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2
Signals and Systems

SIGNALS AND THEIR PROPERTIES
Solution 2.1

(a) δs(x, y) =
∑∞
m=−∞

∑∞
n=−∞ δ(x−m, y − n) =

∑∞
m=−∞ δ(x−m) ·

∑∞
n=−∞ δ(y − n), therefore it is a

separable signal.

(b) δl(x, y) is separable if sin(2θ) = 0. In this case, either sin θ = 0 or cos θ = 0, δl(x, y) is a product of a
constant function in one axis and a 1-D delta function in another. But in general, δl(x, y) is not separable.

(c) e(x, y) = exp[j2π(u0x+v0y)] = exp(j2πu0x)·exp(j2πv0y) = e1D(x;u0)·e1D(y; v0), where e1D(t;ω) =
exp(j2πωt). Therefore, e(x, y) is a separable signal.

(d) s(x, y) is a separable signal when u0v0 = 0. For example, if u0 = 0, s(x, y) = sin(2πv0y) is the product
of a constant signal in x and a 1-D sinusoidal signal in y. But in general, when both u0 and v0 are nonzero,
s(x, y) is not separable.

Solution 2.2

(a) Not periodic. δ(x, y) is non-zero only when x = y = 0.

(b) Periodic. By definition

comb(x, y) =

∞∑
m=−∞

∞∑
n=−∞

δ(x−m, y − n) .

For arbitrary integers M and N , we have

comb(x+M,y +N) =

∞∑
m=−∞

∞∑
n=−∞

δ(x−m+M,y − n+N)

=

∞∑
p=−∞

∞∑
q=−∞

δ(x− p, y − q) [let p = m−M, q = n−N ]

= comb(x, y) .
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So the smallest period is 1 in both x and y directions.

(c) Periodic. Let f(x+ Tx, y) = f(x, y), we have

sin(2πx) cos(4πy) = sin(2π(x+ Tx)) cos(4πy) .

Solving the above equation, we have 2πTx = 2kπ for arbitrary integer k. So the smallest period for x is
Tx0 = 1. Similarly, we find that the smallest period for y is Ty0 = 1/2.

(d) Periodic. Let f(x+ Tx, y) = f(x, y), we have

sin(2π(x+ y)) = sin(2π(x+ Tx + y)).

So the smallest period for x is Tx0 = 1 and the smallest period for y is Ty0 = 1.

(e) Not periodic. We can see this by contradiction. Suppose f(x, y) = sin(2π(x2 + y2)) is periodic; then there
exists some Tx such that f(x+ Tx, y) = f(x, y), and

sin(2π(x2 + y2)) = sin(2π((x+ Tx)2 + y2))

= sin(2π(x2 + y2 + 2xTx + T 2
x )) .

In order for the above equation to hold, we must have that 2xTx + T 2
x = k for some integer k. The solution

for Tx depends on x. So f(x, y) = sin(2π(x2 + y2)) is not periodic.

(f) Periodic. Let fd(m+M,n) = fd(m,n). Then

sin
(π

5
m
)

cos
(π

5
n
)

= sin
(π

5
(m+M)

)
cos
(π

5
n
)
.

Solving for M , we find that M = 10k for any integer k. The smallest period for both m and n is therefore
10.

(g) Not periodic. Following the same strategy as in (f), we let fd(m+M,n) = fd(m,n), and then

sin

(
1

5
m

)
cos

(
1

5
n

)
= sin

(
1

5
(m+M)

)
cos

(
1

5
n

)
.

The solution for M is M = 10kπ. Since fd(m,n) is a discrete signal, its period must be an integer
if it is to be periodic. There is no integer k that solves the equality for M = 10kπ for some M . So,
fd(m,n) = sin

(
1
5m
)

cos
(

1
5n
)

is not periodic.

Solution 2.3

(a) We have

E∞(δs) =

∫ ∞
−∞

∫ ∞
−∞

δ2
s(x, y) dx dy

= lim
X→∞

lim
Y→∞

∫ X

−X

∫ Y

−Y

∞∑
m=−∞

∞∑
n=−∞

δ(x−m, y − n) dx dy

= lim
X→∞

lim
Y→∞

(2bXc+ 1)(2bY c+ 1)

= ∞ ,



4 CHAPTER 2: SIGNALS AND SYSTEMS

where bXc is the greatest integer that is smaller than or equal to X . We also have

P∞ (δs) = lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
δ2
s(x, y) dx dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y

∞∑
m=−∞

∞∑
n=−∞

δ(x−m, y − n) dx dy

= lim
X→∞

lim
Y→∞

(2bXc+ 1)(2bY c+ 1)

4XY

= lim
X→∞

lim
Y→∞

{
4bXcbY c

4XY
+

2bXc+ 2bY c
4XY

+
1

4XY

}
= 1 .

(b) We have

E∞(δl) =

∫ ∞
−∞

∫ ∞
−∞
|δ(x cos θ + y sin θ − l)|2 dx dy

=

∫ ∞
−∞

∫ ∞
−∞

δ(x cos θ + y sin θ − l) dx dy

©1
=



∫ ∞
−∞

1
| sin θ| dx, sin θ 6= 0

∫ ∞
−∞

1
| cos θ| dy, cos θ 6= 0

E∞(δl) = ∞ .

Equality©1 comes from the scaling property of the point impulse. The 1-D version of Eq. (2.8) in the text is
δ(ax) = 1

|a|δ(x). Suppose cos θ 6= 0. Then

δ(x cos θ + y sin θ − l) =
1

| cos θ|
δ

(
x+ y

sin θ

cos θ
− l

cos θ

)
.

Therefore, ∫ ∞
−∞

δ(x cos θ + y sin θ − l)dx =
1

| cos θ|
.

We also have

P∞(δl) = lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
|δ(x cos θ + y sin θ − l)|2dx dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
δ(x cos θ + y sin θ − l)dx dy .

Without loss of generality, assume θ = 0 and l = 0, so that we have sin θ = 0 and cos θ = 1. Then it follows
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that

P∞(δl) = lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
δ(x) dx dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ Y

−Y

{∫ X

−X
δ(x)dx

}
dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ Y

−Y
1dx

= lim
X→∞

lim
Y→∞

2Y

4XY

= lim
X→∞

1

2X
= 0 .

(c) We have

E∞(e) =

∫ ∞
−∞

∫ ∞
−∞
|exp [j2π(u0x+ v0y)]|2 dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1 dx dy

= ∞ .

And also

P∞(e) = lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
| exp[j2π(u0x+ v0y)]|2 dx dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
1 dx dy

= 1 .

(d) We have

E∞(s) =

∫ ∞
−∞

∫ ∞
−∞

sin2[2π(u0x+ v0y)] dx dy

©2
=

∫ ∞
−∞

∫ ∞
−∞

1− cos[4π(u0x+ v0y)]

2
dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2
dx dy −

∫ ∞
−∞

∫ ∞
−∞

cos[4π(u0x+ v0y)]

2
dx dy

©3
= ∞ .

Equality ©2 comes from the trigonometric identity cos(2θ) = 1 − 2 sin2(θ). Equality ©3 holds because
the first integral goes to infinity. The absolute value of the second integral is bounded, although it does not
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converge as X and Y go to infinity. We also have

P∞(s) = lim
X→∞

lim
Y→∞

1

4XY

∫ X

−X

∫ Y

−Y
sin2[2π(u0x+ v0y)] dx dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ Y

−Y

{∫ X

−X

1− cos[4π(u0x+ v0y)]

2
dx

}
dy

= lim
X→∞

lim
Y→∞

1

4XY

∫ Y

−Y

[
X +

sin[4π(u0X + v0y)]− sin[4π(−u0X + v0y)]

8πu0

]
dy

©4
= lim

X→∞
lim
Y→∞

1

4XY

∫ Y

−Y

[
X − sin(4πu0X) cos(4πv0y)

4πu0

]
dy

= lim
X→∞

lim
Y→∞

1

4XY

(
2XY − 2 sin(4πu0X) sin(4πv0Y )

(4π)2u0v0

)
=

1

2
.

In order to get©4 , we have used the trigonometric identity sin(α+ β) = sinα cosβ + cosα sinβ. The rest
of the steps are straightforward.

Since s(x, y) is a periodic signal with periods X0 = 1/u0 and Y0 = 1/v0, we have an alternative way to
compute P∞ by considering only one period in each dimension. Accordingly,

P∞(s) =
1

4X0Y0

∫ X0

−X0

∫ Y0

−Y0

sin2[2π(u0x+ v0y)] dx dy

=
1

4X0Y0

(
2X0Y0 −

2 sin(4πu0X0) sin(4πv0Y0)

(4π)2u0v0

)
=

1

4X0Y0

(
2X0Y0 −

2 sin(4π) sin(4π)

(4π)2u0v0

)
=

1

2
.

SYSTEMS AND THEIR PROPERTIES
Solution 2.4

Suppose two LSI systems S1 and S2 are connected in cascade. For any two input signals f1(x, y), f2(x, y), and
two constants a1 and a2, we have the following:

S2[S1[a1f1(x, y) + a2f2(x, y)]] = S2[a1S1[f1(x, y)] + a2S1[f2(x, y)]]

= a1S2[S1[f1(x, y)]] + a2S2[S1[f2(x, y)]] .

So the cascade of two LSI systems is also linear. Now suppose for a given signal f(x, y) we have S1[f(x, y)] =
g(x, y), and S2[g(x, y)] = h(x, y). By using the shift-invariance of the systems, we can prove that the cascade of
two LSI systems is also shift invariant:

S2[S1[f(x− ξ, y − η)]] = S2[g(x− ξ, y − η)] = h(x− ξ, y − η) .
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This proves that two LSI systems in cascade is an LSI system
To prove Eq. (2.46) we carry out the following:

g(x, y) = h2(x, y) ∗ [h1(x, y) ∗ f(x, y)]

= h2(x, y) ∗
∫ ∞
−∞

∫ ∞
−∞

h1(ξ, η)f(x− ξ, y − η) dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

h2(u, v)

[∫ ∞
−∞

∫ ∞
−∞

h1(ξ, η)f(x− u− ξ, y − v − η) dξ dη

]
du dv

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h2(u, v)h1(ξ, η)f(x− u− ξ, y − v − η) dξ dηdu dv

=

∫ ∞
−∞

∫ ∞
−∞

h1(ξ, η)

[∫ ∞
−∞

∫ ∞
−∞

h2(u, v)f(x− ξ − u, y − η − v) du dv

]
dξ dη

= h1(x, y) ∗ [h2(x, y) ∗ f(x, y)] .

This proves the second equality in (2.46). By letting α = u+ ξ, and β = v + η, we have

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h2(u, v)h1(ξ, η)f(x− u− ξ, y − v − η) dξ dηdu dv

=

∫ ∞
−∞

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

h2(α− ξ, β − η)h1(ξ, η) dξ dη

]
f(x− α, y − β) dα dβ

= [h1(x, y) ∗ h2(x, y)] ∗ f(x, y) ,

which proves the second equality in (2.46).
To prove (2.47) we start with the definition of convolution

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

h2(ξ, η)h1(x− ξ, y − η)dξ dη

= h1(x, y) ∗ h2(x, y) .

We then make the substitution α = x− ξ and β = y − η and manipulate the result

g(x, y) =

∫ −∞
+∞

∫ −∞
+∞

h2(x− α, y − β)h1(α, β)(−dα) (−dβ)

=

∫ +∞

−∞

∫ +∞

−∞
h1(α, β)h2(x− α, y − β)dα dβ

=

∫ +∞

−∞

∫ +∞

−∞
h1(ξ, η)h2(x− ξ, y − η)dξ dη

= h2(x, y) ∗ h1(x, y) ,

where the next to last equality follows since α and β are just dummy variables in the integral.
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Solution 2.5
1. Suppose the PSF of an LSI system is absolutely integrable.∫ ∞

−∞

∫ ∞
−∞
|h(x, y)| dx dy ≤ C <∞ (S2.1)

where C is a finite constant. For a bounded input signal f(x, y)

|f(x, y)| ≤ B <∞ , for every (x, y) , (S2.2)

for some finite B, we have

|g(x, y)| = |h(x, y) ∗ f(x, y)|

=

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

h(x− ξ, y − η)f(ξ, η)dξdη

∣∣∣∣
≤

∫ ∞
−∞

∫ ∞
−∞
|h(x− ξ, y − η)| · |f(ξ, η)| dξdη

≤ B

∫ ∞
−∞

∫ ∞
−∞
|h(x, y)| dx dy

≤ BC <∞ , for every (x, y) (S2.3)

So g(x, y) is also bounded. The system is BIBO stable.
2. We use contradiction to show that if the LSI system is BIBO stable, its PSF must be absolutely integrable.

Suppose the PSF of a BIBO stable LSI system is h(x, y), which is not absolutely integrable, that is,∫ ∞
−∞

∫ ∞
−∞
|h(x, y)| dx dy

is not bounded. Then for a bounded input signal f(x, y) = 1, the output is

|g(x, y)| = |h(x, y) ∗ f(x, y)| =
∫ ∞
−∞

∫ ∞
−∞
|h(x, y)| dx dy,

which is also not bounded. So the system can not be BIBO stable. This shows that if the LSI system is BIBO stable,
its PSF must be absolutely integrable.

Solution 2.6

(a) If g′(x, y) is the response of the system to input
∑K
k=1 wkfk(x, y), then

g′(x, y) =

K∑
k=1

wkfk(x,−1) +

K∑
k=1

wkfk(0, y)

=

K∑
k=1

wk[fk(x,−1) + fk(0, y)]

=

K∑
k=1

wkgk(x, y)
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where gk(x, y) is the response of the system to input fk(x, y). Therefore, the system is linear.

(b) If g′(x, y) is the response of the system to input f(x− x0, y − y0), then

g′(x, y) = f(x− x0,−1− y0) + f(−x0, y − y0);

while
g(x− x0, y − y0) = f(x− x0,−1) + f(0, y − y0).

Since g′(x, y) 6= g(x− x0, y − y0), the system is not shift-invariant.

Solution 2.7

(a) If g′(x, y) is the response of the system to input
∑K
k=1 wkfk(x, y), then

g′(x, y) =

(
K∑
k=1

wkfk(x, y)

)(
K∑
k=1

wkfk(x− x0, y − y0)

)

=

K∑
i=1

K∑
j=1

wiwjfi(x, y)fj(x− x0, y − y0),

while
K∑
k=1

wkgk(x, y) =

K∑
k=1

wkfk(x, y)fk(x− x0, y − y0).

Since g′(x, y) 6=
∑K
k=1 gk(x, y), the system is nonlinear.

On the other hand, if g′(x, y) is the response of the system to input f(x− a, y − b), then

g′(x, y) = f(x− a, y − b)f(x− a− x0, y − b− y0)

= g(x− a, y − b)

and the system is thus shift-invariant.

(b) If g′(x, y) is the response of the system to input
∑K
k=1 wkfk(x, y), then

g′(x, y) =

∫ ∞
−∞

K∑
k=1

wkfk(x, η) dη

=

K∑
k=1

wk

(∫ ∞
−∞

fk(x, η) dη

)

=

K∑
k=1

wkgk(x, y),

where gk(x, y) is the response of the system to input fk(x, y). Therefore, the system is linear.
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On the other hand, if g′(x, y) is the response of the system to input f(x− x0, y − y0), then

g′(x, y) =

∫ ∞
−∞

f(x− x0, η − y0) dη

=

∫ ∞
−∞

f(x− x0, η − y0) d(η − y0)

=

∫ ∞
−∞

f(x− x0, η) dη.

Since g(x− x0, y − y0) =
∫∞
−∞ f(x− x0, η) dη, the system is shift-invariant.

Solution 2.8
From the results in Problem 2.5, we know that an LSI system is BIBO stable if and only if its PSF is absolutely

integrable.

(a) Not stable. The PSF h(x, y) goes to infinite when x and/or y go to infinity.
∫∞
−∞

∫∞
−∞ |h(x, y)| dx dy =∫∞

−∞
∫∞
−∞(x2 + y2)dx dy =

∫∞
−∞

[∫∞
−∞ x2dx

]
dy +

∫∞
−∞

[∫∞
−∞ y2dy

]
dx. Since

∫∞
−∞ x2dx =

∫∞
−∞ y2dy

is not bounded, then
∫∞
−∞

∫∞
−∞(x2 + y2)dx dy is not bounded.

(b) Stable.
∫∞
−∞

∫∞
−∞ |h(x, y)| dx dy =

∫∞
−∞

∫∞
−∞(exp{−(x2 + y2)})dx dy =

[∫∞
−∞ e−x

2

dx
]2

= π, which is
bounded. So the system is stable.

(c) Not stable. The absolute integral
∫∞
−∞

∫∞
−∞ x2e−y

2

dx dy =
∫∞
−∞ x2

[∫∞
−∞ e−y

2

dy
]
dx =

∫∞
−∞
√
πx2dx is

unbounded. So the system is not stable.

Solution 2.9

(a) g(x) =
∫∞
−∞ f(x− t)f(t)dt.

(b) Given an input as af1(x) + bf2(x), where a, b are some constant, the output is

g′(x) = [af1(x) + bf2(x)] ∗ [af1(x) + bf2(x)]

= a2f1(x) ∗ f1(x) + 2abf1(x) ∗ f2(x) + b2f2(x) ∗ f2(x)

6= ag1(x) + bg2(x),

where g1(x) and g2(x) are the output corresponding to an input of f1(x) and f2(x) respectively.

Hence, the system is nonlinear.

(c) Given a shifted input f1(x) = f(x− x0), the corresponding output is

g1(x) = f1(x) ∗ f1(x)

=

∫ ∞
−∞

f1(x− t)f1(t)dt

=

∫ ∞
−∞

f(x− t− x0)f1(t− x0)dt.
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Changing variable t′ = t− x0 in the above integration, we get

g1(x) =

∫ ∞
−∞

f(x− 2x0 − t′)f1(t′)dt′

= g(x− 2x0).

Thus, if the input is shifted by x0, the output is shifted by 2x0. Hence, the system is not shift-invariant.

CONVOLUTION OF SIGNALS
Solution 2.10

(a)

f(x, y)δ(x− 1, y − 2) = f(1, 2)δ(x− 1, y − 2)

= (1 + 22)δ(x− 1, y − 2)

= 5δ(x− 1, y − 2)

(b)

f(x, y) ∗ δ(x− 1, y − 2) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)δ(x− ξ − 1, y − η − 2) dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f(x− 1, y − 2)δ(x− ξ − 1, y − η − 2) dξ dη

= f(x− 1, y − 2)

∫ ∞
−∞

∫ ∞
−∞

δ(x− ξ − 1, y − η − 2) dξ dη

= f(x− 1, y − 2)

= (x− 1) + (y − 2)2

(c) ∫ ∞
−∞

∫ ∞
−∞

δ(x− 1, y − 2)f(x, 3)dx dy
©1
=

∫ ∞
−∞

∫ ∞
−∞

δ(x− 1, y − 2)f(1, 3)dx dy

=

∫ ∞
−∞

∫ ∞
−∞

δ(x− 1, y − 2)(1 + 32)dx dy

= 10

∫ ∞
−∞

∫ ∞
−∞

δ(x− 1, y − 2)dx dy

©2
= 10

Equality©1 comes from the Eq. (2.7) in the text. Equality©2 comes from the fact:∫ ∞
−∞

∫ ∞
−∞

δ(x− 1, y − 2)dx dy =

∫ ∞
−∞

∫ ∞
−∞

δ(x, y)dx dy = 1.
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(d)

δ(x− 1, y − 2) ∗ f(x+ 1, y + 2)
©3
=

∫ ∞
−∞

∫ ∞
−∞

δ(x− ξ − 1, y − η − 2)f(ξ + 1, η + 2)dξ dη

©4
=

∫ ∞
−∞

∫ ∞
−∞

δ(x− ξ − 1, y − η − 2)f((x− 1) + 1, (y − 2) + 2)dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

δ(x− ξ − 1, y − η − 2)f(x, y)dξ dη

©5
= f(x, y) = x+ y2

©3 comes from the definition of convolution;©4 comes from the Eq. (2.7) in text;©5 is the same as©2 in part
(c). Alternatively, by using the sifting property of δ(x, y) and defining g(x, y) = f(x+ 1, y + 2), we have

δ(x− 1, y − 2) ∗ g(x, y) = g(x− 1, y − 2)

= f(x− 1 + 1, y − 2 + 2)

= f(x, y)

= x+ y2 .

Solution 2.11

(a)

f(x, y) ∗ g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)g(x− ξ, y − η) dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f1(ξ)f2(η)g1(x− ξ)g2(y − η) dξ dη

f(x, y) ∗ g(x, y) =

(∫ ∞
−∞

f1(ξ)g1(x− ξ) dξ
)(∫ ∞

−∞
f2(η)g2(y − η) dη

)
.

Hence, their convolution is also separable.

(b)
f(x, y) ∗ g(x, y) = (f1(x) ∗ g1(x)) (f2(y) ∗ g2(y)) .
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Solution 2.12

g(x, y) = f(x, y) ∗ h(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

f(x− ξ, y − η)h(ξ, η)dξdη

=

∫ ∞
−∞

∫ ∞
−∞

(x− ξ + y − η)exp{−(ξ2 + η2)}dξdη

= (x+ y)

∫ ∞
−∞

∫ ∞
−∞

e−ξ
2−η2

dξdη −
∫ ∞
−∞

∫ ∞
−∞

ξe−ξ
2−η2

dξdη −
∫ ∞
−∞

∫ ∞
−∞

ηe−ξ
2−η2

dξdη

= (x+ y)

[∫ ∞
−∞

e−ξ
2

dξ

]2

−
∫ ∞
−∞

e−η
2

[∫ ∞
−∞

ξe−ξ
2

dξ

]
dη −

∫ ∞
−∞

e−ξ
2

[∫ ∞
−∞

ηe−η
2

dη

]
dξ

= π(x+ y) (S2.4)

We get (S2.4) by noticing that since ξ is an odd function and e−ξ
2

is an even function, we must have∫ ∞
−∞

ξe−ξ
2

dξ = 0 .

Also, ∫ ∞
−∞

e−ξ
2

dξ =
√
π .

FOURIER TRANSFORMS AND THEIR PROPERTIES
Solution 2.13

(a) See the solution to part (b) below. The Fourier transform is

F2{δs(x, y)} = δs(u, v)

(b)

F2{δs(x, y; ∆x,∆y)} =

∫ ∞
−∞

∫ ∞
−∞

δs(x, y; ∆x,∆y)e−j2π(ux+vy) dx dy

δs(x, y; ∆x,∆y) is a periodic signal with periods ∆x and ∆y in x and y axes. Therefore it can be written
as a Fourier series expansion. (Please review Oppenheim, Willsky, and Nawad, Signals and Systems for the
definition of Fourier series expansion of periodic signals.)

δs(x, y; ∆x,∆y) =

∞∑
m=−∞

∞∑
n=−∞

Cmne
j2π(mx∆x+ ny

∆y ) ,
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where

Cmn =
1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

δs(x, y; ∆x,∆y)e−j2π(mx∆x+ ny
∆y ) dx dy

=
1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

∞∑
m=−∞

∞∑
n=−∞

δ(x−m∆x, y − n∆y)e−j2π(mx∆x+ ny
∆y ) dx dy.

In the integration region −∆x
2 < x < ∆x

2 and −∆y
2 < y < ∆y

2 there is only one impulse corresponding to
m = 0, n = 0. Therefore, we have

Cmn =
1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

δ(x, y)e−j2π( 0·x
∆x+ 0·y

∆y ) dx dy

=
1

∆x∆y
.

We have:

δs(x, y; ∆x,∆y) =
1

∆x∆y

∞∑
m=−∞

∞∑
n=−∞

ej2π(mx∆x+ ny
∆y ) .

Therefore,

F2{δs} =

∫ ∞
−∞

∫ ∞
−∞

δs(x, y; ∆x,∆y)e−j2π(ux+vy)dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

∆x∆y

∞∑
m=−∞

∞∑
n=−∞

ej2π(mx∆x+ ny
∆y )e−j2π(ux+vy) dx dy

=

∞∑
m=−∞

∞∑
n=−∞

1

∆x∆y

∫ ∞
−∞

∫ ∞
−∞

ej2π(mx∆x+ ny
∆y )e−j2π(ux+vy) dx dy

=

∞∑
m=−∞

∞∑
n=−∞

1

∆x∆y
F2

{
ej2π(mx∆x+ ny

∆y )
}

=

∞∑
m=−∞

∞∑
n=−∞

1

∆x∆y
δ

(
u− m

∆x
, v − n

∆y

)
©5
=

∞∑
m=−∞

∞∑
n=−∞

1

∆x∆y
·∆x∆yδ(u∆x−m, v∆y − n)

F2{δs} = δs(u∆x, v∆y)

Equality©5 comes from the property δ(ax) = 1
|a|δ(x).
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(c)

F2{s(x, y)} =

∫ ∞
−∞

∫ ∞
−∞

s(x, y)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

sin[2π(u0x+ v0y)]e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2j

[
ej2π(u0x+v0y) − e−j2π(u0x+v0y)

]
e−j2π(ux+vy) dx dy

=
1

2j

[∫ ∞
−∞

∫ ∞
−∞

ej2π(u0x+v0y)e−j2π(ux+vy) dx dy

−
∫ ∞
−∞

∫ ∞
−∞

e−j2π(u0x+v0y)e−j2π(ux+vy) dx dy

]
=

1

2j

[∫ ∞
−∞

∫ ∞
−∞

e−j2π[(u−u0)x+(v−v0)y] dx dy

−
∫ ∞
−∞

∫ ∞
−∞

e−j2π[(u+u0)x+(v+v0)y] dx dy

]
F2{s(x, y)} =

1

2j
[δ(u− u0, v − v0)− δ(u+ u0, v + v0)] .

We used Eq. (2.69) twice to get the last equality.

(d)

F2(c)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

c(x, y)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

cos[2π(u0x+ v0y)]e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2
[ej2π(u0x+v0y) + e−j2π(u0x+v0y)]e−j2π(ux+vy) dx dy

=
1

2

[∫ ∞
−∞

∫ ∞
−∞

ej2π(u0x+v0y)e−j2π(ux+vy) dx dy

+

∫ ∞
−∞

∫ ∞
−∞

e−j2π(u0x+v0y)e−j2π(ux+vy) dx dy

]
=

1

2

[∫ ∞
−∞

∫ ∞
−∞

e−j2π[(u−u0)x+(v−v0)y] dx dy

+

∫ ∞
−∞

∫ ∞
−∞

e−j2π[(u+u0)x+(v+v0)y] dx dy

]
F2(c)(u, v) =

1

2
[δ(u− u0, v − v0) + δ(u+ u0, v + v0)].

We used Eq. (2.69) twice to get the last equality.
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(e)

F2(f)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
e−(x2+y2)/2σ2

e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
e−(x2+j4πσ2ux)/2σ2

e−(y2+j4πσ2vy)/2σ2

dx dy

=

[∫ ∞
−∞

1√
2πσ2

e−(x2+j4πσ2ux)/2σ2

dx

] [∫ ∞
−∞

1√
2πσ2

e−(y2+j4πσ2vy)/2σ2

dy

]
=

[∫ ∞
−∞

1√
2πσ2

e−(x+j2πσ2u)2/2σ2

e(j2πσ2u)2/2σ2

dx

]
·[∫ ∞

−∞

1√
2πσ2

e−(y+j2πσ2v)2/2σ2

e(j2πσ2v)2/2σ2

dy

]
=

[
e−2π2σ2u2

∫ ∞
−∞

1√
2πσ2

e−(x+j2πσ2u)2/2σ2

dx

]
·[

e−2π2σ2v2

∫ ∞
−∞

1√
2πσ2

e−(y+j2πσ2v)2/2σ2

dy

]
= e−2π2σ2u2

· e−2π2σ2v2

F2(f)(u, v) = e−2π2σ2(u2+v2).

Solution 2.14
The Fourier transform of f(x) is

F (u) =

∫ ∞
−∞

f(x)e−j2πuxdx.

(a) Assuming f(x) is real and f(x) = f(−x),

F ∗(u) =

∫ ∞
−∞

[
f(x)e−j2πux

]∗
dx

=

∫ ∞
−∞

f∗(x)ej2πuxdx

=

∫ ∞
−∞

f∗(−ξ)e−j2πuξdξ, let ξ = −x

=

∫ ∞
−∞

f(ξ)e−j2πuξdξ, since f(−x) = f(x) and f(x) is real

= F (u) .
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(b) Similarly, assuming f(x) is real and f(x) = −f(−x),

F ∗(u) =

∫ ∞
−∞

f∗(−ξ)e−j2πuξdξ

=

∫ ∞
−∞
−f(ξ)e−j2πuξdξ, since f(−x) = −f(x)

= −F (u) .

Solution 2.15
In deriving the symmetric property F ∗(u) = F (u), we used the fact that f(x) is real. If f(x) is a complex

signal, we have f∗(−ξ) = f∗(ξ) instead of f∗(−ξ) = f(ξ). Therefore,

F ∗(u) =

∫ ∞
−∞

[
f(x)e−j2πux

]∗
dx

=

∫ ∞
−∞

f∗(−ξ)e−j2πuξdξ, let ξ = −x

=

∫ ∞
−∞

f∗(ξ)e−j2πuξdξ,

= F {f∗(x)}

Solution 2.16

(a) Conjugate property: F2(f∗)(u, v) = F ∗(−u,−v).

F2(f∗)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f∗(x, y)e−j2π(ux+vy) dx dy

=

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)ej2π(ux+vy) dx dy

]∗
=

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π[(−u)x+(−v)y] dx dy

]∗
= [F (−u,−v)]

∗

= F ∗(−u,−v) .

Conjugate symmetry property: If f(x, y) is real, F (u, v) = F ∗(−u,−v). Since f(x, y) is real, f∗(x, y) =
f(x, y). Therefore,

F ∗(−u,−v) = F2{f∗(x, y)} = F2{f(x, y)} = F (u, v) .
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(b) Scaling property: F2(fab)(u, v) = 1
|ab|F2(f)

(
u
a ,

v
b

)
.

F2(fab)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(ax, by)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f(ax, by)e−j2π[u(ax)/a+v(by)/b] 1

ab
d(ax) d(by)

=
1

|ab|

∫ ∞
−∞

∫ ∞
−∞

f(p, q)e−j2π[(u/a)p+(v/b)q] dp dq

=
1

|ab|
F2(f)

(u
a
,
v

b

)
.

(c) Convolution property: F2(f ∗ g)(u, v) = F2(g)(u, v) · F2(f)(u, v).

F2(f ∗ g)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)g(x− ξ, y − η)dξ dη

]
e−j2π(ux+vy)dx dy.

Interchange the order of integration to yield

F2(f ∗ g)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)

[∫ ∞
−∞

∫ ∞
−∞

g(x− ξ, y − η)e−j2π(ux+vy)dx dy

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)

[∫ ∞
−∞

∫ ∞
−∞

g(x− ξ, y − η)

e−j2π[u(x−ξ)+v(y−η)]e−j2π(uξ+vη)dx dy

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)e−j2π(uξ+vη)

[∫ ∞
−∞

∫ ∞
−∞

g(x− ξ, y − η)

e−j2π[u(x−ξ)+v(y−η)]dx dy

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)e−j2π(uξ+vη)

[∫ ∞
−∞

∫ ∞
−∞

g(p, q)e−j2π[up+vq]dp dq

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)e−j2π(uξ+vη)F2(g)(u, v) dξ dη

= F2(g)(u, v) ·
∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)e−j2π(uξ+vη) dξ dη

F2(f ∗ g)(u, v) = F2(g)(u, v) · F2(f)(u, v).
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(d) Product property: F2(fg)(u, v) = F (u, v) ∗G(u, v).

F2(fg)(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)g(x, y)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

G(ξ, η)ej2π(xξ+yη) dξ dη

]
f(x, y)e−j2π(ux+vy) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

G(ξ, η)

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)ej2π(xξ+yη)e−j2π(ux+vy) dxdy

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

G(ξ, η)

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π[(u−ξ)x+(v−η)y] dx dy

]
dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

G(ξ, η)F (u− ξ, v − η) dξ dη

= F (u, v) ∗G(u, v).

Solution 2.17
Since both the rect and sinc functions are separable, it is sufficient to show the result for 1-D rect and sinc

functions. A 1-D rect function is

rect(x) =


1, for |x| < 1

2

0, for |x| > 1

2

F{rect(x)} =

∫ ∞
−∞

rect(x)e−j2πuxdx

=

∫ 1/2

−1/2

e−j2πuxdx

=

∫ 1/2

−1/2

cos(2πux)dx− j
∫ 1/2

−1/2

sin(2πux)dx, ejθ = cos θ + j sin θ

=

∫ 1/2

−1/2

cos(2πux)dx

=
sin(πu)

πu
= sinc(u) .

Therefore, we have F{sinc(x)} = rect(u). Using Parseval’s Theorem, we have

E∞ =

∫ ∞
−∞

∫ ∞
−∞
‖ rect(x, y)‖2dx dy

=

∫ 1/2

−1/2

∫ 1/2

−1/2

dx dy

= 1
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For the sinc function, P∞ = 0, because E∞ is finite.

Solution 2.18
Since the signal is separable, we have

F [f(x, y)] = F1D[sin(2πax)]F1D[cos(2πby)] ,

F1D[sin(2πax)] =
1

2j
[δ (u− a)− δ (u+ a)] ,

F1D[cos(2πby)] =
1

2
[δ (v − b) + δ (v + b)] .

So,

F [f(x, y)] =
1

4j
[δ(u− a)δ(v − b)− δ(u+ a)δ(v − b) + δ(u− a)δ(v + b)− δ(u+ a)δ(v + b)] .

Now we need to show that δ(u)δ(v) = δ(u, v) (in a generalized way):

δ(u)δ(v) = 0, for u 6= 0, or v 6= 0

Therefore,∫ ∞
−∞

∫ ∞
−∞

f(u, v)δ(u)δ(v)du dv =

∫ ∞
−∞

[∫ ∞
−∞

f(u, v)δ(u)du

]
δ(v)dv =

∫ ∞
−∞

f(0, v)δ(v)dv = f(0, 0) .

Based on the argument above δ(u)δ(v) = δ(u, v), and

F [f(x, y)] =
1

4j
[δ(u− a, v − b)− δ(u+ a, v − b) + δ(u− a, v + b)− δ(u+ a, v + b)] .

The above solution can also be obtained by using the relationship:

sin(2πax) cos(2πby) =
1

2
[sin(2π(ax− by)) + sin(2π(ax+ by))] .

Solution 2.19
A function f(x, y) can be expressed in polar coordinates as:

f(x, y) = f(r cos θ, r sin θ) = fp(r, θ) .

If it is circularly symmetric, we have fp(r, θ) is constant for fixed r. The Fourier transform of f(x, y) is defined as:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy)dx dy

=

∫ ∞
0

∫ 2π

0

fp(r, θ)e
−j2π(ur cos θ+vr sin θ)r dr dθ

=

∫ ∞
0

fp(r, θ)

[∫ 2π

0

e−j2π(ur cos θ+vr sin θ)dθ

]
r dr .
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Letting u = q cosφ and v = q sinφ, the above equation becomes:

F (u, v) =

∫ ∞
0

fp(r, θ)

[∫ 2π

0

e−j2πqr cos(φ−θ)dθ

]
r dr .

Since F (u, v) is also circularly symmetric, it can be written as Fq(q, φ) and is constant for fixed q. In particular,
Fq(q, φ) = Fq(q, π/2), and therefore

Fq(q, φ) = Fq(q, π/2) =

∫ ∞
0

fp(r, θ)

[∫ 2π

0

e−j2πqr sin θdθ

]
r dr .

Now we will show that (2.108) holds.∫ 2π

0

e−j2πqr sin θdθ =

∫ 2π

0

cos(2πqr sin θ)dθ − j
∫ 2π

0

sin(2πqr sin θ)

©1
= 2

∫ π

0

cos(2πqr sin θ)dθ

= 2πJ0(2πqr) .

Equality©1 holds because cos(−θ) = cos(θ), and sin(θ) = − sin(θ).
Based on the above derivation, we have proven (2.108).

Solution 2.20
The unit disk is expressed as f(r) = rect(r) and its Hankel transform is

F (q) = 2π

∫ ∞
0

f(r)J0(2πqr)r dr

= 2π

∫ ∞
0

rect(r)J0(2πqr)r dr

= 2π

∫ 1/2

0

J0(2πqr)r dr .

Now apply the following change of variables

s = 2πqr ,

r =
s

2πq
,

dr =
ds

2πq
,

to yield

F (q) =
1

2πq2

∫ πq

0

J0(s)sds .
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From mathematical tables, we note that ∫ x

0

J0(ε)εdε = xJ1(x) .

Therefore,

F (q) =
J1(πq)

2q

= jinc(q) .

TRANSFER FUNCTION
Solution 2.21

(a) The impulse response function is shown in Figure S2.1.
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Figure S2.1 Impulse response function of the system. See Problem 2.21(a).

(b) The transfer function of the function is the Fourier transform of the impulse response function:

H(u, v) = F{h(x, y)}
= F{e−πx

2

}F{e−πy
2/4} , since h(x, y) is separable

= 2e−π(u2+4v2) .
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Solution 2.22

(a) The 1D profile of the bar phantom is:

f(x) =

{
1, k−1

2 w ≤ x ≤ k+1
2 w

0, k+1
2 w ≤ x ≤ k+3

2 w
,

where k is an integer. The response of the system to the bar phantom is:

g(x) = f(x) ∗ l(x) =

∫ ∞
−∞

f(x− ξ)l(ξ)dξ .

At the center of the bar, we have

g(0) =

∫ ∞
−∞

f(0− ξ)l(ξ)dξ

=

∫ w/2

−w/2
cos(αξ)dξ

=
2

α
sin
(αw

2

)
.

At the point halfway between two adjacent bars, we have

g(w) =

∫ ∞
−∞

f(w − ξ)l(ξ)dξ

=

∫ w/2

w−π/2α
cos(αξ)dξ +

∫ w+π/2α

3w/2

cos(αξ)dξ

= 2

∫ w/2

w−π/2α
cos(αξ)dξ

=
2

α

[
sin
(αw

2

)
− sin

(
αw − π

2

)]
.

(b) From the line spread function alone, we cannot tell whether the system is isotropic. The line spread function
is a “projection” of the PSF. During the projection, the information along the y direction is lost.

(c) Since the system is separable with h(x, y) = h1D(x)h1D(y), we know that

l(x) =

∫ ∞
−∞

h(x, y)dy

= h1D(x)

∫ ∞
−∞

h1D(y)dy .
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Therefore h1D(x) = cl(x) where 1/c =
∫∞
−∞ h1D(y)dy. Hence,

1/c =

∫ ∞
−∞

cl(y)dy ,

1/c2 =

∫ π/2α

−π/2α
cos(αy)dy ,

1/c2 = 2/α .

Therefore,

h(x, y) =


α

2
cos(αx) cos(αy) |αx| ≤ π/2 and |αy| ≤ π/2

0 otherwise
.

The transfer function is

H(u, v) = F2D{h(x, y)}

=

∫ ∞
−∞

[∫ ∞
−∞

h(x, y)ej2πuxdx

]
ej2πuydy

=

∫ ∞
−∞

[∫ ∞
−∞

h1D(x)h1D(y)ej2πuxdx

]
ej2πuydy

=

∫ ∞
−∞

[∫ ∞
−∞

h1D(x)ej2πuxdx

]
h1D(y)ej2πuydy

=

∫ ∞
−∞

h1D(x)ej2πuxdx

∫ ∞
−∞

h1D(y)ej2πuydy

= H1D(u)H1D(v) ,

which is also separable with H(u, v) = H1D(u)H1D(v). We have

H1D =

√
α

2
F1D{l(x)}

=

√
α

2
F1D{cos(αx)} ∗ F1D

{
rect

(αx
π

)}
=

√
π

2

[
sinc

(π
α

(u− α/2π)
)

+ sinc
(π
α

(u+ α/2π)
)]

.

Therefore, the transfer function is

H(u, v) =
π

2

[
sinc

(π
α

(u− α/2π)
)

+ sinc
(π
α

(u+ α/2π)
)]

[
sinc

(π
α

(v − α/2π)
)

+ sinc
(π
α

(v + α/2π)
)]
.

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS
Solution 2.23
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(a) The system is separable because h(x, y) = e−(|x|+|y|) = e−|x|e−|y|.

(b) The system is not isotropic since h(x, y) is not a function of r =
√
x2 + y2.

Additional comments: An easy check is to plug in x = 1, y = 1 and x = 0, y =
√

2 into h(x, y). By
noticing that h(1, 1) 6= h(0,

√
2), we can conclude that h(x, y) is not rotationally invariant, and hence not

isotropic.

Isotropy is rotational symmetry around the origin, not just symmetry about a few axes, e.g., the x- and
y-axes. h(x, y) = e−(|x|+|y|) is symmetric about a few lines, but it is not rotationally invariant.

When we studied the properties of Fourier transform, we learned that if a signal is isotropic then its Fourier
transform has a certain symmetry. Note that the symmetry of the Fourier transform is only a necessary, but
not sufficient, condition for the signal to be isotropic.

(c) The response is

g(x, y) = h(x, y) ∗ f(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)f(x− ξ, y − η)dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

e−(|ξ|+|η|)δ(x− ξ)dξ dη

=

∫ ∞
−∞

e−(|x|+|η|)dη

= e−|x|
∫ ∞
−∞

e−|η|dη

= e−|x|
[∫ 0

−∞
eηdη +

∫ ∞
0

e−ηdη

]
= 2e−|x| .

(d) The response is

g(x, y) = h(x, y) ∗ f(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)f(x− ξ, y − η)dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

e−(|ξ|+|η|)δ(x− ξ − y + η)dξ dη

=

∫ ∞
−∞

e−|η|
[∫ ∞
−∞

e−|ξ|δ(x− ξ − y + η)dξ

]
dη

=

∫ ∞
−∞

e−|η|e−|x−y+η|dη .

1. Now assume x − y < 0, then x − y + η < η. The range of integration in the above can be divided into
three parts (see Fig. S2.2):

I. η ∈ (−∞, 0). In this interval, x− y + η < η < 0. |η| = −η, |x− y + η| = −(x− y + η);

II. η ∈ [0,−(x− y)). In this interval, x− y + η < 0 ≤ η. |η| = η, |x− y + η| = −(x− y + η);

III. η ∈ [−(x− y),∞). In this interval, 0 ≤ x− y + η < η. |η| = η, |x− y + η| = x− y + η.
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Figure S2.2 For x − y < 0 the integration interval (−∞,∞) can be partitioned into three segments. See Prob-
lem 2.23(d).

Based on the above analysis, we have:

g(x, y) =

∫ ∞
−∞

e−|η|e−|x−y+η|dη

=

∫ 0

−∞
e−(|η|+|x−y+η|)dη +

∫ −(x−y)

0

e−(|η|+|x−y+η|) +

∫ ∞
−(x−y)

e−(|η|+|x−y+η|)

=

∫ 0

−∞
ex−y+2ηdη +

∫ −(x−y)

0

ex−ydη +

∫ ∞
−(x−y)

e−(x−y+2η)dη

=
1

2
ex−y − (x− y)ex−y +

1

2
ex−y

= [1− (x− y)]ex−y .

2. For x− y ≥ 0, η < x− y + η. The range of integration in the above can be divided into three parts (see
Fig. S2.3):

-( )x-y 0 �

���

����x-y

���

����x-y

���

����x-y

Figure S2.3 For x − y > 0 the integration interval (−∞,∞) can be partitioned into three segments. See Prob-
lem 2.23(d).

I. η ∈ (−∞,−(x− y)). In this interval, η < x− y + η < 0. |η| = −η, |x− y + η| = −(x− y + η);

II. η ∈ [−(x− y), 0). In this interval, η < 0 ≤ x− y + η. |η| = −η, |x− y + η| = x− y + η;

III. η ∈ [0,∞). In this interval, 0 ≤ η < x− y + η. |η| = η, |x− y + η| = x− y + η.

Based on the above analysis, we have:

g(x, y) =

∫ ∞
−∞

e−|η|e−|x−y+η|dη

=

∫ −(x−y)

−∞
e−(|η|+|x−y+η|)dη +

∫ 0

−(x−y)

e−(|η|+|x−y+η|) +

∫ ∞
0

e−(|η|+|x−y+η|)

=

∫ −(x−y)

−∞
ex−y+2ηdη +

∫ 0

−(x−y)

e−(x−y)dη +

∫ ∞
0

e−(x−y+2η)dη

=
1

2
e−(x−y) + (x− y)e−(x−y) +

1

2
e−(x−y)

= [1 + (x− y)]e−(x−y) .
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Based on the above two steps, we have:

g(x, y) = (1 + |x− y|)e−|x−y| .

Solution 2.24

(a) Yes, it is shift invariant because its impulse response depends on x− ξ.

(b) By linearity, the output is

g(x) = e
−(x+1)2

2 + e
−(x)2

2 + e
−(x−1)2

2 .

Solution 2.25

(a) The impulse response of the filter is the inverse Fourier transform of H(u), which can be written as

H(u) = 1− rect

(
u

2U0

)
.

Using the linearity of the Fourier transform and the Fourier transform pairs

F {δ(t)} = 1 ,

F {sinc(t)} = rect(u) ,

we have

h(t) = F−1 {H(u)}
= δ(t)− 2U0 sinc(2U0t) .

(b) The system response to f(t) = c is 0, since f(t) contains only a zero frequency component while h(t)
passes only high frequency components. Formal proof:

f(t) ∗ h(t) = f(t) ∗ [δ(t)− 2U0 sinc(2U0t)]

= f(t)− 2U0f(t) ∗ sinc(2U0t)

= c− c
∫ ∞
−∞

2U0 sinc(2U0t)dt

= c− c
∫ ∞
−∞

sinc(τ)dτ

= 0 .
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The system response to f(t) =

{
1, t ≥ 0
0, t < 0

is

f(t) ∗ h(t) = f(t) ∗ [δ(t)− 2U0 sinc(2U0t)]

= f(t)− 2U0f(t) ∗ sinc(2U0t)

= f(t)−
∫ ∞
−∞

f(x)2U0 sinc(2U0(t− x))dx

= f(t)−
∫ ∞

0

2U0 sinc(2U0(t− x))dx

= f(t) +

∫ −∞
t

2U0 sinc(2U0(y))dy

= f(t)−
∫ t

−∞
2U0 sinc(2U0(y))dy

=


1−

∫ 0

−∞
2U0 sinc(2U0(y))dy +

∫ 0

t

2U0 sinc(2U0(y))dy t < 0

1−
∫ 0

−∞
2U0 sinc(2U0(y))dy −

∫ t

0

2U0 sinc(2U0(y))dy t > 0

=


−1

2
+

∫ 0

t

2U0 sinc(2U0(y))dy t < 0

1− 1

2
−
∫ t

0

2U0 sinc(2U0(y))dy t > 0

=


−1

2
+

∫ 0

t

2U0 sinc(2U0(y))dy t < 0

1

2
−
∫ t

0

2U0 sinc(2U0(y))dy t > 0

.
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Solution 2.26

(a) The rect function is defined as

rect(t) =

{
1, |t| ≤ 1/2
0, otherwise .

So we have

rect

(
t

T

)
=

{
1, |t| ≤ T/2
0, otherwise

and

rect

(
t+ 0.75T

0.5T

)
=

{
1, |t+ 0.75T | ≤ T/4
0, otherwise .

Therefore,

h(t) =


−1/T, −T < t < −T/2
1/T, −T/2 < t < T/2
−1/T, T/2 < t < T
0, otherwise

.

The impulse response is plotted in Fig. S2.4.

Figure S2.4 The impulse response h(t). See Problem 2.26(a).

The absolute integral of h(t) is
∫∞
−∞ |h(t)|2dt = 2/T . So The system is stable when T > 0. The system is

not causal, since h(t) 6= 0 for −T < t < 0.

(b) The response of the system to a constant signal f(t) = c is

g(t) = f(t) ∗ h(t) =

∫ ∞
−∞

f(t− τ)h(τ)dτ = c

∫ ∞
−∞

h(τ)dτ = 0 .

(c) The response of the system to the unit step function is

g(t) = f(t) ∗ h(t) =

∫ ∞
−∞

f(t− τ)h(τ)dτ =

∫ t

−∞
h(τ)dτ

g(t) =


0, t < −T
−t/T − 1, −T < t < −T/2
t/T, −T/2 < t < T/2
−t/T + 1, T/2 < t < T
0, t > T

The response of the system to the unit step signal is plotted in Figure S2.5.
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Figure S2.5 The response of the system to the unit step signal. See Problem 2.26(c).

(d) The Fourier transform of a rect function is a sinc function (see Problem 2.17). By using the properties of the
Fourier transform (scaling, shifting, and linearity), we have

H(u) = F {h(t)}
= −0.5e−j2πu(−0.75T ) sinc(0.5uT ) + sinc(uT )− 0.5e−j2πu(0.75T ) sinc(0.5uT )

= sinc(uT )− cos(1.5πuT ) sinc(0.5uT ) .

(e) The magnitude spectrum of h(t) is plotted in Figure S2.6.
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Figure S2.6 The magnitude spectrum of h(t). See Problem 2.26(e).

(f) From the calculation in part (d) and the plot in part (c), it can be seen that |H(0)| = 0. So the output of the
system does not have a DC component. The system is not a low pass filter. The system is not a high-pass
filter since it also filters out high frequency components. As T → 0, the pass band of the system moves to
higher frequencies, and the system tends toward a high-pass filter.
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Solution 2.27

(a) The inverse Fourier transform of Ĥ(%) is

ĥ(r) = F−1{Ĥ(%)}

=

∫ ∞
−∞

Ĥ(%)ej2πr%d%

=

∫ %0

−%0

|%|ej2πr%d%

=

∫ %0

0

%ej2πr%d%−
∫ 0

−%0

%ej2πr%d%

=

∫ %0

0

%ej2πr%d%+

∫ −%0

0

%ej2πr%d%

=

∫ %0

0

%ej2πr%d%+

∫ %0

0

%e−j2πr%d%

=

∫ %0

0

%
[
ej2πr% + e−j2πr%

]
d%

= 2

∫ %0

0

% cos(2πr%)d%

= 2

[
% sin(2πr%)

2πr

∣∣∣∣%0

%=0

−
∫ %0

0

sin(2πr%)

2πr
d%

]

= 2

[
% sin(2πr%0)

2πr
+

cos(2πr%)

4π2r2

∣∣∣∣%0

%=0

]

=
1

2π2r2
[cos(2πr%0) + 2πr%0 sin(2πr%0)− 1] .

(b) The response of the filter is g(r) = f(r) ∗ ĥ(r), hence G(%) = F (%)Ĥ(%). i) A constant function f(r) = c
has the Fourier transform

F (%) = cδ(%) .

The transfer function of a ramp filter has a value zero at % = 0. So the system response has the Fourier
transform

G(%) = 0 .

Therefore, the responses of a ramp filter to a constant function is g(r) = 0. ii) The Fourier transform of a
sinusoid function f(r) = sin(ωr) is

F (%) =
1

2j

[
δ(%− ω

2π
)− δ(%+

ω

2π
)
]
.

Hence,

G(%) =


ω

4πj

[
δ
(
%− ω

2π

)
− δ

(
%+

ω

2π

)]
%0 = ω

0 otherwise
.
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Therefore, the response of a ramp filter to a sinusoid function is

g(r) =


ω

2π
sin(ωr) %0 = ω

0 otherwise
.

Solution 2.28
Suppose the Fourier transform of f(x, y) is F (u, v). Using the scaling properties, we have that the Fourier

transform of f(ax, by) is 1
|ab|F

(
u
a ,

v
b

)
. The output of the system is

g(x, y) = F
{

1

|ab|
F
(u
a
,
v

b

)}
=

∫ ∞
−∞

∫ ∞
−∞

1

|ab|
F
(u
a
,
v

b

)
e−j2π(ux+vy)du dv

=
1

|ab|

∫ ∞
−∞

∫ ∞
−∞

F (ξ, η)ej2π(aξ(−x)+bη(−y))|ab|dξ dη .

Given the inverse Fourier transform

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)ej2π(ux+vy)du dv

we have ∫ ∞
−∞

∫ ∞
−∞

F (ξ, η)ej2π(aξ(−x)+bη(−y))|ab|dξdη = |ab|f(−ax,−by) .

Therefore, g(x, y) = f(−ax,−by) is a scaled and inverted replica of the input.

Solution 2.29
The Fourier transform of the signal f(x, y) and the noise η(x, y) are:

F (u, v) = F {f(x, y)}
= |ab|F {sinc(ax, by)}

= |ab|
{

1

|ab|
rect

(u
a
,
v

b

)}
= rect

(u
a
,
v

b

)
=

{
1, |x| < |a|/2 and |y| < |b|/2
0, otherwise ,

E(u, v) = F {η(x, y)}

=
1

2
[δ(u−A, v −B) + δ(u+A, v +B)] .

Using the linearity of Fourier transform, the Fourier transform of the measurements g(x, y) is

G(u, v) = rect
(u
a
,
v

b

)
+

1

2
[δ(u−A, v −B) + δ(u+A, v +B)] ,
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which is plotted in Figure S2.7. In order for an ideal low pass filter to recover f(x, y), the cutoff frequencies of the

Figure S2.7 The Fourier transform of g(x, y). See Problem 2.29.

filter must satisfy
|a|/2 < U < A and |b|/2 < V < B .

The Fourier transform of h(x, y) is rect
(
u

2U ,
v

2V

)
; therefore, the impulse response is

h(x, y) = F−1
{

rect
( u

2U
,
v

2V

)}
= 4UV sinc(2Ux) sinc(2V y) .

For given a and b, we need A > |a|/2 and B > |b|/2. Otherwise we cannot find an ideal low pass filter to exactly
recover f(x, y).

Solution 2.30

(a) The continuous Fourier transform of a rect function is a sinc function. Using the scaling property of the
Fourier transform, we have:

G(u) = F1D{g(x)} = 2 sinc(2u).

A sinc function, sinc(x), is shown in Figure 2.4(b).

(b) If the sampling period is ∆x1 = 1/2, we have

g1(m) = g(m/2) =

{
1, −2 ≤ m ≤ 2
0, otherwise .

Its DTFT is

G1(ω) = FDTFT{g1(m)}
= ej2ω + ejω + 1ej0ω + e−jω + 2e−j2ω

= 1 + 2 cos(ω) + 2 cos(2ω) .

The DTFT of g1(m) is shown in Figure S2.8.
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Figure S2.8 The DTFT g1(m). See Problem 2.30(b).

Figure S2.9 The DTFT g2(m). See Problem 2.30(c).

(c) If the sampling period is ∆x2 = 1, we have

g2(m) = g(m) =

{
1, −1 ≤ m ≤ 1
0, otherwise .

Its DTFT is

G2(ω) = FDTFT{g2(m)}
= ejω + 1ej0ω + e−jω

= 1 + 2 cos(ω) .

The DTFT of g2(m) is shown in Figure S2.9.
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(d) The discrete version of signal g(x) can be written as

g1(m) = g(x−m∆x1), m = −∞, · · · ,−1, 0, 1, · · · ,+∞ .

The DTFT of g1(m) is

G1(ω) = FDTFT{g1(m)}

=

+∞∑
m=−∞

g1(m)e−jωm

=

+∞∑
m=−∞

g(m∆x1)e−jωm

=

∫ ∞
−∞

g(x)δs(x; ∆x1)e−jω
x

∆x1 dx .

In the above, δs(x; ∆x1) is the sampling function with the space between impulses equal to ∆x1. Because of
the sampling function, we are able to convert the summation into integration. The last equation in the above
is the continuous Fourier transform of the product of g(x) and δs(x; ∆x1) evaluated as u = ω/(2π∆x1).
Using the product property of the continuous Fourier transform, we have:

G1(ω) = F{g(x)} ∗ F{δs(x; ∆x1)}|u=ω/(2π∆x1)

= G(u) ∗ comb(u∆x1)|u=ω/(2π∆x1) .

The convolution of G(u) and comb(u∆x1) is to replicate G(u) to u = k/∆x1. Since u = ω/(2π∆x1),
G1(ω) is periodic with period Ω = 2π.

(e) The proof is similar to that for the continuous Fourier transform:

FDTFT{x(m) ∗ y(m)} = FDTFT {x(m) ∗ y(m)}

= FDTFT

{ ∞∑
n=−∞

x(m− n)y(n)

}

=

∞∑
m=−∞

e−jωm
∞∑

n=−∞
x(m− n)y(n)

=

∞∑
n=−∞

[ ∞∑
m=−∞

e−jωmx(m− n)

]
y(n)

=

∞∑
n=−∞

e−jωn

[ ∞∑
k=−∞

e−jωkx(k)

]
y(n)

(let k = m− n)

=

∞∑
n=−∞

e−jωnFDTFT{x(m)}y(n)

= FDTFT{x(m)}FDTFT{y(m)} .
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(f) First we evaluate the convolution of g1(m) with g2(m):

g1(m) ∗ g2(m) =


3, −1 ≤ m ≤ 1
2, m = ±2
1, m = ±3
0, otherwise

.

Then by direct computation, we have

FDTFT{g1(m) ∗ g2(m)} = 3 + 3× 2 cos(ω) + 2× 2 cos(2ω) + 2 cos(3ω)

= 3 + 6 cos(ω) + 4 cos(2ω) + 2 cos(3ω) .

On the other hand, we have

FDTFT{g1(m)} = 1 + 2 cos(ω) + 2 cos(2ω)

and
FDTFT{g2(m)} = 1 + 2 cos(ω) .

So, the product of the DTFT’s of g1(m) and g2(m) is

FDTFT{g1(m)}FDTFT{g2(m)} = [1 + 2 cos(ω)][1 + 2 cos(ω) + 2 cos(2ω)]

= 1 + 4 cos(ω) + 2 cos(2ω)

+4 cos2(ω) + 4 cos(ω) cos(2ω)

= 1 + 4 cos(ω) + 2 cos(2ω)

+4
1 + cos(2ω)

2
+ 4

cos(ω) + cos(3ω)

2
= 3 + 6 cos(ω) + 4 cos(2ω) + 2 cos(3ω) .

Therefore,
FDTFT{g1(m) ∗ g2(m)} = FDTFT{g1(m)}FDTFT{g2(m)} .



3
Image Quality

CONTRAST
Solution 3.1

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)f(x− ξ, y − η) dξdη

= AH(0, 0) +
B

2j

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)ej2πu0(x−ξ) dξdη

− B

2j

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)e−j2πu0(x−ξ) dξdη

= AH(0, 0) +
B

2j
ej2πu0x

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)e−j2πu0ξ dξdη

− B

2j
e−j2πu0x

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)ej2πu0ξ dξdη

= AH(0, 0) +
B

2j

[
ej2πu0xH(u0, 0)− e−j2πu0xH(−u0, 0)

]
= AH(0, 0) +B|H(u0, 0)| sin(2πu0x) .

Solution 3.2

(a) The PSF of the medical imaging system is isotropic, so we have:

MTF(u) = |H(u, 0)|
= |F{h}(u, 0)| .

From Table 2.1, we have F{h}(u, v) =

∫ ∞
−∞

∫ ∞
−∞

1
2π e
−(x2+y2)/2e−j2π(ux+vy) dx dy = e−2π2(u2+v2). The

37
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MTF associated with the system is:
MTF(u) = e−2π2u2

.

(b) See Figure S3.1.

Figure S3.1 The modulation transfer function of the system. See Problem 3.2(b).

(c) The spatial frequency of the input signal f(x, y) = 2 + sin(πx) is u = 1/2. At this frequency, the MTF has
a value MTF(0.5) = e−2π20.52

= 0.0072. So the percentage change in modulation caused by this system is
100× (1− 0.0072)% = 99.28%.

Solution 3.3

(a) Given h1(x) we first find the Fourier Transform H1(u) as follows:

H1(u) =

∫ ∞
−∞

e−x
2/5e−j2πuxdx

=

∫ ∞
−∞

e−(x2+j10πux)/5dx

=

∫ ∞
−∞

e−(x2+j10πux−25π2u2)/5e−5π2u2

dx

= e−5π2u2

∫ ∞
−∞

e−(x+j5πu)2/5dx

=
√

5πe−5π2u2

.

Hence, the MTF is given as:

MTF1(u) =
|H1(u)|
H1(0)

= e−5π2u2

.
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(b) The Fourier transform of the second system h2(x) can be computed by analogous methods, and is found to
be

H2(u) =
√

10πe−10π2u2

.

Since the two systems are in serial cascade, the overall system transfer function is

H(u) = H1(u)H2(u)

=
√

5π
√

10πe−5π2u2

e−10π2u2

=
√

50πe−15π2u2

.

Hence, the MTF is MTF(u) = e−15π2u2

.

Solution 3.4
Let h(x, y) denote the PSF of the nonisotropic medical imaging system, and we assume h(x, y) is normalized to

1; i.e., ∫ ∞
−∞

∫ ∞
−∞

h(ξ, η) dξdη = 1 .

Given the input

f(x, y) = A+B sin(2π(ux+ vy))

= A+
B

2

[
ej2π(ux+vy) − e−j2π(ux+vy)

]
,

the output g(x, y) of the system is given by

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)f(x− ξ, y − η) dξdη

= A+
B

2j

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)ej2π[u(x−ξ)+v(y−η)] dξdη

−B
2j

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)e−j2π[u(x−ξ)+v(y−η)] dξdη

= A+
B

2j
ej2π(ux+vy)

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)e−j2π(uξ+vη) dξdη

−B
2j
e−j2π(ux+vy)

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)ej2π(uξ+vη) dξdη

g(x, y) = A+
B

2j

[
ej2π(ux+vy)H(u, v)− e−j2π(ux+vy)H(−u,−v)

]
.

Assuming that h(x, y) is a real function, we have H(u, v) = H∗(−u,−v) = |H(u, v)| exp(jφ), where φ denotes
the phase angle of H(u, v). Hence,

g(x, y) = A+
B

2j
|H(u, v)|

[
ej[2π(ux+vy)+φ] − e−j[2π(ux+vy)+φ]

]
= A+B|H(u, v)| sin(2π(ux+ vy) + φ) .
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The output g(x, y) is again sinusoidal with gmax = A + B|H(u, v)|, and gmin = A − B|H(u, v)|. Therefore, the
modulation of g(x, y) is

mg =
B

A
|H(u, v)| = mf |H(u, v)| .

Thus, the MTF of the system is given by

MTF(u, v) =
mg

mf
= |H(u, v)| .

Solution 3.5

(a) By multiplying the image with a constant α, the intensities of the background and the target become fb =
αIo, and ft = αIt. The local contrast of the processed image is:

C ′ =
ft − fb
fb

=
αIt − αIo

αIo
=
It − Io
Io

= C ,

where C is the local contrast of the original image.

(b) By subtracting a constant Is from the image, the intensities of the background and the target become fb =
Io − Is, and ft = It − Is. The local contrast of the processed image is:

C ′′ =
(It − Is)− (Io − Is)

Io − Is
=
It − Io
Io − Is

= C
Io

Io − Is
> C .

So, by subtracting a constant 0 < Is < Io from the image will improve the local contrast, while scaling the intensity
will not change the local contrast.

RESOLUTION
Solution 3.6

The profile of the impulse response as a function of the polar angle θ can be expressed as:

h(r, θ) = e−π(r2 cos2 θ+(r2 sin2 θ)/4) . (S3.1)

For a fixed θ, the maximal value occurs at r = 0 with h(0, θ) = 1. Solving for r in

h(r, θ) = e−π(r2 cos2 θ+(r2 sin2 θ)/4) = 1/2

yields

r1/2 =

√
ln 2

π
(
cos2 θ + sin2 θ/4

) .
The FWHM is therefore

FWHM = 2 ∗ r1/2 = 2

√
ln 2

π
(
cos2 θ + sin2 θ/4

) .
which is plotted as a function of θ in Figure S3.2.
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Figure S3.2 FWHM as a function of θ for an anisotropic system. See Problem 3.6.

Solution 3.7

(a) We have
l(x1/2)

l(0)
=

1

2
= cos(αx1/2) ⇒ αx1/2 =

π

3
⇒ x1/2 =

π/3

α
=
π

6
cm .

FWHM is twice x1/2, so

FWHM = 2x1/2 =
π

3
cm .

(b) The resolution of the system is the inverse of the FWHM:

1

FWHM
=

3

π
cm−1 .

Solution 3.8

(a) We have h0(x) = e−x
2/2 and ha(x) = e−ax

2/2. We need to find a so that xa at half maximum of ha(x) is
half of x0 at half maximum of h0(x), i.e. xa = x0/2.

e−x
2
0/2 = 1/2

e−ax
2
a/2 = 1/2

}
⇒ e−a(x0/2)2/2 = e−ax

2
0/8 = 1/2 ⇒ ax2

0/8 = x2
0/2 ⇒ a = 4 .

The impulse response for the new system is:

hnew(x) = e−2x2

.
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(b) Yes. The resolution improves. The system with smaller FWHM can distinguish objects that are closer
together.

(c) The system should pass higher frequency signals. In other words, the MTF of the system should have a
broader pass band.

Solution 3.9

(a) The line spread function (LSF) l(x) is defined as the output of the system to a line impulse function f(x, y) =
δ(x):

l(x) =

∫ ∞
−∞

h(x, η) dη

=

∫ ∞
−∞

1

2π
e−(x2+η2)/2 dη

=
1√
2π
e−x

2/2

∫ ∞
−∞

1√
2π
e−η

2/2 dη

=
1√
2π
e−x

2/2 .

(b) FWHM is the full width at half maximum. The maximum value of LSF occurs at x = 0, i.e., l(0) = 1√
2π

.

Solve l(xh) = l(0)/2 (we can ignore the constant 1√
2π

and solve e−x
2
h/2 = 1/2) for xh to get xh =

1.1774 mm. So FWHM = 2xh = 2.3548 mm.

Solution 3.10

(a) We have
max
x

h1(x) = h1(0) = 1 .

Solving

h1(x01) = e−x
2
01
/2 =

1

2

yields
x01

=
√

2 ln 2 .

Thus, the FWHM of subsystem h1(x) is

FWHM1 = 2x01
= 2
√

2 ln 2 ≈ 2.35 .

Similarly,
max
x

h2(x) = h2(0) = 1 .

Solving

h2(x02
) = e−x

2
02
/200 =

1

2
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yields
x02

= 10
√

2 ln 2 .

Thus, the FWHM of subsystem h2(x) is

FWHM2 = 2x02
= 20

√
2 ln 2 ≈ 23.55 .

(b) The PSF of the overall system is given by

h(x) = h1(x) ∗ h2(x)

=

∫ ∞
−∞

e−ξ
2/2e−(x−ξ)2/200 dξ

=

∫ ∞
−∞

e−(x2−2ξx+ξ2+100ξ2)/200 dξ

=

∫ ∞
−∞

e−101(ξ−x/101)2/200e−x
2/202 dξ

= Ce−x
2/202 ,

where C =

∫ ∞
−∞

e−101ξ2/200dξ is a constant. Clearly,

max
x

h(x) = h(0) = C .

Thus, from h(x0) = e−x
2
0/202 = 1

2 , we get the FWHM of the overall system as

FWHMtotal = 2
√

202 ln 2 ≈ 23.67 ≈ FWHM2 .

Alternatively, since the subsystems have PSFs that are in exponential form, one can directly compute the
FWHM of the overall system as

FWHMtotal =

√
FWHM2

1 + FWHM2
2

=

√(
2
√

2 ln 2
)2

+
(

20
√

2 ln 2
)2

=
√

808 ln 2

≈ 23.67 .

(c) From (a) and (b), we can see that the second subsystem mostly affects the FWHM of the overall system.

Solution 3.11
A bar phantom, with bars parallel to y-axis, can be modeled as

b(x, y) =
∑
k

rect

(
x− 2kw

w

)
,

where w is the width and the separation of bars. Since b(x, y) is constant in y for any fixed x, it suffices to consider
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the profile of the system and the phantom for y = 0:

b1D(x) =
∑
k

rect

(
x− 2kw

w

)
,

h1D(x) = rect
( x

∆

)
.

The output of the system is the convolution of b(x, y) and h(x, y):

g(x, y) = b(x, y) ∗ h(x, y)

=

∫∫
b(x− ξ, y − η)h(ξ, η)dξdη

=

∫
rect

( η
∆

)[∫
b1D(x− ξ) rect

(
ξ

∆

)
dξ

]
dη

=

∫
rect

( η
∆

)
dη

∫
b1D(x− ξ) rect

(
ξ

∆

)
dξ

= ∆

∫
b1D(x− ξ)h1D(ξ)dξ

= ∆b1D(x) ∗ h1D(x) .

(a) If w = ∆, the separation of the bars is just wide enough to contain f1D(x). The minimal value of g1D(x) =
b1D(x)∗h1D(x) is 0, which occurs at x = (2k+1)∆ when h1D(ξ) completely overlaps with the separations
of b1D(x − ξ). The maximal value of g1D(x) is ∆, which occurs at x = 2k∆ when h1D(ξ) completely
overlaps with the bars of b1D(x− ξ). The values between extreme values change linearly from 0 to ∆. This
situation is shown in Figure S3.3. Based on the above analysis, we have

Figure S3.3 w = ∆. See Problem 3.11(a).

g1D(x) =

{
∆− (x− 2k∆), 2k∆ ≤ x < (2k + 1)∆
x− (2k − 1)∆, (2k − 1)∆ ≤ x < 2k∆

.
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So,

g(x, y) = b(x, y) ∗ h(x, y)

=

{
∆2 −∆(x− 2k∆), 2k∆ ≤ x < (2k + 1)∆
∆x− (2k − 1)∆2, (2k − 1)∆ ≤ x < 2k∆

.

(b) If w = 0.5∆, no matter what x is, h1D(x − ξ) always overlaps with one complete bar (or parts of two
adjacent bars that add up to 1 complete bar) of b1D(ξ) (see Figure S3.4). So, the output of the system is

Figure S3.4 w = 0.5∆. See Problem 3.11(b).

g(x, y) = b(x, y) ∗ h(x, y) = 0.5∆2 .

(c) Now consider the range 0.5∆ < w < ∆. With a similar figure as Figures S3.3 and S3.4, we can see that
h1D(x − ξ) at most overlaps with one bar of b1D(ξ), and it at least overlaps with part of a bar of width
∆ − w. So the maximal value of g(x, y) is ∆w and the minimal value is ∆(∆ − w). The contrast of the
output image of the bar phantom is therefore

C(w) =
2w −∆

∆
.

RANDOM VARIABLES AND NOISE
Solution 3.12
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Evaluate the expectation of M as follows:

E{M} = E

{
N − µN
σN

}
=

E{N − µN}
σN

(because σN is a constant)

=
E{N} − µN

σN
(because µN is a constant)

=
µN − µN

σN
= 0 .

Evaluate the variance of M as follows:

σ2
M

©1
= E{M2} − (E{M})2

= E{M2}( because E{M} = 0 from above)

= E

{
(N − µN )2

σ2
N

}
=

E{(N − µN )2}
σ2
N

=
σ2
N

σ2
N

= 1 .

In order to get equality©1 , we used the following property of variance:

σ2
M = E{(M − µM )2}

= E{M2 − 2µMM + µ2
M}

= E{M2} − 2µME{M}+ µ2
M

= E{M2} − µ2
M .

Solution 3.13

Let X =
N∑
i=1

Xi. The mean of X is

µ = E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] =

N∑
i=1

µi ,
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where we used the linearity of the expectation operator E. The variance of X is

σ2 = E
[
(X − µ)

2
]

= E

( N∑
i=1

Xi −
N∑
i=1

µi

)2
 = E

( N∑
i=1

(Xi − µi)

)2


=

N∑
i=1

E[(Xi − µi)2] +

N∑
i=1

N∑
j=1,j 6=i

E[(Xi − µi)(Xj − µj)]

Since Xi, i = 1, · · · , N are independent, E[(Xi − µi)(Xj − µj)] = 0 if j 6= i. Therefore,

σ2 =

N∑
i=1

E[(Xi − µi)2] =

N∑
i=1

σ2
i .

Solution 3.14
If Xi, i = 1, · · · , N are not independent, then

µ = E[X] =

N∑
i=1

µi

still holds, since in deriving this equality, we used only the linearity of the expectation operator. The equality
for the variance, however, does not hold because when Xi, i = 1, · · · , N are not independent the statement
E[(Xi − µi)(Xj − µj)] = 0 is not necessarily true.

Solution 3.15
The PDF of the uniform random variable is given by

pX(x) =


1

(b− a)
, for a ≤ x < b

0 , otherwise

.

Thus,

µX =

∫ ∞
−∞

xpX(x) dx

=

∫ b

a

x
1

b− a
dx =

b2 − a2

2(b− a)

=
a+ b

2
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and

σ2
X =

∫ ∞
−∞

(x− µX)2pX(x) dx

=

∫ b

a

(x− a+ b

2
)2 1

b− a
dx

=

∫ b

a

(x− a+ b

2
)2 1

b− a
d(x− a+ b

2
)

=
1

b− a

∫ b−(a+b)/2

a−(a+b)/2

t2 dt

=
1

3(b− a)

[(
b− a

2

)3

−
(
a− b

2

)3
]

=
(b− a)2

12
.

Solution 3.16
For the system with PSF h1(x, y), the output power SNR is given by (3.63)

SNRp1 =

∫ ∞
−∞

∫ ∞
−∞
|h1(x, y) ∗ f(x, y)|2 dx dy∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

.

By applying Parseval’s theorem, we have

SNRp1 =

∫ ∞
−∞

∫ ∞
−∞
|h1(x, y) ∗ f(x, y)|2 dx dy∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

=

∫ ∞
−∞

∫ ∞
−∞
|H1(u, v)F (u, v)|2 du dv∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

=

∫ ∞
−∞

∫ ∞
−∞
|H1(u, v)|2|F (u, v)|2 du dv∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

=

∫ ∞
−∞

∫ ∞
−∞

MTF2
1(u, v)|F (u, v)|2 du dv∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

.
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Similarly, we have the output power SNR for the second system

SNRp2 =

∫ ∞
−∞

∫ ∞
−∞

MTF2
2(u, v)|F (u, v)|2 du dv∫ ∞

−∞

∫ ∞
−∞

NPS(u, v) du dv

.

Since MTF1(u, v) ≤ MTF2(u, v), we have MTF2
1(u, v)|F (u, v)|2 ≤ MTF2

2(u, v)|F (u, v)|2. Therefore∫ ∞
−∞

∫ ∞
−∞

MTF2
1(u, v)|F (u, v)|2 du dv ≤

∫ ∞
−∞

∫ ∞
−∞

MTF2
2(u, v)|F (u, v)|2 du dv .

So SNRp1 ≤ SNRp2, the output power SNR of the second system, the one with larger MTF, is higher. Therefore,
the second system is better in terms of image quality.

Solution 3.17

(a) The noise in the output g(x, y) is n′(x, y)

n′(x, y) = h(x, y) ∗ n(x, y) .

Its mean is

E {n′(x, y)} = E {h(x, y) ∗ n(x, y)}

= E

{∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)n(x− ξ, y − η)dξdη

}
=

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)E {n(x− ξ, y − η)} dξdη

= 0 .



50 CHAPTER 3: IMAGE QUALITY

Its variance is

E {n′(x, y)n′(x, y)} = E
{

[h(x, y) ∗ n(x, y)]2
}

= E

{∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)n(x− ξ, y − η)dξ dη∫ ∞
−∞

∫ ∞
−∞

h(p, q)n(x− p, y − q)dp dq
}

= E

{∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)n(x− ξ, y − η)

h(p, q)n(x− p, y − q)dp dq dξ dη
}

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)h(p, q)

E {n(x− ξ, y − η)n(x− p, y − q)} dp dq dξ dη

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η)h(p, q)

σ2
nδ(p− ξ, q − η)dp dq dξ dη

= σ2
n

∫ ∞
−∞

∫ ∞
−∞

h2(ξ, η)dξ dη

= σ2
nH0 ,

where, H0 =
∫∞
−∞

∫∞
−∞ h2(ξ, η)dξ dη.

(b) The power SNR for the input image is

SNRin =

∫∞
−∞

∫∞
−∞ f2(x, y)dx dy

σ2
n

.

The power SNR for the output image is

SNRout =

∫∞
−∞

∫∞
−∞[h(x, y) ∗ f(x, y)]2dx dy

H0σ2
n

.

(c) Since we assume that the system does not change f(x, y), h(x, y)∗f(x, y) = f(x, y), we must haveH0 < 1
in order for the SNR to be improved by the system.

SAMPLING THEORY
Solution 3.18
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(a) We have

fs(t) = f(t)δs(t; ∆T )

=

∞∑
m=−∞

f(t)δ(t−m∆T )

=

∞∑
m=−∞

f(m∆T )δ(t−m∆T ) .

Since

f(t) =


sin

(
2πt

T

)
, 0 ≤ t ≤ T

0, otherwise

and ∆T = 0.25T , then
fs(t) = δ(t− 0.25T )− δ(t− 0.75T ) .

Also

fd(m) = f(m∆T ) =

 1, m = 1
−1, m = 3
0, otherwise

.

(b) The signal fh(t) is referred to as a zero-order hold. By definition,

fh(t) =

 1, 0.25T ≤ t < 0.5T
−1, 0.75T ≤ t < T
0, otherwise

= rect

(
t− 0.375T

0.25T

)
− rect

(
t− 0.875T

0.25T

)
.

Using the properties of the Fourier transform, we have

Fh(f) = F(fh(t))

=

∫ ∞
−∞

fh(t)e−j2πftdt

= 0.25T sinc(0.25Tf)e−j2π(0.375Tf) − 0.25T sinc(0.25Tf)e−j2π(0.875Tf)

= 0.25T sinc(0.25Tf)
[
e−j2π(0.375Tf) − e−j2π(0.875Tf)

]
.

(c) For ∆T = 0.5T , we have

fs(t) = 0 ,

fd(m) = 0 ,

fh(t) = 0 ,

Fh(f) = 0 .
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Solution 3.19
Since the Nyquist sampling periods for 1-D band-limited signals f(x) and g(x) are ∆f and ∆g , the highest

frequency of f(x) and g(x) are 1
2∆f

and 1
2∆g

. In order to find the Nyquist sampling periods, we need to find the
highest frequency for each of the signals.

(a) A shift in location does not change the frequency components of a signal, so the magnitude spectrum of
f(x− x0) is the same as that of f(x). The Nyquist sampling period of f(x− x0) is ∆f .

(b) The Fourier transform of f(x) + g(x) is F [f(x) + g(x)] = F [f(x)] + F [g(x)]. The highest frequency of
f(x) + g(x) is max( 1

2∆f
, 1

2∆g
), so the Nyquist sampling period of f(x) + g(x) is min(∆f ,∆g).

(c) The Fourier transform of f(x)∗f(x) is F [f(x)]2. The highest frequency of f(x)∗f(x) is 1
2∆f

, The Nyquist
sampling period of f(x) ∗ f(x) is ∆f .

(d) The Fourier transform of f(x)g(x) is F [f(x)] ∗F [g(x)], The highest frequency of f(x)g(x) is 1
2∆f

+ 1
2∆g

,

and the Nyquist sampling period is ∆f∆g

∆f+∆g
.

(e) If f(x) ≥ 0, ‖f(x)‖ = f(x), the Nyquist sampling period of ‖f(x)‖ is ∆f . But in general, the operation
of taking absolute value will reverse part of the original signal f(x), and therefore introduce high frequency
component. In general case, ‖f(x)‖ is no longer bandlimited, even though f(x) is.

Solution 3.20
The sampling frequencies are 1

∆x = 1.5 and 1
∆y = 1.5. From the sampling theorem, in order to avoid aliasing,

the cutoff frequencies of the low-pass filtered signal f ∗ h must satisfy:

U ≤ 1

2∆x
= 0.75, and V ≤ 1

2∆y
= 0.75 .

Thus, the ideal low-pass filter h(x, y) that gives the maximum possible frequency content must have a frequency
response as

H(u, v) =

{
1 , if |u| ≤ 0.75 and |v| ≤ 0.75
0, otherwise .

H(u, v) is one inside a square region and zero outside. The PSF of the required anti-aliasing low-pass filter can be
computed as:

h(x, y) = F−1
2 (H(u, v)) =

∫ ∞
−∞

∫ ∞
−∞

H(u, v)ej2π(ux+vy) dudv

=

∫ 0.75

−0.75

∫ 0.75

−0.75

ej2π(ux+vy) dudv

=

(∫ 0.75

−0.75

ej2πux du

)
·
(∫ 0.75

−0.75

ej2πvy dv

)
=

exp[j2π(0.75)x]− exp[j2π(−0.75)x]

j2πx
· exp[j2π(0.75)y]− exp[j2π(−0.75)y]

j2πy

=
sin(1.5πx)

πx
· sin(1.5πy)

πy
.
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From Table 2.1, we know that
F2(f)(u, v) = e−π(u2+v2) .

Thus, the total spectrum energy of f(x, y) is

Etotal =

∫ ∞
−∞

∫ ∞
−∞
|F2(f)(u, v)|2 du dv

=

∫ ∞
−∞

∫ ∞
−∞

e−2π(u2+v2) du dv

=
(
2πσ2

) 1

2πσ2

∫ ∞
−∞

∫ ∞
−∞

e−(u2+v2)/2σ2

du dv with σ2 =
1

4π

= 2π · 1

4π
= 0.5 .

The spectrum that is kept by the low pass filter has energy of

Epreserve =

∫ 0.75

−0.75

∫ 0.75

−0.75

e−2π(u2+v2) dudv

=

∫ 0.75

−0.75

e−2πu2

du ·
∫ 0.75

−0.75

e−2πv2

dv

=

(
1√
2π

∫ 0.75
√

2π

−0.75
√

2π

e−t
2

dt

)2

=

[
1√
2π

√
π

2
2erf

(
0.75
√

2π
)]2

=
1

2

[
erf
(

0.75
√

2π
)]2

≈ 1

2
[0.992]

2

≈ 0.492 ,

where erf(·) is the error function. Thus, the percentage of the spectrum energy that is preserved is

Epreserve
Etotal

=
0.492

0.5
= 98.4% .

Since the spectrum of f(x, y), which is F2(f)(u, v) = e−π(u2+v2), is non-zero for all (u, v) ∈ (−∞,∞) ×
(−∞,∞), it is impossible to sample f(x, y) free of aliasing without using an anti-aliasing filter.

Solution 3.21

(a) Impulse response: h(x, y) = rect( xw )rect( yw ).
MTF: H(u, v) = w2sinc(wu)sinc(wv) and H(0, 0) = w2.
Thus MTF(u, v) = H(u,v)

H(0,0) = sinc(wu)sinc(wv).
Horizontal FWHM = w.

(b) Since H(u, v) = w2sinc(wu)sinc(wv) and H(0, 0) = w2, considering the main lobe of the sinc function
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and from Nyquist sampling theory, us ≥ 2/w, vs ≥ 2/w. Then ∆X ≤ w/2 and ∆Y ≤ w/2. This means
that aliasing occurs in the sampling scheme using detectors of dimensions w×w and separation of w. Since
∆X = w and ∆Y = w then us = 1/w, vs = 1/w then the object must be limited to −1/2w and 1/2w. i.e
the object must have width Wx = 1/w and Wy = 1/w so that no aliasing occurs.

(c) In order to eliminate the aliasing occurring from using thew×w size detectors as explained before, grouping
of four of the small detectors is done so that the new detector size is 2w × 2w. That means that separation
between detectors of ∆X ≤ w and ∆Y ≤ w will guarantee no aliasing (detectors must overlap). This can
be achieved as in Figure S3.5 by using the fact that we can overlap the resultant detector by sequentially
using the small detectors for overlap.

Figure S3.5 Overlapping of the detectors. See Problem 3.21.

(d) The impulse response function now is h(x, y) = rect( x
2w )rect( y

2w ) and the (horizontal) FWHM = 2w.

(e) Sequential grouping can be done after the image is acquired by the summation of 4 pixel values using the
same scheme described in (c) to get an aliasing free image.

Solution 3.22

(a) System 1 has a PSF that is a rectangle of width 0.5. Its FWHM is therefore 0.5.

System 2’s FWHM can be found by

1

2
= e−πx

2

=⇒ − log 2 = −πx2

=⇒ x2 =
log 2

π

=⇒ x = ±
√

log 2

π
.

Therefore the FWHM is 2
√

log 2
π ∼ 0.9394.

System 1 has the better resolution.
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(b) The MTF is defined by the absolute value of the transfer function divided by its value at zero frequency. The
transfer function for system 1 is therefore given by

rect(x)↔ sinc(u) ,

rect(2x)↔ 1

2
sinc

(u
2

)
,

h1(x) = rect(2x)↔ H1(u) =
1

2
sinc

(u
2

)
.

And the transfer function for system 2 is given by

h2(x) = e−πx
2

↔ e−πu
2

= H2(u)

The MTFs are then

MTF1(u) =
1
2 sinc

(
u
2

)
1
2

= sinc
(u

2

)
,

MTF2(u) = e−πu
2

.

(c) f(x) is a sinusoidal signal at frequency 2 (i.e., 2πfx = 4πx =⇒ f = 2). Since this is a LSI system, with a
real/even transfer function, the only effect is to rescale the amplitude of the sinusoid by the transfer function
at frequency 1

4 . Therefore

g1(x) = H1(2) cos(4πx)

=
1

2
sinc(2/2)

=
1

2
sinc(1)

= 0 ,

and

g2(x) = H2(2) cos(4πx)

= e−π22

cos(4πx)

∼ 3.4873× 10−6 cos(4πx) .

Therefore you should use system 2 to image this signal because system 1 will not respond to it at all.

(d) We must sample at a rate greater than twice the highest frequency in our signal. The highest frequency (the
only frequency) is 4. Therefore we must sample at a rate greater than 4. This corresponds to a period less
than 1/4.

ARTIFACTS, DISTORTION, AND ACCURACY
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Solution 3.23
Both noise and artifacts degrade the image, making correct detection and delineation of anatomical features

difficult. The main technical difference between the two is that artifacts are reproducible scan after scan, whereas
noise will come out differently with each scan. On the other hand, noise is well-modeled using probability and
random variables, so that the broad characteristic of noise—for example, mean and variance—will be the same.
Artifacts are deterministic, and can originate from a variety of sources that, in principle, can be modeled and
removed. For example, some artifacts appear because of instrumentation failure or calibration problems. Artifacts
can also appear because the image reconstruction method fails to adequately model the true physics of the imaging
modality. Finally, artifacts might arise due to inadequacies in data collection—aliasing, for example.

Solution 3.24
Suppose the center of the ball has coordinates (x, 0, 0). When the source is inside the ball or on the ball surface,

i.e. x ≤ r, the shadow of the ball will cover the entire detector plane. In this case, the radius of the image is∞.
When x > r, by simple geometry, we have the radius of the image on the detector plane, R:

R = d tan θ =
r√

x2 − r2
⇒ R =

dr√
x2 − r2

,

where θ is the angle between the x axis and the tangent plane of the ball through the source. The size distortion is
measured by the ratio R/r = d/

√
x2 − r2. When d is fixed, we can increase x to reduce the ratio R/r. And the

largest x we can get is d− r, in which case R/r = d/
√
d2 − 2dr.

Solution 3.25

(a) If we take measurements on rectangular grids in the image plane, the locations of sample points are (k∆x, lδy),
where k, and l are integers, and ∆x, δy are spacing in x and y directions. The corresponding coordinates of
the samples in the physical domain can be obtained by solving the equations above, yielding

ξ(k, l) =
k∆x

1 + (l∆y)2/50
,

η(k, l) = l∆y .

The (k, l)-th sample on the image plane needs to be placed at (ξ(k, l), η(k, l)) on the physical domain to
correct the geometric distortion.

(b) If we take measurements on rectangular grids in the physical domain, the locations of sample points in the
physical domain are (k∆ξ, lδη). On the image plane, we need to sample points at

x(k, l) = k∆ξ +
1

50
k∆ξ(l∆η)2 ,

y(k, l) = l∆η .
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Solution 3.26

(a) The pdf of the test value for normal and diseased subjects are

pN(t) =
1√
2σ2

0

e−(x−µ0)2/2σ2
0 ,

pD(t) =
1√
2σ2

1

e−(x−µ1)2/2σ2
1 .

(b) When the threshold is set to be t0 = (µ0 + µ1)/2, the sensitivity and the specificity are

sensitivity =
a

a+ c

=

∫∞
t0
pD(t)dt∫ t0

−∞ pD(t)dt+
∫∞
t0
pD(t)dt

=
1

2
+ erf

(
µ1 − t0
σ1

)
=

1

2
+ erf

(
µ1 − µ0

2σ1

)
,

specificity =
d

b+ d

=
1

2
+ erf

(
µ1 − µ0

2σ0

)
.

(c) The sensitivity as a function of threshold value is

sensitivity(t) =


1
2 + erf

(
µ1−t
σ1

)
, t ≤ µ1

1
2 − erf

(
t−µ1

σ1

)
, t > µ1

.

(d) The diagnostic accuracy is

DA =
a+ d

a+ b+ c+ d
=



1
2

[
1− erf

(
µ0−t
σ0

)
+ erf

(
µ1−t
σ1

)]
, t < µ0

1
2

[
1 + erf

(
t−µ0

σ0

)
+ erf

(
µ1−t
σ1

)]
, µ0 ≤ t ≤ µ1

1
2

[
1 + erf

(
t−µ0

σ0

)
− erf

(
t−µ1

σ1

)]
, t > µ1

.

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS
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Solution 3.27
We consider image quality to be characterized by contrast and resolution. Since resolution is typically character-

ized using the FWHM, from (3.22) we know that the FWHM of the overall system can be determined approximately
from the FWHMs of the individual subsystems according to

FWHMtotal =

√
FWHM2

1 + FWHM2
2 + · · ·+ FWHM2

K .

It follows that
FWHMtotal ≥ FWHMi, for all 1 ≤ i ≤ K .

Thus the resolution of the overall system is worse than each of the individual subsystems.
Both contrast and resolution can be characterized using the MTF. The MTF of the overall system is given by

MTF(u, v) = MTF1(u, v)MTF2(u, v) · · ·MTFK(u, v) ,

in terms of the individual subsystem MTFs MTFi(u, v) , i = 1, 2, ...,K . For most medical imaging systems,
MTF(u, v) ≤ 1 for all (u, v). Assuming this is true for all the subsystems, that is,

MTFi(u, v) ≤ 1, for i = 1, 2, . . . ,K ,

then it follows that
MTF(u, v) ≤ MTFi(u, v), for i = 1, 2, . . . ,K .

Therefore, from this standpoint as well, the contrast and resolution of the overall system is inferior to each individual
subsystem.
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Solution 3.28

(a) Let λ = (x− x0)/(x1 − x0), and µ = (y − y0)/(y1 − y0). Linear interpolation gives

f(E) = (1− λ)f(A) + λf(B) ,

f(F ) = (1− λ)f(C) + λf(D) .

Then f(P ) can be obtained by linear interpolation of f(E) and f(F ):

f(P ) = (1− µ)f(F ) + µf(E)

= µ(1− λ)f(A) + µλf(B) + (1− µ)(1− λ)f(C) + (1− µ)λf(D) .

(b) Similarly,

f(G) = (1− µ)f(C) + µf(A) ,

f(H) = (1− µ)f(D) + µf(B) ,

and

f(P ) = (1− λ)f(G) + λf(H)

= (1− λ)(1− µ)f(C) + (1− λ)µf(A) + λ(1− µ)f(D) + λµf(B) .

Comparing the coefficients for f(A), f(B), f(C), and f(D), we can see that the results from (a) and (b) are
the same.

(c) The point ξ = 3, η = 3.5 locates at x = 3.735, y = 3.5 on the image plane, which is inside the cell with
four corners x0 = 3, y0 = 3, x0 = 3, y1 = 4, x1 = 4, y0 = 3, and x1 = 4, y1 = 4. By our definition in
Problem 3.25, λ = 0.735, µ = 0.5. The value for ξ = 3, η = 3.5 is

f ′(ξ = 3, η = 3.5) = 0.1325(f(3, 4) + f(3, 3)) + 0.3675(f(4, 4) + f(4, 3)),

where f(m,n) are the measurements on the image plane.

Solution 3.29

(a) For a given threshold value t with µ0 ≤ t ≤ µ1, the sensitivity and the specificity are given as:

sensitivity =
1

2
+ erf

(
µ1 − t
σ1

)
,

specificity =
1

2
+ erf

(
t− µo
σ1

)
.

The ROC curve is shown in Figure S3.6.

(b) The perfect diagnostic test should have both sensitivity and specificity equal to 1. In this case, the ROC
curve is a point (0, 1) on the coordinate system of Figure S3.6.

(c) The point on the ROC curve that is closest to the point (0, 1) is (0.0179, 0.9744). In this case, 97.44%
of the diseased patients will be diagnosed correctly, while 1.79% of the normal patients will be wrongfully
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Figure S3.6 The ROC curve. See Problem 3.29.

diagnosed as diseased. Using the relationship between sensitivity and threshold, the corresponding threshold
value is topt = 5.24, which is different from (µ0 + µ1)/2 because the two groups of subjects have different
variances.



4
Physics of Radiography

PHYSICS OF ATOMS
Solution 4.1

(a) From tables (internet or physics or chemistry textbooks),

mass of carbon-12 = 1.99264663× 10−26 kg .

From the information given in the problem statement, we calculate

mass of (6p + 6n + 6e) = 2.0090759569× 10−26 kg .

The mass defect is therefore

mass defect of carbon atom = 2.0090759569× 10−26 kg− 1.99264663× 10−26 kg
= 1.6429326956× 10−28 kg .

To find this in atomic mass units

mass defect of carbon atom = 1.6429326956× 10−28 kg × 6.0221415× 1026 u/kg
= 0.098939732 u .

(b) We have

E = mc2

= 1.6429326956× 10−28 kg× (2.99792458× 108 m/s)2

= 1.47659426× 10−11 J .

Since 1 eV = 1.60217653× 10−19 J, we also have

E = 9.21617711× 107 eV .

61
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Solution 4.2

(a) The mass-equivalent energy of an electron at rest is

E = m0c
2 .

Since m0 = 9.10938× 10−31 kg is the mass of an electron at rest and c = 2.99792× 108 m/s, we have

E = 9.10938× 10−31 × (2.99792× 108)2 kg−m2/s2

= 8.18697× 10−14 J
= 5.11× 105 eV = 511 keV.

(b) Ignoring relativity the kinetic energy of an electron at speed v = 1
10c is

Ek =
1

2
m0v

2 =
1

200
m0c

2 = 2.558 keV .

So when the effect of relativity is ignored, the potential needed to accelerate an electron to a speed equal to
1/10 the speed of light is 2.558 kV. This is not accurate since at 1/10 the speed of light, the effect of relativity
cannot be ignored.

(c) The kinetic energy gained by an electron after it is accelerated across a 120 kV potential is

KE = mc2 −m0c
2 = 120 keV ,

where m is the relativistic mass of the electron after acceleration, which is given by

m =
m0√

1− (v/c)2
.

Therefore, we can carry out the following steps to find v:

120 keV = mc2 −m0c
2

=
m0√

1− (v/c)2
c2 −m0c

2

= m0c
2

(
1√

1− (v/c)2
− 1

)
120

511
=

1√
1− (v/c)2

− 1

v = 0.5867c.

Thus, at 120 keV the speed of the electrons hitting the anode is over 1/2 that of the speed of light.

Solution 4.3
From Eq. (4.3), we have:

KE = E − E0

= mc2 −m0c
2 ,
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where m, m0 are the mass and the rest mass of the particle, respectively. They are related by the following equation
(Eq. (4.1) in the text):

m =
m0√

1− v2/c2
.

When v � c, v2/c2 is close to 0. By using Taylor’s expansion of function f(x) = 1√
1−x in the neighborhood of

x = 0, we have the following approximation for m:

m ≈ m0

(
1 +

1

2

v2

c2

)
.

Using this approximation yields

KE = mc2 −m0c
2

≈ m0

(
1 +

1

2

v2

c2

)
c2 −m0c

2

≈ 1

2
m0v

2 .

Notice that when v � c, the mass m is approximately equal to the rest mass m0, so we have:

KE ≈ 1

2
mv2 ,

which is the usual expression for kinetic energy of a mass in motion.

IONIZING RADIATION
Solution 4.4

Characteristic radiation is produced by electrons that drop to lower energy states (more inner orbits) after they
have been excited to higher energy states (more outer orbits). The differential in energy lost by the electron is given
off as an x-ray—characteristic radiation. Because electrons exist in discrete energy states that are specific to a given
atom, characteristic radiation can only be emitted at a collection of discrete energy levels within the EM spectrum.
Therefore, the intensity spectrum for characteristic radiation comprises a discrete spectrum—that is, spectral lines.

On the other hand, Bremsstrahlung radiation is caused by interaction of an energetic electron with a nucleus of an
atom. Specifically, the nucleus, having a positive charge, will tend to attract the electron, having a negative charge,
causing the electron to slow down and be deflected from its original path. The electron loses energy as a result,
which is radiated away as an x-ray with energy equal to that lost by the electron. An electron can lose all its energy,
by collision into the atomic nucleus, or any smaller amount, by smaller deflection. Therefore, unlike characteristic
radiation, the energy spectrum of bremsstrahlung radiation is continuous. Since lower energy losses are more likely,
and direct collision with a nucleus is very unlikely, the bremsstrahlung spectrum is zero at the incident energy of
the electrons and grows larger with decreasing energy.

Solution 4.5

(a) Ionization is the ejection of an electron from an atom. In order to eject an electron, the incident radiation
must have sufficient energy to overcome the binding energy of the electron. The smallest binding energy
among atoms having smaller atomic numbers is that of the sole electron in the hydrogen atom. Its binding
energy is 13.6 eV. Therefore, a radiation having energy above 13.6 eV is capable of ionizing the hydrogen
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atom, which makes it ionizing radiation. If the radiation has energy smaller than 13.6 eV it is not capable
of ionizing the hydrogen atom or any other atom (with smaller atomic number), and is therefore considered
non-ionizing. (There are larger atoms having electrons with binding energy less than 13.6 eV, but these are
rare in nature and even rarer in the human body.)

(b) Ionization is the ejection of an electron from an atom, while excitation is the process of raising the energy
of an electron within the electron cloud, without causing ejection. Excitation rearranges the electrons within
the shells, but this is only a temporary effect, since the electrons will seek a lower energy configuration, and
in the process generate characteristic radiation.

Solution 4.6

(a) The frequencies and the wavelengths of EM waves are related by the formula:

λ =
c

ν
,

where c = 3.0× 108 meters/sec is the speed of light. For λ = 4 nanometers, we have

ν =
c

λ

=
3.0× 108 m/s

4× 10−9 m

= 7.5× 1016 Hz .

Similarly, for λ = 400 nanometers we have ν = 7.5× 1014 Hz. So the frequency range for ultraviolet light
is 7.5× 1014 Hz ∼ 7.5× 1016 Hz.

(b) The energy of a photon is given by
E = hν ,

where h = 6.626 × 10−34 Joule-sec is Planck’s constant. So for ultraviolet light with frequency ν =
7.5 × 1014 Hz, the energy is E = hν = 6.626 × 10−34 × 7.5 × 1014 = 4.97 × 10−19 Joule. Since
1 eV = 1.6 × 10−19 Joule, we have that E = 4.97 × 10−19 Joule = 3.1 eV. Similarly, for ultraviolet light
with frequency ν = 7.5 × 1016 Hz, the energy is E = 310 eV. So the photon energy range for ultraviolet
light is 3.1–310 eV.

(c) Radiation with energy greater than or equal to 13.6 eV is considered to be ionizing radiation. It is easy
to calculate that when the frequency of the ultraviolet light is ν = 3.284 × 1015 Hz, the photon energy
is E = hν = 13.6 eV. So ultraviolet light is ionizing radiation when its frequency is greater or equal to
ν0 = 3.284 × 1015 Hz. Ultraviolet light with a frequency lower than that is not ionizing radiation. Or
equivalently, when the wavelength is larger than λ0 = c

ν0
= 91.35 nanometers, ultraviolet light is not

ionizing radiation.
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Solution 4.7

(a) Electron density is:

EC =
NAZ

Wm
,

where

NA = 6.022× 1023 ,

Z = 1 (for hydrogen) ,
Wm = 1 gram/mole (for hydrogen) ,

where the last fact follows from the fact that the atomic weight of a hydrogen atom is approximately 1 u.
Therefore,

ED =
6.022× 1023 × 1

1 gram/mole(of electrons)
≈ 6× 1023 electrons/g = 6× 1026 electrons/kg .

(b) Except for the hydrogen atom, all other low atomic number materials have nearly equal numbers of neutrons
as protons. Therefore, since the weight of these other atoms is doubled, while the number of electrons
remains tied to the number of protons, the electron density is approximately halved from that of hydrogen.

(c) The slight deviation can result from the ratio of neutrons to protons become larger than one with increasing
atomic number and from the differing hydrogen content in various materials.

ATTENUATION OF EM RADIATION
Solution 4.8

(a) Let I0 denote the incident intensity, and Ix the exiting intensity. Denote the thickness of the shielding
material. From the problem specification, we know that

Ix
I0

= 1− 99.5% = 0.005.

Since Ix and I0 are related by
Ix = I0e

−µx ,

we have
e−µx =

Ix
I0

= 0.005 .

Then, we solve for x as follows

x = − 1

µ
ln0.005 =

ln200

µ
≈ 5.3

µ
,

which is the required thickness of the shielding material.

(b) The desired range of an ionizing beam in tissue would be centimeters to tens of centimeters, which is about
the distance that the beam would have to travel through the body. If the range is larger, then the incident
beam would travel through the body with almost no attenuation, and no contrast would be obtained. If the
range is too short, all beam energy would be absorbed by the body, and no image can be formed.
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Solution 4.9
Let df = dN

N = −µdx. By solving df
dN = 1

N , we have f = lnN + c1, and by solving df
dx = −µ, we have

f = −µx+ c2, where c1 and c2 are two arbitrary constants. Therefore, f = lnN + c1 = −µx+ c2. This leads to
lnN = −µx+ c, where c is an arbitrary constant. So we have N = N0e

−µx, with a constant N0.

Solution 4.10
Suppose that the x-ray photons hit the phantom on a unit area is N0. On the screen where it is not blocked by

the bars, the photons detected on a unit area is also N0. The thickness of the bars is 0.4 cm, which is 4 times the
HVL, so the x-ray photons passing through the bars is (1/2)4 = 1/16 of those entering the bars. So the screen that
is blocked by the bars detects N0/16 photons on a unit area. The contrast of the image on the screen is

C =
N0 −N0/16

N0 +N0/16
=

15

17
.

Solution 4.11
From Eq. (4.8), the energy of the scattered photon is given by

hν′ =
hν

1 +
hν

m0c2
(1− cos θ)

,

where m0c
2 = 511 keV. Thus, the larger θ is, the smaller the energy of the scattered photon. Using the facts

1 Angstrom = 10−10meter, h = 6.626 × 10−34joule-sec, and 1 joule = 6.241 × 1015 keV, we can compute the
energy of the source x-ray photon as

hν = hc/λ

=
6.626× 10−34joule-sec× 3× 108m/s× 6.241× 1015 keV/joule

8.9× 10−2 × 10−10m
≈ 139.4 keV .

The energy of a photon that has been scattered by 25◦ is

hν′ =
hν

1 +
hν

m0c2
(1− cos 25◦)

=
139.4 keV

1 +
139.4 keV
511 keV

(1− cos 25◦)

≈ 135.9 keV .

Thus, to eliminate all photons that have scattered more than 25 degrees, the system should only accept photon
energy between 135.9 keV and 139.4 keV.
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Solution 4.12
From Eq. (4.8), the energy of the scattered photon is given by:

hν′ =
hν

1 +
hν

m0c2
(1− cos θ)

,

where m0c
2 = 511 keV.

(a) We use the provided numbers and solve for θ as follows:

99 =
100

1 + (1− cos θ)100/511

=⇒ θ = cos−1

(
1− 511

100× 99

)
= 18.49◦ .

(b) We use the provided numbers to solve for E as follows:

E =
100

1 + (1− cos(25◦))100/511

= 98.20 keV .

The range is therefore 98.20–100 keV.

Solution 4.13

(a) We use the provided linear attenuation coefficient and solve for HVL as follows:

N

N0
= e−µHVL =

1

2
,

=⇒ µHVL = ln 2 ,

=⇒ HVL =
ln 2

µ
= 0.3 cm .

Therefore, the HVL of the NaI crystal at 140 keV is 0.3 cm.

(b) Plugging in the provided numbers yields

E′ =
E

1 + (1− cos θ)E/(511 keV)

=
140 keV

1 + (1− 0)× 140/511

=
140

1 + 0.274

= 109.89 keV .

Therefore, the energy of the scattered photon is 109.89 keV.
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(c) Since both energies are above the K-edge, the attenuation coefficient at the lower energy will be larger.
Therefore, the scattered photons are more likely to be absorbed than the incident photons because the scat-
tered photon has lower energy than the incident photon.

Solution 4.14

(a) We are not told the linear attenuation coefficient of the shielding material. But we know that it blocks 90%
of the incident radiation. So

N = N0e
−µ∆x

N

N0
=

1− 0.9

1
= e−1.5 cmµ .

Therefore,

µ =
− ln 0.1

1.5 cm
.

The definition of HVL is
1

2
= e−HVLµ ,

so
HVLµ = − ln 0.5 .

Plugging in our expression for µ derived above yields

HVL

1.5 cm
=

ln 0.5

ln 0.1
,

which can be solved for HVL as follows

HVL =
ln 0.5

ln 0.1
× 1.5 cm = 0.45 cm .

(b) From Eq. (4.8), the energy of the scattered photon is given by:

hν′ =
hν

1 +
hν

m0c2
(1− cos θ)

,

where m0c
2 = 511 keV. Therefore,

E′ =
102.2

1 + (1− 0)× 102.2/511

=
102.2

1 + 0.2

= 85.17 keV .
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Solution 4.15

(a) Use of Beer’s law yields
I = I0e

−µd = I0e
−0.3×1 = 0.7408I0

(b) If 1/2 of the incident x-rays are blocked then I = I0/2. Then using I = I0e
−µd and solving for d yields

d =
ln 0.5

−µ
= 2.31 cm .

(c) In the broad beam geometry, photons from outside the detector’s line-of-sight might get scattered toward
the detector because of Compton scattering. Those that were directed at the detector and scattered away
will do so in both geometries, so they have no impact on the relative number of detected photons in the two
geometries. Therefore more photons will be detected, in general.

RADIATION DOSIMETRY
Solution 4.16

From Example 4.7, we know that in order to keep the dose equivalent to be under 10 mrems, the lung should
have an exposure less than 10.8 mR. Since the exposure follows an inverse square law for point sources, the smallest
distance the patient should be away from the source should be√

10

10.8× 10−3
× 1 = 30.5 cm .

Solution 4.17
The effective dose is given by (4.38):

Deffective =
∑

organs
Hjwj = 0.002Hbone + 0.002Hmuscle .

From Sections 4.6.1-4.6.5, we have

Deffective = 0.002DboneQ+ 0.002DmuscleQ

= 0.002fboneXQ+ 0.002fmuscleXQ

= 0.002× 0.87
(µ/ρ)bone + (µ/ρ)muscle

(µ/ρ)air
XQ .

For x-ray at 20 keV, Q ≈ 1 (see http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html) and

(µ/ρ)bone = 0.4cm2/g, (µ/ρ)muscle = 0.82cm2/g, (µ/ρ)air = 0.78cm2/g .

So,

Deffective = 0.00174
(µ/ρ)bone + (µ/ρ)muscle

(µ/ρ)air
X = 2.06 mrems .
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Projection Radiography

INSTRUMENTATION
Solution 5.1

The system is shift variant in the z direction because of the divergence of the x-ray. The system is shift invariant
in x and y directions if the object is infinitesimally thin in the z direction. Otherwise the system is shift variant in
general.

The intensity of x-rays incident on the detector at (x, y) is given by

I(x, y) =

∫ Emax

0

S0(E′)E′ exp

{
−
∫ r(x,y)

0

µ(s;E′, x, y)ds

}
dE′ ,

where S0(E) is the spectrum of the incident x-rays. When two objects with linear attenuation coefficients µ1(s;E′, x, y)
and µ2(s;E′, x, y) are presented, the intensity of x-rays on the detector is

Isum(x, y) =

∫ Emax

0

S0(E′)E′ exp

{
−
∫ r(x,y)

0

(µ1(s;E′, x, y) + µ2(s;E′, x, y)) ds

}
dE′ .

In general, Isum(x, y) 6= I1(x, y) + I2(x, y), where Ii(x, y) is the intensity of x-rays on the detector when only the
i-th object is presented. So in general the system is not linear.

When monoenergetic x-rays are used, we can remove the outer integral and have

Isum(x, y) = S0(E0)E0 exp

{
−
∫ r(x,y)

0

(µ1(s;E0, x, y) + µ2(s;E0, x, y)) ds

}
.

Once again, this is not a linear system.

Solution 5.2

(a) The highest energy is determined by the peak x-ray tube voltage. For example, if the peak voltage is p kV,
then the peak x-ray energy will be p keV. The energy spectrum is determined by several factors. First, it will
be zero above p keV. Second, it will be the sum of characteristic x-ray spectrum and a bremsstrahlung x-ray
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spectrum. The characteristic x-ray spectrum depends on the atoms in the anode of the x-ray tube, and their
relative proportions. The bremsstrahlung x-ray spectrum has a typical shape, linearly increasing from zero
at the peak energy as energy decreases.

(b) Low energy photons are undesirable because they are usually completely absorbed by the body. Therefore,
they contribute to dose but not image quality. Measures that can be taken to reduce the number of low
energy photons entering the body include: restriction (which works on all photons regardless of energy) and
filtering. Filtering occurs as x-rays pass through objects between the anode and the body, including the glass
tube and surrounding oil and objects placed between the tube and the patient, typically containing plastics
and metals. If copper is used, then aluminum usually follows because copper produces characteristic x-rays
at 8 keV, which would otherwise form a new low energy x-ray source.

(c) Beam hardening is the increasing of an x-ray beam’s effective energy as it propagates through tissues or
materials. It is caused by the selective attenuation of low-energy x-rays in a polyenergetic x-ray beam. This
occurs because most materials have larger attenuation coefficients at lower x-ray energies.

Solution 5.3
The mass attenuation coefficient of aluminum at 80 kVp is µ/ρ = 0.02015 m2/kg. The density of aluminum is

ρ = 2, 699 kg/m3. Therefore,

µ(Al) = 0.02015 m2/ kg× 2, 699 kg/m3

= 54.38 m−1 .

For the new material at 80 kVp: µ/ρ = 0.08 m2/kg, ρ = 5, 000 kg/m3. So,

µ(new) = 0.08 m2/kg× 5, 000 kg/m3

= 400 m−1 .

Since attenuation is determined by the exponential factor e−µx, the x-ray attenuation is equal if the exponents are
equal. Hence, the following relation must be satisfied:

µ(Al)x(Al) = µ(new)x(new) .

The equivalent thickness of the new material to 2.5 mm of aluminum at 80 kVp is therefore given by

x(new) =
54.38 m−1 × 2.5 mm

400 m−1

= 0.34 mm .

From Example 5.1, we know that the copper thickness equivalent to 2.5 mm of aluminum at 80 kVp is x(Cu) =
0.2 mm. For the filter of same cross section area, the copper filter weighs 0.2×10−3A×8, 960 kg/m3 = 1.792A kg
and the filter made of the new material weighs 0.34× 10−3A× 5, 000 kg/m3 = 1.7A kg. So the filter made of the
new material is lighter.

Solution 5.4

(a) Iodine and barium are used as contrast agents for two reasons. First, they are bio-compatible—that is, they
are both nontoxic and can be directed to a useful target in the body. Second, they exhibit K-edges in the
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diagnostic x-ray range. Because of their K-edges, they are highly attenuating in the x-ray energy range
immediately above the K-edge, far more attenuating than both tissues and bone. This means that they will
provide exquisite contrast between the agent and the body.

(b) Figure S5.1(a) demonstrates the benefits of an airgap in scatter reduction. Scattering path©1 shows a photon
that, when scattered, would hit the standard detector but miss the detector in both cases of a small airgap and
large airgap. Scattering path ©2 shows a photon that, when scattered, would hit both the standard detector
and positions with a small airgap, but would miss the detector positioned with a large airgap. This example
shows that larger airgaps reject scatter better.

Figure S5.1 See Problem 5.4(b).

The problem with airgaps is demonstrated in Figure S5.1(b). In this figure, and extended object is projected
onto the three detector positions, demonstrating edge blurring as the result of depth dependent magnification.
Clearly, the blurring is smallest in the standard detector position and largest for the largest airgap. This shows
that, when using a large airgap for scatter rejection, the objects will appear with more geometric distortion
and/or edge blurring.

Solution 5.5

(a) Compton scattering is random phenomenon. Hence it will cause a random fog throughout the projection
radiograph. It contributes to the loss in SNR and contrast in the resulting image.

(b) The H & D curve has a toe, shoulder and a linear region. When the x-ray exposures are in the toe or shoulder
regions, the optical density of film remains constant; thereby reducing the contrast of the resulting image.
So, it is better for the x-ray exposures to be in the linear portion of the H & D curve.

(c) The low energy x-ray photons are absorbed within the body and don’t contribute to the image, thereby
contributing to the dose. So, it is necessary to filter out the low energy photons coming out of the x-ray
source.

(d) If w and h are the width and height of the lead strips in the grid, then the maximum scatter angle θ is given
by θ = tan−1(w/h) = tan−1(1/8) = 0.1244 radians.
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IMAGE FORMATION
Solution 5.6

Let I0 be the intensity of the incident beam. Let Ic be the intensity of the x-ray beam falling at the center of the
imaging screen, while Ix be the intensity at a point on the screen where then intensity falls off to 95% of that at the
center, thus giving a 5% variation in the image intensity. Thus, we have Ix = 0.95I0. If the linear attenuation of
the slab is µ and its thickness is L, then

Ic = I0e
−µL ,

Ix = I0 cos3 θe−µL/ cos θ .

Assuming θ is small, then µL/ cos θ ≈ µL and

Ix
I0

= cos3 θ ,

cos3 θ = 0.95 ,

cos θ = 0.983 ,

θ = 10.56◦ .

The maximal size is 2d tan θ = 2× 2× 0.19 = 0.746 m.

Solution 5.7

(a) Assume the source-to-object distance is z, and source-to-detector distance is d, then the magnification of the
object is simply

M =
d

z
.

(b) One can reduce the magnification and distortion effects by either moving the object closer to the detector
panel or moving the x-ray source further away from the object and the detector.

Solution 5.8

(a) The weighting aims to compensate for the cos3 θ dependency and the path length factor. As we know, the
image intensity is given by

Id(xd, yd) = I0 cos3 θe−
µL

cos θ ,

where cos θ = 1/
√

1 + r2
d/d

2. We want to transform this relationship back to I ′d = I0 exp(−µL) with a
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weighting function that is independent of µ and L. The derivation can be done as follows:

Id
I0 cos3 θ

= e−µL/ cos θ ,(
Id

I0 cos3 θ

)cos θ

= e−µL ,

I0

(
Id

I0 cos3 θ

)cos θ

= I0e
−µL ,

Id ·
I0
Id

(
Id

I0 cos3 θ

)cos θ

= I0e
−µL .

Thus, the weighting function should be chosen as

w(cos θ) =
I0
Id

(
Id

I0 cos3 θ

)cos θ

,

where cos θ =
1√

1 + r2
d/d

2
. Now substitute the expression for Id into above expression and after some

simplification we find

w(cos θ) =
1

cos3 θ
e−

cos θ−1
cos θ µL .

This correction will hold as long as µ(x, y, z) = µ(z). That is, we assume that we are imaging an object in
which µ only varies in the z direction.

(b) Assume that the image of the object-of-interest lies in the center of the detector, i.e, it has small rd while
the background region has large rd. Assume also that initially It < Ib. Then the image contrast will be
improved after the correction. Under the same assumptions, the SNR is also improved because the image
contrast is improved.

Solution 5.9

(a) Let us consider a 2-D cross section of the system through the y-z plane as shown in Figure S5.2.

The image on the screen will have 3 regions. In the center of the image, between points −a and a, the
appearance of the image is governed by the inverse square law, obliquity, and path length variations. So we
have

Id(x, y) = I0 cos3 θe−µL/ cos θ .

The value of a can be obtained as follows:

a

d
=

w/2

z0 + L/2
,

a =
wd

2z0 + L
.

When the x-rays are passing through the edges of the object, however, there is a loss of object path length,
and corresponding reduction in attenuation. This corresponds to the region between a and b, and between
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Figure S5.2 The cross section of the prism through y-z plane. See Problem 5.9(a).

−b and −a on the screen and the intensity is given as

Id(x, y) = I0 cos3 θe−µa(z′−z0+L/2)/ cos θ .

The value of b and z′ are obtained as follows:

b

d
=

w/2

z0 − L/2
,

b =
wd

2z0 − L
,

z′ =
wd

2x
.

Beyond, b and −b, the rays miss the prism completely. In this case,

Id(x, y) = I0 cos3 θ .

In summary, we have

Id(x, y) =



I0 cos3 θ exp(−µaL/ cos θ)

if 0 ≤ x ≤ wd

2z0 + L
and 0 ≤ y ≤ wd

2z0 + L

I0 cos3 θ exp
[
−µa

(
wd

2 max(|x|,|y|) − z0 + L/2
)
/ cos θ

]
if

wd

2z0 + L
≤ x ≤ wd

2z0 − L
or

wd

2z0 + L
≤ y ≤ wd

2z0 − L

I0 cos3 θ

if x >
wd

2z0 − L
and y >

wd

2z0 − L

. (S5.1)

(b) The plot along y = 0, is shown in Figure S5.3.
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Figure S5.3 The intensity of the image in the detector plane along y = 0. See Problem 5.9(b).

(c) The x-ray intensity on the detector, Id(x, y) was determined in Part (b), and is given by Equation S5.1.
From (5.32), we have

D = Γ log10(X/X0) .

But X is exposure, not intensity. In a given material, however, the ratio of exposures is equal to the ratio of
intensities. So, we also have

D = Γ log10(Id/I0) ,

where it is understood that this applies only in the linear range of the H&D curve. Accordingly, I0 must
be the intensity at which I0∆t yields the “fog” level on the film, where ∆t is the duration of the exposure.
Therefore, the developed film will have optical density

D(x, y) = Γ log10(Id(x, y)/I0) .

Solution 5.10
Most of the derivation is included in the text preceding the equation. Here we provide a review, and fill in the

missing details. Assume the intensity surrounding a given point on the source is IS . Then the inverse square law
predicts the following intensity at the center of the detector

I0 =
IS

4πd2
.

Moving away from the center of the detector a distance r leads to an additional cos2 θ loss of intensity; but while
moving away, the unit area increases as well, leading to an additional cos θ loss of intensity. Put together, we have

Id =
IS cos3 θ

4πd2
.

We now incorporate an infinitesimally thin object tz(x, y), at range z (measured from the source) such that if z = d
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it provides a further multiplicative attenuation of the source intensity, as follows

Id =
IS cos3 θ

4πd2
td(x, y) .

If the object is moved away from the detector, it will cast a wider shadow on the detector. This fact is captured
mathematically using the magnification M = M(z) = d/z, and by scaling the x and y axes as follows

Id =
IS cos3 θ

4πd2
tz(x/M, y/M) .

The last phenomenon that must be included is due to the extended source. Suppose that the source location is not a
point but instead is a small area having a source intensity distribution given by s(x, y). If this source were viewed
through a small hole (which blocks all other transmission) on the z-axis (where x = y = 0) at range z, it would
make an inverted and scaled image of the source intensity, as follows

Id(x, y) =
s(x/m, y/m)

4πd2m2
,

wherem = m(z) = 1−M(z). This represents a response to the impulse transmittivity δz(x, y). If the transmittivity
were not unity, then the response would be attenuated by the transmittivity as follows

Id(x, y) =
s(x/m, y/m)

4πd2m2
tz(0, 0) ,

Now suppose the impulse transmittivity (hole) were moved to position (ξ/M, η/M). Assume that θ is small so
that both the source shape distortion due to obliquity and the difference in source magnification as compared to that
at the detector origin can be ignored. Then the detected image is simply an inverted and scaled source intensity,
shifted to a new position

Id(x, y) =
cos3 θ s((x− ξ)/m, (y − η)/m)

4πd2m2
tz(ξ/M, η/M) ,

This image represents an approximate impulse response to an impulse in transmittivity at (ξ/M, η/M) within the
thin object at range z. The whole response is the superposition of these individual responses:

Id(x, y) =

∫ ∞
−∞

∫ ∞
−∞

cos3 θ s((x− ξ)/m, (y − η)/m)

m2
tz(ξ/M, η/M) dξ dη .

=
cos3 θ

4πd2m2
s(x/m, y/m) ∗ tz(x/M, y/M) ,

which is the desired expression.

IMAGE QUALITY
Solution 5.11

If m photons are incident on a detector and each one has a probability p of getting detected, independently from
other photons, then the probability that n out of those m photons are detected has a binomial distribution and is
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given as:

P{n out of m photons are detected} =

(
m
n

)
pn(1− p)m−n .

Now, the PMF of the number of photons detected D(t) can be computed as follows:

P{D(t) = n} =

∞∑
m=n

P{mphotons are fired by the x-ray tube} · P{n out of m photons are detected}

=

∞∑
m=n

e−µt(µt)m

m!

(
m
n

)
pn(1− p)m−n

=

∞∑
m=n

e−µt(µt)m

m!

m!

n!(m− n)!
pn(1− p)m−n

=

∞∑
m=n

e−µt(µt)m

n!(m− n)!
pn(1− p)m−n .

Substituting k = m− n, we get

P{D(t) = n} =

∞∑
m=n

e−µt(µt)n+k

n!k!
pn(1− p)k

=
e−µt(µt)n

n!
pn
∞∑
k=0

(µt)k

k!
(1− p)k

=
e−µt(µtp)n

n!

∞∑
k=0

[µt(1− p)]k

k!

=
e−µt(µtp)n

n!
eµt(1−p) .

Here we have used the identity et =
∞∑
k=0

tk

k! . By simple rearrangement, we get the PMF of D(t) as

P{D(t) = n} =
e−µpt(µpt)n

n!
.

Thus, D(t) also follows a Poisson distribution.

Solution 5.12

(a) Since the object is located at z = 3d/4, the magnification of the object is

m = −d− z
z

= −d− 3d/4

3d/4

= −1/3 .

The PSF of an extended source when the object is magnified by m is given by h(x/m). Let the PSF for any
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arbitrary magnification m be h1(x) = e−ax
2/m2

. Since h1(x) = e−x
2/5 is the PSF of the extended source,

when m = −1/3 we have

ax2/m2 = x2/5 ,

=⇒ a = m2/5

= (1/3)2/5

= 1/45 .

Hence at any arbitrary range z, the PSF of the extended source is given by

h1(x) = e−
x2

45m2 = e
− x2z2

45(d−z)2 .

(b) Since the PSF is h1(x) = e−x
2/45m2

the Fourier transform is

H1(u) = e−45m2/π2u2√
45m2 .

Hence, the transfer function of the overall blurring is

H(u) =
√

450me−(45m2+10)π2u2

,

and the MTF is given by

MTF(u) = e−(45m2+10)π2u2

.

(c) The inverse Fourier transform of H(u) =
√

450me−(45m2+10)π2u2

is

h(x) = m

√
450(45m2 + 10)

π
e
− x2

45m2+10 .

At x = FWHM/2 we have e−
x2

45m2+10 = 1/2, and therefore

FWHM = 2
√

(45m2 + 10) ln 2 .

Solution 5.13
Scatter fraction, denoted by SF, is defined as

SF =
Is

Is + Ib
,

where Ib denotes the background intensity and Is denotes the intensity contributed by scattering. The new image
contrast C ′ (with scattering) is related to the original scatter-free contrast C by

C ′ =
It + Is − (Ib + Is)

Ib + Is
= C(1− SF) .
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Thus, when SF = 0.35,
C ′0.35 = C(1− 0.35) = 0.08× 0.65 = 0.052 ,

and when SF = 0.8,
C ′0.8 = C(1− 0.8) = 0.08× 0.2 = 0.016 .

Using the relationship SNR = C
√
ηN , we can compute the SNR in both cases as follows (assuming η = 1)

SNR0.35 = C0.35

√
ηN = 0.052

√
1× 1, 000 = 1.64; and

SNR0.8 = C0.8

√
ηN = 0.016

√
1, 000 = 0.51 .

If the detector absorption efficiency η is halved, the SNRs become

SNR′0.35 = 0.052
√

0.5× 1, 000 = 1.16 ;

SNR′0.35 = 0.016
√

0.5× 1, 000 = 0.36 .

This problem shows that SNR can be altered in two ways:

• Increase the scatter fraction, which causes an increase in the noise level;
• Decrease the absorption efficiency, which causes a decrease in the signal amplitude.

Solution 5.14
Suppose an x-ray burst with an average of N̄ photons is incident upon a detector having quantum efficiency QE.

Then the average number of photons stopped by the detector is QE N̄ . The intrinsic SNR’s of the stopped photons
is
√

QE N̄ . By physical law, the signal itself—whatever measured and derived quantity that might be—must have
an SNR lower than the intrinsic SNR. Therefore, we find that the maximum DQE is

DQEmax =

(√
QE N̄√
N̄

)2

= QE ,

which was to be proven.

Solution 5.15
By definition,

DQE =
λ̂

λ
,

where λ̂ is the noise-equivalent quanta,

λ̂ = ŜNR
2

a

=

[
λd√
σ2
N

]2

,
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where λd is the number of photons detected at the detector every second and σ2
N is the variance of the noise. For

this problem, λd = 10, 000 and λ = 10, 000. Now substitute these numbers into the above equations to get

DQE =
λ2
d

σ2
Nλ

=
10, 000

σ2
N

.

So, the variance of the noise as a function of DQE is:

σ2
N =

10, 000

DQE
.

The function is plotted in Figure S5.4.

Figure S5.4 The variance of the detector’s output (σ2
N ) as a function of DQE. See Problem 5.15.

If the variance of the output noise is 2,000, we require DQE = 10,000
2,000 = 5. This answer may look incorrect at

the first glance, since in the text we say that “Clearly, 0 ≤ DQE ≤ 1.” But, let’s think about what it means that the
variance of the output noise is 2,000 in the setting of the problem. Given that we have detected 10,000 photons per
second at the detector, the amplitude signal to noise ratio is, by definition,

ŜNRa =
10, 000√

2, 000
= 223.6 .

But the output signal to noise ratio of an ideal detector is only SNRa =
√

10, 000 = 100 < ŜNRa, which means
this detector does better than the ideal detector. This is impossible in reality, where 0 ≤ DQE ≤ 1.

Solution 5.16
Assume that each point on the detector sees a Poisson random variable with parameter a. Since this input is

white noise, it has a flat noise power spectrum, and is given by the variance of the random variable, a. Thus, the
frequency dependent (power) SNR of the input is

SNRp(in) = a .
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From Table 2.1, we can determine the frequency response of the nonideal detector to be

H(u, v) = e−2π2(u2+v2) .

The frequency response of the detector will selectively filter out frequencies in the power spectrum according to the
square of the transfer function. Therefore, the frequency dependent (power) SNR of the output is

SNRp(out) = a|H(u, v)|2 .

Putting this together, and using (5.40), we find that the DQE is given by

DQE(u, v) =
(SNRout)2

(SNRin)2

=
SNRp(out)
SNRp(in)

=
a|H(u, v)|2

a

= e−4π2(u2+v2) .

Solution 5.17
Figure S5.5 shows the orientation of the plastic hollow cylinder with respect to the source and detector. The

distortion is due to depth dependent magnification. The circular cross section closest to the source gets magnified
more than the other cross section.

Figure S5.5 Off axis cylinder with depth dependent magnification artifact. See Problem 5.17.
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Solution 5.18
From basic trigonometry,

tanφ =
s2 + d tanα2

d
(S5.2)

=
s1 + d tanα1

d
(S5.3)

=
s+ d1 tanα1

d1
(S5.4)

=
s+ d2 tanα2

d2
. (S5.5)

So, we see that s2 + d tanα2 = s1 + d tanα1; therefore,

s2

s1
= 1 + d

tanα1 − tanα2

s1
(S5.6)

= 1 +
tanα1 − tanα2

tanφ− tanα1
(using (S5.3)) (S5.7)

= 1 + d1
tanα1 − tanα2

s
(using (S5.4)) . (S5.8)

Equating (S5.4) and (S5.5), we get tanα1 − tanα2 = s(d1−d2

d1d2
). Substituting this back into (S5.8) yields

m =
s1

s2
=
d2

d1
.

Therefore, when d1 = 40 cm and d2 = 80 cm, m = 2.

Solution 5.19

(a) For |y| ≤ r, we have

I(d, y) = Ipe
−µA·2(r−

√
r2−y2)−µB ·2

√
r2−y2

.

For r ≤ |y| ≤ a, we have

I(d, y) = Ipe
−µA·2r .

(b) From the definition of local contrast, with appropriate substitution we have

C =
It − Ib
Ib

=
Ipe
−µB ·2r − Ipe−µA·2r

Ipe−µA·2r

= e−(µB−µA)·2r − 1 .
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(c) From the expression in (b), we see that C will be positive when

µB < µA .

(d) The boundary of B (a circle) can be represented as

(x− (z + r))2 + y2 = r2 .

The line connecting the source (0, 0) and the point (d, r√
z2+2rz

d) can be represented as

y =
r√

z2 + 2rz
x .

The intersection (x0, y0) of the line and the circle satisfies{
(x0 − (z + r))2 + y2

0 = r2

y0 = r√
z2+2rz

x0
.

Thus,

(x0 − (z + r))2 + (
r√

z2 + 2rz
x0)2 = r2 ,

=⇒ (z + r)2

z2 + 2rz
x2

0 − 2(z + r)x0 + z2 + 2rz = 0 .

Since the quadratic discriminant is

∆ = 4(z + r)2 − 4(z2 + 2rz)
(z + r)2

z2 + 2rz
,

= 0

the line is tangent to the circle. The geometry, where cosθ =
√
z2+2rz
r+z , is shown in Figure S5.6. The intensity

at (d, r√
z2+2rz

d) is

I(d,
r√

z2 + 2rz
d) = I0cos3θe−µA·2r/cosθ

= I0

(√
z2 + 2rz

r + z

)3

e
−µA·2r r+z√

z2+2rz .

(e) The magnification is M(z) = d
z+r . Thus, the point is (z + r, z+rd y0).

APPLICATIONS
Solution 5.20

(a) You would change the peak tube voltage, or kVp. To generate the first film, you would use a tube voltage
= 30 kVp, and to generate the second film, you would use a tube voltage = 100 kVp.
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Figure S5.6 See Problem 5.19.

(b) If you did not change anything else, the second film, taken at 100 kVp, would be more exposed. That is
because the body is more transparent at higher x-ray energies, so more x-rays would get through to expose
the film. The high energy x-rays, when stopped by the intensifying screen, will generate more light output as
well adding to the exposure. It is true that the intensifying screen is also more transparent at higher energies,
but the x-ray spectrum at 100 kVp also contains lower energy x-rays that would contribute to the overall
exposure.

(c) From Chapter 4, we know that Compton scattering events become an increasingly larger fraction of the
events as the x-ray energy increases. Therefore, Compton scattering will be more of “a problem” at 100 keV
versus 30 keV, yielding lower contrast images.

(d) This depends on what kind of filtration is used. Ordinarily, when using a 100 kVp source, filtration would
remove lower energy x-rays. In this case, the higher energy source would be more penetrating and the dose
for the 100 kVp source would be lower. However, if the complete 100 kVp spectrum is allowed to be incident
on the patient, then the 100 kVp source would generate more dose to the patient.

(e) The subtracted optical density is

D(x, y) = D(x, y;Eh)−D(x, y;El)

= Γ log10(Xh/X0)− Γ log10(Xl/X0)

= Γ log10

(
Xh

Xl

)
.

Since Xh > Xl (in general), D(x, y) will be a nonnegative image revealing the relative additional “trans-
parency” of tissues at the higher x-ray energies. (Note: If the two energies were used on “opposite sides” of
the k-edge of a contrast agent, then the difference D(x, y;El) − D(x, y;Eh) would be used instead, since
the attenuation at the higher energy would be larger.)
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Solution 5.21

(a) We have b = 20 cm and

t(E) = e−µd = 10−
(E−150)2

5,000 .

So,

µd =
(E − 150)2

5, 000
ln 10 =⇒ µ(E) =

(E − 150)2

5, 000d
ln 10 .

(b) Intrinsic contrast is C = µt−µb
µt+µb

. The object is shown in Figure S5.7. The two linear attenuation coefficients

Figure S5.7 See Problem 5.21(b).

are

µt = 0.15 cm−1 ,

µb =
(75− 150)2

5, 000d
ln 10 = 0.13 cm−1 .

So, the intrinsic contrast is

C =
0.15− 0.13

0.15 + 0.13
= 0.071 .

(c) Consider two paths, one through the new material, and one that misses it. Then

Ithrough = I0
(
e−µb×15 cm

) (
e−µt×5 cm

)
= I0

(
e−0.13×15 cm

) (
e−0.15×5 cm

)
= 0.067I0 ,

and

Imiss = I0
(
e−µb×20 cm

)
= 0.074I0 .

The contrast is therefore given by

C =
0.067− 0.074

0.067 + 0.74
= −0.05 .
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Solution 5.22

(a) The energy spectrum is shown in Figure S5.8. The spectrum is just the number of photons, viewed as a
continuous plot. 104 and 105 represent integrals (area or mass) of spectrum, which has units photons-keV.

Figure S5.8 See Problem 5.22.

(b) Consider Figure S5.9. The total number of x-ray photons per cm that hit the detector as a function of position

N

N

Figure S5.9 See Problem 5.22.

x is

A1 : N1
d = 0.5× 104e−0.2×2 = 3, 351 ,

N2
d = 0.5× 105e−0.4×2 = 22, 466 .

The total is = 25, 817. For the other parts we have

A2 : N1
h = 0.5× 104e−0.3×1 = 3, 704 ,

N2
h = 0.5× 105e−0.1×1 = 45, 242 .

and

A3 : N1
d = 3, 704e−0.5×1 = 2, 247 ,

N2
d = 45, 242e−0.4×1 = 30, 327 .

Therefore, the total is = 32, 574.

(c) Consider Figure S5.10. The local contrast of the image observed at the detector as a function of position x
assuming that A is the target and B is the background is I = αN . Therefore

C =
It − Ib
Ib

=
Nt −Nb
Nb

=
−6, 757

32, 574
= −0.21 .

(d) The optical density, given by D = Γ log X
X0

, as a function of position x assuming x-ray film is shown in
Figure S5.11.
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Figure S5.10 See Problem 5.22.

Figure S5.11 See Problem 5.22.

Solution 5.23

(a) The object magnification is
M = d/z = 60/40 = 1.5 .

(b) The source magnification is

m = −d− z
z

= 1−M = −0.5 .

(c) The image of the line phantom can be written as:

Id(xd, yd) = K[S0e
−(xd/m)2

δ(yd/m)] ∗
[
δ
(xd
M
− w

2

)
+ δ

(xd
M

+
w

2

)]
= KS0

{[
e−(xd/m)2

δ(yd/m)
]
∗ δ
(xd
M
− w

2

)
+
[
e−(xd/m)2

δ(yd/m)
]
∗ δ
(xd
M

+
w

2

)}
.

To evaluate this, we first compute the convolution[
e−(xd/m)2

δ(yd/m)
]
∗ δ
(xd
M
− w

2

)
as follows:[
e−(xd/m)2

δ(yd/m)
]
∗ δ
(xd
M
− w

2

)
=

∫ ∞
−∞

∫ ∞
−∞

e
−
(
xd−u
m

)2

δ

(
yd − v
m

)
δ
( u
M
− w

2

)
du dv

= M |m|
∫ ∞
−∞

e
−
(
xd−u

′M
m

)2

δ
(
u′ − w

2

)
du′
∫ ∞
−∞

δ
(yd
m
− v′

)
dv′

= M |m|e
−
(
xd−

wM
2

m

)2

.
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Similarly, [
e−(xd/m)2

δ (yd/m)
]
∗ δ
(xd
M
− w

2

)
= M |m|e

−
(
xd+wM

2
m

)2

.

Hence,

Id(xd, yd) = KM |m|S0e
−
(
xd−

wM
2

m

)2

+KM |m|S0e
−
(
xd+wM

2
m

)2

= 0.75KS0

[
e−4(xd−0.75w)2

+ e−4(xd+0.75w)2
]
.

(d) As shown in (c), the image of the line phantom is the sum of two Gaussian-shaped functions that are centered
at wM/2 and −wM/2 respectively, and both have a variance of m2/2. With the same reasoning as in
determining FWHM, we know that in order for the two Gaussians to be distinguishable, the following must
be true

KM |m|S0e
−
(

0−wM
2

m

)2

≤ 1

2
max
xd

KM |m|S0e
−
(
xd−

wM
2

m

)2

=
1

2
KM |m|S0.

Hence, (
wM

2m

)2

≥ ln 2

and

w ≥ 2|m|
√

ln 2

M
.

Thus, the minimum value that w can take is 2|m|
√

ln 2/M ≈ 0.555 cm.

Here is an alternative solution. Notice that the image of the line phantom Id(xd, yd) is simply its image
under an ideal point source (t′(xd, yd) = t(xd/M, xd/M)) blurred (convoluted) by the magnified source
distribution (s′(xd, yd) = s(xd/m, yd/m)) with a suitable scaling (K). The image of the phantom under a
point source would still be two parallel lines with the same orientation, but the spacing is magnified to wM .
The magnified source still has the same form, and can be computed as

s′(xd, yd) = s(xd/m, yd/m) = S0e
−(xd/m)2

δ(yd/m) = |m|S0e
−x2

d/m
2

δ(yd).

By the definition of FWHM, we know that in order for the images of the two lines to be distinguishable, the
spacing wM must be greater than the FWHM of s′(xd, yd), which is computed to be 2|m|

√
ln 2. Hence the

minimum value of w is 2|m|
√

ln 2/M ≈ 0.555 cm.

Solution 5.24

(a) Since the number of photons are uniformly shed upon the side of the whole tissue, it is clear that 1/4(=
0.5/2.0) of the total incident photons will go through the blood vessel, and the remaining 3/4Ni photons
only pass through the soft tissue. Hence the total number of photons can be computed as follows

Nt =
Ni
4
e−µvesselLvessel−µtissue(Ltissue−Lvessel) +

3Ni
4
Nie

−µtissueLtissue

=
Ni
4
e−0.5µvessele−1.5µtissue +

3Ni
4
e−2µtissue .
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At 15 keV,

Nt =
4× 106

4
e−0.5×3.0e−1.5×4.0 +

3× 4× 106

4
e−2×4.0

≈ 1, 006 + 553

= 1, 559.

At 40 keV,

Nt =
4× 106

4
e−0.5×0.2e−1.5×0.4 +

3× 4× 106

4
e−2×0.4

≈ 4.96× 105 + 1.35× 106

= 1.84× 106.

We see from this analysis that, at the lower energy level 15 keV, more photons are absorbed because the
linear attenuation coefficients of the tissue and the blood vessel are both higher at 15 keV than at 40 keV.

(b) Since the incident photons are uniformly shed upon the tissue, the photon density p, that is, the number of
photons per unit area, is a constant and can be computed as p = Ni/A, where A is the area of the side of
the tissue. Notice that the value of p does not affect the local contrast computation, which can be shown as
follows. The background intensity Nb is simply

Nb = pe−µtissueLtissue = pe−2.0µtissue .

The object intensity No is given by

No = pe−µvesselLvessel−µtissue(Ltissue−Lvessel)

= pe−0.5µvessel−1.5µtissue .

Hence, the local contrast can be computed as

C =
No −Nb
Nb

=
pe−0.5µvessel−1.5µtissue − pe−2.0µtissue

pe−2.0µtissue

= e−0.5(µvessel−µtissue) − 1.

At 15 keV, the local contrast is

C15 = e−0.5×(3.0−4.0) − 1 ≈ 0.649 .

At 40 keV, the local contrast is

C40 = e−0.5×(0.2−0.4) − 1 ≈ 0.105 .

Hence, the local contrast is higher (better) at 15 keV.

Note: If you confused local contrast and contrast, the answer you would get differs. At 15 keV, the contrast
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of the blood vessel is

C15 =
No −Nb
No +Nb

=
pe−0.5µvessele−1.5µtissue − pe−2µtissue

pe−0.5µvessele−1.5µtissue − pe−2µtissue

=
e−0.5µvessel − e−0.5µtissue

e−0.5µvessel − e−0.5µtissue

=
1− e−0.5(µtissue−µvessel)

1 + e−0.5(µtissue−µvessel)

=
1− e−0.5×(4.0−3.0)

1 + e−0.5×(4.0−3.0)

≈ 0.2449.

Similarly, at 40 keV the local contrast of the blood vessel is

C40 =
1− e−0.5×(0.4−0.2)

1 + e−0.5×(0.4−0.2)
≈ 0.05 .

In this case, the contrast is still higher at 15 keV.

(c) As we derived in part (b), the local contrast is totally determined by the difference between the linear at-
tenuation coefficients of the soft tissue and the blood vessel. As can be seen from the table, at 15 keV this
difference does not change much after the contrast agent is injected into the blood vessel. Hence, it would be
expected that the local contrast (in its absolute value) does not change much. (The new contrast is actually
0.393 in absolute value.)

At 40 keV, the linear attenuation coefficient of the contrast agent is hugely different from that of the soft
tissue and the original blood vessel. Thus, it can be expected that the local contrast of the blood vessel will
be largely changed (improved) after the contrast agent is injected in. (The new contrast is actually 0.999 in
absolute value.)

(d) The explanation is that the contrast agent material has K-shell electrons whose binding energy is slightly
lower than 40 keV but higher than 15 keV. When x-ray photons with an energy of 40 keV enter the ma-
terial, photoelectric interaction will cause electrons from the K-shell to be ejected and the x-ray photons
will be completely absorbed. This effect, called K-edge absorption, significantly increases the attenuation
coefficient of the contrast agent.

Solution 5.25

(a) The intensity of x-ray beam is given by

I(E) =
NE

A∆t
.

When the x-ray source is an ideal point source, we need to take the magnification into account. The distance
between the source and the object is 2z0, the distance between the source and the detector is 3z0, so the
object magnification is M = d

z = 1.5. The intensity profile on the detector along the x-axis is shown in
Figure S5.12.
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Figure S5.12 Intensity profile along x axis for ideal point x-ray source. See Problem 5.25.

(b) The dark bars on the phantom are treated as target. So, the contrast is

C =
It − Ib
Ib

=
1/4− 1

1
= −3

4
.

(c) The Fourier transform of the PSF of the system is:

H(u, v) = F{h(x, y)}
= F{sinc(αx)}F{sinc(βy)}

=
1

α
rect

(u
α

)
· 1

β
rect

(
v

β

)
.

The system is an ideal low pass filter. The highest frequencies of the output signal in x and y directions are
U0 = α

2 and V0 = β
2 , respectively. According to the sampling theorem, the maximum sampling periods for

the output signals of the system are (∆x)max = 1
2U0

= 1
α , and (∆y)max = 1

2V0
= 1

β .

(d) The imaging equation of a projection radiography system is

Id = I0

∫ Emax

0

S0(E)E exp

[
−
∫ x

0

µ(s, E)ds

]
dE.

Since the x-ray photons are monochromatic, and the target in the phantom is homogeneous, the above equa-
tion can be simplified to

Id
I0

= e−µ(160 keV)x =
1

4
. (S5.9)

Then

−µ(160 keV) = ln

(
640( keV)

160( keV)

)
cm−1 = ln(4) cm−1 .

Solving for x in Equation (S5.9) yields

x =
ln(4)

ln(4)
= 1 cm .
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Solution 5.26

(a) SNR decreases because the differences between the attenuation of different body tissues decreases as the
energy increases.

(b) The dose is reduced due to the compensatory change in the exposure time.

(c) • D
• I
• N
• I
• I

(d) The airgap is most effective in reducing the scatter fraction in case of small field size.

(e) The image noise ultimately limits the contrast sensitivity of an x-ray imaging system.

(f) The average photon energy is mainly determined by the material in the beam path.

Solution 5.27

(a) The best contrast agent to be used in this case is iodine because it has the k-shell energies within the energy of
the source. This increases probability of photoelectric effect and hence higher linear attenuation coefficient
that barium. Therefore the use of iodine will provide better contrast in the image.

(b) (i) Contrast before contrast agent is applied: Let I0 be the intensity at the middle of the detector when
nothing is put between the source and the detector. The intensity at the center of the tumor is

It = I0e
−(µtumor)(2R)e−(µtissue)w

= I0e
−(0.75×0.2)−(1×1) = (0.3166)I0 .

The intensity at the edge of the tumor is

Ib = I0 cos3 θ1e
−(µtissue) w

cos θ1 .

From Figure P5.8 we see that tan θ1 = R/(D−Dtd−w−R). Therefore θ1 = 2.5714× 10−4 radians and
cos θ1 = 1. This implies that we can neglect the cos3 θ1 effect in this problem. Accordingly,

Ib = I0e
−(µtissue)w

= I0e
(−1×1) = (0.3679)I0 ,

and

Contrast before contrast agent is applied =
I0(0.3166− 0.3679)

I0(0.3679)
= −0.1394 .

(ii) Contrast After contrast agent is applied: The intensity at the center of the tumor is

It = I0e
−(µtumor with contrast agent)(2R)e−(µtissue)w

= I0e
−(10×0.2)−(1×1) = (0.0498)I0 .
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The intensity at the edge of the tumor remains the same since the photons do not pass through the tumor.
Accordingly,

Ib = (0.3679)I0 ,

and

Contrast before contrast agent is applied =
I0(0.0498− 0.3679)

I0(0.3679)
= −0.8646 .

(c) Assume that w ≈ 0 in this part. The single Compton scattering event could take place either in the tissue or
in the tumor. But, for the photon to have the lowest possible energy while hitting the detector, it should be
scattered the most—that is, it should have the largest scattering angle.

The dashed line in Figure S5.13 shows the path that yields a Compton scattered photon, which will hit the
detector at the lowest possible energy. Among all the Compton scattered photon trajectories (with single
scattering events) the dashed line path will have the largest scatter angle.

Figure S5.13 θ is the maximum Compton scattering angle. The dotted line shows the trajectory of the photon
having the lowest possible energy reaching the detector. See Problem 5.27.

(d) In this part, we have to find the energy of the Compton scattered photon which follows the dashed line
trajectory in part (c). To find the energy, we should find the scatter angle θ (see Figure S5.13). The angle θ
can be written as sum of θa and θb. From the geometry of the setup,

tan θa =
(l/2) + (h/2)

Dtd
,

tan θb =
(h/2)

D −Dtd
.

Given the above relationships, and using the given values of l, h, D, and Dtd, we find that θa = 1.3790 radi-
ans and θb = 0.0038 radians. Therefore, θ = 0.0038 + 1.3790 = 1.3828 radians is the maximum scattering
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angle. This implies that

Minimum energy of Compton photon =
E

1 + (1− cos(θ)) E
moc2

.

Substituting, E = 35 keV (energy of incoming photon), θ = 1.3828 radians, and moc
2 = 511 keV yields

minimum energy = 33.1536 keV .



6
Computed Tomography

INSTRUMENTATION
Solution 6.1

(a) (hW − hA) = a(hWm − hAm), hence

a = (hW − hA)/(hWm − hAm) ,

b = hW − hWm (hW − hA)/(hWm − hAm)

= hA − hAm(hW − hA)/(hWm − hAm) .

(b) hW = 0; hA = -1,000.

(c) a = 0.9; b = −9.01.

Solution 6.2

(a) The x-ray source detector apparatus rotates at a speed of 4π radians/s, so it takes 0.5 s to rotate a full circle
(2π). During this period of time, the patient table moves 2 cm/ s× 0.5 s = 1 cm. So the pitch of the helix
is 1 cm.

(b) It takes 0.5 s for the imaging devices to rotate a full circle of 2π, and it takes 1 ms to measure a projection.
So the system can measure at most 500 projections over a 2π angle.

(c) The imaging time for a torso is 60/2 = 30 s.

96
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RADON TRANSFORM
Solution 6.3

Proof: An operatorR is linear ifR(af1 + bf2) = aR(f1) + bR(f2). Let

Rf =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − `) dx dy.

Then we have

R(af1 + bf2) =

∫∫
[af1(x, y) + bf2(x, y)]δ(x cos θ + y sin θ − `) dx dy

= a

∫∫
f1(x, y)δ(x cos θ + y sin θ − `) dx dy

+b

∫∫
f2(x, y)δ(x cos θ + y sin θ − `) dx dy

= aRf1 + bRf2 .

which was to be proved.

Solution 6.4
Let u = x− x0, v = y − y0, then du = dx, dv = dy. We get∫∫

f(x− x0, y − y0)δ(x cos θ + y sin θ − `) dx dy

=

∫∫
f(u, v) δ [(u+ x0) cos θ + (v + y0) sin θ − `] du dv

=

∫∫
f(u, v)δ [u cos θ + v sin θ − (`− x0 cos θ − y0 sin θ)] du dv

= g(`− x0 cos θ − y0 sin θ, θ),

where g(`, θ) is the Radon transform of f(x, y).

Solution 6.5
Since f(x, y) is rotationally symmetric, g(`, θ) = g(`, 0). Hence,

g(`, θ) =

∫
L(`,θ)

f(x, y)ds

=

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2

δ(x cos(θ)− `) dxdy

=

∫ ∞
−∞

e−`
2−y2

dy

= e−l
2

∫ ∞
−∞

e−y
2

dy .



98 CHAPTER 6: COMPUTED TOMOGRAPHY

Since
1√

2πσ2

∫ ∞
−∞

e−x
2/σ2

dx = 1 ,

then ∫ ∞
−∞

e−y
2

dy =
√
π .

Thus,
g(`, θ) =

√
πe−`

2

.

Solution 6.6 ∫ ∞
−∞

g(`, θ)d` =

∫ ∞
−∞

h`(`)hθ(θ) d`

= hθ(θ)

∫ ∞
−∞

h`(`) d` .

On the other hand ∫ ∞
−∞

g(`, θ)d` =

∫ ∞
−∞

∫∫
f(x, y)δ(x cos θ + y sin θ − `) dx dy d`

=

∫∫
f(x, y)

∫ ∞
−∞

δ(x cos θ + y sin θ − `) d` dx dy

=

∫∫
f(x, y) dx dy .

Thus,

hθ(θ)

∫ ∞
−∞

h`(`)d` =

∫∫
f(x, y) dx dy .

Since the right-hand side does not depend on θ, the left-hand side cannot depend on θ either. Hence, hθ(θ) must be
a constant.

Solution 6.7

(a) The Fourier transform of f(x, y) is

F (u, v) = 0.5(δ(u− f0, v) + δ(u+ f0, v)) .

In order to use the projection slice theorem, we must change to polar coordinates. We use the following steps
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for a shifted impulse function:

δ(u− f0, v) = δ(u− f0)δ(v)

= δ(% cos θ − f0)δ(% sin θ)

= δ(%[1− θ2

2!
+ · · · ]− f0)δ(%[θ − θ3

3!
+ · · · ])

= δ(%− f0)δ(%θ)

= δ(%− f0)
1

|%|
δ(θ) .

In this derivation we have used a Taylor series approximation for cosine and sine and the scaling property of
the impulse function. This derivation can be repeated for the impulse shifted in the opposite direction; then
we apply the projection slice theorem, yielding

G(%, θ) = F (% cos θ, % sin θ) =
0.5

|%|
[δ(%− f0) + δ(%+ f0)]δ(θ) .

Now we write the expression for filtered backprojection, plug in this Radon transform, and simplify as
follows:

f(x, y) =

∫ π

0

[∫ ∞
−∞
|%|G(%, θ)ej2π%`d%

]
`=x cos θ+y sin θ

dθ

=

∫ π

0

[∫ ∞
−∞
|%|0.5
|%|

[δ(%− f0) + δ(%+ f0)]δ(θ)ej2π%`d%

]
`=x cos θ+y sin θ

dθ

=

∫ π

0

[∫ ∞
−∞

0.5[δ(%− f0) + δ(%+ f0)]δ(θ)ej2π%`d%

]
`=x cos θ+y sin θ

dθ

=

∫ π

0

[∫ ∞
−∞

0.5[δ(%− f0) + δ(%+ f0)]ej2π%`d%

]
`=x cos θ+y sin θ

δ(θ)dθ

=

∫ π

0

[cos(2πf0`)]`=x cos θ+y sin θ δ(θ)dθ

=

∫ π

0

cos(2πf0[x cos θ + y sin θ])δ(θ)dθ

= cos(2πf0x) .

The last step follows from the sifting property of the impulse function. This proves that filtered backprojec-
tion produces the correct result.

(b) i) Using the result from part (a) and the linearity of the Radon transform, it follows that the Radon transform
of f(x, y) = cos 2πax+ cos 2πby is

G(%, θ) =
0.5

|%|
[δ(%− a) + δ(%+ a)]δ(θ) +

0.5

|%|
[δ(%− b) + δ(%+ b)]δ(θ) .

From the linearity of the inverse Radon transform (i.e., filtered backprojection), we can follow the same steps
carried out in part (a) to prove that filtered backprojection will yield f(x, y) = cos 2πax+ cos 2πby.

ii) The function f(x, y) = cos 2π(ax+ by) is a rotated version of cos(2πf0x), which was solved in part (a).
Although the math can be carried out in analogous fashion, it is easier to simply use the form found in (a)
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and carefully apply it here. The frequency of this sinusoid (distance from the origin is f0 =
√
a2 + b2 and

its rotation from the x-axis is θ0 = tan−1(b/a). Therefore, its Radon transform is given by

G(%, θ) =
0.5

|%|
[δ(%− f0) + δ(%+ f0)]δ(θ − θ0) .

In proving that filtered backprojection gives the right answer, it is only necessary to evaluate the last step
differently.

f(x, y) =

∫ π

0

[cos(2πf0`)]`=x cos θ+y sin θ δ(θ − θ0)dθ

=

∫ π

0

cos(2πf0[x cos θ + y sin θ])δ(θ − θ0)dθ

= cos(2πf0[x cos θ0 + yθ0)

= cos(2π[xa+ yb]) .

The last step follows from the facts that a = f0 cos θ0 and b = f0θ0 from the geometry.

Solution 6.8

(a) We write

µ(x, y) = µ0 rect(x) rect(y)

=

{
µ0 if − 1/2 ≤ x ≤ 1/2 and − 1/2 ≤ y ≤ 1/2;
0 otherwise .

(b) F2D{µ}(u, v) = µ0sinc(u)sinc(v).

(c) The relationship is given by the Radon transform, which can be simplified by the form of the observed
function

g(`, θ) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(x cos θ + y sin θ − `)dx dy

=

∫ 1/2

−1/2

∫ 1/2

−1/2

µ0δ(x cos θ + y sin θ − `)dx dy .

(d) Writing the projection slice theorem yields

G(%, θ) = F2D{µ}(% cos θ, % sin θ) = µ0sinc(% cos θ)sinc(% sin θ) .

(e) We want to find g(`, θ) = F−1
1D {G(%, θ)}. By symmetry, we have

G(%, θ +
π

2
) = G(%, θ) ,

G(%, θ + π) = G(%, θ) ,

G(%,
π

2
− θ) = G(%, θ) ,
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since sinc(−x) = sinc(x). Hence, we only need to compute g(`, θ) for 0 ≤ θ ≤ π/4.

First, if θ = 0, G(%, θ) = µ0sinc(%), and hence

g(`, 0◦) = F−1
1D {µ0sinc(%)} = µ0 rect(`) .

If 0 < θ ≤ π/4,

g(`, θ) = F−1
1D {µ0sinc(% cos θ)sinc% sin θ}

=
µ0

| sin θ cos θ|
rect(

`

cos θ
) ∗ rect(

`

sin θ
) .

The convolution of two rect functions, rect(x/a) ∗ rect(x/b) for 0 < b ≤ a, can be easily computed to be:

rect(x/a) ∗ rect(x/b) =


x+ 1

2 (a+ b) − 1
2 (a+ b) ≤ x ≤ − 1

2 (a− b)
b − 1

2 (a− b) ≤ x ≤ 1
2 (a− b)

−x+ 1
2 (a+ b) 1

2 (a− b) ≤ x ≤ 1
2 (a+ b)

0 otherwise

.

Since cos θ > sin θ for θ ∈ (0, π/4], hence

g(`, θ) =
µ0

| sin θ cos θ|
×


`+ 1

2 (cos θ + sin θ) − 1
2 (cos θ + sin θ) ≤ ` ≤ − 1

2 (cos θ − sin θ)
sin θ − 1

2 (cos θ − sin θ) ≤ ` ≤ 1
2 (cos θ − sin θ)

−`+ 1
2 (cos θ + sin θ) 1

2 (cos θ − sin θ) ≤ ` ≤ 1
2 (cos θ + sin θ)

0 otherwise

for 0 < θ ≤ π/4.

(f) θ = 30◦, sin θ = 1/2, cos θ =
√

3/2. From (e), we get

g(`, 30◦) =
4µ0√

3
×


`+ 1+

√
3

4 − 1+
√

3
4 ≤ ` ≤ −

√
3−1
4

1
2 −

√
3−1
4 ≤ ` ≤

√
3−1
4

−`+ 1+
√

3
4

√
3−1
4 ≤ ` ≤ 1+

√
3

4
0 otherwise

for 0 < θ ≤ π/4. Therefore,

b30◦(x, y) = g(x cos 30◦ + y sin 30◦, 30◦) = g(

√
3x+ y

2
, 30◦)

=
4µ0√

3
×


√

3x+y
2 + 1+

√
3

4 − 1+
√

3
4 ≤

√
3x+y
2 ≤ −

√
3−1
4

1
2 −

√
3−1
4 ≤

√
3x+y
2 ≤

√
3−1
4

−
√

3x+y
2 + 1+

√
3

4

√
3−1
4 ≤

√
3x+y
2 ≤ 1+

√
3

4
0 otherwise

The sketch is straightforward; note that g(`, 30◦) is trapezoid shaped, not a triangle.
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Solution 6.9
We start with the convolution integral

g(x, y) =

∫
ξ

∫
η

f(ξ, η)h(x− ξ, y − η) dξ dη .

Now, we perform the following steps:

R{g} =

∫
y

∫
x

∫
η

∫
ξ

f(ξ, η)h(x− ξ, y − η) dξdηδ(x cos θ + y sin θ − `) dxdy

=

∫
η

∫
ξ

f(ξ, η)

∫
y

∫
x

h(x− ξ, y − η)δ(x cos θ + y sin θ − `) dxdy dξdη

=

∫
η

∫
ξ

f(ξ, η)

∫
y′

∫
x′
h(x′, y′)δ(x′ cos θ + y′ sin θ − [`− ξ cos θ − η sin θ]) dx′dy′ dξdη

=

∫
η

∫
ξ

f(ξ, η)R{h}(`− ξ cos θ − η sin θ, θ) dξdη

=

∫
η

∫
ξ

f(ξ, η)

∫
`′
R{h}(`− `′, θ)δ(ξ cos θ + η sin θ − `′) d`′ dξdη

=

∫
`′
R{h}(`− `′, θ)

∫
η

∫
ξ

f(ξ, η)δ(ξ cos θ + η sin θ − `′) dξdη d`′

=

∫
`′
R{h}(`− `′, θ)R{f}(`′, θ)d`′

= R{h} ∗ R{f}

which was to be proved.

CT RECONSTRUCTION
Solution 6.10

(a) We carry out the following steps:

gs(`, θ + π/2) =

∫∫
s(x, y)δ(x cos(θ + π/2) + y sin(θ + π/2)− `) dxdy

=

∫∫
s(x, y)δ(−x sin θ + y cos θ − `) dxdy

=

∫∫
s(−v, u)δ(u cos θ + v sin θ − `) dudv (u = y, v = −x)

=

∫∫
s(u, v)δ(u cos θ + v sin θ − `) dudv

= gs(`, θ) .
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(b) We carry out the following steps:

gs(`,−θ) =

∫∫
s(x, y)δ(x cos(−θ) + y sin(−θ)− `) dxdy

=

∫∫
s(x, y)δ(x cos θ − y sin θ − `) dxdy

=

∫∫
s(u,−v)δ(u cos θ + v sin θ − `) dudv (u = x, v = −y)

=

∫∫
s(u, v)δ(u cos θ + v sin θ − `) dudv

= gs(`, θ) .

(c) Let

g̃s(`, θ) =


gs(`, θ) 0 ≤ θ < π

4

gs

(
`,
π

2
− θ
)

π
4 ≤ θ <

π
2

,

which covers 0 ≤ θ < π/2. Then

gs(`, θ) =


g̃s(`, θ) 0 ≤ θ < π

2

g̃s

(
`, θ − π

2

)
π
2 ≤ θ ≤ π

,

covers 0 ≤ θ < π.

(d) See Figure S6.1.

-1 1 t

2

tà 2
p

2
p

2 2
pgs(t; 0)

gs(t; ù=4)

t

gs(t; ù=8)

Sketch only

Figure S6.1 Sketch of projections at different angles. See Problem 6.10(d).

(e) See Figure S6.2. From simple rotations, we have `1 = − cos θ−sin θ, `2 = − cos θ+sin θ, `3 = cos θ−sin θ,
and `4 = cos θ + sin θ. By similar triangles, we have:
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Figure S6.2 See Problem 6.10(e).

`1 ≤ ` ≤ `2:
`− `1
`2 − `1

=
g(`, θ)(

2
cos θ

)
⇒ g(`, θ) =

2

cos θ

(
`+ cos θ + sin θ

2 sin θ

)

=
`+ cos θ + sin θ

cos θ sin θ

`2 ≤ ` ≤ `3: g(`, θ) =
2

cos θ

`3 ≤ ` ≤ `4:
`4 − `
`4 − `3

=
g(`, θ)(

2
cos θ

)
⇒ g(`, θ) =

cos θ + sin θ − `
cos θ sin θ

.

and g(`, θ) = 0 elsewhere.
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Solution 6.11

(a) Carry out the following steps:

mp(θ) =

∫
g(`, θ)d`

=

∫∫∫
f(x, y)δ(x cos θ + y sin θ − `)dxdydt

=

∫∫
f(x, y)

∫
δ(x cos θ + y sin θ − `)d`dxdy

=

∫∫
f(x, y)dxdy

= m.

(b) Carry out the following steps:

cp(θ) =
1

m

∫
`g(`, θ) d`

=
1

m

∫
`

∫∫
f(x, y)δ(x cos θ + y sin θ − `) dxdyd`

=
1

m

∫∫
f(x, y)

∫
`δ(x cos θ + y sin θ − `) d`dxdy

=
1

m

∫∫
f(x, y) [x cos θ + y sin θ] dxdy

= cos θ
1

m

∫∫
f(x, y)x dxdy

+ sin θ
1

m

∫∫
f(x, y)y dxdy

= cx cos θ + cy sin θ .

(c) We have mp

(
π
4

)
= m = 1 and cx = 0 since f(x, y) is symmetric about the y-axis.

cy =

∫∫
yf(x, y) dxdy

=

∫ 0

−1

∫ 1+x

0

y dxdy +

∫ 1

0

∫ 1−x

0

y dxdy

=

∫ 0

−1

(1 + x)2

2
dx+

∫ 1

0

(1− x)2

2
dx

=
1

3
.

Hence,

cp

(π
4

)
= cy sin θ =

1

3

√
2

2
≈ 0.2357.
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Solution 6.12

(a) The object is shown in Figure S6.3.

Figure S6.3 See Problem 6.12(a).

(b) The number of photons as a function of ` for θ = 0◦ and θ = 90◦ are shown in Figures S6.4 and S6.5.

Figure S6.4 θ = 0◦. See Problem 6.12(b).

Figure S6.5 θ = 90◦. See Problem 6.12(b).

(c) The projections at θ = 0◦ and θ = 90◦ are shown in Figures S6.6 and S6.7.

Figure S6.6 θ = 0◦. See Problem 6.12(c).

(d) The backprojection image at θ = 0◦ is shown in Figure S6.8. In the shaded area, the value is zero, on x = 0,
the value is ln 2, and on x = 2, the value is ln 4.
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Figure S6.7 θ = 90◦. (See Problem 6.12(c).)

Figure S6.8 See Problem 6.12(d).

Solution 6.13

(a) We have

g(`, 60◦) =


√

3µ
(
a
2 + `

)
, −a2 ≤ ` ≤ 0√

3µ
(
a
2 − `

)
, 0 ≤ ` ≤ a

2
0, otherwise

.

The projection g(`, 60◦) is shown in Figure S6.9.

Figure S6.9 See Problem 6.13(a).
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(b) We have

b60◦

(
0,
a

4

)
= g

(
0 cos 60◦ +

a

4
sin 60◦, 60◦

)
= g

(√
3a

8
, 60◦

)

=
√

3µ

(
a

2
−
√

3a

8

)

=

√
3µa

8
(4−

√
3) .

(c) Let function f(t) be defined by scaling a rect function as:

f(t) =

{
K, −p2 ≤ t ≤

p
2

0, otherwise .

The convolution f(t) ∗ f(t) is given by:

f(t) ∗ f(t) =

 K2(p+ t), −p ≤ t ≤ 0
K2(p− t), 0 ≤ t ≤ p
0, otherwise

.

Comparing with g(`, 60◦), we see that it is a convolution of function f(`) with itself, where K2 =
√

3µ,
and p = a/2:

g(`, 60◦) =

√√
3µ rect

(
2`

a

)
∗
√√

3µ rect

(
2`

a

)
.

By the projection slice theorem, we get F (% cos θ, % sin θ) = G(%, θ) = F{g(`, θ)}. Since g(`, 60◦) is
expressed as a convolution of a rect function with itself, we have:

F{g(`, 60◦)} =

[
F{
√√

3µ rect

(
2`

a

)
}
]

=

√
3µa2

4
sinc2

(a%
2

)
.

Therefore,

F (% cos 60◦, % sin 60◦) =

√
3µa2

4
sinc2

(a%
2

)
.

Solution 6.14

(a) Define ∧(x) = rect(x) ∗ rect(x). By the convolution theorem, its Fourier transform is

F{(∧(x)}(%) = sinc2(%) .

We see that W (%) = ∧(%/%0). So by the duality of the Fourier transform and the scaling theorem, we have

F−1{W (%/%0)}(`) = %0sinc2(%0`) .

Multiplying |%| byW (%) = ∧(%/%0) corresponds to convolving c(`) = F−1{|%|}(`) byF−1{W (%/%0)}(`),
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which yields
c̃(`) = c(`) ∗ %0sinc2(%0`) .

(b) We have
lim
%0→∞

%0sinc2%0` = δ(`) ,

Therefore,
lim
%0→∞

c̃(`) = c(`) ,

which means that the exact solution is produced.

Solution 6.15
First expand the integral:∫ 2π

0

∫ ∞
0

%Gθ(%)e+j2π%ω·x d% dθ

=

∫ π

0

∫ ∞
0

%Gθ(%)e+j2π%ω·x d% dθ︸ ︷︷ ︸
I1

+

∫ 2π

π

∫ ∞
0

%Gθ(%)e+j2π%ω·x d% dθ︸ ︷︷ ︸
I2

.

Now make the substitution φ = θ − π in I2:

I2 =

∫ π

0

∫ ∞
0

%Gφ+π(%)e+j2π%[x cos(φ+π)+y sin(φ+π)] d% dφ .

From the geometry, gφ+π(`) = gθ(−`), which implies Gφ+π(%) = Gθ(−%). Therefore,

I2 =

∫ π

0

∫ ∞
0

%Gθ(−%)e+j2π%[−x cos(φ)−y sin(φ)] d% dφ .

Now let q = −% and θ = φ to yield:

I2 = −
∫ π

0

∫ ∞
0

−qGθ(q)e+j2πqω·x dq dθ .

Now let % = q and switch around the limits with the minus sign:

I2 =

∫ π

0

∫ 0

−∞
−%Gθ(%)e+j2π%ω·x d% dθ .

Now, I1 and I2 can be added together to yield the desired result.

Solution 6.16

(a) We have F{δ(x, y)} = 1, so G(%, θ) = 1. Therefore, g(`, θ) = F−1{G(%, θ)} = δ(`).
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(b) We write

fδb =

∫ π

0

δ(x cos θ + y sin θ) dθ

=

∫ π

0

δ(r cosφ cos θ + r sinφ sin θ) dθ

=

∫ π

0

δ(r cos(θ − φ)) dθ

=

∫ π/2

−π/2
δ(r sin(θ − φ)) dθ .

Since sin θ ≈ θ for small θ, sin(θ − φ) ≈ θ − φ for θ ≈ φ. Hence

fδb ≈
∫ π/2

−π/2
δ(r(θ − φ))dθ, for θ ≈ φ .

Since δ(at) = δ(t)
|a| (this is the scaling theorem for the impulse function), we have

fδb =

∫ π/2

−π/2

1

|r|
δ(θ − φ)dθ, for θ ≈ φ

=
1

|r|
if φ ∈

(
−π

2
,
π

2

)
.

If φ 6∈
(
−π2 ,

π
2

)
, it still works by noticing that∫ π/2

−π/2
g(x cos θ + y sin θ, θ) dθ =

∫ 3π/2

π/2

g(x cos(θ − π) + y sin(θ − π), θ − π) dθ

=

∫ 3π/2

π/2

g(−x cos θ − y sin θ, θ − π) dθ

=

∫ 3π/2

π/2

g(x cos θ + y sin θ, θ) dθ ,

since g(`, θ − π) = g(−`, θ).

(c) We have
1

|r|
=

1√
x2 + y2

.

By the Fourier shift theorem, we know that F{δ(x− x0, y − y0)} = e−j2π(ux0+vy0). Hence,

G(%, θ) = e−j2π%(cos θx0+sin θy0)

and
g(`, θ) = F−1{G(%, θ)} = δ(`− x0 cos θ − y0 sin θ) .
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We have

fδb =

∫ π

0

δ(x cos θ + y sin θ − x0 cos θ − y0 sin θ)dθ

=

∫ π

0

δ((x− x0) cos θ + (y − y0) sin θ)dθ .

Let r =
√

(x− x0)2 + (y − y0)2 and φ = tan−1((y − y0)/(x − x0))—i.e., the radius and angle are
measured from (x0, y0). Then

fδb =

∫ π

0

δ(r cos(θ − φ))dθ =
1

|r|
.

Therefore,

fδb =
1√

(x− x0)2 + (y − y0)2
.

(d) Define R as the Radon transform operator and B as the backprojection operator. Both are linear operators
and the composition BR was shown in part (c) to be shift-invariant. Therefore convolution still holds. The
impulse response was found in part (b) to be 1/

√
x2 + y2. Therefore,

fb = f ∗ 1√
x2 + y2

.

(e) In principle, all one needs to do is find the Fourier transform of 1/
√
x2 + y2 and apply its inverse to fb.

Define H(u, v) = F
{

1√
x2+y2

}
, then Fb(u, v) = F (u, v)H(u, v). Hence, F (u, v) = Fb(u, v)/H(u, v)

provided that H(u, v) 6= 0.

The problem is that the Fourier Transform of 1/r is 1/g where g =
√
u2 + v2. Therefore, the inverse filter

is q =
√
u2 + v2, which has infinite gain at infinite frequencies. In other words, it is the worst type of

high-pass filter.

Solution 6.17

(a) bθ(x, y) = g(x cos θ + y sin θ, θ).

(b) We have

` = x cos θ + y sin θ = 1 cos 30◦ + 2 sin 30◦

= 0.866 + 1 = 1.866 .

Therefore,
b30◦(1, 2) = g(1.866, 30◦) ≈ 0.155 .

(c) No, because g(`, 30◦) does not say anything about g(`, 45◦).

(d) Since 210◦ = 30◦ + 180◦, this is the “opposite” projection, and therefore

g(`, 210◦) = g(−`, 30◦) = 0.155 .
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Figure S6.10 See Problem 6.17(e).

(e) See Figure S6.10. The image always has the same value along the lines with a slope of tan 120◦ = −
√

3/3.

(f) No, because to determine b30◦(1, 2), we need ` = 1.866 as shown in (b), which is not an integer. An
approximate value might be to choose ` = 2, which yields 0.135.

(g) We have that ` = 2 × 0.866 + 1 × 0.5 = 2.232, which, again, is not an integer. Thus, the exact value still
cannot be determined. As an approximation, we might choose ` = 2, and the approximate value is again
0.135.

Solution 6.18
The ramp filter is defined as

c(`) =

∫ ∞
−∞
|%|e+j2π%` d% .

Letting
` = D′ sin γ ,

yields

c(D′ sin γ) =

∫ ∞
∞
|%|e+j2π%D′ sin γ d% .

Now let

%′ =
%D′ sin γ

γ
= %a ,

which yields

c(D′ sin γ) =

∫ ∞
∞
|%
′

a
|e+j2π%′γ 1

|a|
d%′ .

Rearranging terms yields

c(D′ sin γ) =
1

a2

∫ ∞
∞
|%′|e+j2π%′γ d%′ ,

which yields the correct result after substituting the following

a =
D′ sin γ

γ
.
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IMAGE QUALITY
Solution 6.19

Beam widthW has the effect of convolving projection with rect
(
`
W

)
. Ignoring sampling (at first) and pretending

that we don’t know about the distortion, CBP yields

f̃(x, y) =

∫ π

0

[
(gθ(`) ∗ rect

(
`

W

)
∗ c(`)

]
`=x cos θ+y sin θ

dθ

or

f̃(x, y) =

∫ π

0

∫ ∞
−∞

[
(gθ(`) ∗ rect

(
`

W

)
∗ c(`)

]
δ(x cos θ + y sin θ − `) d` dθ.

We let gθ(`) = δ(`) = 2-D Radon transform of δ(x, y) to find the impulse response. But δ(`)∗rect
(
`
W

)
∗c(`) =

rect
(
`
W

)
∗ c(`). Therefore, the impulse response in the inverse 2-D Radon transform of gθ(`) = rect

(
`
W

)
, or the

function h(x, y) whose 2-D Radon transform is rect
(
`
W

)
. The function has support on the disk with diameter W

centered at the origin, but is not constant within, as shown in Figure S6.11.

Figure S6.11 See Problem 6.19.

The easiest way to determine h(x, y) is via the projection-slice theorem. Since

F
{

rect

(
`

W

)}
= |W | sinc(W%)

and since all projections are the same, we conclude that

H(%) = |W | sinc(W%) = |W | sin(πW%)

πW%
.

H(%) is the radial part of F(h(x, y)). The inverse transform of H(%) also has circular symmetry and is given by
the inverse Hankel transform:

h(r) = 2π

∫ ∞
0

H(%)J0(2π%r)% d% .

where J0 is the Bessel function of order 0. From the Hankel transform table we find

rect
(
r
2a

)
√
a2 − r2

←→ sin(2πa%)

%
.
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Hence

h(r) =

(
1

πW

) rect
( r

W

)
√(

W

2

)2

− r2

,

which gives

h(x, y) =

(
1

πW

) rect

(√
x2 + y2

W

)
√(

W

2

)2

− (x2 + y2)

.

Finally, we conclude that
f̃(x, y) = f(x, y) ∗ h(x, y) .

Additional comments: h(x, y) is a low-pass filter since its Fourier transform decays as a sinc in %. Hence, f̃(x, y)
is a blurred version of f(x, y) as expected. However, h(x, y) has finite support, so that the blurring is strictly local-
in fact contributions occur only from over the disk of radius W

2 . But h(x, y) approaches asymptotically at r = W
2 ,

which means that the contribution to blurring at exactly the radius W
2 can be very strong and one might expect to

see circular artifacts of radius W
2 near bright point objects. In a real system CBP is done for sampled data. The

convolution gθ(`) ∗ sinc(`/W ) is a continuous convolution, however, followed by discrete sampling. Therefore we
might write

f̃(x, y) =
π

M

M∑
j=1

T

N∑
i=1

[
gθ(s) ∗ sinc

( s
w

)]
s=iT

C(x cos θj + y sin θj − iT ) .

But there is not more we can say analytically about f̂(x, y) versus f(x, y).

Solution 6.20
Assume a rectangular windowed ramp filter is used. The SNR can be computed using Equation (6.74). By

assumption, M = 100, C = 0.05, µ̄ = 0.15 cm−1. Since the detectors are touching each other, k = 1. Since the
cylinder has a diameter of 20 cm, and the detector dimension is 2.0 mm ×2.0 mm, the number of measurements
per projection is

20 cm

2 mm
= 100 .

Hence,

0.1 R/projection× 1

100
projection/measurement = 0.001 R/ measurement .

The worst-case intersection length of a beam with the water is 20 cm. Therefore, the worst-case N̄ is

N̄ = 2.5× 1010 photons

cm2R
× 0.04 cm2 × 0.001

R

measurement
e−0.15×10

≈ 50× 103 photons/measurement.
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Thus,

SNR ≈ 0.4kCµ̄
√
N̄Mw

= 0.4× 1× 0.05× 0.15 cm−1
√

50× 103 × 100× 0.2

≈ 1.3 .

Also, SNR = 20 log10 1.3 ≈ 2.5 dB, since the SNR is not a power ratio as defined.

Solution 6.21

(a) Since SNR-in-dB = 20 log10 SNR, from assumption we get

SNR = 1020 dB/20 = 10 .

Since SNR = Cµ̄
σµ

= 10, we have

σµ =
0.005

10
× 0.15 cm−1 = 1.5× 10−5 cm−1 .

Thus,

σ2
µ = 5.625× 10−9 cm−2 =

2π2

3

%3
0T

MN̄
.

Since %0 = 1/d, and T = d, we have

σ2
µ =

2π2

3

1

d2

1

MN̄
.

Furthermore, since d = 100 cm/D and M = D, then

σ2
µ =

2π2D

3(100)2N̄
.

Thus, the photons-per-projection is

Pp = N̄D =
2π2

3(100)2

D2

σ2
µ

=
2π2

3(100)2

3002

5.625× 10−9

= 1.053× 1010(minimum) .

(b) Photons-per-scan is

Ps = DPp =
2π2

3(100)2

D3

5.625× 10−9
.

Since

2.5× 1010 photons

cm2R
× 0.125 m2 × 10, 000

cm2

m2
× 2R = 6.25× 1013 (maximum) ,

then

D3 =
(6.25× 1013)(5.625× 10−9)(3)(100)2

2π2
≈ 5.34311× 108 .
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Then, D ≈ 811.455, and hence Dmax = 811.

Solution 6.22

(a) SNR is given by

SNR =
Cµ̄

π
%
−3/2
0

√
3

2
(N̄/T )M .

Since T = d, d = L/D, and N̄ = N̄f/D, we have

N̄

T
=
N̄

d
=

N̄

L/D
=
N̄f/D

L/D
=
N̄f
L
.

Let

K =
Cµ̄

π

√
3

2

√
N̄f
L
,

then SNR = K%
−3/2
0

√
M . ButM = 1.5D, then SNR =

√
1.5K%

−3/2
0 D1/2. Since %0 = min{d−1, %max} =

min{D/L, %max}, there can be two cases:

When D ≤ L%max,

SNR =
√

1.5K

(
D

L

)−3/2

D1/2 =
√

1.5KL3/2D−1 ,

or when D ≥ L%max,
SNR =

√
1.5K%−3/2

max D
1/2 .

(b) SNR increases away from L%max in either direction. Thus, either D = 1 or D = J gives the maximum
SNR, but not D ≈ L%max. At D = 1, SNR=

√
1.5KL3/2; at D = J , SNR=

√
1.5K[J/(2L)]−3/2J1/2.

(Note that L%max = LJ/(2L) = J/2, which lies between 1 and J .) So,

R =

√
1.5KL3/2

√
1.5K(2L)3/2J−1

=
J

23/2
=

J

2.8
.

Since J is an image pixel size, R � 1, hence SNR is biggest at D = 1. SNR may be maximum but
resolution is poor. SNR can be improved at large D’s by lowering %max.

Solution 6.23

(a) Every projection looks the same, like that shown in Figure S6.12(a). Accordingly, the sinogram looks like
that shown in Figure S6.12(b).

(b) The observed sinogram can be modeled as

y(`, θ) = g(`, θ)(1− rect(`/h))

= g(`, θ)− g(`, θ) rect(`/h) ,

where h is some small distance, equal to the width of a detector. The inverse Radon transform is a linear
operator, so the reconstruction will be

f̂(x, y) = f(x, y)−R−1{g(`, θ) rect(`/h)} .
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Figure S6.12 See Problem 6.23.

Assume the width of the detector h is small, so that we can approximate the above equation by

f̂(x, y) = f(x, y)−R−1{g(0, θ) rect(`/h)} .

Now, we need to find frect(x, y) = R−1{g(0, θ) rect(`/h)}. All the projections are the same rect function.
The 1-D Fourier transform of any projection is a sinc function, independent of θ:

Grect(%) = F1D{g(0, θ) rect(`/h)}
= hg(0, θ) sinc(h%) .

By using the projection slice theorem, the 2-D Fourier transform of frect(x, y) is circularly symmetric. In
this case, frect(x, y) andGrect(%) is related by Hankel transform (Section 2.7). With some abuse of notation,
we have

frect(r) = H
−1 {Grect(%)}

= H {hg(0, θ) sinc(h%)}

=
g(0, θ)

h

2 rect(r/h)

π
√

1− 4r2/h2
.

So the reconstructed image looks like that shown in Figure S6.13. The disk in the center has a diameter h,
the intensity is −frect(r).

Figure S6.13 See Problem 6.23(b).
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(c) If the scanner always skips measurement at ` = `0, the sinogram can be modeled as:

z(`, θ) = g(`, θ)(1− rect

(
`− `0
h

)
= g(`, θ)− g(`, θ) rect

(
`− `0
h

)
.

Again, assume h is small, we have

z(`, θ) = g(`, θ)− g0 rect

(
`− `0
h

)
,

where g0 = g(`0, θ). Let f ′rect = R−1
{
g0 rect

(
`−`0
h

)}
. So the 1-D Fourier transform of a projection is:

G′rect(%) = F1D

{
g0 rect

(
`− `0
h

)}
= hg0 sinc(h%)e−j2π%`0 .

The inverse Hankel transform of G′rect(%) is:

f ′rect(r) = H−1{G′rect(%)}

= 2π

∫ ∞
0

hg0 sinc(h%)e−j2π%`0J0(2π%r) % d%.

The function f ′rect(r) is a complex function, which means that the sinogram g0 rect
(
`−`0
h

)
is not a valid

radon transform of a real image. The explicit expression of f ′rect(r) is hard to obtain. Numerical simulation
shows that the reconstructed image will have parts of a circle with radius `0 around the image center.

APPLICATIONS AND ADVANCED TOPICS
Solution 6.24

(a) Plugging the form of f(x, y) into the observation equation yields

gi =

∫
Li

n∑
j=1

fjφj(x, y) ds =

n∑
j=1

fj

∫
Li

φj(x, y) ds, i = 1, . . . ,m .

Therefore,

Hij =

∫
Li

φj(x, y) ds .

So, 
g1

g2

...
gm

 =


H11 H12 · · · H1n

H21 H22

...
. . .

Hm1 Hmn



f1

f2

...
fn


(b) Consider each case:
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(1) H−1 exists but v 6= 0: Since y = Hf + v, Hf = y − v and H−1Hf = H−1(y − v) or

f = H−1y −H−1v .

This provides a reconstruction formula but will give a noisy solution.
(2) v = 0 but m < n: We have y = Hf , but there are fewer measurements than unknowns. Therefore,

y = H(f + f̃) for any f̃ in the nullspace of H . Hence, there is no unique solution to the inverse
problem.

(3) v = 0 but m > n: We have y = Hf , but there are more measurements than unknowns. If the system is
truly noise-free, then some of thee extra measurements will be redundant. In this case, if H−1 exists,
there will be a unique solution.

(c) The solution is given by the normal equations:

f̂ = (HTH)−1HT y ,

which is a standard result of least squares minimization from linear algebra.

(d) The image vector has the dimensions 2562×1. The output vector has dimensions (360×512)×1. Therefore,
we will be required to invert a matrix of dimensions 2562 × 2562, which is too large to solve directly.

Solution 6.25

(a) There are four important points `1, `2, `3, and `4, and three ranges (see Fig. S6.14).

Figure S6.14 See Problem 6.25(a).

• `1 ≤ ` ≤ `2: From similar triangles:

gθ(`) =
(`− `1)/(`2 − `1)

cos θ

• `2 ≤ ` ≤ `3:

gθ(`) =
1

cos θ

which is independent of `.
• `3 ≤ ` ≤ `4:

gθ(`)
(`4 − `)/(`4 − `3)

cos θ
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Rotation by θ gives the values:

`1 = −1

2
cos θ − 1

2
sin θ ,

`2 = −1

2
cos θ +

1

2
sin θ ,

`3 =
1

2
cos θ − 1

2
sin θ ,

`4 =
1

2
cos θ − 1

2
sin θ .

(b) A projection is shown in Figure S6.15.

Figure S6.15 See Problem 6.25(b).

(c) This is straightforward ∫ ∞
−∞

gθ(`) d` = 1 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy

(d) We have g0(`) = g90◦(`), as shown in Figure S6.16(a). Therefore,

Figure S6.16 See Problem 6.25(d) and (e).

fb(x, y) =

∫ π

0

gθ(x cos θ + y sin θ) dθ

f̂b(x, y) =
π

V

V∑
i=1

gθi(x cos θi + y sin θi)
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Here V = 2; therefore,

f̂b(x, y) =



π −1/2 ≤ x, y ≤ 1/2
π/2 −1/2 ≤ y ≤ 1/2, x > 1/2
π/2 −1/2 ≤ y ≤ 1/2, x < −1/2
π/2 −1/2 ≤ x ≤ 1/2, y > 1/2
π/2 −1/2 ≤ x ≤ 1/2, y < −1/2
0 otherwise

.

(e) No, it is generally not possible. From the projection slice theorem, we know that, given a finite number of
slices, there is always some “blank” space between the central slices passing radially through the origin. See
Figure S6.16(c).

Solution 6.26
For the given two energy photons, we have

µ1(100 keV) = 1.0e−1 ≈ 0.3679 cm−1 ,

µ1(140 keV) = 1.0e−1.4 ≈ 0.2466 cm−1 ,

µ2(100 keV) = 2.0e−1 ≈ 0.7358 cm−1 ,

µ2(140 keV) = 2.0e−1.4 ≈ 0.4932 cm−1 .

(a) The incident intensity of the x-ray burst is

I0 = 106 × 100 keV + 0.5× 106 × 140 keV = 1.7× 108 photon keV .

(b) For −30 cm ≤ x ≤ −10 cm, the photons are only attenuated by µ1,

Id(x) = 106 × 100e−60×0.3679 + 0.5× 106 × 140e−60×0.2466 ≈ 26.285 photon keV .

For −10 cm ≤ x ≤ 10 cm, the photons are attenuated by 40 cm of µ1 and 20 cm of µ2,

Id(x) = 106× 100e−40×0.3679−20×0.7358 + 0.5× 106× 140e−40×0.2466−20×0.4932 ≈ 0.1894 photon keV .

For 10 cm ≤ x ≤ 10 cm, the photons are also only attenuated by µ1, as previously,

Id(x) ≈ 26.285 photon keV .

(c) The local contrast is

C =
Ido − Idb

Idb

=
0.1894− 26.285

26.285
≈ −0.9928 .

The projection g(x, 0) = −ln Id(x)
I0

. Hence,
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For −30 cm ≤ x ≤ −10 cm,

g(x, 0) = −ln(
26.285

1.7× 108
) ≈ 15.682 .

For −10 cm ≤ x ≤ 10 cm,

g(x, 0) = −ln(
0.1894

1.7× 108
) ≈ 20.615 .

For 10 cm ≤ x ≤ 10 cm,
g(x, 0) ≈ 15.682 .

The local contrast computed by g(x, 0) is

C =
go − gb

gb

=
20.615− 15.682

15.682
≈ 0.3146 .

(d) The detector is of finite length so its response is no longer a delta function; instead, the response is a rect
function. The measured projection I ′d(x) is equal to the previous projection convolved with the detector
response:

I ′d(x) = Id(x) ∗ rect(x) .

Since the detector width is still quite small relative to the object size, the local contrast remains the same in
most parts, but is reduced near x = −10 and x = 10, where the original step transition is blurred to a ramp.

Solution 6.27

(a) θ0 = 0, θ1 = π/4, θ2 = 2π/4 = π/2, and θ3 = 3π/4. See Figure S6.17.

Figure S6.17 See Problem 6.27(a).
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Figure S6.18 See Problem 6.27(b).

(b) See Figure S6.18.

(c) Let g2(`, θj) ∈ G2. Then F{g2(`, θj)} = G2(%, θj) = F1(% cos θj , % sin θj) +F2(% cos θj , % sin θj) (by the
projection slice theorem and by the linearity of the Radon transform. Hence, the fact that G2 = G1 means
that F2(% cos θj , % sin θj) = 0 for θj , j = 0, . . . ,M − 1. Then

F2(u, v) = F2{cos 2πfxx cos 2πfyy}
= F1{cos 2πfxx}F1{cos 2πfyy}

=
1

4
[δ(u− fx) + δ(u+ fx)][δ(v − fy) + δ(v + fy)]

=
1

4
[δ(u− fx, v − fy) + δ(u− fx, v + fy) + δ(u+ fx, v − fy) + δ(u+ fx, v + fy)] .

But (fx, fy) is a unit vector pointing in the θ = 3π/16 direction. A picture of this 2-D Fourier transform
is shown in Figure S6.19. Since F2(u, v) does not intersect the lines over which we sample the Fourier

Figure S6.19 See Problem 6.27(c).

transform of f1, the value of D4f2 will be zero. Hence, G2 = G1.

(d) 3π/16 = πi/16 for i = 3 and 3 does not go into 16 without a remainder. Hence M = 16.

(e) No, at least in theory. Sampling the plane with a finite number of lines will always permit us to place delta
functions in the appropriate spots to define ghost functions. In practice, functions of infinite extent are not
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available. Therefore, F2 will always have some spread and a line will hit it. Because of this, “nearly” ghost
functions will have to be high frequency functions in order to “fit between the sampling lines.”

(f) Yes. f2 will still be a ghost function. Low-pass filtering a projection does not change the geometry over
which F is sampled. It would just filter along the sampled lines.

Solution 6.28

(a) We have

g(`, 0◦) =


µ1 × 20 = 2 −30 cm ≤ ` ≤ −10 cm
µ2 × 20 = 4 −10 cm ≤ ` ≤ 10 cm
µ3 × 20 = 6 10 cm ≤ ` ≤ 30 cm
0 otherwise

.

which is shown in Figure S6.20.

Figure S6.20 See Problem 6.28(a).

(b) We have
g(`, 90◦) = µ1 × 20 + µ2 × 20 + µ3 × 20 = 12, −10 cm ≤ ` ≤ 10 cm ,

which is shown in Figure S6.21.

Figure S6.21 See Problem 6.28(b).

(c) We have

g(`, 45◦) =


1
5`+ 4

√
2 −20

√
2 cm ≤ ` ≤ 10

√
2 cm

− 3
5`+ 12

√
2 10

√
2 cm ≤ ` ≤ 20

√
2 cm

0 otherwise
,

which is shown in Figure S6.22.

(d) We have
b45◦(x, y) = g(x cos 45◦ + y sin 45◦, 45◦)
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Figure S6.22 See Problem 6.28(c).

b45◦(1, 1) = g(1 cos 45◦ + 1 sin 45◦, 45◦)

= g(
√

2, 45◦)

=
1

5

√
2 + 4

√
2

=
21

5

√
2

≈ 5.94 ,

which is shown in Figure S6.23.

Figure S6.23 See Problem 6.28(d).

(e) The FOV should cover the object in any angle. Thus the smallest possible circular FOV will have the
diameter equal to the diagonal of the object:

d =
√

202 + 602 =
√

4, 000 = 63.2 cm

r =
d

2
= 31.6 cm .

The geometry is shown in Figure S6.24. We can solve for x as follows

m =
√

(1.5− r)2 − r2 =
√

(1.5− 0.316)2 − 0.3162 = 1.14 m
m

1.5
=
r

x

=⇒ x =
r × 1.5

m
= 0.415 m

The length of detector array should be 2x = 0.83 m.
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Figure S6.24 See Problem 6.28(e).

(f) From the “rule of thumb” of CT, M = D = J = 256. Therefore,

d

M
=

63.2 cm
256

= 0.25 cm

So, the pixel size is 0.25 cm× 0.25 cm.

Solution 6.29

(a) Since this is a first-generation CT scanner, collimation is technically not required. However, it is best to col-
limate the source to a pencil beam in order that (1) radiation dose to regions not affecting the measurements
is reduced, (2) single Compton scattering events cannot be detected (and thereby contribute to measurement
errors).

(b) A circle with diameter 56.57 cm will contain the square.

(c) Since 180◦ is needed to acquire a complete CT data set, and there is 0.25◦ angular increment, 720 projections
will be acquired. The CT “rule of thumb” says that M = D = J . Therefore, since M = 720, there should
be D = 720 line integrals per projection. The reconstructed image should cover the FOV, which was
determined in Part (a) to be a circle with diameter d = 56.57 cm. By the CT “rule of thumb,” J = 720.
Therefore, the pixel size is square with side dimension equal to 565.7 mm/720 = 0.78 mm.

(d) The most fundamental expression for SNR given the present scenario is

SNR =
Cµ̄

π
%
−3/2
0

√
3

2
(N̄/T )M .

By problem assumption, we will not violate the “rule of thumb.” Therefore, T andM will remain unchanged.
This still leaves some flexibility in selection of N̄ and %0. We could, for example, keep %0 unchanged and
quadruple the number of incident x-rays. This would quadruple the number of x-rays N̄ incident on the
detector array,

N̄ ′ = 4N̄ .
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This solution would increase the dose to the patient. We could, on the other hand, keep the number of
incident x-rays constant and use a cutoff frequency equal to

%′0 =
1
3
√

4
%0 = 0.63%0 .

This solution would reduce the resolution of the resultant scan.

(e) The sketch of g(`, 45◦) is shown in Figure S6.25(a).

Figure S6.25 See Problem 6.29.

(f) The sketch of b45◦(x, y) is shown in Figure S6.25(b). Assume that (10, 10) is in units of cm. Then this point
projects to

` = 10 cos 45◦ + 10 sin 45◦

= 20

√
2

2
= 14.14 cm .

This is halfway between the origin and the corner at ` = 28.285 cm. Therefore, the projection value will be
1/2 of that at the origin, that is, b45◦(10, 10) = 2.825.

Solution 6.30

(a) We have M = D = J and %0 = 1/d. Therefore, k = 1. In order to resolve two point source separated by
1 mm, the pixel size can not be bigger than 0.707 mm. See Figure S6.26. We also have 60 cm

0.707 mm/pixel =

848.6 pixels, so the minimum number of pixels is 849. See Figure S6.27.

(b) The detector length is 925× 0.8 mm = 740 mm, and 180 = d+ 30⇒ d = 150 cm.

tan θ =
37

180
⇒ θ = 11.6156◦

sin θ =
x

150
⇒ x = 30.2 cm.

Since x = 30.2 cm, the circular FOV with radius 30 cm fits.
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Figure S6.26 See Problem 6.30(a).

Figure S6.27 See Problem 6.30(b).

(c) For fan beam geometry,

SNR = 0.4kCµ̄LD−3/2
√
N̄fm

k = 1 since %0 = 1/d

C =
0.25− 0.2

0.2
= 0.25

µ̄ = 0.2 cm−1

L = 74 cm
D = 925

N̄f = 1.5× 1011

m = 925 .

Plugging these numbers in yields

SNR = 619.677

SNR(dB) = 20 log10 619.677 = 55.84 dB .
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Solution 6.31

(a) The radius of the circular FOV is 25 cm. Therefore, a right triangle can be formed for which the hypotenuse
is 70 cm and the side opposite 1/2 of the fan angle is 25 cm. Therefore,

θ1/2 = sin−1 25

70
= 20.925◦ .

The fan angle is therefore 2× 20.925 = 41.85◦.

(b) The distance between source and detector is Q = 105 cm and the total circumference of a circle with radius
Q is C = 2πQ = 2π × 105 cm = 659.7 cm. Therefore, the arclength of the detector array is

L =
41.85◦

360◦
659.7 cm = 76.69 cm .

Since there are 703 detectors over this range, we have that the spacing between detectors is

∆d =
766.9 mm

703
= 1.09 mm .

(c) There is 1 pulse/ms and 1 rev/s. Therefore, there are 1,000 pulses over a single revolution. The angular
increment is therefore ∆θ = 360◦/1, 000 = 0.36◦. Since each line will pass through the origin, the value of
the lateral position of each of these lines is ` = 0. Therefore, the following line integrals are acquired:

g(0, 0.36◦m) , m = 0, . . . , 999 .

The acquired data are shown in Figure S6.28(a). One half of the lines are repeated.

Figure S6.28 See Problem 6.31.

(d) From the work we did in Part (a), we see that the starting angle is −20.925◦ and the lateral displacement is
−25 cm. The angles increment exactly as in Part (c) and the lateral displacement never changes. Therefore,
the following line integrals are acquired

g(−25,−20.925◦ + 0.36◦m) , m = 0, . . . , 999 .
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These are at the limits of the lateral displacement in the sinogram. But, rather than repeating, these acquire
both the positive and negative max displacements, as shown in Figure S6.28(b).

(e) Cycle through each of the detectors in order from left to right. The sinogram will be filled in vertical columns
as shown in Figure S6.28(b). When scanning the central detector, turn off the tube for the second half of the
rotation to avoid redundancy.

(f) This scanner has a fanbeam source collimation but only acquires information from one detector at a time.
Therefore, the patient is getting irradiated repeatedly in a slice, and the vast majority of that radiation is not
getting used to image the slice. This is like having 703 CT scans, just to obtain one image.

Solution 6.32

(a) Use the following steps:

g(`, θ) = Rδ(x, y)

=

∫ ∞
−∞

∫ ∞
−∞

δ(x, y)δ(x cos θ + y sin θ − `)dxdy

= δ(x cos θ + y sin θ − `)|x=0, y=0

= δ(−`) = δ(`) δ(`) is an even function .

The sinogram is shown in Figure S6.29.

Figure S6.29 The Radon transform of δ(x, y). See Problem 6.32.
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(b) The shift theorem is proven as follows:

Rf(x− x0, y − y0) =

∫ ∞
−∞

∫ ∞
−∞

f(x− x0, y − y0)δ(x cos θ + y sin θ − `)dxdy

Let ξ = x− x0, η = y − y0

(x = ξ + x0, y = η + y0, dx = dξ, dy = dη) .

Rf(x− x0, y − y0) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)δ((ξ + x0) cos θ + (η + y0) sin θ − `)dξdη

=

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)δ(ξ cos θ + η sin θ − (`− x0 cos θ − y0 sin θ))dξdη

= g(`− x0 cos θ − y0 sin θ, θ) .

(c) From the results of parts (a) and (b), we have

Rδ(x− 1, y) = δ(`− cos θ) .

The trajectory is plotted in Figure S6.30.

Figure S6.30 The Radon transform of δ(x− 1, y). See Problem 6.32.

(d) The acquired sinogram is shown in Fig. S6.31.

Figure S6.31 Acquired sinogram. See Problem 6.32.



132 CHAPTER 6: COMPUTED TOMOGRAPHY

(e) ∫ ∞
−∞

`g(`, θ)d` =

∫ ∞
−∞

`

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − `)dxdy
]
d`

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

[∫ ∞
−∞

`δ(x cos θ + y sin θ − `)d`
]
dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)(x cos θ + y sin θ)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)x cos θdxdy +

∫ ∞
−∞

∫ ∞
−∞

f(x, y)y sin θdxdy

= cos θ

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xdxdy + sin θ

∫ ∞
−∞

∫ ∞
−∞

f(x, y)ydxdy

= qx cos θ + qy sin θ .

(f) The sinogram acquired can be expressed as

g(`, θ) =

{
δ(`) 0 ≤ θ ≤ π/2
δ(`− cos θ) π/2 < θ ≤ π

Let us calculate the first moment of each projection:∫ ∞
−∞

`g(`, θ)d` =

{ ∫∞
−∞ `δ(`)d` 0 ≤ θ ≤ π/2∫∞
−∞ `δ(`− cos θ)d` π/2 < θ ≤ π

=

{
0 0 ≤ θ ≤ π/2
cos θ π/2 < θ ≤ π

From the results in part (e) we have

qx cos θ + qy sin θ = 0 for 0 ≤ θ ≤ π/2 ⇒ qx = qy = 0

qx cos θ + qy sin θ = cos θ for π/2 < θ ≤ π ⇒ qx = 1, qy = 0

Since qx and qy are quantities calculated from f(x, y), they do not depend on θ. The above two results
contradict. So the acquired sinogram cannot be the Radon transform of any object.

Solution 6.33

(a) The energy spectrum of the x-ray beam after it passes through the material is shown in Figure S6.32

(b) The two measurements should ideally be identical because the basic measurement of CT is the line integral
of the linear attenuation coefficient. If the x-ray was perfectly monochromatic, then both the measurements
will be exactly the same, since the line integrals in θ = 90◦ projection and θ = 270◦ projection are the same.
But in practice, we have polychromatic x-ray source and because of beam hardening, the effective energy of
the x-ray beam and hence the linear attenuation coefficient is different for different projection. So the two
measurements are different in practice.

(c) One way to change the input spectra of the x-ray tube is to add filters in the x-ray tube.
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Figure S6.32 See Problem 6.33(a).

(d) gLt1 = line integral of µ at lower photon energy,
gHt1 = line integral of µ at higher photon energy.

At lower energy, µ is larger and therefore the line integral is larger. At higher energy, µ is smaller and
therefore the line integral is smaller.

(e)
µ(Al, 75 keV) = 0.7 cm−1 µ(H2O, 75 keV) = 0.1866 cm−1.

g75
t1 = 0.7× 2 + 0.1866× 8 = 2.8928,

g75
t2 = 0.7× 8 + 0.1866× 2 = 5.9732.

(f) The set of linear equations we get is

2.8928 = aL(3.16) + aH(2.2) ,

5.9732 = aL(6.79) + aH(4.3) .

Solving the equations, we have
aL = 0.52, aH = 0.568 .

(g)

µ(object, 75 keV) =

∫ π

0

[(
0.52gL(`, θ) + 0.568gH(`, θ)

)
∗ c̃(`)

]
dθ .
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The Physics of Nuclear Medicine

FUNDAMENTALS OF ATOMS
Solution 7.1

The mass of an electron me is 0.000548 u. So 1u = 1
0.000548me. The equivalent energy of an electron is 511 keV.

So the equivalent energy of 1 u is 1
0.000548 × 511 keV = 931 MeV.

Solution 7.2
The mass defect of a deuteron is 1.007276+1.008665−2.01355 = 0.002391u. Its binding energy is 0.002391 u×

931 MeV/u= 2.228 MeV.

RADIOACTIVE DECAY AND ITS STATISTICS
Solution 7.3

The PMF of a Poisson distribution with parameter a is given by

Pr[N = k] =
ake−a

k!
.

Its mean is given by

µN =

∞∑
k=0

kPr[N = k]

=

∞∑
k=0

k
ake−a

k!
=

∞∑
k=1

ake−a

(k − 1)!

= a

∞∑
k=1

a(k−1)e−a

(k − 1)!
= a

∞∑
k=0

ake−a

k!

= a .

134
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The variance is

σ2
N =

∞∑
k=0

k2Pr[N = k]− a2 because σ2 = E[X2]− (E[X])2 .

Evaluate the summation as follows:

∞∑
k=0

k2Pr[N = k] = a

∞∑
k=1

k
a(k−1)e−a

(k − 1)!

= a

[
1 +

∞∑
k=2

(k − 1)
a(k−1)e−a

(k − 1)!

]
= a [1 + a]

= a+ a2 .

So the variance of a Poisson random variable with parameter a is

σ2
N = a .

Solution 7.4

(a) Using (7.8), the decay constant λ is found as

λ =
0.693

T1/2
=

0.693

13× 3, 600 sec
≈ 1.4808× 10−5 sec−1.

The radioactivity A is then

A = λN = 1.4808× 10−5 × 109 = 1.4808× 104 dps.

(b) Since Nt = N0e
−λt, then

N24 h = 109 × exp(−1.4808× 10−5 × 24× 3, 600) ≈ 2.78× 108 atoms.

(c) The number of radioactive atoms left follows a Poisson distribution with a mean as computed in (b). For
large mean value, the Poisson distribution can be well approximated by a Gaussian distribution with the
same mean and variance.

Thus,

PN=108 =
1√

2π × 2.78× 108
exp

[
− (108 − 2.78× 108)2

2× 2.78× 108

]
≈ 0.

Solution 7.5
At t = 0, the number of technetium-99m atoms is 1 × 1012. Since the half-life of technetium-99m is 6 hours

(Table 7.1), the decay constant is

λ =
0.693

t1/2
=

0.693

6× 3, 600 sec
= 3.21× 10−5 sec−1 .
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The radioactivity at t = 0 is

A0 = 1× 1012 × 3.2× 10−5 sec−1 = 3.2× 107Bq = 0.86mCi .

The intensity measured is:

I0 = 8.91× 109 keV
sec ·m2

.

One hour later, the radioactivity becomes

A1 = A0e
−λt = A0e

−0.693/6 = 0.89A0 .

So the intensity measured at t = 1 hour is

I1 = 7.94× 109 keV
sec m2

.

Solution 7.6

(a) A0 =1 Ci= 3.7× 1010Bq and At = A0e
−λt = 1Bq. So

e−λt =
1

3.7× 1010
= 2.7× 10−11 ,

which is solved as

−λt = ln
(
2.7× 10−11

)
= −24.334

=⇒ t =
24.334

λ

Since T1/2 = 0.693
λ = τ , we have λ = 0.693

τ , and t = 35.114τ . It takes t = 35.114τ for a radioactive sample
with activity 1 Ci to decay to activity 1 Bq if the half-life is τ .

(b) The radioactive tracers used in nuclear medicine should have a half-life on the order of minutes to hours,
about the time it takes to perform study. If longer, activity remains in patient. If shorter, activity disappears
before scan is completed.

Solution 7.7

(a) The radioactive source decays according to

At = A0e
−λt .

The intensity at range r from this source is

It =
AtE

4πr2
,

where the time-dependency is made explicit using a subscript t and E is the gamma-ray energy. A point
(x, y) on the detector is at a distance

r =
√
R2 + x2 + y2
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from the source. Therefore, the intensity on the detector face is

It(x, y) =
AtE

4π(R2 + x2 + y2)
, |x|, |y| < D/2 .

(b) The average intensity is

Iav
t =

1

D2

∫ D/2

−D/2

∫ D/2

−D/2
It(x, y) dx dy

=
1

D2

∫ D/2

−D/2

∫ D/2

−D/2

AtE

4π(R2 + x2 + y2)
dx dy

≈ AtE

4πR2
,

where the last approximation holds if R� D.

Solution 7.8

(a) DF is defined as DF = e−λt. And decay constant λ is given by

A1/2

A0
=

1

2
= e−λT1/2 .

Taking the natural logarithm of the above equation yields −λT1/2 = − ln 2 = −0.693 and λ = 0.693
T1/2

. So
the decay factor is

DF = e−0.693t/T1/2 .

(b) From above, we have τ = 1
λ =

T1/2

0.693 = 1.443T1/2.

Solution 7.9

(a) The half-life of 99mTc is 6 hours. It is 8 hours from 8 a.m. to 4 p.m. Therefore, using the relation between
the decay constant and the half-life,

λ =
0.693

T1/2

we can write
A4p.m. = A8a.m.e

−λt = 2e−0.693×8/6 ≈ 0.7939 mCi/ml .

(b) To get 1.5 mCi radioactivity, we need a volume of

V =
1.5 mCi

0.7939 mCi/ml
≈ 1.89 ml .
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Solution 7.10

(a) First we find the decay constant as follows

Nt = N0e
−λt

9.9212× 106 = 108e−λ864,000

λ = − ln((9.9212× 106)/108)/864, 000

λ = 2.6742× 10−6 sec−1 .

Using the relationship between the half-life and the decay constant, we find

t1/2 = ln(2)/λ

= 259, 198 ≈ 259, 200 sec (or 3 days)

(b) For ∆t << t1/2, the average number of disintegrations = Poisson rate×∆t = N0λ∆t = 2.6742 disintegra-
tions.

(c) Using Equation (7.11) and a = 2.6742 disintegrations (from part (b)), we have:

Prob(∆N > 2) = 1− Prob(∆N = 2)− Prob(∆N = 1)− Prob(∆N = 0)

= 1− (a)2e−a

2!
− (a)1e−a

1!
− (a)0e−a

0!

= 1− (
a2

2
+ a+ 1)e−a

= 1− (
2.67422

2
+ 2.6742 + 1)e−2.6742

= 0.50003 .

Solution 7.11
Determine the decay constant of 21

11Ms as follows:

1/2 = eλt1/2 ,

t1/2 = 2 hours ,

λ =
ln(1/2)

−2
= 0.347 hr−1 .

Determine the amount of 21
11Ms left at 5 pm as follows:

∆t = 4 hours ,

N = N0e
λt

= 8 g × e−0.347×4

= 2 g .

Subtract to determine the amount that has decayed:

8 g − 2 g = 6 g .
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Solution 7.12

(a) First determine the decay constant:

At = A0e
−λt ,

1 mCi/ml = 3 mCi/ml e−λ3,600 ,

λ = − ln
1

3
× 1

3, 600
= 3.05× 10−4s−1 .

Then find the half-life:

t1/2 =
ln 2

λ
=

ln 2

3.05× 10−4s−1
= 2, 271.3 s = 0.63 h = 37.86 min .

(b) Compute the radioactivity:

At = 3 mCi/ml e−λ×4×3,600

= 3 mCi/ml e−3.05×10−4s−1×4×3,600 s

= 0.037 mCi/ml .

(c) Calculate the volume:

V =
1.5 mCi

0.6371 mCi/ml
= 2.3544 ml .

RADIOTRACERS
Solution 7.13

(a) Explanation for each:
(i) Eγ = 30 Kev, t1/2 = 7 hours: This is a bad choice for medical imaging because the energy of the gamma
rays is low and the body will absorb most of the emitted gamma rays.
(ii) Eγ = 150 Kev, t1/2 = 5 hours: This is a good choice for medical imaging purposes because its half-
life is long enough to enable imaging and short enough to weaken strongly before the patient leaves the
hospital. The gamma ray energy is high so that it is somewhat transparent in the body but still detectable by
conventional detectors.
(iii) Eγ = 200 Kev, t1/2 = 10 days: The energy would be a pretty good choice for this one. The half-life
would be good for biological processes that take a week or so for the radiotracer to reach its destination. It
is too long, however, for most processes.

(b) Activity follows the radioactive decay law. If activity reduces to 1/4 after 5 hours then 5 hours is twice the
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half-life. Accordingly,

t1/2 = 2.5 hours ,

λ =
0.693

t1/2
= 7.7× 10−5 s−1 ,

N0 =
A0

λ
=

4.4× 1010

7.7× 10−5
= 5.19× 1014 .

Solution 7.14
A radiotracer is chosen first for its properties of biodistribution and then by its physical imaging properties. The

two radiotracers are not equivalent if they distribute in the body in different ways and most likely they cannot be
interchanged.
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Planar Scintigraphy

INSTRUMENTATION
Solution 8.1

(a) For the diagrams of an Anger gamma camera, see Figures 8.1, 8.2, 8.3, and 8.4. An Anger gamma camera
consists of a multi-hole lead collimator, a sodium iodide scintillation crystal, an array of PMTs on the crystal,
a positioning logic network, a pulse height analyzer, a gating circuit, and a computer. The functions of each
of these parts are:

The collimator provides an interface between the patient and the scintillation crystal, by allowing only those
photons traveling in an appropriate direction (i.e., those that can pass through the holes without being ab-
sorbed in the lead) to interact with the crystal;

The scintillation crystal emits light photons after deposition of energy in the crystal of ionizing radiation;

The photomultiplier tubes do two things: converting light signals into electrical signals and amplifying these
signals;

The positioning logic network determines both where the event occurred on the face of the crystal and the
combined output of all the tubes, which represents the light output of the crystal (which in turn represents
the energy deposited by the gamma photon). These output signals are denoted as X and Y for the estimated
two-dimensional position of the event and Z for the total light output. The amplitude of a given tube’s output
is directly proportional to the amount of light (number of scintillation photons) its photocathode receives.
The tubes closest to the scintillation event will have the largest output pulses, while those farther away will
have smaller output pulses. By analyzing the spatial distribution of pulse heights, the location of a single
scintillation event (X,Y ) can be determined quite accurately.

The pulse height analyzer is used to distinguish photons been Compton scattered from those are not by
analyzing the energy deposited in the crystal via the Z-pulse whose height is proportional to the total energy
deposited in the crystal. The pulse height analyzer is used to set an acceptable window around the photopeak
in the spectrum of the Z-pulse.

The gating circuit is used to compensate for the imperfect photopeak localization and further reduce the
scattered photons being accepted as a valid event.

The computer is used to record the location of each event and form images.

(b) When we select radionuclides in nuclear medicine, the following issue must be considered:

141
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• The radionuclides must be “clean” gamma ray emitters, which means that they do not emit alpha or beta
particles.
• The radionuclides must emit gamma rays with appropriate energy. The energy cannot be too low because

low-energy gamma rays are more likely to be absorbed by the body; therefore, increase patient dose
without contributing to the images. Also, the energy cannot be too high since high-energy gamma rays
are less likely to be detected.
• The radionuclides should have a half-life on the order of minutes to hours.
• The radionuclides should be useful and safe to trace in the body.
• The radionuclides should emit gamma rays as monochromatic as possible.

Solution 8.2

(a) Use Beer’s law for calculating the path length w in the septa to allow less than 60% incident photons to
pass through. If µ is the linear attenuation coefficient for lead at 140 keV, then e−µw ≤ 0.60. This gives
w ≥ 0.51/µ. From geometry, the collimator septa thickness h is related to path length w for gamma-rays
incident at 45◦ by h = w/

√
2 = 0.36/µ.

(b) Here, using the above two equations to find d and , the values of l are found by the roots of a quadratic
equation to be l = 8 mm, 30 mm. Choose l = 30 mm, then d = 0.22 mm.

(c) Increasing l, the length of the holes, improves rejection of scattered photons, thereby improves resolution.
Sensitivity decreases too, as less photons reach the detector. Also collimators with large l may be heavy.

(d) Increasing the thickness of the scintillator will increase the sensitivity and compensate to some extent its
decrease due to long holes. The disadvantage of increasing crystal thickness is that the intrinsic resolution
of the crystal degrades.

Solution 8.3

(a) Note that 20% pulse-height window is 10% on either side.

150 keV× 0.1 = 15 keV ,

150 keV− 15 keV = 135 keV .

Since
hν′ =

hν

1 + hν
m0c2

(1− cos θ)
,

we have
135 keV =

140 keV

1 + 140 keV
511 keV (1− cos θ)

.

Solving for θ, we get θ = 30.14◦.

(b) For a window centered at the photopeak, the maximum acceptable scattering angle for a 140 keV photon
is 53.54◦, as shown in Example 8.2. Do a similar computation, we can see that photons with energy hν =
364 keV can be scattered by an angle θ = 32.43◦ and still be accepted by a 20% window centered at the
photopeak.
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(c) From (b), we conclude that as the frequency goes up, the directional selectivity gets better. Compare (a) and
(b), we can see that an offset window centered at a higher energy can further reduce scatter.

Solution 8.4

(a) The intensity at radius r from the source is

I =
AE

4πr2
,

where E is the gamma ray photon energy.

(b) Hole size does not matter since “per unit area” is already figured into the intensity. Therefore, the intensity
is the same as in part (a).

(c) Doubling the source–camera distance yields

I =
AE

4π(2r)2
=

AE

16πr2
.

This is 1/4 the intensity of part (a).

Solution 8.5
The septal thickness of a collimator depends on the minimum required path length for adequate attenuation. That

is, the septa must be thick enough that photons traveling through them have a high probability of being absorbed.
From a geometric point of view, we can define a minimum septal thickness from a minimum path length as

h =
2dw

l − w
. (S8.1)

If septal penetration is to be less than 5%, the transmission factor from Beer’s Law [(4.24)]for the minimum path
length is:

e−µw ≤ 0.05 . (S8.2)

We note that e−3 ≈ 0.05, so this implies µw ≥ 3. We can thus substitute this definition into (S8.1) for septal
thickness:

h ≥ 6d

µl − 3
. (S8.3)

The µ for lead at 140 keV is 21.43 cm−1. For comparison, at 511 keV, it is 1.746 cm−1.

Solution 8.6

(a) Energy of 30◦ Compton scattered 140 keV photon.

E′ =
140 keV

1 + (1− cos(30◦))140 Kev/511 Kev
= 135.04 keV (S8.4)

Acceptance window = 2 140−135.04
140 100 = 7.08%.

(b) See Figure S8.1.
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Figure S8.1 Plot of response. See Problem 8.6(b).

(c) The detection circuit is on until the response falls below 80% of the photo peak. So the second photon
should not arrive while the response from the first is at 80%. Time for the response to fall to 80% is
t = 20/140× 140× 0.2 = 4 ns.

The acceptance window is 20% this means that second photon should not arrive while the response from the
first photon is above 10%. Otherwise the net response will be over 110% and the acceptance window will
reject the second photon. Time for the response to fall to 10% is t = 20/140× 140× 0.9 = 18 ns.

This means that arrival of two photons should be 18 ns apart so that both the photons are accepted as separate
event.

(d)

Probability of at least one disintegration = 1− Probability of no disintegration

= 1− e−λN0∆t

= 1− e−A0∆t .

Plug in the known numbers as follows

0.5 = 1− e−0.25×A×3.7×1010 dps×18×10−10 s ,

and solve the equation to get A = 0.0416 Ci = 41.6 mCi.

(e) The height of the Z-pulse is 80 + 30 + 20 + 5 = 135. Find the center of mass as follows:

x location = (−1.5× 80 + 1.5× 30 + (−1.5)× 20 + 1.5× 5)/135 = −0.722 cm ,

y location = (1.5× 80 + 1.5× 30 + (−1.5)× 20 + (−1.5)× 5)/135 = 0.9442 cm .
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IMAGE FORMATION
Solution 8.7

Refer to Figure S8.2.

Figure S8.2 Converging and diverging collimators. See Problem 8.7.

(a) Let the converging collimator have a focal point located at A, which is at a distance D on the left side of
the detector, as shown in the Figure S8.2(a). Let the coordinate system be such that the origin is located
at the focal point A. Consider a point B on the detector at a distance d, as shown and at an angle θ. The
coordinates of this point B are (d cos θ, d sin θ,D) . The photons reaching this point will travel along a line
passing through the focal point A and the point on the detector B. Hence, these photons will experience
an attenuation obtained by integrating the linear attenuation coefficient µ(x, y, z) along this line. Consider
a point P on this line, at a distance z′ from the origin, as shown in the figure. The coordinates of P are
(r cos θ, r sin θ, z′) = (z′d cos θ/D, z′d sin θ/D, z′). Hence the intensity at B, due to an event occurring at
a location z, is given as:

Id =
AE

4πl2
exp

{
−
∫ D

z

µ(z′d cos θ/D, z′d sin θ/D, z′)dz′

}
,

where, l =
√

(zd cos θ/D − d cos θ)2 + (zd sin θ/D − d sin θ)2 + (z −D)2. This is the intensity due to a
single event occurring at a depth z, along the line. Integrating the activity over all possible events along the
line, we get

I(d cos θ, d sin θ) =

∫ D

−∞

A(zd cos θ/D, zd sin θ/D, z)E

4πl2

exp

{
−
∫ D

z

µ(z′d cos θ/D, z′d sin θ/D, z′)dz′

}
dz .

(b) Let the diverging collimator have a focal point located at A, which is at a distance D on the right side of
the detector as shown in Figure S8.2(b). Let the coordinate system be such that the origin is located at
the focal point A. Consider a point B on the detector at a distance d, as shown and at an angle θ. The
coordinates of this point B are (d cos θ, d sin θ,D). The photons reaching this point will travel along a line
colinear with the focal point A and the point on the detector B. Hence, these photons will experience an
attenuation obtained by integrating the linear attenuation coefficient µ(x, y, z) along this line. Consider a
point P on this line, at a distance z′ from the origin, as shown in the figure. The coordinates of P are
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(r cos θ, r sin θ, z′) = (z′d cos θ/D, z′d sin θ/D, z′). Hence the intensity at B, due to an event occurring at
a location z, is given as:

Id =
AE

4πl2
exp

{
−
∫ −D
z

µ(z′d cos θ/D, z′d sin θ/D, z′)dz′

}
.

This is the intensity due to a single event occurring at a depth z, along the line. Integrating the activity over
all possible events along the line, we get

I(d cos θ, d sin θ) =

∫ −D
−∞

A(zd cos θ/D, zd sin θ/D, z)E

4πl2

exp

{
−
∫ −D
z

µ(z′d cos θ/D, z′d sin θ/D, z′)dz′

}
dz .

Solution 8.8

(a) By simple computation, we have the outputs of the PMTs are:

a1 = 21.10 a2 = 21.10 a3 = 12.13

a4 = 21.10 a5 = 21.10 a6 = 12.13

a7 = 12.13 a8 = 12.13 a9 = 8.13 .

(b) The Z-pulse is

Z =

9∑
i=1

ai = 141.05 .

The estimated position is

X̄ =
1

Z

9∑
i=1

aixi = −0.16 cm ,

Ȳ =
1

Z

9∑
i=1

aiyi = 0.16 cm .

(c) The estimated position is different from the true position of the scintillation event. The reason is that the
event position estimation uses a linear model, while (P8.1) is nonlinear.
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Solution 8.9

(a) From Figure P8.3(a), when pulse height is 180, the energy deposited is 160 keV. Therefore, we have

hν′ =
hν

1 + hν
mc20

(1− cos θ)

=
160

1 + 160
511 (1− cos 50◦)

= 143.9 keV .

Suppose the acceptance window is centered at the photo peak at 160 keV, the upper bound of the energy
window is 160 + (160−143.9) = 176.1 keV. So the acceptance window can be set to be 143.9−176.1 keV.

(b) The Z-pulse = 40 + 5 + 15 + 15 + 20 + 45 + 30 = 170. The corresponding energy deposited is 150 keV.
It will be accepted by the acceptance window.

(c) The coordinates of the 7 tubes and pulse heights are:

tube 1 2 3 4 5 6 7

(x, y) in mm (0,0) (−2,0) (−1,
√

3) (1,
√

3) (2,0) (1,−
√

3) (−1,−
√

3)

pulse height 40 5 15 15 20 45 30

and

X =
1

Z

7∑
k=1

akxk = 0.26 mm, Y =
1

Z

7∑
k=1

akyk = −0.46 mm

(d) If (X,Y ) is set equal to the location of the PMT that has the largest amplitude, this will give a less accurate
estimation of the location of an event. The resolution of the resulting image will be on the order of the size
of tubes.

Solution 8.10

(a) See Figure S8.3.

(b) Note that a 10 percent pulse height window is 5 percent on either side. So the lowest energy that can be
accepted is 140 keV × (1− 0.05) = 133 keV.

hv′ =
hv

1 + hv
m0c2

(1− cos θ))
,

133 keV =
140 keV

1 + 140 keV
511 keV (1− cos θ))

.

And we get θ = 36.11◦.
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Figure S8.3 Pulse height spectrum. See Problem 8.10(a).

(c) The Z-pulse is Z = 5 + 15 + 25 + 10 + 20 + 45 + 5 + 10 + 40 = 175 AU.

(d) The position of the event (X,Y ) = (0.91,−1.14) is

X = 1
Z

∑
xkak = 0×5+2×15+4×25−2×10+0×20+2×45−4×5−2×10+0×40

175 = 160
175 = 0.91 ,

Y = 1
Z

∑
ykak = 4×5+2×15+0×25+2×10+0×20−2×45+0×5−2×10−4×40

175 = −200
175 = −1.14 .

(e) Causes of event localization error include edge effects, badly calibrated PMTs, and gamma rays passing
through septa (scattering).
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IMAGE QUALITY
Solution 8.11

(a) The overall system response is given by the convolution of the system responses of all its subsystems. In
this case, it is the convolution of three rect functions. By assumption, fI(x) = a rect(x/rI), fC(x) =
b rect(x/rC), and fP (x) = c rect(x/rP ), where a, b, c denote the individual amplitude (actually, they can
be assumed to be one when computing FWHM). Let’s assume rI ≤ rC ≤ rP and rI ≤ rP − rC .

fCP (x) = fC(x) ∗ fP (x) =

∫ ∞
−∞

bc rect(
x− t
rC

) rect(
t

rP
)dt

= bc

∫ rP /2

−rP /2
rect(

x− t
rC

)dt

=


bc(x+ rC+rP

2 ) if − rP+rC
2 ≤ x ≤ − rP−rC2 ;

bcrC if − rP−rC
2 ≤ x ≤ rP−rC

2 ;
bc( rC+rP

2 − x) if rP−rC2 ≤ x ≤ rP+rC
2 ;

0 otherwise.

.

Then, ftotal(x) = fI(x) ∗ fC(x) ∗ fP (x) = fI(x) ∗ fCP (x) can be similarly computed to be: ftotal(x) =



abc
2

(
x+ rI+rC+rP

2

)2
if − rP+rC+rI

2 ≤ x ≤ − rP+rC−rI
2 ,

abcrI
(
x+ rC+rP

2

)
if − rP+rC−rI

2 ≤ x ≤ − rP−rC+rI
2 ,

abc
(
−x

2

2 −
rP−rC−rI

2 x+ (rP−rC−rI)(rI−3rC−rP )
8 + rC(rP−rC+rI)

2

)
if − rP−rC+rI

2 ≤ x ≤ − rP−rC−rI2 ,

abcrIrC if − rP−rC−rI2 ≤ x ≤ rP−rC−rI
2 ,

abc
(
−x

2

2 + rP−rC−rI
2 x+ (rP−rC−rI)(rI−3rC−rP )

8 + rC(rP−rC+rI)
2

)
if rP−rC−rI

2 ≤ x ≤ rP−rC+rI
2 ,

abcrI
(
−x+ rC+rP

2

)
if rP−rC+rI

2 ≤ x ≤ rP+rC−rI
2 ,

abc
2

(
x+ rI+rC+rP

2

)2
if rP+rC−rI

2 ≤ x ≤ rP+rC+rI
2 ,

0 otherwise.

The maximum value of ftotal(x) is abcrIrC . Thus, we need to solve for x0 such that ftotal(x0) = abcrIrC
2 ,

which can be easily computed to be x0 = ± rP2 . Hence the FWHM of the overall system is equal to rP ,
which is the largest width of the three sub-systems.

(b) In the case of Gaussian cascade we know that

FWHMtotal =

√
FWHM2

I + FWHM2
C + FWHM2

P ,



150 CHAPTER 8: PLANAR SCINTIGRAPHY

and for each subsystem the FWHM is equal to 2
√

2 ln 2σ·. Hence,

FWHMtotal = 2
√

2 ln 2
√
σ2
I + σ2

C + σ2
P .

Solution 8.12

(a) The half-life of technetium-99m is 6 h = 360 min. Therefore the radioactive decay formula is

A = A0e
−t/360 .

Our images will be acquired over 2 h = 120 min. There are 6 images per hour for 2 hours, which makes 12
images total.The counts in the last image are the integration of the activity over the interval 110 < t < 120:

N12 =

∫ 120

110

A0e
−t/360

= A0(−360)e−t/360
∣∣∣120

110

= −360A0(e−120/360 − e−110/360)

= 7.265759A0 .

This is then solved for A0

A0 =
2, 000, 000

7.265759
= 275, 263 counts/min .

(b) The total count in image n is

Nn =

∫ 10n

10(n−1)

A0e
−t/τ dt

= A0(−τ)e−t/τ
∣∣∣10n

10(n−1)

= A0τ(e−10(n−1)/τ − e−10n/τ ) .

The count per pixels is

Np
n =

Nn
J2

.

and the SNR per pixel is

SNRp =
√
Np
N

=

√
Nn
J

=

√
A0τ(e−10(n−1)/τ − e−10n/τ )

J

=

√
275, 263× 360

J

√
e−10(n−1)/τ − e−10n/τ

= 77
√
e−10(n−1)/τ − e−10n/τ .
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This is calculated for n = 1, . . . , 12, yielding 12.74, 12.57, 12.40, 12.22, 12.06, 11.89, 11.72, 11.56, 11.40,
11.25, 11.09, 10.94.

(c) The tumor has contrast C = 0.1. The local SNR is

SNRl = C
√
N̄b .

In decibels this is
SNRl(dB) = 20 log10 C

√
N̄b = 5 dB .

Therefore,

log10 C
√
N̄b = 5/20 ,

C
√
N̄b = 1.778 ,√
N̄b = 17.78 ,

N̄b = 316 .

This implies that there must be approximately 5 M counts in the last image. From the result in part (a), we
can deduce that there are approximately 6.8 M counts in the first image.

Solution 8.13

(a) The counting rate is at most 128K dps (disintegration per second). Each frame last for 75 ms during each
heart beat, and there are 64 × 64 = 4, 096 pixels on each frame. So, during one heart beat, each pixel can
get at most

128, 000 dps× 0.075 s
4, 096

= 2.34
disintegration

pixel · heartbeat
.

In order to get the required counts, we need

N =
1, 000

2.34
= 427 heartbeat .

(b) The heart rate is 50 bpm, so the study will take

T =
427

50
= 8.54 minutes .

(c) The intrinsic SNR for each pixel is
SNR =

√
1, 000 = 31.62 .

(d) If we want to double the SNR, we need to have 4,000 counts per pixel for each frame. Therefore, the study
will be 4 times as long as the one described in parts (a) and (b). The time it takes is

T2 = 4× T = 34.16 minutes .
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Solution 8.14
Consider a source positioned at distance r from the collimator (as in Figure S8.4). Because of the collimator’s

geometry, this source will only be “seen” by the scintillation crystal over a certain (horizontal) extent. We will take
1/2 of this range to be the collimator resolution, Rc. This result would be exactly the FWHM if the response to the
point source were a triangle function—a bold assumption, and one that is necessary for this geometric derivation.
By similar triangles, we have

Figure S8.4 See Problem 8.14.

d

l
=

Rc
l + b+ r

.

Rearranging yields the desired result.

Solution 8.15

(a) The radioactivities of A and B are

AAt =
NA

0

10

(
ln 2

tA1/2

)
exp{−t ln 2/tA1/2}

=
N0

10

(
ln 2

3

)
exp{−t ln 2/3} ,

ABt =
NB

0

10

(
ln 2

tB1/2

)
exp{−t ln 2/tB1/2}

=
N0

20

(
ln 2

6

)
exp{−t ln 2/6} .

The projection is

φ(x, t) =

[
AAt rect

(
x+ 5

10

)
+ABt rect

(
x− 5

10

)]
eµRlR .
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At time t = 0, we have

φ(x, 0) =

[
N0

10

(
ln 2

3

)
rect

(
x+ 5

10

)
+
N0

20

(
ln 2

6

)
rect

(
x− 5

10

)]
e−1

= 8.5× 10−3N0rect

(
x+ 5

10

)
+ 2.12× 10−3N0rect

(
x− 5

10

)
.

At time t = 3 hours, we have

φ(x, 3) =

[
N0

10

(
ln 2

3

)
e− ln 2rect

(
x+ 5

10

)
+
N0

20

(
ln 2

6

)
e− ln 2rect

(
x− 5

10

)]
e−1

= 4.25× 10−3N0rect

(
x+ 5

10

)
+ 1.5× 10−3N0rect

(
x− 5

10

)
.

(b) tmax = 0.

(c)

ε =

(
Kd2

le(d+ h)

)2

=

(
0.25× 4

35× 2.2

)2

= 1.69× 10−4 ,

RC =
d

l
(l + b+ |z|) =

2

35
(35 + b+ 110) =

2

35
(b+ 145) .

(d) φd = [4.25× 10−3 − 1.50× 10−3]× 1.69× 10−4 = 4.6× 10−7 .

(e) Width(P ) = 10 +Rc.

Solution 8.16

(a) We have

RC =
d

l
(l + b+ |z|) =

3

100
(10 + 2.5 + 50) = 1.875 cm .

(b) We have

RC = 18.75 mm = 2σc
√

2 ln 2 ⇒ σc =
18.75

2
√

2 ln 2
= 7.96 .

Assuming that the PSF is Gaussian, then

hC = e
− x2

2σ2
C .

Similarly,

RI = 0.2 mm ⇒ σI =
0.2

2
√

2 ln 2
= 0.0849 ,

and

hI = e
− x2

2σ2
I .

Then the overall PSF is
h = hC ∗ hI .
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Notice that

F{e−
x2

2σ2
c } =

√
2πσce

−π(2πσ2
cu

2) ,

F{e
− x2

2σ2
I } =

√
2πσIe

−π(2πσ2
Iu

2) .

So
F{h} = 2πσcσIe

−π{2π(σ2
c+σ2

I )u2} ,

and from the inverse Fourier transformation we get

h =

√
2π

σ2
c + σ2

I

σcσIe
− x2

2(σ2
c+σ2

I
) .

(c) The shortest penetration path is depicted in Figure S8.5. It goes from the left top corner of the primary hole
to the right bottom of the adjacent hole, the angle is denoted by θ. From the geometry, tan θ = l

h+2d = 8.33

and w = h/ cos θ = h/ h+2d√
l2+(h+2d)2

= 50.36 mm.

Photon

Adjacent holePrimary hole

w

ϴ

Figure S8.5 See Problem 8.16(c).

(d) If the septal penetration is to be less than 5%, the transmission factor for the minimum path length is e−µw ≤
0.05 ⇒ µw ≥ 3.0. For fixed l and d, µh

√
l2+(h+2d)2

h+2d ≥ 3.0. Simplify the expression by the fact that
l� h+ 2d, then h ≥ 6d

µl−3 .

(e) The septal penetration degrades the collimator resolution because it blurs the image.

(f) No. Because the attenuation in the septa lead doesn’t change the energy of the photon, so the energy window
wouldn’t help.

(g) Compton scattering.
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Solution 8.17

(a) Rate of photons emitted = 0.54× 10−3 × 3.7× 1010 = 2× 107 photons/s.
Assuming uniform emission, rate of photons hitting the detector is given by:

2 arctan( 0.5
0.8 )

2π
× 2× 107 = 0.355× 107 photons/s .

(b) Detector efficiency (DE) is defined as

DE =
I0 − I
I0

,

where I = I0e
−µb. b = 2 cm and µ = 0.64cm−1 gives:

DE = 1− e−0.64×2 = 0.7220 .

Thus, detector efficiency is 72.2%.

(c) Using similar triangles, we have:

RC =
d

l
(|y|+ b) =

5 mm
80 mm

(800 mm + 20 mm) = 51.25 mm .

RC is labeled on Figure S8.6.

Figure S8.6 See Problem 8.17(c).

(d) We have

RC = 51.25 mm = 2σc
√

2 ln 2 ,

RI = 1 mm = 2σI
√

2 ln 2 .

Therefore, σc = 51.25
2
√

2 ln 2
= 21.65 and σI = 1

2
√

2 ln 2
= 0.42. Assuming that the PSF is Gaussian, we have

hC = e
− x2

2σc2 ,

hI = e
− x2

2σI
2 .
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The overall PSF is
h = hC ∗ hI .

Using properties of the Fourier transform,F{e−
x2

2σc2 } =
√

2πσce
−2πσc

2u2

andF{e−
x2

2σI
2 } =

√
2πσIe

−2πσI
2u2

,
and knowing F{h = hc ∗ hI} = F{hc}F{hI}, we have

F{h} = 2πσcσIe
−2π(σI

2+σI
2)u2

.

From the inverse Fourier transform,

h =

√
2π

σI2 + σI2
σcσIe

− x2

2(σI
2+σI

2) .

(e) Using similar triangles, d/l = |x|/|y| thus the maximum distance from the center of the detector will be
50 mm. We need to find number of holes which will get the ray so d/2 + nh + md = 50 mm. Using
d = 5 mm and h = 2.5 mm, detector will get through six holes each side which will be 13 holes in total
(including the middle one).

(f) First guess can be |y| = 80 cm where collimator is as long as the distance of source to detector, but the
following figure shows the geometry for shortest length. Using similar triangles:

Figure S8.7 See Problem 8.17(f).

d/2 + h+ d

|y|
=
d

l0
.

Solving the equation yields l0 = 40 cm. For this l0, we find that Rc = 10.25.

(g) The sensitivity of a collimator is ( Kd2

le(d+h)2 )2. For simplicity, le = l. Thus ε ∝ 1/l2. If sensitivity is ε at
l = 8 cm then, new sensitivity εnew at l0 = 40 cm will be:

εnew = ε(
l

l0
)2 =

e

25
.
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APPLICATIONS
Solution 8.18

(a) 1. The photon goes through the hole;

2. It enters the scintillation crystal;

3. It has a photoelectric event producing an ejected electron;

4. Collapsing electrons (in this atom and many others) cause light photons to be emitted;

5. The light bounces around in the crystal and exits out the back face;

6. The light enters a PMT;

7. Its energy causes electrons to be emitted at the cathode and enhanced by dynode cascades;

8. The current at the anode is recoded as a small pulse;

9. The total height of all pulses, summed up over all tubes is the Z-pulse;

10. Weighted combinations of the pulse heights give the X−, X+, Y −, and Y + signals;

11. X = X+−X−
2 , and Y = Y +−Y −

2 .

(b) See Figures S8.8 and S8.9.

Figure S8.8 See Problem 8.18(b).

Figure S8.9 See Problem 8.18(b).

(c) With the larger hole we may get multiple photons occasionally—pulse pileup. Also, their rate will be higher
for same reason as X-signal.
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(d) The sensitivity is given by

sensitivity =

(
kd2

l(d+ h)

)2

.

If we double the hole diameter and keep the sensitivity unchanged, we have(
kd2

l(d+ h)

)2

=

(
k(2d)2

l2(2d+ h)

)2

⇒ l2 =
4l(d+ h)

2d+ h
⇒ l2 ≈ 4l ,

where d is the original diameter and d� h.

Solution 8.19

(a) A straightforward calculation yields

T =
2, 000, 000 photons

64× 64 pixels× 4 photons/pixel s
= 122.07 s .

(b) The Z-pulse of two photons is shown in Figure S8.10. The output of the pulse height analyzer is shown in
Figure S8.11.

Figure S8.10 Z-pulse arising from two photons. See Problem 8.19(b).

Figure S8.11 Output of the pulse height analyzer. See Problem 8.19(b).

(c) If the second photon arrives too soon after the first one, due to the pulse pileup, the output of the pulse height
analyzer at the arrival time of the second photon will be larger than 1.2A. Therefore, the second pulse will
be rejected and will not result in an acceptable event.
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In order for the second photon to be detectable, the peak voltage at the time when the second photon arrives
cannot exceed 1.2A, the voltage resulted from the first photon must be less than 0.2A. Since the voltage
drops linearly from the peak valueA to 0 in 250 µs, it takes 200 µs for the voltage to drop to a value of 0.2A.
The time separation required in order for the second photon to be detected as a separate event is 200 µs.

(d) From part (c), we know that two successive photons must be separated by at least 200 µs in order to be
detected as two events. So the maximal rate of arrival of photons is 1

200 µ s = 5, 000 photons/s. This arrival
rate is for the entire image (recall how Z-pulse is generated.) For each pixel, the arrival rate is at most
5,000
64×64 = 1.22 photons/s·pixel. This rate is smaller than 4 photons/s·pixel we used in part (a). So it is not
possible to complete the experiment in the time we compute in part (a).

An alternative is as follows: we have a maximum rate of arrival of 5,000 photons/s. In 122.07 s, we can have
at most 5, 000× 122.07 ≈ 610, 000 photons, which is less than the required number of photons to complete
the experiment. So not possible.

(e) When an incident photon has undergone Compton scatter, it loses some energy. Under this condition, the
photon might be rejected because its Z-pulse height is too small.

(f) On average each pixel is hit by N =
2,000,000 photons

64×64 = 488.28 photons. So the intrinsic SNR in a single
pixel is SNR =

√
N = 22.1.

Solution 8.20

(a) Rate of photons emitted from O = 0.27× 10−3 × 3.7× 1010 = 107 photons/s. Assuming that the photons
fly uniformly in the x-y plane, the rate of photons hitting the detector is

2 tan−1( 0.5
0.5 )

2π
× 107 = 0.25× 107 photons/s .

(b) A straightforward calculation yields

detector efficiency = fraction of photons blocked by the detector

=
I0 − I
I0

=
I0 − I0e−µb

I0

= 1− e−0.644×2.5

= 80.01% .

(c) The Anger camera, on average, registers 0.8001× 0.25× 107 events/s = 0.2002× 107 events/s. Hence, the
time to register is 2 × 105 counts = 2×105

0.2002×107 = 0.1 s. Neglecting the time required to rotate the camera,
10 orientations can be captured in 1 s.

(d) The collimator resolution is

Rc =
d

l
(l + b+ |z|) =

0.005

0.12
(0.12 + 0.025 + |0.5− 0.12|) = 0.0219 m = 21.9 mm .
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(e) Let xn be the span on the detector within which photons can reach in the nth hole. For the central collimator
hole, that is, n = 0, we have x0 = d, since the photons can fall upon the entire detector length d. So the rate
of photons hitting the central hole is

r0 =
2 tan−1( 0.005/2

0.5 )

2π
× 107 = 1.6× 104 photons/s .

For n > 0, by the geometry we have the following relation

d− xn
l

=
(n− 1)(d+ h) + h+ 0.5d+ (d− xn)

0.5
,

d− xn
l

= 2[(n− 0.5)d+ nh+ d− xn] ,

d− xn = 2l[(n+ 0.5)d+ nh]− 2lxn ,

xn(2l − 1) = 2l[(n+ 0.5)d+ nh]− d ,

xn =
2l[(n+ 0.5)d+ nh]− d

(2l − 1)
.

When n = 1, x1 = 2.63 mm. So the rate of photons hitting the hole n = 1 is

r1 =
tan−1(d/2+h+d

0.5 )− tan−1(d/2+h+d−x1

0.5 )

2π
× 107 = 8.37× 103 photons/s .

It is the same answer for n = −1.

(f) Evaluating xn at n = 2, we get x2 = −0.5 mm. So the collimator shadow completely covers the hole, that
is, no photon is able to hit the detector from this hole. Therefore, the photons can enter only in the central
three holes. Since the photons from a point source at the origin are spreading out into the central three
collimator holes, the resolution, as defined by FWHM value, is R̂c = 3d+2h

2 = 12.5 mm. R̂c is smaller than
Rc = 21.9 mm computed in part (d), since Rc is computed with ideal geometry, neglecting the effects of
septa.

Solution 8.21

(a) It is a straightforward calculation:

Rc =
d

l
(l + b+ z)

=
3

100
(100 + 25 + 0.5× 103)

= 18.75 mm .

(b) The intrinsic PSF is a Gaussian function with σ computed as follows

RI = 0.2 mm = 2σ
√

2 ln 2 ⇒ σ =
0.2

2
√

2 ln 2
= 0.0849 .
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(c) The overall resolution is due to a cascade of systems; therefore,

Roverall =
√
R2
c +R2

I = 18.75 .

(d) The total count is 120× 106.

(e) The local contrast is

C =
N̄t − N̄b
N̄b

=
8− 3

3
= 1.667 ,

where N̄t and N̄b are mean target and background counts. The SNR is

SNRlocal = C
√
N̄b = 2.89 .



9
Emission Computed Tomography

SPECT
Solution 9.1

(a) For |`| < 2, we have

gSPECT(`, 0◦) =

∫ √4−`2

−
√

4−`2
fexp{−(

∫ √4−`2

y

µ2dy′ +

∫ 5

√
4−`2

µ1dy′)}dy

=

∫ √4−`2

−
√

4−`2
fexp{−(µ2(

√
4− `2 − y) + µ1(5−

√
4− `2))}dy

= fexp{−µ2(
√

4− `2)}exp{−µ1(5−
√

4− `2)}
∫ √4−`2

−
√

4−`2
exp{µ2y}dy

= fexp{−µ2(
√

4− `2)}exp{−µ1(5−
√

4− `2)}(exp{µ2

√
4− `2} − exp{−µ2

√
4− `2})/µ2

=
f

µ2
exp{−µ1(5−

√
4− `2)}(1− exp{−µ2

√
4− `2}) .

Thus,

gSPECT(`, 0◦) =

{
f
µ2

exp{−µ1(5−
√

4− `2)}(1− exp{−µ2

√
4− `2}) |`| < 2

0 otherwise

Similarly,

gSPECT(`, 180◦) =

{
f
µ2

exp{−µ3(5−
√

4− `2)}(1− exp{−µ2

√
4− `2}) |`| < 2

0 otherwise

162
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(b) For |`| < 2, gPET(`, 0◦) = gPET(−`, 180◦) and

gPET(`, 0◦) =

∫ √4−`2

−
√

4−`2
fexp{−(

∫ √4−`2

−
√

4−`2
µ2dy′ +

∫ 5

√
4−`2

µ1dy′ +

∫ −√4−`2

−5

µ3dy′)}dy

= 2f
√

4− `2exp{−µ3(5−
√

4− `2)}exp{−µ1(5−
√

4− `2)}exp{−2µ2

√
4− `2)} .

Thus,

gPET(`, 0◦) =

{
2f
√

4− `2exp{−µ3(5−
√

4− `2)}exp{−µ1(5−
√

4− `2)}exp{−2µ2

√
4− `2)} |`| < 2

0 otherwise

gPET(`, 180◦) =

{
2f
√

4− `2exp{−µ3(5−
√

4− `2)}exp{−µ1(5−
√

4− `2)}exp{−2µ2

√
4− `2)} |`| < 2

0 otherwise

(c) Substituting numerical values in the formulas found in (a) yields

gSPECT(0, 0◦) = 0.2799 mCi/cm2 ,

gSPECT(0, 180◦) = 0.3022 mCi/cm2 .

(d) Substituting numerical values in the formulas found in (b) yields

gPET(0, 0◦) = gPET(0, 180◦) = 0.0901 mCi/cm2 .

Solution 9.2

(a) For θ = 180◦, we see that will be a g(`, 180◦) rect function with a magnitude determined from the SPECT
imaging equation. The photon energy is 150KeV. For |`| < 1,

g(`, 180◦) =

∫ 3

2

0.2e−
∫ y
0
µsdsdy +

∫ 2

0

0.4e−
∫ y
0
µsdsdy

=

∫ 3

2

0.2e−
∫ y
2

0.2ds−
∫ 2
0

0.4dsdy +

∫ 2

0

0.4e−
∫ y
0

0.4dsdy

= 0.2× e−0.8 × e0.4 × 1

0.2
(e−0.4 − e−0.6) + 0.4× 1− e−0.8

0.4
= 0.0814 + 0.5507

= 0.6321 .

So g(`, 180◦) = 0.6321× rect( `2 ).
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Similarly, g(`, 90◦) will be two rect functions, and magnitudes are to determined from SPECT equations.

g1(`, 90◦) =

∫ 1

−1

0.2e−
∫ 1
x
µsdsdx

=

∫ 1

−1

0.2e−0.2(1−x)dx

= 0.2× e−0.2

∫ 1

−1

e0.2xdx

= 0.3297 .

g2(`, 90◦) =

∫ 1

−1

0.4e−
∫ 1
x
µsdsdx

=

∫ 1

−1

0.4e−0.4(1−x)dx

= 0.4× e−0.4

∫ 1

−1

e0.4xdx

= 0.5507 .

So g(`, 90◦) = 0.3297× rect( `−1
2 ) + 0.5507× rect(`− 2.5).

(b) For PET, the energy of photons is 511 keV. The magnitude of projection is given by

g(`, 0◦) =

∫ 3

0

f(y)e−
∫ 3
0
µdsdy

=

∫ 3

0

f1(y)e−
∫ 3
0
µdsdy +

∫ 3

0

f2(y)e−
∫ 3
0
µdsdy

= (0.2× 1 + 0.4× 2) + e−
∫ 3
0
µdsdy

= e−1×0.1−2×0.3

= 0.4966 .

So g(`, 0◦) = 0.4966× rect( `2 ).

(c) PET and SPECT imaging equations are given by

gSPECT(`, θ) =

∫ R

−∞

f(x(s), y(s))

4π(s−R)2
exp{−

∫ R

y

µ(x(t), y(t);E)dt}ds ,

gPET(`, θ) = K

∫ R

−R
f(x(s), y(s))ds× exp{−

∫ R

−R
µ(x(s), y(s);E)ds} .

It is seen that the attenuation term containing µ is separable from activity term f(x, y) in PET while it is not
separable in SPECT. So prior to PET imaging, a CT scan of the patient is done and µ(x, y) is found by CT
reconstruction. Then PET imaging is done to obtain g(`, θ). Thus, the line integral of activity is obtained by
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dividing the PET projection by attenuation coefficients and Radon transform of A is given by

G(`, θ) =

∫ R

−R
f(x(s), y(s))ds =

gPET(`, θ)

exp{−
∫ R
−R µ(x(s), y(s);E)ds}

,

⇒ f(x, y) = R−1{G(`, θ)} .

where R denotes Radon transform. µ being not separable from SPECT equation, this technique is not
applicable for attenuation correction of SPECT.

(d) If real collimators are used, the efficiency will be < 100%. So less number of photons will be detected. So
the height of the rect functions will be decreased.

Solution 9.3

(a) We have

1

3
N0 = N0 · e−1λP ,

2

3
N0 = N0 · e−1λQ .

Therefore,

λP = ln3 hour−1 ,

λQ = ln1.5 hour−1 ,

and

t 1
2 ,P

=
0.693

ln3
= 0.631 hour ,

t 1
2 ,Q

=
0.693

ln1.5
= 1.709 hour .

(b) We have

AP =
1

3
N0 · λP = 0.366N0 = 0.366× 1015/3, 600 dps = 2.75 Ci ,

AQ =
2

3
N0 · λQ = 0.270N0 = 0.270× 1015/3, 600 dps = 2.03 Ci .

(c) Suppose the 180◦ projection in the object and the background are go and gb, respectively. Then

go = AQ · 2 +AP · 4 = 0.270× 2N0 + 0.366× 4N0 = 2.004N0 ,

gb = AP · 6 = 0.366× 6N0 = 2.196N0 .

Therefore, the local contrast is

C =
go − gb
gb

=
2.004N0 − 2.196N0

2.196N0
= −0.0874 .
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(d) Suppose the 180◦ projection in the object and the background considering linear attenuation are g′o and g′b,
respectively. Then

g′o =

∫ 6

3

AP · (e−(y−3)·1 · e−1·1 · e−2·2)dy +

∫ 3

1

AQ · (e−(y−1)·2 · e−1·1)dy +

∫ 1

0

AP · (e−y·1)dy

=

∫ 6

3

AP · e−y−2dy +

∫ 3

1

AQ · e−2y+1dy +

∫ 1

0

AP · e−ydy

= AP · e−2 · (e−3 − e−6) +AQ · e ·
1

2
· (e−2 − e−6) +AP · (e0 − e−1)

= AP · (e−5 − e−8 + 1− e−1) + 0.5AQ · (e−1 − e−5)

= 0.366N0 · 0.639 + 0.5 · 0.270N0 · 0.361

= 0.283N0 ,

g′b =

∫ 6

0

AP · e−y·1dy

= 0.366N0 · (1− e−6)

= 0.365N0 .

Therefore, the local contrast is

C =
g′o − g′b
g′b

=
0.283N0 − 0.365N0

0.365N0
= −0.225 .

(e) The absolute value of the local contrast would be bigger in 180◦ than that in 0◦. First of all g′b are the same
on both projections. Second, AQ < AP and µcircle > µsquare. Therefore, inside the object, the radioactivity
gets more attenuated in 180◦ than that in 0◦. Thus g′o in 180◦ is smaller than that in 0◦, meaning g′o is farther
away from g′b on 180◦ than that in 0◦. Since we are considering the absolute value of the local contrast, |C|
would be bigger in 180◦ than that in 0◦.

Solution 9.4

(a) First, we write

f(x, y) =

{
0.5 mCi/cm

3 |x| ≤ 1, y ≤ −x,
0 otherwise.

And

µ(x, y) =


0.1 cm−1 |x| ≤ 1, |y| ≤ 1, y + x ≤ 0,

0.2 cm−1 |x| ≤ 1, |y| ≤ 1, y + x > 0,

0 otherwise.
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For |l| ≤ 1, the projection can be computed as

gSPECT(l, 0◦) =

∫ −l
−1

fexp{−
∫ −l
y

µ1dy
′ −
∫ 1

−l
µ2dy

′}dy

=

∫ −l
−1

fexp{−(−l − y)µ1 − (1 + l)µ2}dy

= e−(1+l)µ2+lµ1

∫ −l
−1

feµ1ydy

=
f

µ1
e−(1+l)µ2+lµ1(e−lµ1 − e−µ1)

= 5e−0.1(2+l)(e−0.1l) − e−0.1))

= 5(e−0.2(1+l) − e−0.3−0.1l)) .

The final answer is

gSPECT(l, 0◦) = 5(e−0.2(1+l) − e−0.3−0.1l))rect(
l

2
) .

Similarly, for |l| ≤ 1, gSPECT(l, 180◦) can be found as:

gSPECT(l, 180◦) =

∫ l

−1

f exp{−
∫ y

−1

µ1dy
′}dy

=

∫ l

−1

fe−(y+1)µ1dy

= fe−µ1

∫ l

−1

e−µ1ydy

=
f

µ1
e−µ1(eµ1 − e−lµ1)

= 5(1− e−(l+1)µ1)

= 5(1− e−0.1(l+1)) .

The final answer is gSPECT(l, 180◦) = 5(1− e−0.1(l+1))rect( l2 ).

(b) For |l| ≤ 1,

gPET(l, 0◦) =

∫ −l
−1

fexp{−
∫ −l
−1

µ1dy
′ −
∫ 1

−l
µ2dy

′}dy

=

∫ −l
−1

fe−(−l+1)µ1−(1+l)µ2dy

= fe−((1−l)µ1+(1+l)µ2)

∫ −l
−1

dy

= f(1− l)e−((1−l)µ1+(1+l)µ2)

= 0.5(1− l)e−0.1(3+l) .
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Thus, gPET(l, 0◦) = 0.5(1 − l)e−0.1(3+l)rect( l2 ). By the principle of PET imaging gPET(l, 180◦) =
gPET(−l, 0◦),

gPET (l, 180◦) = 0.5(1 + l)e−0.1(3−l)rect(
l

2
)

(c) The attenuation term is separable from activity term in PET. And the attenuation term can be estimated by
applying a CT scan prior to PET scan to get the activity term. Then the standard CT reconstruction method
can be applied to correctly reconstruct the radioactivity distribution.

Solution 9.5

(a) Since Nij is a Poisson random variable, the variance of Nij is also N̄ij . The mean and the variance of gij
are kN̄ij and k2N̄ij , respectively. Therefore,

mean[f̂(x, y)] =
kπT

M

M∑
j=1

N/2∑
i=−N/2

N̄ij c̃(xcosθj + ysinjθ − iT ) ,

var[f̂(x, y)] =
k2π2T 2

M2

M∑
j=1

N/2∑
i=−N/2

N̄ij [c̃(xcosθj + ysinjθ − iT )]2 .

(b) Carry out the following steps:

π

M

M∑
j=1

T

N/2∑
i=−N/2

[c̃(xcosθj + ysinjθ − iT )]2

≈
∫ π

0

∫ ∞
−∞

[c̃(xcosθ + ysinθ − `)]2d`dθ

= π

∫ ∞
−∞

[c̃(`)]2d`

= π

∫ ∞
−∞
|C(%)|2d%

= π

∫ %0

−%0

%2d%

=
2π%3

0

3
.

(c) Substituting the result in (b) and simplifying yields

var[f̂(x, y)] =
k2π2T 2N̄

M2

M∑
j=1

N/2∑
i=−N/2

[c̃(xcosθj + ysinjθ − iT )]2

=
2π2k2%3

0N̄T

3M
.

(d) SNR = mean[f̂(x,y)]√
var[f̂(x,y)]

∝ N̄√
N̄

=
√
N̄ . So the ratio is

√
2.
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PET
Solution 9.6

(a) Let the coordinate system be such that the upper left corner of the matrix is the origin. Consider a left-handed
Cartesian coordinate system, so that the y axis is positive below the origin. Now the coordinates of the center
of PMT(i, j) in inches are (2(j− 1) + 1, 2(i− 1) + 1). Similarly, the coordinates of the center of subcrystal
C(k, l) are (0.5(l − 1) + 1, 0.5(k − 1) + 0.25). Hence, the distance between the centers of PMT(i, j) and
subcrystal (k, l) is:

r =
√

[2(j − 1) + 1− 0.5(l − 1)− 0.25]2 + [2(i− 1) + 1− 0.5(k − 1)− 0.25]2,

=
√

(2j − 0.5l − 0.75)2 + (2i− 0.5k − 0.75)2.

Hence, The PMT response is

PMT(i, j) = e−
√

(2j−0.5l−0.75)2+(2i−0.5k−0.75)2
.

(b) Given that k = 4 and l = 5, the above equation simplifies to:

PMT(i, j) = e−
√

(2j−3.25)2+(2i−2.75)2
.

Hence,

PMT(1, 1) = e−
√

2.125,

PMT(1, 2) = e−
√

1.125,

PMT(2, 1) = e−
√

3.125,

PMT(2, 2) = e−
√

2.125.

(c) The responses in the 4 PMTs due to an event in crystal C(k, l) can be written as:

PMT(1, 1) = e−
√

(1.25−0.5l)2+(1.25−0.5k)2
,

PMT(1, 2) = e−
√

(3.25−0.5l)2+(1.25−0.5k)2
,

PMT(2, 1) = e−
√

(1.25−0.5l)2+(3.25−0.5k)2
,

PMT(2, 2) = e−
√

(3.25−0.5l)2+(3.25−0.5k)2
.
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Rearranging the equations:

(1.25− 0.5l)2 + (1.25− 0.5k)2 =

[
log

1

PMT(1, 1)

]2

,

(3.25− 0.5l)2 + (1.25− 0.5k)2 =

[
log

1

PMT(1, 2)

]2

,

(1.25− 0.5l)2 + (3.25− 0.5k)2 =

[
log

1

PMT(2, 1)

]2

,

(3.25− 0.5l)2 + (3.25− 0.5k)2 =

[
log

1

PMT(2, 2)

]2

.

Subtracting the equations, we get:

(3.25− 0.5k)2 − (1.25− 0.5k)2 =

[
log

1

PMT(2, 1)

]2

−
[
log

1

PMT(1, 1)

]2

,

9− 2k =

[
log

1

PMT(2, 1)

]2

−
[
log

1

PMT(1, 1)

]2

,

k = 4.5− 1

2

{[
log

1

PMT(2, 1)

]2

−
[
log

1

PMT(1, 1)

]2
}
.

Similarly, an estimate of k can be obtained from PMT(1,2) and PMT(2,2) as:

k = 4.5− 1

2

{[
log

1

PMT(2, 2)

]2

−
[
log

1

PMT(1, 2)

]2
}
.

Averaging the above two estimates of k, we get:

k = 4.5− 1

4

{[
log

1

PMT(2, 1)

]2

−
[
log

1

PMT(1, 1)

]2

+

[
log

1

PMT(2, 2)

]2

−
[
log

1

PMT(1, 2)

]2
}
.

Similarly, an estimate of l can be obtained as:

l = 4.5− 1

4

{[
log

1

PMT(1, 2)

]2

−
[
log

1

PMT(1, 1)

]2

+

[
log

1

PMT(2, 2)

]2

−
[
log

1

PMT(2, 1)

]2
}
.

(d) The worst-case scenario occurs when the event occurs very close to the boundary between two PMTs, for
example, if an event occurs very close to the boundary between C(2,4) and C(2,5) but occurs in crystal
C(2,4), then under noiseless condition, PMT(1,1) will be slightly greater than PMT(1,2). However if a small
additive noise cause the signal PMT(1, 2) > PMT(1, 1), then the event will be attributed to C(2,5).

Solution 9.7

(a) Since the detectors are designed to stop 75% of the photons, we have 0.75 = e−µd where d is the detector
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Figure S9.1 See Problem 9.8(c).

thickness. Hence we have

for NaI(Tl) : d = ln 0.75/(−µ)

= (ln 0.75)/(−0.343)

= 0.8387 cm ,

for BGO : d = ln 0.75/(−µ)

= (ln 0.75)/(−0.964)

= 0.2984 cm .

(b) The gamma rays photon burst is a random phenomena and can be modeled as a Poisson process. Let the
average gamma ray photons arriving at the detector be λ. Let k be the fraction of these gamma ray photons
converted into light photons by NaI(Tl). Since, BGO is 13% efficient, the fraction of gamma rays converted
into light photons by BGO is 0.13k. Hence the intrinsic SNRs are:

SNRNaI(tl) =
√
λk ,

SNRBGO =
√

0.13λk .

The ratio of intrinsic SNR’s is
√

1/0.13.

Solution 9.8

(a) No collimators. In a PET scanner, one must be able to detect coincidences at diverse angles.

(b) You would have to add a coincidence detector.

(c) Coincidence detections would be localized on each camera face using their X and Y pulses as shown in
Figure S9.1. The line between the two detections would be calculated to show where the decay took place.
The Z-pulse will be used in the calculation of the X and Y pulses. It could also be used for energy discrim-
ination, as in a conventional PET scanner.

(d) From the geometry in Figure S9.2,

α = tan−1 0.15 m

0.75 m
= 11.31◦ .

(e) Consider reconstruction on a “central plane.” There are many gamma rays that are “lost” between the two
detectors in this geometry. In a conventional PET scanner, the plane is completely surrounded by detectors.
Therefore, on this basis alone, we can expect that the total number of coincidence detections in a given time
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Figure S9.2 See Problem 9.8(d).

frame will be smaller given the same dose. Therefore, for the same quality, we would have to increase the
dose. In addition to this argument, there is the fact that PET detectors are more efficient at stopping 511 keV
photons. Therefore, the Anger-based camera will also be less efficient and also require a higher dose.

Solution 9.9

(a) Removing the constants in Eq. 9.6 but keeping the attenuation gives

gSPECT(`, θ) =

∫ ∞
−∞

f(x(s), y(s)) exp{−
∫ ∞
s

µ(x(s′), y(s′)ds′}ds .

In this problem,

f(x, y) =

{
0.3 mCi/cm3 if 0 ≤ x ≤ 1,−3 ≤ y ≤ 3 ,
0 otherwise .

And,

µ(x, y) =


0.2 cm−1 if − 3 ≤ x ≤ 0,−3 ≤ y ≤ 3 ,
0.3 cm−1 if 0 ≤ x ≤ 1,−3 ≤ y ≤ 3 ,
0.1 cm−1 if 1 ≤ x ≤ 3,−3 ≤ y ≤ 3 ,
0 otherwise .

When θ = 90◦, x(s) = ` cos θ − s sin θ = −s, and y(s) = ` sin θ + s cos θ = `. Hence,

gSPECT(`, 90◦) =

∫ 1

0

0.3 exp{−
∫ 1

x

0.3dx′ −
∫ 3

1

0.1dx′}dx

= e−0.1×2

∫ 1

0

0.3e−0.3(1−x)dx

= e−0.5(e0.3 − e0)

≈ 0.2122 mCi/cm2,

for −3 cm ≤ ` ≤ 3 cm. gSPECT(`, 90◦) = 0 if ` < −3 cm, or ` > 3 cm. Similarly,

gSPECT(`, 270◦) = e−0.2×3

∫ 1

0

f(x, `)e−0.3xdx

= e−0.2×3

∫ 1

0

0.3e−0.3xdx

= e−0.6(−e−0.3 + e0)

≈ 0.1422 mCi/cm2,
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for −3 cm ≤ ` ≤ 3 cm. gSPECT(`, 270◦) = 0 if ` < −3 cm, or ` > 3 cm. Note that gSPECT(`, 90◦) 6=
gSPECT(`, 270◦).

(b) We have

gPET(`, 90◦) = e−0.2×3e−0.1×2

∫ 1

0

f(x, `)e−0.3×1dx

= e−0.2×3−0.1×2−0.3×1

∫ 1

0

0.3dx

= 0.3e−1.1

≈ 0.0999 mCi/cm2,

for −3 cm ≤ ` ≤ 3 cm. gPET(`, 90◦) = 0 if ` < −3 cm, or ` > 3 cm. By the principle of PET imaging,
gPET(`, 270◦) = gPET(`, 90◦).

(c) It is clear that in PET imaging the attenuation factor does not depend on the location of the activity along the
imaging line. Thus, to compensate for the attenuation effect of the object, one can image the object using a
separate source to acquire the line integrals of µ(x, y). Then, the data can be corrected using

gcPET(`, θ) =
gPET(`, θ)

exp{−
∫∞
−∞ µ(` cos θ − s sin θ, ` sin θ − s cos θ)ds}

.

The standard CT reconstruction method can then be applied on gcPET(`, θ) to correctly reconstruct the ra-
dioactivity distribution. This compensation approach is not applicable for the SPECT scan.

Solution 9.10

(a) The perimeter of the circle is
πD = 1.5π ≈ 4.712 m .

The approximate detector width is thus

4.712 m/1, 000 = 4.712 mm .

Shallow detectors are less efficient to stop the gamma photons, but incoming gamma photons from all direc-
tions can be equally detected. Deep detectors are more efficient, but they are more direction selective.

(b) Coincidence detection in PET is used to determine the direction of travel of the two back-to-back gamma
photons, and hence to decide on which line the radioactivity occurs. Coincidence is assumed if two events
occur within 2–12 ns in typical PET scanners. Since the radioactivity is not always occur at the center of the
PET scanner, the traveling times of the two back-to-back gamma photons are not the same.

(i) If the time interval is too small, off-the-center radioactivities will not be detected.

(ii) If the time interval is too large, scattered photons will still be counted. Also, two or more distinct positron
decays might be mixed together, and the line of coincidence can no longer be correctly determined.

(c) In the center of the scanner, 1, 000/2 = 500 detectors cover a range of D = 1.5m. Hence, the sampling
interval is

T = D/500 = 1, 500 mm/500 = 3 mm .
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By the “rule of thumb”, the number of pixels on one side of the image should be approximately equal to
the number of samples for each projection angle. Since the number of samples is 1, 000/2 = 500 for the
PET scanner, the PET image should have at least 5002 = 250, 000 pixels. A “wobbling” motion of the PET
gantry can reduce the effective spacing of the detectors and thus increase the resolution of the system.

(d) “Parallax errors” cause degradation of resolution farther away from the center. This is because events can be
detected from oblique angles within the detector body (instead of end-on) which creates uncertainty about
the actual line on which the event occurred.

Solution 9.11

(a) Suppose s0 represents the center of the circle.

exp{−
∫ R

s0

µ(x(s′), y(s′);E)ds′} =
N+

N0
,

exp{−
∫ s0

−R
µ(x(s′), y(s′);E)ds′} =

N−

N0
.

The number of coincidence events Nc arising from positron annihilations at the center of the circle that will
be detected is

Nc(s0) = N0exp{−
∫ R

s0

µ(x(s′), y(s′);E)ds′}exp{−
∫ s0

−R
µ(x(s′), y(s′);E)ds′}

= N0
N+

N0

N−

N0
=
N+N−

N0
.

(b) Carry out the following steps

g(`1, 0
◦) =

2

3
g(0, 0◦) ,∫ 6

0

f(`1, y)e−6µsquare =

∫ 6

0

f(0, y)e−4µsquare−2µcircle ,

−6µsquare = −4µsquare − 2µcircle + ln
2

3
,

µsquare − µcircle =
1

2
ln

3

2
.

(c) Carry out the following steps

g(`2, 0
◦)

g(0, 0◦
=

∫ 6

0
f(`2, y)e−5µsquare−µcircle∫ 6

0
f(0, y)e−4µsquare−2µcircle

= e−µsquare+µcircle

= e−
1
2 ln 3

2

=

√
2

3
= 0.8165 .
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(d) The local contrast is

C =
ft − fb
fb

=
g(0, 0◦)− g(`1, 0

◦)

g(`1, 0◦)

=
g(0, 0◦)− 2

3g(0, 0◦)
2
3g(0, 0◦))

=
1/3

2/3

=
1

2
.



10
The Physics of Ultrasound

THE WAVE EQUATION
Solution 10.1

By taking the derivatives of w1(z, t) with respect to z and t, we have

∂2w1

∂z2
= ξ′′(z − ct), ∂2w1

∂t2
= c2ξ′′(z − ct) .

It is obvious that
∂2w1

∂z2
=

1

c2
∂2w1

∂t2
,

which is Equation (10.6). For w2(z, t) = ξ(z − ct) + ξ(z + ct), we have:

∂2w2

∂z2
= ξ′′(z − ct) + ξ′′(z + ct) ,

∂2w2

∂t2
= c2ξ′′(z − ct) + c2ξ′′(z + ct) .

So, w2(z, t) = ξ(z−ct)+ξ(z+ct) is also a solution to the wave equation (10.6). w2(z, t) = ξ(z−ct)+ξ(z+ct) is
the general solution to (10.6). It has two components, a forward-traveling wave ξ(z − ct) and a backward-traveling
wave ξ(z + ct).

Solution 10.2
A sinusoidal plane wave is given as

p(z, t) = cos[k(z − ct)] .

The wavelength is the spacing between crest. Suppose z1, and z2 are positions of two adjacent crests for a given
time t, we have:

k(z1 − ct) = 2nπ, k(z2 − ct) = 2(n+ 1)π ,

where n is an arbitrary integer. Then it is obvious

λ = z2 − z1 = 2π/k .

176
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Solution 10.3

(a) The acoustic pulse is
φ(t) = (1− e−t/τ1)e−t/τ2 .

It reaches a peak when its derivative goes to zero; that is,

dφ(t)

dt
= e−t/τ2(−− (t/τ1)e−t/τ1) + (1− e−t/τ1)(−t/τ2)e−t/τ2 = 0 .

This leads to

(1− e−t/τ1)(1/τ2) = (1/τ1)e−t/τ1 ,

1− e−t/τ1 = (τ2/τ1)e−t/τ1 ,

1 = (τ2/τ1 + 1)e−t/τ1 .

Solving for t yields the time delay

td = −τ1 ln
1

τ2/τ1 + 1
.

Plugging in τ2 = τ1 = 5 µs yields td = 3.5 µs. Therefore, the peak pressure will return to the transducer at
3.5 + 64.9 = 68.4 µs.

(b) The “generic” backward traveling wave is

φb(z, t) = (1− e−(t+z/c)/τ1)e−(t+z/c)/τ2 .

At time t = 64.9 µs, this wave will be (begin) at position z = 0.1 m heading in the −z direction. Incorpo-
rating both the temporal and spatial shift yields

φb(z, t) = (1− e−(t−64.9 µs+(z−0.1 m)/c)/τ1)e−(t−64.9 µs+(z−0.1mz)/c)/τ2 .

(c) It will take twice the time that it took to arrive at that range:

2× 64.9 µs = 129.8 µs .

Solution 10.4
The 3-D wave equation is

∇2 =
1

c

∂2p

∂t2
where ∇2 =

∂2p

∂x2
1

+
∂2p

∂x2
2

+
∂2p

∂x2
3

.

We have that
r2 = x2

1 + x2
2 + x2

3 ,

so
2r

dr

dxi
= 2xi ⇒ dr

dxi
=
xi
r
.
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The new pressure function is p = p(r, t). We have

∂p

∂xi
=
∂p

∂r

∂r

∂xi
=
∂p

∂r

xi
r
,

and

∂2p

∂x2
i

=
∂

∂xi

(
∂p

∂r

xi
r

)
=

∂

∂xi

(
∂p

∂r

1

r

)
xi +

1

r

∂p

∂r

=
∂

∂r

(
1

r

∂p

∂r

)
∂r

∂xi
xi +

1

r

∂p

∂r

=
x2
i

r

∂

∂r

(
1

r

∂p

∂r

)
+

1

r

∂p

∂r
.

Therefore, using the fact that r2 = x2
1 + x2

2 + x2
3, we have

∇2p =
3

r

∂p

∂r
+ r

∂

∂r

(
1

r

∂p

∂r

)
.

Now
∂

∂r
(rp) = r

∂p

∂r
+ p

and
∂2

∂r2
(rp) = r

∂2p

∂r2
+
∂p

∂r
+
∂p

∂r
= r

∂2p

∂r2
+ 2

∂p

∂r
.

So,

r
∂

∂r

(
1

r

∂p

∂r

)
= r

[
− 1

r2

∂p

∂r
+

1

r

∂2p

∂r2

]
=
−1

r

∂p

∂r
+
∂2p

∂r2
.

Therefore,

∇2p =
3

r

∂p

∂r
− 1

r

∂p

∂r
+
∂2p

∂r2
=

2

r

∂p

∂r
+
∂2p

∂r2
=

1

r

∂2

∂r2
(rp) .

This is the spherical wave equation.

Solution 10.5
Taking the derivatives of w(r, t) = ξ(r − ct)/r with respect to t, we have:

∂w

∂t
= −cξ

′(r − ct)
r

,

∂2w

∂t2
= c2

ξ′′(r − ct)
r

.
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Taking the derivatives of rw(r, t) with respect to r, we have:

∂(rw)

∂r
= ξ′(r − ct) ,

∂2(rw)

∂r2
= ξ′′(r − ct) .

It can be seen that
1

r

∂2

∂r2
(rw) =

1

c2
∂2w

∂t2
.

Solution 10.6
Substitute p(r, t) into Equation 10.13, we have:

∂2

∂r2
(rp) =

1

c2
f ′′(t− c−1r) +

1

c2
g′′(t+ c−1r) ,

and
∂2p

∂t2
. =

1

r
f ′′(t− c−1r) +

1

r
g′′(t+ c−1r) .

So
1

r

∂2

∂r2
(rp) =

1

rc2
(f ′′(t− c−1r) +

1

r
g′′(t+ c−1r)) =

1

c2
∂2p

∂t2
,

and p(r, t) = 1
rf(t− c−1r) + 1

r g(t+ c−1r) is a solution to Equation 10.13.

WAVE PROPAGATION
Solution 10.7
I(x, t) = v(x, t)p(x, t) and I(0, t) = Re{V ejωt}Re{Pejωt}. Let V = Vme

jφ and P = Pme
jθ. Then

I(0, t) = Vm cos(ωt+ φ)Pm cos(ωt+ θ)

=
VmPm

2
[cos(φ− θ) + cos(2ωt+ φ+ θ)]

Therefore, since high frequency oscillations disappear,

Iav =
VmPm

2
cos(φ− θ) .

But V P ∗ = VmPme
j(φ−θ). Therefore,

1

2
Re{V P ∗} =

VmPm
2

cos(φ− θ) = Iav .
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Solution 10.8

(a) Equations (10.25) and (10.26) are repeated here for convenience:

cos θt
z2

pt +
cos θr
z1

pr =
cos θi
z1

pi ,

pt − pr = pi .

From these two equations, we can form a matrix equation as:[
cos θt
z2

cos θr
z1

1 −1

] [
pt
pr

]
=

[
cos θi
z1

1

]
pi .

Then we have [
pt
pr

]
=

[
cos θt
z2

cos θr
z1

1 −1

]−1 [ cos θi
z1

1

]
pi

=

[
−1 − cos θr

z1

−1 cos θt
z2

]
(
− cos θt

z2
− cos θr

z1

) [ cos θi
z1

1

]
pi

=


z2 cos θi+z2 cos θr
z1 cos θt+z2 cos θr

z2 cos θi−z1 cos θt
z1 cos θt+z2 cos θr

 pi .
Since θr = θi, we have [

pt
pr

]
=


2z2 cos θi

z1 cos θt+z2 cos θi

z2 cos θi−z1 cos θt
z1 cos θt+z2 cos θi

 pi .
The pressure reflectivity R and pressure transmittivity T are given by

R =
pr
pi

=
z2 cos θi − z1 cos θt
z1 cos θt + z2 cos θi

T =
pt
pi

=
2z2 cos θi

z1 cos θt + z2 cos θi
.

(b) We write

RI =
Ir
Ii

=
p2
r/z1

p2
i /z1

=
p2
r

p2
i

= R2 =

(
z2 cos θi − z1 cos θt
z1 cos θt + z2 cos θi

)2

,

which is Equation (10.29). Also,

TI =
It
Ii

=
p2
t/z2

p2
i /z1

=
z1p

2
t

z2p2
i

=
z1

z2
T 2 =

4z1z2 cos2 θi
(z2 cos θi + z1 cos θt)2

,

which is Equation (10.30).
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Solution 10.9

(a) We have

P1 =
1

r1
f(t− c−1r1) ,

P2 =
1

r2
f(t− c−1r2) ,

where

r1 =
√
x2 + y2 + (z + d)2 ,

r2 =
√
x2 + y2 + (z − d)2 .

From the geometry, we see that for large r, r1 ≈ r + d cos θ and r2 ≈ r − d cos θ, where θ is the angle off
the z-axis to the line connecting the origin with (x, y, z), and r is the length of that line. But cos θ = z/r.
Therefore,

P = P1 + P2 ≈
1

r1
f

(
t− c−1

(
r +

dz

r

))
− 1

r2
f

(
t− c−1

(
r − dz

r

))
.

But
f(t) = Re{ñ(t)ej2πf0t} ,

and r1 ≈ r2 (for amplitude). Hence, the complete waveform is

Pc ≈
1

r
ñ(t− c−1r)ej2πf0(t−c−1r)(e−jk

dz
r − e+jk dzr ),

where we have used the steady-state approximation for ñ.

But ejΦ − e−jΦ = 2j sin Φ, so

e−jk
dz
r − e+jk dzr = −2j sin k

dz

r
.

As d gets very small, sin(kdz/r) ≈ kdz/r, therefore, since −j = e−jπ/2,

Pc ≈ 2kde−jπ/2
z

r2
ñ(t− c−1r)ej2πf0(t−c−1r) .

One can see that the new pressure is given by

P =
z

r2
fn(t− c−1r) ,

where
fn(t− c−1r) = Re{2kde−jπ/2ñ(t− c−1r)ej2πf0(t−c−1r)} .

(b) See Figure S10.1.
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Figure S10.1 Field pattern. See Problem 10.9(b).

Solution 10.10

(a) The acoustic pressure of an outward propagating spherical wave is expressed as:

p(r, t) =
A0

r
φ0(t− c−1r) ,

where r =
√
x2 + y2 + z2. When there is attenuation, the expression becomes:

p(r, t) = e−µar
A0

r
φ0(t− c−1r) .

(b) Let
d =

√
x2 + y2 + z2

be the distance between the wave source and the scatter. Assume the reflection coefficient of the scatter is
R. The scatter acts like a new point source. So the scattered wave can be expressed as

ps(x
′, y′, z′, t) =

Re−µar
′

r′
A0e

−µadφ0(t− c−1r − c−1d),

where r′ =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 is the distance between the scatter and any point (x′, y′, z′)
in space.

(c) For a point source located at (x0, y0, z0), the acoustic pressure is:

p(x′, y′, z′, t) = e−µar
A0

r
φ0(t− c−1r) ,

where r =
√

(x′ − x0)2 + (y′ − y0)2 + (z′ − z0)2. The scattered wave by a scatter at (x, y, z) is

ps(x
′, y′, z′, t) =

Re−µar
′

r′
A0e

−µadφ0(t− c−1r − c−1d) ,

where r′ =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 and d =
√

(x0 − x)2 + (y0 − y)2 + (z0 − z)2 is the dis-
tance between the wave source and the scatter.



183

Solution 10.11

(a) The acoustic intensity is related to the acoustic pressure by

I = p2/Z .

So the acoustic intensity for the incident wave, the reflected wave, and the transmitted wave are:

Ii = p2
i /Z1 ,

Ir = p2
r/Z1 ,

It = p2
t/Z2 .

The intensity reflectivity and intensity transmittivity are:

RI =
Ir
Ii

=
p2
rZ1

p2
iZ1

=

(
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

)2

,

TI =
It
Ii

=
p2
tZ2

p2
iZ1

=
4Z1Z2 cos2 θi

(Z2 cos θi + Z1 cos θt)
2 .

(b) Carry out the following steps:

T −R =
2Z2 cos θi − (Z2 cos θi − Z1 cos θt)

Z2 cos θi + Z1 cos θt

=
Z2 cos θi + Z1 cos θt
Z2 cos θi + Z1 cos θt

= 1 .

(c) The pressure must be continuous across the interface

pt − pr = pi .

Therefore, T − R = 1. But the relationship between acoustic pressure and acoustic intensity is a nonlinear
relationship and Z2 6= Z1. So TI 6= 1 +RI in general. From the above derivation, we have:

RI = R2, TI = T 2Z1/Z2, and T = R+ 1 .

So the relationship between TI and RI is

TI =
Z1

Z2

(√
RI + 1

)2

.

DOPPLER EFFECT
Solution 10.12

The frequency fR of the sound received by the moving receiver can be derived by considering the time it takes for
the receiver to observe two successive crests. If the source is producing a sinusoid with frequency f0, the distance
separating two adjacent crests is λ = c/f0. Since the receiver is moving towards the source, the time it takes for
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the receiver to observe two successive crests is T = λ/(c+ v) = c/(c+ v)f0, which is the observed period. So the
frequency observed is fR = (c+ v)f0/c.

When the receiver moves away from the source with speed v, the frequency observed is fR = (c− v)f0/c.

Solution 10.13

(a) The observed frequency will be fR = (c+ v)f0/c and fR = (c− v)f0/c for receivers moving towards and
away from the source, respectively.

(b) When the receivers moves towards the source, the observed frequency will be fR = 2f0. When the receivers
moves away from the source, the observed frequency is 0. In this situation, the receiver will sit on a point
with constant phase, therefore will not observe the wave.

(c) When the receivers moves towards the source, the observed frequency will be fR = (c+ v)f0/c. When the
receivers moves away from the source, the observed frequency is fR = (c − v)f0/c < 0. In this situation,
the receiver will observe a wave from the opposite direction with frequency fR = |c− v|f0/c.

ULTRASOUND FIELD PATTERN
Solution 10.14

By using the properties of Fourier transform, we have:

F{ñ(t)} = ejφNe(ω) ,

Re{ñ(t)e−jω0t} =
1

2

[
ñ(t)e−jω0t + ñ∗(t)ejω0t

]
,

where * denotes complex conjugate. The Fourier transform of n(t) is:

F{n(t)} =
1

2

[
ejφNe(ω + ω0) + e−jφN∗e (−ω + ω0)

]
.

Solution 10.15

(a) We have

α5 MHz = 8.7µa = 8.7× 0.04 cm−1 · MHz−1 × 5 MHz = 1.74 dB · cm−1 ,

α12MHz = 8.7µa = 8.7× 0.04 cm−1 · MHz−1 × 12 MHz = 4.176 dB · cm−1 .

(b) It is considered as far field when range is greater than D2/λ. The speed of sound is 1,560 m/s. At 5 MHz,
the wavelength is λ5 MHz = 0.312 mm. At 12 MHz, the wavelength is λ12 MHz = 0.13 mm.

For the 5 MHz transducer, when range is greater than 2cm×2cm
0.312 mm = 128.2 cm, it is considered as far field. For

the 12 MHz transducer, the range is 0.4 cm×0.4 cm
0.13 mm = 12.3 cm.
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Solution 10.16

(a) The time it takes to travel from (x0, y0, 0) to d and back is

t =
2

c

√
x2

0 + y2
0 + d2 .

Therefore, the time delay is

τ =
2

c

√
x2
m + y2

m + d2 − 2

c

√
x2

0 + y2
0 + d2 .

In this way, the scattering from d will be integrated over the (flat) transducer face at the same time upon
reception. Using the binomial approximation,

τ =
2

c

[
d

√
1 +

x2
m + y2

m

d2
− d
√

1 +
x2

0 + y2
0

d2

]

≈ 2

c

[
d[1 +

x2
m + y2

m

d2
]− d[1 +

x2
0 + y2

0

d2
]

]
≈ 2

dc

[
r2
m − (x2

0 + y2
0)
]
.

(b) The narrowband assumption is
n(t) = Re{ñ(t)e−j2πf0t} .

When shifted in time, and using the steady-state approximation:

n(t− τ) = Re{ñ(t− τ)e−j2πf0(t−τ)}
≈ Re{ñ(t)e−j2πf0(t−τ)} .

Therefore, after some simplification

n(t− τ − c−1r0 − c−1r′0)

≈ Re{ñ(t− 2c−1z)ej
k
d r

2
me−j

k
d (x2

0+y2
0)ejk(r0−z)ejk(r′0−z)} .

ej
k
d r

2
m is just a fixed phase, which can be “thrown” into ñ(t− 2c−1z). Now split up terms:

e−j
k
2d (x2

0+y2
0)ejk(r0−z)︸ ︷︷ ︸

transmitpattern

e−j
k
2d (x2

0+y2
0)ejk(r′0−z)︸ ︷︷ ︸

receivepattern

,

which leads to the field pattern

q(x, y, z) ≈
∫∫

s(x0, y0)

z
e−j

k
2d (x2

0+y2
0)ej

k
2d [(x−x0)2+(y−y0)2] dx0 dy0 ,

where the the paraxial approximation was also used. Expanding the terms as follows

(x− x0)2 = x2 − 2xx0 + x2
0 and (y − y0)2 = y2 − 2yy0 + y2

0 ,
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and setting z = d, yields

q(x, y, d) =

∫∫
s(x0, y0)

z
ej

k
2d (x2+y2)e−j

k
d (xx0+yy0) dx0 dy0

=
1

z
ej

k
2d (x2+y2)S

( x
λd
,
y

λd

)
,

which is the desired result.

(c) The far-field pattern exists at d now. When d is made smaller, the pattern gets tighter; therefore, we can
increase our resolution at the focal point over that of a flat transducer. The spread, after the focal point,
however, will increase. Therefore, we need to choose the focal distance carefully.

Solution 10.17

(a) We have

q0(x, y, z) =
1

z
ejk(x2+y2)/(2z)S(

x

λz
,
y

λz
) .

And
s(x, y) = rect(

x

w
) rect(

y

h
) ,

S(u, v) = F{s(x, y)} = wh sinc(wu) sinc(hv) .

Thus,

q0(x, y, z) =
wh

z
ejk(x2+y2)/(2z) sinc(

wx

λz
) sinc(

hy

λz
) .

(b) We have

sinc(v) =
sinπv

πv
,

and the first zero is when v = 1. Hence, wxλz = 1, x = λz/w = s, and thus

z0 =
sw

λ
.

(c) z0 ≥ D2/λ, where D is maximum dimension of the transducer. Since h > w, D ≈ h, and z0 ≥ h2/λ, or
sw/λ ≥ h2/λ. Hence,

s ≥ h2

w
.

If one says D =
√
h2 + w2, then s ≥ (w2 + h2)/w.

(d) The field pattern simply shifts in x for each of the five elements and adds (since everything is linear).

q(x, y, z) =

+2∑
n=−2

q0(x− ns, y, z)

=

+2∑
n=−2

wh

z
ej

k
2z ((x−ns)2+y2) sinc

(
w(x− ns)

λz

)
sinc

(
hy

λz

)
.
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(e) Because the central pattern goes to zero at ±s, it also goes to zero at ±ns for n 6= 0. Hence beam-width in
the x direction is 6s. In the y direction, sinc(hy/λz) gives the pattern. The first zero is at

hy

λz
= 1 ,

which gives y = λz/h. The beam-width is twice that, and hence the beam-width in y direction is

2λz0

h
=

2λ

h

sw

λ
=

2sw

h
.
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Ultrasound Imaging Systems

ULTRASOUND IMAGE FORMATION AND IMAGING MODES
Solution 11.1

(a) From Table 10.1, we know that Z1 = 1.52×10−6 kgm−2s−1 and Z2 = 1.35×10−6 kgm−2s−1. Assume z0

is far away. Therefore the only return is from point (0, 0, z0) on the interface. Therefore, θr = θi = θt = 0;
cos θr = cos θi = cos θt = 1.

Pr =
Z2 − Z1

Z2 + Z1
Pi ≈ −0.06Pi .

We can neglect the minus sign because of envelope detection. When transducer axis is in direction θ, the
strength of Pi at (0, 0, z0) depends on the field pattern. The transducer face in the x-z plane is s(x) =
rect( xL ). Therefore,

S(u) = L sinc(Lu) ,

and

S

(
z0 sin θ

λz0 cos θ

)
= S

(
tan θ

λ

)
= L sinc

(
L tan θ

λ

)
describes off-axis field pattern. Pulse-echo squares this; hence, the strength of the return is

Pr(θ) = 0.06A0

[
S(

tan θ

λ
)

]2

= 0.06A0L
2 sinc2(L tan θ/λ) .

(b) The signal Pr is above threshold when

20 log10

(
0.06A0 sinc2(L tan θ/λ)

A0

)
≥ −80dB ,

188
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Figure S11.1 B-mode image. See Problem 11.1(b).

or sinc2(L tan θ/λ) ≥ 0.001667. Letting u = L tan θ
λ we get

Sidelobe u = sinc2(u) =
Main lobe 0 1
1st 1.5 0.045
2nd 2.5 0.0162
3 3.5 0.00827
4 4.5 0.005004
5 5.5 0.0033
6 6.5 0.0023
7 7.5 0.0018
8 8.5 0.0014
9 9.5 0.0011
10 10.5 0.0009

Thus, the system will “see” 7 sidelobes on each side. Since

u =
L tan θ

λ
=
Lz0 tan θ

λz0

=
2Lx′

λz0
,

the sidelobe separation is x′ = λz0
2L . See Figure S11.1 for a sketch of the B-mode image.

Solution 11.2

(a) The echo is received at

t =
2x

c
=

2× 10 cm
1, 500 m/s

≈ 1.33× 10−4 s .

The round trip distance is 20 cm. Since α = 1 dB/cm, there is a loss of 20 dB:

−20 dB = 20 log10

Az
A0

.

Thus, Az = 0.1A0 = 1.225 N/cm2. See Figure S11.2 for a sketch of the A-mode signal.

(b) See Figure S11.3 for a sketch of the M-mode signal.
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Figure S11.2 A-mode signal. See Problem 11.2(a).

Figure S11.3 M-mode image. See Problem 11.2(b).

(c) See Figure S11.4 for a sketch of the B-mode image and Figure S11.5 for a sketch of the peak-height of the
returning signal.

Figure S11.4 B-mode image. See Problem 11.2(c).
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Figure S11.5 Peak-height plot. See Problem 11.2(c).

Solution 11.3

(a) See Figure S11.6.

Figure S11.6 z(t). See Problem 11.3(a).

(b) The pulse will be at range z = ct at time t. The valve will be at range z = 16 + 0.5e−t/τ at time t. At time
t = t0, they coincide. So we have:

ct = 16 + 0.5e−t/τ ,

154, 000t = 16 + 0.5e−t/0.01 .

Ignore the motion effect, we have t0 ≈ 16
154,000 = 0.104 ms. See Figure S11.7.

Figure S11.7 A-mode signal. See Problem 11.3(b).

(c) See Figure S11.8.

(d) Each scan line takes about 0.208 ms and ten scan lines take about 2.08 ms. Since the time constant is 10 ms,
there will be five images in this time. So the time is adequate to make a B-mode image. (However, we won’t
be able to see this real time.)
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Figure S11.8 M-mode signal. See Problem 11.3(c).

Solution 11.4
Ignore the field pattern in x and y directions and assume the scatterers are ideal point scatterers, R(x, y, z) =

δ(z − z1) + δ(z − z2). In Fraunhofer field, the approximation of the received field is given by (11.20):

R̂(x, y, z) =

∣∣∣∣R(x, y, z)ej2kz ∗∗∗
[
S
( x
λz
,
y

λz

)]2
ne

(
z

c/2

)∣∣∣∣ .
Ignoring S

(
x
λz ,

y
λz

)
, we have

R̂(x, y, z) =

∣∣∣∣R(x, y, z)ej2kz ∗∗∗ ne
(

z

c/2

)∣∣∣∣
=

∣∣∣∣[δ(z − z1)ej2kz1 + δ(z − z2)ej2kz2
]
∗∗∗ rect

(
z

λ
+

1

2

)∣∣∣∣
=

∣∣∣∣rect

(
z − z1

λ
+

1

2

)
ej2kz1 + rect

(
z − z2

λ
+

1

2

)
ej2kz2

∣∣∣∣ .
(a) Since z2 − z1 = λ/2, we have

R̂(x, y, z) =

∣∣∣∣rect

(
z − z1

λ
+

1

2

)
ej2kz1 + rect

(
z − z2

λ
+

1

2

)
ej2k(z1+λ/2)

∣∣∣∣
=

∣∣∣∣ej2kz1 [rect

(
z − z1

λ
+

1

2

)
+ rect

(
z − z2

λ
+

1

2

)
ejkλ

]∣∣∣∣
= rect

(
z − z1

λ
+

1

2

)
+ rect

(
z − z2

λ
+

1

2

)
.

(b) If z2 − z1 = λ/8, we have

R̂(x, y, z) =

∣∣∣∣rect

(
z − z1

λ
+

1

2

)
ej2kz1 + rect

(
z − z2

λ
+

1

2

)
ej2k(z1+λ/8)

∣∣∣∣
=

∣∣∣∣rect

(
z − z1

λ
+

1

2

)
+ rect

(
z − z2

λ
+

1

2

)
ejkλ/4

∣∣∣∣
=

∣∣∣∣rect

(
z − z1

λ
+

1

2

)
+ j rect

(
z − z2

λ
+

1

2

)∣∣∣∣ .
The estimated reflectivities are shown in Figure S11.9.
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Figure S11.9 Estimated reflectivities. See Problem 11.4.

ULTRASOUND TRANSDUCER ARRAY
Solution 11.5

(a) From the geometry in Figure 10.5, the widest angle (from the axis) at which an ultrasound transducer will
generate sound is defined by

tan θ =
d/2

d2/λ
.

Using the relation λ = c/f and the fact that θ = 30◦ yields

tan θ = 0.5773502 =
1, 540 m/s
f 0.2 mm

.

f =
1, 540 m/s

0.5773502× 0.0002 m
= 13.336 MHz .

Any frequency higher than this will be more directive and incapable of generating a wave at θ = 30◦.

(b) The zeroth transducer fires at time 0. The first transducer fires at

t1 =
d sin θ

c

=
0.0002 m× sin 30◦

1, 540 m/s
= 64.9× 10−9 s .

This is the same time delay between each pair of transducers. Since there are 100 delays needed to fire 101
transducers the total time is

time to fire array = 100× 64.9× 10−9 s = 6.49× 10−6 s .
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Solution 11.6

(a) We have

ti =
id sin θ

c

=
0.6 mm

1, 540× 103 mm/s
i sin θ

= (0.39µs)i sin θ .

(b) The time it takes for one pulse to go to range R and back is the pulse repetition interval:

TR =
0.40 m

1, 540 m/s
= 260µs .

The total angle of the sector is 90◦, and given ∆θ = 1◦, we require 90 pulses in order to cover the field.
Therefore, the total time it takes to acquire a frame is

TF = 90× TR = 23.4× 10−3s .

The frame rate is therefore 42.8 frames/s, which will be flicker-free.

Solution 11.7
A diagram of the described transducer is given in Figure S11.10(a).

Figure S11.10 See Problem 11.7.

(a) Ranges > D2/λ. Evaluate as follows

D = 14× 1.5 mm = 21 mm (same as width of transducer) ,

λ =
c

f
=

1, 500 m/s
3.0× 106s−1

= 500× 10−6 m = 0.5 mm ,

D2

λ
=

212 mm2

0.5 mm
= 882 mm .

Therefore,
Ranges > 0.882 m .
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(b) As shown in Figure S11.10(b), the total travel is 14 cm = 0.14 m. Therefore,

∆t =
0.14 m

1, 500m/s
= 93.3µs .

(c) The situation is depicted in Figure S11.10(c). The total number of distinct groups (which is therefore the
number of lines of acquisition) is 100− 14 + 1 = 87. One A-mode burst takes this long:

∆t =
40 cm

1, 500 m/s
=

0.4 m
1, 500 m/s

= 266.7 µs .

Therefore, the total time to acquire one image is

87× 266.7 µs = 23.2 ms/frame ,

and the frame rate is
Frame Rate =

1

23.2 ms
= 43.1 frames/s .

(d) One can increase the frequency of the transducer or acquire fewer lines—e.g., just acquire 40 lines from the
center of the transducer.

Solution 11.8

(a) The transmit pulse is shown in Figure S11.11(a). An echo from a silicone-skin interface assuming normal
incidence is shown in Figure S11.11(b). The amplitude of this echo is

Amplitude =
Zskin − Zsilicone

Zskin + Zsilicone
=

1.5× 106 − 1.4× 106

1.5× 106 + 1.4× 106
= 0.0345 .

The time of echo is:

Time of Echo =
2× 2× 10−3

1, 500
= 2.666× 10−6 s = 2.6 µs .

Figure S11.11(c) shows the superposition of these two signal envelopes on the same graph. The A-mode
signal is not simply the sum of the two A-mode signals since the underlying signals are sinusoidal. In
general, there will be constructive or destructive interference. In the region of overlap, the actual signal is:

cos(2πft) + 0.0345 cos(2πf(t− t1)) ,

where f = 2.0×106 Hz and t1 = 2.666×10−6 s. Using the complex representation of sinusoids (phasors),
it can be shown that the amplitude of this signal is 1.011. The corresponding A-mode signal is shown in
Figure S11.11(d).

(b) C(gel) = C(skin) = 1, 550 m/s for no refraction at the gel-skin interface.

(c) The pressure transmittivity at the silicone-gel interface assuming normal incidence is

T1 =
2Z(gel)

Z(gel) + Z(silicone)
,
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Figure S11.11 See Problem 11.8.

where
Z(gel) = 106

√
1.5× 1.4 = 1.4491× 106 .

This wave gets reflected at the gel-skin interface, where the pressure reflectivity is

R2 =
Z(skin)− Z(gel)
Z(skin) + Z(gel)

.

The above reflected wave gets transmitted back through the gel-silicone interface where the pressure trans-
mittivity is

T3 =
2Z(silicone)

Z(gel) + Z(silicone)
.

The amplitude of the echo from the gel-skin interface (and incident on the transducer) is

1× T1 ×R2 × T3 = 0.0172 .

The time of this echo is
t2 =

2s

c(silicone)
+

2g

c(gel)
= 6.537 µs .

This echo is superposed on the previous composite signal in Figure S11.11(e). The A-mode signal magnitude
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for two new overlapping intervals needs to be worked out. The first interval has three overlapping signals:

cos(2πft) + 0.0345 cos(2πf(t− t1)) + 0.0172 cos(2πf(t− t2)) ,

where t2 is given above. The magnitude of this wave is 1.02683. In the second overlapping region, the wave
is given by

0.0345 cos(2πf(t− t1)) + 0.0172 cos(2πf(t− t2)) ,

and the resulting magnitude is 0.04817.

(d) The amplitude of the echo from the skin is 0.0172, while the initial amplitude is 1. Therefore,

L = 20 log10 0.0172

= −35.289 dB .

The sign of L is negative because it is an attenuation or loss. Normally, we say that the system is sensitive
to L = 35.289 dB loss.

(e) c = fλ. So,

λ =
c(skin)

2 MHz
=

1, 550 m/s
2× 106 s−1

= 7.75× 10−4 m .

Then,
D2

λ
=

(3× 10−3 m)2

7.75× 10−4 m
= 0.0116 m = 1.16 cm .

Therefore, point F is in the far field because 5 cm > 1.16 cm.

(f) There are three relevant distances, dL, dC , and dR, corresponding to the distances from point F to the left,
center, and right transducers, respectively. These are:

dL =
√

(5× 10−2 + 8× 10−3)2 + (10× 10−2)2 ,

dC =
√

(5× 10−2)2 + (10× 10−2)2 ,

dR =
√

(5× 10−2 − 8× 10−3)2 + (10× 10−2)2 .

Now define:

τL =
dC − dL
c(skin)

=
0.1118− 0.1156

1, 550
= −2.435 µs ,

τC = 0 ,

τR =
dC − dR
c(skin)

=
0.1118− 0.1085

1, 550
= 2.129 µs .

Since we can’t have negative times, add −τL to all values, yielding

τL = 0 ,

τC = 2.45 µs ,
τR = 4.579 µs .
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ULTRASOUND IMAGING SYSTEM DESIGN AND IMAGE QUALITY
Solution 11.9

(a) Assuming the reflection coefficient of the line object is R0, the mathematical expression for the scatter is

R(x, y, z) = R0δ(x, z − 5) .

(b) The wavelength in the media at f = 2.5 MHz is

λ = c/f = 0.062 cm .

The range at which the beam changes from geometric/Fresnel to far field is

z0 = D2/λ = 16.2 cm .

Since the transducer face is a square, the transition between geometric field and the Fresnel field occurs at
D2/2λ = 8.1 cm. The scatter is located at a range of z = 5 cm. So the geometric assumption applies here.
The estimated reflectivity is:

R̂(x, y, z) = K

∣∣∣∣R0δ(x, z − 5)ej2kz ∗ ∗ ∗ s̃(x, y)ne

(
z

c/2

)∣∣∣∣ (S11.1)

= K

∣∣∣∣R0e
j2k5δ(x, z − 5) ∗ ∗ ∗ rect(x, y)ne

(
z

c/2

)∣∣∣∣ (S11.2)

= KR0

∣∣∣∣δ(x, z − 5) ∗ ∗ ∗ rect(x, y)ne

(
z

c/2

)∣∣∣∣ (S11.3)

= KR0

∣∣∣∣rect(x)ne

(
z − 5

c/2

)∣∣∣∣ , (S11.4)

where s̃(x, y) = s(−x,−y) = rect(x, y) is the transducer face indicator function and ne

(
z
c/2

)
is the

envelop of the narrowband pulse.

(c) From above, we see that at range z = 5 cm, in order to distinguish two line scatters at same range that are
parallel to the y-axis, we need to have them separated by at least 1 cm, which is the width of the transducer.

(d) At range z = 20 cm, the scatter is in the far field, we need to use Fraunhofer assumption. The estimated
reflectivity is:

R̂(x, y, z) =

∣∣∣∣R(x, y, z)ej2kz ∗
[
S
( x
λz
,
y

λz

)]2
ne

(
z

c/2

)∣∣∣∣ (S11.5)

=

∣∣∣∣R0δ(x, z − 20)ej2kz ∗
[
S
( x
λz
,
y

λz

)]2
ne

(
z

c/2

)∣∣∣∣ (S11.6)

= R0

∣∣∣∣δ(x, z − 20) ∗
[
S
( x
λz
,
y

λz

)]2
ne

(
z

c/2

)∣∣∣∣ , (S11.7)

where S(u, v) is the Fourier transform of the face shape indicator function s(x, y) = rect(x, y):

S(u, v) = sinc(u) sinc(v) .
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We have:

R̂(x, y, z) = R0 sinc2

(
x

λ(z − 20)

)
ne

(
z − 20

c/2

)∫ ∞
−∞

sinc2

(
y

λ(z − 20)

)
dy .

From the above, for a fixed z, the term that determines the minimal separation of two parallel line scatters at
same range is

sinc2

(
x

λ(z − 20)

)
.

In order to resolve two line scatters, they must be separated by at least a distance 2d, such that

sinc2

(
d

λ(z − 20)

)
< 0.5 .

The resolution depends on the depth.

Solution 11.10
Issues: Depth of penetration, Azimuth resolution, Speckle. First,

dp =
L

2af
=

100dB

2× 1× f
=

50

f(MHz)
.

If f = 5 MHz, dp = 10 cm. Hence f = 5 MHz is ruled out. Let dG denote the depth for geometric imaging. Then
dG = D2/λ.

Let BW denote the beamwidth at 20 cm. In particular, BWG denotes the beamwidth from the geometric
approximation, BGS beamwidth when using a square transducer, and BGC is the beamwidth if using a circular
transducer. Then,

BWG =

{
D if z ≤ D2/λ
λz
D if z > D2/λ.

BWS =

{
D if z ≤ D2/2λ
λz
D if z > D2/2λ.

BWC =

{
D if z ≤ D2/4λ
λz
D if z > D2/4λ.

Put these results into a chart:
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f = 1 MHz f = 2 MHz

D = 1 cm dp = 50 cm dp = 25 cm
λ = 0.15 cm λ = 0.075 cm
dG = 6.67 cm dG = 13.33 cm
BWG = 3.0 cm BWG = 1.5 cm
BWS = 3.0 cm BWS = 1.5 cm
BWC = 3.0 cm BWC = 1.5 cm

D = 2 cm dp = 50 cm dp = 25 cm
λ = 0.15 cm λ = 0.075 cm
dG = 26.67 cm dG = 53.33 cm
BWG = 2.0 cm BWG = 2.0 cm
BWS = 1.5 cm BWS = 2.0 cm
BWC = 1.5 cm BWC = 0.75 cm

There can be several choices:

• To get the best resolution for geometric imaging, one should choose D = 1 cm, f = 2 MHz;
• To get the best resolution if using circular transducer, one should choose D = 2 cm, f = 2 MHz;
• To get the best resolution if using square transducer, one should choose D = 1 cm, f = 2 MHz.

Solution 11.11

(a) Given an L× L transducer, we have:

s(x, y) = rect
( x
L

)
rect

( y
L

)
.

For, the first point scatter, we have,

R(x, y, z) = δ(x)δ(y)δ(z − z0) .

Hence, in the region, where geometric assumptions hold, we have

R′(x, y, z) = K

[
R(x, y, z)ej2kz ∗ ∗ ∗ s(x, y)ne

(
z

c/2

)]
= KR

[
δ(x) ∗ rect

( x
L

)] [
δ(y) ∗ rect

( y
L

)] [
ej2kzδ(z − z0) ∗ sinc

(
2πz

c∆T

)]
= KRej2kz0 rect

( x
L

)
rect

( y
L

)
sinc

(
2π(z − z0)

c∆T

)
.

Similarly, for the second scatter we have:

R′(x, y, z) = KRej2kz0 rect
( x
L

)
rect

( y
L

)
sinc

(
2π(z − z0 −∆Z)

c∆T

)
.
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(b) This part involves computing FWHM of a sinc function, which cannot be solved analytically. It involves
transcendental equations, which require numerical solutions. But, note that the FWHM of the sinc can be
approximated by the distance from the origin to the first zero the sinc.

(c) If S(u, v) is the Fourier transform of s(x, y), we have

S(u, v) = L2 sinc(Lu) sinc(Ly) .

Using the far field approximation, we have:

R′(x, y, z) = Rδ(x)δ(y)δ(z − z0)ej2kz ∗ ∗ ∗
[
S
( x
λz
,
y

λz

)]2
sinc

(
2πz

c∆T

)
= Rδ(z − z0)ej2kz ∗

[
S
( x
λz
,
y

λz

)]2
sinc

(
2πz

c∆T

)
= RL4ej2kz0 sinc2

(
L
x

λz

)
sinc2

(
L
y

λz

)
sinc

(
2π(z − z0)

c∆T

)
.

(d) This part involves computing FWHM of a sinc function.

Solution 11.12

(a) From the absorption coefficients in part (a) of Problem 10.15, we have

L5MHz = 40 cm× 1.74 dB · cm−1 = 69.6 dB ,
L12MHz = 40 cm× 4.176 dB · cm−1 = 167.04 dB .

(b) From the results of part (b) in Problem 10.15, range z = 20 cm is in the geometric region for the 5 MHz
transducer, while it is in the far field for the 12 MHz transducer. So for the 5 MHz transducer, the beamwidth
at 20-cm range equals the dimension of the transducer face, which is w = 2 cm. For the 12 MHz transducer,
the beam width is w = λz

D = 0.013 cm×20 cm
0.4 cm = 0.65 cm.

(c) The depth of penetration is 20 cm, the speed of sound is 1,560 m/s, so the pulse repetition rate TR ≥
2×20 cm

156,000 cm/s = 256µs. Therefore the maximal repetition rate is 1
256µs = 3, 906 Hz.

(d) F = 1
TRN

= 1
256µs×128 = 30 frames/s.

(e) This will cause geometric distortion since the estimated ranges are wrong due to the poor uniform speed
assumption.

Solution 11.13

(a) The depth of penetration in oil is

dp =
L

2α
=

65dB

2× 0.95dB/cm
≈ 34.2 cm .
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(b) The wavelength of sound in oil is

λ =
coil

f
=

1, 500m/s

106s−1
= 1.5× 10−3m = 0.15 cm .

Therefore,
D2

λ
=

12

0.15
≈ 6.67 cm .

Since z0 = 20 cm > 6.67 cm, the interface lies in the far-field. The beamwidth is approximately

w(z0) =
λz0

D
=

0.15× 20

1
= 3 cm .

(c) Z = ρc. Hence, the characteristic impedances of oil and fat are

Zoil = ρoilcoil = 950× 1, 500 kg m−2s−1 = 1.425× 106 kg m−2s−1 ,

and
Zfat = ρfatcfat = 920× 1, 450 kg m−2s−1 = 1.334× 106 kg m−2s−1 ,

respectively. Thus, the pressure reflectivity at the interface is

R =
1.334− 1.425

1.334 + 1.425
≈ −0.033 .

We can ignore the negative sign since it only indicates a phase change. The amplitude attenuation coefficient
inside oil is

µa =
α

8.686 dB
=

0.95dB/cm

8.686 dB
≈ 0.1094 cm−1 .

Thus, the amplitude of the returned pulse is

pr = Rpie
−2z0µa = 0.033× 20× e−2×20×0.1094 ≈ 0.0083(N/cm2) .

The amplitude gain is

20log10

pr
pi

= 20log10

0.0083

20
≈ −67.639(dB) .

Since the amplitude loss, which is 67.6 dB, is beyond the sensitivity of the system, the returning echo is
undetectable by the system. This does not conflict with (a), since the depth-of-penetration is computed by
assuming a perfect reflection from a target.

(d) The interface position is oscillating between 15 cm and 25 cm, with a period of f−1
0 = 0.01s = 10 ms. The

time needed for the sound to travel 25 cm is

25 cm
1, 500m/s

≈ 0.167 ms ,

which is negligible compared to the slow motion of the interface.

cos(2π × 100Hz× 0.167× 10−3s) ≈ 0.9945 ≈ 1 .

Hence, the pulse at t = 0 will hit the interface at z1 = 20 − 5 = 15cm. The amplitude loss for a return at
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15 cm will be
0.95× 2 + 20 log10R ≈ −58.1(dB) .

Hence, there will be signal shown on the A-mode scan, with a time of return about

tr =
2× 15 cm
1, 500m/s

= 0.2 ms .

(e) The transducer fires with the same period as the oscillation of the interface. Hence, each pulse hits the
interface at the same depth. The M-mode signal is a horizontal line at approximately 15 cm parallel to the
time axis.

Solution 11.14

(a) The speed of sound in the media is

c =
Z

ρ
=

1.35× 106 kg/m2 · s
920 kg/m3 = 1, 500 m/s .

At frequency of f = 2.5 MHz, the wavelength is:

λ = c/f = 0.06 cm .

The far field begins at range of

z = D2/λ = 0.5 cm× 0.5 cm/0.06 cm = 4.17 cm .

(b) Assume the transmitter/preamplifier can handle at most an 80 dB loss (this is typical in ultrasound systems),
then we have

2αdp = L .

So, α = L/2dp = 80 dB/2× 20 cm = 2 dBcm−1 .

(c) At a range z = 10 cm, the far field approximation holds. From the derivations in Problem 11.9 part (d), we
see that the lateral resolution of the transducer is related to

sinc2
( x
λz

)
= sinc2

( x

0.6 cm2

)
.

The FWHM is
FWHM = 0.88× 0.6 = 0.53 cm .

(d) With the depth of penetration of 20 cm, the time it takes for the ultrasound wave to make a round trip is:

TR = 2× 20cm/1, 500m/s = 2.67× 10−4s .

There are N =12 cm/1 mm = 120 scans in one frame. So the maximum frame rate is

F = 1/TRN = 31frames/s .

(e) Because the interface is perpendicular to the transducer axis, the incident wave, the reflected wave, and the
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transmitted wave all travel in the direction of transducer axis. So θi = θr = θt = π/2. The pressure
reflectivity is:

R =
Z2 − Z1

Z2 + Z1
=

1.7− 1.35

1.7 + 1.35
= 0.11 .

The amplitude of the reflected acoustic pressure is

A = 0.11×A010−
20×1.5

20 = 0.0035A0 .

Solution 11.15

(a) All quantities are in the appropriate units to apply the following equation dp = L
2af = 80

2·2 = 20 cm.

(b) The pulse repitition rate is given by fr = 1
TR

= c
2dp

= c
2·20 = 148,000

40 = 3, 700 per second. Remember to
convert from m/s into cm/s. So the frame rate is given by F = fr/256 = 14.4 frames per second.

(c) The distance between elements is d = 1
128 cm. The delays are given by

τi =
r0 − ri
c

=

√
52 + 102 −

√
(id− 5)2 + 102

148, 000
.

For i = 64 we get

τ64 =
11.18−

√
(64/128− 5)2 + 102

148, 000

=
11.18−

√
20.25 + 100

148, 000

=
11.18− 10.96

148, 000

= 0.00015 s .

(d) We can now use the pulse repetition rate, 3, 700 frames per second. The heart has frequency 500 cycles per
min = 8.3333 Hz. In M-mode we can sample a signal up to 3, 700/2 = 1, 850 per second without aliasing.
So there is no aliasing here. However, there is aliasing in the B-mode image, because we cannot sample a
signal with frequency higher than 14.4/2 = 7.2 per second without introducing aliasing.
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Solution 11.16

(a) Carry out the following math:

dp =
L

2af
,

dp,3 MHz =
90 dB

(2 dB
cm MHZ )(3 MHz)

= 15 cm

dp,6 MHz =
90 dB

(2 dB
cm MHZ )(6MHz)

= 7.5 cm .

(b) Focusing at a depth of z = 5 cm and θ = 20◦ gives us xf = 5 tan(20◦) = 1.82 and zf = 5.

If we set the transducer distance to be 2d, then we find the firing time for each i as follows:

t
(6)
i =

√
x2
f + z2

f −
√

(i(2d)− xf )2 + z2
f

c

=

√
(1.82 cm)2 + (5 cm)2 −

√
(i(2(0.04 cm))− 1.82 cm)2 + (5 cm)2

154, 000 cm/s

t
(6)
1 = .174µs

tmin = t
(6)
−2 = −.369µs

τ
(6)
i = t

(6)
i − tmin

τ
(6)
i = t

(6)
i + .369µs

τ
(6)
1 = .543µs

(c) The solution is the same as (b) except i is shifted over left one detector if i is positive, and right one detector
if i is negative. Also, we are focusing at a depth of z = 10 cm. So xf = 10 tan(20◦) = 3.64 and zf = 10.

t
(3)
i =

√
x2
f + z2

f −
√

((2i− sign(i))(d)− xf )2 + z2
f

c

=

√
(3.64 cm)2 + (10 cm)2 −

√
((2i− sign(i))(0.04 cm)− 3.64 cm)2 + (10 cm)2

154, 000 cm/s

t
(3)
2 = .262µs

τ
(3)
i = t

(3)
i − tmin

τ
(3)
i = t

(3)
i + .369µs

τ
(3)
2 = .631µs

(d) Since the two transducer types are identical outside of the frequency. The main value we will be comparing
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is when the amplitude of the traveling wave is larger for the 3MHz than for the 6Mhz. This amplitude is
described by the decay function (Equation 10.32), Az = A0e

−µaz .

We know that the attenuation coefficient, µa, is directly related to frequency in our case by µa = α/8.7 =
af/8.7. Hence:

µ3 MHz
a = 3 dB/cm =

3

8.7
= 0.345 np/cm

µ6 MHz
a =

6

8.7
dB/cm = 0.69 np/cm

so the switchover range is:

αzswitch = 30dB = 3 dB/cm× 2zswitch = 5 cm

(e) Knowing zswitch we can solve for the ratio:

A3 MHz
0 e−µ

3 MHz
a zswitch = A6 MHz

0 e−µ
6 MHz
a zswitch

A3 MHz
0 e−0.345 (np/cm)5cm = e0.69 (np/cm)5cm

A3 MHz
0

A6 MHz
0

= e−0.69 (np/cm)5cm−(−0.345 (np/cm)5cm)

= 0.178 .

HARMONIC IMAGING
Solution 11.17

(a) A1 = A0e
−µad = A0e

−f0/8.7d.

(b) Use linearity: G(t) = A1
2
π

∑∞
n=1(−1)n 1

n
1
2i (δ(f − nf0)− δ(f + nf0)).

(c) A2 = A1
1
π = A0e

−f0/8.7d 1
π . Then A3 = A0e

−f0/8.7d 1
π e
−2f0/8.7d = A0e

−3f0/8.7d 1
π .

(d) We observe that −20 log A3

A0
= L. So

L = −20 log e−3f0/8.7d
1

π

= −20 ln e−3f0/8.7d
1

π
/ ln(10)

= 20 · 3f0/8.7d/ ln(10) + 20 lnπ/ ln(10) ,

80 = 3f0d+ 9.94 ,

d = 23.35/f0

= 23.35/2.5

= 9.34 cm .

(e) We can use the simple formula dp = L
2α = L

2·8.7µa = L
2f1

= 80
10 = 8 cm. This is a 16% increase in depth of

penetration.
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(f) In the Fourier domain we can write our filter as a difference of two rect functions.

H(f) = rect(f/12MHz)− rect(f/8MHz)

= rect(f/12× 106)− rect(f/8× 106) .

The filter in the time domain is then

h(t) = 12× 106sinc(12× 106t)− 8× 106sinc(8× 106t) .
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Physics of Magnetic Resonance

MAGNETIZATION
Solution 12.1

The magnetic field B at z = 0 and z = 1 cm is

B(0) = 1 Tesla and B(1) = 1.5 Tesla .

The Larmor frequencies at these positions are

f(0) = 42.58 MHz and f(1) = 63.87 MHz .

The next time when the magnetization vectors on two planes have same phase is when |2πf(0)t− 2πf(1)t| = 2π.
Solve for t, we have

t = 0.047µs .

Solution 12.2
The static magnetic filed is oriented in z-direction, B(t) = B0ẑ. By substituting the equations (12.12) into

(12.7), we have on the left hand side:

dMx(t)

dt
= 2πν0M0 sinα sin (−2πν0t+ φ) ,

dMy(t)

dt
= −2πν0M0 sinα cos (−2πν0t+ φ) ,

dMz(t)

dt
= 0 .

On the right hand side:

γM(t)× B(t) = γM(t)×B0ẑ = γB0M0 sinα sin (−2πν0t+ φ)x̂− γB0M0 sinα cos (−2πν0t+ φ)ŷ ,

208
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where x̂, ŷ, and ẑ are the unit vectors in x, y, and z directions. Since ν0 = γB0, we have 2πν0 = γB0. It is easy to
see that equations (12.12) are solutions to (12.7).

Solution 12.3
The transverse magnetization is

Mxy(t) =

N∑
i=1

Aie
−t/T2i e−j(2πνit−φi) .

The Fourier transform of this time domain signal yields the NMR spectrum of the sample. This multispectral
character of the signal must be included as a constraint when designing appropriate imaging protocols when fat is
present; this includes most tissues other than brain.

RF EXCITATION AND RELAXATION
Solution 12.4

(a) The tip angle is given by

α = γ

∫ t

0

Be1(τ)dτ

= γ

∫ t

0

1

10

(
1− |τ − T |

T

)
dτ .

In the range 0 ≤ t ≤ T , we have

α = γ

∫ t

0

1

10

(
1− T − τ

T

)
dτ

= γ

∫ t

0

1

10

( τ
T

)
dτ

= γ
t2

20T
.

In the range T ≤ t ≤ 2T , we have

α = γ

∫ T

0

1

10

( τ
T

)
dτ + γ

∫ t

T

1

10

(
1− τ − T

T

)
dτ

=
γT

20
+

γ

10

∫ t

T

(
2− τ

T

)
dτ

=
γt

5
− γt2

20T
− γT

10
.

(b) At the end of the pulse, that is, at t = 2T , the angle is

α =
γ2T

5
− γT

5
− γT

10
=
γT

10
.
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To make B1(t) a π/2 pulse, we have

π/2 =
γT

10
⇒ T =

5π

γ
.

Solution 12.5
Both equations are first-order, ordinary differential equations and are therefore governed by a simple exponential

growth or decay. The initial value of Mz(t) is Mz(0) and the final value Mz(∞) satisfies

0 = −Mz(∞)

T1
+
M0

T
,

so Mz(∞) = M0. The solution is therefore given by

Mz(t) = (Mz(0)−M0)e−t/T1 +M0

= M0(1− e−t/T1) +Mz(0)e−t/T1 .

The initial value of Mxy(t) is Mxy(0) and the final value is 0. Therefore,

Mxy(t) = Mxy(0)e−t/T1 .

Solution 12.6
Use the equation

Mz(t) = M0(1− e−t/T1) +M0 cosαe−t/T1 .

The last term of the above equation denotes the initial magnetization after an α pulse. Let

Mn
z (t) = M0(1− e−t/T1) +MSS

z cosαe−t/T1 , (S12.1)

where MSS
z is the steady-state magnetization defined by

Mn
z (TR) = MSS

z . (S12.2)

From (S12.1) and (S12.2), we have

MSS
z = M0

1− e−TR/T1

1− cosαe−TR/T1
.

Solution 12.7

(a) It is given in the problem statement that the transverse magnetization is gone before the next imaging pulse
occurs; therefore,

Mxy(0−) = 0 .

The longitudinal magnetization recovery follows [see Equation (12.40)]

Mz(t) = M0(1− e−t/T1) +Mz(0
+)e−t/T1 .
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So, in the steady state, just before the next imaging pulse (at time t = TR) the z-magnetization is

Mz(0
−) = M0(1− e−TR/T1) +Mz(0

+)e−TR/T1 .

But Mz(0
−) and Mz(0

+) are also related by the flip angle α as follows

Mz(0
+) = Mz(0

−) cosα .

Substitution yields
Mz(0

−) = M0(1− e−TR/T1) +Mz(0
−) cosαe−TR/T1 .

which is solved as follows

Mz(0
−) =

M0(1− e−TR/T1)

1− cosαe−TR/T1
.

(b) Mz(0
−) is the effective longitudinal magnetization just prior to an imaging pulse. With reference to (12.39),

the transverse magnetization after the imaging pulse (ignoring the arbitrary phase and assuming demodula-
tion at the Larmor frequency) is

Mxy(TE) = Mz(0
−) sinαe−TE/T2

=
M0(1− e−TR/T1)

1− cosαe−TR/T1
sinαe−TE/T2 .

(c) Simplify the above expression as follows:

A = Mxy(TE) ,

M = M0 ,

R = e−TR/T1 ,

E = e−TE/T1 .

Then

A =
EM(1−R) sinα

1−R cosα
.

To maximize this with respect to α, take the derivative of A

dA

dα
=

EM(1−R)

1−R cosα
cosα+ (−1)EM(1−R) sinα(1−R cosα)−2R sinα ,

set it to zero, and solve for α, as follows

EM(1−R)

1−R cosα

(
cosα− R sin2 α

1−R cosα

)
= 0

cosα =
R sin2 α

1−R cosα

cosα−R cos2 α = R sin2 α

cosα = R(cos2 α+ sin2 α)

= R



212 CHAPTER 12: PHYSICS OF MAGNETIC RESONANCE

Therefore,
α = cos−1

(
e−TR/T1

)
,

which is known as the Ernst angle.

Solution 12.8

(a) Assume the sample is in equilibrium with magnetizations of Mx(0−) = My(0−) = 0 and Mz(0
−) = M0.

After the π-pulse applied at t = 0, the magnetizations are

Mx(0+) = 0 ,

My(0+) = 0 ,

Mz(0
+) = −M0 .

After a delay of τ , the magnetizations become

Mx(τ−) = 0 ,

My(τ−) = 0 ,

Mz(τ
−) = M0

(
1− 2e−τ/T1

)
.

In the time interval (0, τ), since there is no precession about the B0 field, there is no FID signal. After the
π/2-pulse, the bulk magnetization is tilted into x-y plane. Assume the π/2-pulse is applied along the y-axis,
we have:

Mx(τ+) = M0

(
1− 2e−τ/T1

)
,

My(τ+) = 0 ,

Mz(τ
+) = 0 .

The bulk magnetization then precess around the B0 field to generate FID signal:

Mxy(t) = M0

(
1− 2e−τ/T1

)
e−(t−τ)/T2e−2πν0(t−τ), t > τ .

(b) From the above derivation, we can see that the strength of the FID signal depends on the delay τ . If we can
take a measure right after the π/2-pulse, the signal strength is M0

(
1− 2e−τ/T1

)
. Therefore we can use two

different values for the delay τ = τ1 and τ = τ2. The signal strength measured right after the π/2-pulse are:

M (1)
xy (τ1) = M0

(
1− 2e−τ1/T1

)
,

M (2)
xy (τ2) = M0

(
1− 2e−τ2/T1

)
.

Solve the above equations, we can determine T1.
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BLOCH EQUATIONS AND SPIN ECHOES
Solution 12.9

The Bloch equation is given as
dM

dt
= γM ×B −R[M −M0] . (S12.3)

M × B and R[M −M0] apply in any frame. Assume that the rotating frame rotates with angular frequency Ω
with respect to the lab frame and that M ′ is the magnetization vector in the rotating frame (B′ is B in the rotating
frame). From classical mechanics, we have

dM

dt
=
dM ′

dt
+ Ω× dM ′

dt
. (S12.4)

Using Equations S12.3 and S12.4, we get

dM ′

dt
= γM ′ ×B′ −R[M ′ −M0]− Ω× dM ′

dt
.

Solution 12.10

(a) Different isochromats in a sample precess in different frequencies around the B0 filed. The difference in
precession frequency causes the progressive defocusing of the isochromats after their magnetization vectors
are rotated to the x-y plane (see Figure 12.8). After the π-pulse applied at time t = τ , the magnetization
vectors are flipped in the transverse plane and the faster precessing vectors are lagging behind the slower
ones. The time it takes to rephase (for the faster precessing vectors to catch the slower ones) equals τ . A
phase coherence will be recreated at time t = 2τ to generate an echo. Therefore, the π-pulse should be
applied at t = TE/2 in order to generate an echo at t = TE .

(b) Suppose the sample is in equilibrium with magnetization Mz(0
−) = M0. The π/2-pulse is applied at t = 0.

This pulse rotates the bulk magnetization vector into the x-y plane:

Mxy(0+) = M0 .

The series of π-pulses will flip the magnetization in the transverse plane and form echoes at t = (k+1/2)TE ,
k = 1, 2, · · · . The magnitude of the transverse magnetization decays with constant T2. So

Mxy(kTE) = M0e
−kTE/T2 .

Solution 12.11
15◦ × 2π

360◦ = 2π × 42.6× 106 Hz/T×A× 10−5s⇒ A = 9.78× 10−5T .

Solution 12.12

(a) Just before applying the π pulse, the phase angle is given by

φ(r, τ−) = −γ(B0 + ∆B(r))τ .
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The π pulse will cause the magnetization vectors to rotate about the y axis by 180-degrees. The vector on
the +x axis goes to the −x axis (a phase difference of π) and vectors that were leading are now lagging (by
the same amount). Therefore, the phases are given by

φ(r, τ+) = π + γ(B0 + ∆B(r))τ .

(b) Magnetization vectors that were leading at τ− are lagging at τ+, and since they will continue to precess
faster they will be in phase after the second time interval of τ . Therefore, at time TE = 2τ , the phase will
be π.

(c) An echo will form at TE throughout the image plane, regardless of the presence of a spatially varying
gradient.

CONTRAST MECHANISM
Solution 12.13

In PD-weighted images, the image intensity should be proportional to the number of hydrogen nuclei in the
sample. We start with the sample in equilibrium, apply an excitation RF pulse, and image quickly, before the signal
has a chance to decay from T2 effects. Thus, a PD-weighted contrast can be obtained by using a long TR, which
allows the tissues to be in equilibrium, and either no echo or a short TE . The preferred tip angle is π/2, in order to
get the maximum signal. Large TE cannot be used because it will introduce large T2 decay.

Solution 12.14

(a) The magnitude of the transverse magnetization is given as:

|Mxy(t)| = |MSS sinαejφe−t/T2 |

= M0
1− e−TR/T1

1− cosαe−TR/T1
sinαe−t/T2 .

Now, α = π/2, also the signal is measured just after excitation, so t = 0. Hence,

|Mxy| = M0

(
1− e−TR/T1

)
.

The local contrast between GM and CSF can be written as:

C =
|Mxy|CSF − |Mxy|GM

|Mxy|CSF
=
e−TR/T

CSF
1 − e−TR/TGM

1

1− e−TR/TCSF
1

This function is a monotonically decreasing function of TR. Thus, lower the TR, better the contrast. How-
ever, we cannot have an arbitrarily low TR. It has to be approximately in the range of T1, to allow a
reasonable decay. A good contrast can be obtained by using TR = TGM

1 = 760 ms.

(b) The contrasts can be obtained by plugging in values in the above equation.
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Solution 12.15

(a) This is not a T2-weighted contrast. In order to obtain a T2-weighted contrast we need to include spin echoes
in the pulse sequence.

(b) We would need to use spin echoes as in Figure 12.9.

(c) Reasonable values for the parameters:

τ . The sampling should be done at twice the pulse period TE , since at that time, the dephasing due to T ∗2 is
completely removed and the signal truly represents T2.

TR. In order to bring the tissue back to equilibrium, in between the pulses, TR should be as long as possible.
In practice, however, 6,000 ms is an unusually long repetition time and is impractical.

TE . The echo time should be approximately equal to the T2 values of the tissue being imaged.

α. The tip angle should be π/2 to obtain the maximum signal.

Flip angle: During the echo, the transverse vector should be shifted by a phase angle of π.
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Magnetic Resonance Imaging

MR IMAGING INSTRUMENTATION
Solution 13.1

The magnetic field is still oriented in the z direction. But the strength of the field is not uniform. At points
with same x-coordinates, the magnetic fields have the same strength. At points with different x-coordinates, the
magnetic field have different strength. The difference depends on the difference in x-coordinates and the magnitude
of the gradient.

Solution 13.2
The functions of RF coils are twofold. (1) During radio frequency excitation, a relatively large amount of current

is generated in the coil using an RF amplifier (with a power requirement of approximately 2 kW for human imaging).
Ideally, this coil then produces a relatively uniform B1 field throughout the entire imaging volume in order that the
same tip angle is generated in each isochromat in the volume. (2) On reception, an RF coil must pick up very
low-amplitude magnetic fields, which produce very small currents in the coil. Transmission and receiver RF coils
can be the same coil but are different when high SNR or fast imaging is required.

ENCODING SPATIAL POSITION AND MR IMAGING EQUATION
Solution 13.3

(a) We have
∆ν = γGz∆z = 4.258 kHz× 1 G/mm× 10 mm = 42.58 kHz .

(b) We have
B1(t) = A∆ν sinc(∆νt)ej2πν̄t ,

where ν̄ = z̄γGz + γB0 = 212.9 kHz + γB0. Therefore, we have:

B1(t) = A× 42.58 sinc 42.58tej2π212.9tej2πγB0t .

In rotating frame,
B1(t) = A× 42.58 sinc 42.58tej2π212.9t ,

216



217

where A depends on the tip angle.

Solution 13.4

(a) Start with the Fourier transform pair
F{e−πt

2

} = e−πu
2

.

Then since

A0 exp{−t2/σ2} = A0 exp

{
π

(
t√
πσ

)2
}
,

we can use the Fourier scaling theorem to get

F
{
A0 exp{−t2/σ2}

}
= A0

√
πσ exp

{
−π2σ2u2

}
.

The FWHM is found as follows:

1/2 = exp
{
−π2σ2u2

}
,

ln(1/2) = −π2σ2u2 ,

u2 =
1

π2σ2
ln 2 ,

u =

√
1

π2σ2
ln 2 = 265 Hz ,

FWHM = 2× 265 Hz = 530 Hz .

This defines the frequency interval that is excited ∆ν = 530 Hz, and using Equation (13.12) gives

∆z =
530 Hz

42.58× 106 Hz/T10−4 T
cm = 1.2 mm .

(b) The new gradient strength is G′z = 0.5Gz . So, the new slice thickness is

∆z =
∆ν

γG′z

=
∆ν

γ0.5Gz
= 2×∆z .

Halving the gradient strength doubles the slice thickness. Now suppose that σ′ = 0.5σ. Starting from the
original (without using G′z), we have from previous work that

u′ =

√
1

π2σ′2
ln 2

=
1

σ′

=
1

0.5σ′

√
1

π2
ln 2

= 2u .
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Therefore, the new frequency range ∆ν′ is double what it was before, which doubles the slice thickness. If
used in combination, the slice thickness would be four times thicker.

(c) In this case, only the RF pulse is changed, so the slice thickness is doubled: ∆z′ = 2.4 mm.

(d) Doubling the slice thickness improves the SNR by a factor of two. The overall imaging time is slightly
smaller (although this will not affect SNR since the actual ADC time is unaffected). Image resolution will
be degraded in the through-plane direction.

Solution 13.5
The RF signal is given by

s(t) = A∆ν sinc(∆νt)ej2πν̄t.

For isochromats whose Larmor frequency is ν, the excitation signal in the rotating coordinate system is

Be1(t) = s(t)e−j2πνt .

The duration of the above signal is from −∞ to∞. So the tip angle is:

α(ν) = γ

∫ ∞
−∞

Be1(t)dt

= γ

∫ ∞
−∞

A∆ν sinc(∆νt)ej2πν̄te−j2πνtdt

= γA∆ν

∫ ∞
−∞

sinc(∆νt)e−j2π(ν−ν̄)tdt

= γA

∫ ∞
−∞

sinc(τ)e−j2π
ν−ν̄
∆ν τdτ, let τ = ∆νt

= γA rect

(
ν − ν̄
∆ν

)
.

The slice location z and the Larmor frequency ν are related by the following equation:

z =
ν − γB0

γGz
.

Therefore,

z̄ =
ν̄ − γB0

γGz
,

∆z =
∆ν − γB0

γGz
,

which lead us to

rect

(
ν − ν̄
∆ν

)
= rect

(
z − z̄
∆z

)
.

So, the tip angle is

α(z) = γA rect

(
z − z̄
∆z

)
.
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Solution 13.6
Slice selection uses a narrowband RF excitation during a constant gradient (taken to be in the z direction without

loss of generality). Spins on the high-frequency side of the slice accumulate transverse phase faster than spins on
the low-frequency side. When the slice selection pulse ends, all spins rotate at the Larmor frequency, but are out
of phase across the slice, and may add destructively during imaging. From Section 13.2.2, we know that the ideal
slice selection excitation signal is (Equation 13.14)

s(t) = A∆ν sinc(∆νt)ej2πν̄t .

In addition to required truncation, which we ignore in this derivation, this pulse must be shifted to a positive time,
τp/2, where τp is the duration of the slice selection gradient. This shift in time implies a phase shift of its frequency
content, that is,

S(ν) = A rect

(
ν − ν̄
∆ν

)
ej2π(ν−ν̄)τp/2 .

This frequency spectrum forms the following spatial excitation

S(z) = A rect

(
z − z̄
∆z

)
ej2πγGz(z−z̄)τp/2 .

Application of a z gradient with strength −Gz for a duration τp/2 will exactly cancel this phase accumulation.

Solution 13.7
The reconstruction process will presume the following frequencies

u = γGxt ,

v = γAy .

A Fourier transform function (a discrete matrix, in practice) will be formed as follows

F (u, v) = s0

(
u

γGx
,
v

γ

)
,

= Ae−u/γGxT2

∫ ∞
−∞

∫ ∞
−∞

M(x, y; 0+)e−j2πxue−j2πyv dx dy .

Thus, F (u, v) is a product of the Fourier transform of M(x, y; 0+) with another Fourier function. This implies that
the inverse transform of F (u, v) will be M(x, y; 0+) convolved with a spatial kernel that depends only on x. At the
very least, the magnetization will be blurred to some extent in the x direction because of this term.

To find a mathematical description of this impulse response function requires an understanding of the pulse
sequence used. If the readout gradient is large, then the readout time Ts will be short, and the effect of the T2 decay
will be minimized. In this case, the Fourier resolution of the scan adequately describes the effect of this term. If the
readout is long, however, then T2 could have a significant effect.

Given the pulse sequence shown in Figure 13.10, we can assume that frequencies in the range 0 ≤ u ≤ γGxTs
are acquired for all v. The complete Fourier transform is reassembled by conjugate symmetry. In this case, the
function actually multiplying the Fourier transform of M(x, y; 0+) is given by

H(u, v) = exp {−|u|/γGxT2} ,
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which is separable as follows:

H1(u) = exp {−|u|/γGxT2} ,
H2(v) = 1 .

From tables or direct calculation, we have the Fourier transform pair

F
{
e−|x|

}
=

2

1 + (2πu)2
.

Therefore, we have

h1(x) =
2γGxT2

1 + (2πγGxT2x)2
,

h2(y) = δ(y) .

Ignoring all constant amplitude terms, the reconstructed image is

f(x, y) = M(x, y; 0+) ∗ 1

1 + (2πγGxT2x)2
δ(y) ,

h1(x) is a “Gaussian-like” function that gets wider as the product GxT2 gets smaller. Thus, this demonstrates that
slower readouts or faster T2’s will cause blurring in the readout direction because of transverse relaxation.

It is worth noting that if the pulse sequence scans across the v axis, acquiring both positive and negative u
frequencies, then conjugate symmetry will not hold because of this term. In this case, the reconstruction will be
both blurred, and will be a complex-valued image.

Solution 13.8

(a) The phase that is accumulated during a time-varying x gradient pulse is

φ(t) = γ

∫ t

0

Gx(τ)x(τ) dτ .

Therefore, the phase accumulation for the given gradient waveform and x trajectory is

φ(T ) = γ

∫ T

0

G(τ)(x0 + vτ) dτ

= γ

∫ T

0

G(τ)x0 dτ + γ

∫ T

0

G(τ)vτ dτ

= 0 + γ

∫ T/2

0

(−G)vτ dτ + γ

∫ T

T/2

(G)vτ dτ

= −Gγ vτ2

2

∣∣∣∣T/2
0

+Gγ
vτ2

2

∣∣∣∣T
T/2

= Gγ
vT 2

4
.

(b) Intuitively, we see that the final phase should be zero. This is because (1) the pulse has zero area, so the term
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related to x0 will cancel out and (2) starting at t = T , the pulse is symmetric in comparison to the first half,
starting at t = 0, so the accumulated phase due to velocity in the second half should be the negative of that
of the first half. We now go through the calculations:

φ(2T )

γ
=

∫ 2T

0

G(τ)(x0 + vτ) dτ

=

∫ T/2

0

(−G)(x0 + vτ)dτ +

∫ 3T/2

T/2

G(x0 + vτ)dτ +

∫ 2T

3T/2

(−G)(x0 + vτ)dτ

=

∫ T/2

0

(−G)x0dτ +

∫ T/2

0

(−G)vτdτ +

∫ 3T/2

T/2

Gx0dτ +

∫ 3T/2

T/2

Gvτdτ

+

∫ 2T

3T/2

(−G)x0dτ +

∫ 2T

3T/2

(−G)vτdτ

= −Gx0
T

2
+
−Gvτ2

2

∣∣∣∣T/2
0

+Gx0T +
Gvτ2

2

∣∣∣∣3T/2
T/2

+ (−G)x0
T

2
+
−Gvτ2

2

∣∣∣∣2T
3T/2

=
−Gv(T/2)2

2
+
Gv(3T/2)2

2
− Gv(T/2)2

2
+
−Gv(2T )2

2
− −Gv(3T/2)2

2

=
−GvT 2

8
+

9GvT 2

8
− GvT 2

8
+
−4GvT 2

2
− 9(−G)vT 2

8

= (−1 + 9− 1− 16 + 9)
GvT 2

8
= 0 .

(c) Integrals are linear operators, so we can use the results of previous parts. (In fact, we should have done this
in part (b), but it was a good check to do it out anyway.) Using past results we can find the phase for the first
waveform as follows:

φ1(T )

γ
= 0 +

GvT 2

4
+

∫ T/2

0

(−G)
1

2
aτ2dτ +

∫ T

T/2

G
1

2
aτ2 dτ

=
GvT 2

4
+
−Ga

2

τ3

3

∣∣∣∣T/2
0

+
Ga

2

τ3

3

∣∣∣∣T
T/2

=
GvT 2

4
+
−Ga

2

(T/2)3

3
+
Ga

2

T 3

3
− Ga

2

(T/2)3

3

=
GvT 2

4
+
GaT 3

6
.
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For the second waveform, we get

φ2(2T )

γ
= 0 + 0 +

∫ T/2

0

(−G)
1

2
aτ2dτ +

∫ 3T/2

T/2

G
1

2
aτ2 dτ +

∫ 2T

3T/2

(−G)
1

2
aτ2 dτ

=
−GaT 3

48
+
Ga

2
τ33

∣∣∣∣3T/2
T/2

+
−Ga

2
τ33

∣∣∣∣2T
3T/2

=
−GaT 3

48
+
Ga(3T/2)3

6
− Ga(T/2)3

6
+
−Ga(2T )3

6
− −Ga(3T/2)3

6

=
−GaT 3

48
+

27GaT 3

48
− GaT 3

48
− 64GaT 3

48
+

27GaT 3

48

= (−1 + 27− 1− 64 + 27)
GaT 3

48

=
−GaT 3

4
.

We see that the first gradient waveform has phase effects from both velocity and acceleration, while the
second only has phase effects from acceleration.

(d) We use the same “trick” that took us from part (a) to part (b). We invert the pulse sequence in part (b) and
replay it, as shown in Figure S13.1. The static position term and the velocity is still nulled because the
integrals evaluated in the second phase are still zero. The acceleration term is now nulled as well, since the
integral will be negated.

Figure S13.1 See Problem 13.8.

(e) It is possible. Now we need to show it. Consider the general gradient pulse of height A and duration T
starting at t0. Suppose a particle has the position r(t) = x + vt + at2/2. What is the phase accumulation
after this pulse? We have gone through this exercise above, but in not quite this general way. Here we do it
again.

φ

γA
=

∫ t0+T

t

(x+ vτ +
aτ2

2
)dτ

= xT +
v

2
(T 2 + 2t0T ) +

a

6
(3t20T + 2T 2t0 + T 3) ,

where the second equation follows after some algebra. Now consider a sequence of three pulses starting
at t = 0, with heights A, B, and C, and each of duration T . What is the phase accumulation after this
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sequence? We apply the previous result three times and add the result.

φ

γ
= xAT +

Av

2
(T 2) +

Aa

6
(T 3)

+BxT +
Bv

2
(3T 2) +

Ba

6
(7T 3)

+CxT +
Cv

2
(5T 2) +

Ca

6
(19T 3) ,

where the second equation follows after some algebra. Now the sequence should be independent of position,
which implies

A+B + C = 0 .

And the phase should be dependent on velocity, so the sum of the coefficients multiplying v should not be
zero, for convenience, we make that sum equal to T 2/2, which implies

A+ 3B + 5C = 1 .

And finally, there should be no dependence on acceleration, which implies

A+ 7B + 19C = 0 .

Solving these equations for A, B, and C yields

A = −1 ,

B = 1.5 ,

C = −0.5 .

The implied pulse sequence is shown in Figure S13.2.

Figure S13.2 See Problem 13.8.

Solution 13.9

(a) The sampling interval is

T =
10 ms

256
= 39.1µs

The FOV in the x-direction is

FOVx =
1

42.58 MHz/T× 1 G/cm× 39.1µs
= 6 cm
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(b) The (nominal) pixel size is
∆x =

FOVx

256
= 0.234 mm

The spatial extent of the cube is 5 cm, so the number of pixels across the object is 50 mm/0.234 mm =
213.3.

(c) Halving the gradient, doubles the FOV. Doubling the readout time, while keeping the number of samples
the same doubles T , which in turn halves the FOV. Thus, there is no net effect on the FOV by making these
collective changes.

(d) This pulse sequence will require reassembling Fourier space by conjugate symmetry. It will scan higher
spatial frequencies than the previous pulse sequence. Nevertheless, the answers to (a) to (c) are the same.

Solution 13.10

(a) Use the following algebraic manipulation:

f = AM0 sinαe−TE/T2
1− e−TR/T1

1− cosαe−TR/T1

f(1− cosαe−TR/T1) = AM0 sinαe−TE/T2(1− e−TR/T1)

f − f cosαe−TR/T1

sinα
= AM0e

−TE/T2(1− e−TR/T1)

f

sinα
= e−TR/T1

f

tanα
+AM0e

−TE/T2(1− e−TR/T1)

(b) Let

x =
f

tanα
,

y =
f

sinα
.

Then the equation proven in part (a) becomes

y = e−TR/T1x+AM0e
−TE/T2(1− e−TR/T1) ,

which is the equation of a line with slope
m = e−TR/T1

and y-intercept
b = AM0e

−TE/T2(1− e−TR/T1) .

Since only x and y will vary when we change α, the computed points from the three acquisitions will form
different points on the same line.
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(c) The slope of a line is found as follows:

m =
y2 − y1

x2 − x1

=
f2/ sinα2 − f1/ sinα1

f2/ tanα2 − f1/ tanα1
.

Since m = e−TR/T1 , we have

T̂1 =
−TR
lnm

=
−TR

ln
(
f2/ sinα2−f1/ sinα1

f2/ tanα2−f1/ tanα1

)
=

TR
ln(f2/ tanα2 − f1/ tanα1)− ln(f2/ sinα2 − f1/ sinα1)

.

SAMPLING THE FREQUENCY SPACE
Solution 13.11

The basic relationship between the pulse sequence parameters and the Fourier frequencies is

u = γGxt ,

v = γAy .

There are four regions to consider.

(1) 0 ≤ t ≤ 1 ms: The u component is given by

u = γGxt

= 4, 258 Hz/G× 10 G/cm t

= 4, 258 mm−1 s−1 t .

The v component requires a determination of the area of the y gradient as a function of time. Since

Gy(t) =
10 G/cm

1 ms
t

= 1× 103 G
mm

s−1 t .

the area is

Ay(t) =

∫ t

0

Gy(τ) dτ

= 1× 103 G
mm

s−1 t
2

2
.
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Therefore,

v = γAy(t)

= 4, 258 Hz/G× 1× 103 G
mm

sec−1 t
2

2

= 2.129× 106 mm−1 sec−2 t2 .

Writing v in terms of u yields:
v = 0.117u2 ,

both in units of mm−1. Thus, the first segment of the Fourier trajectory is a parabola, starting at u = v = 0
and ending at (u, v) = (4.258, 2.129) mm−1.

(2) 1 ms ≤ t ≤ 2 ms: In this interval, u is the same as in the previous interval. However, although v continues to
increase, its rate of increase is decreasing. We have

Gy(t) = 20 G/cm− 10 G/cm
1 ms

t

= 2
G

mm
− 1× 103 G

mm
s−1 t .

Ay(t) =

∫ t

1 ms
Gy(τ) dτ

= 2τ − 1× 103 τ
2

2

∣∣∣∣t
0.001 s

= −500t2 + 2t− 0.001 .

The vertical spatial frequency is then

v = γAy(t)

= 4, 258(−500t2 + 2t− 0.001)

= −2.129× 106 t2 + 8, 516t− 4.258 .

This is a quadratic function that peaks at t = 2 ms. The final value (at 2 ms) is v = 4.258 mm−1.

(3) 2 ms ≤ t ≤ 3 ms: This range can be worked out in a fashion similar to the work in intervals (1) and (2).
However, it is not necessary to do this since there is symmetry in the gradient pulses. Since both gradients
are negative in this range, their Fourier trajectories will be decreasing. Since Gx is constant, u will decrease
with uniform speed. Since Gy is a linear function with negative slope, it will cause the v component of the
trajectory to behave parabolically, as in intervals (1) and (2). For a given increment in time (and equivalently
a decrement in u), the drop in area in this time interval starts off small and gets larger over time. Therefore,
by appealing to symmetry, we see that the trajectory will trace over that of interval (2).

(4) 3 ms ≤ t ≤ 4 ms: Using a similar argument to that in interval (3), we see that this trajectory is identical to that
in interval (1), only traveling toward the origin.

A sketch of the resulting Fourier trajectory is shown in Figure S13.3. Since the net area of the two gradients is zero,
this pulse sequence ends exactly where it starts—at the origin.
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Figure S13.3 [Problem 13.11]

Solution 13.12

(a) In this interval, the Fourier trajectory goes from the origin to the point (−0.25,−0.5) mm−1. Using the
relations:

u = γGxt ,

v = γGyt ,

leads to

Gx =
u

γt
=

−0.25 mm−1

4, 258 Hz/G 0.0001 s
= −0.587 G/mm .

Gy =
v

γt
=

−0.5 mm−1

4, 258 Hz/G 0.0001 s
= −1.174 G/mm .

(b) A similar argument as in (a) leads to

Gx =
∆u

γTs
=

0.5 mm−1

4, 258 Hz/G 0.01 s
= 11.7 mG/mm ,

Gy =
∆v

γTs
=

1.0 mm−1

4, 258 Hz/G 0.01 s
= 23.5 mG/mm .

The sampling rate is

fs =
128

10 ms
= 12.8 kHz .

Solution 13.13
The required timing diagram is shown in Figure S13.4. The timings and the amplitudes of the gradients:

kx = γ

∫
Gx dt, ky = γ

∫
Gydt

are determined by

−1 mm−1 = −1, 000 m−1 = 42.6× 106 × (−G1)× t1 ⇒ G1 × t1 = 23.5× 10−6

(
T · s

m

)

0.5 mm−1 = 500 m−1 = 42.6× 106 ×G2 × t1 ⇒ G2 × t1 = 11.7× 10−6

(
T · s

m

)
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Figure S13.4 See Problem 13.13.

2 mm−1 = 2000 m−1 = 42.6× 106 ×G1 × t2 ⇒ G1 × t2 = 47× 10−6

(
T · s

m

)
0.1 mm−1 = 100 m−1 = 42.6× 106 ×G3 × t3 ⇒ G3 × t3 = 2.3× 10−6

(
T · sec

m

)
−2 mm−1 = −2, 000 m−1 = 42.6× 106 × (−G1)× t4 ⇒ G1 × t4 = 47× 10−6

(
T · s

m

)
Now, let G1 = 10 mT/m, G2 = 5 mT/m, and G3 = 1 mT/m. Then, t1 = 2.3 ms, t2 = 4.7 ms, t3 = 2.3 ms, and

t4 = 4.7 ms.

Solution 13.14
Suppose the objects are at positions yo and y1. Also, let’s suppose that the amplitude of the signal from the point

samples is A0 and A1 respectively. If we acquire data from a pulse sequence, such as that shown in Figure 13.15,
with Gy = G0

y , we can apply a Fourier transform to the signal to yield a profile So(x). Because the two point objects
are at the same x coordinate, we are only interested in the value of the profile at So(xo). We can write the equation
for the amplitude and phase of this value as

S0(xo) = A0e
−iγ(G0

ytyyo) +A1e
−iγ(G0

ytyy1) . (S13.1)

In a separate acquisition, if we acquire data with Gy = G1
y , the amplitude and phase of this point in the profile

becomes

S1(xo) = A0e
−iγ(G1

ytyyo) +A1e
−iγ(G1

ytyy1) . (S13.2)

Because the Si(xo) are complex, the above equations represent four equations in four unknowns (Ao, A1, yo, y1);
therefore, if Ao, A1 are real numbers, we can determine the y coordinates of the objects exactly.

Solution 13.15
All three pulses are concerned with the phase of the precessing transverse magnetization. The refocusing lobe is

correcting the linear phase that is produced by the slice selection pulse. This is done by applying a negative gradient
to that of the slice selection for a duration half of that of the slice selection gradient. The phase-encoding gradient
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is deliberately applying a linear phase in the phase encode (y) direction, so that Fourier space position is encoded.
The gradient echo formation lobe can be called a prefocusing lobe, since it essentially corrects the phase prior to
the readout gradient so that the spins are in phase at the center of the readout gradient.

Since all these phase corrections are accomplished by either increasing or decreasing the Larmor frequency in a
spatially encoded fashion, they can all be combined. The net effect will be that the overall phase of each point will
arrive at its correct final value faster than if each of these corrections had been done sequentially.

MR IMAGE RECONSTRUCTION
Solution 13.16

(a) The baseband signal is given by

s0(t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πγGxxte−j2πγGyyt dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πγG cos θ xte−j2πγG sin θ yt dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πγGt(x cos θ+y sin θ) dx dy .

(b) The Fourier transform of f(x, y) is

F (u, v) = Ae−j2πu +Be+j2πv .

The baseband signal is sampling the Fourier transform according to the following formulas

u = γGt cos θ ,

v = γGt sin θ .

When θ = 0, we have

u = γGt ,

v = 0 ,

and therefore
s0(t)|θ=0◦ = F (γGt, 0) = Ae−j2πγGt +B .

This is a complex signal having two components, as shown in Figure S13.5(a). Similar reasoning yields the
following baseband signal for θ = 90◦

s0(t)|θ=90◦ = F (0, γGt) = A+Be+j2πγGt ,

which is shown in Figure S13.5(b).

(c) This is a polar scanning technique. In order to image the cross section (rather than just a projection of
the cross section), one needs to apply this basic pulse sequence for different values of θ ranging over 180
degrees, say 0 ≤ θ < π. This will cover half of Fourier space. The remainder is filled in using conjugate
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Figure S13.5 Baseband signals. See Problem 13.16.

symmetry:
F (u, v) = F ∗(−u,−v) .

Since data are acquired along rays passing through the origin (and conjugate symmetry assures us that the
data are defined in both directions), we can use convolution backprojection to do the reconstruction.

Solution 13.17
First, it is useful to see what happens during standard rectilinear scanning. All aspects of imaging are linear. So,

the object can be decomposed and analyzed separately:

f(x, y) = f1(x, y) + f2(x, y) ,

where f2(x, y) corresponds to the point object in the perturbed field. By linearity, the resultant baseband signal is
the sum

s0(t) = s1(x, y) + s2(x, y) .

During phase encoding, a phase equal to 2πγ∆BTp, where Tp is the duration of the phase encode pulse, is added
to the signal arising from f2(x, y). During readout, a phase equal to −2πγ∆Bt accumulates. Putting both terms
together yields the baseband signal equation for f2(x, y)

s2(t) =

∫ ∞
−∞

∫ ∞
−∞

f2(x, y)ej2πγ∆BTpe−j2πγ∆Bte−j2πγGxxte−j2πγGyTpy dx dy .

Using the usual equivalences

u = γGxt ,

v = γGyTp ,

yields

F̂ (u, v) = ej2πγ∆BTpe−j2π(∆B/Gx)u

∫ ∞
−∞

∫ ∞
−∞

f2(x, y)e−j2π(ux+vy) dx dy .

The inverse Fourier transform of F̂ (u, v) is

f̂(x, y) = ej2πγ∆BTpf(x− (∆B/Gx), y) .

The leading phase term is irrelevant, since the complex modulus is typically displayed. The second phase term,
since it was a linear phase term in the x-direction causes a shift of f2 in the x-direction by ∆B/Gx. Thus, the
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relative positions of f1(x, y) (which will be reconstructed correctly) and f2(x, y) will be altered in the x-direction,
but otherwise, the two point functions will be reconstructed correctly as point functions.

Reconstruction using the 2-D projection (polar scanning) method leads to a different—less desirable—result,
primarily because the readout direction is different with each excitation pulse. With no phase encoding in this pulse
sequence, there is no leading phase constant. However, both x and y gradients are on at the same time, in general.
This gives the baseband signal for f2(x, y) as follows

s2(t) =

∫ ∞
−∞

∫ ∞
−∞

f2(x, y)e−j2πγ∆Bte−j2πγ(Gxx+Gyy)t dx dy .

Let the gradients be given by

Gx = Ḡ cos θ ,

Gy = Ḡ sin θ ,

and make the spatial frequency associations

u = γGxt ,

v = γGyt .

Then it follows that
% =

√
u2 + v2 = γtḠ ,

and the observed signal becomes

Ĝ(%, θ) = s0

(
%

γḠ

)
=

∫ ∞
−∞

∫ ∞
−∞

f2(x, y)e−j2π(∆B/Ḡ)%e−j2π(x% cos θ/Ḡ+y% sin θ/Ḡ) dx dy

= e−j2π(∆B/Ḡ)%

∫ ∞
−∞

∫ ∞
−∞

f2(x, y)e−j2π(x% cos θ/Ḡ+y% sin θ/Ḡ) dx dy

= e−j2π(∆B/Ḡ)%F2(% cos θ/Ḡ, % sin θ/Ḡ) .

The inverse Fourier transform of this gives a projection of f2(x, y) shifted by ∆B/Ḡ. Each projection is shifted by
the same amount on the ` axis. For example, if f2(x, y) = δ(x, y), whose Radon transform is g(`, θ) = δ(`), the
observed “projection” would be ĝ = δ(`−∆B/Ḡ).

Unfortunately, ĝ is not a Radon transform, which can be proven by showing that there is no object whose center
of mass agrees with the centers of mass of the collection of projections. This makes it difficult to determine the
precise effect that this term will have on the resulting reconstruction. It should be apparent, however, that shifting
each projection of an impulse function by ∆B/Ḡ creates a disk with radius ∆B/Ḡ in the object domain. Thus,
although the precise details are not developed here, we can conclude that rather than being shifted, as in the case of
rectilinear scanning, 2-D projection imaging will blur objects when the Larmor frequency varies across the FOV.

Solution 13.18
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We have

s0(t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πγGxxt dx dy

=

∫ ∞
−∞

∫ ∞
−∞

AMxy(x, y; 0+)e−t/T2e−j2πγGxxt dx dy

= e−t/T2

∫ ∞
−∞

∫ ∞
−∞

AMxy(x, y; 0+)e−j2πγGxxt dx dy .

The inverse Fourier transform of s0(t) is

S0(ν) = F−1{s0(t)}

= F−1{e−t/T2} ∗ F−1

{∫ ∞
−∞

∫ ∞
−∞

AMxy(x, y; 0+)e−j2πγGxxt dx dy

}
= F−1{e−t/T2} ∗

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Mxy(x, y)e−iγGxxte+j2πνt dt dx dy

= F−1{e−t/T2} ∗
∫ ∞
−∞

∫ ∞
−∞

Mxy(x, y)δ(2π(ν − γGxx)) dx dy .

Therefore, the amplitude of the function S0(ν) at a specific frequency ν0 will be proportional to the line integral
of Mxy(x, y; 0+) along the y direction at the x position x0 = νo/γGx; hence, S(ν) is a projection of the ob-
ject Mxy(x, y; 0+) onto the x axis. This data, however, will be convolved with F−1{e−t/T2}, which is called a
Lorentzian function. If the data are acquired fast enough, this convolution can be ignored.

MR IMAGE QUALITY
Solution 13.19

(a) With reference to Figure 13.6, we see that the through-plane direction coincides with the x axis, which is
therefore the slice selection gradient direction as well. There is no choice in this matter.

In a standard (axial) image, it is customary to make the +y direction be the phase encode direction. Although
this is arbitrary, provided that the direction is within the y-z plane, it makes sense to retain the +y direction
as the phase encode direction [see part (b)].

The standard (axial) image uses the +x direction as the frequency encode direction. The frequency encode
direction should be orthogonal to the phase encode direction, so it could be either the −z or +z direction.
For simplicity, we choose the +z direction to be the readout direction.

(b) Aliasing in the phase encode direction is prevented by making sure that the object being imaged is confined
to the FOV in the phase encode direction,

FOVy =
1

∆v
,

where ∆v are the phase encode increments in the frequency domain.

With reference to Figure 13.6, it becomes a bit more clear, why the phase encode direction should be in the
y direction. In this figure, the extent of the patient in the y direction is given by distance from the back to the
chest, whereas the extent in the z direction is the entire height of the patient. It is usually the case that the
thinnest section of the patient is chosen as the phase-encode direction in an arbitrary scan.
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Aliasing is prevented in the frequency encode direction by using an anti-aliasing filter prior to sampling, as
usual.

Solution 13.20

(a) The spatial extent is defined by the field-of-view in the y (phase encode) direction, which is given by

FOVy =
1

γ∆Ay
.

Since γ is fixed, it is the change in the area of the phase encode gradient, ∆Ay , between imaging pulses
that determines the spatial extent in the y direction. This parameter is independent of the number of phase
encodes—that is, 256 in the problem statement—that are acquired.

(b) The spatial extent in the readout direction is defined by the field-of-view in the x (readout) direction, which
is given by

FOVx =
fs
γGx

.

Thus, the sampling rate fs and the readout gradient strength Gx determine the spatial extent in the readout
direction. If that is the case, it must be assumed that the readout gradient is left on for a duration that is
long enough to collect 256 samples. It is also possible to view the duration of the readout interval Ts as a
parameter. In this case, the sampling rate is determined by the number of samples acquired over the interval,
fs = 256/Ts. Then the spatial extent can be written as

FOVx =
256

γTsGx
.

(c) Spatial resolution is not determined by the pixel size but rather by the amount of Fourier space that is
acquired. From Section 13.4.2, we have

FWHMy =
1

Nyγ∆Ay
.

Here, Ny = 256, so the only parameter actually affecting resolution is ∆Ay . Increasing ∆Ay reduces
FWHMy , improving the resolution. But given the result in part (a), we see that this can only be done
provided that the spatial extent covers the object (otherwise wraparound will occur).

(d) In the readout direction, we have

FWHMx =
1

γNxTGx
.

Here, Nx = 256, so we can change either T or Gx in order to change the spatial resolution in the readout
direction. Since the readout time is Ts = NxT , it is more fundamental to write

FWHMx =
1

γTsGx
.

Now we see that the readout resolution is actually inversely proportional to the product TsGx and increasing
either Ts or Gx will improve this resolution.
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Solution 13.21

(a) The spatial extent in the diagonal direction is

D =
√

2× 25.6 cm = 36.2 cm .

There are 256 samples.

(b) The sampling rate in the x and y directions are

fu = 1/∆v = FOVy = 25.6 cm ,

fv = 1/∆u = FOVx = 25.6 cm ,

But the sampling rate in the diagonal direction is lower, equal to

fd =
25.6 cm√

2
= 18.1 cm .

Solution 13.22

(a) The average power dissipated in the object is:

Pave =
1

T

∫ T

0

I2(t)Rdt ,

where T is the period of the current andR is the effective electrical resistance. Substitute I(t) = cos(2πν0t)
into the above equation, we have

Pave =
1

T

∫ T

0

cos2(2πν0t)Rdt

=
R

2π

∫ 2π

0

cos2(u)du, let u = 2πν0t

=
R

2
.

Since the current in the coil is I(t) = cos(2πν0t), the magnetic flux density is B1(t) = µ0NI(t). And the
induced voltage in a cylindrical shell of radius r is given by

V (t, r) =
dφ

dt
=
d(AB1)

dt
= 2π2ν0r

2µ0N sin(2πν0t),

where φ is the magnetic flux and A = πr2 is the area subtended by the cylindrical shell.

(b) Given the differential conductance in a thin shell of radius r, the average power dissipated in the shell is:

dPave =
1

T

∫ T

0

V 2(t, r)dGdt =
1

2

(2π2ν0r
2µ0N)2L

2πrρ
dr.
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The average power dissipated in the object can also be expressed using the voltage as:

Pave =

∫ r0

0

dPave =
R

2
.

Therefore, the effective electrical resistance is:

R = 2Pave

=

∫ r0

0

(2π2ν0r
2µ0N)2L

2πrρ
dr

=
2π3ν2

0µ
2
0N

2L

ρ

∫ r0

0

r3dr

=
π3ν2

0µ
2
0N

2Lr4
0

2ρ
,

which is Equation (13.79).

Solution 13.23
Start with the imaging equation

f(x, y) = AM0 sinαe−TE/T2(x,y) 1− e−TR/T1

1− cosαe−TR/T1
,

Using TE = 0 and α = π/2, and setting the overall gain to unity, gives

f(x, y) = 1− e−TR/T1 .

The two tissues have values

fa = 1− e−TR/T
a
1 , andfb = 1− e−TR/T

b
1 ,

so the image difference between these two tissues is

∆ = fa − fb
= (1− e−TR/T

a
1 )− (1− e−TR/T

b
1 )

= e−TR/T
b
1 − e−TR/T

a
1 .

Taking the derivative of this expression with respect to TR yields

d∆

dTR
=

d

dTR
(e−TR/T

b
1 − e−TR/T

a
1 )

=
−1

T b1
e−TR/T

b
1 − −1

T a1
e−TR/T

a
1 .
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Now set this equal to zero and solve for T̂R:

−1

T b1
e−TR/T

b
1 − −1

T a1
e−TR/T

a
1 = 0

T b1 e
−T̂R/Ta1 = T a1 e

−T̂R/T b1

lnT b1 −
T̂R
T a1

= lnT a1 −
T̂R
T b1

T̂R

(
1

T b1
− 1

T a1

)
= lnT a1 − lnT b1

T̂R =
lnT a1 − lnT b1

1
T b1
− 1

Ta1

.

Whether this expression should yield a maximum or minimum depends on the relationship between T a1 and T b1 ,
and hence the sign of ∆. Suppose T a1 < T b1 ; then ∆ > 0 and our goal is to maximize ∆. Otherwise, our goal is
to minimize ∆ (making the difference more negative). It is readily verified by plotting ∆ as a function of TR that
these conditions are satisfied by the expression we have derived for T̂R.

Solution 13.24
The conventional magnet strength of whole-body scanners today is 1.5 T. Therefore, Larmor frequency is

f = γB0

= 42.58 MHz/T× 1.5 T
= 63.84 MHz .

In air, the wavelength of radio frequency waves at this frequency is

λ =
3× 108 m/s

63.84× 106 Hz
= 4.7 m.

The Rayleigh limit is λ/2 = 2.35 meters. Clearly, MRI does not work according to conventional optical imaging
principles.

Solution 13.25
From Chapter 12, we know that the Larmor frequency of fat is

ν0(fat) = ν0(water)(1− ς) .

where ς = 3.35× 10−6. The frequency difference is

∆ν0 = −ςγB0 ,

which at 1.5 T is −214 Hz. But the above analysis is in a static field. When a readout gradient is turned on, the
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Larmor frequencies of water and fat will be

ν0(water) = γ(B0 +Gxx) ,

ν0(fat) = γ(B0 +Gxx)− ςγ(B0 +Gxx) .

After demodulation to baseband (assuming that the Larmor frequency of water is used for demodulation), the
following frequencies are encoded during the readout interval

ν(water) = γGxx ,

ν(fat) = γGxx− ςγ(B0 +Gxx) .

Therefore, during frequency encoding (the readout interval), the fat signal will be slightly mispositioned in the
readout direction relative to that of water.

To suppress the fat signal, we can apply a 180-degree (so-called inversion) pulse and then wait for both compo-
nents of longitudinal magnetization to recover. Since the fat T1 is so much shorter than the water T1, it will recover
faster, passing the Mz = 0 point at a predictable time. At that time, one can begin imaging with the application of
a standard π/2 RF pulse. Because the fat signal has Mz = 0 at that time, it will not contribute to the transverse
signal, and only water will be imaged. This type of sequence, called inversion recovery sequence, can be tuned to
suppress the water signal as well by waiting for the longitudinal magnetization recovery of water to cross zero.

Solution 13.26

(a) When Gx → 0.5Gx, the FOV doubles, that is, FOVx → 2FOVx. Since image size remains unchanged, the
pixel size must double as well, that is, Vs → 2Vs. Therefore, the SNR also doubles, that is,

SNR→ 2SNR .

(b) Ny → 2Ny means to double the number of phase encodes. If everything else is to remain unchanged,
this implies that these phase encodes either repeat the first set of phase encodes or add on to those already
acquired but at a different v locations in Fourier space. In either case, the net effect is to double the scan
time; therefore, the SNR will improve, but only by a

√
2 factor. In other words,

SNR→
√

2SNR .

(c) Since fs → 2fs the sample period is halved, T → 0.5T . Since Ts remains constant and Nx → 2Nx, the
total time has remained constant, that is, TA → TA. The only possible remaining factor affecting SNR is
voxel size. If the image size is assumed to follow J = Nx, then the image size has doubled, J → 2J .
But since FOVx is inversely proportional to T , we also have that FOVx → 2FOVx. Under this assumption,
voxel size is constant and SNR is constant

SNR→ SNR , assuming J = Nx .

(d) It is reasonable to make the assumption from the problem statement that the image size should not change,
that is, J → J . In this case, since the FOVx has doubled, the voxel size would also double, Vs → 2Vs and

SNR→ 2SNR , assuming J → J .
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Figure S13.6 See Problem 13.27(a).

APPLICATIONS, EXTENSIONS, AND ADVANCED TOPICS
Solution 13.27

(a) The 2D function f(x, y) is

f(x, y) = rect

(
x− 5

10
,
y − 5

10

)
.

It is sketched in Figure S13.6. The Fourier transform of f(x, y) is

F (u, v) = 10 sinc(10u)× 10 sinc(10v)e−j2π(5u)e−j2π(5v),

and
|F (u, 0)| = 100 sinc(10u) .

(b) We have
γGxt = 42.58 kHz/G · 0.5 G/mm · t = 0.4 cm−1 ,

and after solving yields
t = 18.788µs .

(c) The gradient echo will occur after 18.788 µ s, because that is when the phases will be realigned.

(d) Perfect g(`, 0◦) needs perfectG(u, 0). We collect only partial information ofG(u, 0), since we do not collect
data outside of−0.4 cm−1 ≤ u ≤ 0.4 cm−1. Therefore, we cannot get a perfect reconstruction of g(`, 0◦).

Solution 13.28

(a) We have

ω0 = γB0 = 2π × 4, 258 (rad/s)/G× 1.5 T× 104 G/T = 4.01× 108 rad/s ,
f0 = 6.39× 107 Hz .

The tip angle can be computed as

α = γ

∫ 1×10−3

−1×10−3

Be1(t)dt = 2π × 4, 258

∫ 1×10−3

−1×10−3

2× 4.258× 104 sinc(4.258× 104t)dt .
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Figure S13.7 See Problem 13.28(b).

Figure S13.8 See Problem 13.28(d).

(b) Carry out the following manipulations

B1(t) = A∆f sinc(∆ft)ejω0t ,

F{B1(t)} = A rect

(
f − f0

∆f

)
,

= 2 rect

(
f − 6.39× 107

4.258× 104

)
,

∆ω = 2π∆f = 267, 538 rad/s .

(c) Carry out the following
ωc = γ(B0 +Gz · zc) = ω0 ⇒ zc = 0

∆ω = γGz ·∆z ⇒ ∆z =
∆ω

γGz
=

267, 538

1π · 4, 258 · 2
= 5 cm

(d) We have
z′c = zc + ∆z = 5 cm ,

ω′c = γ(B0 +Gz · z′c) = ω0 + γGz · z′c = ω0 + 2π · 4, 258 · 2 · 5 = ω0 + 2.68× 105 rad/s .

So in order to select the adjacent slice, we need

B′1(t) = A∆f sinc(∆ft)ej(ω0+ω′c)t .

(e) Carry out these steps:

ω1 = γ(B0 +Gzz1) ,

ω2 = γ(B0 +Gzz2) ,

∆ω = γGz∆z ,

∆φ = ∆ω · τp
2

= γGz∆z
τp
2

= 2π · 4, 258 · 2 · 5 · 1× 10−3 = 267.5 rad .
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Figure S13.9 See Problem 13.28(f).

In order to rephase the spins, we need to use a refocussing lobe on Gz .

(f) We have

kx =
γ

2π

∫ t1

0

Gx(τ)dτ =
γ

2π
Gx · t1

ky =
γ

2π

∫ t2

0

Gy(τ)dτ =
γ

2π
Gy · t2

t1 =
kx
γ
2πGx

= 2 ms

t2 =
ky
γ
2πGy

= 0.5 ms

The pulse sequence is shown in Figure S13.9.

(g) We have

FOVx =
2π

∆kx
=

2π

γGxT
=

2πfs
−γ ·Gx

fs =
FOVx · −γ ·Gx

2π
=

50 cm · 4, 258 · 2π · 2.5
2π

= 5.32× 105 Hz .

Solution 13.29

(a) We will use phase encoding in both the y and z directions. The pulse sequence shown in Figure S13.10, a
modification of Figure 13.16, shows the general idea (though this is not a realistic pulse sequence).

(b) The following baseband signal is the same as the standard 2D gradient echo pulse sequence, except that there
is a new term that depends on the z phase encoding:

s0(t) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πγGxxte−j2πγGyTpye−j2πγGzTpz dx dy .
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Figure S13.10 See Problem 13.29.

(c) The image would be reconstructed using an inverse three-dimensional Fourier transform. Comparing the
above expression to the 3-D Fourier transform yields the following identifications:

u = γGxt ,

v = γGyTp ,

w = γGzTp .

Therefore, the 3D Fourier transform F (u, v, w) of f(x, y, z) is built up by successive imaging pulses as
follows

F (u, γGyTp, γGzTp) = s0

(
u

γGx

)
0 ≤ u ≤ γGxTs .

where Gy and Gz must take on a series of different values in order to cover 3D Fourier space.

Solution 13.30
In general, if we have N points, we can write the set of signal equations as

Sm(xo) =

j=N∑
j=0

Aje
−iγ(Gmy tyyj) , (S13.3)

which is 2N equations with 2N unknowns. Figure S13.11 shows one possible scheme for changing the value of the
phase-encoding gradient amplitudes. For each acquisition, we have Gmy = m∆Gy .

It is important to note that while the data acquisition is similar to that used in spin-warp imaging, the procedure
described here for reconstructing the MR image is not what is usually done. Usually, the positions of the objects are
assumed to be known; that is, we reconstruct the signal amplitudes (and phases) of a set of decaying oscillators that
are sitting on a fixed coordinate grid by using the Fast Fourier Transform (FFT). This coordinate grid is the pixel
array in the image. If the assumption is not true (which in most cases it is not), image artifacts from Gibbs ringing
occur.



242 CHAPTER 13: MAGNETIC RESONANCE IMAGING

Figure S13.11 Pulse sequence for phase encoding. See Problem 13.30.


