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Solutions for Chapter 1

Solutions for exercises in section 1. 2

1.2.1. (1, 0, 0)
1.2.2. (1, 2, 3)
1.2.3. (1, 0,−1)
1.2.4. (−1/2, 1/2, 0, 1)

1.2.5.

 2 −4 3
4 −7 4
5 −8 4


1.2.6. Every row operation is reversible. In particular the “inverse” of any row operation

is again a row operation of the same type.
1.2.7. π

2 , π, 0
1.2.8. The third equation in the triangularized form is 0x3 = 1, which is impossible

to solve.
1.2.9. The third equation in the triangularized form is 0x3 = 0, and all numbers are

solutions. This means that you can start the back substitution with any value
whatsoever and consequently produce infinitely many solutions for the system.

1.2.10. α = −3, β = 11
2 , and γ = − 3

2
1.2.11. (a) If xi = the number initially in chamber #i, then

.4x1 + 0x2 + 0x3 + .2x4 = 12
0x1 + .4x2 + .3x3 + .2x4 = 25
0x1 + .3x2 + .4x3 + .2x4 = 26
.6x1 + .3x2 + .3x3 + .4x4 = 37

and the solution is x1 = 10, x2 = 20, x3 = 30, and x4 = 40.
(b) 16, 22, 22, 40

1.2.12. To interchange rows i and j, perform the following sequence of Type II and
Type III operations.

Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← Ri − Rj (replace row i by the difference of row i and j)
Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← −Ri (replace row i by its negative)

1.2.13. (a) This has the effect of interchanging the order of the unknowns— xj and
xk are permuted. (b) The solution to the new system is the same as the
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2 Solutions

solution to the old system except that the solution for the jth unknown of the
new system is x̂j = 1

αxj . This has the effect of “changing the units” of the jth

unknown. (c) The solution to the new system is the same as the solution for
the old system except that the solution for the kth unknown in the new system
is x̂k = xk − αxj .

1.2.14. hij = 1
i+j−1

1.2.16. If x =


x1

x2
...

xm

 and y =


y1

y2
...

ym

 are two different solutions, then

z =
x + y

2
=


x1+y1

2
x2+y2

2
...

xm+ym

2


is a third solution different from both x and y.

Solutions for exercises in section 1. 3

1.3.1. (1, 0,−1)
1.3.2. (2,−1, 0, 0)

1.3.3.

 1 1 1
1 2 2
1 2 3


Solutions for exercises in section 1. 4

1.4.2. Use y′(tk) = y′
k ≈ yk+1 − yk−1

2h
and y′′(tk) = y′′

k ≈ yk−1 − 2yk + yk+1

h2
to write

f(tk) = fk = y′′
k −y′

k ≈ 2yk−1 − 4yk + 2yk+1

2h2
− hyk+1 − hyk−1

2h2
, k = 1, 2, . . . , n,

with y0 = yn+1 = 0. These discrete approximations form the tridiagonal system


−4 2 − h

2 + h −4 2 − h
. . . . . . . . .

2 + h −4 2 − h
2 + h −4




y1

y2
...

yn−1

yn

 = 2h2


f1

f2
...

fn−1

fn

 .
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Solutions 3

Solutions for exercises in section 1. 5

1.5.1. (a) (0,−1) (c) (1,−1) (e)
(

1
1.001 , −1

1.001

)
1.5.2. (a) (0, 1) (b) (2, 1) (c) (2, 1) (d)

(
2

1.0001 , 1.0003
1.0001

)
1.5.3. Without PP: (1.01, 1.03) With PP: (1, 1) Exact: (1, 1)

1.5.4. (a)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
0 .083 .083 .166
0 .083 .089 .089


−→

 1 .500 .333 .333
0 .083 .083 .166
0 0 .006 −.077

 z = −.077/.006 = −12.8,

y = (.166 − .083z)/.083 = 14.8, x = .333 − (.5y + .333z) = −2.81

(b)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
1 .666 .500 .666
1 .751 .601 .601


−→

 1 .500 .333 .333
0 .166 .167 .333
0 .251 .268 .268

 −→

 1 .500 .333 .333
0 .251 .268 .268
0 .166 .167 .333


−→

 1 .500 .333 .333
0 .251 .268 .268
0 0 −.01 .156

 z = −.156/.01 = −15.6,

y = (.268 − .268z)/.251 = 17.7, x = .333 − (.5y + .333z) = −3.33

(c)

 1 .500 .333 .333
.500 .333 .250 .333
.333 .250 .200 .200

 −→

 1 .500 .333 .333
1 .666 .500 .666
1 .751 .601 .601


−→

 1 .500 .333 .333
0 .166 .167 .333
0 .251 .268 .268

 −→

 1 .500 .333 .333
0 .994 1 1.99
0 .937 1 1


−→

 1 .500 .333 .333
0 .994 1 1.99
0 0 .057 −.880

 z = −.88/.057 = −15.4,

y = (1.99 − z)/.994 = 17.5, x = .333 − (.5y + .333z) = −3.29
(d) x = −3, y = 16, z = −14

1.5.5. (a)
.0055x + .095y + 960z = 5000
.0011x + . 01y + 112z = 600
.0093x + .025y + 560z = 3000

http://www.amazon.com/exec/obidos/ASIN/0898714540
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4 Solutions

(b) 3-digit solution = (55, 900 lbs. silica, 8, 600 lbs. iron, 4.04 lbs. gold).
Exact solution (to 10 digits) = (56, 753.68899, 8, 626.560726, 4.029511918). The
relative error (rounded to 3 digits) is er = 1.49 × 10−2.

(c) Let u = x/2000, v = y/1000, and w = 12z to obtain the system

11u + 95v + 80w = 5000
2.2u + 10v + 9.33w = 600

18.6u + 25v + 46.7w = 3000.

(d) 3-digit solution = (28.5 tons silica, 8.85 half-tons iron, 48.1 troy oz. gold).
Exact solution (to 10 digits) = (28.82648317, 8.859282804, 48.01596023). The
relative error (rounded to 3 digits) is er = 5.95 × 10−3. So, partial pivoting
applied to the column-scaled system yields higher relative accuracy than partial
pivoting applied to the unscaled system.

1.5.6. (a) (−8.1,−6.09) = 3-digit solution with partial pivoting but no scaling.
(b) No! Scaled partial pivoting produces the exact solution—the same as with
complete pivoting.

1.5.7. (a) 2n−1 (b) 2
(c) This is a famous example that shows that there are indeed cases where par-
tial pivoting will fail due to the large growth of some elements during elimination,
but complete pivoting will be successful because all elements remain relatively
small and of the same order of magnitude.

1.5.8. Use the fact that with partial pivoting no multiplier can exceed 1 together with
the triangle inequality |α + β| ≤ |α| + |β| and proceed inductively.

Solutions for exercises in section 1. 6

1.6.1. (a) There are no 5-digit solutions. (b) This doesn’t help—there are now infinitely
many 5-digit solutions. (c) 6-digit solution = (1.23964,−1.3) and exact solution
= (1,−1) (d) r1 = r2 = 0 (e) r1 = −10−6 and r2 = 10−7 (f) Even if computed
residuals are 0, you can’t be sure you have the exact solution.

1.6.2. (a) (1,−1.0015) (b) Ill-conditioning guarantees that the solution will be very
sensitive to some small perturbation but not necessarily to every small perturba-
tion. It is usually difficult to determine beforehand those perturbations for which
an ill-conditioned system will not be sensitive, so one is forced to be pessimistic
whenever ill-conditioning is suspected.

1.6.3. (a) m1(5) = m2(5) = −1.2519, m1(6) = −1.25187, and m2(6) = −1.25188
(c) An optimally well-conditioned system represents orthogonal (i.e., perpen-
dicular) lines, planes, etc.

1.6.4. They rank as (b) = Almost optimally well-conditioned. (a) = Moderately well-
conditioned. (c) = Badly ill-conditioned.

1.6.5. Original solution = (1, 1, 1). Perturbed solution = (−238, 490,−266). System
is ill-conditioned.
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Solutions for Chapter 2

Solutions for exercises in section 2. 1

2.1.1. (a)

 1 2 3 3
0 2 1 0
0 0 0 3

 is one possible answer. Rank = 3 and the basic columns

are {A∗1,A∗2,A∗4}. (b)


1 2 3
0 2 2
0 0 −8
0 0 0
0 0 0

 is one possible answer. Rank = 3 and

every column in A is basic.

(c)


2 1 1 3 0 4 1
0 0 2 −2 1 −3 3
0 0 0 0 −1 3 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 is one possible answer. The rank is 3, and

the basic columns are {A∗1,A∗3,A∗5}.
2.1.2. (c) and (d) are in row echelon form.
2.1.3. (a) Since any row or column can contain at most one pivot, the number of pivots

cannot exceed the number of rows nor the number of columns. (b) A zero row
cannot contain a pivot. (c) If one row is a multiple of another, then one of
them can be annihilated by the other to produce a zero row. Now the result
of the previous part applies. (d) One row can be annihilated by the associated
combination of row operations. (e) If a column is zero, then there are fewer than
n basic columns because each basic column must contain a pivot.

2.1.4. (a) rank (A) = 3 (b) 3-digit rank (A) = 2 (c) With PP, 3-digit rank (A) = 3
2.1.5. 15

2.1.6. (a) No, consider the form

 ∗ ∗ ∗ ∗
0 0 0 0
0 0 0 ∗

 (b) Yes—in fact, E is a row

echelon form obtainable from A .

Solutions for exercises in section 2. 2

2.2.1. (a)

 1 0 2 0
0 1 1

2 0
0 0 0 1

 and A∗3 = 2A∗1 + 1
2A∗2

http://www.amazon.com/exec/obidos/ASIN/0898714540
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6 Solutions

(b)


1 1

2 0 2 0 2 0
0 0 1 −1 0 0 1
0 0 0 0 1 −3 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 and

A∗2 = 1
2A∗1, A∗4 = 2A∗1−A∗3, A∗6 = 2A∗1−3A∗5, A∗7 = A∗3+A∗5

2.2.2. No.
2.2.3. The same would have to hold in EA, and there you can see that this means not

all columns can be basic. Remember, rank (A) = number of basic columns.

2.2.4. (a)

 1 0 0
0 1 0
0 0 1

 (b)

 1 0 −1
0 1 2
0 0 0

 A∗3 is almost a combination of A∗1

and A∗2. In particular, A∗3 ≈ −A∗1 + 2A∗2.
2.2.5. E∗1 = 2E∗2 − E∗3 and E∗2 = 1

2E∗1 + 1
2E∗3

Solutions for exercises in section 2. 3

2.3.1. (a), (b)—There is no need to do any arithmetic for this one because the right-
hand side is entirely zero so that you know (0,0,0) is automatically one solution.
(d), (f)

2.3.3. It is always true that rank (A) ≤ rank[A|b] ≤ m. Since rank (A) = m, it
follows that rank[A|b] = rank (A).

2.3.4. Yes—Consistency implies that b and c are each combinations of the basic
columns in A . If b =

∑
βiA∗bi and c =

∑
γiA∗bi where the A∗bi ’s are the

basic columns, then b + c =
∑

(βi + γi)A∗bi
=

∑
ξiA∗bi

, where ξi = βi + γi

so that b + c is also a combination of the basic columns in A .
2.3.5. Yes—because the 4 × 3 system α + βxi + γx2

i = yi obtained by using the four
given points (xi, yi) is consistent.

2.3.6. The system is inconsistent using 5-digits but consistent when 6-digits are used.
2.3.7. If x, y, and z denote the number of pounds of the respective brands applied,

then the following constraints must be met.

total # units of phosphorous = 2x + y + z = 10
total # units of potassium = 3x + 3y = 9

total # units of nitrogen = 5x + 4y + z = 19

Since this is a consistent system, the recommendation can be satisfied exactly.
Of course, the solution tells how much of each brand to apply.

2.3.8. No—if one or more such rows were ever present, how could you possibly eliminate
all of them with row operations? You could eliminate all but one, but then there
is no way to eliminate the last remaining one, and hence it would have to appear
in the final form.
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Solutions 7

Solutions for exercises in section 2. 4

2.4.1. (a) x2


−2

1
0
0

 + x4


−1

0
−1

1

 (b) y

− 1
2
1
0

 (c) x3


−1
−1

1
0

 + x4


−1

1
0
1


(d) The trivial solution is the only solution.

2.4.2.

 0
0
0

 and

 1
− 1

2
0



2.4.3. x2


−2

1
0
0
0

 + x4


−2

0
−1

1
0


2.4.4. rank (A) = 3
2.4.5. (a) 2—because the maximum rank is 4. (b) 5—because the minimum rank is

1.
2.4.6. Because r = rank (A) ≤ m < n =⇒ n − r > 0.

2.4.7. There are many different correct answers. One approach is to answer the question
“What must EA look like?” The form of the general solution tells you that
rank (A) = 2 and that the first and third columns are basic. Consequently,

EA =

 1 α 0 β
0 0 1 γ
0 0 0 0

 so that x1 = −αx2 − βx4 and x3 = −γx4 gives rise

to the general solution x2


−α

1
0
0

 + x4


−β

0
−γ

1

 . Therefore, α = 2, β = 3,

and γ = −2. Any matrix A obtained by performing row operations to EA

will be the coefficient matrix for a homogeneous system with the desired general
solution.

2.4.8. If
∑

i xfi
hi is the general solution, then there must exist scalars αi and βi such

that c1 =
∑

i αihi and c2 =
∑

i βihi. Therefore, c1 + c2 =
∑

i(αi + βi)hi,
and this shows that c1 + c2 is the solution obtained when the free variables xfi

assume the values xfi
= αi + βi.

Solutions for exercises in section 2. 5

2.5.1. (a)


1
0
2
0

 + x2


−2

1
0
0

 + x4


−1

0
−1

1

 (b)

 1
0
2

 + y

− 1
2
1
0


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8 Solutions

(c)


2

−1
0
0

 + x3


−1
−1

1
0

 + x4


−1

1
0
1

 (d)

 3
−3
−1


2.5.2. From Example 2.5.1, the solutions of the linear equations are:

x1 = 1 − x3 − 2x4

x2 = 1 − x3

x3 is free
x4 is free
x5 = −1

Substitute these into the two constraints to get x3 = ±1 and x4 = ±1. Thus
there are exactly four solutions:


−2

0
1
1

−1

 ,


2
0
1

−1
−1

 ,


0
2

−1
1

−1

 ,


4
2

−1
−1
−1




2.5.3. (a) {(3, 0, 4), (2, 1, 5), (1, 2, 6), (0, 3, 7)} See the solution to Exercise 2.3.7 for
the underlying system. (b) (3, 0, 4) costs $15 and is least expensive.

2.5.4. (a) Consistent for all α. (b) α �= 3, in which case the solution is (1,−1, 0).

(c) α = 3, in which case the general solution is

 1
−1

0

 + z

 0
− 3

2
1

 .

2.5.5. No
2.5.6.

EA =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0


m×n

2.5.7. See the solution to Exercise 2.4.7.

2.5.8. (a)

−.3976
0
1

 + y

−.7988
1
0

 (b) There are no solutions in this case.

(c)

 1.43964
−2.3

1


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Solutions 9

Solutions for exercises in section 2. 6

2.6.1. (a) (1/575)(383, 533, 261, 644,−150,−111)
2.6.2. (1/211)(179, 452, 36)
2.6.3. (18, 10)
2.6.4. (a) 4 (b) 6 (c) 7 loops but only 3 simple loops. (d) Show that

rank ([A|b]) = 3 (g) 5/6
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I fear explanations explanatory of things explained.
— Abraham Lincoln (1809–1865)
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Solutions for Chapter 3

Solutions for exercises in section 3. 2

3.2.1. (a) X =
(

0 1
2 3

)
(b) x = − 1

2 , y = −6, and z = 0

3.2.2. (a) Neither (b) Skew symmetric (c) Symmetric (d) Neither
3.2.3. The 3 × 3 zero matrix trivially satisfies all conditions, and it is the only pos-

sible answer for part (a). The only possible answers for (b) are real symmetric
matrices. There are many nontrivial possibilities for (c).

3.2.4. A = AT and B = BT =⇒ (A + B)T = AT + BT = A + B. Yes—the
skew-symmetric matrices are also closed under matrix addition.

3.2.5. (a) A = −AT =⇒ aij = −aji. If i = j, then ajj = −ajj =⇒ ajj = 0.

(b) A = −A∗ =⇒ aij = −aji. If i = j, then ajj = −ajj . Write ajj = x+iy
to see that ajj = −ajj =⇒ x + iy = −x + iy =⇒ x = 0 =⇒ ajj is pure
imaginary.

(c) B∗ = (iA)∗ = −iA∗ = −iA
T

= −iAT = −iA = −B.

3.2.6. (a) Let S = A+AT and K = A−AT . Then ST = AT +AT T = AT +A = S.

Likewise, KT = AT − AT T = AT − A = −K.
(b) A = S

2 + K
2 is one such decomposition. To see it is unique, suppose A = X+

Y, where X = XT and Y = −YT . Thus, AT = XT +YT = X − Y =⇒ A+
AT = 2X, so that X = A+AT

2 = S
2 . A similar argument shows that Y =

A−AT

2 = K
2 .

3.2.7. (a) [(A + B)∗]ij = [A + B]ji = [A + B]ji = [A]ji + [B]ji = [A∗]ij + [B∗]ij =
[A∗ + B∗]ij
(b) [(αA)∗]ij = [αA]ji = [ᾱA]ji = ᾱ[A]ji = ᾱ[A∗]ij

3.2.8. k



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1


Solutions for exercises in section 3. 3

3.3.1. Functions (b) and (f) are linear. For example, to check if (b) is linear, let

A =
(

a1

a2

)
and B =

(
b1

b2

)
, and check if f(A + B) = f(A) + f(B) and
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12 Solutions

f(αA) = αf(A). Do so by writing

f(A + B) = f

(
a1 + b1

a2 + b2

)
=

(
a2 + b2

a1 + b1

)
=

(
a2

a1

)
+

(
b2

b1

)
= f(A) + f(B),

f(αA) = f

(
αa1

αa2

)
=

(
αa2

αa1

)
= α

(
a2

a1

)
= αf(A).

3.3.2. Write f(x) =
∑n

i=1 ξixi. For all points x =


x1

x2
...

xn

 and y =


y1

y2
...

yn

 , and for

all scalars α, it is true that

f(αx + y) =
n∑

i=1

ξi(αxi + yi) =
n∑

i=1

ξiαxi +
n∑

i=1

ξiyi

= α

n∑
i=1

ξixi +
n∑

i=1

ξiyi = αf(x) + f(y).

3.3.3. There are many possibilities. Two of the simplest and most common are Hooke’s
law for springs that says that F = kx (see Example 3.2.1) and Newton’s second
law that says that F = ma (i.e., force = mass× acceleration).

3.3.4. They are all linear. To see that rotation is linear, use trigonometry to deduce

that if p =
(

x1

x2

)
, then f(p) = u =

(
u1

u2

)
, where

u1 = (cos θ)x1 − (sin θ)x2

u2 = (sin θ)x1 + (cos θ)x2.

f is linear because this is a special case of Example 3.3.2. To see that reflection

is linear, write p =
(

x1

x2

)
and f(p) =

(
x1

−x2

)
. Verification of linearity is

straightforward. For the projection function, use the Pythagorean theorem to

conclude that if p =
(

x1

x2

)
, then f(p) = x1+x2

2

(
1
1

)
. Linearity is now easily

verified.
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Solutions 13

Solutions for exercises in section 3. 4

3.4.1. Refer to the solution for Exercise 3.3.4. If Q, R, and P denote the matrices
associated with the rotation, reflection, and projection, respectively, then

Q =
(

cos θ − sin θ
sin θ cos θ

)
, R =

(
1 0
0 −1

)
, and P =

( 1
2

1
2

1
2

1
2

)
.

3.4.2. Refer to the solution for Exercise 3.4.1 and write

RQ =
(

1 0
0 −1

) (
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ

− sin θ − cos θ

)
.

If Q(x) is the rotation function and R(x) is the reflection function, then the
composition is

R
(
Q(x)

)
=

(
(cos θ)x1 − (sin θ)x2

−(sin θ)x1 − (cos θ)x2

)
.

3.4.3. Refer to the solution for Exercise 3.4.1 and write

PQR =
(

a11x1 + a12x2

a21x1 + a22x2

) (
cos θ − sin θ
sin θ cos θ

) (
1 0
0 −1

)
=

1
2

(
cos θ + sin θ sin θ − cos θ
cos θ + sin θ sin θ − cos θ

)
.

Therefore, the composition of the three functions in the order asked for is

P

(
Q

(
R(x)

))
=

1
2

(
(cos θ + sin θ)x1 + (sin θ − cos θ)x2

(cos θ + sin θ)x1 + (sin θ − cos θ)x2

)
.

Solutions for exercises in section 3. 5

3.5.1. (a) AB =

 10 15
12 8
28 52

 (b) BA does not exist (c) CB does not exist

(d) CT B = ( 10 31 ) (e) A2 =

 13 −1 19
16 13 12
36 −17 64

 (f) B2 does not exist

(g) CT C = 14 (h) CCT =

 1 2 3
2 4 6
3 6 9

 (i) BBT =

 5 8 17
8 16 28

17 28 58


(j) BT B =

(
10 23
23 69

)
(k) CT AC = 76
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3.5.2. (a) A =

 2 1 1
4 0 2
2 2 0

 ,x =

 x1

x2

x3

 ,b =

 3
10
−2

 (b) s =

 1
−2

3


(c) b = A∗1 − 2A∗2 + 3A∗3

3.5.3. (a) EA =

 A1∗
A2∗

3A1∗ + A3∗

 (b) AE = (A∗1 + 3A∗3 A∗2 A∗3 )

3.5.4. (a) A∗j (b) Ai∗ (c) aij

3.5.5. Ax = Bx ∀ x =⇒ Aej = Bej ∀ ej =⇒ A∗j = B∗j ∀ j =⇒ A = B.
(The symbol ∀ is mathematical shorthand for the phrase “for all.”)

3.5.6. The limit is the zero matrix.
3.5.7. If A is m × p and B is p × n, write the product as

AB = (A∗1 A∗2 · · · A∗p )


B1∗
B2∗

...
Bp∗

 = A∗1B1∗ + A∗2B2∗ + · · · + A∗pBp∗

=
p∑

k=1

A∗kBk∗.

3.5.8. (a) [AB]ij = Ai∗B∗j = ( 0 · · · 0 aii · · · ain )



b1j

...
bjj

0
...
0


is 0 when i > j.

(b) When i = j, the only nonzero term in the product Ai∗B∗i is aiibii.
(c) Yes.

3.5.9. Use [AB]ij =
∑

k aikbkj along with the rules of differentiation to write

d[AB]ij
dt

=
d (

∑
k aikbkj)
dt

=
∑

k

d(aikbkj)
dt

=
∑

k

(
daik

dt
bkj + aik

dbkj

dt

)
=

∑
k

daik

dt
bkj +

∑
k

aik
dbkj

dt

=
[
dA
dt

B
]

ij

+
[
A

dB
dt

]
ij

=
[
dA
dt

B + A
dB
dt

]
ij

.

3.5.10. (a) [Ce]i = the total number of paths leaving node i.
(b) [eT C]i = the total number of paths entering node i.
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3.5.11. At time t, the concentration of salt in tank i is xi(t)
V lbs/gal. For tank 1,

dx1

dt
=

lbs
sec

coming in − lbs
sec

going out = 0
lbs
sec

−
(

r
gal
sec

× x1(t)
V

lbs
gal

)
= − r

V
x1(t)

lbs
sec

.

For tank 2,

dx2

dt
=

lbs
sec

coming in − lbs
sec

going out =
r

V
x1(t)

lbs
sec

−
(

r
gal
sec

× x2(t)
V

lbs
gal

)
=

r

V
x1(t)

lbs
sec

− r

V
x2(t)

lbs
sec

=
r

V

(
x1(t) − x2(t)

)
,

and for tank 3,

dx3

dt
=

lbs
sec

coming in − lbs
sec

going out =
r

V
x2(t)

lbs
sec

−
(

r
gal
sec

× x3(t)
V

lbs
gal

)
=

r

V
x2(t)

lbs
sec

− r

V
x3(t)

lbs
sec

=
r

V

(
x2(t) − x3(t)

)
.

This is a system of three linear first-order differential equations

dx1

dt
= r

V

(
−x1(t)

)
dx2

dt
= r

V

(
x1(t) − x2(t)

)
dx3

dt
= r

V

(
x2(t) − x3(t)

)
that can be written as a single matrix differential equation

 dx1/dt

dx2/dt

dx3/dt

 =
r

V

−1 0 0

1 −1 0

0 1 −1


 x1(t)

x2(t)

x3(t)

 .
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Solutions for exercises in section 3. 6

3.6.1.

AB =
(

A11 A12 A13

A21 A22 A23

) B1

B2

B3

 =
(

A11B1 + A12B2 + A13B3

A21B1 + A22B2 + A23B3

)

=

−10 −19
−10 −19

−1 −1


3.6.2. Use block multiplication to verify L2 = I —be careful not to commute any of

the terms when forming the various products.

3.6.3. Partition the matrix as A =
(

I C
0 C

)
, where C = 1

3

 1 1 1
1 1 1
1 1 1

 and observe

that C2 = C. Use this together with block multiplication to conclude that

Ak =
(

I C + C2 + C3 + · · · + Ck

0 Ck

)
=

(
I kC
0 C

)
.

Therefore, A300 =


1 0 0 100 100 100
0 1 0 100 100 100
0 0 1 100 100 100
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

 .

3.6.4. (A∗A)∗ = A∗A∗∗ = A∗A and (AA∗)∗ = A∗∗A∗ = AA∗.

3.6.5. (AB)T = BT AT = BA = AB. It is easy to construct a 2 × 2 example to show
that this need not be true when AB �= BA.

3.6.6.

[(D + E)F]ij = (D + E)i∗F∗j =
∑

k

[D + E]ik[F]kj =
∑

k

([D]ik + [E]ik) [F]kj

=
∑

k

([D]ik[F]kj + [E]ik[F]kj) =
∑

k

[D]ik[F]kj +
∑

k

[E]ik[F]kj

= Di∗F∗j + Ei∗F∗j = [DF]ij + [EF]ij

= [DF + EF]ij .

3.6.7. If a matrix X did indeed exist, then

I = AX − XA =⇒ trace (I) = trace (AX − XA)
=⇒ n = trace (AX) − trace (XA) = 0,
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which is impossible.
3.6.8. (a) yT A = bT =⇒ (yT A)T = bT T =⇒ AT y = b. This is an n × m

system of equations whose coefficient matrix is AT . (b) They are the same.
3.6.9. Draw a transition diagram similar to that in Example 3.6.3 with North and South

replaced by ON and OFF, respectively. Let xk be the proportion of switches in
the ON state, and let yk be the proportion of switches in the OFF state after
k clock cycles have elapsed. According to the given information,

xk = xk−1(.1) + yk−1(.3)
yk = xk−1(.9) + yk−1(.7)

so that pk = pk−1P, where

pk = (xk yk ) and P =
(

.1 .9

.3 .7

)
.

Just as in Example 3.6.3, pk = p0Pk. Compute a few powers of P to find

P2 =
(

.280 .720

.240 .760

)
, P3 =

(
.244 .756
.252 .748

)
P4 =

(
.251 .749
.250 .750

)
, P5 =

(
.250 .750
.250 .750

)
and deduce that P∞ = limk→∞ Pk =

(
1/4 3/4
1/4 3/4

)
. Thus

pk → p0P∞ = ( 1
4 (x0 + y0) 3

4 (x0 + y0) ) = ( 1
4

3
4 ) .

For practical purposes, the device can be considered to be in equilibrium after
about 5 clock cycles—regardless of the initial proportions.

3.6.10. (−4 1 −6 5 )
3.6.11. (a) trace (ABC) = trace (A{BC}) = trace ({BC}A) = trace (BCA). The

other equality is similar. (b) Use almost any set of 2 × 2 matrices to con-
struct an example that shows equality need not hold. (c) Use the fact that
trace

(
CT

)
= trace (C) for all square matrices to conclude that

trace
(
AT B

)
=trace

(
(AT B)

T
)

= trace
(
BT AT T

)
=trace

(
BT A

)
= trace

(
ABT

)
.

3.6.12. (a) xT x = 0 ⇐⇒
∑n

k=1 x2
i = 0 ⇐⇒ xi = 0 for each i ⇐⇒ x = 0.

(b) trace
(
AT A

)
= 0 ⇐⇒

∑
i

[AT A]ii = 0 ⇐⇒
∑

i

(AT )i∗A∗i = 0

⇐⇒
∑

i

∑
k

[AT ]ik[A]ki = 0 ⇐⇒
∑

i

∑
k

[A]ki[A]ki = 0

⇐⇒
∑

i

∑
k

[A]2ki = 0

⇐⇒ [A]ki = 0 for each k and i ⇐⇒ A = 0
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18 Solutions

Solutions for exercises in section 3. 7

3.7.1. (a)
(

3 −2
−1 1

)
(b) Singular (c)

 2 −4 3
4 −7 4
5 −8 4

 (d) Singular

(e)


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 1


3.7.2. Write the equation as (I − A)X = B and compute

X = (I − A)−1B =

 1 −1 1
0 1 −1
0 0 1

  1 2
2 1
3 3

 =

 2 4
−1 −2

3 3

 .

3.7.3. In each case, the given information implies that rank (A) < n —see the solution
for Exercise 2.1.3.

3.7.4. (a) If D is diagonal, then D−1 exists if and only if each dii �= 0, in which case


d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn


−1

=


1/d11 0 · · · 0

0 1/d22 · · · 0
...

...
. . .

...
0 0 · · · 1/dnn

 .

(b) If T is triangular, then T−1 exists if and only if each tii �= 0. If T
is upper (lower) triangular, then T−1 is also upper (lower) triangular with
[T−1]ii = 1/tii.

3.7.5.
(
A−1

)T =
(
AT

)−1 = A−1.
3.7.6. Start with A(I − A) = (I − A)A and apply (I − A)−1 to both sides, first on

one side and then on the other.
3.7.7. Use the result of Example 3.6.5 that says that trace (AB) = trace (BA) to

write

m = trace (Im) = trace (AB) = trace (BA) = trace (In) = n.

3.7.8. Use the reverse order law for inversion to write[
A(A + B)−1B

]−1
= B−1(A + B)A−1 = B−1 + A−1

and [
B(A + B)−1A

]−1
= A−1(A + B)B−1 = B−1 + A−1.

3.7.9. (a) (I − S)x = 0 =⇒ xT (I − S)x = 0 =⇒ xT x = xT Sx. Taking trans-
poses on both sides yields xT x = −xT Sx, so that xT x = 0, and thus x = 0
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Solutions 19

(recall Exercise 3.6.12). The conclusion follows from property (3.7.8).
(b) First notice that Exercise 3.7.6 implies that A = (I + S)(I − S)−1 =
(I − S)−1(I + S). By using the reverse order laws, transposing both sides yields
exactly the same thing as inverting both sides.

3.7.10. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.11. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.12. Let M =
(

A B
C D

)
and X =

(
DT −BT

−CT AT

)
. The hypothesis implies that

MX = I, and hence (from the discussion in Example 3.7.2) it must also be
true that XM = I, from which the conclusion follows. Note: This problem
appeared on a past Putnam Exam—a national mathematics competition for
undergraduate students that is considered to be quite challenging. This means
that you can be proud of yourself if you solved it before looking at this solution.

Solutions for exercises in section 3. 8

3.8.1. (a) B−1 =

 1 2 −1
0 −1 1
1 4 −2


(b) Let c =

 0
0
1

 and dT = ( 0 2 1 ) to obtain C−1 =

 0 −2 1
1 3 −1

−1 −4 2


3.8.2. A∗j needs to be removed, and b needs to be inserted in its place. This is

accomplished by writing B = A+(b−A∗j)eT
j . Applying the Sherman–Morrison

formula with c = b − A∗j and dT = eT
j yields

B−1 = A−1 −
A−1(b − A∗j)eT

j A−1

1 + eT
j A−1(b − A∗j)

= A−1 −
A−1beT

j A−1 − ejeT
j A−1

1 + eT
j A−1b − eT

j ej

= A−1 − A−1b[A−1]j∗ − ej [A−1]j∗
[A−1]j∗b

= A−1 −
(
A−1b − ej

)
[A−1]j∗

[A−1]j∗b
.

3.8.3. Use the Sherman–Morrison formula to write

z = (A + cdT )−1b =
(
A−1 − A−1cdT A−1

1 + dT A−1c

)
b = A−1b − A−1cdT A−1b

1 + dT A−1c

= x − ydT x
1 + dT y

.

3.8.4. (a) For a nonsingular matrix A, the Sherman–Morrison formula guarantees
that A+ αeieT

j is also nonsingular when 1 + α
[
A−1

]
ji
�= 0, and this certainly

will be true if α is sufficiently small.

http://www.amazon.com/exec/obidos/ASIN/0898714540
http://www.ec-securehost.com/SIAM/ot71.html

