IS CONFIGURATE PROTECTED IN

Online Instructor's Manual with Testbank for

Mechanical and Electrical Systems in Buildings Sixth Edition

Richard R. Janis,

Registered Architect, LEED AP, Senior Lecturer, School of Engineering and School of Architecture, Washington University

William K.Y. Tao,

Affiliate Professor, School of Engineering and School of Architecture, Washington University

Boston Columbus Indianapolis New York San Francisco

Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal

Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Copyright © 2019 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Microsoft[®] Excel and PowerPoint are trademarks of the Microsoft Corporation.

Instructors of classes using *Janis and Tao, Mechanical And Electrical Systems In Buildings* may reproduce material from the instructor's manual for classroom use.

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-470118-6 ISBN-13: 978-0-13-470118-9

CONTENTS Overview and Questions/Answers

Chapter 1	Introduction to Mechanical and Electrical Syste Design, and Evaluating Options	ms, Sustainab 5	ole
Chapter 2	HVAC Fundamentals	17	
Chapter 3	HVAC Load Estimating	23	
Chapter 4	HVAC Load Management	29	
Chapter 5	HVAC Delivery Systems	37	
Chapter 6	Cooling Production Equipment and Systems	44	
Chapter 7	Heating Production Equipment and Systems	51	
Chapter 8	Air-Handling Equipment and Systems	58	
Chapter 9	Piping Equipment and Systems	66	
Chapter 10	Plumbing Equipment and Systems	74	
Chapter 11	Fire Protection Equipment and Systems	83	
Chapter 12	Introduction to Electricity	92	
Chapter 13	Power Supply and Distribution	101	
Chapter 14	Electrical Design and Wiring	110	
Chapter 15	Communication, Life Safety and Security System	ms 120	
Chapter 16	Light and Lighting	129	
Chapter 17	Lighting Equipment and Systems	138	
Chapter 18	Calculations of Illumination	146	
Chapter 19	Lighting Design	151	
Chapter 20	Noise and Vibrations in Mechanical and Electric	cal Systems	163
Chapter 21	Architectural Accommodation and Coordinatio Electrical Systems	n of Mechanic	al and

A MESSAGE

To colleagues and instructors,

The instructor's manual contains answers to questions that appear at the end of each chapter in the text. In addition, there is an overview page pertaining to each chapter. Hopefully, these will assist you in preparing your class lectures.

This book is arranged along five basic disciplines-HVAC, Plumbing and Fire Protection, Electrical, Illumination and Noise and Vibration Controls. Each discipline may be taught separately or as a whole. As college courses, the entire book with supplemental references should be for a two-semester course with 3 credit-hours for each semester.

When taught separately, the following credit hours are recommended:

- As a Mechanical Course 3 credit hours (Chapters 1 through 11 + Chapters 20 and 21)
- As an Electrical Course 3 credit hours (Chapters 12 through 15 + Chapters 1 and 21)
- As an Acoustic and Vibration Course 1 credit hour (Chapters 20 and 21)
- As a Lighting Course 1 to 2 credit hours (Chapters 16 through 19 + Chapter 1)

We thank you for choosing this book for your class or to use in your professional practice.

Richard R. Janis, M.S.M.E., M.Arch, P.E., LEED AP William K. Y. Tao, M.S.M.E., ScD, P.E.

CHAPTER 1 INTRODUCTION TO MECHANICAL AND ELECTRICAL SYSTEMS: ENERGY, SUSTAINABILITY, AND ECONOMICS

OVERVIEW

Chapter 1 covers topics that are relevant for all the mechanical and electrical systems covered in subsequent chapters. These materials are essential background and context for subsequent chapters.

Mechanical systems involve the transfer of energy and fluids. Understanding the basic physics of energy is a prerequisite for building load estimating, systems selection and energy conservation. Chapter 1 describes heat, thermal properties of materials, the conversion of energy from one form to another, and the thermal values of commonly used fuels. Transfer of fluids is covered so that students understand the units of flow and pressure that are used to specify and measure the performance of systems and equipment.

Simple example problems are included, and the instructor is encouraged to work them and similar exercises on the board to insure that students are prepared to go on to subsequent chapters.

Mechanical and electrical systems affect the design of buildings. Architectural students especially should appreciate why modern buildings are different in form and dimension to older buildings. This understanding is useful if future buildings are to use less energy by using passive climate control strategies.

Resource conservation, comfort, and habitability are all part of sustainable design, and this topic is discussed in Chapter 1 because it applies to the entire building design process, including all systems. The most important message in these sections, and perhaps in the entire book, is that good building design certainly affects occupant performance. Furthermore, improved occupant performance is worth a larger investment in design and construction than is usually made.

Commissioning is another topic that applies to virtually all systems and equipment discussed in subsequent chapters, so an overview of commissioning is included in Chapter 1.

All systems present many options for design, and selecting among these options relies on evaluation tools to assess quality. Several methods are presented including the decision

matrix, which is useful in documenting subjective criteria, and various economic evaluation tools, such as payback analysis and life cycle costing.

CHAPTER 1 INTRODUCTION TO MECHANICAL AND ELECTRICAL SYSTEMS: ENERGY, SUSTAINABILITY, AND ECONOMICS

QUESTIONS AND ANSWERS

1.1 What are the benefits of buildings with shallow floor depths?

Buildings with shallow floor depths have more access to day light, views, and natural ventilation.

1.2 How much CO₂ will be liberated to the atmosphere in a year's time due directly to a lighting system consuming 300,000 kWh per year?

The amount will depend on how the electric is generated. Assume a coal fired power plant, 2.4 lbs. of CO_2 will be generated per kWh; therefore, 2.4 x 300,000 = 720,000 lb. will produced. If the plant uses natural gas, only 1.4 lbs. of CO_2 will be generated per kWh; 1.4 x 300,000 = 420,000 lbs.

1.3 If a corporation is concerned with its carbon footprint and accepts a value of \$25 per ton to account for societal costs, what is their perceived economic impact of this much CO_2 ?

For coal fired power - 720,000 lbs. / 2000 lb./ton = 360 tons. 360 tons x \$25/ton = \$9,000

For gas fired power - 420,000 lbs. / 2000 lb./ton = 210 tons. 210 tons x \$25/ton = \$5,250

1.4 What will the relative impact be on CO₂ for heating and for cooling, assuming the buildings in Question 1.1 are located in the Midwest (hot summers, cold winters)?

Buildings with shallow floor depths will use more heating and cooling energy, resulting in higher CO2 liberation from electric and gas. There may, however, be a partial offset if controls are used to turn lights off when daylight is sufficient.

1.5 How does "sustainable" design differ from energy-effective design?

Energy efficiency is only one aspect of the many qualities that comprise sustainable design. Sustainable design includes indoor environmental quality, water conservation, and environmental impact as well as energy conservation.

1.6 What factors should the architect and engineer consider to produce a high performance environment for building occupants?

Healthful indoor air quality, thermal comfort and individual control, good lighting, and connection with the outdoors are the main issues cited in Chapter 1.

1.7 How does saving energy help to protect the environment?

Using less energy reduces air pollution from burning fossil fuels.

1.8 What is the role of maintainability in sustainable buildings?

Solutions must be maintainable to last long term and perform as intended.

1.9 How could building site selection affect the environment?

Chapter 1 cites daylight, views and natural ventilation, which are all affected by site selection. However, students may go beyond these answers and cite many other issues such as infrastructure loads, pollution due to auto traffic and other issues related to building site.

1.10 What factors should interior designers consider in terms of indoor air quality? Architects? HVAC engineers?

Indoor air pollution comes from finish materials and furniture, which are selected by interior designers. Architects are responsible for locating fresh air intakes appropriately to avoid bringing exhaust or polluted air into the building. Architects are also responsible for detailing to control moisture, thereby preventing mold growth. HVAC engineers are responsible for proper ventilation rates and humidity control and working with the architect to locate intakes and exhausts.

1.11 What design features would you suggest to allow personal climate control in a single-story residence? A high-rise office building? A classroom building?

A single story residence might use operable windows as well as the ability to adjust HVAC airflow. Operable windows are not advisable in high rise buildings, but personal control might be achieved by system features such as the task cooling device, or by adjustable floor registers. In a classroom building, personal control can be achieved by any of the means listed, plus the choice of seating location.

1.12Compare the importance of commissioning for a data center versus a classroom building.

The scope of commissioning will depend on how simple or complicated the systems

are and on the relative importance of proper system operation. In general, a classroom building will have simpler, less energy-intensive systems than a data center. A shortened commissioning process might be quite satisfactory for a classroom building. For a data center, the commissioning process will be extensive.

1.13 What sustainable design issues should architects consider in deciding window materials and locations?

Architects should consider daylight and view when selecting window materials and locations. Insulating qualities, solar effects on heating and air conditioning, glare and downdrafts are also considerations which affect energy usage and comfort, which are factors in sustainable design.

1.14Name a few quantitative factors involved in the analysis of a building HVAC system. Name a few qualitative factors.

Quantitative factors, such as system cost, energy consumption, and space requirements have a basis for numerical measurement and comparison of alternative systems. Qualitative factors, such as comfort, maintainability, and visual impact can be evaluated as better or worse, but have no standardized basis for numerical measurement.

1.15Is there ever a time when energy conservation is unwise? If so, give examples.

Yes, energy conservation is unwise if it is achieved at the expense of indoor environmental quality. For example, setting thermostats up in summer and down in winter can save energy, but might result in discomfort and reduce occupant productivity. The productivity loss can have a much higher economic impact than the utility savings by energy conservation measures. Decreases in lighting can also adversely affect indoor environmental quality and occupant performance.

1.16Prepare three decision matrices to evaluate operable windows versus fixed windows in an office building. Use the process described in Section 1.4.3. Fill out the matrices as an occupant, a maintenance staffer, and a building owner.

2

How an Occupant Might think of Operable Windows								
•		Operable	Windows	Fixed Sash				
Criteria	Weight	Score	Weighted	Score	Weighted			
Comfort	9	8	72	7	63			
Connection with outdoors	9	9	81	3	27			
Initial Cost	2	4	8	6	12			
Energy consumption	2	8	16	4	8			
Water hazard	2	3	6	9	18			
Freeze hazard	2	3	6	9	18			
Security	2	3	6	9	18			
Total score			195		164			
% score (normalized)			100%		84%			

How a Maintenance Staffer Might think of Operable Windows							
		Operable	Windows	Fixe	Fixed Sash		
Criteria	Weight	Score	Weighted	Score	Weighted		
Comfort	3	8	24	7	21		
Connection with outdoors	2	9	18	3	6		
Initial Cost	2	4	8	6	12		
Energy consumption	5	8	40	4	20		
Water hazard	8	3	24	9	72		
Freeze hazard	8	3	24	9	72		
Security	8	3	24	9	72		
Total score			162		275		
% score (normalized)			59%		100%		

How a Building Owner Might think of Operable Windows							
		Operable	Windows	Fixe	Fixed Sash		
Criteria	Weight	Score	Weighted	Score	Weighted		
Comfort	6	8	48	7	42		
Connection with outdoors	3	9	27	3	9		
Initial Cost	8	4	32	6	48		
Energy consumption	8	8	64	4	32		
Water hazard	8	3	24	9	72		
Freeze hazard	8	3	24	9	72		
Security	8	3	24	9	72		
				·			
Total score			243	·	347		
% score (normalized)			70%		100%		

1.17 Will a commercial building developer use a higher or lower discount rate than an institutional building owner? Why?

Developers generally have a higher expectation for rate of return, so they would use a higher discount rate.

1.18 An energy conservation option has a first cost of \$50,000. It requires \$4000 per year maintenance and saves \$10,000 per year in utilities. What is the simple payback period for the option?

Simple payback is \$50,000 / (\$10,000 - \$4,000) = 8.3 years.

1.19 The system in Question 1.18 will last 15 years with no salvage value. What is the 15-year life-cycle cost assuming energy cost escalation of 4% annually, maintenance cost escalation of 2% annually, and a 5% discount rate? What if the discount rate is 15%?

5% discount rate

Year	Invest	Save	Maint	Cash flow	Pres. Value
0	(50,000)	1		(50,000)	(50,000)
1	1	10,000	(4,000)	6,000	5,714
2	-	10,400	(4,080)	6,320	5,732
3	-	10,816	(4,162)	6,654	5,748
4	1	11,249	(4,245)	7,004	5,762
5	1	11,699	(4,330)	7,369	5,774
6	1	12,167	(4,416)	7,750	5,783
7	1	12,653	(4,505)	8,149	5,791
8	1	13,159	(4,595)	8,565	5,797
9	1	13,686	(4,687)	8,999	5,801
10	•	14,233	(4,780)	9,453	5,803
11	1	14,802	(4,876)	9,926	5,804
12	1	15,395	(4,973)	10,421	5,803
13	-	16,010	(5,073)	10,937	5,800
14	-	16,651	(5,174)	11,476	5,796
15	-	17,317	(5,278)	12,039	5,791
		15 year life	cycle net pr	esent value	36,700

15% discount rate

Year	Invest	Save	Maint	Cash flow	Pres. Value			
0	(50,000)	1		(50,000)	(50,000)			
1	-	10,000	(4,000)	6,000	5,217			
2	-	10,400	(4,080)	6,320	4,779			
3	-	10,816	(4,162)	6,654	4,375			
4	1	11,249	(4,245)	7,004	4,004			
5	1	11,699	(4,330)	7,369	3,664			
6	-	12,167	(4,416)	7,750	3,351			
7	-	12,653	(4,505)	8,149	3,063			
8	1	13,159	(4,595)	8,565	2,800			
9	•	13,686	(4,687)	8,999	2,558			
10	•	14,233	(4,780)	9,453	2,337			
11	•	14,802	(4,876)	9,926	2,134			
12	•	15,395	(4,973)	10,421	1,948			
13	-	16,010	(5,073)	10,937	1,778			
14	-	16,651	(5,174)	11,476	1,622			
15	-	17,317	(5,278)	12,039	1,480			
	15 year life cycle net present value							

1.20 Assume the option in Question 1.18 is installed in a building with 200 occupants, with average personnel cost of \$60,000 per year. If the device interferes with temperature control, resulting in a 2% decrease in productivity, what would the simple payback be?

Productivity loss will be 200 occup. x \$60,000 / yr-occup. x 2% = \$240,000 Simple payback is \$50,000 / (\$10,000 - \$4,000 - \$240,000) = NEVER

1.21 What would the payback be if the option in Question 1.18 improved temperature control and resulted in a 2% increase in productivity?

Simple payback is 50,000 / (10,000 - 4,000 + 240,000) = 0.2 years (VIRTUALLY IMMEDIATELY)

1.22 Calculate the life-cycle costs for the two cases (2% decrease, 2% increase in productivity) using data from Questions 1.19 and 1.20 for a 5% discount rate and a 15% discount rate.

1

5% discount rate (assuming 2% escalation for productivity)

Year	Invest	Save	Maint	Productivity	Cash flow	Pres. Value
0	(50,000)		-	-	(50,000)	(50,000)
1	-	10,000	(4,000)	(240,000)	(234,000)	(222,857)
2	-	10,400	(4,080)	(244,800)	(238,480)	(216,308)
3	-	10,816	(4,162)	(249,696)	(243,042)	(209,948)
4	-	11,249	(4,245)	(254,690)	(247,686)	(203,772)
5	-	11,699	(4,330)	(259,784)	(252,415)	(197,774)
6	-	12,167	(4,416)	(264,979)	(257,229)	(191,948)
7	-	12,653	(4,505)	(270,279)	(262,130)	(186,291)
8	-	13,159	(4,595)	(275,685)	(267,120)	(180,797)
9	-	13,686	(4,687)	(281,198)	(272,199)	(175,462)
10	-	14,233	(4,780)	(286,822)	(277,369)	(170,281)
11	-	14,802	(4,876)	(292,559)	(282,632)	(165,249)
12	-	15,395	(4,973)	(298,410)	(287,989)	(160,363)
13	-	16,010	(5,073)	(304,378)	(293,441)	(155,618)
14	-	16,651	(5,174)	(310,466)	(298,989)	(151,010)
15	-	17,317	(5,278)	(316,675)	(304,636)	(146,535)
	(2,784,214)					

5% discount rate (assuming 2% escalation for productivity)

Year	Invest	Save	Maint	Productivity	Cash flow	Pres. Value
0	(50,000)	-	•	1	(50,000)	(50,000)
1	-	10,000	(4,000)	240,000	246,000	234,286
2	-	10,400	(4,080)	244,800	251,120	227,773
3	-	10,816	(4,162)	249,696	256,350	221,445
4	-	11,249	(4,245)	254,690	261,694	215,296
5	-	11,699	(4,330)	259,784	267,153	209,321
6	-	12,167	(4,416)	264,979	272,730	203,515
7	-	12,653	(4,505)	270,279	278,428	197,873
8	-	13,159	(4,595)	275,685	284,249	192,391
9	-	13,686	(4,687)	281,198	290,197	187,064
10	-	14,233	(4,780)	286,822	296,275	181,887
11	-	14,802	(4,876)	292,559	302,485	176,857
12	-	15,395	(4,973)	298,410	308,831	171,969
13	-	16,010	(5,073)	304,378	315,315	167,218
14	-	16,651	(5,174)	310,466	321,942	162,603
15	-	17,317	(5,278)	316,675	328,714	158,117
			15 year l	ife cycle net pr	esent value	2,857,615

15% discount rate (assuming 2% escalation for productivity)

Year	Invest	Save	Maint	Productivity	Cash flow	Pres. Value
0	(50,000)	-	•	-	(50,000)	(50,000)
1	-	10,000	(4,000)	(240,000)	(234,000)	(203,478)
2	-	10,400	(4,080)	(244,800)	(238,480)	(180,325)
3	-	10,816	(4,162)	(249,696)	(243,042)	(159,804)
4	-	11,249	(4,245)	(254,690)	(247,686)	(141,615)
5	-	11,699	(4,330)	(259,784)	(252,415)	(125,495)
6	-	12,167	(4,416)	(264,979)	(257,229)	(111,207)
7	-	12,653	(4,505)	(270,279)	(262,130)	(98,545)
8	-	13,159	(4,595)	(275,685)	(267,120)	(87,322)
9	-	13,686	(4,687)	(281,198)	(272,199)	(77,376)
10	-	14,233	(4,780)	(286,822)	(277,369)	(68,561)
11	-	14,802	(4,876)	(292,559)	(282,632)	(60,750)
12	-	15,395	(4,973)	(298,410)	(287,989)	(53,827)
13	-	16,010	(5,073)	(304,378)	(293,441)	(47,692)
14	-	16,651	(5,174)	(310,466)	(298,989)	(42,256)
15	-	17,317	(5,278)	(316,675)	(304,636)	(37,438)
	(1,545,692)					

15% discount rate (assuming 2% escalation for productivity)

Year	Invest	Save	Maint	Productivity	Cash flow	Pres. Value
0	(50,000)		-	-	(50,000)	(50,000)
1	-	10,000	(4,000)	240,000	246,000	213,913
2	-	10,400	(4,080)	244,800	251,120	189,883
3	-	10,816	(4,162)	249,696	256,350	168,555
4	-	11,249	(4,245)	254,690	261,694	149,624
5	-	11,699	(4,330)	259,784	267,153	132,822
6	-	12,167	(4,416)	264,979	272,730	117,909
7	-	12,653	(4,505)	270,279	278,428	104,671
8	-	13,159	(4,595)	275,685	284,249	92,922
9	-	13,686	(4,687)	281,198	290,197	82,492
10	-	14,233	(4,780)	286,822	296,275	73,235
11	-	14,802	(4,876)	292,559	302,485	65,017
12	-	15,395	(4,973)	298,410	308,831	57,723
13	-	16,010	(5,073)	304,378	315,315	51,248
14	-	16,651	(5,174)	310,466	321,942	45,500
15	-	17,317	(5,278)	316,675	328,714	40,397
	1,535,909					

CHAPTER 2 HVAC FUNDAMENTALS

OVERVIEW

The HVAC Section of this book is organized into eight chapters:

- Fundamentals (Chapter 2),
- HVAC Load Estimating (Chapter 3),
- HVAC Load Management (Chapter 4)
- HVAC Delivery Systems (Chapter 5)
- Heating and Cooling Production (Chapters 6 and 7) and
- Air Handling and Piping Equipment and Systems (Chapters 8 & 9)

Heat transfer and fluid flow are the governing principles for the design of HVAC systems. Other information required in design includes the selection of weather date, properties of materials and performance of equipment and its components. Essentials of these are included in these chapters to illustrate the design process. These data are by no means complete, and should not be used in actual design of construction projects. The Handbooks published by the American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE) should be used when designing actual construction projects.

HVAC Fundamentals is an introduction to HVAC system technology used in design:

- Basics of energy and power
- Fuels
- Psychrometrics
- Fluid flow and pressure
- Energy transport by fluids
- Environmental comfort

CHAPTER 2 HVAC FUNDAMENTALS

QUESTIONS AND ANSWERS

2.1 If the lighting load for a 10,000-ft² building is estimated at 1 W/ft², what will be the resulting heat generated by lighting in units of MBtu for 3000 hours of lights on?

The total electrical power will be $10,000 \text{ sq.ft.} \times 1 \text{ Watt/sq.ft.}$, or 10,000 Watts (10 kW). The conversion factor from electricity to heat is 3,413 Btuh/kW, so the heat generated will be $10 \text{ kW} \times 3,413 \text{ Btuh/kW} = 34,130 \text{ Btuh}$. Heat energy for $3,000 \text{ hours will be } 3,000 \text{ hours } \times 34,130 \text{ Btuh} = 102 \text{ million Btu.}$

2.2 If the lighting load were increased, what would be the effect on other building systems in a Midwestern U.S. climate? Would you increase the capacity of the heating system? The cooling system? What would the energy impact of higher lighting loads be on gas for heating, electric for cooling, and overall electric usage?

Heat from lights adds to air conditioning load. Increasing lighting load will increase the required capacity of air conditioning equipment; but heating systems are designed to heat with the lights off, so there will be no effect on design of heating capacity. Heat from lights might decrease energy requirements for building heating, increase electric for cooling, and overall electric usage will increase.

2.3 How much heat (Btus) will be stored in a 100-ft² concrete wall 1 ft thick if it is warmed from 65°F to 85°F by exposure to sunlight?

Use the equation $Q = M \times C \times TD$ with information from Table 1-2. Mass will be 100 cu.ft. x 144 lb./cu.ft., or 14,400 lbs. Specific heat of concrete is 0.156. $Q = 14,400 \times 0.156 \times (85-65) = 44,900$ Btu

2.4 What is the equivalent value of the heat in Question 2.3 compared with gas at \$0.65 per therm burned in a boiler at 85% efficiency? What equivalent value compare with electric at \$0.06 per kWh?

One therm is 100,000 Btu. If the boiler is 85% efficient, one therm will produce 85,000 Btu of output for the \$1.00 worth of gas. The value of 44,900 Btu is, therefore (44,900 / 85,000) x \$1.00, or \$0.53. One kWh is 3,412 Btu. The value of 44,900 Btu is therefore (44,900 / 3412) x \$0.06, or \$0.79.

2.5 Compare the annual cost of heating by propane at \$2.00/gallon in a 85% efficient furnace versus electric heat pump with a COP of 3 using electric at \$0.06 per kWh. The building is 3000 ft², and the engineer assumes an annual heating requirement of 30,000 Btu/ft²/yr.

The annual heating energy requirement will be 3000 ft² x 30,000 Btu/ft²/yr, or 90 mmBtu.

The heating value of propane is 93,000 Btu per gallon. The cost per mmBtu of propane at \$2.00 per gallon, in a 85% efficient furnace will be (\$2.00/gal.) x (1,000,000 Btu / (93,000 Btu/gal. x 0.85)) = \$25,30/mmBtu. Therefore 90 mmBtu will cost \$25.30 x 90 = \$2,280.

An electric heat pump with COP of 3 will produce heat the equivalent of 3 kWh for each kWh of input. Thus 1 kWh will produce $3 \times 3,413 = 10,200$ Btu. The annual heating energy will require 90 mmBtu / 10,200 Btu/kWh = 8,820 kWh. Cost will be 8,820 kWh x \$0.06 / kWh = \$530.

2.6 What is the difference between absolute humidity, often called *humidity ratio*, and relative humidity? What are the units used to express each of these quantities?

Absolute humidity is the amount of moisture in grains or pounds of water per pound of dry air. Relative humidity is the amount of moisture in the air compared with the maximum amount that the air can hold at a given temperature. Relative humidity is expressed as a percentage.

2.7 If the dry-bulb temperature is 95°F and the wet-bulb temperature is also 78°F, what is the relative humidity? What is the dew point? What is the humidity ratio? What is the enthalpy?

RH is about 78%; dewpoint is 71.6; humidity ratio is 0.0188 lbs./lb.; and enthalpy is about 43.5 Btu/lb.

2.8 If the dry-bulb temperature is 55°F and the wet-bulb temperature is also 55°F, what is the relative humidity? What is the dew point? What is the humidity ratio? What is the enthalpy?

RH is 100%; dewpoint is 55°F; humidity ratio is 66 grains per lb., or 0.0092 lbs./lb. and enthalpy is about 23.4 Btu/lb.

2.9 If 20,000 CFM of air at the condition in Question 2.7 is cooled to the condition in Question 2.8, what is the rate of sensible heat removal (Btuh)? What is the rate of latent heat removal (Btuh)? What is the rate of total heat removal (Btuh)?

```
Q_{sensible} = 1.1 \text{ x CFM x } (T_2 - T_1) = 1.1 \text{ x } 20,000 \text{ x } (95 - 55) = 880,000 \text{ Btuh}

Qlatent = 4840 \text{ x CFM x } (W_2 - W_1) = 4840 \text{ x } 20,000 \text{ x } (0.0188 - 0.0092) = 929,000 \text{ Btuh}

Q_{total} = 4.5 \text{ x CFM x } (H_2 - H_1) = 4.5 \text{ x } 20,000 \text{ x } (43.5 - 23.4) = 1,810,000 \text{ Btuh}
```

2.10 If 2000 CFM of air at 5°F is mixed with 8000 CFM of air at 75°F, what is the

temperature of the mixed air?

$$T_{mix} = (T_1 \times CFM_1 + T_2 \times CFM_2) / (CFM_1 + CFM_2) = (2000 \times 5 + 8000 \times 75) / (2000 + 8000) = 61°F$$

2.11 If the humidity ratio of the 5°F air in Question 2.10 is 0.002 lbs of H_2O / lb of dry air, and the humidity ratio of the 75°F air is 0.0093, what is the humidity ratio of the mixed air? How much moisture in lbs/hour would be needed to raise the mixed air humidity to 0.0093 lbs of H_2O /lb of dry air?

$$W_{mix} = (W_1 \times CFM_1 + W_2 \times CFM_2) / (CFM_1 + CFM_2) = (2000 \times 0.002 + 8000 \times 0.0093) / (2000 + 8000) = 0.0078 lbs./lb.$$

Raising 10,000 CFM from 0.0078 lb./lb. to 0.0093 will require 0.0015 lb. of water / lb. of air to be added. The specific volume of the mixed air is approximately 13.4 ft³/lb. (from psych chart); therefore, 10,000 CFM is approximately 750 lb./minute, or about 45,000 lb./hr. The amount of water needed will be 0.0015 lb./lb. x 45,000 lb./hr., or 68 lb./hr. of moisture. The moisture will generally consist of steam.

2.12 A space has a heat gain of 40,000 Btuh sensible. How much 55°F air needs to be supplied to the space to maintain the space temperature at 75°F? How much would be needed if the supply air were 50°F?

Q = 1.1 x CFM x (
$$T_2 - T_1$$
); CFM = Q / (1.1 x ($T_2 - T_1$))
For 55°F supply, CFM = 40,000 / (1.1 x (75 – 55)) = 1,820 cfm
For 50°F supply, CFM = 40,000 / (1.1 x (75 – 50)) = 1,450 cfm

2.13 If the 55°F air in Question 2.12 is being discharged in a saturated (100% RH) condition from a chilled water coil, and the inlet air to the coil is 100% outside air at 95°F DB and 78°F WB, what is the sensible load on the coil (Btuh)? Latent load? Total load?

$$\begin{array}{l} Q_{sensible} = 1.1 \text{ x CFM x } (T_2 - T_1) = 1.1 \text{ x } 1,820 \text{ x } (95 - 55) = 80,100 \text{ Btuh} \\ Qlatent = 4840 \text{ x CFM x } (W_2 - W_1) = 4840 \text{ x } 1,820 \text{ x } (0.0188 - 0.0092) = 84,600 \\ Btuh \\ Q_{total} = 4.5 \text{ x CFM x } (H_2 - H_1) = 4.5 \text{ x } 1,820 \text{ x } (43.5 - 23.4) = 165,000 \text{ Btuh} \end{array}$$

2.14 If the chilled water is being supplied at 45°F, and the coil is selected so that the chilled water temperature rise is 10°F, what is the required chilled water flow through the coil in GPM?

$$Q = 500 \text{ x GPM x } (T_2 - T_1) \text{ ; } GPM = Q / (500 \text{ x } (T_2 - T_1)) = 165,000 / (500 \text{ x } 10) = 33 \text{ gpm}$$

2.15 A space has a 60,000 Btuh heat loss in winter. It is heated by a furnace discharging 110°F air. How much air will be needed to keep the space at 72°F?

$$Q = 1.1 \text{ x CFM x } (T_2 - T_1)$$
; $CFM = Q / (1.1 \text{ x } (T_2 - T_1)) = 60,000 / (1.1 \text{ x } (110 - 72)) = 1,440 \text{ cfm}$

2.16 If the space in Question 2.15 were heated with air from a hot water coil discharging air at 110°F, what hot water flow would be required through the coil if the hot water supply temperature is 140°F, and the hot water return temperature is 120°F?

$$Q = 500 \text{ x GPM x } (T_2 - T_1); \text{ GPM} = Q / (500 \text{ x } (T_2 - T_1)) = 60,000 / (500 \text{ x } (140 - 120)) = 33 \text{ gpm}$$

2.17 If a steam coil were used in Question 2.16, what would be the required steam flow in lbs/hr?

$$Q = 1000 \text{ x SFR}$$
; $SFR = Q / 1000 = 60,000 / 1000 = 60 lbs./hour$

2.18 Discuss the effects of humidity on interior comfort. What would you recommend for upper and lower limits during summer and winter? How does temperature influence your answer?

The lower comfort limit in cold weather is 68°F at about 30 percent RH. The upper limit in hot weather is 79°F at about 55 percent RH. Humidity in excess of 60 percent is considered high in general-use spaces.

2.19 What are the effects of excessively high and excessively low air velocities in occupied spaces? What range of values might be appropriate for design?

Systems must be designed for adequate airflow to prevent complaints of "stuffiness" or drafts. The measure of airflow is velocity. Space air velocities less than 10 feet per minute will be stuffy; those more than 50 feet per minute may seem drafty

2.20 In general, nonnumerical terms, how would you define good air quality?

Air should be reasonably free of dust, and spaces free of odors or other pollutants that may be hazardous or objectionable.

2.21 How might you compensate for discomfort from a cold window?

Systems can compensate for cold windows with radiant heat or higher temperatures. Downdrafts

can be offset by proper placement of heating devices, generally below windows.

2.22 Historically, what factors have caused variations in standards for ventilation of buildings in the United States? What is the authoritative source of these

values?

Ventilation rates for indoor air quality have been subject to change based on social context. They decreased during the energy crisis of the 1970s and subsequently increased with reports of "sick-building syndrome" shortly thereafter. There is current research available which might increase ventilation rates further based on reported health and productivity benefits. Accordingly, there are LEED Credits associated with using ventilation rates higher than ASHRAE Standard 62.