REVISION TEST 1 (Page 18)

This Revision Test covers the material contained in chapter 1. The marks available are shown at the end of each question.

Problem 1. Convert, correct to 2 decimal places: (a) 76.8° to radians (b) 1.724 radians to degrees

	<u>Marks</u>
(a) $76.8^{\circ} = 76.8 \times \frac{\pi}{180}$ rad = 1.34 rad	2
(b) 1.724 radians = $1.724 \times \frac{180^{\circ}}{\pi} = 98.78^{\circ}$	2
Total:	4

Problem 2. In triangle JKL in Figure RT1.1, find (a) length KJ correct to 3 significant figures.

(b) sin L and tan K, each correct to 3 decimal places

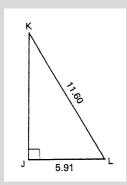


Figure RT1.1

	<u>Marks</u>
(a) By Pythagoras, $\mathbf{KJ} = \sqrt{11.60^2 - 5.91^2} = 9.98$	2
(b) $\sin \mathbf{L} = \frac{KJ}{KL} = \frac{9.98}{11.60} = 0.860$	1
$\tan \mathbf{K} = \frac{JL}{KJ} = \frac{5.91}{9.98} = 0.592$	1
Total:	4

Problem 3. In triangle PQR in Figure RT1.2, find angle P in decimal form, correct to 2 decimal places

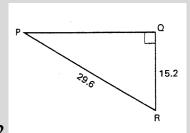


Figure RT1.2

	<u>Marks</u>
15.2	
$\sin P = \frac{29.6}{29.6} = 0.51351$	1
	1
and $\angle P = \sin^{-1}(0.51351) = 30.90^{\circ}$	1
Total:	2

Problem 4. In triangle ABC in Figure RT1.3, find lengths AB and AC, correct to 2 decimal places

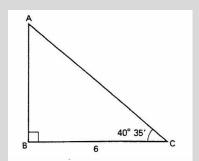


Figure RT1.3

		<u>Marks</u>
$\tan 40^{\circ}35' = \frac{AB}{BC} = \frac{AB}{6}$ from which, $AB = 6 \tan 40^{\circ}35' = 5.14$		2
$ \cos 40^{\circ}35' = \frac{BC}{AC} = \frac{6}{AC} $ from which, $AC = \frac{6}{\cos 40^{\circ}35'} = 7.90$		2
(or use Pythagoras)	Total:	4

Problem 5. A triangular plot of land ABC is shown in Figure RT1.4. Solve the triangle and determine its area.

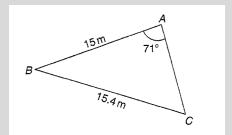


Figure RT1.4

	Marks
Using the sine rule: $\frac{15.4}{\sin 71^{\circ}} = \frac{15.0}{\sin C}$	
from which, $\sin C = \frac{15.0 \sin 71^{\circ}}{15.4} = 0.9210$	
and $\angle C = \sin^{-1} 0.9210 = 67.07^{\circ}$	3
Hence, $\angle \mathbf{B} = 180^{\circ} - 71^{\circ} - 67.07^{\circ} = 41.93^{\circ}$	1
Using the sine rule again: $\frac{15.4}{\sin 71^{\circ}} = \frac{AC}{\sin 41.93^{\circ}}$	
from which, $AC = \frac{15.4 \sin 41.93^{\circ}}{\sin 71^{\circ}} = 10.88 \text{ m}$	3
Area of triangle ABC = $\frac{1}{2}$ ac sin B	
$= \frac{1}{2} (15.4)(15.0)\sin 41.93^{\circ}$	2
$= 77.18 \text{ m}^2$ Total:	9

Problem 6. Figure RT1.5 shows a roof truss PQR with rafter PQ = 3 m. Calculate the length of (a) the roof rise PP', (b) rafter PR, and (c) the roof span QR.

Find also (d) the cross-sectional area of the roof truss.

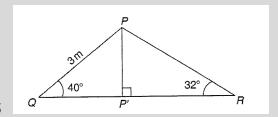


Figure RT1.5

PP'	<u>Marks</u>
(a) In triangle PQP', $\sin 40^\circ = \frac{11}{3}$	
from which, $PP' = 3 \sin 40^{\circ} = 1.928 \text{ m}$	2
(b) From triangle PRP', $\sin 32^\circ = \frac{1.928}{PR}$	
1.928	2
from which, $\mathbf{PR} = \overline{\sin 32^{\circ}} = 3.638 \text{ m}$	
(c) $\angle QPR = 180^{\circ} - 40^{\circ} - 32^{\circ} = 108^{\circ}$	1
Using the sine rule: $\frac{QR}{\sin 108^{\circ}} = \frac{3}{\sin 32^{\circ}}$	
3 sin 108°	3
from which, $\mathbf{QR} = \sin 32^{\circ} = 5.384 \text{ m}$	
(d) Cross-sectional area of roof truss = $\frac{1}{2}$ (QR)(PP')	
<u>1</u>	
$=\frac{1}{2}(5.384)(1.928)$	2

$= 5.190 \text{ m}^2$	10
Total:	

Problem 7. Solve triangle ABC given b = 10 cm, c = 15 cm and $\angle A = 60^{\circ}$.

	<u>Marks</u>
Triangle ABC is shown below.	
B C	
Using the cosine rule: $BC^2 = 10^2 + 15^2 - 2(10)(15)\cos 60^\circ$	2
= 175	
and $BC = \sqrt{175} = 13.23 \text{ cm}$	1
Using the sine rule: $\frac{10}{\sin B} = \frac{13.23}{\sin 60^{\circ}}$	
from which, $\sin B = \frac{10\sin 60^{\circ}}{13.23} = 0.654592$	
and $\angle \mathbf{B} = \sin^{-1} 0.654592 = 40.89^{\circ}$	3
	1
Hence, $\angle C = 180^{\circ} - 60^{\circ} - 40.89^{\circ} = 79.11^{\circ}$	7
To	otal:

Problem 8. Remove the brackets and simplify: 2(3x-2y) - (4y-3x)

	<u>Marks</u>
2(3x - 2y) - (4y - 3x) = 6x - 4y - 4y + 3x	2

=9x-8y	1
Total:	3

Problem 9. Remove the brackets and simplify 10a - [3(2a - b) - 4(b - a) + 5b]

<u>Marks</u>
1
1
1
1
4

Problem 10. Determine, correct to 2 decimal places, 57% of 17.64 g

	Marks
57% of 17.64 $g = \frac{57}{100} \times 17.64$ $g = 10.05$ g, correct to 2 decimal places	2
Total:	2

Problem 11. Express 54.7 mm as a percentage of 1.15 m, correct to 3 significant figures.

	<u>Marks</u>
54.7 mm as a percentage of 1.15 m is:	
$\frac{54.7}{1150} \times 100\%$ = 4.76% , correct to 3 significant figures	3
Total:	3

Problem 12. Simplify: (a)
$$\frac{3}{4} - \frac{7}{15}$$
 (b) $1\frac{5}{8} - 2\frac{1}{3} + 3\frac{5}{6}$

	<u>Marks</u>
(a) $\frac{3}{4} - \frac{7}{15} = \frac{45 - 28}{60} = \frac{17}{60}$	2
(b) $1\frac{5}{8} - 2\frac{1}{3} + 3\frac{5}{6} = 1 + \frac{5}{8} - 2 - \frac{1}{3} + 3 + \frac{5}{6} = 2 + \frac{5}{8} - \frac{1}{3} + \frac{5}{6}$	2
$= 2 + \frac{15 - 8 + 20}{24}$	1
$= {2 + \frac{27}{24}} = 2 + 1 + \frac{3}{24}$	2
$= 3\frac{1}{8}$	1 8
Total:	ð

Problem 13. Evaluate: (a)
$$1\frac{7}{9} \times \frac{3}{8} \times 3\frac{3}{5}$$
 (b) $6\frac{2}{3} \div 1\frac{1}{3}$ (c) $1\frac{1}{3} \times 2\frac{1}{5} \div \frac{2}{5}$

	<u>Marks</u>
$\begin{vmatrix} 1\frac{7}{9} \times \frac{3}{8} \times 3\frac{3}{5} = \frac{16}{9} \times \frac{3}{8} \times \frac{18}{5} = \frac{2}{3} \times \frac{1}{1} \times \frac{18}{5} = \frac{2}{1} \times \frac{1}{1} \times \frac{6}{5} = \frac{12}{5} = 2\frac{2}{5}$	3
(b) $6\frac{2}{3} \div 1\frac{1}{3} = \frac{20}{3} \div \frac{4}{3} = \frac{20}{3} \times \frac{3}{4} = \frac{5}{1} \times \frac{1}{1} = 5$	3
$\begin{vmatrix} 1\frac{1}{3} \times 2\frac{1}{5} \div \frac{2}{5} = \frac{4}{3} \times \frac{11}{5} \div \frac{2}{5} = \frac{4}{3} \times \frac{11}{5} \times \frac{5}{2} = \frac{2}{3} \times \frac{11}{1} \times \frac{1}{1} = \frac{22}{3} = 7\frac{1}{3}$	4
Total:	10

Problem 14. Evaluate: (a)
$$3 \times 2^{3} \times 2^{2}$$
 (b) $49^{\frac{1}{2}}$

	<u>Marks</u>
(a) $3 \times 2^3 \times 2^2 = 3 \times 8 \times 4 = 96$	2
(b) $49^{\frac{1}{2}} = \sqrt{49} = \pm 7$	2
Total:	4

Problem 15. Evaluate: (a)
$$\frac{2^7}{2^2}$$
 (b) $\frac{10^4 \times 10 \times 10^5}{10^6 \times 10^2}$

(a)
$$\frac{2^{7}}{2^{2}} = 2^{7-2} = 2^{5}$$
(b)
$$\frac{10^{4} \times 10 \times 10^{5}}{10^{6} \times 10^{2}} = 10^{4+1+5-6-2} = 10^{2}$$

$$= 100$$
Total:

Problem 16. Evaluate: (a)
$$\frac{2^3 \times 2 \times 2^2}{2^4}$$
 (b) $\frac{\left(2^3 \times 16\right)^2}{\left(8 \times 2\right)^3}$ (c) $\left(\frac{1}{4^2}\right)^{-1}$

	<u>Marks</u>
(a) $\frac{2^3 \times 2 \times 2^2}{2^4} = 2^{3+1+2-4} = 2^2 = 4$	2
(b) $\frac{\left(2^3 \times 16\right)^2}{\left(8 \times 2\right)^3} = \frac{\left(2^3 \times 2^4\right)^2}{\left(2^3 \times 2\right)^3} = \frac{\left(2^7\right)^2}{\left(2^4\right)^3} = \frac{2^{14}}{2^{12}} = 2^{14-12} = 2^2$ $= 4$	3
(c) $\left(\frac{1}{4^2}\right)^{-1} = \left(4^2\right)^{+1} = 4^2$	2
Total:	7

Problem 17. Evaluate: (a)
$$(27)^{-\frac{1}{3}}$$
 (b) $\frac{\left(\frac{3}{2}\right)^{2} - \frac{2}{3}}{\left(\frac{2}{3}\right)^{2}}$

	<u>Marks</u>
(a) $(27)^{-\frac{1}{3}} = \frac{1}{27^{\frac{1}{3}}} = \frac{1}{\sqrt[3]{27}} = \frac{1}{3}$	2
$\frac{\left(\frac{3}{2}\right)^{-2} - \frac{2}{9}}{\frac{1}{2}} = \frac{\left(\frac{2}{3}\right)^{2} - \frac{2}{9}}{\frac{9}{2}} = \frac{\frac{4}{9} - \frac{2}{9}}{\frac{9}{2}} = \frac{\frac{2}{9}}{\frac{9}{2}} = \frac{2}{9} \times \frac{9}{9}$	3
(b) $\left(\frac{2}{3}\right)^2$ $\left(\frac{2}{3}\right)^2$ $\left(\frac{4}{9}\right)^2$ $\frac{4}{9}$ $\frac{4}{9}$ $\frac{9}{4}$ $\frac{1}{2}$ or 0.5	3
Total:	5

Problem 18. Solve the simultaneous equations:

(a)
$$2x + y = 6$$

 $5x - y = 22$
 (b) $4x - 3y = 11$
 $3x + 5y = 30$

				<u>Marks</u>
(a) $2x + y = 6$	(1)			
5x - y = 22	(2)			
Adding equatio	ns (1) and (2) gives	7x = 28	from which, $x = 4$	2
Substituting x =	= 4 in (1) gives:	8 + y = 6	from which, $y = -2$	2
(b) $4x - 3y = 11$	(1)			
3x + 5y = 30	(2)			
$5 \times (1)$ gives:	20x - 15y = 55	(3)		
$3 \times (2)$ gives:	9x + 15y = 90	(4)		
			145	2
(3) + (4) gives:	29x = 145	and x	= 29 = 5	3
Substituting $x = 1$	5 in (1) gives: 20	-3y = 11		
from which,	20	-11 = 3y	i.e. $9 = 3y$ and $y = 3$	3

10
tal:

TOTAL MARKS FOR REVISION TEST 1: 100