
SOLUTIONS TO PROBLEMS 
 

PREFACE 
 
 
 This section of instructor's resource materials contains solutions and answers to 
all problems and questions that appear in the textbook.  My penmanship leaves 
something to be desired;  therefore, I generated these solutions/answers using 
computer software so that the resulting product would be "readable."  Furthermore, I 
endeavored to provide complete and detailed solutions in order that:  (1)  the instructor, 
without having to take time to solve a problem, will understand what principles/skills are 
to be learned by its solution;  and (2)  to facilitate student understanding/learning when 
the solution is posted. 
 
 I would recommend that the course instructor consult these solutions/answers 
before assigning problems and questions.  In doing so, he or she ensures that the 
students will be drilled in the intended principles and concepts.  In addition, the 
instructor may provide appropriate hints for some of the more difficult problems. 
 
 With regard to symbols, in the text material I elected to boldface those symbols 
that are italicized in the textbook.  Furthermore, I also endeavored to be consistent 
relative to symbol style.  However, in several instances, symbols that appear in the 
textbook were not available, and it was necessary to make appropriate substitutions.  
These include the following:  the letter a (unit cell edge length, crack length) is used in 
place of the cursive a.  And Roman E and F replace script E (electric field in Chapter 
18) and script F (Faraday's constant in Chapter 17), respectively. 
 
 I have exercised extreme care in designing these problems/questions, and then 
in solving them.  However, no matter how careful one is with the preparation of a work 
such as this, errors will always remain in the final product.  Therefore, corrections, 
suggestions, and comments from instructors who use the textbook (as well as their 
teaching assistants) pertaining to homework problems/solutions are welcomed.  These 
may be sent to me in care of the publisher. 
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CHAPTER 2 

 

ATOMIC STRUCTURE AND INTERATOMIC BONDING 

 

PROBLEM SOLUTIONS 

 

2.1  (a)  When two or more atoms of an element have different atomic masses, each is termed an 

isotope. 

 (b)  The atomic weights of the elements ordinarily are not integers because:  (1) the atomic masses 

of the atoms generally are not integers (except for 12C), and (2) the atomic weight is taken as the 

weighted average of the atomic masses of an atom's naturally occurring isotopes. 

 

2.2  Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of 

the atomic masses of an atom's naturally occurring isotopes. 

 

2.3  (a)  In order to determine the number of grams in one amu of material, appropriate manipulation of 

the amu/atom, g/mol, and atom/mol relationships is all that is necessary, as 

 

# g/amu =  
1 mol

6.023  x 1023  atoms

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 g /mol
1 amu /atom

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 

= 1.66 x 10-24 g/amu 
 

 (b)  Since there are 453.6 g/lbm, 

 
1 lb - mol =  453.6 g/lbm( ) 6.023 x 1023  atoms/g - mol( ) 

 

= 2.73 x 1026 atoms/lb-mol 

 

2.4  (a)  Two important quantum-mechanical concepts associated with the Bohr model of the atom are 

that electrons are particles moving in discrete orbitals, and electron energy is quantized into shells. 

 (b)  Two important refinements resulting from the wave-mechanical atomic model are that electron 

position is described in terms of a probability distribution, and electron energy is quantized into both 

shells and subshells--each electron is characterized by four quantum numbers. 

 

2.5  The n quantum number designates the electron shell. 
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  The l quantum number designates the electron subshell. 
  The ml quantum number designates the number of electron states in each electron subshell. 

  The ms quantum number designates the spin moment on each electron. 

 

2.6  For the L state, n = 2, and eight electron states are possible.  Possible l values are 0 and 1, while 

possible ml values are 0 and ±1.  Therefore, for the s states, the quantum numbers are 200(
1
2

)  and 

200 (−
1
2

) . For the p states, the quantum numbers are 210(
1
2

) , 210 (−
1
2

) , 211(
1
2

) , 211 (−
1
2

), 

21(-1 )(
1
2

) , and 21(-1 )(−
1
2

). 

   For the M state, n = 3, and 18 states are possible.  Possible l values are 0, 1, and 2;  

possible ml values are 0, ±1, and ±2; and possible ms values are  ±
1
2

. Therefore, for the s states, 

the quantum numbers are 300(
1
2

) , 300 (−
1
2

) , for the p states they are 310(
1
2

) , 310 (−
1
2

) , 311(
1
2

) , 

311 (−
1
2

), 31(-1 )(
1
2

) , and 31(-1 )(−
1
2

);  for the d states they are 320(
1
2

) , 320 (−
1
2

) , 321(
1
2

) , 

321 (−
1
2

), 32(-1 )(
1
2

), 32(-1 )(−
1
2

) , 322 (
1
2

) , 322 (−
1
2

) , 32(-2) (
1
2

) , and 32(-2) (−
1
2

). 

 

2.7  The electron configurations of the ions are determined using Table 2.2. 

 

   Fe2+ - 1s22s22p63s23p63d6 

   Fe3+ - 1s22s22p63s23p63d5 

   Cu+ - 1s22s22p63s23p63d10 

   Ba2+ - 1s22s22p63s23p63d104s24p64d105s25p6 

   Br- - 1s22s22p63s23p63d104s24p6 

   S2- - 1s22s22p63s23p6 

 

2.8  The Na+ ion is just a sodium atom that has lost one electron; therefore, it has an electron 

configuration the same as neon (Figure 2.6). 

   The Cl- ion is a chlorine atom that has acquired one extra electron;  therefore, it has an 

electron configuration the same as argon. 

 

2.9  Each of the elements in Group IIA has two s electrons. 

 

2.10  (a)  The 1s22s22p63s23p63d74s2 electron configuration is that of a transition metal because of an 

incomplete d subshell. 
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 (b)  The 1s22s22p63s23p6 electron configuration is that of an inert gas because of filled 3s and 3p 

subshells. 

 (c)  The 1s22s22p5 electron configuration is that of a halogen because it is one electron deficient 

from having a filled L shell. 

 (d)  The 1s22s22p63s2 electron configuration is that of an alkaline earth metal because of two s 

electrons. 

 (e)  The 1s22s22p63s23p63d24s2 electron configuration is that of a transition metal because of an 

incomplete d subshell. 

 (f)  The 1s22s22p63s23p64s1 electron configuration is that of an alkali metal because of a single s 

electron. 

 

2.11  (a)  The 4f subshell is being filled for the rare earth series of elements. 

 (b)  The 5f subshell is being filled for the actinide series of elements. 

 
2.12  The attractive force between two ions FA is just the derivative with respect to the interatomic 

separation of the attractive energy expression, Equation (2.8), which is just 

 

FA =  
dEA
dr

 =  
d −

A
r

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

dr
 =  

A
r2  

 

 The constant A in this expression is defined in footnote 3.  Since the valences of the Ca2+ and O2- 
ions (Z1 and Z2) are both 2, then 

 

FA =  
Z1e( ) Z2e( )
4πεor2  

 

=  
(2)(2 ) 1.6  x  10−19  C( )2

(4)(π) 8.85 x  10−12  F /m)( )1.25  x 10−9  m( )2
 

 

= 5.89 x 10-10 N 

 

2.13  (a)  Differentiation of Equation (2.11) yields 
 

dEN
dr

 =  
A

r(1 + 1)  −  
nB

r(n + 1)  =  0 
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 (b)  Now, solving for r (= ro) 

 
A

ro
2  =  

nB
ro

(n + 1)
 

or 

 

ro  =  
A

nB
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/(1 - n)
 

 
 (c)  Substitution for ro into Equation (2.11) and solving for E (= Eo) 

 

Eo =  −
A
ro

 +  
B

ro
n  

 

=  −
A

A
nB

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/(1 - n)  +  
B

A
nB

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

n/(1 - n)  

 

 

2.14  (a)  Curves of EA, ER, and EN are shown on the plot below. 
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 (b)  From this plot 
ro = 0.24 nm 

Eo = -5.3 eV 

 
 (c)  From Equation (2.11) for EN 

     A = 1.436 

     B = 7.32 x 10-6 

     n = 8 

 Thus, 

  

ro  =  
A

nB
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/(1 - n)  

 

=
1.436

(8) 7.32 x 10-6( )
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/(1 - 8)

= 0.236 nm 

 

 and 

 

Eo =  −  
1.436

1.436

(8) 7.32 x  10−6⎛ 
⎝ 

⎞ 
⎠ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1/(1 −  8)  +  
7.32  x 10−6

1.436

(8) 7.32  x  10−6⎛ 
⎝ 

⎞ 
⎠ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

8/(1 −  8)  

 

= - 5.32 eV 

 
2.15  This problem gives us, for a hypothetical X+-Y- ion pair, values for ro (0.35 nm), Eo (-6.13 eV), and 

n (10), and asks that we determine explicit expressions for attractive and repulsive energies of 

Equations 2.8 and 2.9.  In essence, it is necessary to compute the values of A and B in these 
equations.  Expressions for ro and Eo in terms of n, A, and B were determined in Problem 2.13, 

which are as follows: 

 

ro  =  
A

nB
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/(1 - n)
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Eo =  −
A

A
nB

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
1/(1 -  n)  +  

B

A
nB

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

n/(1 -  n)  

 

 Thus, we have two simultaneous equations with two unknowns (viz. A and B).  Upon substitution of 
values for ro and Eo in terms of n, these equations take the forms 

 

0.35 nm =  
A

10B
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/(1 -  10)
 

 

− 6.13 eV =  −  
A

A
10B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/(1 −  10) +  

B

A
10B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
10/(1 − 10)  

 

 Simultaneous solution of these two equations leads to A = 2.38 and B = 1.88 x 10-5.  Thus, 

Equations (2.8) and (2.9) become 

 

EA =  −
2.38

r
 

 

ER =  
1.88 x  10−5

r10  

 

 Of course these expressions are valid for r and E in units of nanometers and electron volts, 

respectively. 

 

2.16  (a)  Differentiating Equation (2.12) with respect to r yields 

 
dE
dr

=  
C
r2  −  

De − r / ρ

ρ
 

 
 At r = ro, dE/dr = 0, and 

 

    
C

ro
2  =  

De
− (ro /ρ)

ρ
 (2.12b) 

 
 Solving for C and substitution into Equation (2.12) yields an expression for Eo as 

 

 7



Eo =  De
− (ro/ρ) 

1 −  
ro
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

(b)  Now solving for D from Equation (2.12b) above yields 

 

D =  
Cρe

(ro/ρ)

ro
2  

 
 Substitution of this expression for D into Equation (2.12) yields an expression for Eo as 

 

Eo =  
C
ro

ρ
ro

 −  1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

 

2.17  (a)  The main differences between the various forms of primary bonding are: 

  Ionic--there is electrostatic attraction between oppositely charged ions. 

  Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a 

stable electron configuration. 

  Metallic--the positively charged ion cores are shielded from one another, and also "glued" together 

by the sea of valence electrons. 

 (b)  The Pauli exclusion principle states that each electron state can hold no more than two 

electrons, which must have opposite spins. 

 

2.18  Covalently bonded materials are less dense than metallic or ionically bonded ones because 

covalent bonds are directional in nature whereas metallic and ionic are not;  when bonds are 

directional, the atoms cannot pack together in as dense a manner, yielding a lower mass density. 

 
2.19  The percent ionic character is a function of the electron negativities of the ions XA and XB 

according to Equation (2.10).  The electronegativities of the elements are found in Figure 2.7. 

 
  For MgO, XMg = 1.2 and XO = 3.5, and therefore, 

 

%IC =  1 −  e(− 0.25)(3.5−1.2)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  x 100 =  73.4%  

 
 For GaP, XGa = 1.6 and XP = 2.1, and therefore, 
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%IC =  1 −  e(− 0.25)(2.1−1.6)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  x 100 =  6.1% 

 
 For CsF, XCs = 0.7 and XF = 4.0, and therefore, 

 

%IC =  1 −  e(− 0.25)(4.0−0.7)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  x 100 =  93.4% 

 
 For CdS, XCd = 1.7 and XS = 2.5, and therefore, 

 

%IC =  1 −  e(− 0.25)(2.5−1.7)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  x 100 =  14.8%  

 
 For FeO, XFe = 1.8 and XO = 3.5, and therefore, 

 

%IC =  1 −  e(− 0.25)(3.5−1.8)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  x 100 =  51.4%  

 

2.20  Below is plotted the bonding energy versus melting temperature for these four metals.  From this 

plot, the bonding energy for copper (melting temperature of 1084°C) should be approximately 3.6 

eV.  The experimental value is 3.5 eV. 
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2.21  For silicon, having the valence electron structure 3s23p2, N' = 4; thus, there are 8 - N' = 4 covalent 

bonds per atom. 

   For bromine, having the valence electron structure 4s24p5, N' = 7;  thus, there is 8 - N' = 1 

covalent bond per atom. 

   For nitrogen, having the valence electron structure 2s22p3, N' = 5;  thus, there are 8 - N' = 3 

covalent bonds per atom. 

   For sulfur, having the valence electron structure 3s23p4, N' = 6; thus, there are 8 - N' = 2 

covalent bonds per atom. 

 

2.22  For brass, the bonding is metallic since it is a metal alloy. 

   For rubber, the bonding is covalent with some van der Waals. (Rubber is composed 

primarily of carbon and hydrogen atoms.) 

   For BaS, the bonding is predominantly ionic (but with some covalent character) on the basis 

of the relative positions of Ba and S in the periodic table. 

   For solid xenon, the bonding is van der Waals since xenon is an inert gas. 

   For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin). 

   For nylon, the bonding is covalent with perhaps some van der Waals.  (Nylon is composed 

primarily of carbon and hydrogen.) 

   For AlP the bonding is predominantly covalent (but with some ionic character) on the basis 

of the relative positions of Al and P in the periodic table. 

 

2.23  The intermolecular bonding for HF is hydrogen, whereas for HCl, the intermolecular bonding is van 

der Waals.  Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting 

temperature. 

 
2.24  The geometry of the H2O molecules, which are hydrogen bonded to one another, is more restricted 

in the solid phase than for the liquid. This results in a more open molecular structure in the solid, and 

a less dense solid phase. 
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CHAPTER 3 

 

THE STRUCTURE OF CRYSTALLINE SOLIDS 

 

PROBLEM SOLUTIONS 

 

3.1  Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as 

the number and probability distributions of the constituent electrons.  On the other hand, crystal 

structure pertains to the arrangement of atoms in the crystalline solid material. 

 

3.2  A crystal structure is described by both the geometry of, and atomic arrangements within, the unit 

cell, whereas a crystal system is described only in terms of the unit cell geometry.  For example, 

face-centered cubic and body-centered cubic are crystal structures that belong to the cubic crystal 

system. 

 

3.3  For this problem, we are asked to calculate the volume of a unit cell of aluminum.  Aluminum has an 

FCC crystal structure (Table 3.1).  The FCC unit cell volume may be computed from Equation (3.4) 

as 

 

VC =  16R3 2 =  (16) 0.143 x 10-9  m( )3 2 =  6.62 x 10-29 m3  

 
3.4  This problem calls for a demonstration of the relationship a = 4R 3  for BCC.  Consider the BCC 

unit cell shown below 

 

 
 

 Using the triangle NOP 
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(NP)2 =  a2 +  a2 = 2a2 

 

 And then for triangle NPQ, 

 
(NQ)2 = (QP)2 + (NP)2 

 

 But NQ  = 4R, R being the atomic radius.  Also, QP  = a.  Therefore, 

 
(4R)2 =  a2 +  2a2 , or 

 

a =  
4R

3
 

 

3.5  We are asked to show that the ideal c/a ratio for HCP is 1.633.  A sketch of one-third of an HCP unit 

cell is shown below. 
 

 
 

 Consider the tetrahedron labeled as JKLM, which is reconstructed as 
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 The atom at point M is midway between the top and bottom faces of the unit cell--that is MH  = c/2.  

And, since atoms at points J, K, and M, all touch one another, 

 
JM = JK = 2R = a  

 

 where R is the atomic radius.  Furthermore, from triangle JHM, 
 

(JM)2 = (JH)2 + (MH)2, or  

 

a2 =  (JH)2 +  
c
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2
 

 

 Now, we can determine the JH  length by consideration of triangle JKL, which is an equilateral 

triangle, 

 

 
 

 

cos 30° =  
a / 2
JH

=  
3

2
,  and  

 

JH =  
a
3

 

 

 Substituting this value for JH  in the above expression yields 

 

a2 =  
a
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
+

c
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2
=  

a2

3
+  

c2

4
 

 

 and, solving for c/a 
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c
a

=  
8
3

=  1.633 

 

3.6  We are asked to show that the atomic packing factor for BCC is 0.68. The atomic packing factor is 

defined as the ratio of sphere volume to the total unit cell volume, or 

 

APF =  
VS
VC

 

 

 Since there are two spheres associated with each unit cell for BCC 

 

VS =  2(sphere volume) =  2
4πR3

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  

8πR3

3
 

 

 Also, the unit cell has cubic symmetry, that is VC = a3.  But a depends on R according to Equation 

(3.3), and 
 

VC =
4R

3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
=

64R3

3 3
 

 

 Thus, 
 

APF =  
8πR3 / 3

64R3 /3 3
=  0.68  

 

3.7  This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total 

sphere-unit cell volume ratio.  For HCP, there are the equivalent of six spheres per unit cell, and thus 
 

VS =  6
4π R3

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  8πR3 

 

 Now, the unit cell volume is just the product of the base area times the cell height, c.  This base area 

is just three times the area of the parallelepiped ACDE shown below. 
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 The area of ACDE is just the length of CD  times the height BC .  But CD  is just a or 2R, and 

 

BC =  2R cos (30°) =  
2R 3

2
 

 

 Thus, the base area is just 
 

AREA =  (3)(CD)(BC) =  (3)(2R)
2R 3

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =  6R2 3  

 

 and since c = 1.633a = 2R(1.633) 
 

VC =  (AREA)(c) =  6R2c 3 =  6 R2 3( )(2)(1.633)R =  12 3 (1.633 )R3 

 

 Thus, 

 

APF =  
VS
VC

=  
8π R3

12 3 (1.633 )R3 =  0.74  

 

3.8  This problem calls for a computation of the density of iron.  According to Equation (3.5) 

 

ρ =  
nAFe
VCNA

 

 

 For BCC, n = 2 atoms/unit cell, and 
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VC =  
4R

3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

 

 

 Thus, 

 

ρ =  
2 atoms/unit cell( ) 55.9 g/mol( )

4( ) 0.124 x 10-7 cm( )3 / 3
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

3
/ unit cell( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
6.023 x 1023 atoms/mol( )

 

 

= 7.90 g/cm3 

 

 The value given inside the front cover is 7.87 g/cm3. 

 

3.9  We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal structure.  
For FCC, n = 4 atoms/unit cell, and VC = 16R3 2  [Equation (3.4)].  Now, 

 

ρ =  
nAIr

VCNA
 

 

 And solving for R from the above two expressions yields 
 

R =  
nAIr

16ρNA 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3

 

 

=  
4 atoms/unit cell( )192.2 g/mol( )

2( )16( ) 22.4 g/cm3( )6.023 x 1023 atoms/mol( )
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/3

 

 

= 1.36 x 10-8 cm = 0.136 nm 

 

3.10  This problem asks for us to calculate the radius of a vanadium atom. For BCC, n = 2 atoms/unit cell, 

and 

 

VC =  
4R

3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

 =  
64R3

3 3
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 Since, 

 

ρ =  
nAV

VCNA
 

 

 and solving for R 
 

R =  
3 n 3AV
64ρNA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3

 

 

=  
3 3( ) 2 atoms/unit cell( ) 50.9 g/mol( )

64( ) 5.96 g/cm3( )6.023 x 1023  atoms/mol( )
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/3

 

 

= 1.32 x 10-8 cm = 0.132 nm 

 

3.11  For the simple cubic crystal structure, the value of n in Equation (3.5) is unity since there is only a 

single atom associated with each unit cell.  Furthermore, for the unit cell edge length, a = 2R.  

Therefore, employment of Equation (3.5) yields 

 

ρ =  
nA

VCNA
=  

nA
(2R )3NA

 

 

=  
(1 atom/unit cell)(74.5 g/mol)

(2) 1.45 x 10-8 cm( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
3

/(unit cell)
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
6.023 x 1023 atoms/mol( )

 

 

5.07 g/cm3 

 

3.12.  (a)  The volume of the Ti unit cell may be computed using Equation (3.5) as 

 

VC =
nATi
ρNA

 

 
  Now, for HCP, n = 6 atoms/unit cell, and for Ti, ATi = 47.9 g/mol. Thus, 
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VC =  
(6 atoms/unit cell)(47.9 g/mol)

4.51 g/cm3( )6.023 x 1023  atoms/mol( ) 

 

= 1.058 x 10-22 cm3/unit cell = 1.058 x 10-28 m3/unit cell 

 

 (b)  From the solution to Problem 3.7, since a = 2R, then, for HCP 

 

VC =  
3 3 a2c

2
 

 

  but, since c = 1.58a 

 

VC =  
3 3 (1.58)a3

2
=  1.058 x 10-22  cm3/unit cell  

 

  Now, solving for a 

 

a =  
2( ) 1.058 x 10-22  cm3( )

3( ) 3( )1.58( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/3

 

 

= 2.96 x 10-8 cm = 0.296 nm 

 

  And finally 

c = 1.58a = (1.58)(0.296 nm) = 0.468 nm 

 

3.13  This problem asks that we calculate the theoretical densities of Al, Ni, Mg, and W. 

   Since Al has an FCC crystal structure, n = 4, and VC = 2R 2( )3 .  Also, R = 0.143 nm (1.43 

x 10-8 cm) and AAl = 26.98 g/mol.  Employment of Equation (3.5) yields 

 

ρ  =  
(4 atoms/unit cell)(26.98 g/mol)

(2)(1.43 x 10-8  cm) 2( )[ ]3/(unit cell)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

6.023 x 1023  atoms/mol( )
 

 

= 2.71 g/cm3 

 

 The value given in the table inside the front cover is 2.71 g/cm3. 

 18



   Nickel also has an FCC crystal structure and therefore 

 

ρ  =  
(4 atoms/unit cell)(58.69 g/mol)

(2)(1.25 x 10-8  cm) 2( )[ ]3/(unit cell )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

6.023 x 1023  atoms/mol( )
 

 

= 8.82 g/cm3 

 

 The value given in the table is 8.90 g/cm3. 

 

   Magnesium has an HCP crystal structure, and from Problem 3.7, 
 

VC =  
3 3 a2c

2
 

 

  and, since c = 1.624a and a = 2R = 2(1.60 x 10-8 cm) = 3.20 x 10-8 cm 

 

VC  =  
3 3 1.624( ) 3.20 x 10-8  cm( )3

2
 =  1.38 x 10−22 cm3/unit cell  

 

  Also, there are 6 atoms/unit cell for HCP.  Therefore the theoretical density is 

 

ρ =  
nAMg
VCNA

 

 

=  
(6 atoms/unit cell)(24.31 g/mol)

1.38 x 10-22  cm3/unit cell( )6.023 x 1023 atoms/mol( ) 

 

= 1.75 g/cm3 

 

  The value given in the table is 1.74 g/cm3. 

 

   Tungsten has a BCC crystal structure for which n = 2 and a = 
4R

3
;  also AW = 183.85 g/mol 

and R  = 0.137 nm.  Therefore, employment of Equation (3.5) leads to 
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ρ  =  
2 atoms/unit cell( )183.85 g/mol( )

4( ) 1.37 x 10-8 cm( )
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

3

/(unit cell)

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

6.023 x 1023 atoms/mol( )
 

 

= 19.3 g/cm3 

 

  The value given in the table is 19.3 g/cm3. 

 

3.14  In order to determine whether Nb has an FCC or BCC crystal structure, we need to compute its 
density for each of the crystal structures.  For FCC, n = 4, and a = 2 R 2 . Also, from Figure 2.6, its 

atomic weight is 92.91 g/mol.  Thus, for FCC 

 

ρ  =  
nANb

2R 2( )3NA

 

 

    =  
(4 atoms/unit cell)(92.91 g/mol)

(2) 1.43 x  10-8 cm( ) 2( )⎡ 
⎣ 

⎤ 
⎦ 

3
/(unitcell)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

6.023 x 1023 atoms /mol( )
 

 

= 9.33 g/cm3 

 

   For BCC, n = 2, and a = 
4R

3
, thus 

 

   =  
(2 atoms/unit cell)(92.91 g/mol)

(4) 1.43 x  10-8 cm( )
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

3

/(unitcell)

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

6.023 x 1023 atoms/ mol( )
 

 

= 8.57 g/cm3 

 

  which is the value provided in the problem.  Therefore, Nb has a BCC crystal structure. 

 

3.15  For each of these three alloys we need to, by trial and error, calculate the density using Equation 

(3.5), and compare it to the value cited in the problem.  For SC, BCC, and FCC crystal structures, 
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the respective values of n are 1, 2, and 4, whereas the expressions for a (since VC = a3) are 2R, 

2 R 2 , and 4R / 3 . 

   For alloy A, let us calculate ρ assuming a BCC crystal structure. 

 

ρ =  
nAA

VCNA
 

 

=  
(2 atoms/unit cell)(43.1 g/mol)

(4) 1.22 x 10-8 cm( )
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

3

/(unit cell)

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

 6.023 x 1023 atoms/mol( )
 

 

= 6.40 g/cm3 

 

  Therefore, its crystal structure is BCC. 

 

   For alloy B, let us calculate ρ assuming a simple cubic crystal structure. 

 

ρ =  
(1 atom/unit cell)(184.4 g/mol)

2( )1.46 x 10-8  cm( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
3

/(unit cell)
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
6.023 x 1023 atoms/mol( )

 

 

= 12.3 g/cm3 

 

  Therefore, its crystal structure is simple cubic. 
 

   For alloy C, let us calculate ρ assuming a BCC crystal structure. 
 

ρ =  
(2 atoms/unit cell)(91.6 g/mol)

(4) 1.37 x 10-8 cm( )
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

3

/(unit cell)

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

6.023 x 1023 atoms/mol( )
 

 

= 9.60 g/cm3 

  Therefore, its crystal structure is BCC. 
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3.16  In order to determine the APF for U, we need to compute both the unit cell volume (VC) which is 

just the product of the three unit cell parameters, as well as the total sphere volume (VS) which is 

just the product of the volume of a single sphere and the number of spheres in the unit cell (n).  The 

value of n may be calculated from Equation (3.5) as 

 

n =  
ρVCNA

AU
 

 

=  
(19.05)(2.86)(5.87)(4.95) x10-24( )6.023 x 1023( )

283.03
 

 

= 4.01 atoms/unit cell 

 Therefore 

 

APF =  
VS
VC

 =  
(4)

4
3

π R3⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

(a)(b)(c)
 

 

=  
(4)

4
3

(π)(0.1385)3⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

(0.286)(0.587)(0.495)
 

 

= 0.536 

 

3.17  (a)  From the definition of the APF 

 

APF =  
VS
VC

=  
n

4
3

πR3⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

a2c
 

 

 we may solve for the number of atoms per unit cell, n, as 

 

n =  
(APF)a2c

4
3

πR3
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=  
(0.693)(4.59)2(4.95)  10-24 cm3( )

4
3

π 1.625 x 10-8 cm( )3
 

 

= 4.0 atoms/unit cell 

 

 (b)  In order to compute the density, we just employ Equation (3.5) as 

 

ρ =  
nAIn

a2cNA
 

 

=  
(4 atoms/unit cell)(114.82 g/mol)

4.59 x 10-8 cm( )2 4.95 x 10-8 cm( )/unit cell
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  6.023 x 1023 atoms/mol( )

 

 

= 7.31 g/cm3 

 

3. 18  (a)  We are asked to calculate the unit cell volume for Be.  From the solution to Problem 3.7 
 

VC =  6R2c 3  

 

  But, c = 1.568a, and a = 2R, or c = 3.14R, and 
 

VC =  (6)(3.14) R3 3  

 

=  6( ) 3.14( ) 3( ) 0.1143 x 10-7  cm[ ]3  =  4.87 x 10−23 cm3/unit cell  

 

 (b)  The density of Be is determined as follows: 
 

ρ =  
nABe
VCNA

 

 
  For HCP, n = 6 atoms/unit cell, and for Be, ABe = 9.01 g/mol.  Thus, 

 

ρ =  
(6 atoms/unit cell)(9.01 g/mol)

4.87 x 10-23 cm3/unit cell( )6.023 x 1023 atoms/mol( ) 
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= 1.84 g/cm3 

 

  The value given in the literature is 1.85 g/cm3. 

 

3.19  This problem calls for us to compute the atomic radius for Mg.  In order to do this we must use 

Equation (3.5), as well as the expression which relates the atomic radius to the unit cell volume for 

HCP;  from Problem 3.7 it was shown that 

 
VC =  6R2c 3  

 

  In this case c = 1.624(2R).  Making this substitution into the previous equation, and then solving 

for R using Equation (3.5) yields 

 

R =  
nAMg

1.624( ) 12 3( )ρNA

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1/3

 

 

=  
6 atoms/unit cell( ) 24.31 g/mol( )

1.624( ) 12 3( )1.74 g/cm3( )6.023 x 1023 atoms/mol( )
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/3

 

 

= 1.60 x 10-8 cm = 0.160 nm 

 

3.20  This problem asks that we calculate the unit cell volume for Co which has an HCP crystal structure.  

In order to do this, it is necessary to use a result of Problem 3.7, that is 

 
VC =  6R2c 3  

 

  The problem states that c = 1.623a, and a = 2R.  Therefore 

 
VC =  (1.623)(12 3 ) R3 

 

=  (1.623)(12 3) 1.253 x 10-8  cm( )3  =  6.64 x 10-23  cm3 =  6.64 x 10-2  nm3  
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3.21  (a)  The unit cell shown in the problem belongs to the tetragonal crystal system since a = b = 0.35 

nm, c = 0.45 nm, and α = β = γ = 90°. 

 (b)  The crystal structure would be called body-centered tetragonal. 

 (c)  As with BCC, n = 2 atoms/unit cell.  Also, for this unit cell 
 

VC =  3.5 x 10−8 cm( )2 4.5 x 10−8 cm( ) 

 

= 5.51 x 10−23 cm3/unit cell  

 

  Thus, 

 

ρ =  
nA

VCNA
 

 

=  
2 atoms/unit cell( ) 141 g/mol( )

5.51 x 10-23  cm3/unit cell( )6.023 x 1023  atoms/mol( )
 

 

 

= 8.50 g/cm3 
 

 

3.22  First of all, open ‘Notepad” in Windows.  Now enter into “Notepad” commands to generate the 

AuCu3 unit cell.  One set of commands that may be used is as follows: 

 

 [DisplayProps] 
 Rotatez=-30 
 Rotatey=-15 
 
 [AtomProps] 
 Gold=LtRed,0.14 
 Copper=LtYellow,0.13 
 
 [BondProps] 
 SingleSolid=LtGray 
 
 [Atoms] 
 Au1=1,0,0,Gold 
 Au2=0,0,0,Gold 
 Au3=0,1,0,Gold 
 Au4=1,1,0,Gold 
 Au5=1,0,1,Gold 
 Au6=0,0,1,Gold 
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 Au7=0,1,1,Gold 
 Au8=1,1,1,Gold 
 Cu1=0.5,0,0.5,Copper 
 Cu2=0,0.5,0.5,Copper 
 Cu3=0.5,1,0.5,Copper 
 Cu4=1,0.5,0.5,Copper 
 Cu5=0.5,0.5,1,Copper 
 Cu6=0.5,0.5,0,Copper 
 
 [Bonds] 
 B1=Au1,Au5,SingleSolid 
 B2=Au5,Au6,SingleSolid 
 B3=Au6,Au2,SingleSolid 
 B4=Au2,Au1,SingleSolid 
 B5=Au4,Au8,SingleSolid 
 B6=Au8,Au7,SingleSolid 
 B7=Au7,Au3,SingleSolid 
 B8=Au3,Au4,SingleSolid 
 B9=Au1,Au4,SingleSolid 
 B10=Au8,Au5,SingleSolid 
 B11=Au2,Au3,SingleSolid 
 B12=Au6,Au7,SingleSolid 
 
 Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name 

followed by a period and "mdf";  for example, “AuCu3.mdf”.  And, finally save this file in the “mdf” file 
inside of the “Interactive MSE” folder (which may be found in its installed location). 

 
   Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then 

open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic 
Structures” module.  Next select “Open” under the “File” menu, and then open the “mdf” folder.  
Finally, select the name you assigned to the item in the window that appears, and hit the “OK” 
button.  The image that you generated will now be displayed. 

 

3.23 First of all, open ‘Notepad” in Windows..  Now enter into “Notepad” commands to generate the AuCu 

unit cell.  One set of commands that may be used is as follows: 

 
 [DisplayProps] 
 Rotatez=-30 
 Rotatey=-15 
 
 [AtomProps] 
 Gold=LtRed,0.14 
 Copper=LtYellow,0.13 
 
 [BondProps] 
 SingleSolid=LtGray 
 
 [Atoms] 
 Au1=0,0,0,Gold 
 Au2=1,0,0,Gold 
 Au3=1,1,0,Gold 
 Au4=0,1,0,Gold 
 Au5=0,0,1.27,Gold 
 Au6=1,0,1.27,Gold 
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 Au7=1,1,1.27,Gold 
 Au8=0,1,1.27,Gold 
 Cu1=0.5,0.5,0.635,Copper 
 
 [Bonds] 
 B1=Au1,Au2,SingleSolid 
 B2=Au2,Au3,SingleSolid 
 B3=Au3,Au4,SingleSolid 
 B4=Au1,Au4,SingleSolid 
 B5=Au5,Au6,SingleSolid 
 B6=Au6,Au7,SingleSolid 
 B7=Au7,Au8,SingleSolid 
 B8=Au5,Au8,SingleSolid 
 B9=Au1,Au5,SingleSolid 
 B10=Au2,Au6,SingleSolid 
 B11=Au3,Au7,SingleSolid 
 B12=Au4,Au8,SingleSolid 

 
 Under the "File" menu of "Note Pad," click "Save As", and then assign the file for this figure a name 

followed by a period and "mdf";  for example, “AuCu.mdf”.  And, finally save this file in the “mdf” file 
inside of the “Interactive MSE” folder (which may be found in its installed location). 

 
   Now, in order to view the unit cell just generated, bring up “Interactive MSE”, and then 

open any one of the three submodules under “Crystallinity and Unit Cells” or the “Ceramic 
Structures” module.  Next select “Open” under the “File” menu, and then open the “mdf” folder.  
Finally, select the name you assigned to the item in the window that appears, and hit the “OK” 
button.  The image that you generated will now be displayed. 

 

3.24  A unit cell for the face-centered orthorhombic crystal structure is presented below. 

 

 
 

3.25  This problem asks that we list the point coordinates for all of the atoms that are associated with the 

FCC unit cell.  From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates 
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000.  Coordinates for other atoms in the bottom face are 100, 110, 010, and 
1
2

1
2

0 .  (The z 

coordinate for all these points is zero.) 

   For the top unit cell face, the coordinates are 001, 101, 111, 011, and 
1
2

1
2

1.  (These 

coordinates are the same as bottom-face coordinates except that  the “0” z coordinate has been 

replaced by a “1”.) 

   Coordinates for only those atoms that are positioned at the centers of both side faces, and 

centers of both front and back faces need to be specified.   For the front and back-center face atoms, 

the coordinates are 1
1
2

1
2

 and 0
1
2

1
2

, respectively.  While for the left and right side center-face atoms, 

the respective coordinates are 
1
2

0
1
2

 and 
1
2

1
1
2

. 

 

3.26  (a)  Here we are asked list point coordinates for both sodium and chlorine ions for a unit cell of the 

sodium chloride crystal structure, which is shown in Figure 12.2. 

   In Figure 12.2, the chlorine ions are situated at all corners and face-centered positions.  

Therefore, point coordinates for these ions are the same as for FCC, as presented in the previous 

problem—that is, 000, 100, 110, 010, 001, 101, 111, 011, 
1
2

1
2

0 , 
1
2

1
2

1, 1
1
2

1
2

, 0
1
2

1
2

, 
1
2

0
1
2

, and 

1
2

1
1
2

. 

   Furthermore, the sodium ions are situated at the centers of all unit cell edges, and, in 

addition, at the unit cell center.  For the bottom face of the unit cell, the point coordinates are as 

follows: 
1
2

00 , 1
1
2

0 , 
1
2

10 , 0
1
2

0 .  While, for the horizontal plane that passes through the center of 

the unit cell (which includes the ion at the unit cell center), the coordinates are 0 0
1
2

, 1 0
1
2

, 
1
2

1
2

1
2

, 

11
1
2

, and 01
1
2

.  And for the four ions on the top face 
1
2

01, 1
1
2

1, 
1
2

11, and 0
1
2

1. 

 (b)  This portion of the problem calls for us to list the point coordinates of both the zinc and sulfur 

atoms for a unit cell of the zinc blende structure, which is shown in Figure 12.4. 

   First of all, the sulfur atoms occupy the face-centered positions in the unit cell, which from 

the solution to Problem 3.25, are as follows:  000, 100, 110, 010, 001, 101, 111, 011, 
1
2

1
2

0 , 
1
2

1
2

1, 

1
1
2

1
2

, 0
1
2

1
2

, 
1
2

0
1
2

, and 
1
2

1
1
2

. 

   Now, using an x-y-z coordinate system oriented as in Figure 3.4, the coordinates of the zinc 

atom that lies toward the lower-left-front of the unit cell has the coordinates 
3
4

1
4

1
4

, whereas the atom 

situated toward the lower-right-back of the unit cell has coordinates of 
1
4

3
4

1
4

.  Also, the zinc atom 

that resides toward the upper-left-back of the unit cell has the 
1
4

1
4

3
4

 coordinates.  And, the 

coordinates of the final zinc atom, located toward the upper-right-front of the unit cell, are 
3
4

3
4

3
4

. 
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3.27  A tetragonal unit in which are shown the 11
1
2

 and 
1
2

1
4

1
2

 point coordinates is presented below. 

 

 
 

3.28  This portion of the problem calls for us to draw a [12 1 ]  direction within an orthorhombic unit cell (a 
≠ b ≠ c, α = β = γ = 90°).  Such a unit cell with its origin positioned at point O is shown below.  We 
first move along the +x-axis a units (from point O to point A), then parallel to the +y-axis 2b units 
(from point A to point B).  Finally, we proceed parallel to the z-axis -c units (from point B to point C).  
The [12 1 ]  direction is the vector from the origin (point O) to point C as shown. 

 
 We are now asked to draw a (210) plane within an orthorhombic unit cell.  First remove the three 

indices from the parentheses, and take their reciprocals--i.e., 1/2, 1, and ∞.  This means that the 
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plane intercepts the x-axis at a/2, the y-axis at b, and parallels the z-axis.  The plane that satisfies 

these requirements has been drawn within the orthorhombic unit cell below. 
 

 
3.29  (a)  This portion of the problem asks that a [0 1 1]  direction be drawn within a monoclinic unit cell (a 

≠ b ≠ c, and α = β = 90° ≠ γ).  One such unit cell with its origin at point O is sketched below. For this 

direction, there is no projection along the x-axis since the first index is zero;  thus, the direction lies in 

the y-z plane.  We next move from the origin along the minus y-axis b units (from point O to point R).  

Since the final index is a one, move from point R parallel to the z-axis, c units (to point P). Thus, the 
[0 1 1]  direction corresponds to the vector passing from the origin to point P, as indicated in the 

figure. 
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 (b)  A (002) plane is drawn within the monoclinic cell shown below. We first remove the parentheses 

and take the reciprocals of the indices;  this gives ∞, ∞, and 1/2.  Thus, the (002) plane parallels 

both x- and y-axes, and intercepts the z-axis at c/2, as indicated in the drawing. 

 

 
 

3.30  (a)  We are asked for the indices of the two directions sketched in the figure.  For direction 1, the 

projection on the x-axis is zero (since it lies in the y-z plane), while projections on the y- and z-axes 
are b/2 and c, respectively.  This is an [012]  direction as indicated in the summary below 

 

    x y z

 

 Projections 0a b/2 c 

 Projections in terms of a, b, 

  and c  0 1/2 1 

 Reduction to integers 0 1 2 
 Enclosure  [012]

 
 
  Direction 2 is [112 ]  as summarized below. 
 

    x y z

 

 Projections a/2 b/2 - c 

 Projections in terms of a, b, 

  and c  1/2 1/2 -1 

 Reduction to integers 1 1 -2 
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 Enclosure  [112 ]  
 

 (b)  This part of the problem calls for the indices of the two planes which are drawn in the sketch.  
Plane 1 is an (020) plane.  The determination of its indices is summarized below. 

 

    x y z
 
 Intercepts ∞ a b/2 ∞ c 

 Intercepts in terms of a, b, 
  and c  ∞ 1/2 ∞ 

 Reciprocals of intercepts 0 2 0 
 Enclosure   (020)
 
  Plane 2 is a (22 1)  plane, as summarized below. 
 

    x y z 

 
 Intercepts a/2 -b/2 c 

 Intercepts in terms of a, b, 
  and c  1/2 -1/2 1 

 Reciprocals of intercepts 2 -2 1 
 Enclosure  (22 1)  
 

3.31  The directions asked for are indicated in the cubic unit cells shown below. 
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3.32  Direction A is a [ 1 10]  direction, which determination is summarized as follows.  We first of all 

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 

 

    x y z

 

 Projections - a b 0c 

 Projections in terms of a, b, 

   and c -1 1 0 

 Reduction to integers  not necessary  
 Enclosure  [ 1 10]  

 

   Direction B is a [121] direction, which determination is summarized as follows.  The vector 

passes through the origin of the coordinate system and thus no translation is necessary.  Therefore, 
 

    x y z
 

 Projections 
a
2

 b 
c
2

 

 Projections in terms of a, b, 
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   and c 
1
2

 1 
1
2

 

 Reduction to integers 1 2 1 

 Enclosure  [121] 

 
   Direction C is a [0 1 2 ]  direction, which determination is summarized as follows.  We first of 

all position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 

 

    x y z

 

 Projections 0a −
b
2

 - c 

 Projections in terms of a, b, 

   and c 0 -
1
2

 -1 

 Reduction to integers 0 -1 -2 
 Enclosure  [0 1 2 ]  
 
   Direction D is a [12 1]  direction, which determination is summarized as follows.  We first of all 

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 
 

    x y z
 

 Projections 
a
2

 -b 
c
2

 

 Projections in terms of a, b, 

   and c 
1
2

 -1 
1
2

 

 Reduction to integers 1 -2 1 
 Enclosure  [12 1]  
 

3.33  Direction A is a [331 ]  direction, which determination is summarized as follows.  We first of all 

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 
 

    x y z
 

 Projections a b - 
c
3

 

 Projections in terms of a, b, 
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   and c 1 1 - 
1
3

 

 Reduction to integers 3 3 -1 
 Enclosure  [331 ]  

 
   Direction B is a [4 03 ]  direction, which determination is summarized as follows.  We first of 

all position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 

 

    x y z
 

 Projections - 
2a
3

 0b - 
c
2

 

 Projections in terms of a, b, 

   and c - 
2
3

 0 - 
1
2

 

 Reduction to integers - 4 0 - 3 
 Enclosure  [4 03 ]  
 
   Direction C is a [3 61]  direction, which determination is summarized as follows.  We first of 

all position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 
 

    x y z
 

 Projections - 
a
2

 b 
c
6

 

 Projections in terms of a, b, 

   and c - 
1
2

 1 
1
6

 

 Reduction to integers -3 6 1 

 Enclosure  [3 61]  
 
   Direction D is a [1 1 1 ]  direction, which determination is summarized as follows.  We first of 

all position the origin of the coordinate system at the tail of the direction vector;  then in terms of this 

new coordinate system 
 

    x y z
 

 Projections - 
a
2

 
b
2

 - 
c
2

 

 Projections in terms of a, b, 
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   and c - 
1
2

 
1
2

 - 
1
2

 

 Reduction to integers - 1 1 - 1 
 Enclosure  [1 1 1 ]  

 

3.34  For tetragonal crystals a = b ≠ c and α = β = γ = 90°;  therefore, projections along the x and y axes 

are equivalent, which are not equivalent to projections along the z axis.  
 (a)  Therefore, for the [011] direction, equivalent directions are the following:  [101], [1 0 1 ] , [1 01 ] , 

[10 1 ] , [011 ] , [0 1 1] , and [0 1 1 ] . 

 (b)  Also, for the [100] direction, equivalent directions are the following:  [1 00] , [010], and [0 1 0 ] . 

 

3.35  (a)  We are asked to convert [100] and [111] directions into the four- index Miller-Bravais scheme for 

hexagonal unit cells.  For [100] 

 

u' = 1, 

v' = 0, 

w' = 0 

 

  From Equations (3.6) 

 

u =  
n
3

(2u ' − v ' ) =  
n
3

(2 − 0) =  
2 n
3

 

 

v =  
n
3

(2v ' − u' ) =  
n
3

(0 − 1) = -
n
3

 

 

t =  - (u +  v) =  -
2n
3

−
n
3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = -

n
3

 

 

w = nw' = 0 

  If we let n = 3, then u = 2, v = -1, t = -1, and w = 0.  Thus, the direction is represented as [uvtw] = 
[2 1 1 0 ] . 

   For [111], u' = 1, v' = 1, and w' = 1;  therefore, 

 

u =  
n
3

(2 − 1) =  
n
3

 

 

v =
n
3

(2 − 1) =
n
3
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t = -
n
3

+
n
3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = -

2 n
3

 

 

w = n 

 

  If we again let n = 3, then u = 1, v = 1, t = -2, and w = 3.  Thus, the direction is represented as 
[112 3] . 

 (b)  This portion of the problem asks for the same conversion of the (010) and (101) planes.  A plane 

for hexagonal is represented by (hkil) where i = - (h + k), and h, k, and l are the same for both 

systems.  For the (010) plane, h = 0, k = 1, l = 0, and  

 

i = - (0 + 1) = -1 

 
  Thus, the plane is now represented as (hkil) = (01 1 0) . 

 
  For the (101) plane, i = - (1 + 0) = -1, and (hkil) = (10 1 1) . 

 

3.36  For plane A we will leave the origin at the unit cell as shown.  If we extend this plane back into the 
plane of the page, then it is a (11 1 ) plane, as summarized below. 

 

    x y z
 

 Intercepts a b - c 

 Intercepts in terms of a, b, 

   and c 1 1 - 1 

 Reciprocals of intercepts 1 1 - 1 

 Reduction  not necessary  
 Enclosure  (11 1 ) 
 

   For plane B we will leave the origin of the unit cell as shown;  this is a (230) plane, as 

summarized below. 
 

    x y z
 

 Intercepts 
a
2

 
b
3

 ∞c 

 Intercepts in terms of a, b, 
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   and c 
1
2

 
1
3

 ∞ 

 Reciprocals of intercepts 2 3 0 

 Enclosure  (230) 

 

3.37  For plane A we will move the origin of the coordinate system one unit cell distance to the right along 
the y axis;  thus, this is a (1 1 0 ) plane, as summarized below. 

 

    x y z

 

 Intercepts 
a
2

 - 
b
2

 ∞ c 

 Intercepts in terms of a, b, 

   and c 
1
2

 - 
1
2

 ∞ 

 Reciprocals of intercepts 2 - 2 0 

 Reduction 1 - 1 0 
 Enclosure  (1 1 0 ) 

 

   For plane B we will leave the origin of the unit cell as shown;  thus, this is a (122) plane, as 

summarized below. 

 

    x y z

 

 Intercepts a 
b
2

 
c
2

 

 

 Intercepts in terms of a, b, 

   and c 1 
1
2

 
1
2

 

 Reciprocals of intercepts 1 2 2 

 Reduction  not necessary  

 Enclosure  (122) 

 

 

3.38 For plane A since the plane passes through the origin of the coordinate system as shown, we will 

move the origin of the coordinate system one unit cell distance vertically along the z axis;  thus, this 
is a (21 1 )  plane, as summarized below. 
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    x y z

 

 Intercepts 
a
2

 b - c 

 Intercepts in terms of a, b, 

   and c 
1
2

 1 - 1 

 Reciprocals of intercepts 2 1 - 1 

 Reduction  not necessary  
 Enclosure  (21 1 )  

 

   For plane B, since the plane passes through the origin of the coordinate system as shown, 
we will move the origin one unit cell distance vertically along the z axis;  this is a (02 1 )  plane, as 

summarized below. 
 

    x y z

 

 Intercepts ∞ a 
b
2

 - c 

 Intercepts in terms of a, b, 
   and c ∞ 

1
2

 - 1 

 Reciprocals of intercepts 0 2 - 1 

 Reduction  not necessary 
 Enclosure  (02 1 )  

 
3.39  The (01 1 1) and (2 1 1 0 ) planes in a hexagonal unit cell are shown below. 
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3.40  (a)  For this plane we will leave the origin of the coordinate system as shown;  thus, this is a (12 11) 

plane, as summarized below.  

 
    a1 a2 a3 z 

 

 Intercepts a - 
a
2

 a c 

 Intercepts in terms of a's and c 1 - 
1
2

 1 1 

 Reciprocals of intercepts 1 - 2 1 1 

 Reduction  not necessary 
 Enclosure  (12 11) 

 

   (b)  For this plane we will leave the origin of the coordinate system as shown;  thus, this is a 
(2 1 1 2)  plane, as summarized below.  

 
    a1 a2 a3 z 

 

 Intercepts a/2 -a -a c/2 

 Intercepts in terms of a's and c 1/2 -1 -1 1/2 

 Reciprocals of intercepts 2 -1 -1 2 

 Reduction  not necessary 
 Enclosure  (2 1 1 2)  

 

3.41  The planes called for are plotted in the cubic unit cells shown below. 
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