Figure 12.2.
In Figure 12.2, the chlorine ions are situated at all corners and face-centered positions.

Therefore, point coordinates for these ions are the same as for FCC, as presented in the previous

11 11 11 11 1 1
problem—that is, 000, 100, 110, 010, 001, 101, 111, 011, ==0, ==1, ==, 0=—, 0=, and
22 22 22 22 2 2
1.1
—1=.
2 2

Furthermore, the sodium ions are situated at the centers of all unit cell edges, and, in
addition, at the unit cell center. For the bottom face of the unit cell, the point coordinates are as
1 1 1 1
follows: EOO’ 150, 510, OEO' While, for the horizontal plane that passes through the center of
17 111

1
the unit cell (which includes the ion at the unit cell center), the coordinates are OOE’ 102 ' 222

1 1 1 1 1 1
11—, and 01=. And for the four ions on the top face =01, 1—=1, =11, and 0—1.
2 2 2 2 2 2

(b) This portion of the problem calls for us to list the point coordinates of both the zinc and sulfur
atoms for a unit cell of the zinc blende structure, which is shown in Figure 12.4.

First of all, the sulfur atoms occupy the face-centered positions in the unit cell, which from
the solution to Problem 3.25, are as follows: 000, 100, 110, 010, 001, 101, 111, 011, 51—;0 51—;1

11 11 1.1 1 1
,0=—, =0—,and —1—.
2 2

22
Now, using an x-y-z coordinate system oriented as in Figure 3.4, the coordinates of the zinc

atom that lies toward the lower-left-front of the unit cell has the coordinates %:121 , Whereas the atom
situated toward the lower-right-back of the unit cell has coordinates of 21321. Also, the zinc atom
that resides toward the upper-left-back of the unit cell has the 21:11% coordinates. And, the
coordinates of the final zinc atom, located toward the upper-right-front of the unit cell, are %S%.
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3.27 A tetragonal unit in which are shown the 11; and EZE point coordinates is presented below.
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3.28 This portion of the problem calls for us to draw a [12_1] direction within an orthorhombic unit cell (a
#b #c,a=p=vy=90°). Such a unit cell with its origin positioned at point O is shown below. We
first move along the +x-axis a units (from point O to point A), then parallel to the +y-axis 2b units
(from point A to point B). Finally, we proceed parallel to the z-axis -c units (from point B to point C).
The [12 1] direction is the vector from the origin (point O) to point C as shown.

N

We are now asked to draw a (210) plane within an orthorhombic unit cell. First remove the three

indices from the parentheses, and take their reciprocals--i.e., 1/2, 1, and «. This means that the
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plane intercepts the x-axis at a/2, the y-axis at b, and parallels the z-axis. The plane that satisfies

these requirements has been drawn within the orthorhombic unit cell below.

3.29 (a) This portion of the problem asks that a [0_1 1] direction be drawn within a monoclinic unit cell (a
#b #c,and a =p =90° #y). One such unit cell with its origin at point O is sketched below. For this
direction, there is no projection along the x-axis since the first index is zero; thus, the direction lies in
the y-z plane. We next move from the origin along the minus y-axis b units (from point O to point R).
Since the final index is a one, move from point R parallel to the z-axis, ¢ units (to point P). Thus, the

[0_1 1] direction corresponds to the vector passing from the origin to point P, as indicated in the

figure.

\
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(b) A (002) plane is drawn within the monoclinic cell shown below. We first remove the parentheses

and take the reciprocals of the indices; this gives «, o, and 1/2. Thus, the (002) plane parallels

both x- and y-axes, and intercepts the z-axis at ¢/2, as indicated in the drawing.

\

3.30 (a) We are asked for the indices of the two directions sketched in the figure. For direction 1, the

projection on the x-axis is zero (since it lies in the y-z plane), while projections on the y- and z-axes
are b/2 and c, respectively. This is an [012] direction as indicated in the summary below

X y Z
Projections Oa b/2 c
Projections in terms of a, b,
and c 0 1/2 1
Reduction to integers 0 1 2
Enclosure [012]

Direction 2 is [1 15] as summarized below.

X y z

Projections al2 b/2 -C
Projections in terms of a, b,

and c 1/2 1/2 -1

Reduction to integers 1 1 -2
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Enclosure [112]

(b) This part of the problem calls for the indices of the two planes which are drawn in the sketch.
Plane 1 is an (020) plane. The determination of its indices is summarized below.

X y z
Intercepts wa b/2 w0 C
Intercepts in terms of a, b,
and c o0 1/2 )
Reciprocals of intercepts 0 2 0
Enclosure (020)

Plane 2 is a (251) plane, as summarized below.

X y z
Intercepts al2 -b/2 c
Intercepts in terms of a, b,
and ¢ 1/2 -1/2 1
Reciprocals of intercepts 2 -2 1
Enclosure (221)

3.31 The directions asked for are indicated in the cubic unit cells shown below.
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N

[102]

3.32 Direction A is a [_1 10] direction, which determination is summarized as follows. We first of all
position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y z
Projections -a b Oc
Projections in terms of a, b,
and c -1 1 0
Reduction to integers not necessary
Enclosure [110]

Direction B is a [121] direction, which determination is summarized as follows. The vector

passes through the origin of the coordinate system and thus no translation is necessary. Therefore,

X<
=<
IN

N o
(op
N o

Projections

Projections in terms of a, b,
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1 1

and c - 1 -

2 2

Reduction to integers 1 2 1
Enclosure [121]

Direction C is a [0_15] direction, which determination is summarized as follows. We first of
all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X Yy z
L b
Projections Oa —5 -C
Projections in terms of a, b,
1
and c 0 -= -1
2
Reduction to integers 0 -1 -2
Enclosure [0_15 ]

Direction D is a [151] direction, which determination is summarized as follows. We first of all
position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y z
Projections 2 -b <
2 2
Projections in terms of a, b,
1 1
and c - -1 -
2 2
Reduction to integers 1 -2 1
Enclosure [121]

3.33 Direction A is a [337 ] direction, which determination is summarized as follows. We first of all
position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

1X<
<
IN

Projections a b -

wlo

Projections in terms of a, b,
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and c 1 1 2

3

Reduction to integers 3 3 -1
Enclosure [331]

Direction B is a [ZO?S] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X y z
2
Projections = Ob .2
3 2
Projections in terms of a, b,
2 1
and c -= 0 - =
3 2
Reduction to integers -4 0 -3
Enclosure [403]

Direction C is a [561] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

X Yy z
Projections 2 b <
2 6
Projections in terms of a, b,
1 1
and c - = 1 -
2 6
Reduction to integers -3 6 1
Enclosure [561]

Direction D is a [_1 1_1] direction, which determination is summarized as follows. We first of

all position the origin of the coordinate system at the tail of the direction vector; then in terms of this

new coordinate system

1<
IN

Projections -

N o
NIT
N O

Projections in terms of a, b,
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and c -

= Nla

Reduction to integers -

= Nla

Enclosure [

3.34 For tetragonal crystals a=b # c and a = B =y = 90°; therefore, projections along the x and y axes
are equivalent, which are not equivalent to projections along the z axis.
(a) Therefore, for the [011] direction, equivalent directions are the following: [101], [101], [101],
[101], [011], [011], and [01 1].

(b) Also, for the [100] direction, equivalent directions are the following: [_1 001, [010], and [0_1 0].

3.35 (a) We are asked to convert [100] and [111] directions into the four- index Miller-Bravais scheme for
hexagonal unit cells. For [100]

u'=1,

V' =0,

w'=0

From Equations (3.6)

N oyt —yty= D - 2n
u = 3(2u -v')= 3(2 0)= 3
Ny v Dg_ =N
v = 3(2v u')= 3(0 1) 3
2n n n
= - + = -|— ==
t= - (3 3) 3

w=nw'=0
Ifweletn=3,thenu=2,v=-1t=-1,andw = 0. Thus, the direction is represented as [uvtw] =
[2110].

For[111],u'=1,v'=1,and w'=1; therefore,

u:
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If we againletn =3,thenu =1,v=1,t=-2 and w = 3. Thus, the direction is represented as
[1123].
(b) This portion of the problem asks for the same conversion of the (010) and (101) planes. A plane
for hexagonal is represented by (hkil) where i = - (h + k), and h, k, and | are the same for both

systems. For the (010) plane, h =0,k =1,1=0, and
i=-(0+1)=-
Thus, the plane is now represented as (hkil) = (01_1 0).
For the (101) plane, i =- (1 + 0) = -1, and (hkil) = (10? 1).

3.36 For plane A we will leave the origin at the unit cell as shown. If we extend this plane back into the

plane of the page, thenitisa (11 7) plane, as summarized below.

X y z
Intercepts a b -C
Intercepts in terms of a, b,
and c 1 1 -1
Reciprocals of intercepts 1 1 -1
Reduction not necessary
Enclosure (111)

For plane B we will leave the origin of the unit cell as shown; this is a (230) plane, as

summarized below.

1<
IN

©C

N o
wloT <

Intercepts

Intercepts in terms of a, b,
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and c

NN o
wla

Reciprocals of intercepts 3 0

Enclosure (230)

3.37 For plane A we will move the origin of the coordinate system one unit cell distance to the right along
the y axis; thus, this is a (1_10) plane, as summarized below.

X y z
b
Intercepts 2 -= © C
2 2
Intercepts in terms of a, b,
1 1
and c - -= 0
2 2
Reciprocals of intercepts 2 -2
Reduction 1 -1 0
Enclosure “ _10)

For plane B we will leave the origin of the unit cell as shown; thus, this is a (122) plane, as

summarized below.

X y z
b
Intercepts a = <
2 2
Intercepts in terms of a, b,
1 1
and c 1 - -
2 2
Reciprocals of intercepts 1 2 2
Reduction not necessary
Enclosure (122)

3.38 For plane A since the plane passes through the origin of the coordinate system as shown, we will

move the origin of the coordinate system one unit cell distance vertically along the z axis; thus, this
is a (21_1) plane, as summarized below.
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X<
<
IN

Intercepts % b -C
Intercepts in terms of a, b,

and c % 1 -1
Reciprocals of intercepts 2 1 -1
Reduction not necessary
Enclosure (211)

For plane B, since the plane passes through the origin of the coordinate system as shown,
we will move the origin one unit cell distance vertically along the z axis; this is a (02_1) plane, as

summarized below.

X y z
b
Intercepts © g 5 -C
Intercepts in terms of a, b,
1
and c 0 = -1
2
Reciprocals of intercepts 0 2 -1
Reduction not necessary
Enclosure (021)

3.39 The (01_1 1) and (2? 1 0) planes in a hexagonal unit cell are shown below.

(0111)

r--—---

(2110)
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3.40 (a) For this plane we will leave the origin of the coordinate system as shown; thus, this is a (1511)

plane, as summarized below.

ay a, ag z
a
Intercepts a - E a c
1
Intercepts in terms of a's and ¢ 1 - E 1 1
Reciprocals of intercepts 1 -2 1 1
Reduction not necessary
Enclosure (151 1)

(b) For this plane we will leave the origin of the coordinate system as shown; thus, this is a

(21 12) plane, as summarized below.

a, a, ag z
Intercepts al2 -a -a c/2
Intercepts in terms of a's and ¢ 1/2 -1 -1 1/2
Reciprocals of intercepts 2 -1 -1 2
Reduction not necessary
Enclosure (2? 1 2)

3.41 The planes called for are plotted in the cubic unit cells shown below.

(211)

(313) TN |

- _)}"

(101) y3

X
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