Chapter 1 Solutions

Problem 1.3-1

$$L = 14 \text{ft}$$
 $q_0 = 12 \frac{16 \text{f}}{\text{ft}}$ $P = 50 \text{lbf}$ $M_0 = 300 \text{lbf} \cdot \text{ft}$

Reactions

$$\begin{split} &\Sigma F_{\mathbf{x}} = 0 \qquad B_{\mathbf{x}} = \frac{3}{5} \cdot P = 30 \cdot lbf \\ &\Sigma M_{\mathbf{A}} = 0 \qquad B_{\mathbf{y}} = \frac{1}{L} \cdot \left[-M_0 + \left(\frac{1}{2} \cdot \mathbf{q}_0 \right) \cdot L \cdot \left(\frac{2 \cdot L}{3} \right) + \frac{4}{5} \cdot P \cdot \left(L + \frac{L}{2} \right) \right] = 94.571 \cdot lbf \\ &\Sigma F_{\mathbf{y}} = 0 \qquad A_{\mathbf{y}} = \left(\frac{1}{2} \cdot \mathbf{q}_0 \right) \cdot L + \frac{4}{5} \cdot P - B_{\mathbf{y}} = 29.429 \cdot lbf \end{split}$$

N, V and M at midspan of AB - LHFB is used below

$$N_{mid} = 0$$

$$V_{mid} = A_y - \frac{1}{2} \cdot \frac{q_0}{2} \cdot \frac{L}{2} = 8.429 \cdot lbf$$

$$M_{mid} = -M_0 + A_y \cdot \frac{L}{2} - \frac{1}{2} \cdot \frac{q_0}{2} \cdot \frac{L}{2} \cdot \left(\frac{1}{3} \cdot \frac{L}{2}\right) = -143 \cdot lbf \cdot ft$$

$$L = 4m$$
 $q_0 = 160 \frac{N}{m}$ $P = 200 \cdot N$ $M_0 = 380N \cdot m$

Reactions

$$\begin{split} \Sigma F_{\mathbf{X}} &= 0 \qquad B_{\mathbf{X}} = \frac{-3}{5} \cdot P = -120 \, \mathrm{N} \\ \Sigma M_{\mathbf{A}} &= 0 \qquad B_{\mathbf{y}} = \frac{1}{L} \left[M_0 + \left(\frac{1}{2} \cdot \mathbf{q}_0 \right) \cdot L \cdot \left(\frac{L}{3} \right) - \frac{4}{5} \cdot P \cdot \left(L + \frac{L}{2} \right) \right] = -38.333 \cdot \mathrm{N} \\ \Sigma F_{\mathbf{y}} &= 0 \qquad A_{\mathbf{y}} = \left(\frac{1}{2} \cdot \mathbf{q}_0 \right) \cdot L - \frac{4}{5} \cdot P - B_{\mathbf{y}} = 198.333 \cdot \mathrm{N} \end{split}$$

N, V and M at midspan of AB - LHFB is used below

$$\begin{split} N_{mid} &= 0 \\ V_{mid} &= A_y - \frac{1}{2} \cdot \left(\frac{q_0}{2} + q_0 \right) \cdot \frac{L}{2} = -41.667 \cdot N \\ M_{mid} &= M_0 + A_y \cdot \frac{L}{2} - \frac{1}{2} \cdot q_0 \cdot \frac{L}{2} \cdot \left(\frac{2}{3} \cdot \frac{L}{2} \right) - \frac{1}{2} \cdot \frac{q_0}{2} \cdot \frac{L}{2} \cdot \left(\frac{1}{3} \cdot \frac{L}{2} \right) = 510 \cdot N \cdot m \end{split}$$

Check using RHFB

$$N_{\text{mid}} = B_{\text{X}} + \frac{3}{5} \cdot P = 0 \text{ N}$$

$$V_{\text{mid}} = \frac{1}{2} \cdot \frac{q_0}{2} \cdot \frac{L}{2} - B_{\text{y}} - \frac{4}{5} \cdot P = -41.667 \text{ N}$$

$$M_{\text{mid}} = \frac{-1}{2} \cdot \frac{q_0}{2} \cdot \frac{L}{2} \cdot \left(\frac{1}{3} \cdot \frac{L}{2}\right) + B_{\text{y}} \cdot \frac{L}{2} + \frac{4}{5} \cdot P \cdot \left(\frac{L}{2} + \frac{L}{2}\right) = 510 \cdot \text{N} \cdot \text{m}$$

(a) APPLY LAWS OF STATICS

$$\Sigma F_x = 0$$
 $C_x = 100 \text{ lb} - 50 \text{ lb} = 50 \text{ lb}$

FBD of BC $\Sigma M_B = 0$ $C_y = \frac{1}{10 \text{ ft}}(0) = 0$

Entire FBD $\Sigma M_A = 0$ $B_y = \frac{1}{20 \text{ ft}}(-100 \text{ lb-ft}) = -5 \text{ lb}$
 $\Sigma F_y = 0$ $A_y = -B_y = 5 \text{ lb-ft}$

Reactions are $A_y = 5 \text{ lb}$ $B_y = -5 \text{ lb}$ $C_x = 50 \text{ lb}$ $C_y = 0$

(b) Internal stress resultants N, V, and M at x = 15 ft

Use FBD of segment from A to x = 15 ft

$$\Sigma F_x = 0$$
 $N = 100 \text{ lb} - 50 \text{ lb} = 50 \text{ lb}$
 $\Sigma F_y = 0$ $V = A_y = 5 \text{ lb}$
 $\Sigma M = 0$ $M = A_y 15 \text{ ft} = 75 \text{ lb-ft}$

(a) APPLY LAWS OF STATICS

$$\begin{split} \Sigma F_x &= 0 & A_x &= 0 \\ \text{FBD of } AB & \Sigma M_B &= 0 & M_A &= 0 \\ \text{Entire FBD} & \Sigma M_C &= 0 & D_y &= \frac{1}{3 \text{ m}} \bigg[200 \text{ N} \cdot \text{m} - \frac{1}{2} (80 \text{ N/m}) \text{ 4 m} \bigg(\frac{2}{3} \bigg) \text{ 4 m} \bigg] &= -75.556 \text{ N} \\ \Sigma F_y &= 0 & C_y &= \frac{1}{2} (80 \text{ N/m}) \text{ 4 m} - D_y &= 235.556 \text{ N} \\ \text{Reactions are} & \overline{M_A} &= 0 & \overline{C_y} &= 236 \text{ N} & \overline{D_y} &= -75.6 \text{ N} \end{split}$$
(b) Internal stress resultants N , V , and M at $x = 5 \text{ m}$

Use FBD of segment from A to x = 5 m; ordinate on triangular load at x = 5 m is $\frac{3}{4}$ (80 N/m) = 60 N/m.

$$\Sigma F_x = 0 \qquad N_x = -A_x = 0$$

$$\Sigma F_y = 0 \qquad V = \frac{-1}{2} \left[(80 \text{ N/m} + 60 \text{ N/m}) \text{ 1 m} \right] = -70 \text{ N} \qquad \boxed{V = -70 \text{ N}} \qquad \text{Upward}$$

$$\Sigma M = 0 \qquad M = -M_A - \frac{1}{2} (80 \text{ N/m}) \text{ 1 m} \left(\frac{2}{3} \text{ 1 m} \right) - \frac{1}{2} (60 \text{ N/m}) \text{ 1 m} \left(\frac{1}{3} \text{ 1 m} \right) = -36.667 \text{ N·m}$$

$$\text{(break trapezoidal load into two triangular loads in moment expression)}$$

$$\boxed{M = -36.7 \text{ N·m}} \qquad \text{CW}$$

(c) Replace roller support at C with spring support

Structure remains statically determinate so all results above in (a) and (b) are unchanged.

(a) STATICS

FBD of AB (cut through beam at pin):
$$\Sigma M_B = 0$$
 $A_y = \frac{1}{10 \text{ ft}} (-150 \text{ lb-ft}) = -15 \text{ lb}$

Entire FBD: $\Sigma M_D = 0$

$$C_{y} = \frac{1}{10 \text{ ft}} \left[\frac{4}{5} 40 \text{ lb} (5 \text{ ft}) + \frac{1}{2} (2.5 \text{ lb/ft}) 10 \text{ ft} \left(10 \text{ ft} + \frac{10 \text{ ft}}{3} \right) + \frac{1}{2} (5 \text{ lb/ft}) 10 \text{ ft} \left(10 \text{ ft} + \frac{2}{3} 10 \text{ ft} \right) - 150 \text{ lb-ft} - A_{y} 30 \text{ ft} \right] = 104.333 \text{ lb}$$

$$\Sigma F_y = 0$$
 $D_y = \frac{4}{5} 40 \text{ lb} + \frac{1}{2} (5 \text{ lb/ft} + 2.5 \text{ lb/ft}) 10 \text{ ft} - A_y - C_y = -19.833 \text{ lb}$ so $D_x = \frac{-D_y}{\tan(60^\circ)} = 11.451 \text{ lb}$

$$\Sigma F_x = 0$$
 $A_x = \frac{3}{5}40 \text{ lb} - D_x = 12.549 \text{ lb}$

$$A_x = 12.55 \text{ lb}, A_y = -15 \text{ lb}, C_y = 104.3 \text{ lb}, D_x = 11.45 \text{ lb}, D_y = -19.83 \text{ lb}$$

(b) Use FBD of AB only; moment at PIN is zero

$$F_{Bx} = -A_x$$
 $F_{Bx} = -12.55 \,\text{lb}$ $F_{By} = -A_y$ $F_{By} = 15 \,\text{lb}$ Resultant_B = $\sqrt{F_{Bx}^2 + F_{By}^2} = 19.56 \,\text{lb}$

(c) Add rotational spring at A and remove roller at C; apply equations of statical equilibrium Use FBD of $BCD \Sigma M_R = 0$

$$D_{y} = \frac{1}{20 \text{ ft}} \left[\frac{1}{2} (2.5 \text{ lb/ft}) 10 \text{ ft} \left(\frac{2}{3} 10 \text{ ft} \right) + \frac{1}{2} (5 \text{ lb/ft}) 10 \text{ ft} \left(\frac{1}{3} 10 \text{ ft} \right) + \frac{4}{5} 40 \text{ lb} (15 \text{ ft}) \right] = 32.333 \text{ lb}$$

$$D_{x} = \frac{-D_{y}}{\tan(60^{\circ})} = -18.668 \text{ lb}$$

Use entire FBD $\Sigma F_y = 0$ $A_y = \frac{1}{2} (5 \text{ lb/ft} + 2.5 \text{ lb/ft}) 10 \text{ ft} + \frac{4}{5} (40 \text{ lb}) - D_y = 37.167 \text{ lb}$ $\Sigma F_x = 0$ $A_x = \frac{3}{5} (40 \text{ lb}) - D_x = 42.668 \text{ lb}$

Use FBD of
$$AB \Sigma M_B = 0 M_A = 150 \text{ lb-ft} + A_y 10 \text{ ft} = 521.667 \text{ lb-ft}$$

So reactions are
$$A_x = 42.7 \text{ lb}$$
 $A_y = 37.2 \text{ lb}$ $A_y = 522 \text{ lb-ft}$ $A_x = -18.67 \text{ lb}$ $A_y = 32.3 \text{ lb}$

RESULTANT FORCE IN PIN CONNECTION AT B

$$F_{Bx} = -A_x$$
 $F_{By} = -A_y$ Resultant_B = $\sqrt{F_{Bx}^2 + F_{By}^2} = 56.6 \text{ lb}$

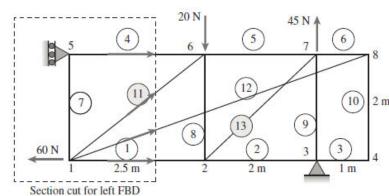
(a) STATICS

$$\Sigma F_y = 0$$
 $R_{3y} = 20 \text{ N} - 45 \text{ N} = -25 \text{ N}$
 $\Sigma M_3 = 0$ $R_{5x} = \frac{1}{2 \text{ m}} (20 \text{ N} \times 2 \text{ m}) = 20 \text{ N}$
 $\Sigma F_x = 0$ $R_{3x} = -R_{5x} + 60 \text{ N} = 40 \text{ N}$

(b) Member forces in members 11 and 13

Number of unknowns: m = 13 r = 3 m + r = 16

Number of equations: j = 8 2j = 16 So statically determinate



TRUSS ANALYSIS

- (1) $\Sigma F_V = 0$ at joint 4 so $F_{10} = 0$
- (2) $\Sigma F_V = 0$ at joint 8 so $F_{12} = 0$
- (3) $\Sigma F_H = 0$ at joint 5 so $F_4 = -R_{5x} = -20 \text{ N}$
- 2 m (4) Cut vertically through 4, 11, 12, and 1; use left FBD; sum moments about joint 2

$$F_{11V} = \frac{1}{2.5 \text{ m}} (R_{5x} - F_4)$$
 so $F_{11} = 0$

(5) Sum vertical forces at joint 3; $F_9 = R_{3y}$ $F_9 = 25 \text{ N}$

(6) Sum vertical forces at joint 7

$$F_{13V} = 45 \text{ N} - F_9 = 20 \text{ N}$$

$$F_{13} = \sqrt{2}F_{13V} = 28.3 \,\mathrm{N}$$

(a) STATICS

$$\Sigma F_x = 0$$
 $A_x = 0$ $\Sigma M_A = 0$ $E_y = \frac{1}{20 \text{ ft}} (3 \text{ k} \times 10 \text{ ft} + 2 \text{ k} \times 20 \text{ ft} + 1 \text{ k} \times 30 \text{ ft}) = 5 \text{ k}$ $\Sigma F_y = 0$ $A_y = 3 \text{ k} + 2 \text{ k} + 1 \text{ k} - E_y = 1 \text{ k}$

(b) Member force in member FE

Number of unknowns:
$$m = 11$$
 $r = 3$ $m + r = 14$
Number of equations: $j = 7$ $2j = 14$ So statically determinate

TRUSS ANALYSIS

(1) Cut vertically through AB, GC, and GF; use left FBD; sum moments about C

$$F_{GFx}(15 \text{ ft}) - F_{GFy}(20 \text{ ft}) = A_y(20 \text{ ft}) = 20 \text{ ft-k} \qquad F_{GFx} = F_{GF} \frac{10}{\sqrt{2^2 + 10^2}} \qquad F_{GFy} = F_{GF} \frac{2}{\sqrt{2^2 + 10^2}}$$
so
$$F_{GF} = \frac{A_y(20 \text{ ft})}{15 \text{ ft} \frac{10}{\sqrt{2^2 + 10^2}}} = 1.854 \text{ k} \qquad \text{and} \qquad F_{GFx} = F_{GF} \frac{10}{\sqrt{2^2 + 10^2}} = 1.818 \text{ k}$$

(2) Sum horizontal forces at joint
$$F$$
 $F_{FEx} = F_{GFx} = 1.818 \text{ k}$ $F_{FE} = \frac{\sqrt{10^2 + 3^2}}{10} F_{FEx} = 1.898 \text{ k}$ $F_{FE} = 1.898 \text{ k}$

(a) STATICS

$$\Sigma F_x = 0$$
 $F_x = 0$
$$\Sigma M_F = 0$$
 $D_y = \frac{1}{6 \text{ m}} [3 \text{ kN} (6 \text{ m}) + 6 \text{ kN} (3 \text{ m})] = 6 \text{ kN}$
$$\Sigma F_y = 0$$
 $F_y = 9 \text{ kN} + 6 \text{ kN} + 3 \text{ kN} - D_y = 12 \text{ kN}$

(b) Member force in Member FE

Number of unknowns: m = 11 r = 3 m + r = 14Number of equations: j = 7 2j = 14 So statically determinate

TRUSS ANALYSIS

(1) Cut vertically through AB, GD, and GF; use left FBD; sum moments about D to get $F_{GF} = 0$

(2) Sum horizontal forces at joint F $F_{FEx} = -F_x = 0$ so $F_{FE} = 0$

$$c = 8ft P = 20kip$$

$$a = \frac{\sin(60\text{deg})}{\sin(80\text{deg})} \cdot c = 7.035 \cdot \text{ft}$$

$$b = \frac{\sin(40\text{deg})}{\sin(80\text{deg})} \cdot c = 5.222 \cdot \text{ft}$$

$$\Sigma M_A = P \cdot \frac{c}{2} - P \cdot b \cdot \cos(60 \text{deg}) - 2P \cdot b \cdot \sin(60 \text{deg}) + B_y \cdot c = 0$$

$$B_y = \frac{P \cdot b \cdot \cos(60 deg) + 2P \cdot b \cdot \sin(60 deg) - P \cdot \frac{c}{2}}{c} = 19.137 \cdot kip$$

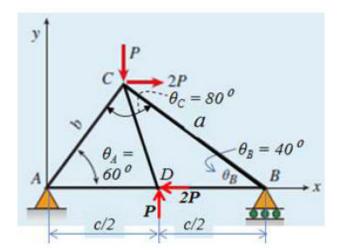
$$A_{V} = -B_{V} = -19.137 \cdot \text{kip}$$

$$A_{x} = 0$$

Joint A

$$F_{AC} = \frac{-A_y}{\sin(60\text{deg})} = 22.098 \cdot \text{kip}$$

$$F_{AD} = -F_{AC} \cdot \cos(60 \text{deg}) - A_x = -11.049 \cdot \text{kip}$$



Joint B

$$F_{BC} = \frac{-B_y}{\sin(40\text{deg})} = -29.772 \cdot \text{kip}$$

$$F_{BD} = -F_{BC} \cdot \cos(40 \text{deg}) = 22.807 \cdot \text{kip}$$

$$CD = \sqrt{b^2 + \left(\frac{c}{2}\right)^2 - 2 \cdot b \cdot \frac{c}{2} \cdot \cos(60\text{deg})} = 4.731 \cdot \text{ft}$$

$$ACD = asin \left(\frac{sin(60deg)}{CD} \cdot \frac{c}{2} \right) = 47.077 \cdot deg$$

Joint D

$$F_{DC} = \frac{-P}{\cos(90 \text{deg} - 72.923 \text{deg})} = -20.922 \cdot \text{kip}$$

$$180 \text{deg} - 60 \text{deg} - ACD = 72.923 \cdot \text{deg}$$

$$BCD = a \sin\left(\frac{\sin(40 \text{deg})}{CD} \cdot \frac{c}{2}\right) = 32.923 \cdot \text{deg}$$

$$ACD + BCD = 80 \cdot \text{deg}$$

$$P = 80kN$$

$$a = \sin(60 \text{deg}) \cdot \left(\frac{b}{\sin(40 \text{deg})}\right) = 4.042 \text{ m}$$

$$L_{AB} = \sin(80 \text{deg}) \cdot \left(\frac{b}{\sin(40 \text{deg})}\right) = 4.596 \text{ m}$$

$$L_{DB} = \sqrt{\left(\frac{b}{2}\right)^2 + L_{AB}^2 - 2 \cdot \left(\frac{b}{2}\right) \cdot \left(L_{AB}\right) \cdot \cos(60\text{deg})} = 4.06 \text{ m}$$

$$\frac{L_{DB}}{\sin(60\text{deg})} = \frac{\frac{b}{2}}{\sin(\text{DBA})} \qquad \text{so} \qquad DBA = a\sin\left(\frac{\frac{b}{2}}{L_{DB}} \cdot \sin(60\text{deg})\right) = 18.662 \cdot \text{deg}$$

Reactions

$$\Sigma F_{\mathbf{X}} = 0$$
 $A_{\mathbf{X}} = -2 \cdot P + 2 \cdot P = 0 \text{ N}$

$$\Sigma M_{A} = 0 \qquad B_{y} = \frac{1}{L_{\Delta B}} \left[-2 \cdot P \cdot \left(\frac{b}{2} \cdot \sin(60 \text{deg}) \right) + P \cdot (b \cdot \cos(60 \text{deg})) + 2 \cdot P \cdot (b \cdot \sin(60 \text{deg})) \right] = 71.329 \cdot \text{kN}$$

$$\Sigma F_{V} = 0$$
 $A_{V} = P - B_{V} = 8.671 \cdot kN$

MoJ to find member forces

Joint A AD =
$$\frac{-A_y}{\sin(60 \text{deg})} = -10.013 \cdot \text{kN}$$
 AB = $-A_x - \text{AD} \cdot \cos(60 \text{deg}) = 5.006 \cdot \text{kN}$

$$AB = -A_{X} - AD \cdot \cos(60\deg) = 5.006 \cdot kN$$

$$DB = \frac{2 \cdot P \cdot \sin(60 \text{deg})}{\cos(90 \text{deg} - CDB)} = 141.322 \cdot \text{kN}$$

$$DC = AD + 2 \cdot P \cdot (\cos(60 \text{deg})) - DB \cdot \cos(CDB) = 42.204 \cdot kN$$

Joint C
$$CB = \frac{1}{\cos(40\text{deg})} \cdot (-2 \cdot P + DC \cdot \cos(60\text{deg})) = -181.319 \cdot kN$$

Joint B check
$$-AB - DB \cdot cos(DBA) - CB \cdot cos(40deg) = 0 N$$

$$DB \cdot \sin(DBA) + CB \cdot \sin(40 \deg) + B_V = 0 N$$

Reactions
$$c = 8ft P = 20kip$$

$$A_x = 0 \qquad \qquad A_y = -19.137 kip \qquad \quad B_y = -A_y$$

AC: MoS - cut through AC and AD, use LHFB

$$\Sigma M_D = 0$$
 $-A_y \cdot \frac{c}{2} - AC \cdot \sin(60 \text{deg}) \cdot \frac{c}{2} = 0$

$$AC = \frac{-A_y}{\sin(60\text{deg})} = 22.098 \cdot \text{kip}$$

$$\underline{\text{BD: MoS - cut through BC andf BD, use RHFB}} \qquad \qquad b = \frac{\sin(40\text{deg})}{\sin(80\text{deg})} \cdot c = 5.222 \cdot \text{ft}$$

$$\Sigma M_C = 0$$
 $B_y \cdot (c - b \cdot cos(60deg)) - BD \cdot (b \cdot sin(60deg)) = 0$

BD =
$$\frac{B_{y} \cdot (c - b \cdot cos(60deg))}{b \cdot sin(60deg)} = 22.807 \cdot kip$$

Reactions
$$b = 3m$$
 $P = 80kN$

$$A_{x} = 0$$
 $A_{y} = 8.671kN$ $B_{y} = 71.329kN$

AB: MoS - cut through AD and AB, use LHFB

$$\Sigma M_{D} = 0 \qquad AB \cdot \frac{b}{2} \cdot \sin(60 \text{deg}) + A_{X} \cdot \frac{b}{2} \cdot \sin(60 \text{deg}) - A_{Y} \cdot \frac{b}{2} \cdot \cos(60 \text{deg}) = 0$$

$$AB = \frac{-\left(A_{X} \cdot \frac{b}{2} \cdot \sin(60 \text{deg}) - A_{Y} \cdot \frac{b}{2} \cdot \cos(60 \text{deg})\right)}{\left(\frac{b}{2} \cdot \sin(60 \text{deg})\right)} = 5.006 \cdot kN$$

DC: MoS - cut through DC and CB, use upper FBD
$$a = \sin(60 \text{deg}) \cdot \left(\frac{b}{\sin(40 \text{deg})}\right) = 4.042 \text{ m}$$

$$DC_x = DC \cdot cos(60deg)$$
 $DC_v = DC \cdot sin(60deg)$

$$\Sigma M_{\mathbf{B}} = 0 \qquad -\left(-DC_{\mathbf{X}} + 2 \cdot P\right) \cdot \left(a \cdot \sin(40 \operatorname{deg})\right) + \left(DC_{\mathbf{V}} + P\right) \cdot \left(a \cdot \cos(40 \operatorname{deg})\right) = 0$$

$$-(-DC \cdot \cos(60\deg) + 2 \cdot P) \cdot (a \cdot \sin(40\deg)) + (DC \cdot \sin(60\deg) + P) \cdot (a \cdot \cos(40\deg)) = 0$$

Collect and simplify, solve for DC

$$DC = \frac{1.0 \cdot (80.0 \cdot \text{kN} \cdot \cos(40.0 \cdot \text{deg}) - 160.0 \cdot \text{kN} \cdot \sin(40.0 \cdot \text{deg}))}{\cos(60.0 \cdot \text{deg}) \cdot \sin(40.0 \cdot \text{deg}) + \sin(60.0 \cdot \text{deg}) \cdot \cos(40.0 \cdot \text{deg})} = 42.204 \cdot \text{kN}$$

(a) Find reactions using statics m=3 r=9 m+r=12 j=4 3j=12 m+r=3j So truss is statically determinate

$$r_{AQ} = \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} \qquad r_{OA} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} \qquad e_{AQ} = \frac{r_{AQ}}{|r_{AQ}|} = \begin{pmatrix} 0.8 \\ -0.6 \\ 0 \end{pmatrix} \qquad P_A = Pe_{AQ} = \begin{pmatrix} 0.8 P \\ -0.6 P \\ 0 \end{pmatrix} \qquad r_{OC} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad r_{OB} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

 $\Sigma M = 0$

$$M_O = r_{OA} \times P_A + r_{OC} \times \begin{pmatrix} C_x \\ C_y \\ C_z \end{pmatrix} + r_{OB} \times \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} = \begin{pmatrix} 4C_z + 3.0P \\ 4.0P - 2B_z \\ 2B_y - 4C_x \end{pmatrix}$$
so $\Sigma M_x = 0$ gives $C_z = \frac{-3}{4}P$

 $\Sigma F = 0$

$$R_O = P_A + \begin{pmatrix} O_x \\ O_y \\ O_z \end{pmatrix} + \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} + \begin{pmatrix} C_x \\ C_y \\ C_z \end{pmatrix} = \begin{pmatrix} B_x + C_x + O_x + 0.8P \\ B_y + C_y + O_y + -0.6P \\ O_z + \frac{5P}{4} \end{pmatrix} \quad \text{so} \quad \Sigma M_z = 0 \quad \text{gives} \quad \boxed{O_z = \frac{-5}{4}P}$$

For entire structure $\Sigma F_x = 0$ gives $B_x = -0.8P$ $\Sigma F_y = 0$ $C_y = 0.6P - B_y = O_y$ $C_y = 0.6P$

(b) Force in Member AC

$$\Sigma F_z = 0$$
 at joint C $F_{AC} = \frac{\sqrt{4^2 + 5^2}}{5} |C_Z| = \frac{3\sqrt{41}|P|}{20}$ $F_{AC} = \frac{3\sqrt{41}}{20} P$ tension $\frac{3\sqrt{41}}{20} = 0.96$

(a) Find reactions using statics m=4 r=8 m+r=12 j=4 3j=12so truss is statically determinate

$$r_{OA} = \begin{pmatrix} 0 \\ 0 \\ 0.8L \end{pmatrix} \quad r_{OB} = \begin{pmatrix} L \\ 0 \\ 0 \end{pmatrix} \quad r_{OC} = \begin{pmatrix} 0 \\ 0.6L \\ 0 \end{pmatrix} \quad F_A = \begin{pmatrix} A_x \\ A_y \\ P \end{pmatrix} \quad F_B = \begin{pmatrix} 0 \\ B_y \\ B_z \end{pmatrix} \quad F_c = \begin{pmatrix} C_x \\ -2P \\ 0 \end{pmatrix} \quad F_O = \begin{pmatrix} O_x \\ O_y \\ O_z \end{pmatrix}$$

$$\Sigma M = 0$$

Resultant moment at O

$$M_O = r_{OA} \times F_A + r_{OB} \times F_B + r_{OC} \times F_C = \begin{pmatrix} -0.8A_yL \\ 0.8A_xL - B_zL \\ B_yL - 0.6C_xL \end{pmatrix} \quad so \quad \Sigma M_x = 0 \quad \text{gives} \quad A_y = 0$$

 $\Sigma F = 0$

Resultant force at O

$$R_O = F_O + F_A + F_B + F_C = \begin{pmatrix} A_x + C_x + O_x \\ A_y + B_y + O_y - 2P \\ B_z + O_z + P \end{pmatrix}$$

Joint O $\Sigma F_{\tau} = 0$ $O_{\tau} = 0$ METHOD OF JOINTS

so from
$$\Sigma F_z = 0$$
 $B_z = -P$ and $\Sigma M_y = 0$ $A_x = \frac{B_z}{0.8} = -1.25 P$
Joint B $\Sigma F_y = 0$ $B_y = 0$
Joint C $\Sigma F_x = 0$ $C_x = 0$

Joint C
$$\Sigma F_r = 0$$
 $C_r = 0$

(b) Force in Member AB

$$\Sigma F_z = 0$$
 at joint B $F_{AB} = \frac{\sqrt{(0.8L)^2 + L^2}}{0.8L} |B_z| \qquad |B_z| = |P| \qquad \frac{\sqrt{(0.8L)^2 + L^2}}{0.8L} = 1.601$

$$\boxed{F_{AB} = 1.601P} \quad \text{tension}$$

(a) Find reactions using statics m=3 r=6 m+r=9 j=3 3j=9

m + r = 3j So truss is statically determinate

$$r_{OA} = \begin{pmatrix} 3 \ L \\ 0 \\ 0 \end{pmatrix} \qquad r_{OB} = \begin{pmatrix} 0 \\ 4 \ L \\ 0 \end{pmatrix} \qquad r_{OC} = \begin{pmatrix} 0 \\ 2 \ L \\ 4 \ L \end{pmatrix} \qquad F_A = \begin{pmatrix} -2 \ P \\ A_y \\ A_z \end{pmatrix} \qquad F_B = \begin{pmatrix} B_x \\ B_y \\ 3 \ P \end{pmatrix} \qquad F_C = \begin{pmatrix} C_x \\ C_y \\ P \end{pmatrix}$$

 $\Sigma M = 0$

Resultant moment at O

$$M_O = r_{OA} \times F_A + r_{OB} \times F_B + r_{OC} \times F_C = \begin{pmatrix} 14LP - 4C_yL \\ 4C_xL - 3A_zL \\ 3A_yL - 4B_xL - 2C_xL \end{pmatrix}$$
 so $\Sigma M_x = 0$ gives $C_y = \frac{14}{4}P$

 $\Sigma F = 0$

Resultant force at O

$$R_O = F_A + F_B + F_C = \begin{pmatrix} B_x + C_x - 2P \\ A_y + B_y + C_y \\ A_z + 4P \end{pmatrix}$$
 so $\Sigma F_z = 0$ gives $A_z = -4.0P$

METHOD OF JOINTS

Joint A
$$\Sigma F_z = 0$$
 $F_{ACz} = -A_z = 4.0P$ so $F_{ACy} = \frac{2}{4}F_{ACz} = 2.0P$ $F_{ACx} = \frac{3}{4}F_{ACz} = 3.0P$
$$\Sigma F_x = 0$$
 $F_{ABx} = -2P - F_{ACx} = -3.0P - 2P$ so $F_{ABy} = \frac{4}{3}F_{ABx} = -4.0P - \frac{8P}{3}$
$$\Sigma F_y = 0$$
 $A_y = -(F_{ABy} + F_{ACy}) = \frac{8P}{3} + 4.0P + -2.0P$ $A_y = 4.67P$

(b) Force in Member AB

$$F_{AB} = \sqrt{F_{ABx}^2 + F_{ABy}^2}$$
 $F_{AB} = -\sqrt{5^2 + \left(\frac{20}{3}\right)^2}P = -\frac{25P}{3}$ $\frac{25}{3} = 8.33$

$$\boxed{F_{AB} = -8.33P} \quad \text{compression}$$

 $\Sigma F = 0$

(a) Find reactions using statics m=3 r=6 m+r=9 j=3 3j=9 m+r=3j so truss is statically determinate

$$L = 2 \text{ m} \qquad P = 5 \text{ kN}$$

$$r_{OA} = \begin{pmatrix} 3L \\ 0 \\ 0 \end{pmatrix} \qquad r_{OB} = \begin{pmatrix} 0 \\ 4L \\ 2L \end{pmatrix} \qquad r_{OC} = \begin{pmatrix} 0 \\ 0 \\ 4L \end{pmatrix} \qquad F_A = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \qquad F_B = \begin{pmatrix} B_x \\ 0 \\ P \end{pmatrix} \qquad F_C = \begin{pmatrix} C_x \\ C_y \\ -P \end{pmatrix}$$

Resultant force at
$$O$$
 $R_O = F_A + F_B + F_C = \begin{pmatrix} A_x + B_x + C_x \\ A_y + C_y \\ A_z \end{pmatrix}$ so $\Sigma F_z = 0$ gives $A_z = 0$

RESULTANT MOMENT AT A

$$r_{AC} = \begin{pmatrix} -3 L \\ 0 \\ 4 L \end{pmatrix} \qquad e_{AC} = \frac{r_{AC}}{|r_{AC}|} = \begin{pmatrix} -0.6 \\ 0 \\ 0.8 \end{pmatrix} \qquad r_{AB} = \begin{pmatrix} -3 L \\ 4 L \\ 2 L \end{pmatrix}$$

$$M_A = r_{AB} \times F_B + r_{AC} \times F_C = \begin{pmatrix} 120 \text{ kN} - 24 C_y \\ 12 B_x + 24 C_x \\ -24 B_x - 18 C_y \end{pmatrix} \qquad M_A e_{AC} = -19.2 B_x - 72.0 \text{ kN} \quad \text{so} \quad \boxed{B_x = \frac{-72}{19.2} \text{ kN} = -3.75 \text{ kN}}$$

(b) Force IN MEMBER ABMethod of joints at B $\Sigma F_x = 0$ $F_{ABx} = -B_X$ $F_{AB} = \frac{\sqrt{29}}{3} F_{ABx} = 6.73 \text{ kN}$

(a) Apply laws of statics
$$L_1 = 30$$
 in. $L_2 = 20$ in. $T_1 = 21000$ lb-in. $T_2 = 10000$ lb-in. $\Sigma M_x = 0$ $T_A = T_1 - T_2 = 11,000$ lb-in.

(b) Internal stress resultant T at two locations Cut shaft at midpoint between A and B at $x = L_1/2$ $\Sigma M_x = 0 \qquad T_{AB} = -T_A = -11,000 \text{ lb-in.}$ (use left FBD)

Cut shaft at midpoint between B and C at
$$x = L_1 + L_2/2$$
 $\Sigma M_x = 0$ $T_{BC} = T_2 = 10,000$ lb-in. (use right FBD)

$$\Sigma M_x = 0$$
 $T_{AB} = -T_A = -11,000 \text{ lb-in.}$

$$\Sigma M_x = 0$$
 $T_{BC} = T_2 = 10,000 \text{ lb-in.}$

(a) Reaction torque at
$$A$$
 $L_1 = 0.75 \text{ m}$ $L_2 = 0.75 \text{ m}$ $t_1 = 3100 \text{ N} \cdot \text{m/m}$ $T_2 = 1100 \text{ N} \cdot \text{m}$ Statics $\Sigma M_x = 0$ $T_A = -t_1 L_1 + T_2 = -1225 \text{ N} \cdot \text{m}$ $T_A = -1225 \text{ N} \cdot \text{m}$

(b) Internal torsional moments at two locations
Cut shaft between
$$A$$
 and B
$$T_1(x) = -T_A - t_1 x$$

$$T_1\left(\frac{L_1}{2}\right) = 62.5 \text{ N} \cdot \text{m}$$
 (use left FBD)

Cut shaft between B and C
$$T_2(x) = -T_A - t_1 L_1$$
 $T_2\left(L_1 + \frac{L_2}{2}\right) = -1100 \text{ N} \cdot \text{m}$ (use left FBD)

(a) STATICS

$$\Sigma F_H = 0 \qquad A_x = \frac{-1}{2} (90 \text{ lb/ft}) 12 \text{ ft} = -540 \text{ lb}$$

$$\Sigma F_V = 0 \qquad A_y + C_y = 0$$

$$\Sigma M_{\text{FBDBC}} = 0 \qquad C_y = \frac{500 \text{ lb-ft}}{9 \text{ ft}} = 55.6 \text{ lb} \qquad A_y = -C_y = -55.6 \text{ lb}$$

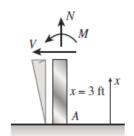
$$\Sigma M_A = 0 \qquad M_A = 500 \text{ lb-ft} + \frac{1}{2} (90 \text{ lb/ft}) 12 \text{ ft} \left(\frac{2}{3} 12 \text{ ft}\right) - C_y 9 \text{ ft} = 4320 \text{ lb-ft}$$

(b) Internal stress resultants

$$N = -A_y = 55.6 \text{ lb}$$

$$V = -A_x - \frac{1}{2} \left(\frac{3}{12} 90 \text{ lb/ft} \right) 3 \text{ ft} = 506 \text{ lb}$$

$$M = -M_A - A_x 3 \text{ ft} - \frac{1}{2} \left(\frac{3}{12} 90 \text{ lb/ft} \right) 3 \text{ ft} \left(\frac{1}{3} 3 \text{ ft} \right) = -2734 \text{ lb-ft}$$



(a) STATICS

$$\Sigma F_x = 0$$
 $A_x = \frac{3}{5} (200 \text{ N}) + \frac{1}{2} (80 \text{ N/m}) 4 \text{ m} = 280 \text{ N}$

$$\Sigma M_{BRHFB} = 0 \quad D_{y} = \frac{1}{3 \text{ m}} \left[\frac{4}{5} (200 \text{ N}) (1.5 \text{ m}) + \frac{1}{2} (80 \text{ N/m}) 4 \text{ m} \left(\frac{1}{3} 4 \text{ m} \right) \right]$$
$$= 151.1 \text{ N} < \text{use right hand FBD } (BCD \text{ only})$$

$$\Sigma F_y = 0$$
 $A_y = -D_y + \frac{4}{5} (200 \text{ N}) = 8.89 \text{ N}$

$$\Sigma M_A = 0 \qquad M_A = \frac{4}{5} (200 \text{ N}) (1.5 \text{ m}) - \frac{3}{5} (200 \text{ N}) (4 \text{ m}) - D_y 3 \text{ m} - \frac{1}{2} (80 \text{ N/m}) 4 \text{ m} \left(\frac{2}{3} 4 \text{ m}\right) = -1120 \text{ N} \cdot \text{m}$$

(b) RESULTANT FORCE IN PIN AT B

LEFT HAND FBD (SEE FIGURE)

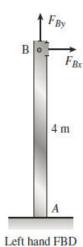
$$F_{Bx} = -A_x = -280 \,\text{N}$$
 $F_{By} = -A_y = -8.89 \,\text{N}$

RIGHT HAND FBD

$$F_{Bx} = \frac{3}{5} (200 \text{ N}) + \frac{1}{2} (80 \text{ N/m}) 4 \text{ m} = 280 \text{ N}$$

$$F_{By} = \frac{4}{5} (200 \text{ N}) - D_y = 8.89 \text{ N}$$

Resultant_B =
$$\sqrt{F_{Bx}^2 + F_{By}^2}$$
 = 280 N



$$L = 14 \text{ft}$$
 $q_0 = 12 \frac{\text{lbf}}{\text{ft}}$ $P = 50 \text{lbf}$ $M_0 = 300 \text{lbf} \cdot \text{ft}$

$$\Sigma \mathbf{M_D} = -\mathbf{M_o} + \frac{1}{2} \cdot \mathbf{q_o} \cdot \mathbf{L} \cdot \frac{\mathbf{L}}{3} - \frac{4}{5} \cdot \mathbf{P} \cdot \frac{\mathbf{L}}{2} + \frac{3}{5} \mathbf{P} \cdot \mathbf{L} - \frac{1}{2} \cdot \mathbf{q_o} \cdot \mathbf{L} \cdot \frac{2\mathbf{L}}{3} - \mathbf{A_y} \cdot \mathbf{L} = 0$$

$$A_y = \frac{-M_o + \frac{1}{2} \cdot q_o \cdot L \cdot \frac{L}{3} - \frac{4}{5} \cdot P \cdot \frac{L}{2} + \frac{3}{5} P \cdot L - \frac{1}{2} \cdot q_o \cdot L \cdot \frac{2L}{3}}{L} = -39.429 \cdot lbf$$

$$D_y = -A_y + \frac{1}{2} \cdot q_0 \cdot L + \frac{4}{5} \cdot P = 163.429 \cdot lbf$$

$$D_X = \frac{-1}{2} \cdot q_0 \cdot L + \frac{3}{5} \cdot P = -54 \cdot lbf$$

$$V_{midAB} = A_y - \frac{1}{2} \cdot \frac{L}{2} \cdot \frac{q_0}{2} = -60.429 \cdot lbf$$
 $N_{mid} = 0$

$$M_{\text{midAB}} = M_{\text{o}} + A_{\text{y}} \cdot \frac{L}{2} - \frac{1}{2} \cdot \frac{q_{\text{o}}}{2} \cdot \frac{L}{2} \cdot \frac{\frac{L}{2}}{3} = -25 \cdot \text{lbf} \cdot \text{ft}$$

L = 4m
$$q_0 = 160 \cdot \frac{N}{m}$$
 P = 200N $M_0 = 380 \cdot N \cdot m$

Reactions

$$\begin{split} \Sigma F_{\mathbf{X}} &= 0 & A_{\mathbf{X}} &= 2 \cdot \left(\frac{3}{5} \cdot \mathbf{P}\right) - \frac{1}{2} \cdot \mathbf{q}_{0} \cdot \mathbf{L} = -80 \, \mathbf{N} \\ \Sigma M_{\mathbf{A}} &= 0 & D_{\mathbf{y}} &= \frac{1}{L} \cdot \left[M_{0} + \frac{4}{5} \cdot \mathbf{P} \cdot \frac{\mathbf{L}}{2} + \frac{4}{5} \cdot \mathbf{P} \cdot \frac{3 \cdot \mathbf{L}}{2} - \frac{1}{2} \cdot \mathbf{q}_{0} \cdot \mathbf{L} \cdot \left(\frac{\mathbf{L}}{3}\right) \right] = 308.333 \, \mathbf{N} \\ \Sigma F_{\mathbf{y}} &= 0 & A_{\mathbf{y}} &= -D_{\mathbf{y}} + 2 \cdot \left(\frac{4}{5} \cdot \mathbf{P}\right) = 11.667 \, \mathbf{N} \end{split}$$

Column BD internal forces and moment at mid-height - cut through column, use lower FBD (D on your left)

$$N_{mid} = -D_{y} = -308.333 \text{ N} \qquad V_{mid} = \frac{-1}{2} \cdot \frac{q_{0}}{2} \cdot \frac{L}{2} = -80 \text{ N} \qquad M_{mid} = -\left(\frac{1}{2} \cdot \frac{q_{0}}{2} \cdot \frac{L}{2}\right) \cdot \left(\frac{1}{3} \cdot \frac{L}{2}\right) = -53.333 \cdot \text{N-m}$$

$$L_{BC} = \frac{\frac{4}{5} \cdot 30 \text{in}}{\frac{2}{\sqrt{5}}} = 26.833 \cdot \text{in} \qquad L_{AC} = \frac{3}{5} \cdot (30 \text{in}) + \frac{1}{\sqrt{5}} \cdot L_{BC} = 30 \cdot \text{in}$$

Part (a) - statics

$$\begin{split} \Sigma M_A &= 0 & C_y = \frac{1}{L_{AC}} \cdot \left(2001b \cdot \frac{1}{2} \cdot \frac{3}{5} \cdot 30 in\right) = 60 \, lbf & C_x = \frac{-1}{2} \cdot C_y = -30 \, lbf \\ & \text{(resultant of C_x and C_y acts along line of strut)} \end{split}$$

$$\Sigma F_x = 0 & A_x = -C_x = 30 \, lbf & \text{strut)}$$

Part (b) - internal stress resultants N, V, M

distributed weight of door in -y dir. $w = \frac{2001b}{20ia} = 6.667 \cdot \frac{1b}{ia}$

components of w along and perpendicular to door

$$w_a = \frac{4}{5} \cdot w = 5.333 \cdot \frac{lb}{in}$$
 $w_p = \frac{3}{5} \cdot w = 4 \cdot \frac{lb}{in}$

$$N_x = w_a \cdot (20in) - \frac{3}{5} \cdot A_x - \frac{4}{5} \cdot A_y = -23.333 \text{ lbf}$$

$$\begin{split} V_{X} &= -w_{p} \cdot (20 \text{in}) - \frac{4}{5} \cdot A_{X} + \frac{3}{5} \cdot A_{y} = -20 \, \text{lbf} \\ M_{X} &= -w_{p} \cdot (20 \text{in}) \cdot \frac{20 \text{in}}{2} - \frac{4}{5} \cdot A_{X} \cdot (20 \text{in}) + \frac{3}{5} \cdot A_{y} \cdot (20 \text{in}) = 400 \cdot \text{lb} \cdot \text{in} \\ M_{X} &= 33.333 \, \text{lb} \cdot \text{ft} \end{split}$$

$$= -w_{\mathbf{p}} \cdot (20\text{in}) \cdot \frac{20\text{in}}{2} - \frac{3}{5} \cdot A_{\mathbf{x}} \cdot (20\text{in}) + \frac{3}{5} \cdot A_{\mathbf{y}} \cdot (20\text{in}) = 400 \cdot \text{lb} \cdot \text{in}$$

$$N_X = -23.3 \, lbf$$
 $V_X = -20 \, lbf$ $M_X = 33.3 \cdot lb \cdot ft$

$$\Sigma M_A = 0$$

$$\Sigma M_{A} = 0$$

$$10 \text{ kN}(6 \text{ m}) - 10 \text{ kN}\left(\frac{1}{\sqrt{2}}\right)(6 \text{ m}) + 90 \text{ kN} \cdot \text{m} + E_{y}(6 \text{ m}) - E_{x} 3 \text{ m} = 6E_{y} \text{m} - 3E_{x} \text{m} + 150 \text{ kN} \cdot \text{m} - 30 \sqrt{2} \text{ kN} \cdot \text{m}$$
so $6E_{y} \text{m} - 3E_{x} \text{m} + 150 \text{ kN} \cdot \text{m} - 30 \sqrt{2} \text{ kN} \cdot \text{m} = 0$
or $-E_{x} + 2E_{y} = \frac{-(150 \text{ kN} \cdot \text{m} - 30 \sqrt{2} \text{ kN} \cdot \text{m})}{3 \text{ m}} = -35.858 \text{ kN}$

$$\Sigma M_{CRHFB} = 0 < \text{right hand FBD}(CDE) \cdot \text{see figure}.$$

$$(E_{x} + E_{y}) 3 \text{ m} = -90 \text{ kN} \cdot \text{m} \qquad E_{x} + E_{y} = \frac{-90 \text{ kN} \cdot \text{m}}{3 \text{ m}} = -30 \text{ kN}$$

$$Solving \qquad \left(\frac{E_{x}}{E_{y}}\right) = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -35.858 \text{ kN} \\ -30 \text{ kN} \end{pmatrix} = \begin{pmatrix} -8.05 \\ -21.95 \end{pmatrix} \text{ kN}$$

$$\Sigma F_{x} = 0 \qquad A_{x} = -E_{x} + 10 \text{ kN} - 10 \text{ kN} \left(\frac{1}{\sqrt{2}}\right) = 10.98 \text{ kN}$$

$$\Sigma F_{y} = 0 \qquad A_{y} = -E_{y} + 10 \text{ kN} \left(\frac{1}{\sqrt{2}}\right) = 29.07 \text{ kN}$$

$$A_{y} = 29.1 \text{ kN}$$

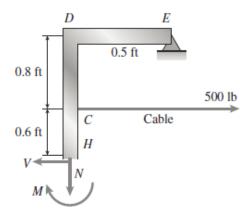
(b) Right hand FBD
$$C_x = -E_x = 8.05 \text{ kN}$$
 $C_y = -E_y = 22 \text{ kN}$ Resultant $C_y = \sqrt{C_x^2 + C_y^2} = 23.4 \text{ kN}$

$$C_{\rm v} = -E_{\rm v} = 22 \, \rm kM$$

(a) STATICS

$$\Sigma F_x = 0$$
 $E_x = 0$
$$\Sigma M_E = 0$$
 $A_y = \frac{1}{1 \text{ ft}} (-500 \text{ lb} \times 2.5 \text{ ft}) = -1250 \text{ lb}$
$$\Sigma F_y = 0$$
 $E_y = 500 \text{ lb} - A_y = 1750 \text{ lb}$

(b) Use upper (see Figure Below) or lower FBD to find stress resultants N, V, and M at H



$$\Sigma F_x = 0$$
 $V = E_x + 500 \text{ lb} = 500 \text{ lb}$
 $\Sigma F_y = 0$ $N = E_y = 1750 \text{ lb}$
 $\Sigma M_H = 0$
 $M = -0.6 \text{ ft}(500 \text{ lb}) - E_x 1.4 \text{ ft} + E_y 0.5 \text{ ft} = 575 \text{ lb-ft}$

(a) STATICS

$$\Sigma F_x = 0$$
 $A_x = \frac{4}{5} (400 \text{ N}) = 320 \text{ N}$ $A_x = 320 \text{ N}$

Use left hand FBD (cut through pin just left of C)

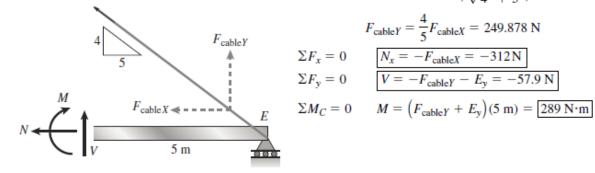
$$\Sigma M_C = 0$$
 $A_y = \frac{1}{7 \text{ m}} \left[\left[\frac{-3}{5} (400 \text{ N}) - \frac{4}{5} (400 \text{ N}) \right] (3 \text{ m}) \right] = -240 \text{ N}$ $A_y = -240 \text{ N}$

Use entire FBD
$$\Sigma M_C = 0$$
 $E_y = \frac{1}{5 \text{ m}} \left[A_y (7 \text{ m}) + \left(\frac{3}{5} 400 \text{ N} \right) (3 \text{ m}) \right] = -192 \text{ N}$ $E_y = -192 \text{ N}$

$$\Sigma F_y = 0$$
 $C_y = -A_y - E_y - \frac{3}{5}(400 \text{ N}) = 192 \text{ N}$ $C_y = 192 \text{ N}$

(b) N, V, and M just right of C; use right hand FBD

$$F_{\text{cable}X} = 400 \text{ N} \left(\frac{5}{\sqrt{4^2 + 5^2}} \right) = 312.348 \text{ N}$$



$$F_{\text{cable}Y} = \frac{4}{5}F_{\text{cable}X} = 249.878 \text{ N}$$

$$\Sigma F_x = 0$$
 $N_x = -F_{\text{cable}X} = -312 \text{ N}$
 $\Sigma F_y = 0$ $V = -F_{\text{cable}Y} - E_y = -57.9 \text{ N}$

$$\Sigma M_C = 0$$
 $M = (F_{cable Y} + E_y)(5 \text{ m}) = 289 \text{ N} \cdot \text{m}$

(c) Resultant force in Pin Just Left of C; use Left hand FBD $A_x=320~\mathrm{N}$

$$F_{Cx} = -A_x + \left(\frac{4}{5} - \frac{3}{5}\right) 400 \text{ N} = -240 \text{ N}$$
 $F_{Cy} = -A_y - \left(\frac{3}{5} + \frac{4}{5}\right) 400 \text{ N} = -320 \text{ N}$

$$Res_C = \sqrt{F_{Cx}^2 + F_{Cy}^2} = 400 \text{ N}$$

(a) STATICS W = 150 lb

$$\Sigma M_{A} = 0 \qquad B_{x}(4) + W\left(\frac{2\sqrt{3}}{2}\right) = 0 \text{ solve}, B_{x} = -\frac{75\sqrt{3}}{2}$$

$$so \qquad B_{x} = -\frac{75\sqrt{3}}{2} = -64.952$$

$$\Sigma F_{x} = 0 \qquad -A \sin(30^{\circ}) + B_{x} + T \cos(30^{\circ}) + T \cos\left(\arctan\left(\frac{7}{2\sqrt{3}}\right)\right) = 0$$

$$\Sigma F_{y} = 0 \qquad A \cos(30^{\circ}) + T \sin(30^{\circ}) + T \sin\left(\arctan\left(\frac{7}{2\sqrt{3}}\right)\right) = W$$

$$\binom{A}{T} = \begin{pmatrix} -\sin(30^{\circ}) & \cos(30^{\circ}) + \cos\left(\arctan\left(\frac{7}{2\sqrt{3}}\right)\right) \\ \cos(30^{\circ}) & \sin(30^{\circ}) + \sin\left(\arctan\left(\frac{7}{2\sqrt{3}}\right)\right) \end{pmatrix}^{-1} \begin{pmatrix} -B_{x} \\ W \end{pmatrix} \qquad \binom{A}{T} = \begin{pmatrix} 57.713 \\ 71.634 \end{pmatrix} \text{ lb}$$

SUPPORT REACTIONS

$$B_x = -65$$
 $A = 57.7$ Units = lbs $A_x = -A \sin(30^\circ) = -28.9 \text{ lb}$ $A_y = A \cos(30^\circ) = 50 \text{ lb}$ $\sqrt{A_x^2 + A_y^2} = 57.713$

(b) Cable force is T (LBS) from above solution

$$T = 71.6 \text{ lb}$$

(a) STATICS

RIGHT-HAND FBD

$$\Sigma M_{\text{pin}} = 0$$
 $E_{\text{y}} = \frac{1}{6 \text{ m}} \left[\frac{1}{2} (3 \text{ kN/m}) 4 \text{ m} \left(\frac{1}{3} 4 \text{ m} \right) \right] = 1.333 \text{ kN}$ $E_{\text{y}} = 1.333 \text{ kN}$

ENTIRE FBD

$$\Sigma M_A = 0 \quad C_y = \frac{1}{6 \text{ m}} \left[-E_y 12 \text{ m} + (16 \text{ kN}) 4 \text{ m} + (1.5 \text{ kN/m}) 6 \text{ m} (3 \text{ m}) - \frac{1}{2} (3 \text{ kN/m}) 4 \text{ m} \left(\frac{2}{3} 4 \text{ m} \right) \right] = 9.833 \text{ kN}$$

$$C_{\rm y} = 9.83~\rm kN$$

$$\Sigma F_y = 0$$
 $A_y = -C_y - E_y + (1.5 \text{ kN/m}) 6 \text{ m} = -2.167 \text{ kN}$

$$A_{\rm y} = -2.17 \, \rm kN$$

$$\Sigma F_y = 0$$
 $A_y = -C_y - E_y + (1.5 \text{ kN/m}) 6 \text{ m} = -2.167 \text{ kN}$ $A_y = -2.17 \text{ kN}$ $A_y = -2.17 \text{ kN}$ $A_x = -16 \text{ kN} + \frac{1}{2} (3 \text{ kN/m}) 4 \text{ m} = -10 \text{ kN}$ $A_x = -10 \text{ kN}$

$$A_x = -10 \text{ kN}$$

(b) Resultant force in Pin; use either right hand or left hand FBD (cut through Pin exposing Pin forces F_{Dx} AND F_{Dv}) THEN SUM FORCES IN x AND y DIRECTIONS FOR EITHER FBD

$$F_{Dx} = -16 \text{ kN} - A_x = -6 \text{ kN}$$

$$F_{Dx} = \frac{1}{2} (3 \text{ kN/m}) 4 \text{ m} = 6 \text{ kN}$$

$$F_{Dy} = -A_y + (1.5 \text{ kN/m}) 6 \text{ m} = 11.167 \text{ kN}$$

$$F_{Dy} = -C_y - E_y = -11.167 \text{ kN}$$

Resultant_D =
$$\sqrt{F_{D_x}^2 + F_{D_y}^2}$$
 = 12.68 kN

Resultant_D =
$$12.68 \text{ kN}$$

(a) Statics
$$P_1 = 50 \text{ lb}$$
 $P_2 = 40 \text{ lb}$

$$\Sigma F_x = 0$$
 $O_x = -P_1 \cos(15^\circ) = -48.3 \text{ lb}$ $\Sigma F_y = 0$ $O_y = P_2 = 40 \text{ lb}$

$$\Sigma F_z = 0$$
 $O_z = P_1 \sin(15^\circ) = 12.94 \text{ lb}$

$$\Sigma M_x = 0$$
 $M_{Ox} = P_2 6 \text{ in.} + P_1 \sin(15^\circ)(7 \text{ in.}) = 331 \text{ lb-in.}$

$$\Sigma M_{\rm y} = 0$$
 $M_{O{\rm y}} = P_1 \sin(15^\circ)(8 \text{ in. } \sin(15^\circ)) + P_1 \cos(15^\circ)(6 \text{ in. } + 8 \text{ in. } \cos(15^\circ))$ $M_{O{\rm y}} = 690 \text{ lb-in.}$

$$\Sigma M_z = 0$$
 $M_{Oz} = -P_1 \cos(15^\circ)(7 \text{ in.}) = -338 \text{ lb-in.}$

(b) Internal stress resultants at midpoint of OA

$$N = -O_{\rm v} = -40 \, \rm lb$$

$$V_x = -O_x = 48.3 \text{ lb}$$
 $V_z = -O_z = -12.94 \text{ lb}$ $V = \sqrt{V_x^2 + V_z^2} = 50 \text{ lb}$

$$T = -M_{Ov} = -690$$
 lb-in.

$$M_x = -M_{Ox} = -330.59$$
 lb-in. $M_z = -M_{Oz} = 338.07$ lb-in. $M = \sqrt{M_x^2 + M_z^2} = 473$ lb-in.

Forces

$$P_x = 60 \text{ N}$$
 $P_z = -45 \text{ N}$ $M_y = 120 \text{ N} \cdot \text{m}$ $q_0 = 75 \text{ N/m}$

$$F_C = \begin{pmatrix} P_x \\ 0 \\ P_z \end{pmatrix} = \begin{pmatrix} 60 \\ 0 \\ -45 \end{pmatrix} N \qquad R_A = \begin{pmatrix} 0 \\ A_y \\ A_z \end{pmatrix}$$

VECTOR ALONG MEMBER CD

$$r_{EC} = \begin{bmatrix} 1.5 - 2.5 \\ 2 - 0 \\ 0 - (-0.5) \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0.5 \end{bmatrix} \qquad |r_{EC}| = 2.291 \qquad e_{EC} = \frac{r_{EC}}{|r_{EC}|} = \begin{pmatrix} -0.436 \\ 0.873 \\ 0.218 \end{pmatrix}$$

(a) STATICS (FORCE AND MOMENT EQUILIBRIUM)

$$\Sigma F = 0 \qquad \begin{pmatrix} 0 \\ A_y \\ A_z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ R_T \end{pmatrix} + \begin{pmatrix} P_x \\ 0 \\ P_z \end{pmatrix} + \begin{pmatrix} D_x \\ D_y \\ D_z \end{pmatrix} = 0 \qquad \text{resultant of triangular load:} \quad R_T = \frac{1}{2} q_0 (2 \text{ m}) = 75 \text{ N}$$
 where
$$\begin{pmatrix} D_x \\ D_y \\ D_z \end{pmatrix} = D e_{EC}$$

SOLVING ABOVE THREE EQUATIONS:

$$\Sigma F_x = 0$$
 $D_x = -P_x$ so $D = \frac{-P_x}{e_{EC_1}}$ $D = 137.477 \, \mathrm{N}$ $D_x = -60 \, \mathrm{N}$

$$\Sigma F_y = 0$$
 $D_y = e_{EC_2} D$ $D_y = 120 \, \mathrm{N}$ $D_z = 120 \, \mathrm{N}$

$$\Sigma F_z = 0$$
 $D_z = e_{EC_3} D$ $D_z = e_{EC_3} D$ $D_z = 20 \, \mathrm{N}$ $D_z = 30 \, \mathrm{N}$ $D_z = 30 \, \mathrm{N}$ $D_z = 20 \, \mathrm{N}$

$$\begin{split} \Sigma M_A &= 0 \\ \begin{pmatrix} M_{Ax} \\ M_{Ay} \\ M_{Az} \end{pmatrix} + r_{AE} \times D + r_{AC} \times \begin{pmatrix} P_x \\ 0 \\ P_z \end{pmatrix} + \begin{pmatrix} 0 \\ M_y \\ 0 \end{pmatrix} + r_{cg} \times \begin{pmatrix} 0 \\ 0 \\ R_T \end{pmatrix} = 0 \\ r_{AE} &= \begin{pmatrix} 2.5 - 0 \\ 0 - 0 \\ -0.5 - 0 \end{pmatrix} \text{m} \quad D = \begin{pmatrix} D_x \\ D_y \\ D_z \end{pmatrix} \quad D = \begin{pmatrix} -60 \\ 120 \\ 30 \end{pmatrix} \text{N} \quad |D| = 137.477 \, \text{N} \qquad r_{AE} \times D = \begin{pmatrix} 60 \\ -45 \\ 300 \end{pmatrix} \text{N} \cdot \text{m} \\ r_{AC} &= \begin{pmatrix} 1.5 - 0 \\ 2 - 0 \\ 0 - 0 \end{pmatrix} \text{m} \quad r_{AC} \times \begin{pmatrix} P_x \\ 0 \\ P_z \end{pmatrix} = \begin{pmatrix} -90 \\ 67.5 \\ -120 \end{pmatrix} \text{J} \qquad r_{cg} = \begin{pmatrix} 0 \\ \frac{2}{3} \, (2 \, \text{m}) \\ 0 \end{pmatrix} \qquad r_{cg} \times \begin{pmatrix} 0 \\ 0 \\ R_T \end{pmatrix} = \begin{pmatrix} 100 \\ 0 \\ 0 \end{pmatrix} \text{N} \cdot \text{m} \\ \begin{pmatrix} M_{Ax} \\ M_{Ay} \\ M_{Az} \end{pmatrix} = - \begin{bmatrix} r_{AE} \times D + r_{AC} \times \begin{pmatrix} P_x \\ 0 \\ P_z \end{pmatrix} + \begin{pmatrix} 0 \\ M_y \\ 0 \end{pmatrix} + r_{cg} \times \begin{pmatrix} 0 \\ 0 \\ R_T \end{pmatrix} = \begin{pmatrix} -70 \\ -142.5 \\ -180 \end{pmatrix} \text{N} \cdot \text{m} \\ \begin{pmatrix} M_{Ax} \\ M_{Ay} \\ M_{Az} \end{pmatrix} = \begin{pmatrix} -70 \\ -142.5 \\ -80 \end{pmatrix} \text{N} \cdot \text{m} \end{split}$$

(b) RESULTANTS AT MID-HEIGHT OF AB (SEE FBD IN FIGURE BELOW)

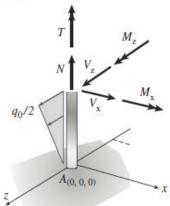
$$N = -A_y = 120 \text{ N}$$
 $V_x = -D_x - P_x = 0 \text{ N}$ $V_z = -A_z - \frac{1}{2} \frac{q_0}{2} (2 \text{ m})/2 = 41.25 \text{ N}$ $V_z = 41.3 \text{ N}$

$$T = -M_{Ay} = 142.5 \text{ N} \cdot \text{m}$$
 $M_x = -M_{Ax} + A_z(1 \text{ m}) + \frac{1}{2} \frac{q_0}{2} 1 \text{ m} \left(\frac{1}{3} 1 \text{ m}\right) = 16.25 \text{ N} \cdot \text{m}$

$$M_z = -M_{Az} = 180 \text{ N} \cdot \text{m}$$

$$M_{\text{resultant}} = \sqrt{M_x^2 + M_z^2} = 180.732 \text{ N} \cdot \text{m}$$

$$M_{\text{resultant}} = 180.7 \text{ N} \cdot \text{m}$$



Position and unit vectors

$$r_{AB} = \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix} \qquad r_{AP} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \qquad r_{AC} = \begin{pmatrix} 10 \\ 4 \\ -4 \end{pmatrix} \qquad r_{CD} = \begin{bmatrix} 0 - 10 \\ 10 - 4 \\ -20 - (-4) \end{bmatrix} = \begin{pmatrix} -10 \\ 6 \\ -16 \end{pmatrix} \qquad e_{CD} = \frac{r_{CD}}{|r_{CD}|} = \begin{pmatrix} -0.505 \\ 0.303 \\ -0.808 \end{pmatrix}$$

APPLIED FORCE AND MOMENT

$$r_{CE} = \begin{bmatrix} 0 - 10 \\ 8 - 4 \\ 10 - (-4) \end{bmatrix} = \begin{pmatrix} -10 \\ 4 \\ 14 \end{pmatrix} \qquad e_{CE} = \frac{r_{CE}}{|r_{CE}|} = \begin{pmatrix} -0.566 \\ 0.226 \\ 0.793 \end{pmatrix}$$

$$P_{\rm v} = -50 \, {\rm lb}$$
 $M_{\rm x} = -20 \, {\rm lb\text{-in}}$.

STATICS FORCE AND MOMENT EQUILIBRIUM

First sum moment about point A

$$\Sigma M_A = 0$$

$$M_{A} = \begin{pmatrix} 0 \\ 0 \\ M_{Az} \end{pmatrix} + r_{AP} \times \begin{pmatrix} 0 \\ P_{y} \\ 0 \end{pmatrix} + \begin{pmatrix} M_{x} \\ 0 \\ 0 \end{pmatrix} + r_{AC} \times \left(T_{D} e_{CD} + T_{E} e_{CE} \right) = \begin{pmatrix} -2.0203 T_{D} + 4.0762 T_{E} - 20.0 \\ 10.102 T_{D} + -5.6614 T_{E} \\ M_{Az} + 5.0508 T_{D} + 4.5291 T_{E} - 250.0 \end{pmatrix}$$

Solve moment equilibrium equations for moments about x and y axes to get cable tension forces

Next, solve moment equilibrium equation about z axis now that cable forces are known

$$M_{Az} = -(5.0508 T_D + 4.5291 T_E - 250.0) = 200 \text{ lb-in.}$$
 (a)

Finally, use force equilibrium to find reaction forces at point A

$$\Sigma F = 0$$
 $\begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = -\begin{pmatrix} 0 \\ P_y \\ 0 \end{pmatrix} - (T_D e_{CD} + T_E e_{CE}) = \begin{pmatrix} 5.77 \\ 47.31 \\ -2.31 \end{pmatrix} \text{lb}$

Find member lengths
$$L_{QS} = 2 \cdot (3.65 \text{m}) = 7.3 \text{ m}$$
 $L_{RS} = \sqrt{(2.44 \text{m})^2 + (2.44 \text{m} - 1.22 \text{m})^2} = 2.728 \text{m}$ $L_{PQ} = L_{RS} = \sqrt{(2.44 \text{m})^2 + (2.44 \text{m} - 1.22 \text{m})^2} = 2.728 \text{m}$

Assume that soccer goal is supported only at points C, H and D (see reaction force components at each loaction in fig.)

Statics - sum moment about each axis and forces in each axis direction

$$F = 200N$$

 $\Sigma M_v = 0$ to find reaction component H_v

Find moments about x due to for component F_v and also for distributed weight of each frame component

$$M_{xGP} = \frac{(1.22m)^2}{2} \cdot \left(29 \frac{N}{m}\right)$$
 $M_{xBR} = M_{xGP}$ $M_{xDQ} = \frac{(2.44m)^2}{2} \cdot \left(29 \frac{N}{m}\right)$ $M_{xCS} = M_{xDQ}$

$$\mathbf{M}_{xRS} = \mathbf{L}_{RS} \cdot \left(29 \, \frac{\mathbf{N}}{\mathbf{m}}\right) \cdot \left(1.22 \, \mathbf{m} + \frac{1.22 \, \mathbf{m}}{2}\right) \\ \mathbf{M}_{xPQ} = \mathbf{M}_{xRS} \\ \mathbf{M}_{xQS} = \mathbf{L}_{QS} \cdot \left(29 \, \frac{\mathbf{N}}{\mathbf{m}}\right) \cdot (2.44 \, \mathbf{m})$$

$$H_{Z} = \frac{1}{2.44m} \cdot \left[\frac{4}{5} \cdot F \cdot \left(\frac{2.44m}{2} \right) + 2 \cdot M_{XGP} + 2 \cdot M_{XDQ} + 2 \cdot M_{XPQ} + M_{XQS} \right] = 498.818 \, N \qquad \boxed{H_{Z} = 499 \, N}$$

 $\Sigma M_V = 0$ to find reaction force D_z

$$\begin{split} \mathbf{M}_{yGD} &= 2.44 \mathrm{m} \cdot \left(73 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \mathbf{L}_{QS} \qquad \mathbf{M}_{yGP} = 1.22 \mathrm{m} \cdot \left(29 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \mathbf{L}_{QS} \qquad \mathbf{M}_{yDQ} = 2.44 \mathrm{m} \cdot \left(29 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \mathbf{L}_{QS} \\ \mathbf{M}_{yPQ} &= \mathbf{L}_{RS} \cdot \left(29 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \mathbf{L}_{QS} \qquad \mathbf{M}_{yBG} = \mathbf{L}_{QS} \cdot \left(73 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \frac{\mathbf{L}_{QS}}{2} \qquad \mathbf{M}_{yQS} = \mathbf{L}_{QS} \cdot \left(29 \frac{\mathrm{N}}{\mathrm{m}}\right) \cdot \frac{\mathbf{L}_{QS}}{2} \end{split}$$

$$D_{z} = \frac{1}{L_{QS}} \left[M_{yGD} + M_{yGP} + M_{yDQ} + M_{yPQ} + M_{yBG} + M_{yQS} - H_{z} \cdot \frac{L_{QS}}{2} - \frac{3}{5} \cdot F \cdot \left(\frac{2.44 \text{m}}{2} \right) \right] = 466.208 \, \text{N} \cdot \left[D_{z} = 466 \, \text{N} \right]$$

 $\Sigma M_Z = 0$ to find reaction force H_y

$$H_y = \frac{1}{3.65 \text{m}} \cdot \left(\frac{4}{5} \cdot \text{F} \cdot \text{L}_{QS}\right) = 320 \text{ N}$$
 $H_y = 320 \text{ N}$

$$\Sigma F_X = 0$$
 to find reaction force C_X $C_X = \frac{3}{5} \cdot F = 120 \text{ N}$

$$\Sigma F_y = 0$$
 to find reaction force C_y $C_y = -H_y + \frac{4}{5} \cdot F = -160 \,\mathrm{N}$ $C_y = -160 \,\mathrm{N}$

 $\Sigma F_Z = 0$ to find reaction force C_Z

$$C_{z} = -D_{z} - H_{z} + \left(29 \frac{N}{m}\right) \cdot \left[2 \cdot (1.22m) + 2 \cdot (2.44m) + 2 \cdot L_{RS} + L_{QS}\right] + \left(73 \frac{N}{m}\right) \cdot \left[2 \cdot (2.44m) + L_{QS}\right] = 0$$

$$506.318$$
 $C_z = 506$ N

$$\alpha = \arcsin\left(\frac{10}{50}\right) = 11.537^{\circ}$$
 Analysis pertains to this position of exerciser only

STATICS UFBD (CUT AT AXIAL AND MOMENT RELEASES JUST ABOVE B)

Inclined vertical component of reaction at C = 0 (due to axial release)

Sum moments about moment release to get inclined normal reaction at C

$$C = \frac{20 \text{ lb} (34 \text{ in.} + 16 \text{ in.})}{34 \text{ in.}} = 29.412 \text{ lb} \qquad \boxed{C_x = C \cos(\alpha) = 28.8 \text{ lb}}$$
$$\boxed{C_y = C \sin(\alpha) = 5.88 \text{ lb}} \qquad \sqrt{C_x^2 + C_y^2} = 29.412 \text{ lb}$$

$$C_y = C\sin(\alpha) = 5.88 \text{ lb}$$
 $\sqrt{C_x^2 + C_y^2} = 29.412 \text{ lb}$

STATICS LFBD (CUT THROUGH AXIAL AND MOMENT RELEASES)

Sum moments to find reaction
$$A_v$$

$$A_y = \frac{175 \text{ lb}(16 \text{ in.})}{(34 \text{ in.} + 16 \text{ in.})\cos(\alpha)} = 57.2 \text{ lb}$$

STATICS SUM FORCES FOR ENTIRE FBD TO FIND REACTION AT B

 $B_x = C_x + 175 \operatorname{lb}(\sin(\alpha)) - 20 \operatorname{lb}(\cos(\alpha)) = 44.2 \operatorname{lb}$ < acts leftward Sum forces in x-direction:

 $B_y = -A_y - C_y + 175 \text{ lb}(\cos(\alpha)) + 20 \text{ lb}(\sin(\alpha)) = 112.4 \text{ lb}$ $B_x = 44.2 \text{ lb}$ $B_y = 112.4 \text{ lb}$ Sum forces in y-direction:

$$B_x = 44.2 \text{ lb}$$
 $B_y = 112.4 \text{ lb}$

 $B = \sqrt{B_x^2 + B_y^2} = 120.8 \text{ lb}$ Resultant reaction force at B:

(a) REACTIONS: SUM MOMENTS ABOUT REAR HUB TO FIND VERTICAL REACTION AT FRONT HUB (Fig. 1)

$$\Sigma M_R = 0$$

$$V_F = \frac{1}{1130} \left[670(241) - 90(\cos(5^\circ))254 + 200\cos(15^\circ)660 + 2(45)\cos(30^\circ)1021 + 2(45)\sin(30^\circ)752 \right]$$

$$V_F = 335.945 \text{ N}$$

Sum forces to get force components at rear hub

$$\Sigma F_{\text{vert}} = 0$$
 $V_B = 670 - 90\cos(5^\circ) + 200\cos(15^\circ) + 2(45)\cos(30^\circ) - V_F = 515.525 \text{ N}$
 $\Sigma F_{\text{horiz}} = 0$ $H_B = -90\sin(5^\circ) - 200\sin(15^\circ) - 2(45)\sin(30^\circ) = -104.608 \text{ N}$

(b) Stress resultants N, V, and M in seat post (Fig. 2)

SEAT POST RESULTANTS (Fig. 2)

$$N = -670\cos(15.3^{\circ}) = -646.253 \text{ N}$$

 $V = 670 \sin(15.3^{\circ}) = 176.795 \text{ N}$

 $M = 670 \sin(15.3^{\circ}) \ 254 = 44,905.916 \ \text{N·mm}$

N = -646 N

V = 176.8 N

 $M = 44.9 \text{ N} \cdot \text{m}$

Part (a)
$$P_1 = 1700 \text{ lb} \qquad d_{AB} = 1.25 \text{ in.} \qquad t_{AB} = 0.5 \text{ in.}$$

$$d_{BC} = 2.25 \text{ in.} \qquad t_{BC} = 0.375 \text{ in.}$$

$$A_{AB} = \frac{\pi [d_{AB}^2 - (d_{AB} - 2t_{AB})^2]}{4}$$

$$A_{AB} = 1.178 \text{ in.}^2$$
 $\sigma_{AB} = \frac{P_1}{A_{AB}}$

 $\sigma_{AB} = 1443 \text{ psi}$ compression

Part (c)
$$P_{2} = 2260 \quad \frac{P_{1} + P_{2}}{\sigma_{AB}} = A_{BC}$$

$$\frac{P_{1} + P_{2}}{\sigma_{AB}} = 2.744$$

$$(d_{BC} - 2t_{BC})^2 = d_{BC}^2 - \frac{4}{\pi} \left(\frac{P_1 + P_2}{\sigma_{AB}} \right)$$

$$A_{BC} = \frac{\pi [d_{BC}^2 - (d_{BC} - 2t_{BC})^2]}{4}$$

$$A_{BC} = 2.209 \text{ in.}^2$$
 $P_2 = \sigma_{AB}A_{BC} - P_1$ $P_2 = 1488 \text{ lbs}$

CHECK:
$$\frac{P_1 + P_2}{A_{RC}} = 1443 \text{ psi}$$

$$d_{BC} - 2t_{BC} = \sqrt{d_{BC}^2 - \frac{4}{\pi} \left(\frac{P_1 + P_2}{\sigma_{AB}}\right)}$$

$$t_{BC} = \frac{d_{BC} - \sqrt{d_{BC}^2 - \frac{4}{\pi} \left(\frac{P_1 + P_2}{\sigma_{AB}}\right)}}{2}$$

$$t_{BC} = 0.499$$
 in.

$$P_A = 10kN$$
 $P_B = 20kN$

$$d_1 = 50 \text{mm}$$
 $d_2 = 60 \text{mm}$ $d_3 = 55 \text{mm}$ $d_4 = 65 \text{mm}$

$$L_2 = 400 \text{mm}$$
 $L_1 = 300 \text{mm}$ $\delta_1 = 3.29 \text{mm}$ $\delta_2 = 1.25 \text{mm}$

$$A_1 = \frac{1}{4} \cdot \pi \cdot \left(d_2^2 - d_1^2 \right) = 863.938 \cdot mm^2$$

$$A_2 = \frac{1}{4} \cdot \pi \cdot \left(d_4^2 - d_3^2 \right) = 942.478 \cdot mm^2$$

a) axial normal stresses

$$\sigma_1 = \frac{P_B}{A_1} = 23.15 \cdot \text{MPa}$$
 $\sigma_2 = \frac{P_B - P_A}{A_2} = 10.61 \cdot \text{MPa}$

b) axial normal strains

$$\varepsilon_1 = \frac{\delta_1 - \delta_2}{L_1} = 6.8 \times 10^{-3}$$
 $\varepsilon_2 = \frac{\delta_2}{L_2} = 3.125 \times 10^{-3}$

$$A = \pi \cdot \left[(1.5in)^2 - \left(1.5in - \frac{3}{4}in \right)^2 \right] = 5.301 \cdot in^2 \qquad \sigma_{\text{max}} = \frac{3kip}{A} = 0.566 \cdot ksi$$

$$P = 70 \text{ N}$$
 $A_e = 1.075 \text{ mm}^2$

$$L = 460 \text{ mm}$$
 $\delta = 0.214 \text{ mm}$

Statics: sum moments about A to get T = 2P

$$\sigma = \frac{T}{A_{\epsilon}}$$
 $\sigma = 103.2 \,\mathrm{MPa}$ \leftarrow

$$\varepsilon = \frac{\delta}{L}$$
 $\varepsilon = 4.65 \times 10^{-4}$ \leftarrow

$$E = \frac{\sigma}{\varepsilon} = 1.4 \times 10^5 \,\mathrm{MPa}$$

NOTE: (E for cables is approximately 140 GPa)

$$T = 45 \text{ lbs}$$
 $A_{\text{pad}} = 0.625 \text{ in.}^2$

$$A_{\text{cable}} = 0.00167 \text{ in.}^2$$

(a) Cantilever brakes—braking force

R_B and PAD PRESSURE

Statics Sum forces at D to get $T_{DCv} = T/2$

$$\sum M_A = 0$$

$$R_B(1) = T_{DCh}(3) + T_{DCv}(1) s$$

$$T_{DCh} = T_{DCv}$$
 $T_{DCh} = T/2$

$$R_B = 2T$$
 $R_B = 90 \text{ lbs}$ \leftarrow

so $R_B = 2T$ versus 4.25T for V-brakes (next)

$$\sigma_{\rm pad} = \frac{R_B}{A_{\rm pad}}$$
 $\sigma_{\rm pad} = 144 \, \mathrm{psi}$ \leftarrow $\frac{4.25}{2} = 2.125$

$$\sigma_{\rm cable} = \frac{T}{A_{\rm cable}}$$
 $\sigma_{\rm cable} = 26,946 \, \mathrm{psi}$ \leftarrow (same for V-brakes (below))

(b) V-brakes—braking force R_B and pad pressure

$$\sum M_A = 0$$
 $R_B = 4.25T$ $R_B = 191.3$ lbs \leftarrow

$$\sigma_{\rm pad} = \frac{R_B}{A_{\rm pad}}$$
 $\sigma_{\rm pad} = 306 \; \rm psi$ \leftarrow

$$L = 420 \text{ mm}$$
 $d_2 = 60 \text{ mm}$ $d_1 = 35 \text{ mm}$ $\varepsilon_h = 470 (10^{-6})$ $\sigma_a = 48 \text{ MPa}$

Part (a)

$$A_s = \frac{\pi}{4}d_2^2 = 2.827 \times 10^{-3} \text{m}^2$$
 $A_h = \frac{\pi}{4} \left(d_2^2 - d_1^2 \right) = 1.865 \times 10^{-3} \text{m}^2$

$$\varepsilon_s = \frac{A_h}{A_s} \varepsilon_h = 3.101 \times 10^{-4}$$

PART (b)

$$\delta = \varepsilon_h \frac{L}{3} + \varepsilon_s \left(\frac{2L}{3}\right) = 0.1526 \text{ mm}$$
 $\varepsilon_h \frac{L}{3} = 0.066 \text{ mm}$ $\varepsilon_s \left(\frac{2L}{3}\right) = 0.087 \text{ mm}$

PART (c)

$$P_{\rm maxh} = \sigma_a A_h = 89.535 \ {\rm kN}$$
 $P_{\rm maxs} = \sigma_a A_s = 135.717 \ {\rm kN}$ < lesser value controls
$$P_{\rm max} = P_{\rm maxh} = 89.5 \ {\rm kN}$$

$$P = 3500 \text{ kips}$$

$$A = (24 + 20)(20 + 16 + 8) - \left(\frac{1}{2}8^2\right) - 20^2 - \frac{\pi}{4}10^2$$

$$A = 1425.46 \text{ in.}^2$$

(a) AVERAGE COMPRESSIVE STRESS

$$\sigma_c = \frac{P}{A}$$
 $\sigma_c = 2.46 \text{ ksi}$

(b) Centroid

$$x_c = \frac{(24+20)^2 \frac{(24+20)}{2} - \left(20^2\right)(24+10) - \frac{1}{2}8^2\left(\frac{8}{3}\right)}{A} - \frac{\left(\frac{\pi}{4}10^2\right)(8+5)}{A}$$

$$\frac{x_c = 19.56 \text{ in.}}{x_c}$$

$$y_c = \frac{(24+20)^2 \frac{(24+20)}{2} - \left(20^2\right)(24+10) - \frac{1}{2}8^2\left(\frac{8}{3}\right)}{A} - \frac{\left(\frac{\pi}{4}10^2\right)(8+5)}{A}$$

$$y_c = \frac{y_c = 19.56 \text{ in.}}{A}$$

 $[\]hat{x}_c$ and y_c are the same as expected due to symmetry about a diagonal

$$W = 130 \text{ kN}$$
 $\alpha = 30^{\circ}$ $A = 490 \text{ mm}^2$ $\sigma_a = 150 \text{ MPa}$

PART (a)

$$\sigma_t = \frac{W \sin(\alpha)}{A} = 132.7 \text{ MPa}$$

PART (b)

$$\alpha_{\rm max} = \arcsin\left(\frac{\sigma_a A}{W}\right) = 34.4^{\circ}$$

$$d_1 = 30 \left(10^{-3}\right)$$
 in. $d_2 = 35 \left(10^{-3}\right)$ in. $A_1 = \frac{\pi}{4} d_1^2 = 7.069 \times 10^{-4}$ in. $A_2 = \frac{\pi}{4} d_2^2 = 9.621 \times 10^{-4}$ in. $A_3 = \frac{\pi}{4} d_2^2 = 9.621 \times 10^{-4}$ in. $A_4 = \frac{\pi}{4} d_2^2 = 9.621 \times 10^{-4}$ in. $A_5 = \frac{\pi}{4} d_2^2 = 9.621 \times 10^{-4}$ in. $A_5 = \frac{\pi}{4} d_2^2 = 9.621 \times 10^{-4}$ in.

$$\alpha = 22^{\circ}$$
 $\beta = 40^{\circ}$

(a) FIND NORMAL STRESS IN WIRES

$$T_2 = \frac{W}{\frac{\cos(\beta)}{\cos(\alpha)}\sin(\alpha) + \sin(\beta)} = 29.403 \text{ lb}$$
 $\sigma_2 = \frac{T_2}{A_2} = 30.6 \text{ ksi}$ $\sigma_1 = T_2 \frac{\cos(\beta)}{\cos(\alpha)} = 24.293 \text{ lb}$ $\sigma_1 = \frac{T_1}{A_1} = 34.4 \text{ ksi}$

(b) Find New d_1 s.t. normal stresses in wires is the same

$$A_{1\,\mathrm{new}} = \frac{T_1}{\sigma_2} = 7.949 \times 10^{-4} \,\mathrm{in.}^2$$
 $d_{1\,\mathrm{new}} = \sqrt{\frac{4}{\pi}} A_{1\,\mathrm{new}} = 3.18 \times 10^{-2} \,\mathrm{in.}$ or 31.8 mils $\sigma_{1\,\mathrm{new}} = \frac{T_1}{\frac{\pi}{4} d_{1\,\mathrm{new}}^2} = 30.6 \,\mathrm{ksi}$

(c) Now, to stabilize the camera for windy outdoor conditions, a third wire is added (see figure b); assume the 3 wires meet at a common point (coordinates = (0, 0, 0) above the camera at the instant shown in figure b); wire 1 is attached to a support at coordinates (75', 48', 70'); wire 2 is supported at (-70', 55', 80'); and wire 3 is supported at (-10', -85', 75'); assume that all three wires have diameter of 30 mils. Find tensile stresses in wires 1 to 3.

$$d = 30(10^{-3})$$
 in. $A \frac{\pi}{4} d^2 = 7.069 \times 10^{-4}$ in.²

Position vectors from camera
$$r_1 = \begin{pmatrix} 75 \\ 48 \\ 70 \end{pmatrix}$$
 ft $r_2 = \begin{pmatrix} -70 \\ 55 \\ 80 \end{pmatrix}$ ft $r_3 = \begin{pmatrix} -10 \\ -85 \\ 75 \end{pmatrix}$ ft $W = 28 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ lb to each support

$$L_1 = |r_1| = 113.265$$
 $L_2 = |r_2| = 119.687$ $L_3 = |r_3| = 113.798$

Unit vectors along wires 1 to 3
$$e_1 = \frac{r_1}{|r_1|} = \begin{pmatrix} 0.662 \\ 0.424 \\ 0.618 \end{pmatrix}$$
 $e_2 = \frac{r_2}{|r_2|} = \begin{pmatrix} -0.585 \\ 0.46 \\ 0.668 \end{pmatrix}$ $e_3 = \frac{r_3}{|r_3|} = \begin{pmatrix} -0.088 \\ -0.747 \\ 0.659 \end{pmatrix}$

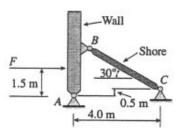
$$T_1 = F_1 e_1$$
 $T_2 = F_2 e_2$ $T_3 = F_3 e_3$ $i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Equilibrium of forces $T_1 + T_2 + T_3 = W$

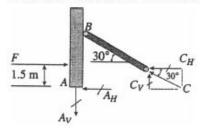
$$T^{\langle 1 \rangle} = e_1 \qquad T^{\langle 2 \rangle} = e_2 \qquad T^{\langle 3 \rangle} = e_3 \qquad T = \begin{pmatrix} 0.662 & -0.585 & -0.088 \\ 0.424 & 0.46 & -0.747 \\ 0.618 & 0.668 & 0.659 \end{pmatrix}$$

$$F = T^{-1} W = \begin{pmatrix} 13.854 \\ 13.277 \\ 16.028 \end{pmatrix} \text{lb} \qquad \sigma_1 = \frac{F_1}{A} = 19.6 \text{ ksi} \qquad \sigma_2 = \frac{F_2}{A} = 18.78 \text{ ksi} \qquad \sigma_3 = \frac{F_3}{A} = 22.7 \text{ ksi}$$

45



FREE-BODY DIAGRAM OF WALL AND SHORE



C = compressive force in wood shore

 C_H = horizontal component of C

 C_V = vertical component of C

 $C_H = C \cos 30^\circ$

 $C_V = C \sin 30^\circ$

$$F = 190 \, \text{kN}$$

A =area of one shore

A = (150 mm)(150 mm)

 $= 22,500 \text{ mm}^2$

 $= 0.0225 \text{ m}^2$

SUMMATION OF MOMENTS ABOUT POINT A

$$\Sigma M_A = 0$$

$$-F(1.5 \text{ m}) + C_V(4.0 \text{ m}) + C_H(0.5 \text{ m}) = 0$$

or

$$-(190 \text{ kN})(1.5 \text{ m}) + C(\sin 30^\circ)(4.0 \text{ m}) + C(\cos 30^\circ)(0.5 \text{ m}) = 0$$

$$C = 117.14 \text{ kN}$$

COMPRESSIVE STRESS IN THE SHORES

$$\sigma_c = \frac{C}{A} = \frac{117.14 \text{ kN}}{0.0225 \text{ m}^2}$$
$$= 5.21 \text{ MPa} \quad \leftarrow$$

$$W_c = 150 \text{ lb}$$
 $A_e = 0.017 \text{ in.}^2$
 $W_T = 60$
 $\delta = 0.01$
 $d_c = 18$
 $d_T = 14$
 $H = 12$
 $L = 16$
 $L_c = \sqrt{L^2 + H^2}$
 $L_c = 20$
 $\sum M_{\text{hinge}} = 0$
 $2T_v L = W_c d_c + W_T d_T$
 $T_v = \frac{W_c d_c + W_T d_T}{2L}$
 $T_v = 110.625 \text{ lb}$
 $T_h = \frac{L}{H} T_v$
 $T_h = 147.5$

(a)
$$T = \sqrt{T_v^2 + T_h^2}$$
 $T = 184.4 \text{ lb}$ \leftarrow $\sigma_{\text{cable}} = \frac{T}{A_e}$ $\sigma_{\text{cable}} = 10.8 \text{ ksi}$ \leftarrow (b) $\varepsilon_{\text{cable}} = \frac{\delta}{L_c}$ $\varepsilon_{\text{cable}} = 5 \times 10^{-4}$ \leftarrow

$$M_c = 68$$

$$M_T = 27 \text{ kg}$$
 $g = 9.81 \text{ m/s}^2$

$$W_c = M_c g$$
 $W_T = M_T g$

$$W_c = 667.08$$
 $W_T = 264.87$

$$N = kg \cdot m/s^2$$

$$A_e = 11.0 \text{ mm}^2$$
 $\delta = 0.25$

$$d_c = 460$$
 $d_T = 350$

$$H = 305$$
 $L = 406$

$$L_c = \sqrt{L^2 + H^2}$$
 $L_c = 507.8 \text{ mm}$

$$\sum M_{\text{hinge}} = 0 \qquad 2T_{\nu}L = W_{c}d_{c} + W_{T}d_{T}$$

$$T_v = \frac{W_c d_c + W_T d_T}{2L}$$
 $T_v = 492.071 \text{ N}$

$$T_h = \frac{L}{H} T_v$$
 $T_h = 655.019 \text{ N}$

(a)
$$T = \sqrt{T_v^2 + T_h^2}$$
 $T = 819 \text{ N}$ \leftarrow

$$\sigma_{\mathrm{cable}} = \frac{T}{A_{\epsilon}}$$
 $\sigma_{\mathrm{cable}} = 74.5 \,\mathrm{MPa}$ \leftarrow

(b)
$$\varepsilon_{\text{cable}} = \frac{\delta}{L_c}$$
 $\varepsilon_{\text{cable}} = 4.92 \times 10^{-4}$ \leftarrow

CABLE LENGTHS (FT)

$$L_1 = \sqrt{5^2 + 5^2 + 7^2}$$
 $L_1 = 9.95$ $L_2 = \sqrt{5^2 + 7^2 + 7^2}$ $L_2 = 11.091$ $L_3 = \sqrt{7^2 + 7^2}$ $L_3 = 9.899$

(a) Solution for Cable forces using statics (three equations, three unknowns); units = lb, ft

$$r_{OQ} = \begin{pmatrix} 5 \\ 5 \\ 7 \end{pmatrix} \qquad r_{BQ} = \begin{pmatrix} -7 \\ 5 \\ 7 \end{pmatrix} \qquad r_{DQ} = \begin{pmatrix} 0 \\ -7 \\ 7 \end{pmatrix}$$

$$e_{OQ} = \frac{r_{OQ}}{|r_{OQ}|} = \begin{pmatrix} 0.503 \\ 0.503 \\ 0.704 \end{pmatrix} \qquad e_{BQ} = \frac{r_{BQ}}{|r_{BQ}|} = \begin{pmatrix} -0.631 \\ 0.451 \\ 0.631 \end{pmatrix} \qquad e_{DQ} = \frac{r_{DQ}}{|r_{DQ}|} = \begin{pmatrix} 0 \\ -0.707 \\ 0.707 \end{pmatrix}$$

$$W = 150 (12^2 - 6^2) \frac{9}{12} = 12,150 \text{ lbs}$$

$$\begin{aligned} \text{Statics} \quad \Sigma F = 0 \quad T_1 e_{OQ} + T_2 e_{BQ} \, + \, T_3 e_{DQ} \, - \begin{pmatrix} 0 \\ 0 \\ W \end{pmatrix} = \begin{pmatrix} 0.50252 \, T_1 - 0.63117 \, T_2 \\ 0.50252 \, T_1 \, + \, 0.45083 \, T_2 - 0.70711 \, T_3 \\ 0.70353 \, T_1 \, + \, 0.63117 \, T_2 \, + \, 0.70711 \, T_3 - 12,150 \end{pmatrix} \end{aligned}$$

or in matrix form; solve simultaneous equations to get cable tension forces

$$\begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} e_{OQ_{1,1}} & e_{BQ_{1,1}} & e_{DQ_{1,1}} \\ e_{OQ_{2,1}} & e_{BQ_{2,1}} & e_{DQ_{2,1}} \\ e_{OQ_{3,1}} & e_{BQ_{3,1}} & e_{DQ_{3,1}} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ W \end{pmatrix} = \begin{pmatrix} 5877 \\ 4679 \\ 7159 \end{pmatrix} \text{lb}$$

$$T = \begin{pmatrix} 5877 \\ 4679 \\ 7159 \end{pmatrix} \text{lb}$$

(b) AVERAGE NORMAL STRESS IN EACH CABLE

$$i = 1...3$$
 $\sigma_i = \frac{T_i}{A_e}$ $\sigma = \begin{pmatrix} 48975 \\ 38992 \\ 59658 \end{pmatrix}$ psi $A_e = 0.12 \text{ in.}^2$

(c) ADD CONTINUOUS CABLE OOA

$$r_{OQ} = \begin{pmatrix} 5 \\ 5 \\ 7 \end{pmatrix} \qquad r_{AQ} = \begin{pmatrix} 5 \\ -7 \\ 7 \end{pmatrix} \qquad r_{BQ} = \begin{pmatrix} -7 \\ 5 \\ 7 \end{pmatrix} \qquad r_{DQ} = \begin{pmatrix} 0 \\ -7 \\ 7 \end{pmatrix} \qquad e_{AQ} = \frac{r_{AQ}}{|r_{AQ}|} = \begin{pmatrix} 0.451 \\ -0.631 \\ 0.631 \end{pmatrix}$$

$$e_{OQ} = \frac{r_{OQ}}{|r_{OQ}|} = \begin{pmatrix} 0.503 \\ 0.503 \\ 0.704 \end{pmatrix} \qquad e_{AQ} = \frac{r_{AQ}}{|r_{AQ}|} = \begin{pmatrix} 0.451 \\ -0631 \\ 0.631 \end{pmatrix} \qquad e_{BQ} = \frac{r_{BQ}}{|r_{BQ}|} = \begin{pmatrix} -0.631 \\ 0.451 \\ 0.631 \end{pmatrix}$$

Statics Solve simultaneous equations to get cable tension forces

Normal stresses in cables

$$i = 1...4$$
 $\sigma_i = \frac{T_i}{A_e}$ $\sigma = \begin{pmatrix} 35650 \\ 53842 \\ 27842 \\ 35650 \end{pmatrix}$ psi

Data
$$M_{\text{boom}} = 450 \text{ kg}$$

$$g = 9.81 \text{ m/s}^2$$
 $W_{\text{boom}} = M_{\text{boom}} g$

$$W_{\text{boom}} = 4415 \text{ N}$$

$$P = 20 \text{ kN}$$

$$A_e = 304 \text{ mm}^2$$

(a) Symmetry:
$$T_{AQ} = T_{BQ}$$

$$\sum M_x = 0$$

$$2T_{AQZ}(3000) = W_{\text{boom}}(5000) + P(9000)$$

$$T_{AQZ} = \frac{W_{\text{boom}}(5000) + P(9000)}{2(3000)}$$

$$T_{AQ} = \frac{\sqrt{2^2 + 2^2 + 1^2}}{2} T_{AQz}$$

$$T_{AQ} = 50.5 \text{ kN} = T_{BQ} \leftarrow$$

(b)
$$\sigma = \frac{T_{AQ}}{A_e}$$
 $\sigma = 166.2 \text{ MPa}$ \leftarrow

$$W_R = 450$$

$$Wc = 650 \text{ lb}$$

$$\Delta_R = 3.9 \text{ ft}$$

$$\Delta_C = 7.1 \text{ ft}$$

$$L = 100 \text{ ft}$$

$$D_{AB} = 12 \text{ ft}$$

$$D_{BC} = 70 \text{ ft}$$

$$D_{CD} = 20 \text{ ft}$$

$$D_{AR} + D_{RC} + D_{CD} = 102 \text{ ft}$$

$$A_e = 0.12 \text{ in.}^2$$

COMPUTE INITIAL VALUES OF THETA ANGLES (RADIANS)

$$\theta_1 = \arcsin\left(\frac{\Delta_B}{D_{AB}}\right)$$
 $\theta_1 = 0.331$

$$\theta_1 = 0.331$$

$$\theta_2 = \arcsin\left(\frac{\Delta_C - \Delta_B}{D_{BC}}\right)$$
 $\theta_2 = 0.046$

$$\theta_2 = 0.046$$

$$\theta_3 = \arcsin\left(\frac{\Delta_C}{D_{CD}}\right)$$
 $\theta_3 = 0.363$

$$\theta_3 = 0.363$$

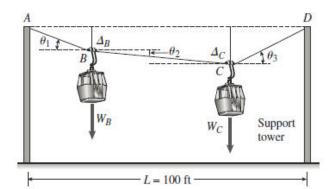
(a) STATICS AT B AND C

$$-T_{AB}\cos(\theta_1) + T_{BC}\cos(\theta_2) = 0$$

$$T_{AB}\sin(\theta_1) - T_{BC}\sin(\theta_2) = W_B$$

$$-T_{BC}\cos(\theta_2) + T_{CD}\cos(\theta_3) = 0$$

$$T_{BC}\sin(\theta_2) + T_{CD}\sin(\theta_3) = W_C$$



CONSTRAINT EQUATIONS

$$D_{AR}\cos(\theta_1) + D_{RC}\cos(\theta_2) + D_{CD}\cos(\theta_3) = L$$

$$D_{AB}\sin(\theta_1) + D_{BC}\sin(\theta_2) = D_{CD}\sin(\theta_3)$$

Solve simultaneous equations numerically for tension FORCE IN EACH CABLE SEGMENT

$$T_{AB} = 1620 \text{ lb}$$
 $T_{CB} = 1536 \text{ lb}$ $T_{CD} = 1640 \text{ lb}$ \leftarrow

CHECK EQUILIBRIUM AT B AND C

$$T_{AB}\sin(\theta_1) - T_{BC}\sin(\theta_2) = 450$$

$$T_{BC}\sin(\theta_2) + T_{CD}\sin(\theta_3) = 650$$

(b) Compute stresses in Cable segments

$$\sigma_{AB} = \frac{T_{AB}}{A}$$

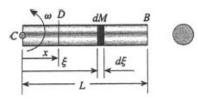
$$\sigma_{BC} = \frac{T_{BC}}{\Delta}$$

$$\sigma_{AB} = \frac{\mathrm{T}_{AB}}{A_e}$$
 $\sigma_{BC} = \frac{\mathrm{T}_{BC}}{A_e}$ $\sigma_{CD} = \frac{T_{CD}}{A_e}$

$$\sigma_{AB} = 13.5 \text{ ksi}$$

$$\sigma_{AB} = 13.5 \text{ ksi}$$
 $\sigma_{BC} = 12.8 \text{ ksi}$

$$\sigma_{CD} = 13.67 \text{ ksi} \leftarrow$$



 ω = angular speed (rad/s)

A = cross-sectional area

y = weight density

$$\frac{\gamma}{g}$$
 = mass density

We wish to find the axial force F_x in the bar at Section D, distance x from the midpoint C.

The force F_x equals the inertia force of the part of the rotating bar from D to B.

Consider an element of mass dM at distance ξ from the midpoint C. The variable ξ ranges from x to L.

$$dM = \frac{\gamma}{g} A \ dj$$

dF = Inertia force (centrifugal force) of element of mass dM

$$dF = (dM)(j\omega^2) = \frac{\gamma}{g} A\omega^2 j dj$$

$$F_x = \int_D^B dF = \int_x^L \frac{\gamma}{g} A\omega^2 j dj = \frac{\gamma A\omega^2}{2g} (L^2 - x^2)$$

(a) TENSILE STRESS IN BAR AT DISTANCE A

$$\sigma_x = \frac{F_x}{A} = \frac{\gamma \omega^2}{2g} (L^2 - x^2)$$
 \leftarrow

(b) MAXIMUM TENSILE STRESS

$$x = 0$$
 $\sigma_{\text{max}} = \frac{\gamma \omega^2 L^2}{2g}$ \leftarrow

W = 1575lbf

Position and unit vectors

$$\mathbf{r}_{CA} = \begin{pmatrix} 0 - 6.5 \\ 6.5 - 0 \\ -4 - 0 \end{pmatrix} = \begin{pmatrix} -6.5 \\ 6.5 \\ -4 \end{pmatrix} \qquad \mathbf{r}_{CB} = \begin{pmatrix} 0 - 6.5 \\ 3 - 0 \\ 4 - 0 \end{pmatrix} = \begin{pmatrix} -6.5 \\ 3 \\ 4 \end{pmatrix} \qquad \mathbf{r}_{OB} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \qquad \mathbf{r}_{OA} = \begin{pmatrix} 0 \\ 6.5 \\ -4 \end{pmatrix}$$

$$\mathbf{n}_{CA} = \frac{\mathbf{r}_{CA}}{\left|\mathbf{r}_{CA}\right|} = \begin{pmatrix} -0.648 \\ 0.648 \\ -0.399 \end{pmatrix} \qquad \mathbf{n}_{CB} = \frac{\mathbf{r}_{CB}}{\left|\mathbf{r}_{CB}\right|} = \begin{pmatrix} -0.793 \\ 0.366 \\ 0.488 \end{pmatrix} \qquad \mathbf{r}_{OW} = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix} \qquad \mathbf{r}_{OC} = \begin{pmatrix} 6.5 \\ 0 \\ 0 \end{pmatrix}$$

$$\left|\mathbf{r}_{CA}\right| = 10.025 \qquad \left|\mathbf{r}_{CB}\right| = 8.201 \qquad \mathbf{r}_{OD} = \begin{pmatrix} 0 \\ -6.5 \\ 0 \end{pmatrix}$$

Sum moments about O

$$\begin{split} \mathbf{M_O} &= \mathbf{r_{OW}} \times \begin{pmatrix} \mathbf{0} \\ -\mathbf{W} \\ \mathbf{0} \end{pmatrix} + \mathbf{r_{OC}} \times \left(\mathbf{T_A} \cdot \mathbf{n_{CA}} + \mathbf{T_B} \cdot \mathbf{n_{CB}} \right) + \mathbf{r_{OD}} \times \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{D_z} \end{pmatrix} \\ \mathbf{M_O} \text{ float, 5} &\rightarrow \begin{pmatrix} -6.5 \cdot \mathbf{D_z} \\ 2.5935 \cdot \mathbf{T_A} + -3.1705 \cdot \mathbf{T_B} \\ 4.2145 \cdot \mathbf{T_A} + 2.3779 \cdot \mathbf{T_B} + -7875.0 \cdot \text{lbf} \end{pmatrix} \end{split}$$

a) Find tension forces in cables

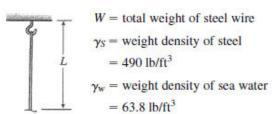
$$M_{O} = 0$$
 $\begin{vmatrix} solve, T_{A}, T_{B}, D_{z} \\ float, 8 \end{vmatrix} \rightarrow (1278.4879 \cdot lbf \ 1045.8267 \cdot lbf \ 0)$ $T_{A} = 1278lbf$ $T_{B} = 1046lbf$

b) average stress in each cable

$$A_e = 0.471 \text{in}^2$$

$$\sigma_A = \frac{T_A}{A_B} = 2.713 \cdot \text{ksi}$$

$$\sigma_B = \frac{T_B}{A_B} = 2.221 \cdot \text{ksi}$$



A = cross-sectional area of wire

 $\sigma_{\text{max}} = 40 \text{ ksi (yield strength)}$

(a) WIRE HANGING IN AIR

$$W = \gamma_S AL$$

$$\sigma_{\text{max}} = \frac{W}{A} = \gamma_S L$$

$$L_{\text{max}} = \frac{\sigma_{\text{max}}}{\gamma_{\text{S}}} = \frac{40,000 \text{ psi}}{490 \text{ lb/ft}^3} (144 \text{ in.}^2/\text{ft}^2)$$

(b) WIRE HANGING IN SEA WATER

F = tensile force at top of wire

$$F = (\gamma_S - \gamma_W)AL$$
 $\sigma_{\text{max}} = \frac{F}{A} = (\gamma_S - \gamma_W)L$

$$L_{\text{max}} = \frac{\sigma_{\text{max}}}{\gamma_S - \gamma_W}$$

$$= \frac{40,000 \text{ psi}}{(490 - 63.8) \text{ lb/ft}^3} (144 \text{ in.}^2/\text{ft}^2)$$

= 13,500 ft ←

(a) PIPE SUSPENDED IN AIR

$$\sigma_U = 550 \text{ MPa}$$

$$\gamma_s = 77 \text{ kN/m}^3$$

$$W = \gamma_s AL$$

$$L_{\text{max}} = \frac{\sigma_U}{\gamma_s} = 7143 \,\text{m}$$

(b) PIPE SUSPENDED IN SEA WATER

$$\gamma_w = 10 \text{kN/m}^3$$

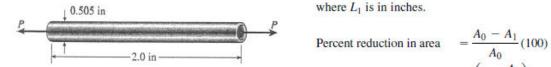
Force at top of pipe:
$$F = (\gamma_s - \gamma_w)AL$$

Stress at top of pipe:

$$\sigma_{\max} = \frac{F}{A}$$
 $\sigma_{\max} = (\gamma_s - \gamma_w)L$

Set max stress equal to ultimate and then solve for L_{max}

$$L_{\text{max}} = \frac{\sigma_U}{\left(\gamma_s - \gamma_w\right)} = 8209\,\text{m}$$



Percent elongation =
$$\frac{L_1 - L_0}{L_0} (100) = \left(\frac{L_1}{L_0} - 1\right) 100$$

 $L_0 = 2.0 \text{ in.}$

Percent elongation =
$$\left(\frac{L_1}{2.0} - 1\right)$$
(100) (Eq. 1)

$$\frac{A_1}{A_0} = \left(\frac{d_1}{d_0}\right)^2$$
 $d_0 = 0.505$ in.

Percent reduction in area

$$= \left[1 - \left(\frac{d_1}{0.505}\right)^2\right] (100)$$
 (Eq. 2)

where d_1 is in inches.

where L_1 is in inches.

Percent reduction in area
$$= \frac{A_0 - A_1}{A_0} (100)$$
$$= \left(1 - \frac{A_1}{A_0}\right) (100)$$

 $d_0 = \text{initial diameter}$ $d_1 = \text{final diameter}$

Material	L_1 (in.)	d ₁ (in.)	% Elongation (Eq. 1)	% Reduction (Eq. 2)	Brittle or Ductile?
A	2.13	0.484	6.5%	8.1%	Brittle
\boldsymbol{B}	2.48	0.398	24.0%	37.9%	Ductile
C	2.78	0.253	39.0%	74.9%	Ductile

The ultimate stress σ_U for each material is obtained from Appendix I, Tables I-3, and the weight density γ is obtained from Table I-1.

The strength-to-weight ratio (meters) is

$$R_{S/W} = \frac{\sigma_U(\text{MPa})}{\gamma(\text{kN/m}^3)} (10^3)$$

Values of σ_U , γ , and $R_{S/W}$ are listed in the table.

	σ_U (MPa)	$\frac{\gamma}{(kN/m^3)}$	R _{S/W} (m)
Aluminum alloy 6061-T6	310	26.0	11.9×10^{3}
Douglas fir	65	5.1	12.7×10^{3}
Nylon	60	9.8	6.1×10^{3}
Structural steel ASTM-A572	500	77.0	6.5×10^{3}
Titanium alloy	1050	44.0	23.9×10^{3}

Titanium has a high strength-to-weight ratio, which is why it is used in space vehicles and high-performance airplanes. Aluminum is higher than steel, which makes it desirable for commercial aircraft. Some woods are also higher than steel, and nylon is about the same as steel.

DATA

$$\varepsilon_{BD} = 0.036$$
 $\alpha = 52^{\circ}$ $L_{BD} = 1$

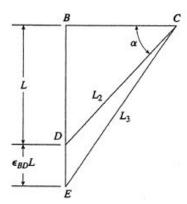
< assume unit length to facilitate numerical calculations below

Strain in CE

$$\varepsilon_{CE} = \frac{L_3 - L_2}{L_2}$$

$$L_{RD}$$

$$L_2 = \frac{L_{BD}}{\sin(\alpha)}$$
 $L_{BC} = \frac{L_{BD}}{\tan(\alpha)}$



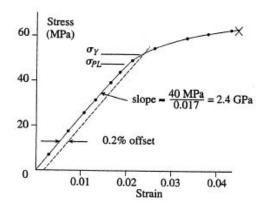
Increased length of CE (see figure)

$$L_3 = \sqrt{L_{BC}^2 + (L_{BD} + \varepsilon_{BD}L_{BD})^2} = \sqrt{\frac{1}{\tan(52^\circ)^2} + 1.073296}$$

Compute strain in CE then substitute strain value into stress-strain relationship to find tensile stress in outer bars:

$$\varepsilon_{CE} = \frac{L_3 - L_2}{L_2} = 0.023$$
 $\sigma = \frac{18000 \, \varepsilon_{CE}}{1 + 300 \, \varepsilon_{CE}}$ $\sigma = 52.3$ ksi

Using the stress-strain data given in the problem statement, plot the stress-strain curve:



$$\sigma_{PL}$$
 = proportional limit $\sigma_{PL} \approx 47 \text{ MPa} \leftarrow$
Modulus of elasticity (slope) $\approx 2.4 \text{ GPa} \leftarrow$
 σ_Y = yield stress at 0.2% offset
 $\sigma_Y \approx 53 \text{ MPa} \leftarrow$

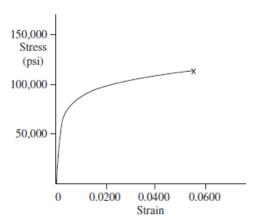
Material is brittle, because the strain after the proportional limit is exceeded is relatively small. \leftarrow

$$d_0 = 0.505$$
 in. $L_0 = 2.00$ in.
$$A_0 = \frac{\pi d_0^2}{4} = 0.200 \text{ in.}^2$$

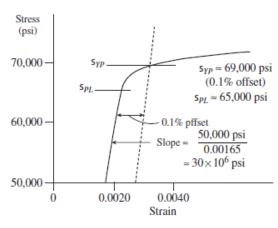
CONVENTIONAL STRESS AND STRAIN

$$\sigma = \frac{P}{A_0} \quad \varepsilon = \frac{\delta}{L_0}$$

STRESS-STRAIN DIAGRAM



Enlargement of part of the stress-strain curve



Load P (lb)	Elongation δ (in.)	Stress σ (psi)	Strain ε
1,000	0.0002	5,000	0.00010
2,000	0.0006	10,000	0.00030
6,000	0.0019	30,000	0.00100
10,000	0.0033	50,000	0.00165
12,000	0.0039	60,000	0.00195
12,900	0.0043	64,500	0.00215
13,400	0.0047	67,000	0.00235
13,600	0.0054	68,000	0.00270
13,800	0.0063	69,000	0.00315
14,000	0.0090	70,000	0.00450
14,400	0.0102	72,000	0.00510
15,200	0.0130	76,000	0.00650
16,800	0.0230	84,000	0.01150
18,400	0.0336	92,000	0.01680
20,000	0.0507	100,000	0.02535
22,400	0.1108	112,000	0.05540
22,600	Fracture	113,000	

RESULTS

Proportional limit ≈ 65,000 psi ←

Modulus of elasticity (slope) $\approx 30 \times 10^6 \text{ psi}$ \leftarrow

Yield stress at 0.1% offset ≈ 69,000 psi ←

Ultimate stress (maximum stress)

Percent elongation in 2.00 in.

$$= \frac{L_1 - L_0}{L_0} (100)$$

$$= \frac{0.12 \text{ in.}}{2.00 \text{ in.}} (100) = 6\% \quad \leftarrow$$

Percent reduction in area

$$= \frac{A_0 - A_1}{A_0} (100)$$

$$= \frac{0.200 \text{ in.}^2 - \frac{\pi}{4} (0.42 \text{ in.})^2}{0.200 \text{ in.}^2} (100)$$

$$= 31\% \qquad \leftarrow$$

Part (a)

$$\delta = 0.2in$$
 $L = 60in$ $E = 29000ksi$

$$\varepsilon = \frac{\delta}{\tau} = 3.333 \times 10^{-3}$$

$$\sigma_{Y} = 50 ksi \qquad \qquad \epsilon_{E} = \frac{\sigma_{Y}}{\epsilon} = 1.724 \times 10^{-3} \qquad \qquad \epsilon_{Y} = \frac{\sigma_{Y}}{\epsilon} = 1.724 \times 10^{-3}$$

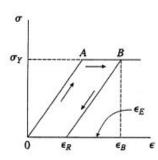
residual strain
$$\varepsilon_R = \varepsilon - \varepsilon_E = 1.609 \times 10^{-3}$$

permanent set
$$\epsilon_R \cdot L = 0.097 \cdot in$$
 < final length of bar is 0.097 in. more than original length

Part (b)
$$d = 1.5$$
in $P = 80$ kip $A = \frac{\pi}{4} \cdot d^2 = 1.767 \cdot in^2$ $\sigma = \frac{P}{A} = 45.271 \cdot ksi$ < below yield

stress in bar is 45.3 ksi < $\sigma_{_Y}$ so no permament set

strain of bar
$$\varepsilon = \frac{\sigma}{E} = 1.561 \times 10^{-3}$$
 < less than yield strain



$$L = 2.0 \text{ m} = 2000 \text{ mm}$$

Yield stress
$$\sigma_Y = 250 \text{ MPa}$$

$$\delta = 6.5 \text{ mm}$$

ELASTIC RECOVERY ε_E σ_R 250 M

$$\varepsilon_E = \frac{\sigma_B}{\text{Slope}} = \frac{250 \text{ MPa}}{200 \text{ GPa}} = 0.00125$$

RESIDUAL STRAIN ε_R

$$\varepsilon_R = \varepsilon_B - \varepsilon_E = 0.00325 - 0.00125$$

= 0.00200

Permanent set =
$$\varepsilon_R L = (0.00200)(2000 \text{ mm})$$

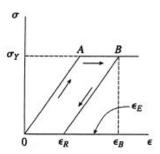
= 4.0 mm

Final length of bar is 4.0 mm greater than its original length. \leftarrow

STRESS AND STRAIN AT POINT B

$$\sigma_B = \sigma_Y = 250 \text{ MPa}$$

$$\varepsilon_B = \frac{\delta}{L} = \frac{6.5 \text{ mm}}{2000 \text{ mm}} = 0.00325$$



$$L = 48 \text{ in.}$$

Yield stress
$$\sigma_Y = 42 \text{ ksi}$$

Slope =
$$30 \times 10^3$$
 ksi

$$\delta = 0.20$$
 in.

STRESS AND STRAIN AT POINT B

$$\sigma_B = \sigma_Y = 42 \text{ ksi}$$

$$\varepsilon_B = \frac{\delta}{L} = \frac{0.20 \text{ in.}}{48 \text{ in.}} = 0.00417$$

ELASTIC RECOVERY ε_E

$$\varepsilon_E = \frac{\sigma_B}{\text{Slope}} = \frac{42 \text{ ksi}}{30 \times 10^3 \text{ ksi}} = 0.00140$$

RESIDUAL STRAIN ε_R

$$\varepsilon_R = \varepsilon_B - \varepsilon_E = 0.00417 - 0.00140$$

= 0.00277

PERMANENT SET

$$\varepsilon_R L = (0.00277)(48 \text{ in.})$$

= 0.13 in.

Final length of bar is 0.13 in. greater than its original length. \leftarrow

numerical data L = 750 mm $\delta = 6 \text{ mm}$

$$\varepsilon_B = \frac{\delta}{L} = 8 \times 10^{-3}$$
 $\sigma_B = 65.6$ MPa < from curve (see figure)

 $\varepsilon_E = 0.0023$ < elastic recovery (see figure)

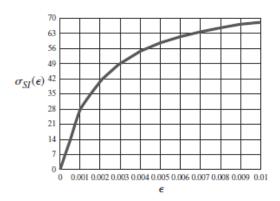
$$\varepsilon_R = \varepsilon_B - \varepsilon_E = 5.7 \times 10^{-3}$$
 < residual strain

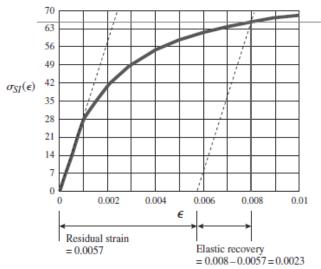
(a) PERMANENT SET

$$\delta_{pset} = \varepsilon_R L = 4.275$$
 $\delta_{pset} = 4.28 \text{ mm}$

(b) PROPORTIONAL LIMIT WHEN RELOADED

$$\sigma_B = 65.6 \text{ MPa}$$





DATA

$$P = 44.6 \text{ kip}$$
 $L = 6 \text{ ft}$
 $d = 1.375 \text{ in.}$ $E = 10.6 (10^6) \text{ psi}$

NORMAL STRESS IN BAR

$$\sigma_B = \frac{P}{\frac{\pi}{4}d^2} = 30036 \text{ psi}$$

from curve, say that $\varepsilon_B = 0.025$

ELASTIC RECOVERY unloading parallel to initial straight line

$$\varepsilon_E = \frac{\sigma_B}{F} = 2.834 \times 10^{-3}$$

RESIDUAL STRAIN

$$\varepsilon_R = \varepsilon_B - \varepsilon_E = 0.022$$

(a) PERMANENT SET

$$\varepsilon_R L = 1.596$$
 in.

(b) Proportional limit when reloaded is $\sigma_B=30~\mathrm{ksi}$

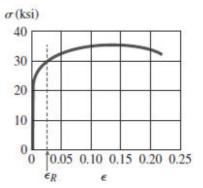
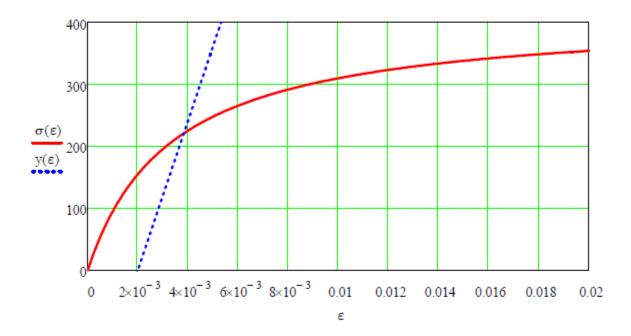


FIG 1-34 Typical stress-strain diagram for an aluminum alloy

copper wire, d = 6 mm

$$\varepsilon = 0.0.0001..0.03$$

$$\sigma(\epsilon) = \frac{124000 \cdot \epsilon}{1 + 300 \cdot \epsilon} \qquad \frac{\sigma(0.0001)}{0.0001} = 1.204 \times 10^5 \qquad y(\epsilon) = 120400 \cdot (\epsilon - 0.002)$$



$$E(\epsilon) = \frac{d}{d\epsilon} \sigma(\epsilon) \rightarrow \frac{124000}{300 \cdot \epsilon + 1} - \frac{37200000 \cdot \epsilon}{\left(300 \cdot \epsilon + 1\right)^2}$$

$$E(0) = 1.24 \times 10^5$$

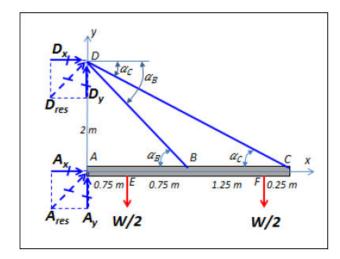
$$E = E(0) = 1.24 \times 10^5$$
 MPa

$$y(\varepsilon) = E \cdot (\varepsilon - 0.002)$$

$$\frac{124000 \cdot x}{1 + 300 \cdot x} - E \cdot (x - 0.002) \text{ solve}, x \rightarrow \begin{pmatrix} 0.0037688746209726916175 \\ -0.0017688746209726916175 \end{pmatrix}$$

 σ (0.0037688746209726916175) = 219.34 MPa < yield stress at 0.2% offset

Find force T in continuous cable W = 6.8kN



Summing moments about point D (counterclockwise moments are positive) gives:

$$\Sigma M_{D} = 0$$
 $A_{X} \cdot (2m) - \frac{W}{2} \cdot (0.75m + 2.75m) = 0$ or $A_{X} = \frac{6.8kN}{2} \cdot (\frac{3.5m}{2m}) = 5950 \cdot N$

Next, sum forces in the x direction: $\Sigma F_X = 0$ $A_X + D_X = 0$ or $D_X = -A_X = -5950N$

The minus sign means that D_x acts in the negative x direction.

Summing forces in the x direction at joint D will give us the force in the continuous cable BDC:

First compute angles
$$\alpha_B$$
 and α_C (see fig.): $\alpha_B = atan\left(\frac{2}{1.5}\right) = 53.13 \cdot deg$ $\alpha_C = atan\left(\frac{2}{3}\right) = 33.69 \cdot deg$

Now $\Sigma F_X = 0$ at joint D $D_X + T \cdot \left(cos(\alpha_B) + cos(\alpha_C)\right) = 0$ so $T = \frac{-D_X}{\left(cos(\alpha_B) + cos(\alpha_C)\right)}$

or $T = \frac{-(-5950N)}{\left(cos(\alpha_B) + cos(\alpha_C)\right)} = 4155 \cdot N$

a) Find the axial normal strain in the cable and its elongation cable length $L = 2.5m + \sqrt{13} m = 6.106m$

$$\sigma = \frac{T}{\frac{1}{4} \cdot \pi \cdot (6 \text{mm})^2} = 146.953 \cdot \text{MPa} \quad < \text{less than } \sigma_{\gamma} = 219 \text{ MPa (at 0.2\% offset)}$$

 $124000 \cdot x - 146.953 \cdot (1 + 300 \cdot x) \text{ solve}, x \rightarrow 0.0018388870049215344977$

$$\varepsilon_{\sigma} = \frac{146.953}{(124000 - 146.953 \cdot 300)} = 1.839 \times 10^{-3}$$

$$\delta = \varepsilon_{\sigma} \cdot (L) = 11.227 \cdot mm$$

b) Find the permanent set of the wire if all forces are removed

There is no permanent set since the stress is still below the 0.2% offset yield stress

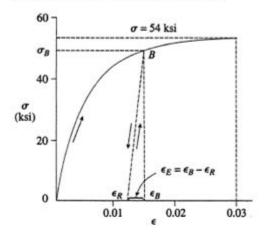
$$L = 4 \text{ ft} = 48 \text{ in.}$$
 $d = 0.125 \text{ in.}$

P = 600 lb

COPPER ALLOY

$$\sigma = \frac{18,000\varepsilon}{1 + 300\varepsilon}$$
 $0 \le \varepsilon \le 0.03 \ (\sigma = \text{ksi}) \ (\text{Eq. 1})$

(a) STRESS-STRAIN DIAGRAM (From Eq. 1)



INITIAL SLOPE OF STRESS-STRAIN CURVE

Take the derivative of σ with respect to ε :

$$\frac{d\sigma}{d\varepsilon} = \frac{(1+300\varepsilon)(18,000) - (18,000)(300)\sigma}{(1+300\varepsilon)^2}$$

$$=\frac{18,000}{(1+300\varepsilon)^2}$$

At
$$\varepsilon = 0$$
, $\frac{d\sigma}{d\varepsilon} = 18,000 \text{ ksi}$

.. Initial slope = 18,000 ksi

ALTERNATIVE FORM OF THE STRESS-STRAIN RELATIONSHIP Solve Eq. (1) for ε in terms of σ :

$$\varepsilon = \frac{\sigma}{18,000 - 300\sigma}$$
 $0 \le \sigma \le 54 \text{ ksi } (\sigma = \text{ksi})$ (Eq. 2)

This equation may also be used when plotting the stressstrain diagram.

(b) Elongation δ of the wire

$$\sigma = \frac{P}{A} = \frac{600 \text{ lb}}{\frac{\pi}{4}(0.125 \text{ in.})^2} 48,900 \text{ psi} = 48.9 \text{ ksi}$$

From Eq. (2) or from the stress-strain diagram:

$$\varepsilon = 0.0147$$

$$\delta = \varepsilon L = (0.0147)(48 \text{ in.}) = 0.71 \text{ in.}$$

STRESS AND STRAIN AT POINT B (see diagram)

$$\sigma_B = 48.9 \text{ ksi}$$
 $\varepsilon_B = 0.0147$

ELASTIC RECOVERY ε_E

$$\varepsilon_E = \frac{\sigma_B}{\text{Slope}} = \frac{48.9 \text{ ksi}}{18,000 \text{ ksi}} = 0.00272$$

RESIDUAL STRAIN ER

$$\varepsilon_R = \varepsilon_B - \varepsilon_E = 0.0147 - 0.0027 = 0.0120$$

(c) Permanent set =
$$\varepsilon_R L = (0.0120)(48 \text{ in.})$$

= 0.58 in. \leftarrow

(d) Proportional limit when reloaded = σ_B

$$\sigma_R = 49 \text{ ksi} \leftarrow$$

STEEL BAR

$$d=2.00$$
 in. Maximum $\Delta d=0.001$ in.

$$E = 29 \times 10^6 \text{ psi}$$
 $v = 0.29$

LATERAL STRAIN

$$\varepsilon' = \frac{\Delta d}{d} = \frac{0.001 \text{ in.}}{2.00 \text{ in.}} = 0.0005$$

AXIAL STRAIN

$$\varepsilon = -\frac{\varepsilon'}{v} = -\frac{0.0005}{0.29} = -0.001724$$

(shortening)

AXIAL STRESS

$$\sigma = E\varepsilon = (29 \times 10^6 \text{ psi})(-0.001724)$$
$$= -50.00 \text{ ksi (compression)}$$

Assume that the yield stress for the high-strength steel is greater than 50 ksi. Therefore, Hooke's law is valid.

MAXIMUM COMPRESSIVE LOAD

$$P_{max} = \sigma A = (50.00 \text{ ksi}) \left(\frac{\pi}{4}\right) (2.00 \text{ in.})^2$$
$$= 157 \text{ k} \quad \leftarrow$$

d = 10 mm $\Delta d = 0.016 \text{ mm}$

(Decrease in diameter)

7075-T6

From Table I-2: E = 72 GPa v = 0.33

From Table I-3: Yield stress $\sigma_Y = 480 \text{ MPa}$

LATERAL STRAIN

$$\varepsilon' = \frac{\Delta d}{d} = \frac{-0.016 \text{ mm}}{10 \text{ mm}} = -0.0016$$

AXIAL STRAIN

$$\varepsilon = -\frac{\varepsilon'}{v} = \frac{0.0016}{0.33}$$
$$= 0.004848 \text{ (Elongation)}$$

AXIAL STRESS

$$\sigma = E\varepsilon = (72 \text{ GPa})(0.004848)$$

= 349.1 MPa (Tension)

Because $\sigma < \sigma_Y$, Hooke's law is valid.

Load P (Tensile Force)

$$P = \sigma A = (349.1 \text{ MPa}) \left(\frac{\pi}{4}\right) (10 \text{ mm})^2$$
$$= 27.4 \text{ kN} \qquad \leftarrow$$

NUMERICAL DATA

$$d_1 = 4$$
 in. $d_2 = 4.01$ in. $E = 200$ ksi $v = 0.4$ $\Delta d_1 = 0.01$ in. $A_1 = \frac{\pi}{4} d_1^2$ $A_2 = \frac{\pi}{4} d_2^2$ $A_1 = 12.566$ in.²

$$A_2 = 12.629 \text{ in.}^2$$

LATERAL STRAIN

$$\varepsilon_p = \frac{\Delta d_1}{d_1}$$
 $\varepsilon_p = \frac{0.01}{4}$ $\varepsilon_p = 2.5 \times 10^{-3}$

NORMAL STRAIN

$$\varepsilon_1 = \frac{-\varepsilon_p}{v}$$
 $\varepsilon_1 = -6.25 \times 10^{-3}$

AXIAL STRESS

$$\sigma_1 = E \varepsilon_1$$
 $\sigma_1 = -1.25 \text{ ksi}$

COMPRESSION FORCE

$$P = EA_1\varepsilon_1$$

$$P = -15.71 \text{ kips} \qquad \leftarrow$$

$$s_p = 193 \text{mm}$$
 $L_c = 400 \text{mm}$ $s_c = 200 \text{mm}$ $t_c = 3 \text{mm}$ $v_p = 0.4$

Part (a)

$$gap = s_c - 2 \cdot t_c - s_p = 1 \cdot mm \qquad \varepsilon_{lat} = \frac{gap}{s_p} = 5.181 \times 10^{-3} \qquad \varepsilon = \frac{-\varepsilon_{lat}}{\nu_p} = -0.013$$

$$\delta_p = \varepsilon \cdot L_p \qquad \qquad \delta_{p2} = - \left(L_p - L_c \right) \qquad \begin{array}{l} \text{equate } \delta_p \text{ and } \delta_{p2} \\ \text{then solve for } L_p \end{array} \qquad \qquad L_p = \frac{L_c}{1+\varepsilon} = 405.249 \cdot mm$$

Part (b)

$$V_{ini} = L_{p} \cdot s_{p} \cdot s_{p} = 0.0150951 \cdot m^{3} \qquad V_{final} = L_{c} \cdot \left(s_{c} - 2 \cdot t_{c}\right)^{2} = 0.0150544 \cdot m^{3} \qquad \frac{V_{ini}}{V_{final}} = 1.003$$

$$E_n = 200 \text{ksi}$$

$$v_{\rm p} = 0.4$$

$$A_p = 7in \cdot (7.35in) = 51.45 \cdot in$$

$$E_p = 200 \text{ksi}$$
 $v_p = 0.4$ $A_p = 7 \text{in} \cdot (7.35 \text{in}) = 51.45 \cdot \text{in}^2$ $A_s = (8 \text{in})^2 - (8 \text{in} - 0.6 \text{in})^2 = 9.24 \cdot \text{in}^2$

original gap on each side:

$$\frac{[8in - 2 \cdot (0.3in)] - 7.35in}{2} = 0.025 \cdot in$$

original gap at both top & bottom:
$$\frac{\left[8in - 2 \cdot (0.3in)\right] - 7in}{2} = 0.2 \cdot in$$

Force required to close gap on left-right sides

$$\varepsilon_{lat} = \frac{[8 \text{in} - 2 \cdot (0.3 \text{in})] - 7.35 \text{in}}{7.35 \text{in}} = 6.803 \times 10^{-3} \qquad \varepsilon_{p} = \frac{-\varepsilon_{lat}}{\nu_{p}} = -1.701 \times 10^{-2} \qquad \varepsilon_{lat} \cdot (7.35 \text{in}) = 0.05 \cdot \text{in}$$

$$\varepsilon_{\rm p} = \frac{-\varepsilon_{\rm lat}}{\nu_{\rm p}} = -1.701 \times 10^{-2}$$

 $P = E_p \cdot A_p \cdot \varepsilon_p = -175 \cdot kip$

$$\varepsilon_{\text{lat}} \cdot (7.35 \text{in}) = 0.05 \cdot \text{in}$$

Remaining gap on top-bottom

$$\Delta h = \varepsilon_{1at} \cdot (7in) = 0.048 \cdot in$$

$$\Delta h = \varepsilon_{\text{lat}}(7\text{in}) = 0.048 \cdot \text{in}$$
 gap = $\frac{[8\text{in} - 2 \cdot (0.3\text{in})] - (7\text{in} + \Delta h)}{2} = 0.1762 \cdot \text{in}$

(a) Given stress, find force
$$P$$
 in Bar Figure (a) (b) Given strain, find change in length in volume change T and T are T and T are T and T are T are T are T and T are T are T and T are T are T are T and T are T are T are T and T are T are T are T and T are T are T are T and T are T are T are T and T are T are T are T and T are T are T are T and T are T are T and T are T are T are T are T and T are T are T are T and T are T are T are T and T are T and T are T are T are T are T and T are T are T are T and T are T are T are T are T are T and T are T are T and T are T are T and T are T are T are T and T are T and T are T are

(a) Given stress, find force P in bar figure (a) (b) Given strain, find change in length in bar figure (a) and also

$$\delta = \varepsilon L = -0.469 \text{ mm}$$
 shortening
$$Vol_1 = L(A) = 7.804 \times 10^5 \text{ mm}^3$$

$$\varepsilon_{\text{lat}} = -v\varepsilon = 2.577 \times 10^{-4} \qquad \Delta t = \varepsilon_{\text{lat}} t = 1.546 \times 10^{-3} \text{ mm}$$

$$\Delta d_2 = \varepsilon_{\text{lat}} d_2 = 0.019 \text{ mm} \qquad \Delta d_1 = \varepsilon_{\text{lat}} d_1 = 0.016 \text{ mm}$$

$$A_f = \frac{\pi}{4} \left[\left(d_2 + \Delta d_2 \right)^2 - \left(d_1 + \Delta d_1 \right)^2 \right]$$

$$A_f = 1301.29 \text{ mm}^2$$

$$\frac{A_f - A}{A} = \frac{1301.29 - 1300.62}{1300.62} = 0.052\%$$

$$V_{lf} = (L + \delta) \left(A_f \right) = 7.802 \times 10^5 \text{ mm}^3$$

$$\Delta V_1 = V_{lf} - \text{Vol}_1 = -207.482 \text{ mm}^3$$

$$\Delta V_1 = -207 \text{ mm}^3 \text{ change}$$

(c) If the tube has constant outer diameter of $d_2 = 75$ mm along its entire length L but now has increased inner DIAMETER d_3 OVER THE MIDDLE THIRD WITH NORMAL STRESS OF 70 MPa, WHILE THE REST OF THE BAR REMAINS AT NORMAL STRESS OF 57 MPa, WHAT IS THE DIAMETER d_3 ?

$$\sigma_{M3} = 70 \text{ MPa}$$
 $P = 74.135 \text{ kN}$ $A_{M3} = \frac{P}{\sigma_{M3}} = 1059.076 \text{ mm}^2$ $d_2 = 75 \text{ mm}$ $d_1 = 63 \text{ mm}$ $d_2^2 - d_3^2 = \frac{4}{\pi} A_{M3}$ SO $d_3 = \sqrt{d_2^2 - \frac{4}{\pi} A_{M3}} = 65.4 \text{ mm}$ $t_{M3} = \frac{d_2 - d_3}{2} = 4.802 \text{ mm}$ $d_3 = 65.4 \text{ mm}$

NUMERICAL DATA

E = 25,000 ksi

 $\nu = 0.32$

L=9 in.

 $\delta = 0.0195 \, \text{in}.$

d = 0.225 in.

NORMAL STRAIN

$$\varepsilon = \frac{\delta}{L} \quad \varepsilon = 2.167 \times 10^{-3}$$

LATERAL STRAIN

$$\varepsilon_p = -\nu \varepsilon \quad \varepsilon_p = -6.933 \times 10^{-4}$$

DECREASE IN DIAMETER

 $\Delta d = \varepsilon_p d$

$$\Delta d = -1.56 \times 10^{-4} \text{ in.} \quad \leftarrow$$

INITIAL CROSS SECTIONAL AREA

$$A_i = \frac{\pi}{4}d^2$$
 $A_i = 0.04 \text{ in.}^2$

MAGNITUDE OF LOAD P

 $P = EA_i\varepsilon$

$$P = 2.15 \text{ kips} \leftarrow$$

$$d=10$$
 mm Gage length $L=50$ mm
$$P=20 \text{ kN} \quad \delta=0.122 \text{ mm} \quad \Delta d=0.00830 \text{ mm}$$

AXIAL STRESS

$$\sigma = \frac{P}{A} = \frac{20 \text{ k}}{\frac{\pi}{4} (10 \text{ mm})^2} = 254.6 \text{ MPa}$$

Assume σ is below the proportional limit so that Hooke's law is valid.

AXIAL STRAIN

$$\varepsilon = \frac{\delta}{L} = \frac{0.122 \text{ mm}}{50 \text{ mm}} = 0.002440$$

(a) MODULUS OF ELASTICITY

$$E = \frac{\sigma}{\varepsilon} = \frac{254.6 \text{ MPa}}{0.002440} = 104 \text{ GPa} \quad \leftarrow$$

(b) Poisson's ratio

$$\begin{split} \varepsilon' &= v\varepsilon \\ \Delta d &= \varepsilon' d = v\varepsilon d \\ v &= \frac{\Delta d}{\varepsilon d} = \frac{0.00830 \text{ mm}}{(0.002440)(10 \text{ mm})} = 0.34 \quad \leftarrow \end{split}$$

NUMERICAL DATA

$$P_1 = 26.5 \text{ k}$$

$$P_2 = 22 \text{ k}$$

$$d_{AB} = 1.25$$
 in.

$$t_{AB} = 0.5 \text{ in.}$$

$$d_{BC} = 2.25$$
 in.

$$t_{BC} = 0.375$$
 in.

$$E = 14000 \text{ ksi}$$

$$\Delta t_{RC} = 200 \times 10^{-6}$$

(a) Increase in the inner diameter of pipe segment BC

$$\varepsilon_{pBC} = \frac{\Delta t_{BC}}{t_{BC}} \quad \varepsilon_{pBC} = 5.333 \times 10^{-4}$$

$$\Delta d_{BC\text{inner}} = \varepsilon_{pBC}(d_{BC} - 2t_{BC})$$

 $\Delta d_{BC\text{inner}} = 8 \times 10^{-4} \text{ in.} \leftarrow$

(b) Poisson's ratio for the brass

$$A_{BC} = \frac{\pi}{4} \left[d_{BC}^2 - (d_{BC} - 2t_{BC})^2 \right]$$

$$A_{RC} = 2.209 \text{ in.}^2$$

$$\varepsilon_{BC} = \frac{-(P_1 + P_2)}{(EA_{BC})} \quad \varepsilon_{BC} = -1.568 \times 10^{-3}$$

$$v_{\text{brass}} = \frac{-\varepsilon_{pBC}}{\varepsilon_{BC}}$$
 $v_{\text{brass}} = 0.34$

(c) Increase in the wall thickness of PIPE segment ABand the increase in the inner diameter of AB

$$A_{AB} = \frac{\pi}{4} \left[d_{AB}^2 - (d_{AB} - 2t_{AB})^2 \right]$$

$$\varepsilon_{AB} = \frac{-P_1}{EA_{AR}}$$
 $\varepsilon_{AB} = -1.607 \times 10^{-3}$

$$\varepsilon_{pAB} = -\nu_{brass}\varepsilon_{AB}$$
 $\varepsilon_{pAB} = 5.464 \times 10^{-4}$

$$\Delta t_{AB} = \varepsilon_{pAB} t_{AB}$$
 $\Delta t_{AB} = 2.73 \times 10^{-4} \text{ in.}$ \leftarrow

$$\Delta d_{AB\text{inner}} = \varepsilon_{pAB}(d_{AB} - 2t_{AB})$$

$$\Delta d_{ABinner} = 1.366 \times 10^{-4} \text{ in.}$$

$$P=1400 \text{ kN}$$
 $L=5 \text{ m}$ $d=80 \text{ mm}$ $E=110 \text{ GPa}$ $v=0.33$
$$A_d=\frac{\pi}{4}d^2=5026.5 \text{ mm}^2 \quad A_{2d}=\frac{\pi}{4}(2 \text{ d})^2=20,106.2 \text{ mm}^2$$

(a) FIND CHANGE IN LENGTH OF EACH BAR

BAR #1
$$\varepsilon_1 = \frac{P}{EA_d} = 2.532 \times 10^{-3}$$
 $\sigma_1 = E \varepsilon_1 = 279 \,\mathrm{MPa}$ Appendix I, Table I-3: copper alloys can have yield stress in range 55–760 MPa so assume this is below proportional limit so that Hooke's Law applies

BAR #2 $\varepsilon_{2a} = \frac{P}{EA_d} = 2.532 \times 10^{-3}$ $\varepsilon_{2b} = \frac{P}{EA_{2d}} = 6.33 \times 10^{-4}$ $\frac{\varepsilon_{2a}}{4} = 6.33 \times 10^{-4}$
 $\Delta L_{2a} = \varepsilon_{2a} \frac{L}{5} = 2.532 \,\mathrm{mm}$ $\Delta L_{2b} = \varepsilon_{2b} \left(\frac{4L}{5}\right) = 2.532 \,\mathrm{mm}$
 $\Delta L_{2a} = \varepsilon_{2a} \frac{L}{5} = 0.844 \,\mathrm{mm}$ $\Delta L_{2b} = \varepsilon_{2b} \left(\frac{14L}{15}\right) = 2.954 \,\mathrm{mm}$

 $\Delta L_3 = \Delta L_{2a} + \Delta L_{2b} = 3.8 \text{ mm}$ $L_{f3} = L + \Delta L_3 = 5003.08 \text{ mm}$ $\frac{\Delta L_3}{\Delta L_4} = 0.3$

(b) FIND CHANGE IN VOLUME OF EACH BAR

Use lateral strain (ε_p) in each segment to find change in diameter Δd , then find change in cross sectional area, then volume

BAR #1

$$\varepsilon_{p1} = -v \, \varepsilon_1 = -8.356 \times 10^{-4} \quad \Delta d_1 = \varepsilon_{p1} d = -0.067 \,\text{mm} \quad A_1 = \frac{\pi}{4} (d + \Delta d_1)^2 = 5018.152 \,\text{mm}^2$$

$$\Delta \text{Vol}_1 = A_1 L_{f1} - A_d L = 21548 \,\text{mm}^3 \quad \frac{\Delta Vol_1}{A_d L} = 8.574 \times 10^{-4}$$

BAR #2

$$\varepsilon_{p2a} = \varepsilon_{p1} \quad \varepsilon_{p2b} = -v \, \varepsilon_{2b} = -2.089 \times 10^{-4} \quad \frac{\varepsilon_{p1}}{4} = -2.089 \times 10^{-4}$$

$$\Delta d_{2b} = \varepsilon_{p2b} (2d) = -0.33 \text{ mm} \quad A_{2a} = A_1 \quad A_{2b} = \frac{\pi}{4} (2d + \Delta d_{2b})^2 = 20097.794 \text{ mm}^2$$

$$\Delta L_{2a} = \varepsilon_{2a} \frac{L}{5} = 2.532 \text{ mm} \quad \Delta L_{2b} = \varepsilon_{2b} \left(\frac{4L}{5}\right) = 2.532 \text{ mm}$$

$$\Delta \text{Vol}_2 = \left[A_1 \left(\frac{L}{5} + \Delta L_{2a}\right) + A_{2b} \left(\frac{4L}{5} + \Delta L_{2b}\right) \right] - \left[A_{2d} \left(\frac{4L}{5}\right) + A_d \left(\frac{L}{5}\right) \right]$$

$$= 21601 \text{ mm}^3 \qquad \frac{\Delta \text{Vol}_2}{\Delta \text{Vol}_1} = 1.002$$

BAR #3

$$\Delta L_{2a} = \varepsilon_{2a} \frac{L}{15} = 0.844 \text{ mm} \qquad \Delta L_{2b} = \varepsilon_{2b} \left(\frac{14 L}{15} \right) = 2.954 \text{ mm}$$

$$\Delta \text{Vol}_3 = \left[A_1 \left(\frac{L}{15} + \Delta L_{2a} \right) + A_{2b} \left(\frac{14 L}{15} + \Delta L_{2b} \right) \right] - \left[A_{2d} \left(\frac{14 L}{15} \right) + A_d \left(\frac{L}{15} \right) \right]$$

$$= 21610 \text{ mm}^3 \qquad \frac{\Delta \text{Vol}_3}{\Delta \text{Vol}_2} = 1.003$$

$$\Delta \text{Vol}_1 = 21548 \text{ mm}^3 \qquad \Delta \text{Vol}_2 = 21601 \text{ mm}^3 \qquad \Delta \text{Vol}_3 = 21610 \text{ mm}^3$$

NUMERICAL DATA

$$t = 0.75 \text{ in.}$$
 $L = 8 \text{ in.}$

$$b = 3$$
. in. $p = \frac{275}{1000}$ ksi $d = \frac{5}{8}$ in.

BEARING FORCE

$$F = pbL$$
 $F = 6.6 \text{ k}$

SHEAR AND BEARING AREAS

$$A_S = \frac{\pi}{4}d^2$$
 $A_S = 0.307 \text{ in.}^2$

$$A_b = dt$$
 $A_b = 0.469 \text{ in.}^2$

BEARING STRESS

$$\sigma_b = \frac{F}{2A_b}$$
 $\sigma_b = 7.04 \text{ ksi}$ \leftarrow

SHEAR STRESS

$$\tau_{\text{ave}} = \frac{F}{2A_S}$$
 $\tau_{\text{ave}} = 10.76 \text{ ksi}$
 \leftarrow

NUMERICAL DATA

$$t_{ep} = 14 \text{ mm}$$

$$t_{gp} = 26 \text{ mm}$$

$$P = 80 \text{ kN}$$

$$d_p = 22 \text{ mm}$$

$$\tau_{
m ult} = 190 \ {
m MPa}$$

(a) Bearing stress on Pin

$$\sigma_b = \frac{P}{d_p t_{gp}}$$
 gusset plate is thinner than
$$(2 t_{ep}) \text{ so gusset plate controls}$$

$$\sigma_b = 139.9 \text{ MPa} \quad \leftarrow$$

(b) Ultimate force in shear

Cross sectional area of pin

$$A_p = \frac{\pi d_p^2}{4}$$

$$A_p = 380.133 \text{ mm}^2$$

$$P_{\mathrm{ult}} = 2\tau_{\mathrm{ult}}A_{p}$$
 $P_{\mathrm{ult}} = 144.4 \text{ kN}$ \leftarrow

NUMERICAL DATA

$$P = 160 \text{ kips}$$
 $d_p = 2 \text{ in.}$ $t_g = 1.5 \text{ in.}$ $t_f = 1 \text{ in.}$

(a) Shear stress on Pin

$$\tau = \frac{V}{\left(\frac{\pi d_p^2}{4}\right)} \qquad \tau = \frac{\frac{P}{4}}{\left(\frac{\pi d_p^2}{4}\right)}$$

$$\tau = 12.73 \text{ ksi} \qquad \leftarrow$$

(b) Bearing stress on Pin From Flange Plate

$$\sigma_{bf} = \frac{\frac{P}{4}}{d_p t_f}$$
 $\sigma_{bf} = 20 \text{ ksi}$ \leftarrow

BEARING STRESS ON PIN FROM GUSSET PLATE

$$\sigma_{bg} = \frac{\frac{P}{2}}{d_p t_g}$$
 $\sigma_{bg} = 26.7 \text{ ksi} \quad \leftarrow$

$$t_r = 4 \text{ mm}$$
 $t_s = 5 \text{ mm}$ $d_p = 8 \text{ mm}$ $P = 85 \cdot (9.81)$ $P = 833.85$ N $a = 1.8 \text{ m}$ $b = 0.7 \text{ m}$ $H = 7.5 \text{ m}$ $q = 40 \frac{N}{m}$

= 1.8 m b = 0.7 m H = 7.5 m q = 40
$$\frac{1}{r}$$

(a) support reactions

$$L = \sqrt{(a+b)^2 + H^2}$$
 $L = 7.906$ m $L_{AC} = \frac{a}{a+b} \cdot L$ $L_{AC} = 5.692$
 $L_{CB} = \frac{b}{a+b} \cdot L$ $L_{CB} = 2.214$ $L_{AC} + L_{CB} = 7.906$

sum moments about A

$$B_X = \frac{P \cdot a + q \cdot L \cdot \left(\frac{a+b}{2}\right)}{-H} \qquad B_X = -252.829 \text{ N (left) & Ax = -Bx (Ax acts to right)} \qquad A_X = -B_X$$

$$A_Y = P + q \cdot L \qquad A_Y = 1150.078 \text{ N} \qquad \boxed{B_X = -252.8} \text{ N} \qquad \boxed{A_X = -B_X} \qquad \boxed{A_Y = 1150.1 \text{ N}}$$

(b) resultant force in shoe bolt at A
$$A_{resultant} = \sqrt{A_x^2 + A_y^2}$$

Aresultant =
$$\sqrt{A_X} + A_y$$

(c)
$$\underline{\text{maximum shear and bearing stresses in shoe bolt at A}}$$
 $d_p = 8 \text{ mm}$ $t_s = 5 \text{ mm}$ $t_r = 4 \text{ mm}$

$$\text{shear area} \quad A_{_{S}} = \frac{\pi}{4} \cdot d_{_{P}}^{\quad 2} \qquad A_{_{S}} = 50.265 \quad \text{mm}^2 \qquad \text{shear stress} \quad \tau = \frac{\frac{A_{_{Tesultant}}}{2}}{2 \cdot A_{_{S}}} \qquad \boxed{\tau = 5.86 \quad \text{MPa}}$$

bearing area
$$A_b = 2 \cdot d_p \cdot t_s$$
 $A_b = 80 \text{ nm}^2$ bearing stress $\sigma_{bshoe} = \frac{\frac{A_{resultant}}{2}}{A_b}$ $\sigma_{bshoe} = 7.36 \text{ MPa}$

Check bearing stress from ladder rail
$$\sigma_{brail} = \frac{\frac{A_{resultant}}{2}}{\frac{1}{d_p \cdot t_r}} \qquad \boxed{\sigma_{brail} = 18.4} \text{ MPa}$$

NUMERICAL DATA

$$d_p=0.25$$
 in. $L=\frac{5}{8}$ in. $CD=3.25$ in. $BC=1$ in. $T=45$ lb

Equilibrium - Find Horizontal Forces at B and C [vertical reaction $V_B=0$]

$$\sum M_B = 0 \qquad H_C = \frac{T(BC + CD)}{BC}$$

$$H_C = 191.25 \text{ lb} \qquad \sum F_H = 0$$

$$H_B = T - H_C \qquad H_B = -146.25 \text{ lb}$$

(a) Find the ave shear stress au_{ave} in the pivot pin where it is anchored to the bicycle frame at B:

$$A_S = \frac{\pi d_p^2}{4} \qquad A_s = 0.049 \text{ in.}^2$$

$$\tau_{\text{ave}} = \frac{|H_B|}{A_S} \qquad \tau_{\text{ave}} = 2979 \text{ psi} \quad \leftarrow$$

(b) Find the ave bearing stress $\sigma_{b,\mathrm{ave}}$ in the pivot pin over segment AB.

$$A_b = d_p L$$
 $A_b = 0.156 \text{ in.}^2$
$$\sigma_{b,\text{ave}} = \frac{|H_B|}{A_b}$$
 $\sigma_{b,\text{ave}} = 936 \text{ psi}$ \leftarrow

NUMERICAL DATA

$$L_1 = 3.2 \text{ m}$$
 $L_2 = 3.9 \text{ m}$ $\alpha = 54.9 \left(\frac{\pi}{180}\right) \text{ rad}$
 $\theta = 94.4 \left(\frac{\pi}{180}\right) \text{ rad}$
 $a = 0.6 \text{ m}$ $b = 1 \text{ m}$
 $W = 77.0(2.5 \times 1.5 \times 0.08)$ $W = 23.1 \text{ kN}$
 $(77 = \text{wt density of steel, kN/m}^3)$

STEP (4)
$$\beta_1 = \arccos\left(\frac{L_L^2 + H^2 - d^2}{2L_1H}\right)$$

 $\beta_1 \frac{180}{\pi} = 13.789^{\circ}$
STEP (5) $\beta_2 = \arccos\left(\frac{L_2^2 + H^2 - d^2}{2L_2H}\right)$
 $\beta_2 \frac{180}{\pi} = 16.95^{\circ}$

STEP (6)

Check
$$(\beta_1 + \beta_2 + \theta + \alpha) \frac{180}{\pi}$$

 $= 180.039^{\circ}$

STATICS

 $T_1\sin(\beta_1) = T_2\sin(\beta_2)$

$$T_1 = T_2 \left(\frac{\sin(\beta_2)}{\sin(\beta_1)} \right)$$

$$T_1 \cos(\beta_1) + T_2 \cos(\beta_2) = W$$

$$T_2 = \frac{W}{\cos(\beta_1) \frac{\sin(\beta_2)}{\sin(\beta_1)} + \cos(\beta_2)}$$

$$T_2 = 10.77 \text{ kN} \leftarrow$$

SOLUTION APPROACH

STEP (1)
$$d = \sqrt{a^2 + b^2}$$
 $d = 1.166 \text{ m}$
STEP (2) $\theta_1 = \arctan\left(\frac{a}{b}\right)$ $\theta_1 \frac{180}{\pi} = 30.964^\circ$

STEP (3)-Law of cosines

$$H = \sqrt{d^2 + L_1^2 - 2dL_1\cos(\theta + \theta_1)}$$

H = 3.00 m

$$T_1 = T_2 \left(\frac{\sin(\beta_2)}{\sin(\beta_1)} \right) \qquad T_1 = 13.18 \text{ kN} \quad \leftarrow$$

$$T_1 \cos(\beta_1) + T_2 \cos(\beta_2) = 23.1 < \text{checks}$$

SHEAR & BEARING STRESSES

$$d_p = 18 \text{ mm}$$
 $t = 80 \text{ mm}$

$$A_S = \frac{\pi}{4} d_p^2$$
 $A_b = t d_p$

$$\tau_{\text{lave}} = \frac{\frac{T_1}{2}}{A_S}$$
 $\tau_{\text{lave}} = 25.9 \,\text{MPa}$

$$\tau_{\text{2ave}} = \frac{\frac{T_2}{2}}{A_S}$$
 $\tau_{\text{2ave}} = 21.2 \text{ MPa}$

$$\sigma_{b1} = \frac{T_1}{A_b}$$
 $\sigma_{b1} = 9.15 \,\mathrm{MPa}$ \leftarrow

$$\sigma_{b2} = \frac{T_2}{A_L}$$
 $\sigma_{b2} = 7.48 \text{ MPa}$ \leftarrow

cable forces

$$T_1 = 800 11$$

$$T_2 = 550$$
 11

$$T_3 = 1241 11$$

$$d = 0.50$$

$$t_p = 0.75$$

$$T_1 = 800$$
 lb $T_2 = 550$ lb $T_3 = 1241$ lb $d = 0.50$ $t_p = 0.75$ $t = 0.25$ inches

(a) resultant force on eye bolt from 3 cables

$$T_2 \cdot \cos(30 \cdot \deg) = 1075$$

$$T_1 + T_2 \cdot \sin(30 \cdot \deg) = 1075$$

 $T_3 \cdot \cos(30 \cdot \deg) = 1075$ $T_1 + T_2 \cdot \sin(30 \cdot \deg) = 1075$ < so resultant has no y-component

$$P = T_2 \cdot \frac{\sqrt{3}}{2} + T_3 \cdot 0.5$$

$$P = T_2 \cdot \frac{\sqrt{3}}{2} + T_3 \cdot 0.5$$
 $P = 1097$ lb < x-component only

(b) ave. bearing stress between hex nut & plate

 $A_{brg} = 0.2194 \text{ in}^2$ < hexagon area (Case 25, App. E) minus bolt x-sec area

$$\sigma_{b} = \frac{P}{A_{brg}}$$

$$\sigma_b = \frac{P}{A_{br\sigma}}$$
 $\sigma_b = 4999$ psi

(c) shear through nut d = 0.5 in < bolt diameter t = 0.25 in < nut thickness

$$A_{sn} = (\pi \cdot d) \cdot t$$

$$A_{sn} = 0.393$$

$$A_{sn} = (\pi \cdot d) \cdot t \qquad A_{sn} = 0.393 \qquad \qquad \tau_{nut} = \frac{P}{A_{sn}} \qquad \quad \tau_{nut} = 2793 \quad psi$$

$$\tau_{\text{nut}} = 2793$$
 ps

$$A_{sp1} = (6 \cdot r) \cdot t_p$$

$$A_{sp1} = 1.8 \quad in^2$$

$$\tau_{pl} \,=\, \frac{P}{A_{spl}}$$

$$A_{spl} = (6 \cdot r) \cdot t_p$$
 $A_{spl} = 1.8 \text{ in}^2$ $\tau_{pl} = \frac{P}{A_{spl}}$ $\tau_{pl} = 609 \text{ psi}$

NUMERICAL DATA

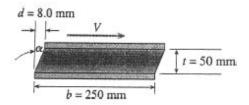
$$V = 12 \text{ kN}$$
 $a = 125 \text{ mm}$

$$b = 240 \text{ mm}$$
 $t = 50 \text{ mm}$ $d = 8 \text{ mm}$

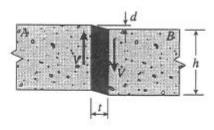
AVERAGE SHEAR STRESS

$$au_{
m ave} = rac{V}{ab} \qquad au_{
m ave} = 0.4 \
m MPa$$

Average shear strain
$$\gamma_{ave} = \frac{d}{t}$$
 $\gamma_{ave} = 0.16$



Shear modulus
$$G = \frac{ au_{
m ave}}{\gamma_{
m ave}}$$
 $G = 2.5 \
m MPa$ \leftarrow



$$h = 4.0 \text{ in.}$$
 $t = 0.5 \text{ in.}$

$$L = 40 \text{ in.}$$
 $d = 0.002 \text{ in.}$

$$G = 140 \text{ ksi}$$

(a) AVERAGE SHEAR STRAIN

$$\gamma_{\text{aver}} = \frac{d}{t} = 0.004 \quad \leftarrow$$

(b) Shear forces V

Average shear stress:
$$\tau_{aver} = G\gamma_{aver}$$

$$V = \tau_{\text{aver}}(hL) = G\gamma_{\text{aver}}(hL)$$

$$d_1 = 24$$
mm $d_2 = 16$ mm $t = 4$ mm $P = 70$ kN

average shear stress in plate:
$$\tau_{p1} = \frac{P}{\pi \cdot d_2 \cdot t} = 348.151 \cdot MPa$$

compressive stresses in punch shaft:

$$\sigma_{upper} = \frac{P}{\frac{\pi}{4} \cdot d_1^2} = 154.734 \cdot MPa$$

$$\sigma_{lower} = \frac{P}{\frac{\pi}{4} \cdot d_2^2} = 348.151 \cdot MPa$$

$$h = 0.5in$$
 $L = 30in$ $t = 0.5in$ $V = 25kip$ $G = 100ksi$

$$\tau = \frac{V}{L \cdot h} = 1.667 \cdot ksi \qquad \qquad \gamma = \frac{\tau}{G} = 0.0167$$

$$d = \gamma \cdot t = 8.333 \times 10^{-3} \cdot in \qquad or \qquad d = tan(\gamma) \cdot t = 8.334 \times 10^{-3} \cdot in$$

Part (a): pipe suspended in air

$$L = 5000 ft$$

$$\gamma_{\rm S} = 490 \frac{\rm lbf}{\rm ft^3}$$

L = 5000ft
$$\gamma_{\rm S} = 490 \frac{\rm lbf}{\rm ft}^3 \qquad \gamma_{\rm W} = 63.8 \frac{\rm lbf}{\rm ft}^3$$

$$d_2 = 16ii$$

$$d_1 = 15in$$

$$t = \frac{d_2 - d_1}{2} = 0.5 \cdot i t$$

$$t_{f} = 1.75 in$$

$$d_2 = 16in$$
 $d_1 = 15in$ $t = \frac{d_2 - d_1}{2} = 0.5 \cdot in$ $t_f = 1.75in$ $A_{pipe} = \frac{\pi}{4} \cdot \left(d_2^2 - d_1^2\right) = 24.347 \cdot in^2$

$$W_{pipe} = \gamma_s \cdot A_{pipe} \cdot L = 414.243 \cdot kip$$

$$d_{1s} = 1.125in$$

$$d_w = 1.875in$$

$$A_b = \frac{\pi}{4} \cdot d_b^2 = 0.994 \cdot in^2$$

$$n = 6 d_b = 1.125 in d_W = 1.875 in A_b = \frac{\pi}{4} \cdot d_b^2 = 0.994 \cdot in^2 A_W = \frac{\pi}{4} \cdot \left(d_W^2 - d_b^2\right) = 1.8 \cdot in^2$$

$$\sigma_{b} = \frac{W_{\text{pipe}}}{n \cdot A_{b}} = 69.5 \cdot \text{ks}$$

$$\sigma_{\text{brg}} = \frac{W_{\text{pipe}}}{n \cdot A_{\text{W}}} = 39.1 \cdot \text{ksi}$$

$$\tau_{f} = \frac{W_{pipe}}{n \cdot \pi \cdot d_{W} \cdot t_{f}} = 6.7 \cdot ksi$$

Part (b): pipe suspended in sea water

$$W_{inwater} = (\gamma_s - \gamma_w) \cdot A_{pipe} \cdot L = 360.307 \cdot kip$$

$$\sigma_{b} = \frac{W_{inwater}}{n \cdot A_{b}} = 60.4 \cdot ksi$$

$$\sigma_{brg} = \frac{W_{inwater}}{n \cdot A_W} = 34 \cdot ksi$$

$$\tau_{f} = \frac{W_{inwater}}{n \cdot \pi \cdot d_{W} \cdot t_{f}} = 5.83 \cdot ksi$$

Rubber pads: t = 9 mm

Length L = 160 mm

Width b = 80 mm

G = 1250 kPa

P = 16 kN

(a) SHEAR STRESS AND STRAIN IN THE RUBBER PADS

$$\tau_{\text{aver}} = \frac{P/2}{bL} = \frac{8 \text{ kN}}{(80 \text{ mm})(160 \text{ mm})} = 625 \text{ kPa}$$

$$\gamma_{\text{aver}} = \frac{\tau_{\text{aver}}}{G} = \frac{625 \text{ kPa}}{1250 \text{ kPa}} = 0.50 \qquad \leftarrow$$

(b) HORIZONTAL DISPLACEMENT

$$\delta = t \times \tan(\gamma_{\text{ave}}) = 4.92 \text{ mm}$$

NUMERICAL DATA

$$t = \frac{1}{8}$$
 in. $b = 2$ in. $h = 7$ in. $W_1 = 10$ lb $W_2 = 40$ lb $P = 30$ lb $d_B = 0.25$ in. $d_p = \frac{5}{16}$ in.

(a) REACTIONS AT A

$$A_x = 0 \qquad \leftarrow$$

$$A_y = W_1 + W_2 + 4P \qquad \leftarrow$$

 $A_y = 170 \text{ lb} \leftarrow$ $L_1 = 17 + 2.125 + 6 \qquad L_1 = 25 \text{ in.}$ (dist from A to first bike)

$$M_A = W_1(9) + W_2(19) + P(4L_1 + 4 + 8 + 12)$$

 $M_A = 4585 \text{ in.-lb}$

(b) Forces in bolt at B and pin at C

$$\Sigma F_y = 0$$
 $B_y = W_2 + 4P$ $B_y = 160 \text{ lb}$ \leftarrow $\Sigma M_B = 0$

Right hand FBD

$$[W_2(19 - 17) + P(6 + 2.125) + P(8.125 + 4) + P(8.125 + 8)$$

$$B_x = \frac{+ P(8.125 + 12)]}{h}$$

$$B_x = 254 \text{ lb} \leftarrow C_x = -B_x$$

$$B_{\text{res}} = \sqrt{B_x^2 + B_y^2} \quad B_{\text{res}} = 300 \text{ lb} \leftarrow$$

(c) Average shear stresses au_{ave} in both the bolt at B and the pin at C

$$A_{sB} = 2 \frac{\pi d_B^2}{4}$$
 $A_{sB} = 0.098 \text{ in.}^2$
 $\tau_B = \frac{B_{res}}{A_{sB}}$ $\tau_B = 3054 \text{ psi}$ \leftarrow

$$A_{sC} = 2\frac{\pi d_p^2}{4}$$
 $A_{sC} = 0.153 \text{ in.}^2$

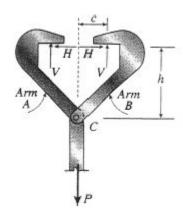
$$\tau_C = \frac{B_x}{A_{sC}}$$
 $\tau_C = 1653 \text{ psi}$ \leftarrow

(d) Bearing stresses σ_B in the bolt at B and the pin at C t=0.125 in.

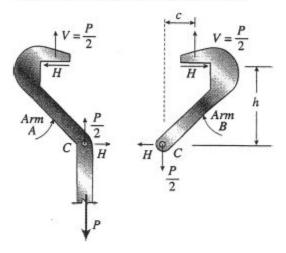
$$A_{bB} = 2td_B$$
 $A_{bB} = 0.063 \text{ in.}^2$
 $\sigma_{bB} = \frac{B_{res}}{A_{bB}}$ $\sigma_{bB} = 4797 \text{ psi}$ \leftarrow
 $A_{bC} = 2td_p$ $A_{bC} = 0.078 \text{ in.}^2$

$$\sigma_{bC} = \frac{C_x}{A_{bC}}$$
 $\sigma_{bC} = 3246 \text{ psi}$ \leftarrow

FREE-BODY DIAGRAM OF CLAMP



FREE-BODY DIAGRAMS OF ARMS A AND B

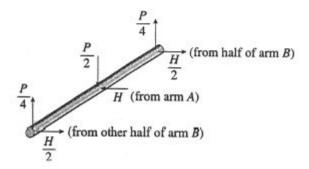


$$\Sigma M_C = 0 \Leftrightarrow \triangle$$

$$V_C - Hh = 0$$

$$H = \frac{V_C}{h} = \frac{P_c}{2h} = 3.6 \text{ kN}$$

FREE-BODY DIAGRAM OF PIN



$$h = 250 \, \text{mm}$$

c = 100 mm

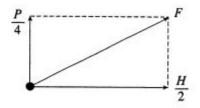
$$P = 18 \text{ kN}$$

From vertical equilibrium:

$$V = \frac{P}{2} = 9 \text{ kN}$$

d = diameter of pin at C = 12 mm

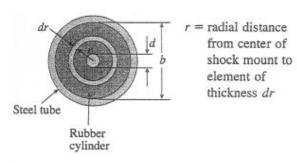
SHEAR FORCE F IN PIN

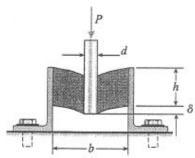


$$F = \sqrt{\left(\frac{P}{4}\right)^2 + \left(\frac{H}{2}\right)^2}$$
$$= 4.847 \text{ kN}$$

AVERAGE SHEAR STRESS IN THE PIN

$$\tau_{\text{aver}} = \frac{F}{A_{\text{pin}}} = \frac{F}{\frac{\pi a^2}{4}} = 42.9 \text{ MPa} \quad \leftarrow$$





r = radial distance from center of shock mount to element of thickness dr

(a) Shear stress τ at radial distance r

$$A_s$$
 = shear area at distance $r = 2\pi rh$

$$\tau = \frac{P}{A_s} = \frac{P}{2\pi rh}$$
 \leftarrow

(b) Downward displacement δ

 γ = shear strain at distance r

$$\gamma = \frac{\tau}{G} = \frac{P}{2\pi r h G}$$

 $d\delta$ = downward displacement for element dr

$$d\delta = \gamma dr = \frac{Pdr}{2\pi r h G}$$

$$\delta = \int d\delta = \int_{d/2}^{b/2} \frac{Pdr}{2\pi r h G}$$

$$\delta = \frac{P}{2\pi hG} \int_{d/2}^{b/2} \frac{dr}{r} = \frac{P}{2\pi hG} \left[\ln r \right]_{d/2}^{b/2}$$

$$\delta = \frac{P}{2\pi hG} \ln \frac{b}{d} \quad \leftarrow$$

Numerical data
$$L = 2.75 \cdot m$$
 $W_y = 667 \cdot N$ $H = 150 \cdot mm$ $h = 108 \cdot mm$ $b = 96 \cdot mm$ $t = 14 \cdot mm$ $d_b = 12 \cdot mm$ $d_w = 22 \cdot mm$

a) Find average shear stress (τ , MPa) at **bolt #1** due to the wind force W_y ; repeat for **bolt #4**

$$A_b = \frac{\pi}{4} \cdot d_b^2 = 113.097 \cdot mm^2 \qquad \qquad \tau_1 = \frac{\frac{W_y}{2}}{A_b} = 2.95 \cdot MPa \qquad \boxed{\tau_1 = 2.95 \cdot MPa} \qquad \boxed{\tau_4 = 0} \qquad \frac{W_y}{2} = 333.5 \, N$$

^ only bolts 1 & 2 resist wind force shear in +y dir.

b) Find ave. **bearing stress** (σ_b , MPa) between the bolt and the base plate (thickness t) at **bolt** #1; repeat for **bolt** #4

$$A_{brg} = d_b \cdot t = 168 \cdot mm^2$$

$$\sigma_{b1} = \frac{W_y}{2}$$

$$A_{brg} = 1.985 \cdot MPa$$

$$\sigma_{b1} = 1.985 \cdot MPa$$

$$\sigma_{b4} = 0$$

^ only bolts 1 & 2 resist wind force bearing in +y dir.

c) Find ave. **bearing stress** (σ_b , MPa) between base plate and washer at **bolt #4** due to the wind force W_v (assume initial bolt pretension is zero)

Assume wind force creates OTM about x axis = OTM_x OTM_x = $W_V \cdot L = 1834.25 \cdot N \cdot m$

OTM is resisted by force couples pairs at bolts 1-4 & 2-3; so force in bolt 4 is: $F_4 = \frac{OTM_X}{2 \cdot h} = 8491.898 \, N$

Bearing area is donut shaped area of washer in contact with the plate minus approx. rect. cutout for slot

$$A_{brg} = \frac{\pi}{4} \cdot \left(d_w^2 - d_b^2\right) - d_b \cdot \left(\frac{d_w - d_b}{2}\right) = 207.035 \cdot mm^2 \qquad \sigma_{b4} = \frac{F_4}{A_{brg}} = 41 \cdot MPa \qquad \boxed{\sigma_{b4} = 41 \cdot MPa}$$

d) Find ave. shear stress (τ , MPa) through the base plate at **bolt #4** due to the wind force W_{v} ;

Use force F₄ above; shear stress is on cyl. surface at perimeter of washer; must deduct *approx*. rect. area due to slot

$$A_{sh} = (\pi \cdot d_w - d_b) \cdot t = 799.611 \cdot mm^2$$
 $\tau = \frac{F_4}{A_{sh}} = 10.62 \cdot MPa$ $\tau = 10.62 \cdot MPa$

e) Find an expression for **normal stress** (σ) in **bolt #3** due to the wind force W_y .

Force in bolt 3 due to OTM_x is same as that in bolt 4 $\sigma_3 = \frac{F_4}{A_b} = 75.1 \cdot \text{MPa}$ $\sigma_3 = 75.1 \cdot \text{MPa}$

NUMERICAL DATA

$$F = 5 \text{ lb}$$
 $t = \frac{1}{16} \text{ in.}$ $d_p = \frac{1}{8} \text{ in.}$ $d_b = \frac{3}{16} \text{ in.}$ $f_p = 30 \text{ lb}$ $d_N = \frac{5}{8} \text{ in.}$ $\theta = 15 \frac{\pi}{180} \text{ rad}$ $a = 0.75 \text{ in.}$ $b = 1.5 \text{ in.}$ $c = 1.75 \text{ in.}$

(a) Find the force in the Pin at ${\cal O}$ due to applied force ${\cal F}$

$$\sum M_o = 0$$

$$F_{AB} = \frac{[F\cos(\theta)(b-a)] + F\sin(\theta)(c)}{a}$$

$$F_{AB} = 7.849 \text{ lb}$$

$$\sum F_H = 0 \qquad O_x = F_{AB} + F\cos(\theta)$$

$$O_y = F\sin(\theta)$$

$$O_x = 12.68 \text{ lb}$$
 $O_y = 1.294 \text{ lb}$
$$O_{\text{res}} = \sqrt{O_x^2 + O_y^2} \qquad O_{\text{res}} = 12.74 \text{ lb} \quad \leftarrow$$

(b) Find average shear stress $au_{
m ave}$ and bearing stress σ_b in the Pin at O

$$A_s = 2\frac{\pi d_p^2}{4}$$
 $\tau_O = \frac{O_{\rm res}}{A_s}$ $\tau_O = 519 \,\mathrm{psi}$ \leftarrow

$$A_b = 2td_p \quad \sigma_{bO} = \frac{O_{\rm res}}{A_s} \quad \sigma_{bO} = 816 \,\mathrm{psi} \quad \leftarrow$$

(c) Find the average shear stress $au_{
m ave}$ in the brass retaining balls at B due to water pressure force F_D

$$A_s = 3\frac{\pi d_b^2}{4}$$
 $\tau_{\text{ave}} = \frac{f_p}{A_s}$ $\tau_{\text{ave}} = 362 \text{ psi}$ \leftarrow

numerical data

humerical data
$$d_s = 8 \text{ mm}$$
 $d_b = 10 \text{ mm}$ $m = 20 \text{ kg}$ $d_b = 760$ $d_b = 254$ $d_b = 150$ $d_b = 150$ $d_b = 660$ $d_b = 490$ $d_b = 150$ $d_b = 150$

$$W = m \cdot (9.81) \qquad W = 196.2 \quad N = kg \cdot \frac{}{s^2}$$

$$\frac{a+b+c}{2} = 760$$

vector rAB

$$r_{AB} = \begin{pmatrix} 0 \\ H \\ c - d \end{pmatrix}$$
 $r_{AB} = \begin{pmatrix} 0 \\ 1.041 \times 10^3 \\ 356 \end{pmatrix}$

 $e_{AB} = \frac{r_{AB}}{|r_{AB}|}$ $e_{AB} = \begin{pmatrix} 0\\0.946\\0.324 \end{pmatrix}$ $|e_{AB}| = 1$

$$W = \begin{pmatrix} 0 \\ -W \\ 0 \end{pmatrix} \qquad W = \begin{pmatrix} 0 \\ -196.2 \\ 0 \end{pmatrix} \qquad r_{DO} = \begin{pmatrix} h_o \\ h_o \\ b+c \end{pmatrix} \qquad r_{DO} = \begin{pmatrix} 490 \\ 490 \\ 760 \end{pmatrix}$$

$$\sum\!\!{\rm M}_D = r_{DB} \times F_{s} \cdot e_{AB} + W \times r_{DO} \qquad \begin{array}{l} < \text{ignore force at hinge C since it will vanish} \\ \text{with moment about line DC} \end{array}$$

$$F_{sx} = 0 F_{sy} = \frac{H}{\sqrt{H^2 + (c - d)^2}} \cdot F_{s} F_{sz} = \frac{c - d}{\sqrt{H^2 + (c - d)^2}} \cdot F_{s}$$

$$\frac{H}{\sqrt{H^2 + (c - d)^2}} = 0.946 \frac{c - d}{\sqrt{H^2 + (c - d)^2}} = 0.324$$

(a) Find the strut force Fs and average normal stress o in the strut

 $\sum M_{\text{lineDC}} = 0 \qquad F_{\text{sy}} = \frac{|W| \cdot h_0}{h} \qquad F_{\text{sy}} = 145.664 \qquad F_{\text{s}} = \frac{F_{\text{sy}}}{H} \qquad F_{\text{s}} = 153.9 \qquad N$

$$A_{strut} = \frac{\pi}{4} \cdot d_s^2$$
 $A_{strut} = 50.265$ mm^2 $\sigma = \frac{F_s}{A_{strut}}$ $\sigma = 3.06$ MPa

(b) Find the average shear stress $\underline{\tau}_{ave}$ in the bolt at A $d_b = 10$ mm

$$A_{s} = \frac{\pi}{4} \cdot d_{b}^{2}$$
 $A_{s} = 78.54$ $\tau = \frac{F_{s}}{A_{s}}$ $\tau = 1.96$ MPa

(c) Find the bearing stress
$$\sigma_b$$
 on the bolt at A $A_b = d_s \cdot d_b$ $A_b = 80 \text{ mm}^2$

$$\sigma_{b} = \frac{F_{s}}{A_{b}}$$
 $\sigma_{b} = 1.924$ MPa

NUMERICAL PROPERTIES

$$d_p = \frac{1}{8} \text{ in.}$$
 $t_b = \frac{3}{32} \text{ in.}$ $t_c = \frac{3}{8} \text{ in.}$

$$T = 25 \text{ lb}$$
 $d_{BC} = 6 \text{ in.}$

$$d_{CD} = 1$$
 in.

(a) Find the cutting force P on the cutting blade at D if the tension force in the rope is T=25 lb:

$$\sum M_c = 0$$

$$M_C = T(6 \sin(70^\circ))$$

$$+ 2T \cos(20^\circ)(6 \sin(70^\circ))$$

$$- 2T \sin(20^\circ)(6 \cos(70^\circ))$$

$$- P \cos(20^\circ)(1)$$

Solve equation for P

$$P = \frac{[T(6\sin(70^\circ)) + 2T\cos(20^\circ)}{6\sin(70^\circ)) - 2T\sin(20^\circ)(6\cos(70^\circ))]}$$

$$P = 395 \text{ lbs} \qquad \leftarrow$$

(b) Solve for forces on Pin at C

$$\sum F_x = 0 \qquad C_x = T + 2T\cos(20^\circ) + P\cos(40^\circ)$$

$$C_x = 374 \text{ lbs} \qquad \leftarrow$$

$$\sum F_y = 0 \qquad C_y = 2T\sin(20^\circ) - P\sin(40^\circ)$$

$$C_y = -237 \text{ lbs} \qquad \leftarrow$$

Resultant at $\,C\,$

$$C_{\text{res}} = \sqrt{C_x^2 + C_y^2}$$
 $C_{\text{res}} = 443 \text{ lbs}$ \leftarrow

(c) Find maximum shear and bearing stresses in the support pin at C (see section A-A through saw).

SHEAR STRESS—PIN IN DOUBLE SHEAR

$$A_s = \frac{\pi}{4} d_p^2$$
 $A_s = 0.012 \text{ in.}^2$
 $\tau_{\text{ave}} = \frac{C_{\text{res}}}{2A_s}$ $\tau_{\text{ave}} = 18.04 \text{ ksi}$

BEARING STRESSES ON PIN ON EACH SIDE OF COLLAR

$$\sigma_{bC} = \frac{\frac{C_{\text{res}}}{2}}{\frac{1}{d_p t_c}}$$
 $\sigma_{bC} = 4.72 \text{ ksi} \quad \leftarrow$

BEARING STRESS ON PIN AT CUTTING BLADE

$$\sigma_{bcb} = \frac{C_{\text{res}}}{d_p t_b}$$
 $\sigma_{bcb} = 37.8 \text{ ksi}$ \leftarrow

Cable forces

$$F_{1} = F_{1} n_{A1} = 110 kN \left(\frac{3i + (9 - 0.45)j}{\sqrt{3^{2} + 8.55^{2}}} \right) = 36.42i + 103.8j kN$$

$$F_{2} = F_{2} n_{A2} = 85kN \left(\frac{6.5i + (8.5 - 0.45)j + 2k}{\sqrt{6.5^{2} + 8.05^{2} + 2^{2}}} \right) = 52.43i + 64.93j + 16.13k kN$$

$$F_{3} = F_{3} n_{A3} = 90kN \left(\frac{8i + (9 - 0.45)j + 5k}{\sqrt{8^{2} + 8.55^{2} + 5^{2}}} \right) = 56.55i + 60.44j + 35.34k kN$$

The resultant of cable forces F_1 , F_2 and F_3 is easily obtained as:

$$Q = F_1 + F_2 + F_3 = 145.4i + 229.2j + 51.5k kN$$

(a) Reactions - use resultant forces Q_x, Q_y, Q_z applied at point A (a distance S = 0.45 m above base)

$$\sum F_{x} = 0$$
: $R_{x} + Q_{x} = 0$ so $R_{x} = -Q_{x} = -145.4kN$

$$\sum F_{v} = 0$$
: $R_{v} + Q_{v} = 0$ so $R_{v} = -Q_{v} = -229.2kN$

$$\sum F_z = 0$$
: $R_z + Q_z = 0$ so $R_z = -Q_z = -51.5kN$

$$\sum M_x = 0$$
: $M_x + Q_z(0.45m) = 0$ so $M_x = -(51.5kN)(0.45m) = -23.2kN \cdot m$

$$\sum M_y = 0$$
: $M_y = 0$

$$\sum M_z = 0$$
: $M_z - Q_x(0.45m) = 0$ so $M_z = (145.4kN)(0.45m) = 65.4kN \cdot m$

(b) Average shear stress for each of 8 anchor bolts $d_b = 24mm$ $R_x = 145.4kN$ $R_z = 51.5kN$

$$\tau_{\text{ave}} = \frac{\sqrt{R_x^2 + R_z^2}}{8 \cdot \left(\frac{\pi}{4} \cdot d_b^2\right)} = 42.621 \cdot \text{MPa}$$

a) Reactions at point O $P_1 = 1101bf$ $P_2 = P_1$

$$P_1 = 110lbf$$

$$P_2 = P_1$$

Force vectors and resultant

$$R = P_1 + P_2 = \begin{pmatrix} 0 \\ -206.251 \\ 70.766 \end{pmatrix} \cdot lbf \qquad |R| = 218.053 \cdot lbf$$

Moment about point O (or Force-couple system at pt. O)

$$r_{OB} = \begin{pmatrix} 14 \\ 2 \\ 9 \end{pmatrix} \cdot \text{in} \qquad r_{OA} = \begin{pmatrix} 23 \\ 2 \\ 0 \end{pmatrix} \cdot \text{in} \qquad M_{O} = r_{OA} \times P_{2} + r_{OB} \times P_{1} = \begin{pmatrix} 1027 \\ -1185 \\ -3858 \end{pmatrix} \cdot \text{lbf} \cdot \text{in} \quad \text{or} \quad M_{O} = \begin{pmatrix} 85.6 \\ -98.7 \\ -321.5 \end{pmatrix} \cdot \text{lbf} \cdot \text{ft}$$

REACTIONS at point O

$$|M_O| = 4165 \cdot lbf \cdot in$$
 or $|M_O| = 347 \cdot lbf \cdot ft$

$$R_{O} = -R = \begin{pmatrix} 0 \\ 206.3 \\ -70.8 \end{pmatrix} \cdot lbf$$

$$R_{O} = -R = \begin{pmatrix} 0 \\ 206.3 \\ -70.8 \end{pmatrix} \cdot lbf$$
 $M_{Oreac} = -M_{O} = \begin{pmatrix} -1027 \\ 1185 \\ 3858 \end{pmatrix} \cdot lbf \cdot in$

b) Shear stress on bolt 2
$$b = 2.75 in$$
 $h = 3 in$ $d = \sqrt{b^2 + h^2} = 4.07 \cdot in$ $\theta = atan \left(\frac{h}{b}\right) = 47.49 \cdot deg$

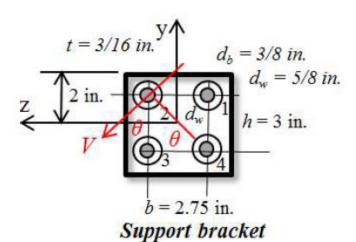
$$F_{y2} = \frac{R_2}{4} = -51.563 \cdot lbf$$
 $F_{z2} = \frac{R_3}{4} = 17.692 \cdot lbf$

$$F_{z2} = \frac{R_3}{4} = 17.692 \cdot 1bf$$

$$V = \frac{MO_1}{2 \cdot d} = 126.178 \cdot lbf$$
 < CCW twisting moment = 2 force couples

$$V_V = -V \cdot \cos(\theta) = -85.262 \cdot lbf$$
 $V_Z = V \cdot \sin(\theta) = 93.013 \cdot lbf$

$$V_{z} = V \cdot \sin(\theta) = 93.013 \cdot lbf$$



In-plane force resultant at bolt 2

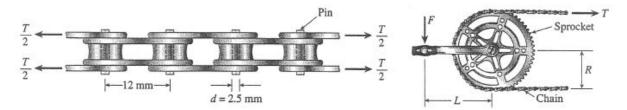
= 3/8 in.

$$d_w = 5/8$$
 in.
 $R_2 = \sqrt{(F_{y2} + V_y)^2 + (F_{z2} + V_z)^2} = 176.001 \cdot lbf$

shear stress on bolt 2

$$d_b = \frac{3}{8}in$$
 $A_b = \frac{\pi}{4} \cdot d_b^2 = 0.11 \cdot in^2$

$$\tau = \frac{R_2}{A_b} = 1594 \cdot psi$$



F =force applied to pedal = 800 N

L = length of crank arm

MEASUREMENTS (FOR AUTHOR'S BICYCLE)

(1)
$$L = 162 \text{ mm}$$

(2)
$$R = 90 \text{ mm}$$

(a) Tensile force T in Chain

$$\Sigma M_{\text{axle}} = 0$$
 $FL = TR$ $T = \frac{FL}{R}$

Substitute numerical values:

$$T = \frac{(800 \text{ N})(162 \text{ mm})}{90 \text{ mm}} = 1440 \text{ N} \quad \leftarrow$$

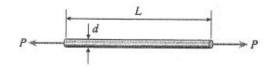
R = radius of sprocket

(b) SHEAR STRESS IN PINS

$$\tau_{\text{aver}} = \frac{T/2}{A_{\text{pin}}} = \frac{T}{2\frac{\pi d^2}{(4)}} = \frac{2T}{\pi d^2}$$
$$= \frac{2FL}{\pi d^2 R}$$

Substitute numerical values:

$$\tau_{\text{aver}} = \frac{2(800 \text{ N})(162 \text{ mm})}{\pi (2.5 \text{ mm})^2 (90 \text{ mm})} = 147 \text{ MPa} \quad \leftarrow$$



$$L = 16.0 \text{ in.}$$
 $d = 0.50 \text{ in.}$

$$E = 6.4 \times 10^6 \text{ psi}$$

$$\sigma_{\text{allow}} = 17,000 \text{ psi}$$
 $\delta_{\text{max}} = 0.04 \text{ in.}$

MAXIMUM LOAD BASED UPON ELONGATION

$$\varepsilon_{\text{max}} = \frac{\delta_{\text{max}}}{L} = \frac{0.04 \text{ in.}}{16 \text{ in.}} 0.00250$$

$$\sigma_{\text{max}} = E\epsilon_{\text{max}} = (6.4 \times 10^6 \,\text{psi})(0.00250)$$

= 16,000 psi

$$P_{\text{max}} = \sigma_{\text{max}} A = (16.000 \text{ psi}) \left(\frac{\pi}{4}\right) (0.50 \text{ in.})^2$$

= 3140 lb

MAXIMUM LOAD BASED UPON TENSILE STRESS

$$P_{\text{max}} = \sigma_{\text{allow}} A = (17,000 \text{ psi}) \left(\frac{\pi}{4}\right) (0.50 \text{ in.})^2$$

= 3340 lb

ALLOWABLE LOAD

Elongation governs.

$$P_{\rm allow} = 3140 \, \text{lb} \quad \leftarrow$$

NUMERICAL DATA

$$r = 10$$
 $d = 250 \text{ mm}$

$$A_s = \pi r^2$$

$$A_s = 314.159 \text{ m}^2$$

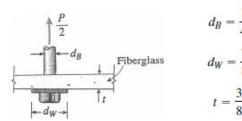
$$\tau_a = 85 \text{ MPa}$$

MAXIMUM PERMISSIBLE TORQUE

$$T_{\text{max}} = \tau_a A_s \left(r \frac{d}{2} \right)$$

$$T_{\text{max}} = 3.338 \times 10^7 \,\text{N} \cdot \text{mm}$$

$$T_{\text{max}} = 33.4 \text{ kN} \cdot \text{m} \leftarrow$$



ALLOWABLE LOAD BASED UPON SHEAR STRESS IN FIBERGLASS

$$\tau_{\rm allow} = 300 \, \mathrm{psi}$$

Shear area
$$A_s = \pi d_W t$$

$$\frac{P_1}{2} = \tau_{\text{allow}} A_s = \tau_{\text{allow}} (\pi d_W t)$$
$$= (300 \text{ psi})(\pi) \left(\frac{7}{8} \text{ in.}\right) \left(\frac{3}{8} \text{ in.}\right)$$

$$d_B = \frac{1}{4}$$
 in. $\frac{P_1}{2} = 309.3$ lb

$$P_1 = 619 \, \text{lb}$$

ALLOWABLE LOAD BASED UPON BEARING PRESSURE

$$\sigma_b = 550 \text{ psi}$$

Bearing area
$$A_b = \frac{\pi}{4} (d_W^2 - d_B^2)$$

$$\frac{P_2}{2} = \sigma_b A_b = (550 \text{ psi}) \left(\frac{\pi}{4}\right) \left[\left(\frac{7}{8} \text{ in.}\right)^2 - \left(\frac{1}{4} \text{ in.}\right)^2\right]$$
$$= 303.7 \text{ lb}$$

$$P_2 = 607 \, \text{lb}$$

ALLOWABLE LOAD

Bearing pressure governs.

$$P_{\rm allow} = 607 \, \text{lb} \quad \leftarrow$$

Yield and ultimate stresses (all in MPa)

TUBES AND PIN DIMENSIONS (MM)

$$\sigma_Y = 200$$

$$\sigma_Y = 200$$
 $\sigma_u = 340$ FS_y = 3.5 $d_{AB} = 41$

$$d_{AB} = 41$$

$$t_{AB} = 6.5$$

Pin (shear): $\tau_Y = 8$ $\tau_u = 140$ FS_u = 4.5

$$\tau_V = 8$$

$$\tau_{\rm u} = 140$$

$$FS_{\mu} = 4.1$$

$$d_{BC} = d_{AB} - 2 t_{AB}$$
 $d_{BC} = 28$

Pin (Bearing): $\sigma_{by} = 260$ $\sigma_{bu} = 450$

$$\tau_u = 140$$

$$t_{BC} = 7.5$$
 $d_p = 11$

(a) PALLOW CONSIDERING TENSION IN THE TUBES

$$A_{\text{net}AB} = \frac{\pi}{4} \left[d_{AB}^2 - (d_{AB} - 2t_{AB})^2 \right] - 4 d_p t_{AB}$$
 $A_{\text{net}AB} = 418.502 \text{ mm}^2$

$$A_{\text{net}AB} = 418.502 \text{ mm}^2$$

$$A_{\text{net}BC} = \frac{\pi}{4} [a$$

$$A_{\text{net}BC} = \frac{\pi}{4} \left[d_{BC}^2 - (d_{BC} - 2t_{BC})^2 \right] - 4d_p t_{BC}$$
 $A_{\text{net}BC} = 153.02$ < use smaller

$$A_{\text{net}BC} = 153.02$$

$$P_{aT1} = \frac{\sigma_{y}}{FS_{y}} A_{netBC} \qquad P_{aT1} = 8743.993 \text{ N}$$

$$P_{aT1} = 8743.993 \text{ N}$$

< controls

$$P_{\text{allow}} = 8.74 \text{ kN}$$

$$P_{aT2} = \frac{\sigma_u}{FS_u} A_{netBC}$$
 $P_{aT2} = 11,561.501 \text{ N}$

$$P_{aT2} = 11,561.501 \text{ N}$$

(b) P_{allow} considering shear in the Pins $A_s = \frac{\pi}{4} d_p^2$ $A_s = 95.033 \text{ mm}^2$

$$P_{aS1} = (4A_s) \frac{\tau_{\gamma}}{FS_{\gamma}}$$
 $P_{aS1} = 8688.748 \text{ N}$

$$P_{aS1} = 8688.748 \text{ N}$$

< controls

$$P_{\text{allow}} = 8.69 \text{ kN}$$

$$P_{as2} = (4A_s) \frac{\tau_u}{FS_u}$$
 $P_{as2} = 11,826.351 \text{ N}$

(c) Pallow Considering Bearing in the Pins

$$A_{bAB} = 4 d_p t_{AB}$$

$$A_{bAB} = 4 d_p t_{AB}$$
 $A_{bAB} = 286 \text{ mm}^2$ < smaller controls

$$A_{bBC} = 4 d_p t_{BC} \qquad A_{bBC} = 330$$

$$A_{bBC} = 330$$

$$P_{ab1} = A_{bAB} \left(\frac{\sigma_{by}}{\text{FS}_y} \right)$$
 $P_{ab1} = 21,245.714 \,\text{N}$ < controls

$$P_{ab1} = 21,245.714 \text{ N}$$

$$P_{\text{allow}} = 21.2 \text{ kN}$$

$$P_{ab2} = A_{bAB} \left(\frac{\sigma_{bu}}{\text{FS}_u} \right)$$
 $P_{ab2} = 28,600 \text{ N}$

$$P_{ab2} = 28,600 \text{ N}$$

Overall, shear controls (Part (b))

$$\sigma_U = 50 \text{ ksi}$$

$$n = 3.5$$

$$\sigma_{\text{allow}} = \frac{\sigma_U}{n} = \frac{50 \text{ ksi}}{3.5} = 14.29 \text{ ksi}$$

$$d = 4.5$$
 in.

$$t = 0.4 \text{ in.}$$

$$d_0 = d - 2t = 3.7$$
 in.

$$A = \frac{\pi}{4} (d^2 - d_0^2) = \frac{\pi}{4} [(4.5 \text{ in.})^2 - (3.7 \text{ in.})^2]$$

= 5.152 in.²

$$P_1$$
 = allowable load on one pier

$$= \sigma_{\text{allow}} A = (14.29 \text{ ksi})(5.152 \text{ in.}^2)$$

$$= 73.62 \text{ k}$$

Total load
$$P = 4P_1 = 294 \text{ k}$$
 \leftarrow

$$\sigma_{\rm u}$$
 = 400MPa P = 900kN FS_u = 3 t = 12mm

$$\sigma_{a} = \frac{\sigma_{u}}{FS_{u}} = 133.333 \cdot \text{MPa} \qquad \qquad A_{reqd} = \frac{\frac{P}{4}}{\sigma_{a}} = 1687.5 \cdot \text{mm}^{2}$$

Set cross-sectional area of one pier equal to required area then solve for d

$$\frac{\pi}{4} \cdot \left[d^2 - (d - 2 \cdot t)^2 \right] = A_{\text{reqd}} \qquad \qquad d = \frac{A_{\text{reqd}} + \pi \cdot t^2}{\pi \cdot t} = 56.8 \cdot \text{mm}$$

$$L = 50 \text{ft}$$
 $d_2 = 14 \text{in}$ $d_1 = 13 \text{in}$ $t_f = 1.5 \text{in}$ $d_b = 1.125 \text{in}$ $d_w = 1.875 \text{in}$

$$\sigma_{ap} = 50 \text{ksi}$$
 $\sigma_{ab} = 120 \text{ksi}$ From Table I-1

$$A_{p} = \frac{\pi}{4} \cdot \left(d_{2}^{2} - d_{1}^{2} \right) = 21.206 \cdot \text{in}^{2}$$

$$A_{b} = \frac{\pi}{4} \cdot d_{b}^{2} = 0.994 \cdot \text{in}^{2}$$

$$\gamma_{s} = 490 \cdot \frac{\text{lbf}}{\text{ft}^{3}}$$

$$\gamma_{sea} = 63.8 \cdot \frac{\text{lbf}}{\text{ft}^{3}}$$

1) Permissible number of pipe segment (n) if hanging in air - max. normal stresses at top of pipe at drill rig

Based on allowable stress in pipe:
$$W = \gamma_s \cdot A_p \cdot n \cdot L$$
 $\frac{\gamma_s \cdot A_p \cdot n \cdot L}{A_p} = \sigma_{ap}$ so $n = \frac{\sigma_{ap}}{\gamma_s \cdot L} = 293.878$

Based on allowable normal stress in each of 6 bolts:
$$\frac{\gamma_s \cdot A_p \cdot n \cdot L}{6 \cdot A_b} = \sigma_{ab}$$
 so $n = \frac{6 \cdot A_b \cdot \sigma_{ab}}{\gamma_s \cdot A_p \cdot L} = 198.367$

198 pipe segments controls

2) Permissible number of pipe segment (n) if hanging in sea water - max. normal stresses at top of pipe at drill rig

Based on allowable stress in pipe:
$$n = \frac{\sigma_{ap}}{\left(\gamma_{\text{S}} - \gamma_{\text{Sea}}\right) \cdot L} = 337.87$$

Based on allowable normal stress in each of 6 bolts:
$$n = \frac{6 \cdot A_b \cdot \sigma_{ab}}{\left(\gamma_{\text{S}} - \gamma_{\text{sea}}\right) \cdot A_p \cdot L} = 228.062$$

228 pipe segments controls

NUMERICAL DATA

$$M_h=43~{
m kg}$$
 $\sigma_a=70~{
m MPa}$
 $au_a=45~{
m MPa}$ $\sigma_{ba}=110~{
m MPa}$
 $d_s=10~{
m mm}$ $d_p=9~{
m mm}$ $t=8~{
m mm}$
 $P=50~{
m N}$ $g=9.81~{
m m/s}^2$

$$F_V(127) + F_H(75) = \frac{M_h}{2}g (127 + 505) + \frac{P}{2}[127 + 2(505)]$$

$$F(127\cos(10^\circ) + 75\sin(10^\circ))$$

$$= \frac{M_h}{2}g (127 + 505) + \frac{P}{2} + 2(505)]$$

$$F = \frac{\frac{M_h}{2}g (127 + 505) + \frac{P}{2}[127 + 2(505)]}{(127\cos(10^\circ) + 75\sin(10^\circ))}$$

$$F = 1.171 \text{ kN} \leftarrow$$

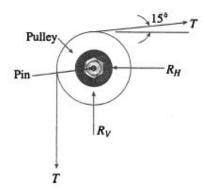
(a) Force F in each strut from statics (sum moments about B)

$$F_V = F\cos(10^\circ)$$
 $F_H = F\sin(10^\circ)$
 $\sum M_B = 0$

(b) Maximum permissible force F in each strut F_{\max} is smallest of the following

$$F_{a1} = \sigma_a \frac{\pi}{4} d_s^2$$
 $F_{a1} = 5.50 \text{ kN}$
 $F_{a2} = \tau_a \frac{\pi}{4} d_p^2$
 $F_{a2} = 2.86 \text{ kN} \leftarrow \frac{F_{a2}}{F} = 2.445$
 $F_{a3} = \sigma_{ba} d_p t$ $F_{a3} = 7.92 \text{ kN}$

FREE-BODY DIAGRAM OF ONE PULLEY



ALLOWABLE TENSILE FORCE IN ONE CABLE BASED UPON SHEAR IN THE PINS

$$V_{\text{allow}} = \tau_{\text{allow}} A_{\text{pin}} = (4000 \text{ psi}) \left(\frac{\pi}{4}\right) (0.80 \text{ in.})^2$$

= 2011 lb
 $V = 1.2175T$ $T_1 = \frac{V_{\text{allow}}}{1.2175} = 1652 \text{ lb}$

ALLOWABLE FORCE IN ONE CABLE BASED UPON TENSION IN THE CABLE

$$T_2 = T_{\text{allow}} = 1800 \text{ lb}$$

Pin diameter d = 0.80 in.

T =tensile force in one cable

$$T_{\rm allow} = 1800 \text{ lb}$$

$$\tau_{\rm allow} = 4000 \text{ psi}$$

W = weight of lifeboat

$$= 1500 lb$$

$$\Sigma F_{\text{horiz}} = 0$$
 $R_H = T \cos 15^\circ = 0.9659T$

$$\Sigma F_{\text{vert}} = 0$$
 $R_V = T - T \sin 15^\circ = 0.7412T$

V =shear force in pin

$$V = \sqrt{(R_H)^2 + (R_v)^2} = 1.2175T$$

MAXIMUM WEIGHT

Shear in the pins governs.

$$T_{\text{max}} = T_1 = 1652 \text{ lb}$$

Total tensile force in four cables

$$= 4T_{\text{max}} = 6608 \text{ lb}$$

$$W_{\text{max}} = 4T_{\text{max}} - W$$

= 6608 lb - 1500 lb

= 5110 lb ←

NUMERICAL DATA

$$M = 300 \text{ kg}$$
 $g = 9.81 \text{ m/s}^2$
 $\tau_a = 50 \text{ MPa}$ $\sigma_{ba} = 110 \text{ MPa}$
 $t_A = 40 \text{ mm}$ $t_B = 40 \text{ mm}$
 $t_C = 50$ $d_{pA} = 25 \text{ mm}$
 $d_{pB} = 30$ $d_{pC} = 22 \text{ mm}$

(a) RESULTANT FORCES F ACTING ON PULLEYS A, B, AND C

$$F_A = \sqrt{2}T \qquad F_B = 2T$$

$$F_C = T \qquad T = \frac{Mg}{2} + \frac{W_{\text{max}}}{2}$$

$$W_{\text{max}} = 2T - Mg$$

From statics at B

(b) Maximum load W that can be added at B due to au_a and σ_{ba} in pins at A, B, and C

PULLEY AT A

$$\tau_A = \frac{F_A}{A_s}$$

DOUBLE SHEAR

$$F_A = \tau_a A_s \qquad \sqrt{2}T = \tau_a A_s$$

$$\frac{Mg}{2} + \frac{W_{\text{max}}}{2} = \frac{\tau_a A_s}{\sqrt{2}}$$

$$W_{\text{max}1} = \frac{2}{\sqrt{2}} \left(\tau_a A_s \right) - Mg$$

$$W_{\text{max}1} = \frac{2}{\sqrt{2}} \left(\tau_a 2 \frac{\pi}{4} d_p A^2 \right) - Mg$$

$$\frac{W_{\text{max}1}}{Mg} = 22.6$$

$$W_{\text{max}1} = 66.5 \text{ kN} \qquad \leftarrow \text{(shear at A controls)}$$

OR check bearing stress

$$W_{\text{max}2} = \frac{2}{\sqrt{2}} \left(\sigma_{ba} A_b \right) - Mg$$

$$W_{\text{max}2} = \frac{2}{\sqrt{2}} \left(\sigma_{ba} t_A d_{pA} \right) - Mg$$

$$W_{\text{max}2} = 152.6 \text{ kN} \quad \text{(bearing at A)}$$

Pulley at
$$B$$
 $2T = \tau_a A_s$

$$\begin{aligned} W_{\text{max}3} &= \frac{2}{2}(\tau_a A_s) - Mg \\ W_{\text{max}3} &= \left[\tau_a \left(2\frac{\pi}{4} d_{pB}^2\right)\right] - Mg \end{aligned}$$

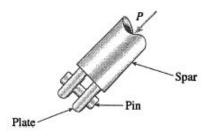
$$W_{\text{max}3} = 67.7 \text{ kN}$$
 (shear at B)

$$W_{\mathrm{max4}} = \frac{2}{2}(\sigma_{ba}A_b) - Mg$$
 $W_{\mathrm{max4}} = \sigma_{ba}t_Bd_{pB} - Mg$
 $W_{\mathrm{max4}} = 129.1 \text{ kN} \quad \text{(bearing at }B\text{)}$
PULLEY AT $C = T_aA_s$
 $W_{\mathrm{max5}} = 2(\tau_aA_s) - Mg$

$$W_{\text{max}5} = \left[2\tau_a \left(2\frac{\pi}{4}d_{pc}^2\right)\right] - Mg$$

$$W_{\text{max}5} = 7.3 \times 10^4$$
 $W_{\text{max}5} = 73.1 \text{ kN}$ (shear at C)
 $W_{\text{max}6} = 2\sigma_{ba}t_Cd_{pC} - Mg$

$$W_{\text{max}6} = 239.1 \text{ kN}$$
 (bearing at C)



NUMERICAL DATA

$$d_2 = 3.5 \text{ in.}$$
 $d_1 = 2.8 \text{ in.}$

$$d_p = 1 \text{ in.}$$
 $t = 0.5 \text{ in.}$

$$\sigma_a = 10 \text{ ksi}$$
 $\tau_a = 6.5 \text{ ksi}$ $\sigma_{ba} = 16 \text{ ksi}$

COMPRESSIVE STRESS IN SPAR

$$P_{a1} = \sigma_a \frac{\pi}{4} (d_2^2 - d_1^2)$$
 $P_{a1} = 34.636 \text{ k}$

SHEAR STRESS IN PIN

$$P_{a2} = \tau_a \left(2 \frac{\pi}{4} d_p^2 \right)$$

$$P_{a2} = 10.21 \text{ kips} < \text{controls} \leftarrow$$

^double shear

BEARING STRESS BETWEEN PIN AND CONECTING PLATES

$$P_{a3} = \sigma_{ba}(2d_p t) \qquad P_{a3} = 16 \text{ k}$$

NUMERICAL DATA

$$FS = 3$$
 $\tau_u = 340 \text{ MPa}$ $\tau_a = \frac{\tau_u}{FS}$

d = 5 mm

$$\tau_a = \frac{\sqrt{{R_x}^2 + {R_y}^2}}{A_s}$$
 < pin at C in single shear

$$R_x = -C \cos (40^\circ)$$
 $R_y = P + C \sin (40^\circ)$
 $a = 50 \cos (40^\circ) + 125$ $a = 163.302 \text{ mm}$

$$b = 38 \text{ mm}$$

Statics
$$\sum M_{pin} = 0$$
 $C = \frac{P(a)}{b}$

$$R_{x} = -\frac{P(a)}{b}\cos(40^{\circ}) \qquad R_{y} = P\left[1 + \frac{a}{b}\sin(40^{\circ})\right]$$

$$P\sqrt{\left[-\frac{a}{b}\cos(40^{\circ})\right]^{2} + \left[1 + \frac{a}{b}\sin(40^{\circ})\right]^{2}} = \tau_{a}A_{s}$$

$$A_s = \frac{\pi}{4}d^2$$

$$\tau_a = \frac{\tau_u}{FS}$$
 $\tau_a = 113.333 \text{ MPa}$

Find P_{max}

$$P_{\text{max}} = \frac{\tau_a A_s}{\sqrt{\left[-\frac{a}{b}\cos{(40^\circ)}\right]^2 + \left[1 + \frac{a}{b}\sin(40^\circ)\right]^2}}$$

$$P_{\text{max}} = 445 \,\text{N} \qquad \leftarrow$$

here
$$\frac{a}{b} = 4.297 < a/b =$$
 mechanical advantage

FIND MAXIMUM CLAMPING FORCE

$$C_{\text{ult}} = P_{\text{max}} \text{FS}\left(\frac{a}{b}\right)$$
 $C_{\text{ult}} = 5739 \text{ N} \leftarrow$

$$P_{\text{ult}} = P_{\text{max}} \text{FS}$$
 $P_{\text{ult}} = 1335$

$$\frac{C_{\rm ult}}{P_{\rm ult}} = 4.297$$

NUMERICAL DATA

$$d = \frac{5}{64}$$
 in. $\sigma_Y = 65$ ksi FS_y = 1.9

$$\sigma_a = \frac{\sigma_Y}{\text{FS}_y}$$
 $\sigma_a = 34.211 \text{ ksi}$

$$W_{\text{max}} = 0.539 \left(\frac{\sigma_{Y}}{\text{FS}_{v}}\right) \left(\frac{\pi}{4} d^{2}\right)$$

$$W_{\rm max} = 0.305 \, {\rm kips} \quad \leftarrow$$

CHECK ALSO FORCE IN WIRE CD

$$\sum F_H = 0$$
 at C or D

FORCES IN WIRES AC, EC, BD, AND FD

$$\sum F_V = 0$$
 at A, B, E , or F

$$F_W = \frac{\sqrt{2^2 + 5^2}}{5} \times \frac{W}{2} \qquad \frac{\sqrt{2^2 + 5^2}}{10} = 0.539$$

$$W_{\text{max}} = 0.539 \ \sigma_a \times A$$

$$F_{CD} = 2\left(\frac{2}{\sqrt{2^2 + 5^2}}F_w\right)$$

$$F_{CD} = 2\left[\frac{2}{\sqrt{2^2 + 5^2}}\left(\frac{\sqrt{2^2 + 5^2}}{5} \times \frac{W}{2}\right)\right]$$

$$F_{CD} = \frac{2}{5}W \qquad \text{less than } F_{AC} \text{ so } AC \text{ controls}$$

NUMERICAL DATA

$$A = 2180 \text{ mm}^2$$

$$t_g = 12 \text{ mm}$$
 $d_f = 16 \text{ mm}$ $t_{ang} = 6.4 \text{ mm}$

$$\sigma_u = 390 \text{ MPa}$$
 $\tau_u = 190 \text{ MPa}$

$$\sigma_{ba} = 550 \text{ MPa}$$
 FS = 2.5

$$\sigma_a = \frac{\sigma_u}{FS}$$
 $\tau_a = \frac{\tau_u}{FS}$ $\sigma_{ba} = \frac{\sigma_{bu}}{FS}$

MEMBER FORCES FROM TRUSS ANALYSIS

$$F_{BC} = \frac{5}{3}P$$
 $F_{CD} = \frac{4}{3}P$ $F_{CF} = \frac{\sqrt{2}}{3}P$

$$\frac{\sqrt{2}}{3} = 0.471$$
 $F_{CG} = \frac{4}{3}P$

Pallow FOR TENSION ON NET SECTION IN TRUSS BARS

$$A_{\text{net}} = A - 2d_r t_{\text{ang}} \qquad A_{\text{net}} = 1975 \text{ mm}^2$$

$$\frac{A_{\text{net}}}{A} = 0.906$$

$$F_{\text{allow}} = \sigma_a A_{\text{net}}$$
 < allowable force in a member
so *BC* controls since it has the largest
member force for this loading

$$P_{\text{allow}} = \frac{3}{5} F_{BC\text{max}}$$
 $P_{\text{allow}} = \frac{3}{5} (\sigma_a A_{\text{net}})$

$$P_{\rm allow} = 184.879 \text{ kN}$$

Next, P_{allow} for shear in rivets (all are in double shear)

$$A_s = 2\frac{\pi}{4}d_r^2$$
 < for one rivet in DOUBLE shear

$$\frac{F_{\text{max}}}{N} = \tau_a A_s$$
 $N = \text{number of rivets in a particular member (see drawing of connection detail)}$

$$P_{BC} = 3\left(\frac{3}{5}\right)(\tau_a A_s)$$
 $P_{BC} = 55.0 \text{ kN}$

$$P_{CF} = 2\left(\frac{3}{\sqrt{2}}\right)(\tau_a A_s)$$
 $P_{CF} = 129.7 \text{ kN}$

$$P_{CG} = 2\left(\frac{3}{4}\right)(\tau_a A_s)$$

 $P_{CG} = 45.8 \text{ kN} \leftarrow < \text{so shear in rivets in } CG \text{ and } CD$ controls P_{allow} here

$$P_{CD} = 2\left(\frac{3}{4}\right)(\tau_a A_s)$$
 $P_{CD} = 45.8 \text{ kN} \leftarrow$

Next, P_{allow} for bearing of rivets on truss bars $A_b = 2d_r t_{\text{ang}}$ < rivet bears on each angle in two angle pairs

$$\frac{F_{\text{max}}}{N} = \sigma_{ba} A_b$$

$$P_{BC} = 3\left(\frac{3}{5}\right)(\sigma_{ba}A_b)$$
 $P_{BC} = 81.101 \text{ kN}$

$$P_{CF} = 2\left(\frac{3}{\sqrt{2}}\right)(\sigma_{ba}A_b)$$
 $P_{CF} = 191.156 \text{ kN}$

$$P_{CG} = 2\left(\frac{3}{4}\right)(\sigma_{ba}A_b)$$
 $P_{CG} = 67.584 \text{ kN}$

$$P_{CD} = 2\left(\frac{3}{4}\right)(\sigma_{ba}A_b)$$
 $P_{CD} = 67.584 \text{ kN}$

Finally, P_{allow} for bearing of rivets on gusset plate $A_b = d_r t_e$

(bearing area for each rivert on gusset plate)

$$t_g = 12 \text{ mm} < 2t_{ang} = 12.8 \text{ mm}$$

so gusset will control over angles

$$P_{BC} = 3\left(\frac{3}{5}\right)(\sigma_{ba}A_b)$$
 $P_{BC} = 76.032 \text{ kN}$

$$P_{CF} = 2\left(\frac{3}{\sqrt{2}}\right)(\sigma_{ba}A_b)$$
 $P_{CF} = 179.209 \text{ kN}$

$$P_{CG} = 2\left(\frac{3}{4}\right)(\sigma_{ba}A_b) \qquad P_{CG} = 63.36 \text{ kN}$$

$$P_{CD} = 2\left(\frac{3}{4}\right)(\sigma_{ba}A_b)$$
 $P_{CD} = 63.36 \text{ kN}$

So, shear in rivets controls: $P_{\text{allow}} = 45.8 \text{ kN} \leftarrow$

NUMERICAL DATA

$$d = 1.75 \text{ in.}$$
 $\sigma_a = 12 \text{ ksi}$

(a) Formula for P_{allow} in Tension

From Case 15, Appendix E:

$$A = 2r^{2}\left(\alpha - \frac{ab}{r^{2}}\right) \qquad r = \frac{d}{2} \qquad a = \frac{d}{10}$$

$$\alpha = a\cos\left(\frac{a}{r}\right) \qquad r = 0.875 \text{ in.} \qquad a = 0.175 \text{ in.}$$

$$\alpha \frac{180}{\pi} = 78.463^{\circ}$$

$$b = \sqrt{r^{2} - a^{2}}$$

$$b = \sqrt{\left[\left(\frac{d}{2}\right)^{2} - \left(\frac{d}{10}\right)^{2}\right]}$$

$$b = \sqrt{\left(\frac{6}{25}d^{2}\right)} \qquad b = \frac{d}{5}\sqrt{6}$$

$$P_a = \sigma_a A$$

$$P_{a} = \sigma_{a} \left[\frac{1}{2} d^{2} \left(\arccos \left(\frac{1}{5} \right) - \frac{2}{25} \sqrt{6} \right) \right]$$

$$\frac{\arccos \left(\frac{1}{5} \right) - \frac{2}{25} \sqrt{6}}{2} = 0.587 \qquad \frac{\pi}{4} = 0.785$$

$$P_{a} = \sigma_{a} (0.587 d^{2}) \qquad \leftarrow$$

$$\frac{0.587}{0.785} = 0.748$$

(b) Evaluate numerical result d = 1.75 in. $\sigma_a = 12$ ksi $P_a = 21.6$ k \leftarrow

NUMERICAL DATA

$$d_1 = 60 \text{ mm}$$
 $d_2 = 32 \text{ mm}$
 $au_Y = 120 \text{ MPa}$ $\sigma_Y = 250 \text{ MPa}$
 $au_Y = 250 \text{ MPa$

ALLOWABLE STRESSES

$$au_a = rac{ au_Y}{ ext{FS}_y}$$
 $au_a = 60 \text{ MPa}$ $au_a = rac{\sigma_Y}{ ext{FS}_y}$ $au_a = 125 \text{ MPa}$

From Case 15, Appendix E:
$$r = \frac{d_1}{2}$$

$$A = 2r^2 \left(\alpha - \frac{ab}{r^2}\right) \qquad \alpha = \arccos \frac{d_2/2}{d_1/2} = \arccos \frac{d_2}{d_1}$$
$$a = \frac{d_2}{2} \qquad b = \sqrt{r^2 - a^2}$$

SHEAR AREA (DOUBLE SHEAR)

$$A_s = 2\left(\frac{\pi}{4}d_2^2\right)$$
 $A_s = 1608 \text{ mm}^2$

NET AREA IN TENSION (FROM APPENDIX E)

$$A_{\text{net}} = 2\left(\frac{d_1}{2}\right)^2$$

$$\left[\operatorname{arccos}\left(\frac{d_2}{d_1}\right) - \frac{\frac{d_2}{2}\left[\sqrt{\left(\frac{d_1}{2}\right)^2 - \left(\frac{d_2}{2}\right)^2}\right]}{\left(\frac{d_1}{2}\right)^2} \right]$$

$$A_{\rm net} = 1003 \, \text{mm}^2$$

 P_{allow} in tension: smaller of values based on either shear or tension allowable stress x appropriate area

$$P_{a1} = \tau_a A_s$$
 $P_{a1} = 96.5 \text{ kN} < \text{shear governs} \leftarrow P_{a2} = \sigma_a A_{\text{net}}$ $P_{a2} = 125.4 \text{ kN}$

NUMERICAL DATA

$$\begin{split} &\sigma_u = 60 \text{ ksi} & \tau_u = 17 \text{ ksi} & \tau_{hu} = 25 \text{ ksi} \\ &\sigma_{bu} = 75 \text{ ksi} & \sigma_{bw} = 50 \text{ ksi} & \text{FS}_u = 2.5 \\ &d_b = \frac{3}{4} \text{ in.} & d_w = 1.5 \text{ in.} & t_{bp} = 1 \text{ in.} \\ &h = 14 \text{ in.} & b = 12 \text{ in.} & d = 6 \text{ in.} & t = \frac{3}{8} \text{ in.} \\ &W = 0.500 \text{ kips} & H = 17(12) & H = 204 \text{ in.} \\ &L_v = 10(12) & L_h = 12(12) & L_v = 120 \text{ in.} \\ &L_h = 144 \text{ in.} & &L_v = 144 \text{ in.} \end{split}$$

Allowable stresses (ksi)

$$\begin{split} \sigma_a &= \frac{\sigma_u}{\text{FS}_u} & \sigma_a = 24 & \tau_a &= \frac{\tau_u}{\text{FS}_u} \\ \tau_a &= 6.8 & \tau_{ha} &= \frac{\tau_{hu}}{\text{FS}_u} & \tau_{ha} = 10 \\ \sigma_{ba} &= \frac{\sigma_{bu}}{\text{FS}_u} & \sigma_{ba} = 30 & \sigma_{bwa} &= \frac{\sigma_{bw}}{\text{FS}_u} \\ \sigma_{bwa} &= 20 \end{split}$$

Forces F and R in terms of p_{\max}

$$F = p_{\text{max}} L_{\nu} L_{h} \qquad R = \frac{FH}{2h}$$

$$R = p_{\text{max}} \frac{L_{\nu} L_{h} H}{2h}$$

(1) Compute p_{max} based on normal stress in each bolt (greater at B and D)

$$\sigma = \frac{R + \frac{W}{4}}{\frac{\pi}{4}d_b^2} \qquad R_{\text{max}} = \sigma_a \left(\frac{\pi}{4}d_b^2\right) - \frac{W}{4}$$

$$p_{\text{max}1} = \frac{\sigma_a \left(\frac{\pi}{4}d_b^2\right) - \frac{W}{4}}{\frac{L_v L_h H}{2h}}$$

$$p_{\text{max}1} = 11.98 \text{ psf} \qquad \text{controls}$$

(2) Compute p_{max} based on shear through base plate (greater at B and D)

$$\tau = \frac{R + \frac{W}{4}}{\pi d_w t_{bp}}$$

$$R_{\text{max}} = \tau_a(\pi d_w t_{bp}) - \frac{W}{4}$$

$$p_{\text{max}2} = \frac{\tau_a(\pi d_w t_{bp}) - \frac{W}{4}}{\frac{L_v L_h H}{2h}}$$

 $p_{\text{max}2} = 36.5 \text{ psf}$

(3) Compute p_{max} based on horizontal shear on each bolt

$$\tau_h = \frac{\frac{F}{4}}{\left(\frac{\pi}{4}d_b^2\right)} \qquad F_{\text{max}} = 4\tau_{ha}\left(\frac{\pi}{4}d_b^2\right)$$

$$p_{\text{max}3} = \frac{\tau_{ha}(\pi d_b^2)}{L_v L_h}$$

$$p_{\text{max}3} = 147.3 \text{ psf}$$

(4) Compute p_{\max} based on horizontal bearing on each bolt

$$\sigma_b = \frac{\frac{F}{4}}{(t_{bp}d_b)} \qquad F_{\text{max}} = 4\sigma_{ba}(t_{bp}d_b)$$

$$p_{\text{max4}} = \frac{4\sigma_{ba}(t_bpd_b)}{L_vL_h}$$

$$p_{\text{max4}} = 750 \text{ psf}$$

(5) Compute p_{max} based on bearing under the top washer at A (or C) and the bottom washer at B (or D)

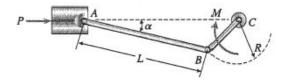
$$\sigma_{bw} = \frac{R + \frac{W}{4}}{\frac{\pi}{4} (d_w^2 - d_b^2)}$$

$$R_{max} = \sigma_{bwa} \left[\frac{\pi}{4} (d_w^2 - d_b^2) \right] - \frac{W}{4}$$

$$p_{max5} = \frac{\sigma_{bwa} \left[\frac{\pi}{4} (d_w^2 - d_b^2) \right] - \frac{W}{4}}{\frac{L_v L_h H}{2h}}$$

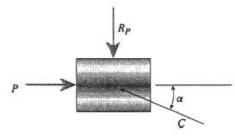
$$p_{max5} = 30.2 \text{ psf}$$

So, normal/stress in bolts controls; $p_{\text{max}} = 11.98 \text{ psf}$



d = diameter of rod AB

FREE-BODY DIAGRAM OF PISTON



P =applied force (constant)

C = compressive force in connecting rod

RP = resultant of reaction forces between cylinder and piston (no friction)

$$\sum F_{\text{horiz}} = 0 \rightarrow \leftarrow$$

$$P - C \cos \alpha = 0$$

$$P = C \cos \alpha$$

MAXIMUM COMPRESSIVE FORCE C IN CONNECTING ROD

$$C_{\text{max}} = \sigma_c A_c$$

in which A_c = area of connecting rod

$$A_c = \frac{\pi d^2}{4}$$

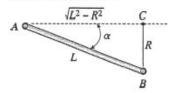
MAXIMUM ALLOWABLE FORCE P

$$P = C_{\text{max}} \cos \alpha$$

$$= \sigma_c A_c \cos \alpha$$

The maximum allowable force P occurs when $\cos \alpha$ has its smallest value, which means that α has its largest value.

LARGEST VALUE OF \(\alpha \)



The largest value of α occurs when point B is the farthest distance from line AC. The farthest distance is the radius R of the crank arm.

Therefore,

$$\overline{BC} = R$$

Also,
$$\overline{AC} = \sqrt{L^2 - R^2}$$

$$\cos \alpha = \frac{\sqrt{L^2 - R^2}}{L} = \sqrt{1 - \left(\frac{R}{L}\right)^2}$$

(a) MAXIMUM ALLOWABLE FORCE P

$$P_{\text{allow}} = \sigma_c A_c \cos \alpha$$

$$= \sigma_c \left(\frac{\pi d^2}{4}\right) \sqrt{1 - \left(\frac{R}{L}\right)^2} \quad \leftarrow$$

(b) Substitute numerical values

$$\sigma_c = 160 \text{ MPa}$$
 $d = 9.00 \text{ mm}$

$$R = 0.28L$$
 $R/L = 0.28$

$$P_{\text{allow}} = 9.77 \text{ kN} \leftarrow$$

NUMERICAL DATA

$$P = 33 \text{ kips}$$
 $t = 0.25 \text{ in.}$ $\sigma_a = 12 \text{ ksi}$

(a) MINIMUM DIAMETER OF TUBE (NO HOLES)

$$A_1 = \frac{\pi}{4} [d^2 - (d-2t)^2]$$
 $A_2 = \frac{P}{\sigma_a}$
 $A_2 = 2.75 \text{ in.}^2$

Equating A_1 and A_2 and solving for d:

$$d = \frac{P}{\pi \sigma_a t} + t$$
 $d = 3.75 \text{ in.}$ \leftarrow

(b) MINIMUM DIAMETER OF TUBE (WITH HOLES)

$$A_{1} = \left[\frac{\pi}{4} \left[d^{2} - (d - 2t)^{2} \right] - 2 \left(\frac{d}{10}\right) t \right]$$

$$A_1 = d\left(\pi t - \frac{t}{5}\right) - \pi t^2$$

Equating A_1 and A_2 and solving for d:

$$d = \frac{\frac{P}{\sigma_a} + \pi t^2}{\pi t - \frac{t}{5}} \qquad d = 4.01 \text{ in.} \quad \leftarrow$$

NUMERICAL DATA

$$\sigma_Y = 290 \text{ MPa}$$

$$P = 1500 \text{ kN}$$

$$FS_{v} = 1.8$$

(a) MINIMUM DIAMETER (NO HOLES)

$$A_1 = \frac{\pi}{4} \left[d^2 - \left(d - \frac{d}{4} \right)^2 \right]$$

$$A_1 = \frac{7}{64}\pi d^2$$

$$A_2 = \frac{P}{\frac{\sigma_Y}{FS_y}} \qquad A_2 = 9.31 \times 10^3 \text{ mm}^2$$

Equate A_1 and A_2 and solve for d:

$$d^{2} = \frac{7}{64\pi} \left(\frac{P}{\sigma_{Y}} \right)$$

$$d_{\min} \sqrt{\frac{7}{64\pi} \left(\frac{P}{\frac{\sigma_Y}{FS_y}}\right)}$$

$$d_{\min} = 164.6 \text{ mm} \leftarrow$$

(b) MINIMUM DIAMETER (WITH HOLES)

Redefine A1-subtract area for two holes-then equate to A2

$$A_1 = \left\lceil \frac{\pi}{4} \right\rceil d^2 - \left(d - \frac{d}{4} \right)^2 \left\rceil - 2 \left(\frac{d}{10} \right) \left(\frac{d}{8} \right) \right\rceil$$

$$A_1 = \frac{7}{64}\pi d^2 - \frac{1}{40}d^2$$

$$A_1 = d^2 \left(\frac{7}{64} \pi - \frac{1}{40} \right) \quad \frac{7}{64} \pi - \frac{1}{40} = 0.319$$

$$d^2 = \frac{\left(\frac{P}{\sigma y}\right)}{\left(\frac{7}{64}\pi - \frac{1}{40}\right)}$$

$$A_{1} = \frac{7}{64} \pi d^{2} - \frac{1}{40} d^{2}$$

$$A_{1} = d^{2} \left(\frac{7}{64} \pi - \frac{1}{40} \right) \qquad \frac{7}{64} \pi - \frac{1}{40} = 0.319$$

$$d_{\min} = \sqrt{\frac{\frac{P}{\sigma_{y}}}{FS_{y}}} \qquad d_{\min} = 170.9 \text{ mm} \quad \leftarrow$$

NUMERICAL DATA

$$P = 2.7 \text{ k}$$
 $b = 0.75 \text{ in.}$ $h = 8 \text{ in.}$
 $\tau_a = 13 \text{ ksi}$ $\sigma_{ba} = 19 \text{ ksi}$

(a) d_{\min} based on allowable shear—double shear in strut

$$\tau_a = \frac{F_{DC}}{A_s} \qquad F_{DC} = \frac{15}{4}P$$

$$A_s = 2\left(\frac{\pi}{4}d^2\right)$$

$$d_{\min} = \sqrt{\frac{\frac{15}{4}P}{\tau_a\left(\frac{\pi}{2}\right)}} \qquad d_{\min} = 0.704 \text{ in.} \quad \leftarrow$$

(b) d_{\min} based on allowable bearing at JT C

Bearing from beam ACB
$$\sigma_b = \frac{15 P/4}{bd}$$

$$d_{\min} = \frac{15 P/4}{b \sigma_{ba}}$$
 $d_{\min} = 0.711 \text{ in.} \quad \leftarrow$

Bearing from strut
$$DC$$
 $\sigma_b = \frac{\frac{15}{4}P}{2\frac{5}{8}bd}$

$$\sigma_b = 3 \frac{P}{hd}$$
 (lower than ACB)

NUMERICAL DATA

$$F = 190 \text{ kN}$$
 $au_a = 90 \text{ MPa}$ $\sigma_{ba} = 150 \text{ MPa}$ $t_g = 20 \text{ mm}$ $t_c = 16 \text{ mm}$

(1) d_{\min} based on allow shear—double shear in Pin

$$\tau = \frac{F}{A_s} \qquad A_s = 2\left(\frac{\pi}{4}d^2\right)$$

$$d_{\min} = \sqrt{\frac{F}{\tau_a\left(\frac{\pi}{2}\right)}} \qquad d_{\min} = 36.7 \text{ mm}$$

(2) d_{\min} based on allow bearing in Gusset and Clevis Plates

Bearing on gusset plate

$$\sigma_b = \frac{F}{A_b}$$
 $A_b = t_g d$ $d_{\min} = \frac{F}{t_g \sigma_{ba}}$

$$d_{\min} = 63.3 \text{ mm}$$
 < controls \leftarrow

Bearing on clevis
$$A_b = d(2t_c)$$

$$d_{\min} = \frac{F}{2t_c \sigma_{ba}} \qquad d_{\min} = 39.6 \text{ mm}$$

$$P = 5200 \text{ lb}$$
 $F_{BE} = 3.83858 \ P = 19,960.616 \ \text{lb} < \text{from plane truss analysis}$ $\tau_a = 12 \ \text{ksi}$ (see Probs. 1.3-6 to 1.3-12)

$$t_p = \frac{5}{8}$$
 in. $t_g = 1.125$ in. $t_p = 0.625$ in. $2 t_p = 1.25$ in. $\sigma_{ba} = 18$ ksi

PIN DIAMETER BASED ON ALLOWABLE SHEAR STRESS (PINS IN DOUBLE SHEAR)

$$d_{p1} = \sqrt{\frac{F_{BE}}{\frac{2}{4}}} = 1.029 \text{ in.}$$
 < controls $d_{pin} = 1.029 \text{ in.}$

Pin diameter based on bearing between Pin and each of two end plates $< 2t_p$ is greater than t_g so gusset will control

$$d_{p2} = \frac{F_{BE}}{2t_p\sigma_{ba}} = 0.887 \text{ in.}$$

PIN DIAMETER BASED ON BEARING BETWEEN PIN AND GUSSET PLATE

$$d_{p3} = \frac{F_{BE}}{t_g \sigma_{ba}} = 0.986 \text{ in.}$$

$$\sigma_a = 125 \text{MPa}$$
 $\tau_a = 80 \text{MPa}$ W = 8kN

$$\tau_a = 80 MPa$$

$$W = 8kN$$

Cut cable - use FBD of OABC to find cable tension T

$$\Sigma M_{O} = 0$$
 $\frac{2.5}{\sqrt{2.5^2 + 3^2}} T \cdot (3m) = W \cdot \left(\frac{4.5m}{2}\right)$ so $T = \frac{W \cdot \left(\frac{2.25m}{3m}\right)}{\frac{2.5}{\sqrt{2.5^2 + 3^2}}} = 9.372 \cdot kN$

$$T = \frac{W \cdot \left(\frac{2.25 \text{m}}{3 \text{m}}\right)}{\frac{2.5}{\sqrt{2.2}}} = 9.372 \cdot \text{kN}$$

Required cross sectional area of cable

$$A_{\text{reqd}} = \frac{T}{\sigma_a} = 74.978 \cdot \text{mm}^2$$

Reaction force at O - use FBD of OABC

$$\Sigma F_{\rm x} = 0 \qquad R_{\rm Ox} = \frac{3}{\sqrt{2.5^2 + 3^2}} \cdot T = 7.2 \cdot {\rm kN} \qquad \qquad \Sigma F_{\rm y} = 0 \qquad \qquad R_{\rm Oy} = W - \frac{2.5}{\sqrt{2.5^2 + 3^2}} \cdot T = 2 \cdot {\rm kN}$$

$$\Sigma F_y = 0$$

$$R_{Oy} = W - \frac{2.5}{\sqrt{2.5^2 + 3^2}} \cdot T = 2 \cdot kN$$

Resultant

$$R_{Ores} = \sqrt{R_{Ox}^2 + R_{Oy}^2} = 7.473 \cdot kN$$

Diameter of pin at O (in double shear)
$$d_{O} = \sqrt{\frac{4}{\pi} \cdot \left(\frac{R_{Ores}}{2 \cdot \tau_{a}}\right)} = 7.711 \cdot mm$$

$$d_B = d_D$$

Diameter of pins at B and D (in double shear)
$$d_{B} = d_{D}$$
 $d_{B} = \sqrt{\frac{4}{\pi} \cdot \left(\frac{T}{2 \cdot \tau_{a}}\right)} = 8.636 \cdot mm$

$$W = 1700lbf$$

$$\sigma_a = 18ksi$$

$$\tau_a = 12ksi$$

 $\sigma_a = 18$ ksi $\tau_a = 12$ ksi Assume single shear in pins

a) Cut continuous cable - use FBD of OABC to find cable force T then use allowable normal stress to find A_{read}

$$\Sigma M_{O} = 0$$
 $T \cdot \left(\frac{8}{\sqrt{5^2 + 8^2}}\right) \cdot (5ft) + T \cdot \left(\frac{8}{\sqrt{10^2 + 8^2}}\right) \cdot (10ft) = W \cdot \left(\frac{15ft}{2}\right)$

$$T = \frac{W \cdot \left(\frac{15 \text{ft}}{2}\right)}{\frac{8}{\sqrt{5^2 + 8^2}} \cdot (5 \text{ft}) + \left(\frac{8}{\sqrt{10^2 + 8^2}}\right) \cdot (10 \text{ft})} = 1215.798 \cdot 1 \text{bf} \qquad \text{so} \qquad A_{\text{reqd}} = \frac{T}{\sigma_{\text{a}}} = 0.0675 \cdot \text{in}^2$$

b) Find resultant force at each pin location, then find regd pin diameter assuming single shear

$$d_B = d_A$$

Pins at A and B:
$$d_B = \frac{d_A}{d_A}$$
 $d_A = \sqrt{\frac{4}{\pi} \cdot \frac{T}{\tau_a}} = 0.359 \cdot in$

Pin at O - find reactions at O then resultant force - use lower FBD of OABC; assume single shear in pins

$$\Sigma F_{X} = 0$$

$$\Sigma F_{X} = 0$$
 $R_{OX} = T \cdot \left(\frac{5}{\sqrt{8^2 + 5^2}} + \frac{10}{\sqrt{8^2 + 10^2}} \right) = 1593.75 \cdot lbf$

$$\Sigma F_y = 0$$

$$\Sigma F_y = 0$$
 $R_{Oy} = W - T \cdot \left(\frac{8}{\sqrt{8^2 + 5^2}} + \frac{8}{\sqrt{8^2 + 10^2}} \right) = -90.497 \cdot lbf$

$$d_{O} = \sqrt{\frac{4}{\pi} \cdot \frac{\left(\sqrt{R_{Ox}^{2} + R_{Oy}^{2}}\right)}{\tau_{a}}} = 0.412 \cdot in$$

Pin at D - use resultant of continuous cable forces from A and B

$$\theta_{Ax} = atan\left(\frac{8}{5}\right) = 57.995 \cdot de$$

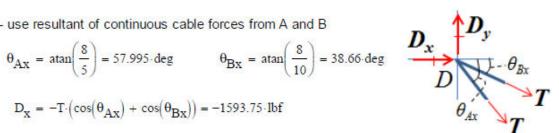
$$\theta_{\text{Bx}} = \text{atan}\left(\frac{8}{10}\right) = 38.66 \cdot \text{deg}$$

$$D_x = -T \cdot (\cos(\theta_{Ax}))$$

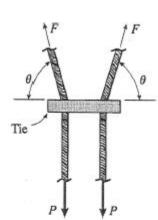
$$D_{\mathbf{x}} = -T \cdot (\cos(\theta_{\mathbf{A}\mathbf{x}}) + \cos(\theta_{\mathbf{B}\mathbf{x}})) = -1593.75 \cdot lbf$$

$$D_{v} = T \cdot (\sin(\theta_{Ax}) + \sin(\theta_{Bx})) = 1790.497 \cdot lbf$$

$$D_{res} = \sqrt{D_x^2 + D_y^2} = 2397.065 \cdot lbf$$
 so $d_D = \sqrt{\frac{4}{\pi} \cdot \frac{D_{res}}{\tau_0}} = 0.504 \cdot in$



$$d_D = \sqrt{\frac{4}{\pi} \cdot \frac{D_{res}}{\tau_a}} = 0.504 \text{ in}$$



F = tensile force in cable above tie

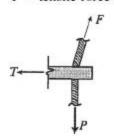
P = tensile force in cable below tie

 σ_{allow} = allowable tensile stress in the tie

FREE-BODY DIAGRAM OF HALF THE TIE

Note: Include a small amount of the cable in the free-body diagram

T =tensile force in the tie



FORCE TRIANGLE

$$\cot \theta = \frac{T}{P}$$

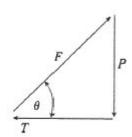
$$T = P \cot \theta$$

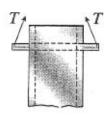
(a) MINIMUM REQUIRED AREA OF TIE

$$A_{\min} = \frac{T}{\sigma_{\text{allow}}} = \frac{P \cot \theta}{\sigma_{\text{allow}}} \leftarrow$$

(b) Substitute numerical values:

$$P = 130 \text{ kN}$$
 $\theta = 75^{\circ}$
 $\sigma_{\text{allow}} = 80 \text{ MPa}$
 $A_{\text{min}} = 435 \text{ mm}^2$ \leftarrow





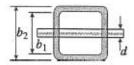
T =tensile force in cable

W = weight of steel tube

d = diameter of pin

 b_1 = inner dimension of tube

= 8.5 in.



 b_2 = outer dimension of tube

= 10.0 in.

L = length of tube = 20 ft

 $\tau_{\rm allow} = 8,700 \, \mathrm{psi}$

 $\sigma_b = 13,000 \text{ psi}$

WEIGHT OF TUBE

 γ_s = weight density of steel

 $= 490 \text{ lb/ft}^3$

A = area of tube

$$= b_2^2 - b_1^2 = (10.0 \text{ in.})^2 - (8.5 \text{ in.})^2$$
$$= 27.75 \text{ in.}$$

$$W = \gamma_s AL$$
= (490 lb/ft³)(27.75 in.²) $\left(\frac{1 \text{ft}^2}{144 \text{ in.}}\right)$ (20 ft)
= 1,889 lb

DIAMETER OF PIN BASED UPON SHEAR

Double shear. $2\tau_{\text{allow}}A_{\text{pin}} = W$

$$2(8,700 \text{ psi}) \left(\frac{\pi \text{ d}^2}{4}\right) = 1889 \text{ Ib}$$

$$d^2 = 0.1382 \text{ in.}^2$$
 $d_1 = 0.372 \text{ in.}$

DIAMETER OF PIN BASED UPON BEARING

$$\sigma_b(b_2 - b_1)d = W$$

$$(13,000 \text{ psi})(10.0 \text{ in.} - 8.5 \text{ in.}) d = 1,889 \text{ lb}$$

 $d_2 = 0.097$ in.

MINIMUM DIAMETER OF PIN

Shear governs. $d_{\min} = 0.372$ in.

ALLOWABLE SHEAR AND BEARING STRESSES

$$\tau_a = 60 \text{ MPa}$$
 $\sigma_{ba} = 90 \text{ MPa}$

FIND INCLINATION OF AND FORCE IN CABLE, T

let α = angle between pole and cable at C; use law of cosines

$$DC = \sqrt{5^2 + 4^2 - 2(5)(4)\cos\left(120\frac{\pi}{180}\right)}$$

$$DC = 7.81 \text{ m}$$
 $\alpha = \arccos\left[\frac{5^2 + DC^2 - 4^2}{2DC(5)}\right]$

$$\alpha = 26.33^{\circ}$$
 $\theta = 60 - \alpha$

 $\theta = 33.67$ <ange between cable and horizontal at D

$$W = 230 \text{ kg}(9.81 \text{ m/s}^2)$$
 $W = 2.256 \times 10^3 \text{ N}$

STATICS TO FIND CABLE FORCE T

$$\sum M_A = 0 \qquad W(3\sin(30^\circ)) - T_X(5\cos(30^\circ)) + T_Y(5\sin(30^\circ)) = 0$$

substitute for T_x and T_y in terms of T and solve for T:

$$T = \frac{\frac{3}{2}W}{\frac{-5}{2}\sin(\theta) + \frac{5\sqrt{3}}{2}\cos(\theta)}$$

$$T = 1.53 \times 10^3 \,\mathrm{N} \qquad T_x = T \cos(\theta)$$

$$T_y = T \sin(\theta)$$
 $T_x = 1.27 \times 10^3 \,\text{N}$ $T_y = 846.11 \,\text{N}$

(1) d_{\min} Based on allowable shear–double shear at A

$$A_x = -T_x \qquad A_y = T_y + W$$

CHECK SHEAR DUE TO RESULTANT FORCE ON PIN AT A

$$R_A = \sqrt{A_x^2 + A_y^2}$$

$$R_A = 3.35 \times 10^3 \,\mathrm{N}$$

$$d_{\min} = \sqrt{\frac{\frac{R_A}{2}}{\tau_a \left(\frac{\pi}{4}\right)}}$$

$$d_{\min} = 5.96 \text{ mm}$$
 < controls \leftarrow

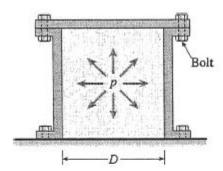
(2) d_{\min} Based on allowable bearing on Pin

$$d_{\text{pole}} = 140 \text{ mm}$$
 $t_{\text{pole}} = 12 \text{ mm}$
 $L_{\text{pole}} = 6000 \text{ mm}$

MEMBER AB BEARING ON PIN

$$\sigma_b = \frac{R_A}{A_b}$$
 $A_b = 2t_{\text{pole}}d$

$$d_{\min} = \frac{R_A}{2t_{\text{pole}}\sigma_{ba}} \qquad d_{\min} = 1.55 \text{ mm}$$



$$p = 290 \text{ psi}$$

$$D = 10.0 \text{ in.}$$

$$d_b = 0.50 \text{ in.}$$

$$\sigma_{\text{allow}} = 10,000 \text{ psi}$$
 $n = \text{number of bolts}$

$$n =$$
 number of bolts

F =total force acting on the cover plate from the internal pressure

$$F = p\left(\frac{\pi D^2}{4}\right)$$

NUMBER OF BOLTS

P =tensile force in one bolt

$$P = \frac{F}{n} = \frac{\pi p D^2}{4n}$$

$$A_b$$
 = area of one bolt = $\frac{\pi}{4} d_b^2$

$$P = \sigma_{\text{allow}} A_b$$

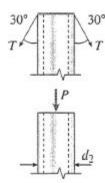
$$\sigma_{\text{allow}} = \frac{P}{A_b} = \frac{\pi p D^2}{(4n)(\frac{\pi}{4})d_b^2} = \frac{p D^2}{nd_b^2}$$

$$n = \frac{pD^2}{d_b^2 \sigma_{\text{allow}}}$$

SUBSTITUTE NUMERICAL VALUES:

$$n = \frac{(290 \text{ psi})(10 \text{ in.})^2}{(0.5 \text{ in.})^2(10,000 \text{ psi})} = 11.6$$

Use 12 bolts



 d_2 = outer diameter

 d_1 = inner diameter

t =wall thickness

= 15 mm

T =tensile force in a cable

 $= 110 \, kN$

 $\sigma_{\text{allow}} = 35 \text{ MPa}$

P =compressive force in post

 $= 2T \cos 30^{\circ}$

REQUIRED AREA OF POST

$$A = \frac{P}{\sigma_{\text{allow}}} = \frac{2T\cos 30^{\circ}}{\sigma_{\text{allow}}}$$

AREA OF POST

$$A = \frac{\pi}{4}(d_2^2 - d_1^2) = \frac{\pi}{4}[d_2^2 - (d_2 - 2t)^2]$$
$$= \pi t(d_2 - t)$$

Equate areas and solve for d_2 :

$$\frac{2T\cos 30^{\circ}}{\sigma_{\text{allow}}} = \pi t (d_2 - t)$$

$$d_2 = \frac{2T\cos 30^{\circ}}{\pi t \sigma_{\text{allow}}} + t \quad \leftarrow$$

SUBSTITUTE NUMERICAL VALUES:

$$(d_2)_{\min} = 131 \text{ mm} \leftarrow$$

$$L_1 = 22 \mathrm{ft}$$
 $L_2 = 10 \mathrm{ft}$ $d = 14 \mathrm{ft}$ $W = 85 \mathrm{kip}$ $\sigma_u = 91 \mathrm{ksi}$ $FS_u = 4$

Geometry

$$\theta = a\cos\left(\frac{L_1^2 + d^2 - L_2^2}{2 \cdot L_1 \cdot d}\right) \qquad \theta = 19.685 \cdot deg \qquad \beta = a\cos\left(\frac{L_1^2 + L_2^2 - d^2}{2 \cdot L_1 \cdot L_2}\right) \qquad \beta = 28.138 \cdot deg$$

$$\alpha = \operatorname{asin}\left(\frac{L_1}{L_2} \cdot \sin(\theta)\right) = 47.823 \cdot \deg$$

$$\alpha = 180\deg - \alpha = 132.177 \cdot \deg$$

OR
$$\beta = a\sin\left(\frac{d}{L_2} \cdot \sin(\theta)\right) = 28.138 \cdot deg \qquad \alpha = a\cos\left(\frac{d^2 + L_2^2 - L_1^2}{2 \cdot d \cdot L_2}\right) = 132.177 \cdot deg$$

$$HC = \sqrt{{d_2}^2 + {L_2}^2 - 2 \cdot L_2 \cdot d_2 \cdot \cos(\alpha)} = 17.148 \, \text{ft} \qquad \qquad \text{HC must be vertical line}$$

$$\beta_1 = a\cos\left(\frac{{L_1}^2 + HC^2 - {d_1}^2}{2 \cdot L_1 \cdot HC}\right) = 5.919 \cdot deg \qquad \qquad \beta_2 = a\cos\left(\frac{{L_2}^2 + HC^2 - {d_2}^2}{2 \cdot L_2 \cdot HC}\right) = 22.218 \cdot deg$$

$$\beta_1 + \beta_2 = 28.138 \cdot deg \qquad \qquad \beta_1 + \beta_2 = 28.138 \cdot deg$$

 $\underline{Solution\ approach}\text{: find cable tensions\ then}\ A_{_{\mathbb{C}}}\text{ = larger}\ T/(\sigma_{_{\!U}}/FS)$

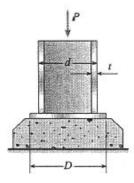
$$\frac{\text{Statics}}{\sum_{\mathbf{H}} \mathbf{F_x}} = 0 \qquad \mathbf{T_1} \cdot \sin(\beta_1) = \mathbf{T_2} \cdot \sin(\beta_2) \qquad \text{SO} \qquad \mathbf{T_2} = \mathbf{T_1} \cdot \frac{\sin(\beta_1)}{\sin(\beta_2)}$$

$$\begin{split} \sum_{H} F_y &= 0 \qquad T_1 \cdot \cos(\beta_1) + T_2 \cdot \cos(\beta_2) = F \\ &= SO \qquad T_1 \cdot \left(\cos(\beta_1) + \frac{\sin(\beta_1)}{\sin(\beta_2)} \cdot \cos(\beta_2) \right) = F \end{split} \qquad \text{and } F = W/2 \\ W &= 85 \cdot \text{kip} \end{split}$$

$$T_1 = \frac{\frac{W}{2}}{\left(\cos(\beta_1) + \frac{\sin(\beta_1)}{\sin(\beta_2)} \cdot \cos(\beta_2)\right)} \qquad T_1 = 34.078 \cdot \text{kip} \qquad T_2 = T_1 \cdot \frac{\sin(\beta_1)}{\sin(\beta_2)} \qquad T_2 = 9.294 \cdot \text{kip}$$

Compute required cross-sectional area

$$\begin{split} \sigma_u &= 91 \cdot ksi & FS_u = 4 & \frac{\sigma_u}{FS_u} = 22.75 \cdot ksi \\ A_c &= \frac{T_1}{\frac{\sigma_u}{FS_u}} & A_c = 1.498 \cdot in^2 & < \text{Table 2-1} \\ & & \text{use nominal diam. 2.00 in. with area} = 1.92 \text{ in}^2 \\ & & \text{(or perhaps1.75 in. with area} = 1.47 \text{ in}^2) \end{split}$$



$$d = 250 \text{ mm}$$
 $P = 750 \text{ kN}$

 $\sigma_{\text{allow}} = 55 \text{ MPa (compression in column)}$

t =thickness of column

D = diameter of base plate

 $\sigma_b = 11.5 \text{ MPa}$ (allowable pressure on concrete)

(a) THICKNESS t OF THE COLUMN

$$A = \frac{P}{\sigma_{\text{allow}}} \qquad A = \frac{\pi d^2}{4} - \frac{\pi}{4} (d - 2t)^2$$

$$= \frac{\pi}{4} (4t)(d - t) = \pi t (d - t)$$

$$\pi t (d - t) = \frac{P}{\sigma_{\text{allow}}}$$

$$\pi t^2 - \pi t d + \frac{P}{\sigma_{\text{allow}}} = 0$$

$$t^2 - t d + \frac{P}{\pi \sigma_{\text{allow}}} = 0 \qquad \text{(Eq. 1)}$$

SUBSTITUTE NUMERICAL VALUES IN Eq. (1):

$$t^2 - 250 t + \frac{(750 \times 10^3 \text{ N})}{\pi (55 \text{ N/mm}^2)} = 0$$

(Note: In this eq., t has units of mm.)

$$t^2 - 250t + 4,340.6 = 0$$

Solve the quadratic eq. for t:

$$t = 18.77 \text{ mm}$$
 $t_{\min} = 18.8 \text{ mm}$ \leftarrow Use $t = 20 \text{ mm}$ \leftarrow

(b) Diameter D of the base plate

For the column, $P_{\text{allow}} = \sigma_{\text{allow}} A$ where A is the area of the column with t = 20 mm.

$$A = \pi t(d - t) P_{\text{allow}} = \sigma_{\text{allow}} \pi t(d - t)$$

Area of base plate =
$$\frac{\pi D^2}{4} = \frac{P_{\text{allow}}}{\sigma_h}$$

$$\frac{\pi D^2}{4} = \frac{\sigma_{\text{allow}} \pi t (d-t)}{\sigma_b}$$

$$\frac{4\sigma_{\text{allow}} t (d-t)}{\sigma_b}$$

$$D^{2} = \frac{4\sigma_{\text{allow}}t(d-t)}{\sigma_{b}}$$

$$= \frac{4(55 \text{ MPa})(20 \text{ mm})(230 \text{ mm})}{11.5 \text{ MPa}}$$

$$D^2 = 88,000 \text{ mm}^2$$
 $D = 296.6 \text{ mm}$
 $D_{\min} = 297 \text{ mm}$ \leftarrow

NUMERICAL DATA

$$\begin{split} L &= 7.5(12) & L = 90 \text{ in.} & T_{BC} = 425 \text{ lb} \\ \sigma_u &= 60 \text{ ksi} & \text{FS}_u = 3 & \sigma_{ba} = 0.565 \text{ ksi} \\ q &= \frac{50}{12} & q = 4.167 \text{ lb/in.} & W_E = 175 \text{ lb} \\ d_{BC} &= \frac{3}{16} \text{ in.} & d_B = 1.0 \text{ in.} \end{split}$$

(a) FIND FORCE IN ROD DF AND FORCE ON WASHER AT F

$$\Sigma M_H = 0 \qquad T_{DF} = \frac{W_E \frac{L}{2} + qL \frac{L}{2}}{\left(L - \frac{L}{25}\right)}$$
$$T_{DF} = 286.458 \text{ lb}$$

NORMAL STRESS IN ROD DF:

$$\sigma_{DF} = \frac{T_{DF}}{\frac{\pi}{4} d_{BC}^2}$$

 $\sigma_{DF} = 10.38 \text{ ksi}$ OK—less than σ_a ; rod is acceptable \leftarrow

$$\sigma_a = \frac{\sigma_u}{FS_u}$$
 $\sigma_a = 20 \text{ ksi}$

BEARING STRESS ON WASHER AT F:

$$\sigma_{bF} = \frac{T_{DF}}{\frac{\pi}{4}(d_B^2 - d_{BC}^2)}$$

$$\sigma_{bF} = 378 \text{ psi}$$
 OK—less than σ_{ba} ; washer is acceptable \leftarrow

(b) FIND NEW FORCE IN ROD BC—SUM MOMENT ABOUT A FOR UPPER FBD—THEN CHECK NORMAL STRESS IN BC and BEARING STRESS AT B

$$\sum M_A = 0$$

$$T_{BC2} = \frac{T_{BC}L + T_{DF}\left(L - \frac{L}{25}\right)}{L}$$

$$T_{BC2} = 700 \text{ lb}$$

REVISED NORMAL STRESS IN ROD BC:

$$\sigma_{BC2} = \frac{T_{BC2}}{\left(\frac{\pi}{4}d_{BC}^2\right)}$$

$$\sigma_{BC2} = 25.352 \text{ ksi}$$
 exceeds $\sigma_a = 20 \text{ ksi}$

So re-design rod BC:

$$d_{BC\text{reqd}} = \sqrt{\frac{T_{BC2}}{4}} \sigma_a$$

$$d_{BC\text{reqd}} = 0.211 \text{ in.} \qquad d_{BC\text{reqd}} \times 16 = 3.38$$

$$^say 4/16 = 1/4 \text{ in.} \qquad d_{BC2} = \frac{1}{4} \text{ in.}$$

RE-CHECK BEARING STRESS IN WASHER AT B:

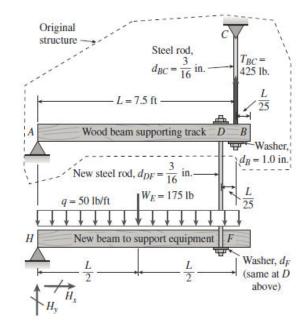
$$\sigma_{bB2} = \frac{T_{BC2}}{\left[\frac{\pi}{4}(d_B^2 - d_{BC}^2)\right]}$$

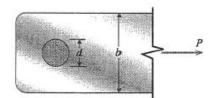
$$\sigma_{bB2} = 924 \text{ psi}$$
^ exceeds
$$\sigma_{ba} = 565 \text{ psi}$$

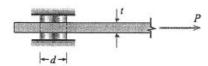
SO RE-DESIGN WASHER AT B:

$$d_{Breqd} = \sqrt{\frac{T_{BC2}}{\pi} + d_{BC}^2} + d_{Breqd} = 1.281 \text{ in.}$$

use 1 - 5/16 in washer at B: 1 + 5/16 = 1.312 in. \leftarrow







b = 60 mm

t = 10 mm

d = diameter of hole and pin

 $\sigma_T = 140 \text{ MPa}$

 $\tau_S = 80 \text{ MPa}$

 $\sigma_B = 200 \text{ MPa}$

Units used in the following calculations:

P is in kN

 σ and τ are in N/mm² (same as MPa)

b, t, and d are in mm

TENSION IN THE BAR

$$\begin{aligned} \mathbf{P}_T &= \sigma_T (\text{Net area}) = \sigma_l(t) (b - d) \\ &= (140 \text{ MPa}) (10 \text{ mm}) (60 \text{ mm} - d) \left(\frac{1}{1000} \right) \\ &= 1.40 (60 - d) \end{aligned} \tag{Eq. 1}$$

SHEAR IN THE PIN

$$P_S = 2\tau_S A_{pin} = 2\tau_S \left(\frac{\pi d^2}{4}\right)$$

$$= 2(80 \text{ MPa}) \left(\frac{\pi}{4}\right) (d^2) \left(\frac{1}{1000}\right)$$

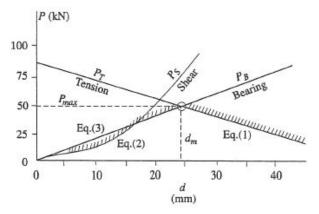
$$= 0.040 \ \pi d^2 = 0.12566 d^2$$
 (Eq. 2)

BEARING BETWEEN PIN AND BAR

$$P_B = \sigma_B td$$

= $(200 \text{ MPa})(10 \text{ mm})(d) \left(\frac{1}{1000}\right)$
= $2.0 d$ (Eq. 3)

Graph of Eqs. (1), (2), and (3)



(a) PIN DIAMETER d_m

$$P_T = P_B \text{ or } 1.40(60 - d) = 2.0 d$$

Solving, $d_m = \frac{84.0}{3.4} \text{ mm} = 24.7 \text{ mm} \leftarrow$

(b) LOAD Pmax

Substitute
$$d_m$$
 into Eq. (1) or Eq. (3):

$$P_{\text{max}} = 49.4 \text{ kN} \leftarrow$$

$$W = 1700lbf \qquad \qquad \theta_{OBD} = 20deg + atan \left(\frac{8ft - 10ft \cdot sin(20deg)}{10ft \cdot cos(20deg)}\right) = 45.983 \cdot deg$$

$$\theta_{OAD} = 20deg + atan \left(\frac{8ft - 5ft \cdot sin(20deg)}{5ft \cdot cos(20deg)}\right) = 73.241 \cdot deg$$

a) Maximum permissible load P if allowable force in cable is 4200 lb - cut cables, use lower FBD of OABC

$$\begin{split} \Sigma M_O &= -W \cdot cos(20 deg) \cdot 7.5 ft - \underline{P \cdot 15 \cdot cos(20 deg)} + T \cdot sin(\theta_{OAD}) \cdot 5 ft + T \cdot sin(\theta_{OBD}) \cdot 10 ft = 0 \\ P_{max} &= \frac{T \cdot sin(\theta_{OAD}) \cdot 5 ft + T \cdot sin(\theta_{OBD}) \cdot 10 ft - W \cdot cos(20 deg) \cdot 7.5 ft}{15 ft \cdot cos(20 deg)} = 2719.38 \cdot lbf \end{split}$$

b) Given P, find cable force T then required pin diameters P = 2300lbf $\tau_a = 10ksi$

$$T = \frac{P \cdot 15 ft \cdot cos(20 deg) + W \cdot cos(20 deg) \cdot 7.5 ft}{5 ft \cdot sin(\theta_{OAD}) + 10 ft \cdot sin(\theta_{OBD})} = 3706.526 \cdot lbf$$

$$\alpha = \left(\theta_{OAD} - 20 deg\right) - \left(\theta_{OBD} - 20 deg\right) = 27.257 \cdot deg \\ R_D = \sqrt{\left(T^2 + T^2\right) + 2 \cdot T \cdot T \cdot cos(\alpha)} = 7.204 \cdot kip \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} \cdot \frac{1}{2}$$

Pin at D:
$$d_D = \sqrt{\frac{4}{\pi} \cdot \frac{R_D}{2 \cdot \tau_a}} = 0.677 \cdot in$$

Pins at A and B:
$$\mathrm{d}_B = \mathrm{d}_A \qquad \quad \mathrm{d}_A = \sqrt{\frac{4}{\pi} \cdot \frac{T}{2 \cdot \tau_a}} = 0.486 \cdot \mathrm{in}$$

$$q_0 = 5 \frac{kN}{m}$$
 $W = 8kN$ $A_c = 100mm^2$ $\tau_a = 80MPa$

$$\theta_{\text{OBD}} = 20 \text{deg} + \text{atan} \left(\frac{2.5 - 3 \cdot \sin(20 \text{deg})}{3 \cdot \cos(20 \text{deg})} \right) = 47.603 \cdot \text{deg}$$

$$\theta_{\text{DAD}} = 20 \text{deg} + \text{atan} \left(\frac{2.5 - 1.5 \cdot \sin(20 \text{deg})}{1.5 \cdot \cos(20 \text{deg})} \right) = 74.648 \cdot \text{deg}$$

$$\theta_{\text{AX}} = \theta_{\text{OAD}} - 20 \text{deg} = 54.648 \cdot \text{deg}$$

Cut through cables, use lower FBD to find cable force T

resultant of distributed load = area under load (or load on projected area)

$$\Sigma M_{O} = 0$$

$$Q = \frac{1}{2} \cdot q_{O} \cdot (4.5m \cdot \cos(20deg)) = 10.572 \cdot kN$$

$$T \cdot \left(\sin(\theta_{OAD})\right) \cdot (1.5m) + T \cdot \left(\sin(\theta_{OBD})\right) \cdot (3m) = W \cdot (2.25m) \cdot \cos(20deg) + Q \cdot \frac{4.5m \cdot \cos(20deg)}{3}$$

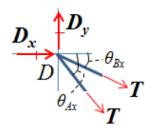
$$T = \frac{W \cdot (2.25m) \cdot \cos(20 deg) + Q \cdot \frac{4.5m \cdot \cos(20 deg)}{3}}{\left(\sin\left(\theta_{OAD}\right)\right) \cdot (1.5m) + \left(\sin\left(\theta_{OBD}\right)\right) \cdot (3m)} = 8.688 \cdot kN$$
 cable normal stress is
$$\frac{T}{A_c} = 86.882 \cdot MPa$$

Pins at A and B: $d_B = d_A \qquad d_A = \sqrt{\frac{4}{\pi} \cdot \frac{T}{2 \cdot \tau_a}} = 8.315 \cdot mm$

Pin at D - use resultant of continuous cable forces from A and B

$$\theta_{Ax} = \text{atan}\bigg(\frac{2.5 - 1.5 \cdot \sin(20 \text{deg})}{1.5 \cdot \cos(20 \text{deg})}\bigg) = 54.648 \cdot \text{deg}$$

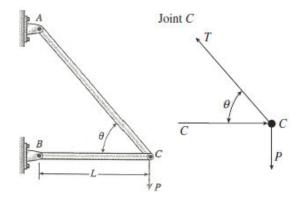
$$\theta_{\text{BX}} = \text{atan}\left(\frac{2.5 - 3 \cdot \sin(20\text{deg})}{3 \cdot \cos(20\text{deg})}\right) = 27.603 \cdot \text{deg}$$



$$\mathrm{D}_{x} = -\mathrm{T} \cdot \left(cos \! \left(\theta_{Ax} \right) + cos \! \left(\theta_{Bx} \right) \right) = -12.726 \cdot k \mathrm{N}$$

$$D_y = T \cdot (\sin(\theta_{Ax}) + \sin(\theta_{Bx})) = 11.112 \cdot kN$$

$$D_{res} = \sqrt{D_x^2 + D_y^2} = 16.895 \cdot kN$$
 so $d_D = \sqrt{\frac{4}{\pi} \cdot \frac{D_{res}}{2 \cdot \tau_a}} = 11.595 \cdot mm$



T = tensile force in bar AC

C =compressive force in bar BC

$$\sum F_{\text{vert}} = 0$$
 $T = \frac{P}{\sin \theta}$

$$\sum F_{\text{horiz}} = 0$$
 $C = \frac{P}{\tan \theta}$

AREAS OF BARS

$$A_{AC} = \frac{T}{\sigma_{\text{allow}}} = \frac{P}{\sigma_{\text{allow}} \sin \theta}$$

$$A_{BC} = \frac{C}{\sigma_{\text{allow}}} = \frac{P}{\sigma_{\text{allow}} \tan \theta}$$

LENGTHS OF BARS

$$L_{AC} = \frac{L}{\cos \theta} \quad L_{BC} = L$$

WEIGHT OF TRUSS

 γ = weight density of material

$$W = \gamma (A_{AC} L_{AC} + A_{BC} L_{BC})$$

$$= \frac{\gamma PL}{\sigma_{\text{allow}}} \left(\frac{1}{\sin \theta \cos \theta} + \frac{1}{\tan \theta} \right)$$

$$= \frac{\gamma PL}{\sigma_{\text{allow}}} \left(\frac{1 + \cos^2 \theta}{\sin \theta \cos \theta} \right)$$
Eq. (1)

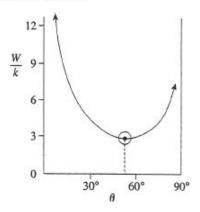
 γ , P, L, and σ_{allow} are constants

W varies only with θ

Let
$$k = \frac{\gamma PL}{\sigma_{\text{allow}}}(k \text{ has unis of force})$$

$$\frac{W}{k} = \frac{1 + \cos^2 \theta}{\sin \theta \cos \theta} \text{ (Nondimensional)} \qquad \text{Eq. (2)}$$

GRAPH OF Eq. (2):



Angle θ that makes W_A minimum

Use Eq. (2)

$$Let f = \frac{1 + \cos^2 \theta}{\sin \theta \cos \theta}$$

$$\frac{df}{d\theta} = 0$$

$$\frac{df}{d\theta} = \frac{(\sin\theta\cos\theta)(2)(\cos\theta)(-\sin\theta)}{\sin^2\theta\cos^2\theta}$$
$$= \frac{-(1+\cos^2\theta)(-\sin^2\theta+\cos^2\theta)}{\sin^2\theta\cos^2\theta}$$
$$= \frac{-\sin^2\theta\cos^2\theta+\sin^2\theta-\cos^2\theta-\cos^4\theta}{\sin^2\theta\cos^2\theta}$$

Set the numerator = 0 and solve for θ :

$$-\sin^2\theta\cos^2\theta + \sin^2\theta - \cos^2\theta - \cos^4\theta = 0$$

Replace $\sin^2\theta$ by $1 - \cos^2\theta$:

$$-(1 - \cos^2\theta)(\cos^2\theta) + 1 - \cos^2\theta - \cos^2\theta - \cos^4\theta = 0$$

Combine terms to simplify the equation:

$$1 - 3\cos^2\theta = 0 \qquad \cos\theta = \frac{1}{\sqrt{3}}$$