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Signals and Systems

SIGNALS AND THEIR PROPERTIES
Solution 2.1

@ ds(z,y)=> 0 > dx—my—mn)=> " 6x—m) > _ (y—n), thereforeitisa
separable signal.

(b) &;(x,y) is separable if sin(26) = 0. In this case, either sind = 0 or cosd = 0, §;(x,y) is a product of a
constant function in one axis and a 1-D delta function in another. But in general, ¢;(x, y) is not separable.

(©) e(x,y) = exp[j2m(upz+voy)| = exp(j2mupx)-exp(j2mvoy) = e1p(x;ug)-e1p(y; vo), where e1p (t; w) =
exp(j2mwt). Therefore, e(z,y) is a separable signal.

(d) s(z,y) is a separable signal when ugvy = 0. For example, if ug = 0, s(x,y) = sin(27vgy) is the product
of a constant signal in x and a 1-D sinusoidal signal in y. But in general, when both wu( and vy are nonzero,
s(x,y) is not separable.

Solution 2.2
(a) Not periodic. d(z,y) is non-zero only when z = y = 0.

(b) Periodic. By definition

oo o0
comb(z,y) = Z Z 0(x —m,y—n).
For arbitrary integers M and N, we have
comb(z + M,y + N) = Z Z&(x—m—l—M,y—n—FN)

m—=—00 N=—00

> > d—py—q) lletp=m—Mg=n—N]

p=—00g=—00

comb(z,y) .
2



So the smallest period is 1 in both x and y directions.

(c) Periodic. Let f(x + Ty, y) = f(z,y), we have
sin(27x) cos(4my) = sin(2w(z + T3,)) cos(4dmy) .

Solving the above equation, we have 27T, = 2k for arbitrary integer k. So the smallest period for z is
Tyo = 1. Similarly, we find that the smallest period for y is T, = 1/2.

(d) Periodic. Let f(x + T,,y) = f(z,y), we have
sin(27(z +y)) = sin(2w(x + T, + v)).

So the smallest period for x is T),o = 1 and the smallest period for y is T;p = 1.

(e) Not periodic. We can see this by contradiction. Suppose f(x,y) = sin(27(2? + y?)) is periodic; then there
exists some 7T}, such that f(z + T,,y) = f(x,y), and

sin(2n(2? +y?)) = sin(27((x + Tx)* +9?))
= sin(2r(2® +y* + 22T, + T2)).

In order for the above equation to hold, we must have that 22T}, + T2 = k for some integer k. The solution
for T}, depends on . So f(x,y) = sin(27(2? + y?)) is not periodic.

(f) Periodic. Let fq(m + M,n) = f4(m,n). Then

sin (Em) cos (En) = sin (E(m + M)) cos (In) )
5 5 5 5
Solving for M, we find that M = 10k for any integer k. The smallest period for both m and n is therefore
10.

(g) Not periodic. Following the same strategy as in (f), we let f4(m + M, n) = f4(m,n), and then

an (L) o (20 i (Lo 20 o (L)

The solution for M is M = 10kw. Since fy4(m,n) is a discrete signal, its period must be an integer
if it is to be periodic. There is no integer k£ that solves the equality for M = 10kw for some M. So,
fa(m,n) = sin (:m) cos (£n) is not periodic.

Solution 2.3

(a) We have

BG) = [ [ Sydeay
X ;Y oo
= Xlgnooylgnoo/_x/_y Z Z d(x —m,y —n)dedy

m=—0o0 Nn=—00

CXT+DEY]+1)

lim lim
—o0 Y —o0
o0,
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where | X | is the greatest integer that is smaller than or equal to X. We also have

_ 2
Poo (05) = leloylgnoozlxy/ / 0s (@, y) dvdy

o
m=—0o0 N=—0o0

~ lim lim G DEY 1)

X—=o00Y—o0 4XY
o faXY) X +2ly) | 1
- Xlﬂnooylﬂnoo{ IXY | 4xy iXy
= 1.
(b) We have
Eo(6) = / / |6(z cos + ysin® — 1) dx dy
= / / 0(xcosl + ysinh — 1) dx dy
|sm€|d‘r sinf # 0
Q:) o]
/ |Cosmaly7 cosf # 0

Equality (1) comes from the scaling property of the point impulse. The 1-D version of Eq. (2.8) in the text is

0(ax) = ‘17|§(x) Suppose cos 8 # 0. Then
. 1 sin 0 l
0(xcos 4+ ysinh —1) = m& (x+yc080 - cosﬂ) .
Therefore,
/_OO d(zcosf + ysinf — l)dx = Teosd]"

We also have

— . & —_ 7|2

Po(0;) = XlgnooylgnooleY/ / d(zcosb + ysinb — 1)|“dz dy
= Xlgnooylgnooif / 0(xcost + ysind — l)dx dy .

Without loss of generality, assume 6 = 0 and [ = 0, so that we have sin § = 0 and cos § = 1. Then it follows



that
1 Y
Poold) = in%&zﬁaﬁxfy“@““y
1 Y X
= QQM@QIEF_ {1 “@“}d

= i Ny /
2y

= Jgm Jim oS

(¢) We have

8
E

/ lexp [j27 (v + voy)]|? dz dy

1dx dy

8
8

-
L

And also

X Y
| [ tesplizetuna + vl do dy

Pele = i axy

= lim lim

Xﬁooy%ozlxy/ / Ldwdy
— 1.

(d) We have

oo po0O

sin?[27 (uoz + voy)) de dy

¢ g

8

2

/ 1 — cos 47r(2uox + voy)] dr dy

%dz dy — / / cos[dm (upx + voy)) drdy

—00 J —00

I® |
Q \8\\
’ 8

()

Equality () comes from the trigonometric identity cos(26) = 1 — 2sin?(#). Equality 3) holds because
the first integral goes to infinity. The absolute value of the second integral is bounded, although it does not
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converge as X and Y go to infinity. We also have

Po(s) = Xlgnooylgnoom/ / sin?[27 (uoz + voy)] dz dy

X
) ) 1 — cos[4m(upx + voy)]
A XY / {/ 2 e dy

lim lim . / { sm [47 (ug X + voy)] — sinf[dr(—ugX + on)]] dy

X—o00Y 00 4 8mug

@ . . sin(4mugX) cos(4dmvgy)
B Xlgnoo Ylgnoo 4XY X - 47T’LLO dy
. . 1 2sin(4mupX) sin(4rvgY)
= 1 1 — | 2XY —
Xgnoo anoo 4XY ( (47T)2'LL0’U0
_ 1
= 3

In order to get (), we have used the trigonometric identity sin(a + ) = sin avcos 8 + cos asin 5. The rest
of the steps are straightforward.

Since s(x,y) is a periodic signal with periods Xo = 1/ug and Yy = 1/vg, we have an alternative way to
compute P, by considering only one period in each dimension. Accordingly,

Po(s) = 4X0Y0/ / sin?[27 (upx + voy)| dx dy
2 sin(4mug Xo) sin(4rvgYp)
= 2XoY
4X0Y0 < 0s0 (47)%ugvg
B 1 2sin(4m) sin(4m)
4X0Y) <2XOYO  (4m)2uouo
_ !
= 5

SYSTEMS AND THEIR PROPERTIES
Solution 2.4

Suppose two LSI systems S; and Ss are connected in cascade. For any two input signals f;(z,y), f2(x,y), and
two constants a; and as, we have the following:

So[Silarfi(w,y) +axfo(z,y)]] = SalarSilfi(w,y)] + aSi[fa(z, y)]]
= 1S8[S1[fi(z, )] + axS2[Si[fa(z, y)]] -

So the cascade of two LSI systems is also linear. Now suppose for a given signal f(x,y) we have S1[f(z,y)] =
g(x,y), and Sz[g(x,y)] = h(x,y). By using the shift-invariance of the systems, we can prove that the cascade of
two LSI systems is also shift invariant:

S [Silf(r =&y —n)]] = Salg(x =&y —n)] =h(z - &y —n).



This proves that two LSI systems in cascade is an LSI system
To prove Eq. (2.46) we carry out the following:

9(@,y) = ha(z,y)*[hi(2,y) * f(z,y)]
ha(z,y) * / / hi(€,n)f(x — &y —mn)d§dn

/ / ha(u,v) [/ / hEn)fle—uw—&y—v— )dfdn} du dv
[ [ hetwoens - u- gy - v ddnuds
/ / hi(€,m) [/ / ho(u, ) f (2 — € — uyy — nu)dudv}dgdn

hi(x,y) * [ha(z,y) * f(z,y)]

This proves the second equality in (2.46). By letting « = u + £, and 8 = v + 7, we have

/°° /°° /OO /OO ha(u,v)hi(&,0) f(z —u— &y — v —n)d dndu dv

/ U / ho(a =&, 8 =mnhi(&n) dEdn| f(z — o,y — B)dadp
[ha(z, y)*hz(x v)l * f(z,y),

which proves the second equality in (2.46).

g(x,y)

To prove (2.47) we start with the definition of convolution

o) = [ [ bt~ &y - mds dn
- hl(aj?y) * h2(l‘7y) .
We then make the substitution « = x — ¢ and 8 = y — 1 and manipulate the result
7=_Oo_ooh—7—h7—d—d
sen= | /m 2@~y — B)h(a B)(~da) (~d9)
/ / B)ha(x — a,y — BdadB
/ / Mha(e — €,y — n)de d
ha(x,y) *

hi(z,y),

where the next to last equality follows since o and J are just dummy variables in the integral.
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Solution 2.5
1. Suppose the PSF of an LSI system is absolutely integrable.

/ / h(z,y)|dxdy < C < o0 (S2.1)
where C is a finite constant. For a bounded input signal f(z,y)
Fay)| <B<oo, forevery (1), (522)
for some finite B, we have
lg(z,y)l = [h(z,y) * f(z,y)|

‘/ / ha =&y —n)f(&n)dsdn

< [ e -co-nl i€ nldedy
< B/ / h(z,y)| dx dy
< BC <o, forevery(x,y) (S2.3)

So g(x,y) is also bounded. The system is BIBO stable.

2. We use contradiction to show that if the LSI system is BIBO stable, its PSF must be absolutely integrable.
Suppose the PSF of a BIBO stable LSI system is h(x, y), which is not absolutely integrable, that is,

/ / h(z,y)| dx dy

is not bounded. Then for a bounded input signal f(z,y) = 1, the output is

l9(e,9)| = [h(z,y) + a:y|—// h(z,y)| dz dy,

which is also not bounded. So the system can not be BIBO stable. This shows that if the LSI system is BIBO stable,
its PSF must be absolutely integrable.

Solution 2.6

(a) If ¢’(x, y) is the response of the system to input Zle w fr(x,y), then
g'(z,y) = Zwkfk z,—1) +Zwkfk 0,9)
k=1

wi[fr(z, =1) + fr(0,y)]

M 1

WGk (.CL', y)

=~
Il

1



where gy (z, y) is the response of the system to input fy(z,y). Therefore, the system is linear.
(b) If ¢'(x, y) is the response of the system to input f(x — g,y — yo), then

g (x,y) = f(x —x0,—1 = yo) + f(=z0,y — %0);

while
g(x —xo,y —yo) = f(x — w0, —1) + f(0,y — %0)-

Since ¢'(x,y) # g(x — xo,y — yo), the system is not shift-invariant.

Solution 2.7

(a) If g’ (z, y) is the response of the system to input Zszl wy fr(z,y), then

K K
g'(zy) = (Zwkfk(%y)) <Zwkfk(fﬂﬂf0>yy0)>
k=1 k=1

K K

Zzwiwjfi(x,y)fj(x — 20,y — Y0)»

i=1 j=1

while

K K
Zwkgk($7y) = Zwkfk(x7y)fk(x — X0,y — yO)
k=1

k=1

Since ¢'(z,y) # Zszl gx(x,y), the system is nonlinear.

On the other hand, if ¢’ (x, y) is the response of the system to input f(z — a,y — b), then

g (x,y) = fle—ay—bf(zx—a—z0y—b—1y)
= g(z—a,y—0)

and the system is thus shift-invariant.

(b) If ¢'(x, y) is the response of the system to input Zle wy fr(x,y), then

o K
Jew) = [ S wdlamdn

T k=1

éwk (/_Z fela,m) dn)

K
Z wkgk)(xa y))
k=1

where gy (z, y) is the response of the system to input fy(z,y). Therefore, the system is linear.
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On the other hand, if ¢'(x, y) is the response of the system to input f(z — zq,y — yo), then

g (xy) = [ [z —20,m—yo)dn

/DO J(x —z0,m—yo) d(n — yo)

[ f(x —x0,n)dn

Since g(z — o,y — yo) = [ . f(x — xo,n) dn, the system is shift-invariant.

Solution 2.8

From the results in Problem 2.5, we know that an LSI system is BIBO stable if and only if its PSF is absolutely
integrable.

(a) Not stable. The PSF h(z,y) goes to infinite when x and/or y go to infinity. [°_ [* |h(z,y)|dxdy =

f_ ffo (22 + y?)dx dy = ffooo [ffooo de] dy—i—f_oo [f_oo 2aly} dz. Since f_oo x2dx = ffooo y2dy
is not bounded, then [ [* (2% + y?)dax dy is not bounded.

, 12
(b) Stable. [ [* |h(z,y)|dedy = [7_ [T (exp{—(2? + y?)})dz dy = [ffooo e ® da:] = 7, which is
bounded. So the system is stable.

C ot stable. € absolute integral | _xrte” ’ ray = | _«x e ’ yldr = | TXTar 1s
(¢) Not stable. The absolute i L[ [ 2%e v dad ot | [T eVidy|d = Vmatde i
unbounded. So the system is not stable.

Solution 2.9

@) g(z) = [ flz—t)f(t)dt.
(b) Given an input as a f1(x) + bfs(x), where a, b are some constant, the output is
g'(x) = [afi(x) +bfa(2)] * [afi(z) + bf2(z)]
= d’f () * f1(x) + 2abf1(x) * fa(z) + b2f2(x) * fo(x)
# agi(x) + bga(z),

where g1 (z) and go(z) are the output corresponding to an input of f;(z) and f(z) respectively.

Hence, the system is nonlinear.
(c) Given a shifted input f1(x) = f(x — ), the corresponding output is
gi(z) = * fi(x)
/ file — O fu0)dt

[ f(x—t—ﬂfo)ﬁ(t—xo)dt



Changing variable ¢’ = t — x in the above integration, we get

g1(z) /_OO flx —2xo —t') f1(t)dt

g(x — 2x0).

Thus, if the input is shifted by z, the output is shifted by 2x(. Hence, the system is not shift-invariant.

CONVOLUTION OF SIGNALS
Solution 2.10
(a)
f((E,y)(S(ZL'—l,y—2) = f(1,2)5($—1,y—2)
= (1+2%)8(z—1,y—2)
50(x — 1,y — 2)
(b)

oo o0

flzy)xd(z—-1,y—-2) = f€n)o(xr—&—1,y—n—2)dédn

88

/ fla—1Ly—2)0(x—&—1,y—n—2)dédy

—
2 g

= f(m—ly—Q/ / 0(x—E&—1,y—n—2)dEdn
fle=1,y-2)

= (e-1)+(@y-2)7
()

| [ se-ry-osenwy @[T [ - 1y-250.8d0d

— 00 — 00 — 00 — 00

/ §(z — 1,y — 2)(1 + 3*)dx dy

—00 J —00

10/ O(x— 1,y — 2)dxdy

— 00 — 00

[®)

Equality (1) comes from the Eq. (2.7) in the text. Equality 2) comes from the fact:

/ / 5(x—1,y—2)dxdy:/ / O(z,y)dedy = 1.

11
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(d)
Sa—ly-sfrtlytr2 2 /Z ZM— —Ly—n—=2)f(§+1L,n+2)d¢dn
@ /Z ZM_ —Ly—n-2f(z—1)+1,(y—2)+2)dEdn
_ /Z O;éx— ~ Ly —n—2)f(e.y)de dn

1@

flay) =a+y’

(3 comes from the definition of convolution; (4) comes from the Eq. (2.7) in text; (5) is the same as (2) in part
(¢). Alternatively, by using the sifting property of (x, y) and defining g(z,y) = f(x + 1,y + 2), we have

5(I71,y72)*g($,y) = g($71,y72)
= flz—14+1,y—2+2)
= flz,y)
= z+y°.

Solution 2.11

(a)
faw oty = [ [ rengte - gy dean
= [ 5©nma - ot s
tan o) = ([~ n@ne-94) ([ nonay-nd).

Hence, their convolution is also separable.

(b)
f(@,y) * 9(z,y) = (f1(2) * 91(2)) (f2(y) * 92(y)) -



13
Solution 2.12

glz,y) = flz,y)*h(z,y)
= / / flz =&y —n)h(&, n)dsdn

= / / (x — &+ y — n)exp{— (&> + n*) }d&dn

= :c—i—y/ / e=& " dgdn — / / ce=8 " dedn — / / ne=€ =" dgdn
- (“y)[/_oo ﬁdé] [ [/ 5e—fd£}dn | e U_ooe”dn]df

= 7w(z+y) (S2.4)

We get (52.4) by noticing that since £ is an odd function and e~¢” is an even function, we must have
/ ceSde =0.

/_Zef2d§ = 7.

Also,

FOURIER TRANSFORMS AND THEIR PROPERTIES
Solution 2.13

(a) See the solution to part (b) below. The Fourier transform is

FQ{és(x’y)} = 55(’&,1))

(b)

Fofdu(a,y: A, Ay)} = / / 5.(,y; A, Ag)e =) 4y dy

ds(z,y; Az, Ay) is a periodic signal with periods Az and Ay in z and y axes. Therefore it can be written
as a Fourier series expansion. (Please review Oppenheim, Willsky, and Nawad, Signals and Systems for the
definition of Fourier series expansion of periodic signals.)

e An A= 33 G R,

m=—00 N=—0o0
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where
1 Az Ay
2 2 . ny
mn = — Os Az, A _]27‘—(%+Ty) dx d
& ArAy A/%’ (z,y; Az, Ay)e x dy
Az Ay S’ 0o
1 2z [z _jan(e 4 an)
= Aedy | ose | s Z Z 0(x — mAz,y — nAy)e artay) do dy.
2 Mm=—00 Nn=—00
In the integration region —42 < 2 < &% and — 2 < y < Azy there is only one impulse corresponding to
m = 0, n = 0. Therefore, We have
Ay
— j27r(0A— A—J)
Cmn AmAy / Al / Ay .23 y)e dz dy
_ 1
 AzAy
We have:
5 A A J27T 7n1,+ny) )
ey = o 3 Y
m=—00 n=—00
Therefore,

i) = / / 5. (e, : A, Ag)e P =) 4y gy

jor(me ) —j2m(uz+toy)
- [ e XY ey,

m=—0o0 Nn=—0o0

- Z ; AxlAy

oo o0

ejQﬂ(X—:—i-%) —j2m(uz+vy) dx dy

m=—o00 n=—00 0 0
= 1
- ¥ ¥ CR
AxAy
m=—0o0 n=
o0 o0

I
N
N
>
8| =
>
Nay
(%)
7 N
4E
u@
4
N—

(&)

Z Z NN A - AzAyd(uAz — m,vAy —n)

m=—00 N=—00

Fo{ds} = ds(ulAz,vAy)

Equality 5) comes from the property d(ax) = Tal Ls(x).



(c)

(d)

Fols(z,y)} S(l‘,y)efj%(“m+“y) dzx dy

Il
—
—

= / / sin[27 (ugx + voy)]e 72 W) dg: dy

_ /OO /OO i [ejzw(uox—s-voy) _ e—j%(uox‘*“oy)] e 2 ) s dy
1_00 T 2
= 29 |:/ / e’ 71'(uoaxc"'voy)e_j m(uetoy) dzx dy
—00 J —c0
0o 0o
_ / / e—j27r(uo;c+voy)e_jZﬂ'(“wJ'_vy) dx dy:|
—00 J —c0
L[> [~
=5 U / =32 l(u—uo)e+(v=vo)yl g gy,

B /oo /OO e_j27r[(u+u0)w+(v+v0)y] dx dy]
1

Fo{s(z,y)} = Q—j[é(u—uom—vo)—5(u+u0,v+v0)].

We used Eq. (2.69) twice to get the last equality.

Falo)(u,v) = / / e, y)e T2 g gy

= / / cos[2m (upx + voy)]e 72U dy: dy

2

% |:/OO /oo €j27r(u03c+vgy)e—jQTr(ux+vy) dr dy

+/oo /OO e-jQﬂ—(uox-{—voy)e—j27r(ux+vy) dx dy:|
—00 J —o0

1 o0 o0 .
3 [/ / e—92m[(u—uo)z+(v—2v0)y] g, dy
— 00 — 00

o0 o0
+/ / e~ 12m[(utuo)z+(v+vo)y] g, dy]
1

5[6(u — ug,v — vg) + §(u + ug, v + vp)].

= / / l[eﬂﬂ(uor-&-voy) + e—j27r(uor+voy)]e—j27r(ur+vy) dx dy

Fa(e)(u,v)

We used Eq. (2.69) twice to get the last equality.

15
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(e)

o0
oo

6 — (22 4y?) /202 7J27T(uw+vy) dr dy

RNy = [ / o y)e ) g ay
- [/

o0

— /OO /OO 1 67(12+j47r02uz)/20'267(y2+j47r02vy)/2a2 dx dy

2
oo oo 2TO

— - 1 7(x2+j47r0'2ux)/202 dx OO 1 67(y2+j47ra'2vy)/20'2 dy
71'02 - 2mo?

2 g

_ : 282 /6 2 2.8\2 /5 2
(z4j2mo u)? /20 e(]27r0 u)? /20 dx

271'0'2

/ ;ef(y+j27m2v)2/2a2e(j27r¢72v)2/2cr2 dy}

L/ —oo 2mo?
— —271'202u2/ 1 e—(z+j27'ra'2u)2/20'2 dx] .
oo V2mo?

oo
e
[ —2n202%0? > 1 —(y+j2mo?v)? /202
(& e dy
e

2mo?

2 2 2
—2m%0c u
e .

Fo(f)(u,v) = e 270 wi+e)

—271'2021)2

Solution 2.14
The Fourier transform of f(x) is

u) = /jo f(z)e I2mue gy,

F*(u) = /00 [f(x)e_ﬂm”“']*dx

= / f(&)e=72mueqe  since f(—x) = f(x) and f(z) is real

|
>
£
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(b) Similarly, assuming f(z) is real and f(x) = —f(—x),
P = [ rege

_ /_OO —f(&)e 1P UEdE | since f(—x) = —f(z)
= —F(u).

Solution 2.15

In deriving the symmetric property F*(u) = F(u), we used the fact that f(z) is real. If f(z) is a complex
signal, we have f*(—¢) = f*(€) instead of f*(—&) = f(&). Therefore,

F*(u) = h [f(x)e_ﬂ"“:”]* dx

8

JH(=€)eTP g, tet € = ~a

3

f (€)e72muede,
{f ()}

Il
“ﬁ\ﬁ\ "\
8

Solution 2.16

(a) Conjugate property: Fa(f*)(u,v) = F*(—u, —v).

Falf)u0) = /jo [w P ()2 g dy

e’} [oe] ) *
[ [ e aea)
9] [eS)
[/oo /oo f x y e —727[(—u)z+(—v)y] dxdy:|

= [F(~u,—v)]"
= F*(—u,—v).

Conjugate symmetry property: If f(z,y) is real, F'(u,v) = F*(—u,—v). Since f(x,y) is real, f*(z,y) =
f(x,y). Therefore,
F*(—u, —v) = Fo{f*(z,9)} = Fo{f(z,9)} = F(u,0).
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(b) Scaling property: Fo(f)(u,v) = ﬁ]-}(f) (L,2).
Erwn) = [ [ fan e et asay
_ /7 O:O 1 O:o Flaz, by)eszw[uwﬂc)/a+v<by>/b}%d(ax) dby)

B |1b|/°° /°° F(p, q)e= 32w/ @p+ /)l gp g
ab| J_ oo J_oo

- 03

(c¢) Convolution property: Fa(f * g)(u,v) = Fa(g)(u,v) - Fo(f)(u,v).

Aregwo = [ [ [/ / f(@n)g(acs,yn)dfdn} =TT+ gy

Interchange the order of integration to yield

Ao = [ [ sen [/ / g(xf,ymemwy)dzdy] dé dn

/Z/Zf(&n) [/Z/Zg(xs,ym

o= 2mlu(e—§)+o(y—n)] g —i2m (uE-+vn) g dy} de dn
/ / F(gm)e 2mluetem) / / gle =&y —n)
ej2w[u<m£>+v(yn)1dxdy} dg dn

/ / F(&, me-d2mueton / / g(p,q)e—ﬂ“[”“”q]dpdq} de di

/ i / ) F(&,m)e P2 Ty (g) (u, v) dE dn

Fag)wo)- [ h / e e s ge
Fo(f+g)(u,v) = Falg)(u,v) - Fo(f)(u,v).
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(d) Product property: Fa2(fg)(u,v) = F(u,v) * G(u,v).
.Fz(fg)(u,v) = / / f(x’y)g(xvy)efj%r(uervy) dx dy
_ /oo /oo |:/oo /00 G(g,n)ejQﬂ(x£+yn) df dn:| f(x’y)eijﬂ'(u:chvy) dx dy

— 00 — 00

Solution 2.17

Since both the rect and sinc functions are separable, it is sufficient to show the result for 1-D rect and sinc
functions. A 1-D rect function is

1
1, f < =
- forla| <
rect(x) =
1
0, forlz|> =
or |x| 5

F{rect(z)} = /OO rect(z)e 2T dy

1/2 )
_ / 67327rua:d1,
—1/2

1/2 1/2 ‘
= / cos(2mux)dr — j/ sin(2rux)dz, €% =cosf + jsind
—1/2

Therefore, we have F{sinc(x)} = rect(u). Using Parseval’s Theorem, we have

o o
E, = / / || rect(z, y)||>dx dy
—0o0 —0o0

/2 ,1/2
dx dy
—172J-1/2
=1
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For the sinc function, P, = 0, because F is finite.

Solution 2.18
Since the signal is separable, we have

Flf(x,y)] = Fip[sin(2max)] Fip|cos(27by)],
Fiplsin(2razx)] = % [0(u—a)—06(u+a),
Fuvlcos(2rby)] = % [6 (v —b)+ 6 (v+b)] .
So,

Flif(z,y)] = 41] [0(u—a)d(v—b) —0(u+a)d(v—">0)+6(u—a)d(v+b) —d(u+a)d(v+D) .

Now we need to show that 6(u)d(v) = d(u,v) (in a generalized way):
d(u)d(v) =0, foru#0,orv+0

Therefore,

//fuv ()dudv_/ZUZf(u,m(u } dv—/ F(0,0)5(v)dv = £(0,0).

Based on the argument above §(u)d(v) = §(u,v), and

Flf(z,y)] :4%,[5(u—a,v—b)—5(u+a,v—b)—|—5(u—a,v+b)—5(u—|—a,v+b)] .

The above solution can also be obtained by using the relationship:

sin(2max) cos(2mwby) = % [sin(27(ax — by)) + sin(27(az + by))] .

Solution 2.19
A function f(z,y) can be expressed in polar coordinates as:

flz,y) = f(rcosf,rsinf) = f,(r,0).

If it is circularly symmetric, we have f,(r, #) is constant for fixed r. The Fourier transform of f(z, y) is defined as:
F(u,v) = / / flx,y)e —a2m(uetvy) g dy
2 ) )
/ / fp(r7 9)6—]271'(1“‘(:03 0+wvr sin G)Td’f’ do
o Jo

0 27
= / fp(r,0) [/ g2 (urcosttursing) g 4. gy
0

0



Letting u = g cos ¢ and v = g sin ¢, the above equation becomes:

0 2
F(u,v) :/ fp(r,0) [/ e‘jzwqmos(“ﬁ_e)dﬁ} rdr.
0 0

21

Since F'(u,v) is also circularly symmetric, it can be written as Fy (g, ¢) and is constant for fixed ¢. In particular,

F,(q,¢) = F,(q,m/2), and therefore

') 2T
Fy(g,6) = Fylq.m/2) = /0 £,(r,6) [ /0 ejzﬂq”inede}rdr.

Now we will show that (2.108) holds.

o o 27
/ e—d2marsing gy _ / cos(2mgrsin6)df — j / sin(2mqr sin 6)
0 0 0

@ 2/ cos(2mgr sin 6)df
0

= 2w Jo(2mqr) .

Equality (D) holds because cos(—6) = cos(#), and sin(f) = — sin(6).
Based on the above derivation, we have proven (2.108).

Solution 2.20

The unit disk is expressed as f(r) = rect(r) and its Hankel transform is

o0
F(q) = 277/ fr)Jo(2mgr)r dr
0
= 27r/ rect(r)Jo(2mgr)r dr
0
1/2
= 277/ Jo(2mgr)rdr.
0
Now apply the following change of variables
s = 2mqr,
s
T = a_
2mq
d
dr = 5 ,
2mq

to yield
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From mathematical tables, we note that

Therefore,
Ji(mq)
F —  J\74)
(9) %
= jinc(q) .
TRANSFER FUNCTION
Solution 2.21

(a) The impulse response function is shown in Figure S2.1.

\ T
1\l

i

i
\‘\“\\“““‘.‘\\‘\‘\\\‘
R

Figure S2.1 Impulse response function of the system. See Problem 2.21(a).

(b) The transfer function of the function is the Fourier transform of the impulse response function:

F{h(z,y)}
= .7-'{6_”2 }f{e‘”92/4} , since h(x,y) is separable
— 2€—ﬂ(u2+4v2) )

H(u,v)
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Solution 2.22

(a) The 1D profile of the bar phantom is:

o
IAIA

el

+

w

xT
x

INIA

k—1
f(x){ é’ EF1

w
w

v ‘

where k is an integer. The response of the system to the bar phantom is:

ola) = f@) s Uw) = [ fa - (6.
At the center of the bar, we have
9(0) = i F(O=8)I(&)ds

w/2

= / cos(ag)d¢
—w/2
2 . /ow

- ().

At the point halfway between two adjacent bars, we have

o(w) = /_ Flw — )i(€)de
w/2 w+m /20
_ / cos(a€)de + / cos(a€)dg
w—m /2 3w/2
w/2
= 2 cos(af)d¢
w—m/2a

- 2 fin() o)

(b) From the line spread function alone, we cannot tell whether the system is isotropic. The line spread function
is a “projection” of the PSF. During the projection, the information along the y direction is lost.

(c) Since the system is separable with h(x,y) = hip(z)h1p(y), we know that

ie) = [ nwiy

mo(a) [ " ha(w)dy.



24 CHAPTER 2: SIGNALS AND SYSTEMS

Therefore hip(z) = cl(x) where 1/c = [*°_hip(y)dy. Hence,

e = [ awa.

/2
1/ = / cos(ay)dy ,
—m /2

1/ = 2/a.

Therefore,

2 cos(azx) cos(ay) |ax| < 7/2and |ay| < w/2
h(m7y):: 2
0 otherwise

The transfer function is

H(u,v) = Fop{h(z,y)}

= / / h(z, y)eﬂ”“zdw} eI2™Y dy

= / / th(x)hlp(y)eﬂ”"cdx} eI dy

—oco LJ —

- / / th(x)ejz’mxdm] th(y)ejQ’T"ydy

—0o0 LJ —0o0

— / th(aj)eﬂ’mIdQ:/ th(y)eﬂ’r“ydy
= Hip(u)Hip(v),

which is also separable with H (u,v) = Hip(u)Hip(v). We have

Hp = \/7}-1D{l
\/7]:1D{COS (o)} * Fip {TeCt ( )}
= \/; [smc (Z(u—a/Qﬂ)) +smc( (u+04/277)>} .

Therefore, the transfer function is
H(u,v) = g [Sinc (E (u— a/27r)) + sinc (E (u+ a/27r))}
a !
. m . ™
{smc (a (v— a/27r)) + sinc (a (v+ a/27r))} .

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS
Solution 2.23
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(a) The system is separable because h(x,y) = e~ (21+Iv) = e=lele=lvl,

(b) The system is not isotropic since h(x,y) is not a function of r = /22 + y2.

Additional comments: An easy check is to pluginz = 1,y = 1 and z = 0, y = /2 into h(zx,y). By
noticing that 2(1,1) # h(0,/2), we can conclude that h(z,%) is not rotationally invariant, and hence not
isotropic.

Isotropy is rotational symmetry around the origin, not just symmetry about a few axes, e.g., the x- and
y-axes. h(z,y) = e~ (=1+19) is symmetric about a few lines, but it is not rotationally invariant.

When we studied the properties of Fourier transform, we learned that if a signal is isotropic then its Fourier
transform has a certain symmetry. Note that the symmetry of the Fourier transform is only a necessary, but
not sufficient, condition for the signal to be isotropic.

(¢) The response is

g(z,y) = h(z,y)* f(z,y)

(d) The response is

g(z,y) = h(z,y)* f(z,y)

oo
oo
_ / eIl e=le=vtnl gy

1. Now assume z — y < 0, then x — y + 1 < 7. The range of integration in the above can be divided into
three parts (see Fig. S2.2):

L 7€ (—00,0). Inthisinterval, x —y+n<n<0.|n|=-n |z —y+n=—(r—y+n);
MIypel0,—(x—y)) Inthisinterva, z —y+n <0<n. |n|=n, |z —y+n=—(x —y+n);

L. n € [—(x —y),00). Inthisinterva, 0 <z —y+n<n. |n|=n |zt —y+n = —y+n.
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n<0 n>0 n>0
x-y+n<0 . xyn<0 x-y+n>0

0 -(x-») n

Figure S2.2 For =z — y < 0 the integration interval (—oo,00) can be partitioned into three segments. See Prob-
lem 2.23(d).

Based on the above analysis, we have:

gy = / eIl —le=v+al gy
0 —(z—vy) o0
_ / e—(\n\+lz—y+n|>dn+/ e*(\n\+|w*y+n|)+/ o~ (Inl+la—y-+n1)
—o0 0 —(z—vy)
0 —(z—y) )
= / e”_y”"dn—&—/ e“_ydn—i—/ e—(w—y+2n)dn
—00 0 —(z—y)
1 1
= 5696721 —(x—y)e" Y+ iexfy

1= (z—y)le™".

2. Forx —y > 0,7 < x — y + n. The range of integration in the above can be divided into three parts (see
Fig. S2.3):

n<0 n<0 n>0
x-y+n<0 _ x-yin>0 x-y+n>0

~(x-y) 0 n

Figure S2.3 For z — y > 0 the integration interval (—oo,00) can be partitioned into three segments. See Prob-
lem 2.23(d).

Lne(—o0,—(z—y)). Inthisinterval, n <z —y+n<0.|n|=-n, |z —y+n =—(x—y+n);
IL.pe[—(x—y),0) Inthisinterval, n <0<z —y+n. |n|=-n |z —y+n=c—y+n
L. 7 € [0,00). In this interval, 0 < p <z —y +n. |n| =7,

c—y+nl=z-—y+n
Based on the above analysis, we have:

g((p,y) — / 6_|77|6_‘93_y+77‘d77
—(z—y) 0 00
_ / e—(|n|+\w—y+n\)dn+/ e—(|n|+|w—y+n|)+/ o~ (Inl+la—y-+n)
—00 —(z—vy) 0

—(z—y) 0 e
/ Y em—y+2ndn+/ e_(m_y)dn—l—/ e—(ﬂc—y—ir2n)d77
—o0 —(z—vy) 0

1 1
= 5e*(ﬂvfy) + (z—y)e @Y 4 ief(zfy)

= [+ (@—y)e .
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Based on the above two steps, we have:

g(z,y) = (1 + |z —y[)e =70

Solution 2.24

(a) Yes, it is shift invariant because its impulse response depends on x — .

(b) By linearity, the output is

—(z+1)? —(@)? o

glx)=e" 2 +e 2z +e

Solution 2.25

(a) The impulse response of the filter is the inverse Fourier transform of H (u), which can be written as

H(u) =1 — rect (;&)) .

Using the linearity of the Fourier transform and the Fourier transform pairs
F{o@)}y = 1,
F{sinc(t)} = rect(u),
we have

h(t) FH{H(u)}

d(t) — 2Up sinc(2Upt) .

(b) The system response to f(t) = cis 0, since f(¢) contains only a zero frequency component while h(t)
passes only high frequency components. Formal proof:

f@) «h(t) = [f(t)*][6(t) — 2Uysinc(2Upt))
= f(t) —2Uu f(t) * sinc(2Upt)

= c— c/ 20U sinc(2Upt)dt

— 00

= c—c/ sine(7)dr
= 0.
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The system response to f(t) = { (1)’ i i 8 is
f@)=h(t) = f(t)*[d(t) — 2Uy sinc(2Upt)]

= f(t) = 2Uo f(t)  sinc(2Uot)

= f(t)— /_00 f(x)2Ug sinc(2Uy (t — x))dx
= f@t)— /00 2Uy sinc(2Uy (t — x))dx
= +/ OQ2U0 sinc(2Uy (y))dy

2U0 sine(2Uy (y))dy

0
2Uy sinc(2Uy (y))dy —

— 00

QUO sinc(2Up(y))dy ¢t >0

c\

0
/ 2Uy sinc(2Up(y))dy +/ 2Uy sinc(2Up(y))dy ¢ < 0
Jr

/0 2Upsinc(2Up(y))dy  t <0

l\D\H

1 t
1-— 3~ / 2Uy sinc(2Up(y))dy ¢t >0
0

1 0
—5 +/ 2Uy sinc(2Up(y))dy ¢t <0
¢

1
2

¢
- / 2Uysinc(2Up(y))dy ~ t >0
0
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Solution 2.26
(a) The rect function is defined as
_ )L <12
rect(t) = { 0, otherwise
So we have
rect i _ L =T/
T) | 0, otherwise
and
t+0.757T\ [ 1, [t+0.75T|<T/4
0.5T ~ ] 0, otherwise
Therefore,

1T, -T<t<-T/2
1/T, “T/2<t<T/2
-1/T, T/2<t<T

0, otherwise

h(t) =

The impulse response is plotted in Fig. S2.4.

h(z)
/T
T |12 112 r
t
-ur

Figure S2.4 The impulse response h(t). See Problem 2.26(a).

The absolute integral of A(t) is [ |h(t)|2dt = 2/T. So The system is stable when T' > 0. The system is
not causal, since h(t) # 0 for =T < t < 0.

(b) The response of the system to a constant signal f(t) = cis

g(t) = f(t) xh(t) = /_OO fit = 1)h(r)dr = c/ h(r)dr =0.

— 00

(c) The response of the system to the unit step function is

t

g(t) = f(t) x h(t) = /_00 ft —71)h(r)dr = / h(r)dr

0, t<-T

—t/T -1, -T<t<-T/2
g(t) =< t/T, ~T/2<t<T/2

—t/T+1, T/2<t<T

0, t>T

The response of the system to the unit step signal is plotted in Figure S2.5.
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g()
112
-T -T2 T2 T
t
1-12

Figure S2.5 The response of the system to the unit step signal. See Problem 2.26(c).

(d) The Fourier transform of a rect function is a sinc function (see Problem 2.17). By using the properties of the
Fourier transform (scaling, shifting, and linearity), we have

H(u) = F{h(t)}
= —0.5e772mu(=0T5D) ginc(0.5uT) 4 sinc(uT’) — 0.5¢~727OTT) ginc(0.5uT)

= sinc(uT’) — cos(1.5muT) sinc(0.5uT") .

(e) The magnitude spectrum of h(t) is plotted in Figure S2.6.

1.4

[H(u)l

Figure S2.6 The magnitude spectrum of h(t). See Problem 2.26(e).

(f) From the calculation in part (d) and the plot in part (c), it can be seen that | H(0)| = 0. So the output of the
system does not have a DC component. The system is not a low pass filter. The system is not a high-pass
filter since it also filters out high frequency components. As 7" — 0, the pass band of the system moves to

higher frequencies, and the system tends toward a high-pass filter.
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Solution 2.27

(a) The inverse Fourier transform of A (o) is

— 0 [ejQﬂ'rg + e—jQﬂ'Tg] dQ
0

[
= 2/ ocos(2mro)do
0
e _/9" Sin(27rrg)d
0 0 27r ¢

Q:
©o
=0

1
= 5753 [cos(2mr0g) + 277 g sin(27r0g) — 1] .

_ osin(27ro)
B 2r

_ osin(27wrog)  cos(27mrp)
B 27 4722

(b) The response of the filter is g(r) = f(r) * h(r), hence G(0) = F(0)H(p). i) A constant function f(r) = ¢
has the Fourier transform

F(e) = cd(o)-
The transfer function of a ramp filter has a value zero at ¢ = 0. So the system response has the Fourier
transform
G(o) =0.

Therefore, the responses of a ramp filter to a constant function is g(r) = 0. ii) The Fourier transform of a
sinusoid function f(r) = sin(wr) is

Hence,

Glo) = 1y 0(e=57) o (e gp)] m=e

0 otherwise
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Therefore, the response of a ramp filter to a sinusoid function is
0 otherwise

Solution 2.28
Suppose the Fourier transform of f(x,y) is F(u,v). Using the scaling properties, we have that the Fourier
transform of f(ax, by) is |ab‘ F (E 3) The output of the system is

1 U v
F
]:{|ab| ( b)}
= u v —j2m (urtvy) 4o g
/ /oolab a’b>6 he

|ab|/ / eﬂﬂ(af( x)+bn( y))|ab|d§d77

g(,y)

Given the inverse Fourier transform

(z,9) / / (u,v) eJQW(W'*'”y)du dv

/ / F(€,)e> @S0 |ab|dgdy = abl f(—az, ~by)

— 00 — 00

we have

Therefore, g(z,y) = f(—ax, —by) is a scaled and inverted replica of the input.

Solution 2.29
The Fourier transform of the signal f(x,y) and the noise 7n(z, y) are:

F(U,U) = ]—‘{f(:my)}
= |ab|F {sinc(az, by)}

— |ab] {II rect (Z Z)}

- ()

_ |1 Jz[<lal/2and [y| < |b]/2
0, otherwise

bl

E(u,v) = F{n(z,y)}
_ %[5(%14,1),3)%(%/1,%3)].

Using the linearity of Fourier transform, the Fourier transform of the measurements g(z, y) is

G(u, v) = rect (g%) +%[6(U—A,v—B)+§(u+A,v+B)] ,
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which is plotted in Figure S2.7. In order for an ideal low pass filter to recover f(z,y), the cutoff frequencies of the

1/28(u-A,v-B)

rect(u/a,v/b)/ | B____
| .
l- A7
Pl 2, .
% s
1728(utA,v+B) L - a2 4 u

e ’
, ,
, L L
’
.
’
,
,

Figure S2.7 The Fourier transform of g(z,y). See Problem 2.29.

filter must satisfy
la|/2 < U < Aand |b|/2 <V < B.

The Fourier transform of h(z,y) is rect (%, %) therefore, the impulse response is

hz,y) = F! {rect (%, %)} = 4UV sinc(2Ux) sinc(2Vy) .

For given a and b, we need A > |a|/2 and B > |b|/2. Otherwise we cannot find an ideal low pass filter to exactly
recover f(x,y).

Solution 2.30

(a) The continuous Fourier transform of a rect function is a sinc function. Using the scaling property of the
Fourier transform, we have:
G(u) = Fip{g(x)} = 2sinc(2u).

A sinc function, sinc(z), is shown in Figure 2.4(b).

(b) If the sampling period is Az = 1/2, we have

ntm) =glom/2) = {

—2<m<2
otherwise

Its DTFT is
Gi(w) = Fprrr{gi(m)}
ejQw+ejw+1ej0w+e—jw+26—j2w

1+ 2cos(w) 4 2 cos(2w) .

The DTFT of g; (m) is shown in Figure S2.8.
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i
1 \/\/ \m/\

® {m M)

IS

(A

I\)

O

Figure S2.8 The DTFT g;(m). See Problem 2.30(b).

3.5

3

25

Figure S2.9 The DTFT g2(m). See Problem 2.30(c).

(¢) If the sampling period is Az, = 1, we have

(m)=gmy=4 o 1=m=l
g2 =9 “ 1 0, otherwise
Its DTFT is
Ga(w) = Fprrr{gz(m)}
= Y4+ 1% f eI
= 1+4+2cos(w).

The DTFT of g(m) is shown in Figure S2.9.
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(d) The discrete version of signal g(x) can be written as
g1(m) = g(x — mAzy), m=—o0,---,—1,0,1,-- ,+00.
The DTFT of g1 (m) is

Gi(w) = Fprrrigi(m)}
+oo

=Y p(mpeiem

—+o0

Z g(mAxy)e 7™

m=—0o0

N / 9(z)0s(2; Axy e 95 da

— 00

In the above, 05(x; Axq) is the sampling function with the space between impulses equal to Az, . Because of
the sampling function, we are able to convert the summation into integration. The last equation in the above
is the continuous Fourier transform of the product of g(z) and d4(x; Az) evaluated as v = w/(2wrAxy).
Using the product property of the continuous Fourier transform, we have:

Gi(w) = Flg(@)}* F{os(x; Az1)}H,—/2man)
= G(u)* comb(qul)\u:w/(%Awl) .

The convolution of G(u) and comb(uAz) is to replicate G(u) to u = k/Ax;. Since u = w/(2wAxy),
G1(w) is periodic with period Q2 = 27.

(e) The proof is similar to that for the continuous Fourier transform:

Forer{e(m) «y(m)} = Forr {a(m) * y(m)}
_ fDm{ > x(mn>y<n>}
_ mio i im o(m — n)y(n)
- n_fjm L_iw M n>] y)
— ni)oe—im Li e—fwkx(k)] y(n)

(letk=m —n)

= Z e 7" Fprpr{z(m)}y(n)

n=—oo

= ]:DTFT{JJ(m)}fDTFT{y(m)} :
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(f) First we evaluate the convolution of g1 (m) with ga(m):

3, —-1<m<1
gi(m)+ga(m) =4 3 T
0, otherwise
Then by direct computation, we have
Forrr{g1(m) * ga(m)} = 343 x 2cos(w) + 2 x 2cos(2w) + 2 cos(3w)

= 3+ 6cos(w) + 4 cos(2w) + 2 cos(3w) .

On the other hand, we have

Forrrigi(m)} = 1+ 2cos(w) + 2 cos(2w)

and
Forrr{g2(m)} =1+ 2cos(w).
So, the product of the DTFT’s of g1 (m) and g2 (m) is

Forrr{g1(m)}Forrr{g2(m)} = [1+2cos(w)][1+ 2cos(w) + 2 cos(2w)]
= 14 4cos(w)+ 2cos(2w)
+4 cos?(w) + 4 cos(w) cos(2w)
= 14+ 4cos(w) + 2cos(2w)
1 + cos(2w) N 4cos(w) + cos(3w)

2 2
= 3+ 6cos(w) + 4cos(2w) + 2 cos(3w) .

+4

Therefore,
Forrr{gi(m) * g2(m)} = Forrr{gi1(m)} Forrr{gz(m)} .



Image Quality

CONTRAST
Solution 3.1

g(z,y) = /_ /_ h(&,n) f(x— &y —n)didn
B o0 o0 i
— AHO.0)+ 5 [ ) [ Bl e dedy
B o0 o0 .
_ 2[ [ h(f,n)eﬁ%uo(w*ﬁ) dedn

B . (o) (o) .
= AH(0,0) + e/ / / h(&, m)e” 7208 dedn
] —00 J —00

B . oo oo .
_ 76*J27FU01 / / h(f, ,,,I)ej27ruo§ dfd?’]

2j
B J2muox —j2muow
= AH(0,0) + % e H(ugp,0) —e H(—uy,0)]

= AH(0,0) + B|H (ug,0)|sin(2ruox) .

Solution 3.2

(a) The PSF of the medical imaging system is isotropic, so we have:

MTF(u) = |H(u,0)]
= [F{h}(u,0)].

From Table 2.1, we have F{h}(u,v) = / / oL o=@+ 2=g2m(uatvy) g dy = =27 (¥ +07) The

37
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MTF associated with the system is:

2,2

MTF(u) = e 2™ *".

(b) See Figure S3.1.

09

08 F

0.7 F

0.6

0.5

MTF

04

03

02

0.1+

0 0.1 0.2 0.3 1 0.4 0.5 0.6
Frquency u (cm™")

Figure S3.1 The modulation transfer function of the system. See Problem 3.2(b).

(c) The spatial frequency of the input signal f(z,y) = 2+ sin(wx) is u = 1/2. At this frequency, the MTF has
a value MTF(0.5) = e~27°0-5" = 0.0072. So the percentage change in modulation caused by this system is
100 x (1 — 0.0072)% = 99.28%.

Solution 3.3

(a) Given hy(x) we first find the Fourier Transform H; (u) as follows:
M) = [ e
_ / e—(w2+j107ruw)/5d1,

)
- o 2.2 2.2
_ / e (z“+j10mur—257"u )/56 5w dr
—o0

oo
2 2 . 2
- e bTu / 67(:13+J57ru) /5d17
— 00

Hence, the MTF is given as:

MTF,; (u) =
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(b) The Fourier transform of the second system hs(2) can be computed by analogous methods, and is found to
be

2, 2
Ho(u) = V10me 107",
Since the two systems are in serial cascade, the overall system transfer function is

H(u) = Hi(u)Hs(u)
= VBr/10me 57w’ g—107%u?
V50me 157w

2,2

Hence, the MTF is MTF(u) = e~ 157 4",

Solution 3.4
Let h(x,y) denote the PSF of the nonisotropic medical imaging system, and we assume h(z, y) is normalized to

1;1i.e., i
[OO [m h(€,n)dedn =1.

A+ Bsin(2r(ux + vy))

Given the input

f(z,y)

A+ E |:€j27r(u:c+vy) - eijTr(uervy) ,
the output g(z, y) of the system is given by
9(z,y) = / / h(& ) f(x =&y —n)dédn
B e} e} o e B
= A+ 7 h(€,n)e’ rlu(e=+vly=nl gean
.] — 00 — 00
B oo o0 o _ _
= (€, n)e 2 lu@=8+vl=l ge 4y
2] oo /-0
B oretoy [T [T — 2 (uéton)
= A+ 3¢ h(§,n)e dédn
B . ~ OOOO [e.¢] .
_?je—ﬂﬂuz-kvy)/ / h(&n)eﬂﬂ(ufﬂn) dédn
B j2m (uz+vy) —j2n(uz+vy)
gley) = A+ [ VH(uv) — e D H(~u,~v)] .

2j

Assuming that h(z,y) is a real function, we have H (u,v) = H*(—u, —v) = |H(u,v)| exp(j¢), where ¢ denotes
the phase angle of H (u,v). Hence,

o(z,y) A+ B @) [ej[2w<ux+vy>+¢] _ e—j[2w<uw+vy>+¢]]
b 2j )

A+ B|H (u,v)|sin(27(uz + vy) + ¢) .
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The output g(z,y) is again sinusoidal with gy,.x = A + B|H (u,v)
modulation of g(z,y) is

,and gy = A — B|H (u,v)|. Therefore, the

B
mg = —|H(u,v)| = mg|H(u, )|

Thus, the MTF of the system is given by

MTF(u, v) = % = |H(u,v)|.
f

Solution 3.5

(a) By multiplying the image with a constant ¢, the intensities of the background and the target become f;, =
al,, and f; = al;. The local contrast of the processed image is:

_ft_fb_alt_alo_lt_lo

!
¢ fb CVIO Io

:C’

where C'is the local contrast of the original image.

(b) By subtracting a constant I, from the image, the intensities of the background and the target become f;, =
I, — I, and f; = I; — I,. The local contrast of the processed image is:

It*Is)*(IO*Is)ilt*Io C Io >C.

//7( —
O B Io_Is _IO_IS_ IO_IS

So, by subtracting a constant 0 < I; < I, from the image will improve the local contrast, while scaling the intensity
will not change the local contrast.

RESOLUTION
Solution 3.6
The profile of the impulse response as a function of the polar angle 6 can be expressed as:

h(T’, 9) _ 6771'(7‘2 cos? 9+(r2 sin? 0)/4) ) (831)
For a fixed 6, the maximal value occurs at = 0 with h(0,0) = 1. Solving for r in

h(n 9) — e—ﬂ(rz cos? O+(r? sin 9) /4) — 1/2

yields
In2
T1/9 = .
12 7 (cos? 0 + sin® 0/4)
The FWHM is therefore
In2
FWHM =2x 1/ =2 .
12 \/w (cos2 6 + sin® 0/4)

which is plotted as a function of 8 in Figure S3.2.
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FWHM

Figure S3.2 FWHM as a function of 6 for an anisotropic system. See Problem 3.6.

Solution 3.7

(a) We have
lw12) 1 m /3 o«

Wzizcos(axl/g) = Olll?l/gig = Il/QZTchm.

FWHM is twice z1 /3, s0

FWHM = 22, /5 = =

—cm.
3

(b) The resolution of the system is the inverse of the FWHM:

1 3 —1

FWHM =

Solution 3.8

(a) We have ho(z) = e=*/2 and hq(z) = e=9""/2. We need to find a so that z, at half maximum of hq () is
half of z¢ at half maximum of ho(x), i.e. £, = z¢/2.

712/2: 2 2
fax;)/Q 1;;} = e @/DY2 _pmam/8 —1/9 = qa2/8=12/2 = a=4.
e a =

The impulse response for the new system is:

—22°

hnew(z) =€
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(b) Yes. The resolution improves. The system with smaller FWHM can distinguish objects that are closer
together.

(¢) The system should pass higher frequency signals. In other words, the MTF of the system should have a
broader pass band.

Solution 3.9

(a) The line spread function (LSF) [(x) is defined as the output of the system to a line impulse function f(z,y) =
§(x):

@) = /fo W, ) dn

_ /OO L )2 gy
oo 2T

1 —2?/2 /OO 1 —n?/2
= —e —€ d
V2T oo V2T "

= 1 67r2/2 .
V2r
(b) FWHM is the full width at half maximum. The maximum value of LSF occurs at z = 0, i.e., [(0) = \/%
Solve () = 1(0)/2 (we can ignore the constant \/% and solve e~ %1/2 = 1/2) for zy, to get x, =

1.1774 mm. So FWHM = 2x;, = 2.3548 mm.

Solution 3.10

(a) We have
max hy(x) = hi1(0) =1
Solving
1
hl (1‘01) = e_r?h /2 =
yields
To, =V2In2.

Thus, the FWHM of subsystem hj () is

FWHM; = 2zp, =2v2In2~ 2.35.

Similarly,
max ha(x) = h2(0) = 1.

Solving

ha(zo,) = 67132/200 _
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yields
Zg, = 10v2In2.

Thus, the FWHM of subsystem ha(x) is

FWHM, = 220, = 20v2In2 ~ 23.55.

(b) The PSF of the overall system is given by
_ /Oo e—E2/2¢—(z—£€)?/200 d¢

_ /oc e—(12—2§m+§2+10052)/200 d¢

— 00

_ /OO e’101(5’$/101)2/2006""72/202 d¢
_ C::oasz/2o2 ’
where C' = /OO ¢~1016%/200g¢ i5 4 constant. Clearly,
max h(z) = h(0) =C.
Thus, from h(zo) = e~ *6/292 = 1 we get the FWHM of the overall system as

FWHM| (51 = 2V2021n2 & 23.67 ~ FWHM, .

Alternatively, since the subsystems have PSFs that are in exponential form, one can directly compute the
FWHM of the overall system as

FWHM; ;] = \/ FWHM7 + FWHM3
2 2
— \/(2\/2ln2> n (20\/21112) — /30812
~ 2367,

(¢) From (a) and (b), we can see that the second subsystem mostly affects the FWHM of the overall system.

Solution 3.11
A bar phantom, with bars parallel to y-axis, can be modeled as

bz,y) =Y rect (“751““) ,

k

where w is the width and the separation of bars. Since b(x, y) is constant in y for any fixed z, it suffices to consider
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the profile of the system and the phantom for y = 0:
x — 2kw
b = t| ———
1p(x) ; rec ( ” > ,
“(3)
rect | — ) .
A

The output of the system is the convolution of b(x, y) and h(x, y):

hlp(l‘)

g(z,y) = blw,y)*h(z,y)
/bx—ﬁy mh(&,n)dédn

/rect (%) [/ bip(x — £) rect (i) df] dn
/rect dn/bw x — &) rect (i) d¢

_ A / b1 p (@ — E)hap(€)de
= Abip(z)*x hip(x).

(a) If w = A, the separation of the bars is just wide enough to contain f; p(z). The minimal value of g1 p(x) =
bip(x)*hyip(x)is 0, which occurs at z = (2k+1)A when hq p(€) completely overlaps with the separations
of byp(x — &). The maximal value of g;p(x) is A, which occurs at x = 2kA when hyp(€) completely
overlaps with the bars of by p(z — &). The values between extreme values change linearly from O to A. This
situation is shown in Figure S3.3. Based on the above analysis, we have

b1(8)
L ]
p(0-€) 3
[]]
I (-A-€) &
[ ]
hip(3A/4-E) 3
[ ]

Figure S3.3 w = A. See Problem 3.11(a).

(2) = A —(x—2kA), 2kA<z<(2k+1)A
g1p —(2k—1A, (2k—1)A <z <2kA
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So,

b(w,y) * h(x,y)
[ A2 A(r—2kA), 2kA <z < (2k+1)A
Az — (2k — 1A%, (2k— 1A < z < 2kA

9(,y)

(b) If w = 0.5A, no matter what x is, h1p(z — &) always overlaps with one complete bar (or parts of two
adjacent bars that add up to 1 complete bar) of b1 (&) (see Figure S3.4). So, the output of the system is

bi5(8)
HENRINREN
hi(0-8) g
hin(-A-E) g
[ 1]
h(3M/4-8) 3
[ 1]

Figure S3.4 w = 0.5A. See Problem 3.11(b).

g(x,y) = b(x,y) * h(z,y) = 0.5A%.

(c) Now consider the range 0.5A < w < A. With a similar figure as Figures S3.3 and S3.4, we can see that
hip(x — &) at most overlaps with one bar of b;p(£), and it at least overlaps with part of a bar of width
A — w. So the maximal value of g(x,y) is Aw and the minimal value is A(A — w). The contrast of the
output image of the bar phantom is therefore

RANDOM VARIABLES AND NOISE
Solution 3.12
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Evaluate the expectation of M as follows:

E{M}

Evaluate the variance of M as follows:

2
i

E{N#N}

ON

E{N — pn'}
ON

E{N} — pun
ON

HUN — UN

ON

(because oy is a constant)

(because pu v is a constant)

0.

B{M?} — (E{M})
E{M?*}( because E{M} = 0 from above)
(N —pn)?
E{(N — pun)*}
o
o

2
ON
1.

In order to get equality (1), we used the following property of variance:

2
oM

Solution 3.13

N
Let X = ) X;. The mean of X is
i=1

E{(M — p)?}

E{M? = 2up M + pi3,}
E{M?} = 2up E{M} + i3
E{M2} _/ﬁw-
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where we used the linearity of the expectation operator E. The variance of X is

o* = E[(X-p)’]
N N 2 N 2
~ (zxi—zm & (zoa-—m)
N ) ) N )
= ZE[(XL Uz)2] + Z Z E[(X; — pi) (X5 — )]
i=1 i=1 j=1,ji

Since X;, i =1,---, N are independent, E[(X; — ;)(X; — p;)] = 0if j # i. Therefore,

N
o= ZE[(XZ» — i)’ =Y o}

i=1

Solution 3.14
If X;,i=1,---, N are not independent, then

N
p = E[X] :Z,Ui

still holds, since in deriving this equality, we used only the linearity of the expectation operator. The equality
for the variance, however, does not hold because when X;, ¢ = 1,--- | N are not independent the statement
E[(X; — 1:)(X; — p;)] = 0 is not necessarily true.

Solution 3.15
The PDF of the uniform random variable is given by

fora <z <b

0, otherwise

Thus,

ux = / xpx (x) do

I
—
f=a)
3
—_
Q
5
I
o
[\
|
IS
no
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and
2 _ > 2
ox = / (x — px)°px(v) dz
b
a+b, 1
= /a(x— 5 )b_adx
b
- a+b, 1 a+b
- [ de -5
1 b—(a+b)/2
= / 2 dt
b—a a—(a+b)/2
B 1 b—a 3_ a—0b\*
~ 3(b—a) 2 2
B (b—a)?
N 12
Solution 3.16

For the system with PSF h;(x, y), the output power SNR is given by (3.63)

/_ /_ (2, y) * f(x,y)[* dx dy

SNR,; = 0 __
/ / NPS(u, v) du dv

By applying Parseval’s theorem, we have

/_ /_ b (2, y) * f(z,y)* dedy

/ / NPS(u, v) du dv

/ / |Hy (u,v)F(u,v)|* dudv

oo oo
/ / NPS(u, v) du dv

[ i Piew o dude

/ / NPS(u, v) du dv

o0 o
/ / MTF3 (u, )| F(u, v)|? du dv
— 00 o0

/ / NPS(u,v) du dv

SNR,, =
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Similarly, we have the output power SNR for the second system
/ / MTF3 (u, v)| F(u,v)|? du dv
— 00 o0

/ / NPS(u, v) du dv

Since MTF; (u, v) < MTFs(u, v), we have MTF3 (u, v)|F(u, v)|> < MTF3(u, v)|F(u,v)|?. Therefore

SNR,2 =

/ / MTF; (u, v)|F(u,v)|* dudv < / / MTF3 (u, v)|F(u,v)|* dudv .

So SNR;; < SNR,2, the output power SNR of the second system, the one with larger MTF, is higher. Therefore,
the second system is better in terms of image quality.

Solution 3.17

(a) The noise in the output g(z,y) is n'(x, y)
' (z,y) = h(z,y) *n(z,y).
Its mean is

E{n'(z,y)}

{h(z,y) *n(z,y)}
{ h(&,mn(x — &y — n)dﬁdn}

E
E

— / hEmE{n(z — &y —n)}td&dn
0
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Its variance is

E{n'(z,y)n'(x,y)} = E{[h(z,y)*n(, y)]Z}

B {/ / n(z — &y —n)d{dn
/- /_OC h(p,qm(x_p,y_q)dpdq}
- E{/Z/Z/Z/Zh(fﬂl)n(xgyn)

h(p,q)n(x — p,y — q)dpdq d§ dn}

- [ e

E{n(x - &y —n)n(z —p,y —q)}dpdqd dny

N /Z/Z/Z/Zh(&n)h(n@

o28(p— &, q —n)dpdgdédn

- //h2£nd£dn

= O'nHo,

where, Hy = f_ f_ h2(&,m)dE dn.

(b) The power SNR for the input image is

f_ f 2z y)dxdy

2
On

SNR;, =

The power SNR for the output image is

[0 S @ ) * f @, y)]Pda dy _

SNRout = H 0_2
09n

(c) Since we assume that the system does not change f(z,y), h(x,y)* f(z,y) = f(z,y), we must have Hy < 1

in order for the SNR to be improved by the system.

SAMPLING THEORY
Solution 3.18



(a) We have

Since

and AT = 0.25T, then

Also
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fs(t) = f(t)ds(t; AT)

o0

= ) fO)6(t—mAT)

m=—0o0

_ i F(MAT)S(t — mAT) .

m=—0o0

sin(), 0<t<T
St = g

0, otherwise
fs(t) =6(t —0.25T) — 6(t — 0.75T) .

1, m=1
fam) = f(mAT)=< -1, m=3
0, otherwise

(b) The signal f3(t) is referred to as a zero-order hold. By definition,

In(t)

1, 0257 <t<0.5T
-1, 07T <t<T
0, otherwise

oo (LZOBTSTN (- 0.875T
U\ ToasT N0 )

Using the properties of the Fourier transform, we have

Fu(f) =

f(oJ:h
/.

)

(t
fn(t)e 72t dt

= 0.25Tsinc(0.25T f)e 727 (0-375TF) _ (0 95Tsinc(0.25T f)e 727 (O-875TF)
= 0.25Tsinc(0.25T'f) [e—ﬂ’f(“’””f)—e—j2”<0~875Tf> .

(¢) For AT = 0.5T, we have

I
o o o o
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Solution 3.19

Since the Nyquist sampling periods for 1-D band-limited signals f(z) and g(z) are Ay and A, the highest
frequency of f(x) and g(x) are ﬁ and ﬁ. In order to find the Nyquist sampling periods, we need to find the

highest frequency for each of the signals.

(a) A shift in location does not change the frequency components of a signal, so the magnitude spectrum of
f(z — xo) is the same as that of f(x). The Nyquist sampling period of f(z — x¢) is Ay.

(b) The Fourier transform of f(x) + g(z) is F[f(z) + g(x)] = F[f(z)] + Flg(x)]. The highest frequency of
f(x)+g(x)is max(ﬁ, ﬁ), so the Nyquist sampling period of f(x) + g(x) is min(As, A,).

(¢) The Fourier transform of f(x)* f () is F[f()]. The highest frequency of f(x)* f(x) is ﬁ, The Nyquist
sampling period of f(x) * f(z)is Ay. ‘

(d) The Fourier transform of f(x)g(z) is F[f(x)] * Flg(x)], The highest frequency of f(x)g(z) is ff + ﬁ,

and the Nyquist sampling period is AAf CFAA” .

(e) If f(z) > 0, || f(x)|| = f(z), the Nyquist sampling period of || f(z)| is A;. But in general, the operation
of taking absolute value will reverse part of the original signal f(z), and therefore introduce high frequency
component. In general case, || f(x)|| is no longer bandlimited, even though f(z) is.

Solution 3.20

The sampling frequencies are A%; = 1.5 and Ai = 1.5. From the sampling theorem, in order to avoid aliasing,
the cutoff frequencies of the low-pass filtered signal f * h must satisfy:

1 1
< — =0. < — =0.75.
U_ZAz 0.75, andV_2Ay 0.75

Thus, the ideal low-pass filter h(z,y) that gives the maximum possible frequency content must have a frequency
response as

1,if Ju] <0.75 and |v| < 0.75
0, otherwise

H(u,v) = {

H (u,v) is one inside a square region and zero outside. The PSF of the required anti-aliasing low-pass filter can be
computed as:

h(z,y) = Fy (H(u,v)) = / / H(u,v)ej%(“”””y) dudv
0.75 0.75
_ ej27r(ux+vy) dudv
—0.75 J —0.75

0.75 0.75
— (/ ej27rux du) . (/ ej27rvy d’U)
—0.75 —0.75
exp[j27(0.75)x] — exp[j27(—0.75)x] exp[j2w(0.75)y] — exp[j27(—0.75)y]
j2rx . j2my

sin(1.5mx) sin(1.57y)

T Y
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From Table 2.1, we know that .
Fo(f)(u,v) = e ™ H).

Thus, the total spectrum energy of f(x,y) is

Eiotal = / / | Fa(f) (u,v)|? du dv
B / / e~ 2w +0%) g )

= 27m e~ +v)/20% g dy with o2

The spectrum that is kept by the low pass filter has energy of

0.75  £0.75 .
_ o 2m(u?+
Epreserve = / / () dudu
0.75 J—0.75

0.75 ) 0.75 )
—_ / 6727ru du/ 672771) dv
—0.75 —0.75
1 0.75v27 2
= [— / e at
(\/ﬂ 0.75v/27 >

- 1f2erf(075\ﬁ)]

V2or 2
= %{erf(O.%\/ﬂ)r
~ %[0.992]2
~ 0.492,

where erf(-) is the error function. Thus, the percentage of the spectrum energy that is preserved is

Epreserve  0.492
Etotal 0.5

=98.4%.

Since the spectrum of f(x,y), which is Fa(f)(u,v) = e=™(w+v*) s non-zero for all (u,v) € (—o00,00) X
(—00, 00), it is impossible to sample f(x,y) free of aliasing without using an anti-aliasing filter.

Solution 3.21

(a) Impulse response: h(z,y) = rect(£)rect(£).
MTEF: H (u,v) = w’sinc(wu)sin ( v) and H(0,0) =
Thus MTF(u, v) = g((o 0)) = sinc(wu)s

Horizontal FWHM = w.

inc(wv).

(b) Since H(u,v) = w?sinc(wu)sinc(wv) and H(0,0) = w?, considering the main lobe of the sinc function
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and from Nyquist sampling theory, us > 2/w, vs > 2/w. Then AX < w/2 and AY < w/2. This means
that aliasing occurs in the sampling scheme using detectors of dimensions w x w and separation of w. Since
AX = wand AY = w then us = 1/w, vs = 1/w then the object must be limited to —1/2w and 1/2w. i.e
the object must have width W, = 1/w and W, = 1/w so that no aliasing occurs.

(c

~

In order to eliminate the aliasing occurring from using the w X w size detectors as explained before, grouping
of four of the small detectors is done so that the new detector size is 2w X 2w. That means that separation
between detectors of AX < w and AY < w will guarantee no aliasing (detectors must overlap). This can
be achieved as in Figure S3.5 by using the fact that we can overlap the resultant detector by sequentially
using the small detectors for overlap.

v

Figure S3.5 Overlapping of the detectors. See Problem 3.21.

(d) The impulse response function now is h(z,y) = rect(s )rect(5%) and the (horizontal) FWHM = 2w.

(e) Sequential grouping can be done after the image is acquired by the summation of 4 pixel values using the
same scheme described in (c) to get an aliasing free image.

Solution 3.22

(a) System 1 has a PSF that is a rectangle of width 0.5. Its FWHM is therefore 0.5.
System 2’s FWHM can be found by

1 ?
2—6
— —log2 = —mz?
log 2

— 2: o8

™

log 2
— =+ )
m

Therefore the FWHM is 24/ %2 ~ 0.9394.

System 1 has the better resolution.
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(b) The MTF is defined by the absolute value of the transfer function divided by its value at zero frequency. The
transfer function for system 1 is therefore given by

rect(x) < Slnc( ),
u
rect(2x) fsmc (7>
2

hi(z) = rect(2z) <> Hi(u) = §SIHC (%) .

And the transfer function for system 2 is given by

ho(z) = e ™ & ™ = Hy(u)

The MTFs are then

MTFy(u) =e™ ™ .

(c¢) f(x) is asinusoidal signal at frequency 2 (i.e., 27 fx = 4wz = f = 2). Since this is a LSI system, with a
real/even transfer function, the only effect is to rescale the amplitude of the sinusoid by the transfer function
at frequency i. Therefore

g1(x) = H1(2) cos(4mz)

1.
551110(2/2)

1
isinc(l)

= 07
and

g2(x) = H3(2) cos(4mx)
= cos(4dmx)

~ 3.4873 x 10~ % cos(4nz) .

Therefore you should use system 2 to image this signal because system 1 will not respond to it at all.

(d) We must sample at a rate greater than twice the highest frequency in our signal. The highest frequency (the
only frequency) is 4. Therefore we must sample at a rate greater than 4. This corresponds to a period less
than 1/4.

ARTIFACTS, DISTORTION, AND ACCURACY
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Solution 3.23

Both noise and artifacts degrade the image, making correct detection and delineation of anatomical features
difficult. The main technical difference between the two is that artifacts are reproducible scan after scan, whereas
noise will come out differently with each scan. On the other hand, noise is well-modeled using probability and
random variables, so that the broad characteristic of noise—for example, mean and variance—will be the same.
Artifacts are deterministic, and can originate from a variety of sources that, in principle, can be modeled and
removed. For example, some artifacts appear because of instrumentation failure or calibration problems. Artifacts
can also appear because the image reconstruction method fails to adequately model the true physics of the imaging
modality. Finally, artifacts might arise due to inadequacies in data collection—aliasing, for example.

Solution 3.24

Suppose the center of the ball has coordinates (x,0,0). When the source is inside the ball or on the ball surface,
ie. x < r, the shadow of the ball will cover the entire detector plane. In this case, the radius of the image is co.
When z > r, by simple geometry, we have the radius of the image on the detector plane, R:

T dr
R=dtan= — = R= ———,
72 _ 2 N

where 6 is the angle between the x axis and the tangent plane of the ball through the source. The size distortion is
measured by the ratio R/r = d/v/a? — r2. When d is fixed, we can increase x to reduce the ratio R/r. And the
largest « we can get is d — r, in which case R/r = d/v/d? — 2dr.

Solution 3.25

(a) If we take measurements on rectangular grids in the image plane, the locations of sample points are (kAx, [dy),
where k, and [ are integers, and Ax, 0y are spacing in x and y directions. The corresponding coordinates of
the samples in the physical domain can be obtained by solving the equations above, yielding

kAx
kl) = ————
S0 = T ayEE
nk,l) = IlAy.
The (k,1)-th sample on the image plane needs to be placed at ({(k,),n(k,1)) on the physical domain to

correct the geometric distortion.

(b) If we take measurements on rectangular grids in the physical domain, the locations of sample points in the
physical domain are (kAE, 16n). On the image plane, we need to sample points at

z(k,l) = KAE+ %kAﬁ(lAn)Q,
y(k,l) = lAn.



Solution 3.26

(a) The pdf of the test value for normal and diseased subjects are

1

2 2
pn(t) = e~ (#mHo)"/200,
v/ 203
1 2 2
po(t) = e~ (@=m)" /207
v/ 20%
(b) When the threshold is set to be to = (1o + £11)/2, the sensitivity and the specificity are
cpe s a
sensitivity =
a+c
B Jio po(t)dt
fiooo po(t)dt + [, po(t)dt
= ! + erf H1 o
2 g1
= 1 + erf 1~ Ho
2 201 ’
d
feity = 4
specificity b d
1 H1 — [o
= = f
5 +er ( 500 )
(c) The sensitivity as a function of threshold value is
%+—af(“;*), t<
sensitivity(t) =
i- erf(t;’l“) , >
(d) The diagnostic accuracy is
1 _ Ho—t pi—t
3 {1 erf( 20 )—i—erf( [1;1 )}, t < o

a+d B
a+b+c+d

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS

57
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Solution 3.27

We consider image quality to be characterized by contrast and resolution. Since resolution is typically character-
ized using the FWHM, from (3.22) we know that the FWHM of the overall system can be determined approximately
from the FWHMs of the individual subsystems according to

FWHM ] = \/ FWHM? + FWHM3 + - - - + FWHMZ .

It follows that
FWHMyq) = FWHM,, forall 1 <@ < K.

Thus the resolution of the overall system is worse than each of the individual subsystems.
Both contrast and resolution can be characterized using the MTF. The MTF of the overall system is given by

MTF(u, v) = MTF; (u, v)MTF3(u,v) - - - MTFg (u, v) ,

in terms of the individual subsystem MTFs MTF;(u,v) , ¢ = 1,2,..., K . For most medical imaging systems,
MTF(u, v) < 1 for all (u,v). Assuming this is true for all the subsystems, that is,

MTF;(u,v) <1, fori =1,2,..., K,

then it follows that
MTF(u,v) < MTF;(u,v), fori =1,2,..., K.

Therefore, from this standpoint as well, the contrast and resolution of the overall system is inferior to each individual
subsystem.
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Solution 3.28
(@) Let A= (x — x0)/(x1 — x0), and u = (y — yo)/(y1 — yo). Linear interpolation gives

fE) = (1=XNf(A)+X(B),
fF) = (A=XNf(C)+Af(D).

Then f(P) can be obtained by linear interpolation of f(F) and f(F):

fP) = (A =) f(F)+ pf(E)
= (=X f(A) +pAf(B) + (1 = )1 = ) f(C) + (1 = WAf(D).

(b) Similarly,
f(G) = A=pf(C)+nf(A),
f(H) = (1—=p)f(D)+nf(B),
and
f(P)=(1=Nf(G)+Af(H)
(I=0A =) f(C)+ A =Npf(A) + A1 = p) f(D) + Aunf(B).

Comparing the coefficients for f(A), f(B), f(C), and f(D), we can see that the results from (a) and (b) are
the same.

(c) The point £ = 3,7 = 3.5 locates at x = 3.735,y = 3.5 on the image plane, which is inside the cell with
four corners g = 3,y0 = 3, x0 = 3,y1 = 4, 21 = 4,y0 = 3, and z; = 4,y; = 4. By our definition in
Problem 3.25, A = 0.735, 1 = 0.5. The value for £ = 3,7 = 3.5 1s

(€ =3,1=3.5)=0.1325(f(3,4) + f(3,3)) + 0.3675(f(4,4) + f(4,3)),

where f(m,n) are the measurements on the image plane.

Solution 3.29

(a) For a given threshold value ¢ with pp < ¢ <y, the sensitivity and the specificity are given as:

1 —t
sensitivity = 3 + erf (’ul) ,
o1

1 t—
specificity = 5T erf ( MO) .
o1

The ROC curve is shown in Figure S3.6.

(b) The perfect diagnostic test should have both sensitivity and specificity equal to 1. In this case, the ROC
curve is a point (0, 1) on the coordinate system of Figure S3.6.

(c) The point on the ROC curve that is closest to the point (0, 1) is (0.0179,0.9744). In this case, 97.44%
of the diseased patients will be diagnosed correctly, while 1.79% of the normal patients will be wrongfully
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—

True positive (sensitivity)
(=] (=] (=] (=1
o o e = S 0 S o
(=) W ~ W o n o n

4
n
a

o
n

005 01 015 02 025 03 035 04 045 05
False positive (1-specificity)

Figure S3.6 The ROC curve. See Problem 3.29.

diagnosed as diseased. Using the relationship between sensitivity and threshold, the corresponding threshold
value i8 topy = 5.24, which is different from (po + p41)/2 because the two groups of subjects have different
variances.



Physics of Radiography

PHYSICS OF ATOMS
Solution 4.1

(a) From tables (internet or physics or chemistry textbooks),
mass of carbon-12 = 1.99264663 x 10~ 2% kg .
From the information given in the problem statement, we calculate
mass of (6p + 6n + 6¢) = 2.0090759569 x 10~2° kg .
The mass defect is therefore

mass defect of carbon atom = 2.0090759569 x 10726 kg — 1.99264663 x 1072 kg
= 1.6429326956 x 10~ kg.

To find this in atomic mass units

mass defect of carbon atom = 1.6429326956 x 10~ 2% kg x 6.0221415 x 10%¢ u/kg
= 0.098939732 u.

(b) We have

E = md
= 1.6429326956 x 10~ 2% kg x (2.99792458 x 10° m/s)?
1.47659426 x 1071 J.

Since 1 eV = 1.60217653 x 10~19 J, we also have

E =9.21617711 x 107 eV .
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Solution 4.2

(a)

(b)

(0

The mass-equivalent energy of an electron at rest is
E= moC2 .
Since mgy = 9.10938 x 103! kg is the mass of an electron at rest and ¢ = 2.99792 x 108 m/s, we have

E = 9.10938 x 1073 x (2.99792 x 10%)? kg — m?*/s?
= 8.18697 x 10714J
= 5.11x10°eV =511 keV.

Ignoring relativity the kinetic energy of an electron at speed v = 1—100 is
By = smgo® = — * = 2.558 keV
= —mov* = ——mpc” = 2. .
TN Tp0

So when the effect of relativity is ignored, the potential needed to accelerate an electron to a speed equal to
1/10 the speed of light is 2.558 kV. This is not accurate since at 1/10 the speed of light, the effect of relativity
cannot be ignored.

The kinetic energy gained by an electron after it is accelerated across a 120 kV potential is
KE = mc? — moc® = 120 keV,

where m is the relativistic mass of the electron after acceleration, which is given by

__Mo
V1= (v/c)?

Therefore, we can carry out the following steps to find v:

120keV = mc® — moc?
= LCQ — moc?
1—(v/c)?
1
= mp | ——— -1
( 1—(v/c)? )
1 S
511 T (v/e)
v = 0.5867c.

Thus, at 120 keV the speed of the electrons hitting the anode is over 1/2 that of the speed of light.

Solution 4.3
From Eq. (4.3), we have:

KE = E—-Ey

me® — moc”,
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where m, m are the mass and the rest mass of the particle, respectively. They are related by the following equation

(Eq. (4.1) in the text):
Mo

V1—0v2/c2’
When v < ¢, v?/c? is close to 0. By using Taylor’s expansion of function f(z) = \/11_7 in the neighborhood of
x = 0, we have the following approximation for m:

1v?

Using this approximation yields
KE = mc®— m002

1 2
mo (1 + 2;) A - m002

Q

1 2
imO’U .

Q

Notice that when v < ¢, the mass m is approximately equal to the rest mass mg, so we have:

KE L?
~ —Mmuv
2

)

which is the usual expression for kinetic energy of a mass in motion.

IONIZING RADIATION
Solution 4.4

Characteristic radiation is produced by electrons that drop to lower energy states (more inner orbits) after they
have been excited to higher energy states (more outer orbits). The differential in energy lost by the electron is given
off as an x-ray—characteristic radiation. Because electrons exist in discrete energy states that are specific to a given
atom, characteristic radiation can only be emitted at a collection of discrete energy levels within the EM spectrum.
Therefore, the intensity spectrum for characteristic radiation comprises a discrete spectrum—that is, spectral lines.

On the other hand, Bremsstrahlung radiation is caused by interaction of an energetic electron with a nucleus of an
atom. Specifically, the nucleus, having a positive charge, will tend to attract the electron, having a negative charge,
causing the electron to slow down and be deflected from its original path. The electron loses energy as a result,
which is radiated away as an x-ray with energy equal to that lost by the electron. An electron can lose all its energy,
by collision into the atomic nucleus, or any smaller amount, by smaller deflection. Therefore, unlike characteristic
radiation, the energy spectrum of bremsstrahlung radiation is continuous. Since lower energy losses are more likely,
and direct collision with a nucleus is very unlikely, the bremsstrahlung spectrum is zero at the incident energy of
the electrons and grows larger with decreasing energy.

Solution 4.5

(a) Ionization is the ejection of an electron from an atom. In order to eject an electron, the incident radiation
must have sufficient energy to overcome the binding energy of the electron. The smallest binding energy
among atoms having smaller atomic numbers is that of the sole electron in the hydrogen atom. Its binding
energy is 13.6 eV. Therefore, a radiation having energy above 13.6 eV is capable of ionizing the hydrogen
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(b)

CHAPTER 4: PHYSICS OF RADIOGRAPHY

atom, which makes it ionizing radiation. If the radiation has energy smaller than 13.6 eV it is not capable
of ionizing the hydrogen atom or any other atom (with smaller atomic number), and is therefore considered
non-ionizing. (There are larger atoms having electrons with binding energy less than 13.6 eV, but these are
rare in nature and even rarer in the human body.)

Ionization is the ejection of an electron from an atom, while excitation is the process of raising the energy
of an electron within the electron cloud, without causing ejection. Excitation rearranges the electrons within
the shells, but this is only a temporary effect, since the electrons will seek a lower energy configuration, and
in the process generate characteristic radiation.

Solution 4.6
(a) The frequencies and the wavelengths of EM waves are related by the formula:
A=<,
v

(b)

(0

where ¢ = 3.0 x 10® meters/sec is the speed of light. For A = 4 nanometers, we have

e
DY

3.0 x 108 m/s
4%x10°m

= 7.5x%10% Hz.

Similarly, for A = 400 nanometers we have v = 7.5 x 104 Hz. So the frequency range for ultraviolet light
is 7.5 x 101 Hz ~ 7.5 x 1016 Hz.

The energy of a photon is given by
E=hv,

where h = 6.626 x 1073 Joule-sec is Planck’s constant. So for ultraviolet light with frequency v =
7.5 x 10'* Hz, the energy is £ = hv = 6.626 x 1073 x 7.5 x 10'* = 4.97 x 10~'” Joule. Since
leV = 1.6 x 10~ Joule, we have that E = 4.97 x 10~1? Joule = 3.1 eV. Similarly, for ultraviolet light
with frequency v = 7.5 x 1016 Hz, the energy is £ = 310 eV. So the photon energy range for ultraviolet
light is 3.1-310 eV.

Radiation with energy greater than or equal to 13.6 eV is considered to be ionizing radiation. 1t is easy
to calculate that when the frequency of the ultraviolet light is v = 3.284 x 10'° Hz, the photon energy
is E = hv = 13.6 eV. So ultraviolet light is ionizing radiation when its frequency is greater or equal to
Vo = 3.284 x 10' Hz. Ultraviolet light with a frequency lower than that is not ionizing radiation. Or
equivalently, when the wavelength is larger than \g = 700 = 91.35 nanometers, ultraviolet light is not
ionizing radiation.
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Solution 4.7
(a) Electron density is:
NuaZ
EC =
Wi’
where
Na = 6.022 x 10%,
Z = 1 (for hydrogen),
W,, = 1 gram/mole (for hydrogen),
where the last fact follows from the fact that the atomic weight of a hydrogen atom is approximately 1 u.
Therefore,
6.022 x 10?3 x 1
ED ~ 6 x 10?3 electrons/g = 6 x 10%° electrons/kg .

- 1 gram/mole(of electrons)

(b) Except for the hydrogen atom, all other low atomic number materials have nearly equal numbers of neutrons
as protons. Therefore, since the weight of these other atoms is doubled, while the number of electrons
remains tied to the number of protons, the electron density is approximately halved from that of hydrogen.

(c) The slight deviation can result from the ratio of neutrons to protons become larger than one with increasing
atomic number and from the differing hydrogen content in various materials.

ATTENUATION OF EM RADIATION
Solution 4.8

(a) Let I denote the incident intensity, and I, the exiting intensity. Denote the thickness of the shielding
material. From the problem specification, we know that

I,
— =1-99.5% = 0.005.
Iy

Since I, and I are related by
Iw = Ioe_/m s

we have

I
—Hrr = 2 = 0.005.
e To

Then, we solve for z as follows

200 _ 5.3

)

1
r = ——In0.005 =
o

which is the required thickness of the shielding material.

(b) The desired range of an ionizing beam in tissue would be centimeters to tens of centimeters, which is about
the distance that the beam would have to travel through the body. If the range is larger, then the incident
beam would travel through the body with almost no attenuation, and no contrast would be obtained. If the
range is too short, all beam energy would be absorbed by the body, and no image can be formed.
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Solution 4.9

Let df = % = —pudzx. By solving % = %, we have f = In N + ¢;, and by solving j—f; = —pu, we have
f = —px + co, where ¢; and ¢, are two arbitrary constants. Therefore, f = In N + ¢; = —pux + co. This leads to
In N = —px + ¢, where c is an arbitrary constant. So we have N = Nye™#”, with a constant Nj.
Solution 4.10

Suppose that the x-ray photons hit the phantom on a unit area is Ny. On the screen where it is not blocked by
the bars, the photons detected on a unit area is also Ny. The thickness of the bars is 0.4 cm, which is 4 times the
HVL, so the x-ray photons passing through the bars is (1/2)* = 1/16 of those entering the bars. So the screen that
is blocked by the bars detects Ny /16 photons on a unit area. The contrast of the image on the screen is

_ No—No/16 15

c=-2_"0—_ 2
No + No/16 17

Solution 4.11
From Eq. (4.8), the energy of the scattered photon is given by
Wy — hv ’

1%
1 1 —cosf
+ moc2( cos 6)

where mgc? = 511 keV. Thus, the larger @ is, the smaller the energy of the scattered photon. Using the facts
1 Angstrom = 10~ %meter, h = 6.626 x 10~3%joule-sec, and 1 joule = 6.241 x 10'® keV, we can compute the
energy of the source x-ray photon as

hv = he/X

6.626 x 10~ 34joule-sec x 3 x 108m/s x 6.241 x 10'° keV/joule
8.9 x 1072 x 10~ 0m

139.4 keV .

Q

The energy of a photon that has been scattered by 25° is

hv
hv
moc?
139.4 keV
139.4 keV

14 228XV g s 250
B key (L0820

~ 135.9keV.

h' =

1+ (1 — cos25°)

Thus, to eliminate all photons that have scattered more than 25 degrees, the system should only accept photon
energy between 135.9 keV and 139.4 keV.



Solution 4.12
From Eq. (4.8), the energy of the scattered photon is given by:
hv' = % hw ,
1 1—cosf
+ mOCQ( cos )

where myc? = 511 keV.

(a) We use the provided numbers and solve for 8 as follows:

100

99 =
1+ (1 —cos6)100/511

511
— f=cos (1o
o8 < 100><99>
— 18.49° .

(b) We use the provided numbers to solve for £ as follows:
o 100
1+ (1 —cos(25°))100/511
= 98.20keV .

The range is therefore 98.20-100 keV.

Solution 4.13

(a) We use the provided linear attenuation coefficient and solve for HVL as follows:

N v _ L

No 2’
— uHVL =In2,
In 2

— HVL=—%—-03cm.
I

Therefore, the HVL of the Nal crystal at 140 keV is 0.3 cm.
(b) Plugging in the provided numbers yields

B = b

14 (1 —cos@)E/(511 keV)
140 keV
1+ (1—0) x 140/511
140
© 140274
= 109.89 keV .

Therefore, the energy of the scattered photon is 109.89 keV.
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(c) Since both energies are above the K-edge, the attenuation coefficient at the lower energy will be larger.

Therefore, the scattered photons are more likely to be absorbed than the incident photons because the scat-
tered photon has lower energy than the incident photon.

Solution 4.14

(a) We are not told the linear attenuation coefficient of the shielding material. But we know that it blocks 90%

(b)

of the incident radiation. So

N = Nye HAe
ﬁ _ 1-09 — g~ Lbomu
Ny 1
Therefore,
- In0.1
 15cm
The definition of HVL is
1 — ¢~ HVLu
2 )
SO

HVLy = —1n0.5.

Plugging in our expression for x derived above yields

HVL  In0.5
15cm  In0.1’
which can be solved for HVL as follows
HVL = 205 5 em = 0.45 em.
In0.1

From Eq. (4.8), the energy of the scattered photon is given by:

ht' = % hw ,
1+ " (1 —cos?)
where mgc? = 511 keV. Therefore,
b 102.2
1+ (1-0) % 102.2/511
1022
1402

=85.17keV .
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Solution 4.15

(a) Use of Beer’s law yields
I = Iye " = [ye 93X = 0.74081,

(b) If 1/2 of the incident x-rays are blocked then I = I, /2. Then using I = Ipe~#% and solving for d yields

~ In0.5
—p

d =2.31cm.

(c) In the broad beam geometry, photons from outside the detector’s line-of-sight might get scattered toward
the detector because of Compton scattering. Those that were directed at the detector and scattered away
will do so in both geometries, so they have no impact on the relative number of detected photons in the two
geometries. Therefore more photons will be detected, in general.

RADIATION DOSIMETRY
Solution 4.16

From Example 4.7, we know that in order to keep the dose equivalent to be under 10 mrems, the lung should
have an exposure less than 10.8 mR. Since the exposure follows an inverse square law for point sources, the smallest
distance the patient should be away from the source should be

10

m x1=230.5cm.

Solution 4.17
The effective dose is given by (4.38):

Dettective = Z ijj = 0.002Hpone + 0.002 H puscte -
organs

From Sections 4.6.1-4.6.5, we have

Def‘fective = O'OOQDboneQ + O'OOQDmuscleQ
= 0.002fpone X @ + 0.002 fryuscle X @

(:u/p)bone + (N/p)muscle
(M/p)air XQ '

For x-ray at 20 keV, @ ~ 1 (see http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html) and

(11/P)bone = O.4cm2/g, (18/ P) muscle = O.820m2/g, (1) p)air = 0.78cm2/g.

= 0.002 x 0.87

So,

(:u/p)bone + (M/p)muscleX

Degtective = 0.00174
' (/J///O)air

= 2.06 mrems .



Projection Radiography

INSTRUMENTATION
Solution 5.1

The system is shift variant in the z direction because of the divergence of the x-ray. The system is shift invariant
in x and y directions if the object is infinitesimally thin in the z direction. Otherwise the system is shift variant in
general.

The intensity of x-rays incident on the detector at (x, y) is given by

Emax r(z,y)
I(z,y) =/ So(E")E exp {—/ M(S;E’,x,y)dS} dE',
0 0

where Sy (E) is the spectrum of the incident x-rays. When two objects with linear attenuation coefficients 11 (s; B, x, y)
and s (s; E', z,y) are presented, the intensity of x-rays on the detector is

Emax r(z,y)
Isum (7, y) = / So(E")E" exp {—/ (p1(s; B 2y y) + pa(s; B x,y)) ds} dE'".
0 0

In general, Iyym(z,y) # 11 (z,y) + I2(x, y), where I;(x,y) is the intensity of x-rays on the detector when only the
i-th object is presented. So in general the system is not linear.

When monoenergetic x-rays are used, we can remove the outer integral and have

r(z,y)
Isum(xa y) = SO(EO)EO exp {_ / (Ml(S, EO7 X, y) + /’(‘2(87 EOa x, y)) dS} .
0

Once again, this is not a linear system.

Solution 5.2

(a) The highest energy is determined by the peak x-ray tube voltage. For example, if the peak voltage is p kV,
then the peak x-ray energy will be p keV. The energy spectrum is determined by several factors. First, it will
be zero above p keV. Second, it will be the sum of characteristic x-ray spectrum and a bremsstrahlung x-ray
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(b)

(c)

71

spectrum. The characteristic x-ray spectrum depends on the atoms in the anode of the x-ray tube, and their
relative proportions. The bremsstrahlung x-ray spectrum has a typical shape, linearly increasing from zero
at the peak energy as energy decreases.

Low energy photons are undesirable because they are usually completely absorbed by the body. Therefore,
they contribute to dose but not image quality. Measures that can be taken to reduce the number of low
energy photons entering the body include: restriction (which works on all photons regardless of energy) and
filtering. Filtering occurs as x-rays pass through objects between the anode and the body, including the glass
tube and surrounding oil and objects placed between the tube and the patient, typically containing plastics
and metals. If copper is used, then aluminum usually follows because copper produces characteristic x-rays
at 8 keV, which would otherwise form a new low energy x-ray source.

Beam hardening is the increasing of an x-ray beam’s effective energy as it propagates through tissues or
materials. It is caused by the selective attenuation of low-energy x-rays in a polyenergetic x-ray beam. This
occurs because most materials have larger attenuation coefficients at lower x-ray energies.

Solution 5.3

The mass attenuation coefficient of aluminum at 80 kVp is u/p = 0.02015 m?/kg. The density of aluminum is

p=2

699 kg/m3. Therefore,

0.02015 m?/ kg x 2,699 kg/m>
54.38m™ ! .

(AL

For the new material at 80 kVp: p1/p = 0.08 m?/kg, p = 5,000 kg/m?. So,

pmew) = 0.08m?/kg x 5,000 kg/m?
= 400m~"'.

Since attenuation is determined by the exponential factor e™#7, the x-ray attenuation is equal if the exponents are
equal. Hence, the following relation must be satisfied:

wWADz(AD) = p(new)x(new) .

The equivalent thickness of the new material to 2.5 mm of aluminum at 80 kVp is therefore given by

54.38 m~! x 2.5 mm

400 m—1
0.34 mm .

z(new) =

From Example 5.1, we know that the copper thickness equivalent to 2.5 mm of aluminum at 80 kVp is z(Cu) =

(a)

0.2 mm. For the filter of same cross section area, the copper filter weighs 0.2 x 10734 x 8,960 kg/m?® = 1.792A4 kg
and the filter made of the new material weighs 0.34 x 1073 A x 5,000 kg/m® = 1.7A kg. So the filter made of the
new material is lighter.

Solution 5.4

Iodine and barium are used as contrast agents for two reasons. First, they are bio-compatible—that is, they
are both nontoxic and can be directed to a useful target in the body. Second, they exhibit K-edges in the
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diagnostic x-ray range. Because of their K-edges, they are highly attenuating in the x-ray energy range
immediately above the K-edge, far more attenuating than both tissues and bone. This means that they will
provide exquisite contrast between the agent and the body.

(b) Figure S5.1(a) demonstrates the benefits of an airgap in scatter reduction. Scattering path (1) shows a photon
that, when scattered, would hit the standard detector but miss the detector in both cases of a small airgap and
large airgap. Scattering path (2) shows a photon that, when scattered, would hit both the standard detector
and positions with a small airgap, but would miss the detector positioned with a large airgap. This example
shows that larger airgaps reject scatter better.

Extended
Object
Standard
Detector Position

Small .»"“ .."u.

Air Gap I / @ ”~.,. / \
Large y @” S Edge

Air Gap Blurring

(a) (b)

Figure S5.1 See Problem 5.4(b).

The problem with airgaps is demonstrated in Figure S5.1(b). In this figure, and extended object is projected
onto the three detector positions, demonstrating edge blurring as the result of depth dependent magnification.
Clearly, the blurring is smallest in the standard detector position and largest for the largest airgap. This shows
that, when using a large airgap for scatter rejection, the objects will appear with more geometric distortion
and/or edge blurring.

Solution 5.5

(a) Compton scattering is random phenomenon. Hence it will cause a random fog throughout the projection
radiograph. It contributes to the loss in SNR and contrast in the resulting image.

(b) The H & D curve has a toe, shoulder and a linear region. When the x-ray exposures are in the toe or shoulder
regions, the optical density of film remains constant; thereby reducing the contrast of the resulting image.
So, it is better for the x-ray exposures to be in the linear portion of the H & D curve.

(c) The low energy x-ray photons are absorbed within the body and don’t contribute to the image, thereby
contributing to the dose. So, it is necessary to filter out the low energy photons coming out of the x-ray
source.

(d) If w and h are the width and height of the lead strips in the grid, then the maximum scatter angle 6 is given
by 6 = tan~—!(w/h) = tan~1(1/8) = 0.1244 radians.
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IMAGE FORMATION
Solution 5.6

Let Iy be the intensity of the incident beam. Let I.. be the intensity of the x-ray beam falling at the center of the
imaging screen, while I, be the intensity at a point on the screen where then intensity falls off to 95% of that at the
center, thus giving a 5% variation in the image intensity. Thus, we have I, = 0.951. If the linear attenuation of
the slab is y and its thickness is L, then

I, = Ipe M,

I, = I cos® e HL/ cos?

Assuming 6 is small, then pL/ cos ~ pL and

% = cos’d,

cos® 0 0.95,
cosf = 0.983,
0 = 10.56°.

The maximal size is 2dtan 8 = 2 x 2 x 0.19 = 0.746 m.

Solution 5.7

(a) Assume the source-to-object distance is z, and source-to-detector distance is d, then the magnification of the
object is simply

M==<.
z

(b) One can reduce the magnification and distortion effects by either moving the object closer to the detector
panel or moving the x-ray source further away from the object and the detector.

Solution 5.8

(a) The weighting aims to compensate for the cos® § dependency and the path length factor. As we know, the
image intensity is given by

_plL_
Id(xda Z/d) =1 COS3 Qe cose ,

where cos = 1/4/1+ r3/d?. We want to transform this relationship back to I/, = Iy exp(—pL) with a
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weighting function that is independent of 1 and L. The derivation can be done as follows:

Id _ e—/LL/COSG
Iycos3 6 ’
cos 0
Id _ eiuL,
Iy cos3 0
cos 0
I;
I | —=5 = Ipe Mt
0 (Io cos? 9) e
cos 6
Iy I L
I — | —— = Ipe H~.
T (1000839) 0¢

Thus, the weighting function should be chosen as

cos 0
w(cosf) = Io <Id> ,

a4 \ Ipcos® 0

1 . . . .
where cos§ = —————. Now substitute the expression for I; into above expression and after some

V1+ri/d?

simplification we find

1 _cosf—1
w(cosf) = —— e cos? rL
coss 6

This correction will hold as long as u(x,y, z) = p(z). That is, we assume that we are imaging an object in
which p only varies in the z direction.

(b) Assume that the image of the object-of-interest lies in the center of the detector, i.e, it has small r4; while
the background region has large r4. Assume also that initially I; < I,. Then the image contrast will be
improved after the correction. Under the same assumptions, the SNR is also improved because the image
contrast is improved.

Solution 5.9

(a) Let us consider a 2-D cross section of the system through the y-z plane as shown in Figure S5.2.

The image on the screen will have 3 regions. In the center of the image, between points —a and a, the
appearance of the image is governed by the inverse square law, obliquity, and path length variations. So we
have

Iy(x,y) = Iy cos® e HE/ cos0

The value of a can be obtained as follows:

a w/2

d 20+ L/2°
_ wd

@ 2%+ 1L

When the x-rays are passing through the edges of the object, however, there is a loss of object path length,
and corresponding reduction in attenuation. This corresponds to the region between a and b, and between
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-b -a
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Figure S5.2 The cross section of the prism through y-z plane. See Problem 5.9(a).

—b and —a on the screen and the intensity is given as
Iy(z,y) = Iocos® Qe Ha(z' 20+ L/2)/ cosO

The value of b and 2’ are obtained as follows:

b w/2
E Zo—L/Q’
b wd 7
22’0—.[/
, wd
Z = 9

Beyond, b and —b, the rays miss the prism completely. In this case,
Iy(z,y) = Ipcos® 0.
In summary, we have

Io cos® 0 exp(—pa L/ cos )

wd

ifo<z<
M=t =+ L %% + L

and 0 <y <

Iy cos® 0 exp [—ua (W&Hyl) — 20+ L/2) /cos@}
Id(xay) =

(b) The plot along y = 0, is shown in Figure S5.3.

i wd < wd or wd . < wd : (85.1)
i T
2%+ L - "% —L ot Y T 0L
Iycos® 6
wd
if d
1x>2ZO_Lan y>220_L
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0.95 - q

4
o % e
%) G o
T T T
I I I

Intensity (normalized by /)

PN

0.65 I I I I
-8 -6 -4 2 0 2 4 6 8

X

Figure S5.3 The intensity of the image in the detector plane along y = 0. See Problem 5.9(b).

(c) The x-ray intensity on the detector, I;(x,y) was determined in Part (b), and is given by Equation S5.1.
From (5.32), we have
D =Tlog,y(X/Xp) .
But X is exposure, not intensity. In a given material, however, the ratio of exposures is equal to the ratio of

intensities. So, we also have
D = F 1Og10(Id/I()) s

where it is understood that this applies only in the linear range of the H&D curve. Accordingly, Iy must
be the intensity at which IyAt yields the “fog” level on the film, where At is the duration of the exposure.
Therefore, the developed film will have optical density

D(.%‘,y) = FlOgIO(Id(xvy)/IO) .

Solution 5.10

Most of the derivation is included in the text preceding the equation. Here we provide a review, and fill in the
missing details. Assume the intensity surrounding a given point on the source is Ig. Then the inverse square law
predicts the following intensity at the center of the detector

Is

Ip= 5
07 4nd?

Moving away from the center of the detector a distance r leads to an additional cos? 6 loss of intensity; but while
moving away, the unit area increases as well, leading to an additional cos 6 loss of intensity. Put together, we have

[ Igcos® 0
T a2

We now incorporate an infinitesimally thin object ¢, (x, y), at range z (measured from the source) such that if z = d
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it provides a further multiplicative attenuation of the source intensity, as follows

s cos® 6

Id = Ard2 td(aj?y) .

If the object is moved away from the detector, it will cast a wider shadow on the detector. This fact is captured
mathematically using the magnification M = M (z) = d/z, and by scaling the = and y axes as follows

s cos® 6

Iy = Ind? to(z/M,y/M).

The last phenomenon that must be included is due to the extended source. Suppose that the source location is not a
point but instead is a small area having a source intensity distribution given by s(x, y). If this source were viewed
through a small hole (which blocks all other transmission) on the z-axis (where x = y = 0) at range z, it would
make an inverted and scaled image of the source intensity, as follows

s(z/m,y/m
Id('r7y) = (4{Td2m/2 ) ;

where m = m(z) = 1—M (z). This represents a response to the impulse transmittivity ¢, (z, y). If the transmittivity
were not unity, then the response would be attenuated by the transmittivity as follows

s(z/m,y/m)

LRI L (0,0),

Li(z,y) =
Now suppose the impulse transmittivity (hole) were moved to position (£/M,n/M). Assume that 6 is small so
that both the source shape distortion due to obliquity and the difference in source magnification as compared to that

at the detector origin can be ignored. Then the detected image is simply an inverted and scaled source intensity,
shifted to a new position

cos® O s((x — &) /m, (y —n)/m)
4drd?m?

Id(ac,y)z tz(f/M777/M)a

This image represents an approximate impulse response to an impulse in transmittivity at (£ /M, n/M ) within the
thin object at range z. The whole response is the superposition of these individual responses:

1% cosdOs((x—&)/m,(y—n)/m
ey = [ IR OE I, (e pagan) agan.

m2

cos® 6

which is the desired expression.

IMAGE QUALITY
Solution 5.11

If m photons are incident on a detector and each one has a probability p of getting detected, independently from
other photons, then the probability that n out of those m photons are detected has a binomial distribution and is
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given as:

P{n out of m photons are detected} = ( 7: > pt(l—p)mTn.

Now, the PMF of the number of photons detected D(t) can be computed as follows:

P{D(t)=n} = Z P{mphotons are fired by the x-ray tube} - P{n out of m photons are detected}
m=n
[e'g) e_ut (Mt)m ( m ) _
e D G P
m=n m' "
e M (ut)™  m!
_ (] — p)mn
mzz:n m! nl(m — n)!p (1=p)
e M (pt)™
_ n(l — p)mn
,;_nn!(m—n)’p (1-p)

Substituting k = m — n, we get

P{D(t)=n} = Y Mp”(l - p)*

Here we have used the identity e = > %k, By simple rearrangement, we get the PMF of D(t) as
k=0
e Pt (upt)"
P{D(t) =n} = —

Thus, D(t) also follows a Poisson distribution.

Solution 5.12

(a) Since the object is located at z = 3d/4, the magnification of the object is

d—z
z
d—3d/4
~ 3d/4
= -1/3.

m = -

The PSF of an extended source when the object is magnified by m is given by h(x/m). Let the PSF for any
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arbitrary magnification m be hq (z) = e=a=’/m* Since hy (z) = e=%"/5 is the PSF of the extended source,

when m = —1/3 we have
ax’/m?* = 2%/5,
— a = m?/5
= (1/3)*/5
= 1/45.

Hence at any arbitrary range z, the PSF of the extended source is given by

22 __a?s2
hl(x) — e dm2 — e 45(d—=2)2 |

(b) Since the PSF is h; (z) = e~ /45™” the Fourier transform is
Hi(u) = L VT e

Hence, the transfer function of the overall blurring is

H(u) = VA50me(5m 107
and the MTF is given by
MTF(u) = e “sm*+10)m*u®
(¢) The inverse Fourier transform of H (u) = 450me—(45m° +10)7%u? jg
2 22
h(z) =m wefm ,

™
22
Atz = FWHM/2 we have e #5m2+10 = 1/2, and therefore

FWHM = 2\/(45m?+10)In2.

Solution 5.13
Scatter fraction, denoted by SF, is defined as

I

SF= 1
IS+Ib7

where Ij, denotes the background intensity and I, denotes the intensity contributed by scattering. The new image
contrast C’ (with scattering) is related to the original scatter-free contrast C' by

L+ (L + 1)

C = T = C(1-SF).
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Thus, when SF = 0.35,

06.35 =C(1-0.35) =0.08 x 0.65 = 0.052,
and when SF = 0.8,

Cls=0C(1-0.8)=0.08 x 0.2 =0.016.
Using the relationship SNR = C'v/nN, we can compute the SNR in both cases as follows (assuming n = 1)

SNRg 5

Co.35/NN =0.0524/1 x 1,000 = 1.64; and
Co.sv/nN = 0.0164/1,000 = 0.51.
If the detector absorption efficiency 7 is halved, the SNRs become

SNR}, 55 = 0.052,/0.5 x 1,000 = 1.16;

SNRj, 35 = 0.0164/0.5 x 1,000 = 0.36 .
This problem shows that SNR can be altered in two ways:

e Increase the scatter fraction, which causes an increase in the noise level;

e Decrease the absorption efficiency, which causes a decrease in the signal amplitude.

Solution 5.14

Suppose an x-ray burst with an average of N photons is incident upon a detector having quantum efficiency QE.
Then the average number of photons stopped by the detector is QE N. The intrinsic SNR’s of the stopped photons

is \/QE N. By physical law, the signal itself—whatever measured and derived quantity that might be—must have
an SNR lower than the intrinsic SNR. Therefore, we find that the maximum DQE is

~ (JENY
DQEmaX - ( \/ﬁ )

= QE,
which was to be proven.
Solution 5.15
By definition,
A
DQE = —
QE=1,
where ) is the noise-equivalent quanta,
~ — 2
A = SNR,




81

where )\, is the number of photons detected at the detector every second and o3 is the variance of the noise. For
this problem, A\; = 10,000 and A = 10, 000. Now substitute these numbers into the above equations to get

A2 10,000
N

DQE =

So, the variance of the noise as a function of DQE is:

10,000
DQE

oy =

The function is plotted in Figure S5.4.
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DQE

Figure $5.4 The variance of the detector’s output (o%) as a function of DQE. See Problem 5.15.

If the variance of the output noise is 2,000, we require DQE = 120’000000 = 5. This answer may look incorrect at
the first glance, since in the text we say that “Clearly, 0 < DQE < 1.” But, let’s think about what it means that the
variance of the output noise is 2,000 in the setting of the problem. Given that we have detected 10,000 photons per
second at the detector, the amplitude signal to noise ratio is, by definition,

SNR, = 10,000 _ o5

/2,000

But the output signal to noise ratio of an ideal detector is only SNR, = /10,000 = 100 < ST\I\RG, which means
this detector does better than the ideal detector. This is impossible in reality, where 0 < DQE < 1.

Solution 5.16

Assume that each point on the detector sees a Poisson random variable with parameter a. Since this input is
white noise, it has a flat noise power spectrum, and is given by the variance of the random variable, a. Thus, the
frequency dependent (power) SNR of the input is

SNR,(in) =a.
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From Table 2.1, we can determine the frequency response of the nonideal detector to be
H(u,v) — 6—2772(u2+v2) )

The frequency response of the detector will selectively filter out frequencies in the power spectrum according to the
square of the transfer function. Therefore, the frequency dependent (power) SNR of the output is

SNR, (out) = a|H (u,v)|*.
Putting this together, and using (5.40), we find that the DQE is given by

(SNRoy()*
(SNRj,)?
SNR, (out)
SNR,,(in)
alH (u, v)[?

a
67471'2 (u+v?) )

DQE(u,v) =

Solution 5.17

Figure S5.5 shows the orientation of the plastic hollow cylinder with respect to the source and detector. The
distortion is due to depth dependent magnification. The circular cross section closest to the source gets magnified
more than the other cross section.

Top view

J_/ Cylinder

‘ X-ray source

Detector

Figure S5.5 Off axis cylinder with depth dependent magnification artifact. See Problem 5.17.



Solution 5.18
From basic trigonometry,

S9 + dtan asg

d
1+ dtan aq

d
s+ dj tanag

dy
s+ do tan ag
do '

tan¢ =

So, we see that so + dtan s = s1 + d tan o ; therefore,

52 _ 1+dtana1 — tan ay
S1 S1
tan a; — tan asy .
= 14— 3 55.3
+ tan ¢ — tan a1 (using ( )

t —t
1+ dlM (using (55.4)).

Equating (S5.4) and (S5.5), we get tana; — tan g = s(dé;di"’ ). Substituting this back into (S5.8) yields

S1 do

sp  dy’

Therefore, when d1 = 40 cm and d2 = 80 cm, m = 2.

Solution 5.19

(a) For |y| <r, we have
I(d,y) = [pe*HA-Q(rf\/@),HBQm-
Forr < ‘y| < a, we have

I(d,y) = Le "4,

(b) From the definition of local contrast, with appropriate substitution we have

Iy — Iy
C = —_—
Iy
—uB-2r __ —pA2r
_ I,e™t I,e™t
—A2r
Ipe HA

_ e—(uB—p,A)Qr 1.
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(85.2)
(85.3)
(S5.4)

(S5.5)

(85.6)
(85.7)

(S5.8)
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(¢) From the expression in (b), we see that C' will be positive when
HB < pA -

(d) The boundary of B (a circle) can be represented as

(x—(z+7) 2 +y*> =12,

The line connecting the source (0, 0) and the point (d, ﬁd) can be represented as
r
Y= ———u
V22 +2rz

The intersection (g, yo) of the line and the circle satisfies

(w0 — (2 +7))* +yg =r?
Yo = 7iya t0

Thus,
r
zo— (2 4+ 7)) + (—————x 2=r2,
(0 = (24 1)+ (i)
z+7)?
152_’_727{233(2) —2(z+r)xg+ 22 +2r2=0.
Since the quadratic discriminant is
+ )2
A = 4 2 _ 402 4 opa) EFT
(z+71) (2% + rz)z2+2m,
= 0
the line is tangent to the circle. The geometry, where cosf = 7”:122”, is shown in Figure S5.6. The intensity
at (d7 ﬁd) 1S
r
I d’ — - T COS3067;LA<2T/COSG
( V22 4 2rz ) 0

r—+z

3
2 o iz
[O<VZ +2m> Vel

(e) The magnification is M (z) = ﬁ. Thus, the point is (z 4 r, £ yg).

APPLICATIONS
Solution 5.20

(a) You would change the peak tube voltage, or kVp. To generate the first film, you would use a tube voltage
= 30 kVp, and to generate the second film, you would use a tube voltage = 100 kVp.



(b)

(V]

(d)

(e)
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; o)
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X-ray source

Figure S5.6 See Problem 5.19.

If you did not change anything else, the second film, taken at 100 kVp, would be more exposed. That is
because the body is more transparent at higher x-ray energies, so more x-rays would get through to expose
the film. The high energy x-rays, when stopped by the intensifying screen, will generate more light output as
well adding to the exposure. It is true that the intensifying screen is also more transparent at higher energies,
but the x-ray spectrum at 100 kVp also contains lower energy x-rays that would contribute to the overall
exposure.

From Chapter 4, we know that Compton scattering events become an increasingly larger fraction of the
events as the x-ray energy increases. Therefore, Compton scattering will be more of “a problem” at 100 keV
versus 30 keV, yielding lower contrast images.

This depends on what kind of filtration is used. Ordinarily, when using a 100 kVp source, filtration would
remove lower energy x-rays. In this case, the higher energy source would be more penetrating and the dose
for the 100 kVp source would be lower. However, if the complete 100 kVp spectrum is allowed to be incident
on the patient, then the 100 kVp source would generate more dose to the patient.

The subtracted optical density is

D(.’E,y) = D(xay; Eh)_D(xvy;El)
= T'logyo(Xn/Xo) —T'logo(X1/Xo)

X
= FlOglO <)(l) .

Since X, > X; (in general), D(z,y) will be a nonnegative image revealing the relative additional “trans-
parency” of tissues at the higher x-ray energies. (Note: If the two energies were used on “opposite sides” of
the k-edge of a contrast agent, then the difference D(x,y; E;) — D(x,y; Ey) would be used instead, since
the attenuation at the higher energy would be larger.)
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Solution 5.21

(a) We have b = 20 cm and

HE) = e = 10~ Z5o0

5,000

So,
(B —150)2 (B —150)?
ud = 5.000 Inl0 = wE)= In10.

5,000d
(b) Intrinsic contrast is C' = £t=£b

e The object is shown in Figure S5.7. The two linear attenuation coefficients

20 cm

75cm |Scm | 7.5¢cm

Figure S5.7 See Problem 5.21(b).
are

H

0.15cm™!,

(75 — 150)2

_ -1
js 75’000(1 In10=0.13cm™ .

So, the intrinsic contrast is
~ 0.15-0.13

~ 0.15+0.13
(¢) Consider two paths, one through the new material, and one that misses it. Then

=0.071.

Ithrough = IO (6_“5X15 cm) (e—Mt x5 Cm)

IO (6—0413><15 Cm) (6—0.15><5 cm)

0.0671,
and

Imiss — IO (e—ubXQO cm)
= 0.0741,.
The contrast is therefore given by
_0.067 —0.0714

T 0.067+0.74 —0.05.
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Solution 5.22

(a) The energy spectrum is shown in Figure S5.8. The spectrum is just the number of photons, viewed as a
continuous plot. 10 and 10° represent integrals (area or mass) of spectrum, which has units photons-keV.

Photon S
Spectrum oE) 105

104

1

60 keV 65 keV Energy E

Figure S5.8 See Problem 5.22.

(b) Consider Figure S5.9. The total number of x-ray photons per cm that hit the detector as a function of position

A #/cm

Ey | » <« N=I16

E_ |, - | N=10¢

Figure S5.9 See Problem 5.22.

Ay N} 0.5 x 10%e792%2 = 3,351,
N? = 0.5x10%°e%4%2 =22 466.

The total is = 25, 817. For the other parts we have

Ay: NP = 05x10% 3% =3 704,
NP = 0.5x10% 911 =45 242,
and
Az: N} = 3,704e 057t =2 247,
N2 = 45,242¢ %41 = 30,327.

Therefore, the total is = 32, 574.

(¢) Consider Figure S5.10. The local contrast of the image observed at the detector as a function of position x
assuming that A is the target and B is the background is I = a/N. Therefore

LI, N,—N, —6,757

C —0.21.

Iy N, 32,574

(d) The optical density, given by D = I'log %, as a function of position = assuming x-ray film is shown in
Figure S5.11.
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#/cm
A
32,574
photons/cm 25.817
photons/cm
Area = 32,574
Area= 25817
-1 0 +1 >
Figure S5.10 See Problem 5.22.
A
More transparent
B
A
1 0 IR
Figure S5.11 See Problem 5.22.
Solution 5.23
(a) The object magnification is
M =d/z=60/40=1.5.
(b) The source magnification is
d—z
m=— =1-M=-0.5
z

(¢) The image of the line phantom can be written as:

Tq w Tq

Ii(zq,ya)
w

To evaluate this, we first compute the convolution

{ ~(@a/m) § (4 /m) ] %6 (7 _

[
Ml [ &

M|mle (

M 2

as follows:

zdu

[ i) =0 (57 = 5)

zd u' M

—wM
m

KlSoe™ o s(gafm)) [0 (37 = 5 ) +9 (57 +

KSo {{ (za/m)? 5(yd/m)] %6 (M - 5) + [e*@d/mfa(yd/m)} %5 (% +

w

7))

)
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Similarly,
f _((zattN?
e )] 0 (5~ 2) = ™ C5)
Hence,
Y s ()
Li(zg,ya) = KM]|m|Spe + KM|m|Spe

= 0T5KSo [ 0T g ~aarotouw]

(d) Asshown in (c), the image of the line phantom is the sum of two Gaussian-shaped functions that are centered
at wM /2 and —wM /2 respectively, and both have a variance of m?/2. With the same reasoning as in
determining FWHM, we know that in order for the two Gaussians to be distinguishable, the following must

be true ) )
(=) 1 (=)
KM|m|Spe " < 5maxKM|m|SOe " = §KM|m|SO.

Tq
Hence, )

(ij) >1n2

2m

and

2|m|vIn 2
w > —.
- M

Thus, the minimum value that w can take is 2|m|vIn 2/M ~ 0.555 cm.

Here is an alternative solution. Notice that the image of the line phantom I;(x4,y4) is simply its image
under an ideal point source (t' (x4, yq) = t(xq/M,x4/M)) blurred (convoluted) by the magnified source
distribution (s’ (x4, yq) = s(xq/m,yqs/m)) with a suitable scaling (K'). The image of the phantom under a
point source would still be two parallel lines with the same orientation, but the spacing is magnified to wM.
The magnified source still has the same form, and can be computed as

s (x4, ya) = s(xa/m,ya/m) = Soe~@/™ §(yy/m) = |m|Spe /™ 5(yq).

By the definition of FWHM, we know that in order for the images of the two lines to be distinguishable, the
spacing wM must be greater than the FWHM of s'(z4, y4), which is computed to be 2|m|+/In 2. Hence the
minimum value of w is 2|m|vIn2/M =~ 0.555 cm.

Solution 5.24

(a) Since the number of photons are uniformly shed upon the side of the whole tissue, it is clear that 1/4(=
0.5/2.0) of the total incident photons will go through the blood vessel, and the remaining 3/4N; photons
only pass through the soft tissue. Hence the total number of photons can be computed as follows

Nt — &e_uveﬁsellfvessel_Htissue(Ltissue_Lvessel) + 3N7’ Nie_ﬂtissueLtissue
4
— &670~5#vesselefl‘sﬂtissuc + 3Ni —2ptissuc

4 4
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(b)

CHAPTER 5: PROJECTION RADIOGRAPHY

At 15 keV,

Nt =

Q

At 40 keV,

Nt =

ﬂe—o.w&oe—mm.o+Me—2x4~0

4 4
1,006 + 553

1,559.

ﬂe—o.5x042€—1.5x0-4 + Me—wm
4 4
4.96 x 10° + 1.35 x 108

1.84 x 108,

We see from this analysis that, at the lower energy level 15 keV, more photons are absorbed because the

linear attenuation coefficients of

the tissue and the blood vessel are both higher at 15 keV than at 40 keV.

Since the incident photons are uniformly shed upon the tissue, the photon density p, that is, the number of
photons per unit area, is a constant and can be computed as p = N, /A, where A is the area of the side of
the tissue. Notice that the value of p does not affect the local contrast computation, which can be shown as
follows. The background intensity N is simply

Ny, = pefﬂtissueLtissue — pe*Q-O#tissue

The object intensity N, is given by

N — pefuvcssclchsscl*Ntissue(Ltiﬁsue*chsscl)
, =

_ pefo.swvessel71.5utissuc.

Hence, the local contrast can be computed as

C

At 15 keV, the local contrast is

At 40 keV, the local contrast is

No - Nb
Ny
pe_o'suvessel_1-5u/tissue _ pe_z-oﬂtissue

pe—2-Ottissue
_ e*O-S(chssclfuftissue) _ 1'

Chs = e 05%(3:0-40) _ 1~ (.649.

040 — 6—0.5X(0.2—0.4) _ 1 ~ 0105 .

Hence, the local contrast is higher (better) at 15 keV.

Note: If you confused local contrast and contrast, the answer you would get differs. At 15 keV, the contrast
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of the blood vessel is

No - Nb
N, + Ny
pe_0'5ﬂvcsscl6_1'5Ntissue _ pe_2ﬂftissue

pe_0-5,“/vessel6_1-5,Uftissue — pe_Qﬂtissue
670'5Mvosscl _ 670~5Mtissue

e—0-5pvessel — @—0.51¢issue
1— 6—0.5(,U4tissue_#vessel)

1 + 6—045(utissue_lz’4vessel)
1 — —0.5%(4.0-3.0)
1+ ¢ 05x(40-3.0)

0.2449.

Q

Similarly, at 40 keV the local contrast of the blood vessel is

1 — —0:5%(0.4-0.2)

Cao ~ 0.05.

T 14 e 05x(0.4-02)
In this case, the contrast is still higher at 15 keV.

(c) As we derived in part (b), the local contrast is totally determined by the difference between the linear at-
tenuation coefficients of the soft tissue and the blood vessel. As can be seen from the table, at 15 keV this
difference does not change much after the contrast agent is injected into the blood vessel. Hence, it would be
expected that the local contrast (in its absolute value) does not change much. (The new contrast is actually
0.393 in absolute value.)

At 40 keV, the linear attenuation coefficient of the contrast agent is hugely different from that of the soft
tissue and the original blood vessel. Thus, it can be expected that the local contrast of the blood vessel will
be largely changed (improved) after the contrast agent is injected in. (The new contrast is actually 0.999 in
absolute value.)

(d) The explanation is that the contrast agent material has K-shell electrons whose binding energy is slightly
lower than 40 keV but higher than 15 keV. When x-ray photons with an energy of 40 keV enter the ma-
terial, photoelectric interaction will cause electrons from the K-shell to be ejected and the x-ray photons
will be completely absorbed. This effect, called K-edge absorption, significantly increases the attenuation
coefficient of the contrast agent.

Solution 5.25

(a) The intensity of x-ray beam is given by NE
E) = T4
When the x-ray source is an ideal point source, we need to take the magnification into account. The distance
between the source and the object is 2z, the distance between the source and the detector is 3z, so the
object magnification is M = g = 1.5. The intensity profile on the detector along the x-axis is shown in
Figure S5.12.
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(b)

(0

(d)

CHAPTER 5: PROJECTION RADIOGRAPHY

\ Intensity

1

j/4

T T
—1%w—%d  —d Yad — —1Yow —Yad

Figure S5.12 Intensity profile along x axis for ideal point x-ray source. See Problem 5.25.

The dark bars on the phantom are treated as target. So, the contrast is

L—I, 1/4-1 3

C =
I 1 4

The Fourier transform of the PSF of the system is:

H(u,v) = F{h(z,y)}
= F{sinc(az)}F{sinc(By)}
= lrect (E) . lrec‘u <v) .
@ al B 8
The system is an ideal low pass filter. The highest frequencies of the output signal in x and y directions are
Up= 3 and Vj = g, respectively. According to the sampling theorem, the maximurln sampling periods for

the output signals of the system are (Az)max = ﬁ = i and (Ay)max = ﬁ =5

The imaging equation of a projection radiography system is

FEmazx x
Iy :IO/ So(E)E exp {/ p(s,E)ds] dE.
0 0

Since the x-ray photons are monochromatic, and the target in the phantom is homogeneous, the above equa-
tion can be simplified to

Iy _ keV 1

d _ o—p(60keViz _ — S5.9

T, ¢ 1 (85.9)
Then

=In(4)em™t.

— (160 keV) = In (640( keV)) em™!

160( keV)
Solving for = in Equation (S5.9) yields

=1lcm.



93

Solution 5.26

(a) SNR decreases because the differences between the attenuation of different body tissues decreases as the
energy increases.

(b) The dose is reduced due to the compensatory change in the exposure time.

(c) eD
ol
o N
ol
ol

(d) The airgap is most effective in reducing the scatter fraction in case of small field size.
(e) The image noise ultimately limits the contrast sensitivity of an x-ray imaging system.

(f) The average photon energy is mainly determined by the material in the beam path.

Solution 5.27

(a) The best contrast agent to be used in this case is iodine because it has the k-shell energies within the energy of
the source. This increases probability of photoelectric effect and hence higher linear attenuation coefficient
that barium. Therefore the use of iodine will provide better contrast in the image.

(b) (i) Contrast before contrast agent is applied: Let I be the intensity at the middle of the detector when
nothing is put between the source and the detector. The intensity at the center of the tumor is

I, = ]Oef(ummor)@R)ef(umsue)w
— 1067(0.75><0.2)7(1><1) — (03166)10 .
The intensity at the edge of the tumor is
I, = Iocosd e (Hrssue) sy

From Figure P5.8 we see that tan; = R/(D — Dyq — w — R). Therefore §; = 2.5714 x 10~* radians and
cos 01 = 1. This implies that we can neglect the cos® 6; effect in this problem. Accordingly,

I, = Ioef(utissuc)w
= Toe™Y = (0.3679)1, ,

and

1,(0.3166 — 0.3679)

= —0.1394.
1,(0.3679)

Contrast before contrast agent is applied =

(ii) Contrast After contrast agent is applied: The intensity at the center of the tumor is

— —(Mtumor with contrast agent —(Mtissue )W
I, = Ipe ( J2R) ,—( )

Tpe=(10x02)=(1x1) — (0,0498)1,.
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The intensity at the edge of the tumor remains the same since the photons do not pass through the tumor.

Accordingly,
I, = (0.3679)I,

15(0.0498 — 0.3679)
= —0.8646.
1,(0.3679) 08646

and
Contrast before contrast agent is applied =

(c) Assume that w =2 0 in this part. The single Compton scattering event could take place either in the tissue or
in the tumor. But, for the photon to have the lowest possible energy while hitting the detector, it should be

scattered the most—that is, it should have the largest scattering angle.

The dashed line in Figure S5.13 shows the path that yields a Compton scattered photon, which will hit the
detector at the lowest possible energy. Among all the Compton scattered photon trajectories (with single

scattering events) the dashed line path will have the largest scatter angle.
AT

i olre
hi2
X-Ray Tumor :
source H
~~~~~ : A

AL 2 [0 L2

L6,

D|d ™~

D X

Figure S5.13 6 is the maximum Compton scattering angle. The dotted line shows the trajectory of the photon

having the lowest possible energy reaching the detector. See Problem 5.27.

(d) In this part, we have to find the energy of the Compton scattered photon which follows the dashed line
trajectory in part (c). To find the energy, we should find the scatter angle 6 (see Figure S5.13). The angle

)

can be written as sum of 6, and ;. From the geometry of the setup,
l/2 h/2
wng, = W2+ (02
Dyq
(h/2)

tanf, = D_D.’
— Dy

Given the above relationships, and using the given values of [, h, D, and D4, we find that 6, = 1.3790 radi-
ans and 6, = 0.0038 radians. Therefore, = 0.0038 + 1.3790 = 1.3828 radians is the maximum scattering



angle. This implies that

E
1+ (1 —cos(6))-L

mec?

Minimum energy of Compton photon =

Substituting, E = 35 keV (energy of incoming photon), § = 1.3828 radians, and m,c?

minimum energy = 33.1536 keV .

= 511 keV yields
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Computed Tomography

INSTRUMENTATION
Solution 6.1

(@) (AW —hrA) =a(h¥V — h2), hence

(A = 1)/ (A = i)
WY = hy (WY = h2) [ (hyy — i)
= B = hp (WY =B /(B — i)

a

b

(b) Y = 0; b = -1,000.

(¢) a=0.9;b=-9.01.

Solution 6.2

(a) The x-ray source detector apparatus rotates at a speed of 47 radians/s, so it takes 0.5 s to rotate a full circle
(27). During this period of time, the patient table moves 2 ¢cm/ s X 0.5 s = 1 cm. So the pitch of the helix
is 1 cm.

(b) It takes 0.5 s for the imaging devices to rotate a full circle of 27, and it takes 1 ms to measure a projection.
So the system can measure at most 500 projections over a 27 angle.

(c) The imaging time for a torso is 60/2 = 30 s.
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RADON TRANSFORM
Solution 6.3
Proof: An operator R is linear if R(af; + bf2) = aR(f1) + bR(f2). Let

Ri=[ [ fa)blcoss s ysing - ) dedy.
Then we have

Rafy +bfs) — / / (afy(2, ) + bzl 9))3(x cos + ysind — €) dx dy

a//fl(x,y)é(xcose—f—ysin&—@) dz dy

+b/ fa(z,y)o(xcosd + ysinf — £) dx dy
= (LRfl + beQ .

which was to be proved.

Solution 6.4
Letu = x — xg, v = y — yo, then du = dx, dv = dy. We get

/f(m—xo,y—y@é(wcos&—l—ysin&—@)dmdy
= / fu,v)§[(u+ 20) cosO + (v + yo) sin @ — £] dudv

= / fu,v)d [ucos@ +vsin® — (£ — xgcosd — ypsind)] dudv

g(£ — zpcosf —yysinb, 6),

where g (¢, 0) is the Radon transform of f(z,y).

Solution 6.5
Since f(x,y) is rotationally symmetric, g

—~

¢,0) = g(¢,0). Hence,

oe0) = | g JEs
= /00 h d(x cos(0) — ¢) dedy
= /Oo —2—y? dy

= / _y dy

97
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Since ) -
\/ﬁ/_me”ﬁ/‘72 der=1,
then -
[m eV’ dy = /.
Thus,
9(6.0) = Vme ™"
Solution 6.6
/Oo g(l,0)dl = /OO he(€)hg(0) de
_ h(,(e)/oo he() de .
On the other hand
/OO g(6,0)d0 = /oo //f(x,y)a(xcose+ysine—g)dxdydz
= //f(x,y) /OO d(xcosf +ysinb — L) dl dx dy
~ /[ t@wdsdy.
Thus,

wt6) [~ e = [[ sz, dzay.

Since the right-hand side does not depend on 6, the left-hand side cannot depend on 6 either. Hence, hy(6) must be
a constant.

Solution 6.7

(a) The Fourier transform of f(z,y) is
F(u,v) =0.5(6(u — fo,v) + 6(u+ fo,v)).

In order to use the projection slice theorem, we must change to polar coordinates. We use the following steps



(b)
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for a shifted impulse function:

0(u— fo,v) = 8(u— fo)d(v)
= 6(0cost — fo)d(osinb)

= 8ol — 0+ = fo)d(elf — 0 + -]
— a(o— fo)3(e0)

In this derivation we have used a Taylor series approximation for cosine and sine and the scaling property of
the impulse function. This derivation can be repeated for the impulse shifted in the opposite direction; then
we apply the projection slice theorem, yielding

G(0.6) = F(ocosb, psinf) = %w(g  fo) + 8o+ fo)l6(6)

Now we write the expression for filtered backprojection, plug in this Radon transform, and simplify as
follows:

Fay) = /0 / |g|G<@,0>ef2”@4dg] a6

L/ —oco {=x cos 0+y sin O

’ / N |g|%[6<g o)+ 60+ fom(a)eﬂwfdg] a8

{=x cos O+y sin 0

[ 0slste- o+ ate+ fo>]6<e>ef2”@’v’dg} a0

LS —oo {=x cos 0+y sin O

|
|
= ["|[ " ostote s+ ote+ fo>]eﬂ”@fdg} 5(0)d0
|
|

L/ —oo {=x cos 0+y sin O

[COS(27Tf0€)}Z:z cos O+y sin 0 5(9)d9

cos(27 folz cos O + ysin 6])(6)do

cos(2m fox) .

The last step follows from the sifting property of the impulse function. This proves that filtered backprojec-
tion produces the correct result.

1) Using the result from part (a) and the linearity of the Radon transform, it follows that the Radon transform
of f(x,y) = cos2max + cos 2mhy is
0.5 0.5
G(o,0) = mw(@ —a)+0(e+a)d(d) + mw(@ —b) + (0 +b)]6(0) .

From the linearity of the inverse Radon transform (i.e., filtered backprojection), we can follow the same steps
carried out in part (a) to prove that filtered backprojection will yield f(z,y) = cos 2wax + cos 2mwby.

ii) The function f(z,y) = cos 2w (ax + by) is a rotated version of cos(2 foz), which was solved in part (a).
Although the math can be carried out in analogous fashion, it is easier to simply use the form found in (a)
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and carefully apply it here. The frequency of this sinusoid (distance from the origin is fo = v/a2? + b% and
its rotation from the z-axis is fp = tan~!(b/a). Therefore, its Radon transform is given by

Gl0.0) = %wg ~ fo) + 8(o+ fo)l6(0 — 60).

In proving that filtered backprojection gives the right answer, it is only necessary to evaluate the last step
differently.

f(.]?, y) = /0 [COS<27Tf0€)]Z:m cos O+y sin 0 6(€ - 90)d9

:/ cos(2m folz cos 8 + ysin 6])6(0 — 6y)do
0

= cos(27 fo[x cos by + yby)
cos(2m[za + yb]) .

The last step follows from the facts that a = fj cos 6y and b = fpfy from the geometry.

Solution 6.8
(a) We write
p(@,y) = porect(x)rect(y)

_ po if —1/2<x<1/2and —1/2 <y <1/2;
o 0  otherwise .

() Fop{p}(u,v) = pesine(u)sine(v).

(¢) The relationship is given by the Radon transform, which can be simplified by the form of the observed
function

g(¢,0) = / / p(z,y)o(xcos + ysinh — £)dx dy

/2 r1/2
= / tod(z cos@ + ysinb — £)dx dy .
—1/2J-1/2

(d) Writing the projection slice theorem yields

G(0,0) = Fap{p}(ocosb, psinf) = posinc(p cos f)sinc(psin §) .

(e) We want to find g(¢,0) = F;p {G(0,0)}. By symmetry, we have
Glo.0+ =) = G,

0),

2
G(o,0+m) =G(o,0),
0),

G(Q7g - 9) = G(Q? )
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since sinc(—x) = sinc(z). Hence, we only need to compute g(¢, 0) for 0 < 0 < = /4.
First, if 6 = 0, G(p, 0) = posinc(p), and hence

9(0,0°) = Fig} {osine(0)} = puo rect(¢)

If0 <6< /4,
g(£,0) = Fp{uosinc(ocosf)sincosin O}
Ho 4 14
t .
| sin € cos 6| ( OSH)*reC (sinﬁ)
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The convolution of two rect functions, rect(x/a) * rect(z/b) for 0 < b < a, can be easily computed to be:

L(cos @ — sin )
(cos @ — sin 0)
(cos B + sin 0)

x4+ 3(a+b) %(a—kb)éxé—%(a—b)
b —2(a—b) <z < La—0)
_ 2 2
rect(x/a) x rect(x/b) = et latd) La-b<z<lifa+
0 otherwise
Since cos @ > sin 6 for § € (0, 7/4], hence
{+ 3(cosf + sin6) —%(cosH—l—sinH)ng—
(¢ 9)—$x sin 6 —5(0059—sin9)§€§%
a0 = | sin 6 cos 0] —(+ §(cosf +sinf) F(cosf —sinf) <0< 1
0 otherwise
for0 <0 <m7/4.
6 = 30°, sinf = 1/2, cos§ = v/3/2. From (e), we get
N Bl w3
ot L e
0 13 <0< b
0 otherw1se
for 0 < 0 < 7/4. Therefore,
3
byoe (z,y) = g(a:cos30°+ysin30°,30°):g(%,ii()o)
V3zty | 143 1+f V3zty f 1
2 T2 7 =
4,U/0 % \[ 1 < fa:+y < f 1
- %X _fz+y+1+f V3 1<fw+u<1+f
0 0therw1se

The sketch is straightforward; note that g(¢, 30°) is trapezoid shaped, not a triangle.
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Solution 6.9
We start with the convolution integral

o(z,y) = /£ / F(& mhle — €,y — ) de di.

Now, we perform the following steps:

R{g}

////gf({,r])h(x—g,y—n)dfdné(wcos@+ysin0—E)dmdy
yJa

//f(f,n)//h(m—f,y—n)é(xcos@-i—ysin@—€)dxdyd§dn
nJg yJz

//f(g,n)/ h(x',y')d(x' cos @ + y'sin@ — [¢ — & cos O — nsin b)) dz'dy’ dédn
nJE y Ja!

/ /£ FER{RY(E — € cos — nsin6, 8) dedy
n

//f(f,n)/R{h}(f—f’ﬁ)é(écos@+nsin9—€')d€’d§dn
nJE 4

R{h}(e—e',a)//f(g,n)a(gcosa+nsme—e’)d5dndz’
4 nJE

/ R{R}(C — € O)R{F}(C,0)dr
el
R{h} * R{S)

which was to be proved.

CT RECONSTRUCTION
Solution 6.10

(a) We carry out the following steps:

9s(6,0 +7/2) = //s(m,y)&(wcos(@ +7/2) + ysin(0 + 7/2) — £) dzedy

// s(z,y)d(—xsinf + ycos§ — ¢) dedy

= //s(—v,u)tS(ucosH +wvsinf —¥4) dudv (u = y,v = —x)

// s(u,v)d(ucos 4+ vsind — £) dudv
= g5(4,0).
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(b) We carry out the following steps:

gs(¢, —0) // s(z,y)o(x cos(—0) + ysin(—0) — £) dzedy
// s(z,y)d(xcost —ysinf — ¢) dedy

= // s(u, —v)d(ucos@ + vsinh — £) dudv (u = x,v = —y)

= //s(u,v)é(ucos@—i—vsin@—ﬂ) dudv

= gs(¢,0).
(c) Let
gs(¢,0) 0<0< %
g5(€7 9) = T )
g (65-0) 5<0<3
which covers 0 < 6 < /2. Then
gs(¢,0) 0<0<7%

95(5,9) = )

gs(e,afg) T<pg<n

covers 0 < 6 < .

(d) See Figure S6.1.

A g4(,0) A 9s(t7/8)

-1 1 t -2 ‘ V2 ot Sketch only t
Figure S6.1 Sketch of projections at different angles. See Problem 6.10(d).
(e) See Figure S6.2. From simple rotations, we have {1 = — cos —sin 0, /o = — cos 0+sin 6, {3 = cos 0—sin 6,

and ¢4 = cos @ + sin §. By similar triangles, we have:
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y

-L1)

(1,1

Figure S6.2 See Problem 6.10(e).

{— 1y
<0</
1 2 s — 01
= g(¢,0)

l—t
b <0<{
3 4 A
= g(¢,0)

and g(¢,0) = 0 elsewhere.

2

9(¢,9)

(coe9)

cos

{4+ cosf +sinf

cos 0 sin 0

2
cos 6

g(¢,0)
(00236)

cosf +sinf — ¢

cos fsin 0

{4+ cosf +sinf
2sin 6

)
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Solution 6.11

(a) Carry out the following steps:

ml6) = [ ott.0)ar
/// f(z,y)0(xcos + ysinb — £)dxdydt
// flz,y) /6(3@ cos 0 + ysin 6 — £)dldxdy

// f(z,y)dzdy

(b) Carry out the following steps:

cp(0)

1
—/ég(f,@)df
m
%/E//f(x,y)é(xcosGersinté)dxdydf
%//f(%y)/éé(mcos@—i—ysin@—€)d€dxdy
%//f(%y) [z cosf + ysinb] dzdy

1
cos 60— //f(m,y)xd;cdy

m

. 1
—&-sm@E //f(a:,y)ydxdy

¢y cosf + ¢y sind.

(¢) We have my, () =m = 1 and ¢, = 0 since f(z,y) is symmetric about the y-axis.

/ / yf(z,y) drdy
0 pltw 1 pl-z
/ / ydxdy—i—/ / ydzdy
-1Jo o Jo
( 1

0 2 2
1+ ) (1-x)

d d

2 w+/0 2

o
<
I

OJ.M—‘\

Hence,

1v2
e (g) = ¢, sinf = gg ~ 0.2357.
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Solution 6.12

(a) The object is shown in Figure S6.3.

(2.2)

2.0)

(0.-2)

Figure S6.3 See Problem 6.12(a).

(b) The number of photons as a function of ¢ for # = 0° and § = 90° are shown in Figures S6.4 and S6.5.
N

N2
N/4

0 2 /

Figure S6.4 6 = 0°. See Problem 6.12(b).

N

N2

N/4
2 0 2 1

Figure S6.5 6 = 90°. See Problem 6.12(b).

(c) The projections at § = 0° and 8 = 90° are shown in Figures S6.6 and S6.7.
In4

In2

>

0 2 /

Figure S6.6 6 = 0°. See Problem 6.12(c).

(d) The backprojection image at # = 0° is shown in Figure S6.8. In the shaded area, the value is zero, on x = 0,
the value is In 2, and on x = 2, the value is In 4.
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In4 !
In2 |

) 0 2 7

Figure S6.7 6 = 90°. (See Problem 6.12(c).)

0

| |
| |
| |
| |
| |
| |
| |
| |
f f
| 12 x
.
| |
| |
| |
| |

Figure S6.8 See Problem 6.12(d).

Solution 6.13

(a) We have
VB (440), —4<t<0
g(£,60°) = ¢ V3u(s—1), 0<t<g
0, otherwise

The projection g(¢, 60°) is shown in Figure S6.9.

g(1,60)

-a/2 al2 /

Figure S6.9 See Problem 6.13(a).
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(b) We have

szo(o,%) — g(0cos60°+-%sh160260°)

(c) Let function f(t) be defined by scaling a rect function as:

K, —B<t<k?
_ ’ 2SS 3
F) = { 0, otherwise

The convolution f(t) * f(t) is given by:
K2(p+t), —p<t<0

fO)=ft)=q K*(p—t), 0<t<p
0, otherwise

Comparing with g(¢,60°), we see that it is a convolution of function f(¢) with itself, where K2 = /3,

andp = a/2: 4(0,60°) = \/\[Turect <2j> x \/\EﬂeCt (2;) '

By the projection slice theorem, we get F(ocosf, osinf) = G(p,0) = F{g(¢,0)}. Since g(¢,60°) is
expressed as a convolution of a rect function with itself, we have:

-7:{9(57600)} = {}-{ \/glﬁrect (%)}] = \/§MG2 sinc? (%) .

a 4 2

Therefore,

F(pcos60°, 0sin60°) =

2
V3ua sinc? (ag) .
4 2

Solution 6.14

(a) Define A(x) = rect(z) * rect(x). By the convolution theorem, its Fourier transform is
F{(M ()} (o) = sinc* (o).
We see that W (o) = A(9/00)- So by the duality of the Fourier transform and the scaling theorem, we have
FH{W 0/ 00)}(£) = oosinc®(0of) -

Multiplying | o| by W (o) = A(o/00) corresponds to convolving c¢(¢) = F~{|o|}(¢) by F~{W (0/00)} (),



which yields
&(0) = c(£) * gosinc? (o) .
(b) We have
lim ggsinc® ol = 5(¢),
00—0Q
Therefore,

lim é(¢) = c(¢),

Q0—>00

which means that the exact solution is produced.

Solution 6.15
First expand the integral:

2w poo
/ / QGH(Q)e—&-j%rQw'xdgd&
0 0

T 00 ) 2w poo )
— / / QGO(Q)e-&-j?Trgw-x do do + / / QGG(Q)e-i-JQﬂ'gw-x do df )
0 Jo T 0
11 12

Now make the substitution ¢ = 6 — 7 in I5:
s oo
I, = / / QG¢>+W(Q)€+j27rQ[x cos(p+m)+y sin(¢p+m)] do dep )
o Jo
From the geometry, gy4~(£) = go(—¢), which implies G 44~ (0) = Go(—p). Therefore,

L /w/oo QGO(_Q)e.,.jzwg[_x cos(¢)—ysin(¢)] dede
0 JO

Now let ¢ = —p and 0 = ¢ to yield:

s o0
0 JO

Now let o = ¢ and switch around the limits with the minus sign:

T r0
I, = / / _QGQ(Q)B-H%TQ“"XdeO )
0 —00

Now, I and I, can be added together to yield the desired result.

Solution 6.16

(a) We have F{(x,y)} = 1,50 G(o,0) = 1. Therefore, g(¢,0) = F~{G(0,0)} = 5(¢).

109
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(b) We write

s

= §(z cosf 4 ysin6) do

s

0(r cos ¢ cos@ + rsin psin §) df

™

d(rcos(f — ¢)) db

w/2

— — s

5(rsin(f — ¢))do.
/2

Since sin 0 ~ 0 for small 0, sin(6 — ¢) ~ 6 — ¢ for 6 ~ ¢. Hence

/2
o~ / §(r(0 — ¢))do, for ~ ¢.

—m/2

Since d(at) = % (this is the scaling theorem for the impulse function), we have

/2
S = / ia(e — ¢)d#, for @ ~ ¢

7#/2‘”
1 T
g (2.
ry 19 22
If ¢ & (—%, %), it still works by noticing that
3n/2

— —

/2
/ g(xcosf + ysinb, ) db
—7/2 /2
3T

g(xcos(d — ) + ysin(@ — ), 0 — ) db

/2
g(—xcosf —ysinb, 6 — ) d
/2
37 /2
g(zcos®+ ysinb, 6)do,

1
—

/2
since g(¢,0 — 7) = g(—¢,0).

(¢) We have
1 1

Irl 22 y?
By the Fourier shift theorem, we know that F{§(x — 2,y — y0)} = e 727 (42o+v¥0) Hence,

G(Q, 9) _ efj27rg(cos Oxo+sin Oyo)

and
g(€,0) = FH{G(0,0)} = (¢ — xgcos — yosin ).



(d)

(e)
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We have

d(x cosf + ysinh — xg cos O — yo sin 0)do

(x — ) cos + (y — yo) sin6)db .

k\g\\

Let 7 = /(z —20)2 + (y — y0)2 and ¢ = tan"'((y — yo)/(z — x0))—i.e., the radius and angle are
measured from (zo, yo). Then

4 1
L= / d(rcos(f — ¢))dd = — .
0 |
Therefore,
s 1
V(@ —20)? + (y — y0)?
Define R as the Radon transform operator and B as the backprojection operator. Both are linear operators

and the composition BR was shown in part (c) to be shift-invariant. Therefore convolution still holds. The
impulse response was found in part (b) to be 1/+/x2 + y2. Therefore,

1

In principle, all one needs to do is find the Fourier transform of 1/1/x2 + y2 and apply its inverse to fj.

Jo=[=*

Define H (u,v) = ]:{\/g#yz}’ then Fy(u,v) = F(u,v)H (u,v). Hence, F(u,v) = Fyp(u,v)/H (u,v)
provided that H (u,v) # 0.

The problem is that the Fourier Transform of 1/r is 1/g where g = v/u? + v2. Therefore, the inverse filter
is ¢ = vu? + v2, which has infinite gain at infinite frequencies. In other words, it is the worst type of
high-pass filter.

Solution 6.17

(a)
(b)

(o
(d)

bo(z,y) = g(x cosf + ysinb, H).
We have

{ = xzcosfh+ysinf = 1cos30° + 2sin 30°
= 0.866+1=1.866.

Therefore,
bg(]o (]., 2) = 9(1866, 300) ~ (0.155.

No, because ¢(¢, 30°) does not say anything about g(¢,45°).
Since 210° = 30° + 180°, this is the “opposite” projection, and therefore

g(£,210°) = g(—£,30°) = 0.155.
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Figure S6.10 See Problem 6.17(e).

(e) See Figure S6.10. The image always has the same value along the lines with a slope of tan 120° = —+/3/3.

() No, because to determine bsgo (1,2), we need £ = 1.866 as shown in (b), which is not an integer. An
approximate value might be to choose ¢ = 2, which yields 0.135.

(g) We have that £ = 2 x 0.866 + 1 x 0.5 = 2.232, which, again, is not an integer. Thus, the exact value still
cannot be determined. As an approximation, we might choose ¢/ = 2, and the approximate value is again
0.135.

Solution 6.18
The ramp filter is defined as

o(f) = / lole 927 dg

—0o0
Letting
¢=D'sinvy,
yields
(o]
C(DI sin ’y) = / |Q|e+j27rgD’ sin ~y dQ
oo
Now let
’ QD/ Sil’l Y
o=z
which yields
0 omgy 1
c(D’ siny) = / |7|e+127r9 T do .
0 @ |al
Rearranging terms yields
1 [ -,
c(D'siny) = 7/ o' |et72me 7 dy
a oo

which yields the correct result after substituting the following

D’ sin~y
Y
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IMAGE QUALITY
Solution 6.19

Beam width W has the effect of convolving projection with rect (%) Ignoring sampling (at first) and pretending
that we don’t know about the distortion, CBP yields

Fay) = A ’ {(gg(e) f rect (I/ff) ; c(ﬁ)} 0

flz,y) = /OW /_o; [(gg(z) * rect (Iﬁ/) * c(ﬁ)] §(zcos@ + ysin — £) dé df.

or

We let gg(¢) = 6(¢) = 2-D Radon transform of d(x, y) to find the impulse response. But 6(¢)*rect (%) xc(l) =
rect (%) * c({). Therefore, the impulse response in the inverse 2-D Radon transform of gy(¢) = rect (%) , or the
function h(x,y) whose 2-D Radon transform is rect (%) The function has support on the disk with diameter W
centered at the origin, but is not constant within, as shown in Figure S6.11.

-w/2

Figure S6.11 See Problem 6.19.

The easiest way to determine h(x, y) is via the projection-slice theorem. Since

 fre (1)) = e

and since all projections are the same, we conclude that

H(p) = |W|sinc(Wp) = |W|w

H (p) is the radial part of F(h(z,y)). The inverse transform of H(p) also has circular symmetry and is given by
the inverse Hankel transform:

h(r) =2m /OOO H(p)Jo(2mor)odp.

where .Jj is the Bessel function of order 0. From the Hankel transform table we find

rect (7=) R sin(2rag)

2—7‘2 0

a
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Hence
=) Tl

rect | ————

w

BE

f(xvy) = f('rvy) *h(J"?y)

Additional comments: h(x, y) is a low-pass filter since its Fourier transform decays as a sinc in . Hence, f (z,9)

is a blurred version of f(z,y) as expected. However, h(x, y) has finite support, so that the blurring is strictly local-

in fact contributions occur only from over the disk of radius % But h(x,y) approaches asymptotically at r = %

which means that the contribution to blurring at exactly the radius % can be very strong and one might expect to
see circular artifacts of radius % near bright point objects. In a real system CBP is done for sampled data. The
convolution gy (¢) * sinc(¢/W) is a continuous convolution, however, followed by discrete sampling. Therefore we
might write

which gives

h(z,y) = (&,)

Finally, we conclude that

M N
f(z,y) = % ZTZ [gg(s) * sinc (5)L=iT C(xcosb; +ysinb; —iT).
j=1 =1

But there is not more we can say analytically about f (x,y) versus f(z,y).

Solution 6.20

Assume a rectangular windowed ramp filter is used. The SNR can be computed using Equation (6.74). By
assumption, M = 100, C = 0.05, & = 0.15 cm~!. Since the detectors are touching each other, £k = 1. Since the
cylinder has a diameter of 20 cm, and the detector dimension is 2.0 mm x2.0 mm, the number of measurements
per projection is

20 cm

2 mm

= 100.

Hence,

1
0.1 R/projection x 100 projection/measurement = 0.001 R/ measurement .

The worst-case intersection length of a beam with the water is 20 cm. Therefore, the worst-case Nis

hot
1010 PROYODS 6 04 exn? ¢ 0,001 — - 015x10
cm’R measurement

~ 50 x 10% photons/measurement.

N = 25x



Thus,

SNR

Q

0.4kCV N Mw

1.3.
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0.4 % 1x0.05x 0.15 cm™ /50 x 103 x 100 x 0.2

Also, SNR = 201log;, 1.3 =~ 2.5 dB, since the SNR is not a power ratio as defined.

Solution 6.21

(a) Since SNR-in-dB = 201log,, SNR, from assumption we get

SNR = 1020 9B/20 _ 1¢

Since SNR = % = 10, we have
o, = 0'385 x 0.15cm " = 1.5 x 107% cm ™.
Thus, .
2 T
07 = 5625 x 107 em™? = - 20
Since g9 = 1/d, and T' = d, we have
o, 2m2 1 1
0, = 5=
K 3 d®>MN
Furthermore, since d = 100 ecm/D and M = D, then
9 212D
0l = ———=.
#3(100)2N
Thus, the photons-per-projection is
- 22 D2
EIRL
Tp
B 272 3002
~ 3(100)2 5.625 x 10—
= 1.053 x 10" (minimum).
(b) Photons-per-scan is
272 D3
P, =DP, = —— .
3(100)2 5.625 x 10—°
Since . )
t .
2.5 x 1010 222005 5 195 m? x 10,000 —=- x 2R = 6.25 x 10" (maximum) ,
m2R m?
then 13 0 )
2 1 .62 10~ 1
p? = (6:25x107)(5.625 < 107)B)A00)° 5 491, 108

272
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Then, D ~ 811.455, and hence D, = 811.

Solution 6.22

(a) SNR is given by

Cn _ 3, -
SNR = £ o532\ [2(N/T)M. .
™ 2
Since T =d,d= L/D,and N = Nf/D, we have
N_N_ N _Nf/D_]\_ff
T d
Let

L/D

L/D

Cﬂ\/§ Nf
K=—7\/-\/—
T V2V L’
min{D/L, omax }, there can be two cases:

then SNR = K g, **\/M. But M = 1.5D, then SNR = V1.5K g, /> D'/2. Since gy = min{d~?, gmax} =
When D < Loy ax,

7

D —3/2
SNR = V1.5K <L> DY? = \/15KL*?D 1,
or when D > Loy ax,

(b)

SNR = V1.5K 0;2/2D'/?
SNR increases away from Lp,,x in either direction. Thus, either D = 1 or D = J gives the maximum

SNR, but not D ~ Lomax. At D = 1, SNR=y/1.5KL%/?; at D = J, SNR=y1.5K[.J/(2L)]~3/2.J/2,
(Note that Loyax = LJ/(2L) = J/2, which lies between 1 and .J.) So,

V15K L3/2

J J
© VIBK(2L)3/2J-1 232 28"
Since J is an image pixel size, R > 1, hence SNR is biggest at D = 1. SNR may be maximum but
resolution is poor. SNR can be improved at large D’s by lowering 0,,ax.
Solution 6.23

that shown in Figure S6.12(b).

(a) Every projection looks the same, like that shown in Figure S6.12(a). Accordingly, the sinogram looks like
(b) The observed sinogram can be modeled as

y(¢,0) g(¢,0)(1 —rect(¢/h))

g9(£,0) — g(¢,0) rect(£/h),
operator, so the reconstruction will be

where h is some small distance, equal to the width of a detector. The inverse Radon transform is a linear

f(x,y) = fla,y) = R {g(L,0)rect(L/h)} .
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0
(@) (b)

&~

Figure S6.12 See Problem 6.23.

Assume the width of the detector h is small, so that we can approximate the above equation by

f@,y) = f(z,y) — R™{g(0,0) rect(¢/h)} .

Now, we need to find frect(7,y) = R™{g(0,0) rect(¢/h)}. All the projections are the same rect function.
The 1-D Fourier transform of any projection is a sinc function, independent of 6:

Grect(@) = le{g(()’e) rect(f/h)}
hg(0, 0) sinc(ho) .

By using the projection slice theorem, the 2-D Fourier transform of frect(z,y) is circularly symmetric. In
this case, frect (€, y) and Greet (0) is related by Hankel transform (Section 2.7). With some abuse of notation,
we have

H -1 {Grect (Q)}
# {hg(0,0) sinc(he)}
9(0,68) 2rect(r/h)
W o/l drZhe
So the reconstructed image looks like that shown in Figure S6.13. The disk in the center has a diameter h,
the intensity is — frect (7).

frect (T)

Figure S6.13 See Problem 6.23(b).
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(c¢) If the scanner always skips measurement at £ = ¢, the sinogram can be modeled as:

2(6,0) = g(£,0)(1 — rect (6250)

= g(£,0) — g(£,0) rect (6 _hg“) .

Again, assume h is small, we have

2(6,6) = g(¢,60) — gorect (Z ‘,f“) 7

where go = g({o,0). Let fl... = R™* {gorect (%) }. So the 1-D Fourier transform of a projection is:

L—0
Fip {gorect< o O)}

—j2molo

G;ect (0)

= hgosinc(ho)e
The inverse Hankel transform of G/, (o) is:

f;ect(r) = ,H_l{G;ect(Q)}
= 27 / hgo sinc(hg)(fﬂ“’ZO Jo(2mor) o dp.
0

The function f/,.(r) is a complex function, which means that the sinogram gg rect (%) is not a valid
radon transform of a real image. The explicit expression of f,..(r) is hard to obtain. Numerical simulation
shows that the reconstructed image will have parts of a circle with radius ¢, around the image center.

APPLICATIONS AND ADVANCED TOPICS
Solution 6.24

(a) Plugging the form of f(z,y) into the observation equation yields

gz':/Lﬁij¢j($,y)dsz;fj/biqﬁj(x,y)ds, i=1,...,m.

i j=1
Therefore,
Hij:/ ¢j(x,y)ds.
L;
So,
g1 Hyy Hyp --- Hyy f1
g2 Hyy  Hoyo f2
9m Hon Hpy fn

(b) Consider each case:
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(1) H 'existsbutv #0: Sincey = Hf +v, Hf =y —vand H 'Hf = H '(y —v) or
f=H 'y—H .

This provides a reconstruction formula but will give a noisy solution.

(2) v = 0butm < n: We have y = H f, but there are fewer measurements than unknowns. Therefore,
y = H(f + f) for any f in the nullspace of H. Hence, there is no unique solution to the inverse
problem.

(3) v =0butm > n: We have y = H f, but there are more measurements than unknowns. If the system is
truly noise-free, then some of thee extra measurements will be redundant. In this case, if H —1 exists,
there will be a unique solution.

(¢) The solution is given by the normal equations:
f=H"H)'H"y,
which is a standard result of least squares minimization from linear algebra.

(d) The image vector has the dimensions 2562 x 1. The output vector has dimensions (360 x 512) x 1. Therefore,
we will be required to invert a matrix of dimensions 2562 x 2562, which is too large to solve directly.

Solution 6.25

(a) There are four important points ¢, {5, {3, and ¢4, and three ranges (see Fig. S6.14).

N
0
Rotate
&
f N
0 606 6 ¢

Figure S6.14 See Problem 6.25(a).

e (1 < ¢ < {5: From similar triangles:

(£ =)/ (b2 — 1)

,6 =
90(£) cos
° (2 </< 63 1
g fr—
90(£) cos
which is independent of /.
° 53 < Y4 < €4I
a0(0) (be =€)/ (s — £5)

cos 0
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Rotation by 6 gives the values:

1 1
l = —icosﬁ—isinﬁ,
1
ly = —5c080+§sin0,
1 1
ly = icosefisin&
1 1
ly = —=cosf— —sinf.
2 2
(b) A projection is shown in Figure S6.15.
go(0) , 1
&~ cost
6, 6ot 4, ¢

Figure S6.15 See Problem 6.25(b).

(c) This is straightforward
/ go(0) dl =1 =/ / f(x,y)dzdy

(d) We have go(¢) = ggoe (£), as shown in Figure S6.16(a). Therefore,

“blank” spaces

0 /2] 0 L
gi(6) , 1 v

n/Z\ b4 n/Z\ /

\4

a7 0 12 %

rr/x

(@ (b) (©

Figure S6.16 See Problem 6.25(d) and (e).

folz,y) = /gg(:ccost9+ysin9)d0
0

v
. T '
folz,y) = 7 dei(xcos&- + ysinb;)

i=1
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Here V' = 2; therefore,

T —1/2<z,y<1/2
T2 —1/2<y<1/2, x>1/2
: m/2 —1/2<y<1/2, z<-1/2

fo(z,y) = /2 —1/2<x<1/2, y>1/2
T2 ~12<2<1/2, y<-1/2
0 otherwise

(e) No, it is generally not possible. From the projection slice theorem, we know that, given a finite number of
slices, there is always some “blank” space between the central slices passing radially through the origin. See
Figure S6.16(c).

Solution 6.26
For the given two energy photons, we have

p1(100 keV) = 1.0e ™! ~ 0.3679 cm™*
1 (140 keV) = 1.0e™ 14 ~ 0.2466 cm ™!,
12(100 keV) = 2.0e ™! ~ 0.7358 cm ™!,
12(140 keV) = 2.0e™ 4 ~ 0.4932 cm ™! .

(a) The incident intensity of the x-ray burst is

Iy = 10% x 100 keV + 0.5 x 10 x 140 keV = 1.7 x 10® photon keV .

(b) For —30 cm < z < —10 cm, the photons are only attenuated by 11,
Ig(z) = 10% x 100e=60%0-3679 1 0.5 x 10% x 140e769%0-2466 ~ 96 285 photon keV .
For —10 cm < 2 < 10 cm, the photons are attenuated by 40 cm of 17 and 20 cm of o,
Iy(z) = 10° x 100 ~40%0-3679=20x0.7358 1 () 55 106 x 140 ~40>0-2466-20x0.4932 () 1894 photon keV .
For 10 cm < x < 10 cm, the photons are also only attenuated by 1, as previously,

Ii(z) ~ 26.285 photon keV .

(¢) The local contrast is

T — Iay,
c = fe—lo
Igy,
0.1894 — 26.285

26.285
~ —0.9928.

The projection g(z,0) = fln@. Hence,

0
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For —30 cm < x < —10 cm,
26.285

g(z,0) = fln(m) ~ 15.682.
For —10 cm < z < 10 cm, 0.1894
g(z,0) = —ln(m) ~ 20.615.

For 10 cm <z <10 cm,
g(x,0) ~ 15.682.

The local contrast computed by g(z, 0) is

C _ 9o — Gb
9b
~20.615 — 15.682
a 15.682
~ 0.3146.

(d) The detector is of finite length so its response is no longer a delta function; instead, the response is a rect
function. The measured projection I;(x) is equal to the previous projection convolved with the detector
response:

Il(z) = I4(z) x rect(z) .

Since the detector width is still quite small relative to the object size, the local contrast remains the same in
most parts, but is reduced near x = —10 and x = 10, where the original step transition is blurred to a ramp.

Solution 6.27
(@) 6p=0,0, =m/4,05 =2n/4 = 7/2, and O35 = 37 /4. See Figure S6.17.

g(¢,37/4)

<

g(t,m/2)

v
<

g(¢,0)
g(l,m/4)

Figure S6.17 See Problem 6.27(a).
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G(o,/4)

G(0.0)

<V

G(0,37/4)

G(o,7/2)

Figure S6.18 See Problem 6.27(b).

(b) See Figure S6.18.

(C) Let ‘92(67 93) € GQ. Then f{gg(ﬂ, 09])} = GQ(Q7 9]) = Fl(QCOS 9j7 QSiIl 0]) + FQ(Q COs 0]', QSiH 93) (by the
projection slice theorem and by the linearity of the Radon transform. Hence, the fact that G2 = G means
that F5(ocosf;, psinb;) =0forf;,j =0,...,M — 1. Then

Fy(u,v) = Fa{cos2mfyxcos2nfyy}

= Fi{cos2rn fya}F1{cos2n f,y}
= L0 £+ 0t £ — ) + 00+ )

= 0 v )8 fevt fy) 4Ot fav— )+ 0t v £y

But (fs, fy) is a unit vector pointing in the § = 37/16 direction. A picture of this 2-D Fourier transform
is shown in Figure S6.19. Since F5(u,v) does not intersect the lines over which we sample the Fourier

AV

G(o,m/4)

G(0,0)

<V

G(o,37/4)

G(o,7/2)

Figure S6.19 See Problem 6.27(c).
transform of f;, the value of D, f5 will be zero. Hence, G2 = G;.
(d) 37/16 = 7i/16 for i = 3 and 3 does not go into 16 without a remainder. Hence M = 16.

(e) No, at least in theory. Sampling the plane with a finite number of lines will always permit us to place delta
functions in the appropriate spots to define ghost functions. In practice, functions of infinite extent are not
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available. Therefore, F» will always have some spread and a line will hit it. Because of this, “nearly” ghost
functions will have to be high frequency functions in order to “fit between the sampling lines.”

(f) Yes. fo will still be a ghost function. Low-pass filtering a projection does not change the geometry over

which F'is sampled. It would just filter along the sampled lines.

Solution 6.28
(a) We have
p1 X 20=2 —-30cm < /¢ < —-10cm
(0,0°) = o X 20=4 —10ecm < ¢ <10cm
AN o 13 X 20 =06 10cm </ < 30cm
0 otherwise
which is shown in Figure S6.20.
A g(4,0)
6,
4
2,,
-30cm -10}cm 10}cm 30cm > e

Figure S6.20 See Problem 6.28(a).

(b) We have

g(€,90°) = 1 X 204+ o X 20+ p3 x20=12, —10ecm < /¢ <10cm,
which is shown in Figure S6.21.

A g(L0)

>0

-10cm 10cm

Figure S6.21 See Problem 6.28(b).

(¢c) We have
%E + 42 —20v2cm < £ < 10v/2 cm
g(£,45°) = ¢ —204+12v2  10vV2em < £<20v2em
0 otherwise

which is shown in Figure S6.22.

(d) We have
byse (x,y) = g(x cos 45° + ysin45°,45°)
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A g(4,0)

62 T

>
-

2042 ¢

Figure S6.22 See Problem 6.28(c).
base (1,1) = g(1cos45° 4+ 1s8in45°,45°)
= g(v2,45°)
1
= g\/ﬁ + 4\/5
21
—V2
5
~ 594,

which is shown in Figure S6.23.

bys(x,y)

Figure S6.23 See Problem 6.28(d).

(e) The FOV should cover the object in any angle. Thus the smallest possible circular FOV will have the
diameter equal to the diagonal of the object:

d=/20%+60% = /4,000 = 63.2 cm

d
r= 3 =31.6cm.

The geometry is shown in Figure S6.24. We can solve for = as follows

m=+/(1.5—-7)2 —r2 = /(1.5 - 0.316)2 — 0.3162 = 1.14 m

m_'f’
1.5 =
1.5
s =0 0415 m
m

The length of detector array should be 22 = 0.83 m.
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150 cm

d=

[EsssEEEE S S S SRS SN NS NN EEEEEEEEEEEEEEEEEEEEN

< >
< >

X

Figure S6.24 See Problem 6.28(e).

(f) From the “rule of thumb” of CT, M = D = J = 256. Therefore,
d _ 63.2cm

= =0.2
7 256 0.25 cm

So, the pixel size is 0.25 cm x 0.25 cm.

Solution 6.29

(a) Since this is a first-generation CT scanner, collimation is technically not required. However, it is best to col-
limate the source to a pencil beam in order that (1) radiation dose to regions not affecting the measurements
is reduced, (2) single Compton scattering events cannot be detected (and thereby contribute to measurement
errors).

(b) A circle with diameter 56.57 cm will contain the square.

(c) Since 180° is needed to acquire a complete CT data set, and there is 0.25° angular increment, 720 projections
will be acquired. The CT “rule of thumb” says that M = D = J. Therefore, since M = 720, there should
be D = 720 line integrals per projection. The reconstructed image should cover the FOV, which was
determined in Part (a) to be a circle with diameter d = 56.57 cm. By the CT “rule of thumb,” J = 720.
Therefore, the pixel size is square with side dimension equal to 565.7 mm/720 = 0.78 mm.

(d) The most fundamental expression for SNR given the present scenario is

SNR = %953/21/2(N/T)M.
s

By problem assumption, we will not violate the “rule of thumb.” Therefore, 7" and M will remain unchanged.
This still leaves some flexibility in selection of N and gy. We could, for example, keep oy unchanged and
quadruple the number of incident x-rays. This would quadruple the number of x-rays NN incident on the
detector array,

N’ =4N.
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This solution would increase the dose to the patient. We could, on the other hand, keep the number of
incident x-rays constant and use a cutoff frequency equal to

1
00 = %Qo =0.6300 -
This solution would reduce the resolution of the resultant scan.

(e) The sketch of g(¢,45°) is shown in Figure S6.25(a).

g(£,45%)
5.65
ﬁ h >
-28.285 cm 28.285cm £
(@ (b)

Figure S6.25 See Problem 6.29.

(f) The sketch of byso (2, y) is shown in Figure S6.25(b). Assume that (10, 10) is in units of cm. Then this point
projects to

{ = 10cos45° + 10sin45°

V2
= 2022
2

= 14.14cm.

This is halfway between the origin and the corner at £ = 28.285 cm. Therefore, the projection value will be
1/2 of that at the origin, that is, bs50 (10, 10) = 2.825.

Solution 6.30

(@) Wehave M = D = J and g9 = 1/d. Therefore, k = 1. In order to resolve two point source separated by

1 mm, the pixel size can not be bigger than 0.707 mm. See Figure $6.26. We also have m#frﬁ?piml =

848.6 pixels, so the minimum number of pixels is 849. See Figure S6.27.

(b) The detector length is 925 x 0.8 mm = 740 mm, and 180 = d + 30 = d = 150 cm.

37
tanf = —— = § — 11.6156°
Y= 180

sinf = % =z = 30.2 cm.

Since x = 30.2 cm, the circular FOV with radius 30 cm fits.
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Square pixel

h
|:> h=0.707 mm

Figure S6.26 See Problem 6.30(a).

Figure S6.27 See Problem 6.30(b).

(c) For fan beam geometry,

SNR = 0.4kCaLD*/2\/Nym

k = lsincegy=1/d
0.25—-0.2
C = — =025
0.2

i = 02cm!
L = T4cm
D = 925

Ny = 15x 10"
m = 925.

Plugging these numbers in yields
SNR = 619.677

SNR(dB) = 20log,;, 619.677 = 55.84 dB .
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Solution 6.31

(a) The radius of the circular FOV is 25 cm. Therefore, a right triangle can be formed for which the hypotenuse
is 70 cm and the side opposite 1/2 of the fan angle is 25 cm. Therefore,

25
01/ =sin~! == = 20.925°.
1/2 S 70

The fan angle is therefore 2 x 20.925 = 41.85°.

(b) The distance between source and detector is () = 105 cm and the total circumference of a circle with radius
Qis C = 27Q = 27 x 105 cm = 659.7 cm. Therefore, the arclength of the detector array is

I 41.85
360°

Since there are 703 detectors over this range, we have that the spacing between detectors is

659.7 cm = 76.69 cm .

766.9 mm

(c) There is 1 pulse/ms and 1 rev/s. Therefore, there are 1,000 pulses over a single revolution. The angular
increment is therefore A9 = 360° /1,000 = 0.36°. Since each line will pass through the origin, the value of
the lateral position of each of these lines is £ = 0. Therefore, the following line integrals are acquired:

9(0,0.36°m), m=0,...,999.

The acquired data are shown in Figure S6.28(a). One half of the lines are repeated.

0 A9
| B
h Turns . )
around Y . ~ Starts
here " s and
" 7 ends
here
A 4
A Starts and
ends here / .
0]/ > p 0 4
-R 0 R ¢ -R 0 R ¢
(@) (b)

Figure S6.28 See Problem 6.31.

(d) From the work we did in Part (a), we see that the starting angle is —20.925° and the lateral displacement is
—25 cm. The angles increment exactly as in Part (c) and the lateral displacement never changes. Therefore,

the following line integrals are acquired

9(—25,-20.925° + 0.36°m), m =0,...,999.
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These are at the limits of the lateral displacement in the sinogram. But, rather than repeating, these acquire
both the positive and negative max displacements, as shown in Figure S6.28(b).

(e) Cycle through each of the detectors in order from left to right. The sinogram will be filled in vertical columns
as shown in Figure S6.28(b). When scanning the central detector, turn off the tube for the second half of the
rotation to avoid redundancy.

(f) This scanner has a fanbeam source collimation but only acquires information from one detector at a time.
Therefore, the patient is getting irradiated repeatedly in a slice, and the vast majority of that radiation is not
getting used to image the slice. This is like having 703 CT scans, just to obtain one image.

Solution 6.32

(a) Use the following steps:

g(¢,0)

Ré(z,y)
/ / 0(z,y)0(x cosb + ysinf — £)dxdy

= d(xcost+ysinb —l)|g—0, y—0
= 0(—=0)=46(£) (L) is an even function .

The sinogram is shown in Figure S6.29.

8(¢)
2] l
A
T
g(¢£,0)
0 -
L >
0 14

Figure S6.29 The Radon transform of é(z,y). See Problem 6.32.



(b) The shift theorem is proven as follows:

Rf(x —x0,y —yo) = / / f(x — 20,y — yo)d(x cos b + ysinb — £)dxdy

Leté=2—20,n=Y— %o
(x =&+ w0,y =0+ yo,dx = d,dy = dn) .

Rf(z— 0.y —w0) = / / F(Em)B((€ +20) cos 0 + (n + yo) sin 0 — ¢)ddn

/ / F(&,m)o(Ecos® + nsind — (£ — xq cos @ — yosin))dEdn
g(£ — zgcosf —ypsind, H).

(c) From the results of parts (a) and (b), we have
Ré(x —1,y) = 6(£ — cos ) .

The trajectory is plotted in Figure S6.30.

£ = cosf

/2

-1 0 1 L

Figure S6.30 The Radon transform of 6(z — 1, y). See Problem 6.32.

(d) The acquired sinogram is shown in Fig. S6.31.

Tk
£ = cosf
/2
£=0
0_
1 0 4

Figure S6.31 Acquired sinogram. See Problem 6.32.
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(e)

/_O:o Lg(L,0)dl = /(>o {/ / f(z,y)0(zcosf + ysinf — é)dxdy] de
/oo

/00 flz,y) [/_ 06(x cosf + ysinf — E)dﬂ} dxdy

= / / f(x,y)(xcos @ + ysinf)dxdy

/ / f(x,y)x cos Odzdy +/ / f(z,y)ysin Odxdy
= cos 9/ / f(z,y)zdzdy + sin 9/ / flz,y)ydxdy

= (ggycosf +qysind.

(f) The sinogram acquired can be expressed as

5(0) 0<0<m/2
g(t 9):{ 5(0—cosh) m/2<0<n

Let us calculate the first moment of each projection:
/oo { [ es(0)de 0<6<7/2

tg(e,0)dt — N
SO to(l—cosO)dl m/2<O<m

(0 0<6<n)2
- cosf m/2<O<m

From the results in part (e) we have

¢z cos0+gqysingd =0 for0<0<7m/2 =¢q,=¢q,=0
gzcosf +qysinf =cos® form/2<0<7m =¢,=1¢,=0

Since ¢, and g, are quantities calculated from f(z,y), they do not depend on 6. The above two results
contradict. So the acquired sinogram cannot be the Radon transform of any object.

Solution 6.33
(a) The energy spectrum of the x-ray beam after it passes through the material is shown in Figure S6.32

(b) The two measurements should ideally be identical because the basic measurement of CT is the line integral
of the linear attenuation coefficient. If the x-ray was perfectly monochromatic, then both the measurements
will be exactly the same, since the line integrals in § = 90° projection and § = 270° projection are the same.
But in practice, we have polychromatic x-ray source and because of beam hardening, the effective energy of
the x-ray beam and hence the linear attenuation coefficient is different for different projection. So the two
measurements are different in practice.

(c) One way to change the input spectra of the x-ray tube is to add filters in the x-ray tube.
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\ Input energy
spectrum 710

0.6

S~

Output energy
spectrum

0.2

Relative intensity of X-ray photons
Linear Attenuation Coefficient (cm™)

20 40 60 80
Photon Energy (keV)

Figure S6.32 See Problem 6.33(a).

(d) gt = line integral of 1 at lower photon energy,
g:, = line integral of y at higher photon energy.

At lower energy, p is larger and therefore the line integral is larger. At higher energy, u is smaller and
therefore the line integral is smaller.

(e
(AL 7T5keV) = 0.7cm™ ' 1(Hy0, 75 keV) = 0.1866 cm™*.

91> = 0.7 x 24 0.1866 x 8 = 2.8928,
g9ty = 0.7 x 8+ 0.1866 x 2 = 5.9732.

(f) The set of linear equations we get is

2.8928
5.9732

1
L 2
h
=
e ®
g =
NejlNe)]
S— —r
+ +

Q
T

[\
w N
o

Solving the equations, we have
a =052, off =0.568.

(g)
1(object, 75 keV) = / [(0.52¢%(¢,0) + 0.568¢" (¢,0)) = &(¢)] db .
0



The Physics of Nuclear Medicine

FUNDAMENTALS OF ATOMS
Solution 7.1

The mass of an electron m,, is 0.000548 u. So lu = Mme. The equivalent energy of an electron is 511 keV.
So the equivalent energy of 1 uis gagesg X 511 keV =931 MeV.

Solution 7.2

The mass defect of a deuteron is 1.007276+1.008665—2.01355 = 0.002391u. Its binding energy is 0.002391 ux
931 MeV/u= 2.228 MeV.

RADIOACTIVE DECAY AND ITS STATISTICS
Solution 7.3
The PMF of a Poisson distribution with parameter a is given by

ake—a
Pr[N = k] = o
Its mean is given by
pn = Y kPr[N =]
k=0
e akefa e akefa
= kj =
Sty e
k=0 k=1
*©  _(k-1),—a k,—a
_ az a € a“e
(k—1)! k!
k=1 k=0
= a.
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The variance is
o0

U?\f — Zk’QPr[N =k] - a’® because o2 = E[XQ] - (E[X])2~
k=0

Evaluate the summation as follows:

oo © (k=1 ,—a
S PN =k = o) kL
k=0 k=1 (k—1)!
o0 ak—1)g—a
k=2
= a[l+a
= a+ad®.

So the variance of a Poisson random variable with parameter a is

Oy = Q.

Solution 7.4

(a) Using (7.8), the decay constant )\ is found as

L0693 0693
- Tz 13x 3,600 sec

~ 1.4808 x 107° sec™!.

The radioactivity A is then

A= AN = 1.4808 x 107° x 10% = 1.4808 x 10 dps.

(b) Since N; = Nye~ >, then

Ny, 1 = 107 x exp(—1.4808 x 107% x 24 x 3,600) ~ 2.78 x 10® atoms.

(¢) The number of radioactive atoms left follows a Poisson distribution with a mean as computed in (b). For
large mean value, the Poisson distribution can be well approximated by a Gaussian distribution with the
same mean and variance.

Thus,
1 (108 — 2.78 x 10%)2

o x 278 < 105 P |7 2% 278 x 108

Pn_10s =

Solution 7.5

At t = 0, the number of technetium-99m atoms is 1 x 10'2. Since the half-life of technetium-99m is 6 hours
(Table 7.1), the decay constant is

0693 0.693

A= = =321 x 10 %sec™!.
t1/2 6 x 3,600 sec x see




136 CHAPTER 7: THE PHYSICS OF NUCLEAR MEDICINE

The radioactivity at t = 0 is
Ap=1x102%x32x%x107%sec™t = 3.2 x 10"Bq = 0.86mCi .

The intensity measured is:

. keV
o =891 x 10°——— .
seCc - m

One hour later, the radioactivity becomes
Al = A()e_)\t = AQ€_0'693/6 = 089140 .
So the intensity measured at ¢ = 1 hour is

keV
secm?

I, =7.94 x 10°

Solution 7.6

(a) Ay =1Ci= 3.7 x 10'°Bqand A; = Age~* = 1Bq. So

1
—\t —11
c 3.7 x 1010 7x 107,

which is solved as

—A=1In(2.7x107") = —24.334
24.334

t
— A

Since Tyjp = % = 7,wehave A = O‘iﬁ, and t = 35.114r. It takes ¢t = 35.1147 for a radioactive sample

with activity 1 Ci to decay to activity 1 Bq if the half-life is 7.

(b) The radioactive tracers used in nuclear medicine should have a half-life on the order of minutes to hours,
about the time it takes to perform study. If longer, activity remains in patient. If shorter, activity disappears
before scan is completed.

Solution 7.7
(a) The radioactive source decays according to
Ay = Age M.
The intensity at range r from this source is B
_ t

dnr2’

where the time-dependency is made explicit using a subscript ¢ and F is the gamma-ray energy. A point

(z,y) on the detector is at a distance
r=+R?+ 2%+ y>

t
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from the source. Therefore, the intensity on the detector face is

AE
Li(x,y) = D/2.
t('Tay) 47T(R2 +$2 +y2) ) |l'|, |y‘ < /
(b) The average intensity is
= L / / (z,y)dxdy
‘ D2 D/2
1 br2 AE
= / / 5 5 oy dz dy
. AE
T 4AnR2’

where the last approximation holds if R > D.

Solution 7.8

(a) DF is defined as DF = e~**. And decay constant ) is given by

A1/2 _ 1 ROV
Ap 2

O 693 . So

Taking the natural logarithm of the above equation yields —AT3 o = —In2 = —0.693 and A = Ty /s

the decay factor is
DF = 670.693t/T1/2 )

(b) From above, we have 7 = + = gggé = 1.443T 5.

Solution 7.9

(a) The half-life of 9 Tc is 6 hours. It is 8 hours from 8 a.m. to 4 p.m. Therefore, using the relation between
the decay constant and the half-life,
0.693

A=
T2

we can write .
Adpm. = Agam e = 2e70:093x8/6 5 .7939 mCi/ml .

(b) To get 1.5 mCi radioactivity, we need a volume of

1.5 mCi

= 07939 mCymi = 80 ml-
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Solution 7.10

(a) First we find the decay constant as follows

Ny = Noei)‘t

9.9212 x 105 = 108 A864,000
A = —In((9.9212 x 10°)/10)/864,000
A = 26742 x 10 %sec?t.

Using the relationship between the half-life and the decay constant, we find

t1/2 = 111(2)/)\
= 259,198 & 259,200 sec (or 3 days)

(b) For At << t,/5, the average number of disintegrations = Poisson rate x At = NoAAt = 2.6742 disintegra-
tions.

(¢) Using Equation (7.11) and a = 2.6742 disintegrations (from part (b)), we have:

Prob(AN >2) = 1—Prob(AN =2)—Prob(AN =1) — Prob(AN = 0)

@ (@ (a0

= 1— — —

2! 1! o!

a2

= 1- (?—ka—i—l)e_“
2.67422

= 1—( 62 +2.6742 4 1)e 26742

= 0.50003.

Solution 7.11
Determine the decay constant of 2} Ms as follows:

1/2 =Mz,

t1/2 = 2 hours,
In(1/2)

A= =0.347hr*.

Determine the amount of 21 Ms left at 5 pm as follows:

At = 4 hours,
N = NyeM

— 8 g x ¢ 0:317x4

=2g.
Subtract to determine the amount that has decayed:

8g—2g=6g.



Solution 7.12

(a) First determine the decay constant:

Ay = Age™,
1 mCi/ml = 3 mCi/ml e~ *3600
1
A=—In— =3.05 x 107471,
"3 % 37600 A0S
Then find the half-life:
In2 In2

t =—————
V27 TN T 3.05 x 10451

(b) Compute the radioactivity:
Ay = 3 mCi/ml g~ A% 4x3,600

. _ —4_—1
_ 3H1C1/m16 3.05x10™ %s™ " x4x3,600 s

=0.037 mCi/ml.

(¢) Calculate the volume:
1.5 mCi

0.6371 mCijml 20044 m

RADIOTRACERS
Solution 7.13

(a) Explanation for each:

=2,271.3s=0.63 h = 37.86 min .
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(i) £y = 30 Kev, t1/5 = 7 hours: This is a bad choice for medical imaging because the energy of the gamma

rays is low and the body will absorb most of the emitted gamma rays.

(i) Ey = 150 Kev, t;/2 = 5 hours: This is a good choice for medical imaging purposes because its half-
life is long enough to enable imaging and short enough to weaken strongly before the patient leaves the
hospital. The gamma ray energy is high so that it is somewhat transparent in the body but still detectable by

conventional detectors.

(iii) £, = 200 Kev, t;/o = 10 days: The energy would be a pretty good choice for this one. The half-life
would be good for biological processes that take a week or so for the radiotracer to reach its destination. It

is too long, however, for most processes.

(b) Activity follows the radioactive decay law. If activity reduces to 1/4 after 5 hours then 5 hours is twice the
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half-life. Accordingly,

t1/2 = 2.5 hours,
0.693

A= =77x107%s71,
t1/2
Ag 44 x10% 1
No="=_""""_—519x10".
0T N T T77x100 8

Solution 7.14

A radiotracer is chosen first for its properties of biodistribution and then by its physical imaging properties. The
two radiotracers are not equivalent if they distribute in the body in different ways and most likely they cannot be
interchanged.



Planar Scintigraphy

INSTRUMENTATION
Solution 8.1

(a) For the diagrams of an Anger gamma camera, see Figures 8.1, 8.2, 8.3, and 8.4. An Anger gamma camera
consists of a multi-hole lead collimator, a sodium iodide scintillation crystal, an array of PMTs on the crystal,
a positioning logic network, a pulse height analyzer, a gating circuit, and a computer. The functions of each
of these parts are:

The collimator provides an interface between the patient and the scintillation crystal, by allowing only those
photons traveling in an appropriate direction (i.e., those that can pass through the holes without being ab-
sorbed in the lead) to interact with the crystal;

The scintillation crystal emits light photons after deposition of energy in the crystal of ionizing radiation;

The photomultiplier tubes do two things: converting light signals into electrical signals and amplifying these
signals;

The positioning logic network determines both where the event occurred on the face of the crystal and the
combined output of all the tubes, which represents the light output of the crystal (which in turn represents
the energy deposited by the gamma photon). These output signals are denoted as X and Y for the estimated
two-dimensional position of the event and Z for the total light output. The amplitude of a given tube’s output
is directly proportional to the amount of light (number of scintillation photons) its photocathode receives.
The tubes closest to the scintillation event will have the largest output pulses, while those farther away will
have smaller output pulses. By analyzing the spatial distribution of pulse heights, the location of a single
scintillation event (X, Y") can be determined quite accurately.

The pulse height analyzer is used to distinguish photons been Compton scattered from those are not by
analyzing the energy deposited in the crystal via the Z-pulse whose height is proportional to the total energy
deposited in the crystal. The pulse height analyzer is used to set an acceptable window around the photopeak
in the spectrum of the Z-pulse.

The gating circuit is used to compensate for the imperfect photopeak localization and further reduce the
scattered photons being accepted as a valid event.

The computer is used to record the location of each event and form images.

(b) When we select radionuclides in nuclear medicine, the following issue must be considered:

141
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e The radionuclides must be “clean” gamma ray emitters, which means that they do not emit alpha or beta
particles.

o The radionuclides must emit gamma rays with appropriate energy. The energy cannot be too low because
low-energy gamma rays are more likely to be absorbed by the body; therefore, increase patient dose
without contributing to the images. Also, the energy cannot be too high since high-energy gamma rays
are less likely to be detected.

e The radionuclides should have a half-life on the order of minutes to hours.
e The radionuclides should be useful and safe to trace in the body.

e The radionuclides should emit gamma rays as monochromatic as possible.

Solution 8.2

(a) Use Beer’s law for calculating the path length w in the septa to allow less than 60% incident photons to
pass through. If 4 is the linear attenuation coefficient for lead at 140 keV, then e ™#* < 0.60. This gives
w > 0.51/u. From geometry, the collimator septa thickness h is related to path length w for gamma-rays
incident at 45° by h = w/v/2 = 0.36/p1.

(b) Here, using the above two equations to find d and , the values of [ are found by the roots of a quadratic
equation to be [ = 8 mm, 30 mm. Choose [ = 30 mm, then d = 0.22 mm.

(c) Increasing [, the length of the holes, improves rejection of scattered photons, thereby improves resolution.
Sensitivity decreases too, as less photons reach the detector. Also collimators with large I may be heavy.

(d) Increasing the thickness of the scintillator will increase the sensitivity and compensate to some extent its
decrease due to long holes. The disadvantage of increasing crystal thickness is that the intrinsic resolution
of the crystal degrades.

Solution 8.3
(a) Note that 20% pulse-height window is 10% on either side.
150 keV x 0.1 = 15keV,

150 keV — 15 keV = 135 keV .

Since
h' = [ hw ,
+ ez (1 — cos )
we have
135 keV = 14011(46211‘6\’ ,
1+ keV(l — cos )

Solving for 6, we get § = 30.14°.

(b) For a window centered at the photopeak, the maximum acceptable scattering angle for a 140 keV photon
is 53.54°, as shown in Example 8.2. Do a similar computation, we can see that photons with energy hy =
364 keV can be scattered by an angle § = 32.43° and still be accepted by a 20% window centered at the
photopeak.
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(¢) From (b), we conclude that as the frequency goes up, the directional selectivity gets better. Compare (a) and
(b), we can see that an offset window centered at a higher energy can further reduce scatter.

Solution 8.4

(a) The intensity at radius r from the source is
AFE

T dmr2
where E is the gamma ray photon energy.

(b) Hole size does not matter since “per unit area” is already figured into the intensity. Therefore, the intensity
is the same as in part (a).

(c) Doubling the source—camera distance yields

,__AB__ aB
C o Am(2r)2 0 16w

This is 1/4 the intensity of part (a).

Solution 8.5

The septal thickness of a collimator depends on the minimum required path length for adequate attenuation. That
is, the septa must be thick enough that photons traveling through them have a high probability of being absorbed.
From a geometric point of view, we can define a minimum septal thickness from a minimum path length as

2d
h=——". (S8.1)
l—w
If septal penetration is to be less than 5%, the transmission factor from Beer’s Law [(4.24)]for the minimum path
length is:
e M <0.05. (S8.2)

We note that e ~ 0.05, so this implies yw > 3. We can thus substitute this definition into (S8.1) for septal
thickness: 6d
h>——. (S8.3)
ul—3

The p for lead at 140 keV is 21.43 cm~!. For comparison, at 511 keV, it is 1.746 cm™ L,

Solution 8.6

(a) Energy of 30° Compton scattered 140 keV photon.

140 keV

E =
1+ (1 —cos(30°))140 Kev/511 Kev

= 135.04 keV (S8.4)

Acceptance window = 21405135:04100 = 7.08%.

(b) See Figure S8.1.
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PMT response

Sty e T
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Tlme in nano seconds

Figure S8.1 Plot of response. See Problem 8.6(b).

(c) The detection circuit is on until the response falls below 80% of the photo peak. So the second photon
should not arrive while the response from the first is at 80%. Time for the response to fall to 80% is
t =20/140 x 140 x 0.2 = 4 ns.

The acceptance window is 20% this means that second photon should not arrive while the response from the
first photon is above 10%. Otherwise the net response will be over 110% and the acceptance window will
reject the second photon. Time for the response to fall to 10% is ¢t = 20/140 x 140 x 0.9 = 18 ns.

This means that arrival of two photons should be 18 ns apart so that both the photons are accepted as separate
event.

(d)

Probability of at least one disintegration = 1 — Probability of no disintegration
— 1 o 67}\N0At

=1 — ¢ AoAt,

Plug in the known numbers as follows

0.5—=1— 670.25><A><3‘7><101° dpsx18x10~10 s

and solve the equation to get A = 0.0416 Ci = 41.6 mCi.

(e) The height of the Z-pulse is 80 + 30 + 20 + 5 = 135. Find the center of mass as follows:
x location = (—1.5 x 80 + 1.5 x 30 + (—1.5) x 20+ 1.5 x 5)/135 = —0.722 cm,
y location = (1.5 x 80 + 1.5 x 30 + (—1.5) x 20 + (—1.5) x 5)/135 = 0.9442 cm .
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IMAGE FORMATION
Solution 8.7
Refer to Figure S8.2.

(a)

(b)

7L - AR
P s
/,”I - | r ~N- .o
4000)_ -~ : . ) ‘Id L 4000)
D R b T
< D \‘ < 7‘7 i >
< 7”7
@ (®)

Figure S8.2 Converging and diverging collimators. See Problem 8.7.

Let the converging collimator have a focal point located at A, which is at a distance D on the left side of
the detector, as shown in the Figure S8.2(a). Let the coordinate system be such that the origin is located
at the focal point A. Consider a point B on the detector at a distance d, as shown and at an angle 6. The
coordinates of this point B are (d cos 6, dsin 0, D) . The photons reaching this point will travel along a line
passing through the focal point A and the point on the detector B. Hence, these photons will experience
an attenuation obtained by integrating the linear attenuation coefficient u(z, y, z) along this line. Consider
a point P on this line, at a distance 2z’ from the origin, as shown in the figure. The coordinates of P are
(rcosf,rsind,z') = (z'dcos8/D,z'dsin0/D, z"). Hence the intensity at B, due to an event occurring at
a location z, is given as:

D
I, = exp{—/ u(z’dcos@/D,z’dsin@/Dw’)dz’} ,
™ z

where, | = \/(zdcos0/D — dcos )2 + (2dsinf/D — dsin6)? + (z — D)2. This is the intensity due to a
single event occurring at a depth z, along the line. Integrating the activity over all possible events along the
line, we get

D" A(zdcos0/D,zdsin0/D, 2)E
4rl?

I(dcosf,dsinf) = /

— 00

D
exp {/ u(z'dcos@/D,z’dsin&/D,z’)dz/} dz.

Let the diverging collimator have a focal point located at A, which is at a distance D on the right side of
the detector as shown in Figure S8.2(b). Let the coordinate system be such that the origin is located at
the focal point A. Consider a point B on the detector at a distance d, as shown and at an angle 6. The
coordinates of this point B are (d cosf,dsin @, D). The photons reaching this point will travel along a line
colinear with the focal point A and the point on the detector B. Hence, these photons will experience an
attenuation obtained by integrating the linear attenuation coefficient u(z,y, z) along this line. Consider a
point P on this line, at a distance 2’ from the origin, as shown in the figure. The coordinates of P are
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(rcos@,rsind, z’) = (2'dcos0/D, z'dsin /D, z'). Hence the intensity at B, due to an event occurring at
a location z, is given as:

AE - - N
Id:meXp — w(z'dcos@/D,2'dsin0/D, 2" )dz" 5 .
U z

This is the intensity due to a single event occurring at a depth z, along the line. Integrating the activity over
all possible events along the line, we get

P A(zdcos8/D, zdsinf/D, z)E
47i?

I(dcosf,dsinf) = /

— 00

-D
exp {/ u(z'dcosf/D,2'dsin@/D, z')dz’} dz.

Solution 8.8
(a) By simple computation, we have the outputs of the PMTs are:

a; =21.10 ap =21.10 a3 =12.13
as =21.10 a5 =21.10 ag=12.13
a7 = 12.13 ag = 12.13 ag = 8.13.

(b) The Z-pulse is

9
7 = Zai = 141.05.
1=1

The estimated position is

9

- 1

X = Z;aiwi:—&mcm,
130

Yy = Egaiyizo.lﬁcm.

(¢) The estimated position is different from the true position of the scintillation event. The reason is that the
event position estimation uses a linear model, while (P8.1) is nonlinear.
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Solution 8.9

(a) From Figure P8.3(a), when pulse height is 180, the energy deposited is 160 keV. Therefore, we have

hv
(1 —cos®)
160

1+ 289(1 — cos 50°)
= 143.9keV.

h' =

1+

hv
)
mcg

Suppose the acceptance window is centered at the photo peak at 160 keV, the upper bound of the energy
window is 160+ (160 — 143.9) = 176.1 keV. So the acceptance window can be set to be 143.9 — 176.1 keV.

(b) The Z-pulse = 40 + 5 + 15 + 15 4 20 + 45 + 30 = 170. The corresponding energy deposited is 150 keV.
It will be accepted by the acceptance window.

(c) The coordinates of the 7 tubes and pulse heights are:

whe | 1 2 3 4 5 6 7
pulse height | 40 5 15 15 20 45 30

and

7 7
1 1
X = = g_l arrr = 0.26 mm, Y = 7 kg_l agyr = —0.46 mm

(d) If (X,Y) is set equal to the location of the PMT that has the largest amplitude, this will give a less accurate
estimation of the location of an event. The resolution of the resulting image will be on the order of the size
of tubes.

Solution 8.10

(a) See Figure S8.3.

(b) Note that a 10 percent pulse height window is 5 percent on either side. So the lowest energy that can be
accepted is 140 keV x (1 — 0.05) = 133 keV.

ho! — hv
1+ m};’iQ (1—cosh))’
133 keV — 140 keV
1+ é‘ll(l) EZX(I —cosf))

And we get 6 = 36.11°.
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Figure S8.3 Pulse height spectrum. See Problem 8.10(a).
(¢) The Z-pulseis Z =5+ 15+25+ 10+ 20+ 45+ 5+ 10 + 40 = 175 AU.

(d) The position of the event (X,Y") = (0.91, —1.14) is
0X542x15+4Xx25—-2X104+0X20+2x45—-4x5—-2x10+0x40 _ 160 __ 0.91

_ 1 _
X =7z wpar = 175 =175

1  4X542x1540X2542x1040x20—2x4540x5-2x10-4x40 __ —200 _ __
Y =2 yrak = 175 =737 =Ll

(e) Causes of event localization error include edge effects, badly calibrated PMTs, and gamma rays passing
through septa (scattering).
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IMAGE QUALITY
Solution 8.11

(a) The overall system response is given by the convolution of the system responses of all its subsystems. In
this case, it is the convolution of three rect functions. By assumption, f;(x) = arect(z/r;), fo(x) =
brect(x/rc), and fp(x) = crect(x/rp), where a, b, ¢ denote the individual amplitude (actually, they can
be assumed to be one when computing FWHM). Let’s assume r; < r¢ <rpandr; <rp —rc.

oo

—t t
fep(x) = fo(x)x fp(x) :/ bcrect(m ) rect(—)dt
—o0 rc rp
’r’p/2 _t
= bc/ rect(aj )dt
—TP/Q T.C
be(x + L;”’) if — L;rc <z < —IEgrey
_ bere if — TP;TC <z< TP;TC;
bc(rc;rp o I) if ’I"pg’r’c S T S 'r’pq2L'r‘c;
0 otherwise.

Then, fiota1(z) = f1(z) * fo(z) * fp(x) = fir(z) * fop(z) can be similarly computed to be: fiopa1(z) =

abe ritre+re )2 e rptrotrs _rptre—rr
2(er 2 ) if 2 S s 2 ’

abcrl(er%) if *W%SxS*Wv

abe (_:%2 . T‘P—T'zc—'l"lx + (TP—Tc—Tr)g‘I—BTc—TP) + TC(TP—2Tc+7"1)
if _rp—7'20+7'1 <z< _mn—gc—m ,

aberrre if —7“3_20_” <z< 7””420_” ,

abe (_ac; + rpfrffrlx + (rp—rc—r;)ér;—Src—rp) + rc(rp—2r0+r1)>
if TBE=TC=TI <& 0 < TP=TCHTI
2 =T>= 2 )

abcr[(—x+%) if%gxgwfcfﬁ’
2 . _

aTbc (J’J—F T1+Téj+T’P> if TP+T20 Tr <z< TP+T2c+T1 )

0 otherwise.

The maximum value of fiota1(x) is aberre. Thus, we need to solve for g such that fiora(z0) = ‘MT”C,
which can be easily computed to be xo = +*. Hence the FWHM of the overall system is equal to rp,

which is the largest width of the three sub-systems.

(b) In the case of Gaussian cascade we know that

FWHM, 101 = \/ FWHM? + FWHMZ, + FWHM?2
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and for each subsystem the FWHM is equal to 2v/2In 20.. Hence,

FWHM;yt0; = 2V21In2 0? + U% + 0'12:, .

Solution 8.12
(a) The half-life of technetium-99m is 6 h = 360 min. Therefore the radioactive decay formula is
A= Aoeft/?)ﬁ(] )

Our images will be acquired over 2 h = 120 min. There are 6 images per hour for 2 hours, which makes 12
images total. The counts in the last image are the integration of the activity over the interval 110 < ¢ < 120:

120

Ny = / Age—t/380
110

= Ap(—360)e /360 0
110
_ 7360A0(e*120/360 . 67110/360)

= 7.265759A, .

This is then solved for A
2,000, 000

A =
0 77265759

= 275,263 counts/min .

(b) The total count in image n is

10n
Nn = / A()e_t/T dt
10(n—1)
10n
= Ay(—7)e VT

10(n—1)
— AoT(e—lo(n—l)/T _ e—lOn/T) )

The count per pixels is

and the SNR per pixel is

SNR, = /N%

\/AoT(e—lo(n—l)/T _ e—lOn/T)

J
V275, 24};3 R e yp—rmy

_ 77\/6710(n71)/7 _ e—l0n/7
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This is calculated forn = 1,...,12, yielding 12.74, 12.57, 12.40, 12.22, 12.06, 11.89, 11.72, 11.56, 11.40,
11.25, 11.09, 10.94.

(¢) The tumor has contrast C' = 0.1. The local SNR is

SNR; = CvV/'Ny.
In decibels this is _
SNR;(dB) = 20log,, CvV Ny = 5dB.

Therefore,

log,o CV/N, = 5/20,
cV/N, = 1778,
VN, = 1778,

N, = 316.

This implies that there must be approximately 5 M counts in the last image. From the result in part (a), we
can deduce that there are approximately 6.8 M counts in the first image.

Solution 8.13

(a) The counting rate is at most 128K dps (disintegration per second). Each frame last for 75 ms during each
heart beat, and there are 64 x 64 = 4,096 pixels on each frame. So, during one heart beat, each pixel can
get at most

128,000 dps x 0.075s 3 disintegration

4,096 """ pixel - heartbeat”

In order to get the required counts, we need

1,000
= =4 .
N 531 27 heartbeat
(b) The heart rate is 50 bpm, so the study will take
427
T = 0 = 8.54 minutes .

(¢) The intrinsic SNR for each pixel is

SNR = /1,000 = 31.62.

(d) If we want to double the SNR, we need to have 4,000 counts per pixel for each frame. Therefore, the study
will be 4 times as long as the one described in parts (a) and (b). The time it takes is

T =4 x T = 34.16 minutes .
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Solution 8.14

Consider a source positioned at distance r from the collimator (as in Figure S8.4). Because of the collimator’s
geometry, this source will only be “seen” by the scintillation crystal over a certain (horizontal) extent. We will take
1/2 of this range to be the collimator resolution, 1. This result would be exactly the FWHM if the response to the
point source were a triangle function—a bold assumption, and one that is necessary for this geometric derivation.

By similar triangles, we have

Figure S8.4 See Problem 8.14.

Rearranging yields the desired result.

Solution 8.15

(a) The radioactivities of A and B are

Ng' [ In2
AD = 1—8 (;) eXp{—ﬂnZ/t‘f‘/Q}
1/2

Ny (In2
_ Tg (I;) exp{—tIn2/3},
NE [1n?2
AtB _ Tg (ﬁB) exp{—thl?/tlB/2}
1/2
Ny (In2
— ?8 (r;) exp{—tIn2/6} .

The projection is

P(z,t) = {Afrect (?) ABrect (95105” eHRIR
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At time t = 0, we have
No (In2 z4+5 No (In2 r—5 1
= |22 | == ) rect — [ == rect
0= [ (5 ot (577 + 35 () e (557
+

— 8.5 x 103 Nyrect (z105) 4212 x 1073 Nyrect (35105) .

At time t = 3 hours, we have

B In2\ _,.9 z+5 In2\ .5 r—25 1
¢(a:,3)—[10<3)6 rect( 10 >—|—20<6>e rect 10 e

5 -5
=4.25x 10~ 3N0rect( ;B )+15><10 3N0rect( o )

(b) tmax = 0.

(c)

2 2
0.25 x 4
= =1. 1074
( d+h) (35><2.2> 09 x 107,
d
R —
~1

2 2
110) = — 145) .
(L4b+[2]) = 5= (35 +b+110) = = (b + 145)

(d) dg=[4.25x1073 —1.50 x 1073] x 1.69 x 10~4 = 4.6 x 107,

(e) Width(P) =10+ R..

Solution 8.16
(a) We have
d 3
Re=-(4+b+|z]) = —(10+ 2.5+ 50) = 1.875 cm..
ol 100
(b) We have ;
18.75
R =187 mm =20.,vV2In2 = o. = =17.96.
¢ 2v21n 2
Assuming that the PSF is Gaussian, then
12
hc = e 27
Similarly,
R 0.2 = 0.2 0.0849
= 0.2 mm oy = = 0. )
! ' 922
and
_ =2
hr=e 207
Then the overall PSF is
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Notice that

22

Fle »2} =v 2mo e T 2Tei?)
.’172

.7:{6_@} = 277016_”(2””?“2) )

So
F{h} = oo 2T eito )

and from the inverse Fourier transformation we get

2
2 TS e
h=,|—Z—=s0c05e 7D .
0%+ o7

(c) The shortest penetration path is depicted in Figure S8.5. It goes from the left top corner of the primary hole

to the right bottom of the adjacent hole, the angle is denoted by . From the geometry, tan 6 = ﬁ =8.33
and w = h/cosf = h/—=E2L_ — 50.36 mm.
124 (h+2d)?
Primary hole Adjacent hole
\
TOOWIUOoOn
G
Photon W

Figure S8.5 See Problem 8.16(c).

(d) If the septal penetration is to be less than 5%, the transmission factor for the minimum path length is e 7#* <
0.05 = pw > 3.0. For fixed [ and d, "V ET(2d)?

nod > 3.0. Simplify the expression by the fact that
[ > h + 2d, then h > 345

(e) The septal penetration degrades the collimator resolution because it blurs the image.

(f) No. Because the attenuation in the septa lead doesn’t change the energy of the photon, so the energy window
wouldn’t help.

(g) Compton scattering.
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Solution 8.17

(a) Rate of photons emitted = 0.54 x 1072 x 3.7 x 10'% = 2 x 107 photons/s.
Assuming uniform emission, rate of photons hitting the detector is given by:

2 arctan (23
5 ©5) 5 9 107 = 0.355 x 107 photons/s.
Y8
(b) Detector efficiency (DE) is defined as
Ip—1
DE = ——
Iy '’

where I = Ipe™#*. b =2 cmand 1 = 0.64cm ™! gives:
DE =1 — e %02 = 0.7220.
Thus, detector efficiency is 72.2%.
(c) Using similar triangles, we have:

5 mm
80 mm

d
Re = 7(|y| +0b) = (800 mm + 20 mm) = 51.25 mm .

R¢ is labeled on Figure S8.6.

0.5m - 0.5m

Figure S8.6 See Problem 8.17(c).

(d) We have
Re = 51.25mm =20.vV2In2,
R[ = 1mm= 201v2ln2.
Therefore, o, = 2\5/1% =21.65and o7 = 211n2 = 0.42. Assuming that the PSF is Gaussian, we have
_ z?
he = e 292 s

22

h[ = 672"12.
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The overall PSF is
h=hg*hy.

22 _ 22
Using properties of the Fourier transform, F{e 2¢¢? } = om0 e~ 270" " and Fle 21*} =+ 2mo e 2ot
and knowing F{h = h. * hy} = F{h.}F{hr}, we have

F{h} = 27rac01672”(‘”2+‘”2)“2 .

From the inverse Fourier transform,

h = —5 5 0c01€ 2(0r%+07?) |
or“+oyg

(e) Using similar triangles, d/l = |z|/|y| thus the maximum distance from the center of the detector will be
50 mm. We need to find number of holes which will get the ray so d/2 + nh + md = 50 mm. Using
d = 5 mm and h = 2.5 mm, detector will get through six holes each side which will be 13 holes in total
(including the middle one).

(f) First guess can be |y| = 80 cm where collimator is as long as the distance of source to detector, but the
following figure shows the geometry for shortest length. Using similar triangles:

dlR2+h+d

Figure S8.7 See Problem 8.17(f).

d/2+h+d d

Y| o
Solving the equation yields /o = 40 cm. For this [y, we find that R. = 10.25.

(g) The sensitivity of a collimator is (%)2. For simplicity, I, = I. Thus € o< 1/I2. If sensitivity is € at
I = 8 cm then, new sensitivity €,¢,, at [g = 40 cm will be:

I
lo

p==

€new = 6(
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APPLICATIONS
Solution 8.18

(a) 1. The photon goes through the hole;
2. It enters the scintillation crystal;
3. It has a photoelectric event producing an ejected electron;
4. Collapsing electrons (in this atom and many others) cause light photons to be emitted;
5. The light bounces around in the crystal and exits out the back face;
6. The light enters a PMT;
7. Its energy causes electrons to be emitted at the cathode and enhanced by dynode cascades;
8. The current at the anode is recoded as a small pulse;
9. The total height of all pulses, summed up over all tubes is the Z-pulse;
10. Weighted combinations of the pulse heights give the X =, X+, Y, and Y signals;

1. X = X550 andy = Y50

(b) See Figures S8.8 and S8.9.
X X

Signal close to 0. Signal deviates more.
Fewer photons getin. ~ More photons get in.

Figure S8.8 See Problem 8.18(b).

«X(2)

—T ] —
t

er(f)

[ R O

I 0T L%

Figure S8.9 See Problem 8.18(b).

(c) With the larger hole we may get multiple photons occasionally—pulse pileup. Also, their rate will be higher
for same reason as X -signal.



158 CHAPTER 8: PLANAR SCINTIGRAPHY

(d) The sensitivity is given by

sensitivity = (de >2
S \ld+h))

If we double the hole diameter and keep the sensitivity unchanged, we have

kd? \? k@2d)? \* Al(d + h)
(l(d+h)> _(12(2d+h)> = ke

where d is the original diameter and d < h.

Solution 8.19

(a) A straightforward calculation yields

_ 2,000, 000 photons
64 x 64 pixels x 4 photons/pixel s

=122.07s.

(b) The Z-pulse of two photons is shown in Figure S8.10. The output of the pulse height analyzer is shown in
Figure S8.11.

Z-pulse

1.64 +

0.64 1
0.44 1

e time (us)

0 100 250 350

Figure S8.10 Z-pulse arising from two photons. See Problem 8.19(b).

1.64

0 100  time (us)
Figure S8.11 Output of the pulse height analyzer. See Problem 8.19(b).
(c) If the second photon arrives too soon after the first one, due to the pulse pileup, the output of the pulse height

analyzer at the arrival time of the second photon will be larger than 1.2A. Therefore, the second pulse will
be rejected and will not result in an acceptable event.
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In order for the second photon to be detectable, the peak voltage at the time when the second photon arrives
cannot exceed 1.2A, the voltage resulted from the first photon must be less than 0.2A. Since the voltage
drops linearly from the peak value A to 0 in 250 us, it takes 200 us for the voltage to drop to a value of 0.2 A.
The time separation required in order for the second photon to be detected as a separate event is 200 ys.

(d) From part (c), we know that two successive photons must be separated by at least 200 ps in order to be

detected as two events. So the maximal rate of arrival of photons is Wlus = 5,000 photons/s. This arrival

rate is for the entire image (recall how Z-pulse is generated.) For each pixel, the arrival rate is at most

65420604 = 1.22 photons/s-pixel. This rate is smaller than 4 photons/s-pixel we used in part (a). So it is not

possible to complete the experiment in the time we compute in part (a).

An alternative is as follows: we have a maximum rate of arrival of 5,000 photons/s. In 122.07 s, we can have
at most 5,000 x 122.07 ~ 610, 000 photons, which is less than the required number of photons to complete
the experiment. So not possible.

(e) When an incident photon has undergone Compton scatter, it loses some energy. Under this condition, the
photon might be rejected because its Z-pulse height is too small.

2,000,000 photons

(f) On average each pixel is hitby N = 6I%6d

pixel is SNR = /N = 22.1.

= 488.28 photons. So the intrinsic SNR in a single

Solution 8.20

(a) Rate of photons emitted from O = 0.27 x 1073 x 3.7 x 10'? = 107 photons/s. Assuming that the photons
fly uniformly in the z-y plane, the rate of photons hitting the detector is

2tan~!(3:3)

x 107 = 0.25 x 107 photons/s .
2m
(b) A straightforward calculation yields

detector efficiency = fraction of photons blocked by the detector
Iy —1

1 — o—0-644x2.5

= 80.01%.

(¢) The Anger camera, on average, registers 0.8001 x 0.25 x 107 events/s = 0.2002 x 107 events/s. Hence, the

time to register is 2 x 10° counts = % = 0.1 s. Neglecting the time required to rotate the camera,
10 orientations can be captured in 1 s.
(d) The collimator resolution is
d 0.005
R.=—-({4+b+]z]) = ——(0.12+0.025 + 0.5 — 0.12]) = 0.0219 m = 21.9 mm..

l 0.12
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(e) Let z,, be the span on the detector within which photons can reach in the nth hole. For the central collimator

(®

hole, that is, n = 0, we have z( = d, since the photons can fall upon the entire detector length d. So the rate
of photons hitting the central hole is

9 tan—1(0:005/2
ro = % x 107 = 1.6 x 10* photons/s .
™

For n > 0, by the geometry we have the following relation

d—x,  (n—1)(d+h)+h+05d+ (d—x,)
l B 0.5 ’

d‘% — (n—0.5)d+nh+d— 2],

d—z, = 2l[(n+0.5)d+nh]-—2z,,
z,(2l—1) = 2l[(n+0.5)d+nh]—d,

2l[(n +0.5)d +nh] —d
Tn =
20 —1)

When n = 1, 1 = 2.63 mm. So the rate of photons hitting the hole n = 1 is

tanil ( d/2+h+d) _ tanil ( d/2+h+d7a31 )

ry= 0.5 5 0.5 x 107 = 8.37 x 10° photons/s .
™
It is the same answer for n = —1.
Evaluating z,, at n = 2, we get 9 = —0.5 mm. So the collimator shadow completely covers the hole, that

is, no photon is able to hit the detector from this hole. Therefore, the photons can enter only in the central
three holes. Since the photons from a point source at the origin are spreading out into the central three
collimator holes, the resolution, as defined by FWHM value, is RC = % =12.5 mm. Rc is smaller than
R, = 21.9 mm computed in part (d), since R, is computed with ideal geometry, neglecting the effects of
septa.

Solution 8.21

(a) Itis a straightforward calculation:

R. = %(l—i—b—&—z)

3 3
= 155100 +25+0.5 x 10%)

= 18.75mm.

(b) The intrinsic PSF is a Gaussian function with o computed as follows

0.2
R;=02mm=20v2In2 = oc=——— =0.0849.

2v/21n2
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(c) The overall resolution is due to a cascade of systems; therefore,

Roverall = \/m = 18.75.

(d) The total count is 120 x 109.

(e) The local contrast is ~ ~
Ny—N, 8-3
= _ = = 1.667
Ny 3 ’

where N; and N, are mean target and background counts. The SNR is

SNRjca1 = CV/ Ny = 2.89.
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Emission Computed Tomography

SPECT
Solution 9.1

(a) For |{] < 2, we have

Va—e2 /\/442

gspecT(4,0%) = / Jexp{—(
VI y

/\/422

i fexp{—(p2(V4 =02 —y) + u1 (5 — V4 — £?))}dy

—V4—4

pady’ + / . pady’) }dy

VI
— fexp(-na(VI- P)lexp{-p(5—VI-2)} [ exp{uayldy
Vit
= fexp{—p2(V4—£2)} exp{—p1(5 — V4 — £2)}(exp{pa V4 — 2} — exp{—paV'4 — £2})/ 2
= iexp{—m@ — V4 —-102)}(1 — exp{—p2v4—0?}).
Thus,

gsppon(£,0°) = Loxp{—m (5~ VI~ B)}(1 - exp{—p2v/T— ) [ <2
7 0 otherwise
Similarly,

Lexp{—pa(5 — VA= P)}(1 — exp{—p2v/A— ) 0] <2

£,180°) =
gspeCT( ) { 0 otherwise

162



163

(b) For |€| < 2, gPET(éy Oo) = ngT(ff, 1800) and

V402 V4—102 5 —\/4—02
greT(£,0°) = / feXp{*(/ uzdy’+/ uldy’+/ psdy’) dy
Vit w2 VI 5

2fV4 — Cexp{—p3(5 — V4 — 2)exp{—p1(5 — V4 — 2) }exp{—2pu2v/4 — £2)}.
Thus,

2fvV4 — Cexp{—ps(5 — V4 — 2)exp{—p1(5 — V4 — 0?) yexp{—2uav4 — £2)} |{| <2

0 otherwise

gpeT(£,0°) = {

2fV4 — exp{—u3(5 — V4 — 2) yexp{—p1 (5 — V4 — £2) yexp{—2uaV/4 — (%)} 0] <2

0 otherwise

greT (£, 180°%) = {

(c) Substituting numerical values in the formulas found in (a) yields

gspect(0,0°) = 0.2799 mCi/cm?
gspecT(0,180°) = 0.3022 mCi/cm? .

(d) Substituting numerical values in the formulas found in (b) yields

gpeT(0,0°) = gprT(0,180°) = 0.0901 mCi/cm? .

Solution 9.2

(a) For 6§ = 180°, we see that will be a g(¢, 180°) rect function with a magnitude determined from the SPECT
imaging equation. The photon energy is 150KeV. For |¢| < 1,

3 2
g(/g, 1800) — / 0.267 f‘oy Nstdy + / 0,467 f()y u’Sdey
2 0

3 2
_ / 0.2¢— J3 0.-2ds— [ 0.4dsdy+/ 0.4e= 1 0-4ds

2 0
1— 6_0'8

0.4

= 0.2xe 08 x 0 x

0.0814 + 0.5507
0.6321.

1
0—2(6_0'4 —e 90 1+ 0.4 x

So g(¢,180°) = 0.6321 x rect(%).
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Similarly, g(¢,90°) will be two rect functions, and magnitudes are to determined from SPECT equations.

1
91(£,90°) = / 0.2¢ Jz medsgy

-1

1
/ 0.2¢7020-2) 4
-1

1
= 0.2 x 6_0'2/ 227y
—1

= 0.3297.

1
92(£,90°) = /0.4e_frl“sdsdx

—1

1
= / 0.4e040=2)qy
-1

1
= 04 x 6_0'4/ 4 dy
1

= 0.5507.

So g(£,90°) = 0.3297 x rect(51) + 0.5507 x rect(£ — 2.5).

(b) For PET, the energy of photons is 511 keV. The magnitude of projection is given by
8 3
o009 = [ pwe Breay

3
/ filw)e B rtay + [ ey

(0.2 x 14 0.4 x 2) + e Jo #dsqy

— e—1><01 2x0.3

0.4966 .

So g(¢,0°) = 0.4966 x rect(%).

(¢) PET and SPECT imaging equations are given by

R s R
gspect (4, 0) = 3 MGXP{ / p(z(t),y(t); E)dt}ds,

R
goer(0,0) = K [  Fa(s).y(s))ds x exp{~ / E)ds}.

It is seen that the attenuation term containing y is separable from activity term f(z,y) in PET while it is not
separable in SPECT. So prior to PET imaging, a CT scan of the patient is done and p(x, y) is found by CT
reconstruction. Then PET imaging is done to obtain g(¢, ). Thus, the line integral of activity is obtained by
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dividing the PET projection by attenuation coefficients and Radon transform of A is given by

R
Gt.o) = [ Flals)y(s)ds = geer(66) ,
[R ! exp{— [T, n(x(s),y(s); E)ds}
= flz,y) = RYGE0)}.

where R denotes Radon transform. g being not separable from SPECT equation, this technique is not
applicable for attenuation correction of SPECT.

(d) If real collimators are used, the efficiency will be < 100%. So less number of photons will be detected. So
the height of the rect functions will be decreased.

Solution 9.3
(a) We have
1 —1x
7No=Nog-e 77,
3
2 —1x
*NQ = No - € @,
3
Therefore,
Ap = In3 hour™ !,
Ag =1Inl.5 hour™! |
and
0.693
t%7P = W = 0.631 hOLlI',
0.693
t%Q = 5 = 1.709 hour.
(b) We have
1
Ap = gN0 “Ap = 0.366 Ny = 0.366 x 10'°/3,600dps = 2.75Ci,
2
Ag = gNO “Ag = 0.270N, = 0.270 x 10'°/3,600dps = 2.03Ci .

(c) Suppose the 180° projection in the object and the background are g, and gy, respectively. Then

go = Ag-2+Ap-4=0.270 x 2Ny + 0.366 x 4Ny = 2.004N,,
g = Ap-6=0.366x 6Ny = 2.196N,,.

Therefore, the local contrast is

gdo—gp  2.004Ny — 2.196N,
= = = —0.0874.
¢ % 2.196 N, 0.087
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(d) Suppose the 180° projection in the object and the background considering linear attenuation are g/, and gj,
respectively. Then

6 3 1
g = [ A e g s [ Ay
3 1 0
6

3 1
= / Ap-e V7 2dy + / Ag - e~y + / Ap-e ¥dy
3 1 0

1
= AP'€72'(673—676)+AQ'6'5'(672—676)4-‘413'(60—671)

= Ap-(eP—e P +1—e 1) +054qg (et —e?)
= 0.366Ny - 0.639 + 0.5 - 0.270Ny - 0.361

= 0.283N,
6
g = Ap-e Vldy
0
0.366Ng - (1 — e %)
= 0.365N.

Therefore, the local contrast is

O = 9o — 9, _ 0.283Ny — 0.365N

= — —0.225.
9 0.365N,

(e) The absolute value of the local contrast would be bigger in 180° than that in 0°. First of all g; are the same
on both projections. Second, Ag < Ap and ficircle > Usquare- Therefore, inside the object, the radioactivity
gets more attenuated in 180° than that in 0°. Thus ¢/ in 180° is smaller than that in 0°, meaning ¢/, is farther
away from g on 180° than that in 0°. Since we are considering the absolute value of the local contrast, |C|
would be bigger in 180° than that in 0°.

Solution 9.4

(a) First, we write

0.5 mCi/em®  |z] < l,y < —z,
f(z,y) = / = .
0 otherwise.

And

0.lem™t |z|<1,lyl<1l,y+2<0,
wlz,y) =<¢02em™t |z <1, |y <1,y +2 >0,
0 otherwise.
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For || < 1, the projection can be computed as

—1 —1 1
gspect(l,0%) = / feXP{—/ Mldyl_/ pady’ }dy
-1 Yy l

—1
= / fexp{—(=l —y)p1 — (1 +Dp2}dy
-1
—1
_ e—(1+l)u2+lu1/ fer¥dy
—1

— i67(1+l)uz+lm(6*lm —e )
H1

_ 5670,1(2+l)(670.1l) _ 670.1))

5(6—042(1+l) _ 6—0.3—0.11)).

The final answer is

l
gspect(l,0°) = 5(e~0-20+D 6_0‘3_0'”))rect(§) .

Similarly, for || < 1, gsprcT(l, 180°) can be found as:
l Yy
gspect(l,180°) = / feXp{—/ pady' ydy
-1 -1
l
— / fei(y+1)/41 dy
-1

l
— feim / e*#lydy
-1

- ie*ul(em _ eflm)
H1

= 5(1 - 6*(l+1)u1)
— 5(1 _ 6—0.1(l+1)) .

The final answer is gsprcT(l, 180°) = 5(1 — 6_0'1(l+1))rect(é),

(b) For|l| <1,

—1 —1 1
greT(1,0°) = / fexp{—/ mdy’—/ pady' }dy
-1 —1

-1

-1
_ / fem(CHH Dm0z g
-1

-1

_ fe*((lfl)mﬂlﬂ)uz)/ dy
-1

= f(1—1)e (=Dmt+Duz)

= 0.5(1—1)e 01+
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Thus, gper((,0°) = 0.5(1 — 1)e~%1G+Drect(L). By the principle of PET imaging gprr(l,180°) =
gPET(_ZJ Oo)s l
gper(l,180°) = 0.5(1 + Z)e*0~1<3*l>rect(§)

(c) The attenuation term is separable from activity term in PET. And the attenuation term can be estimated by
applying a CT scan prior to PET scan to get the activity term. Then the standard CT reconstruction method
can be applied to correctly reconstruct the radioactivity distribution.

Solution 9.5

(a) Since IV;; is a Poisson random variable, the variance of V;; is also Nij. The mean and the variance of g,
are kN;; and k2N, j» respectively. Therefore,

enT QL N2
mean[f(z,y)] = % Z Z N;jé(zcost; + ysingf — iT)
j=1li=—N/2

p2q2r2 Mo N2
M2

Nij[é(zcost; + ysing® — iT)]2.
Jj=1i=—N/2

var(f (,y)] =

(b) Carry out the following steps:

M N/2
T Z [é(zcost; + ysing® — iT)]?
1 i=—N/2

/ / [é(xcos + ysing — £)]2dldo
0 —00

T
M 4
=

Q

- w/_oo[é(ﬁ)]zdf
o LT

2o}
3

(c) Substituting the result in (b) and simplifying yields

. E2m2T2 N M N/2
var[f(z,y)] = 7;\4722 Z [E(m0059j+ysinj6‘—iT)]2
j=1i=—N/2
_ 2RGNT
B 3M

(d) SNR = meanlf@w)l « N _ /N S0 the ratio is v/2.

N
var[f(z,y)] VN
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PET
Solution 9.6

(a) Let the coordinate system be such that the upper left corner of the matrix is the origin. Consider a left-handed
Cartesian coordinate system, so that the y axis is positive below the origin. Now the coordinates of the center
of PMT(4, j) in inches are (2(j — 1) +1,2(¢ — 1) 4+ 1). Similarly, the coordinates of the center of subcrystal
C(k,1) are (0.5(I — 1) +1,0.5(k — 1) + 0.25). Hence, the distance between the centers of PMT (3, j) and
subcrystal (k, 1) is:

r o= V2 -1)+1-0501-1)—0.252+[2(i —1)+1—0.5(k — 1) — 0.25]2,
= /(2 — 0.5] — 0.75)2 + (2i — 0.5k — 0.75)2.

Hence, The PMT response is

PMT(i, j) = e~ V(24 =0-51-0.75)2+(2i~0.5k-0.75)2

(b) Given that K = 4 and [ = 5, the above equation simplifies to:

PMT(i, j) = oV (25-3.25)2+(2i-2.75)2

Hence,
PMT(1,1) = e V*!25
PMT(1,2) = e V1125
PMT(2,1) = e V3125,
PMT(2,2) = e V1%,

(c) The responses in the 4 PMTs due to an event in crystal C(k, ) can be written as:

PMT(1,1) = e—\/(1.25—0.5!)2+(1.25—0.5k)2‘7
PMT(1,2) = e V(325-0502+(1.25-0.5k)>
PMT(2,1) = ¢ V(1:25-0507+(3.25-0.5k)
PMT(2,2) = e V(325-0502+(3.25-0.5k)
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Rearranging the equations:

1
1.25 — 0.50)% 4 (1.25 — 0.5k)* = |1
(1.25 — 0.50) + (1.25 — 0.5k) o8 by |
- 1 _2
25 —0.51)% + (1.25 — 0.5k)* = |1
(3.25 — 0.51)* + (1.25 — 0.5k) 108 b )|
- 1 -2
1.25 — 0.51)? 25 —-0.5k)?2 = |1
(1.25 — 0.51)* + (3.25 — 0.5k) 108 )|
- 1 -2
25 — 0.51)* 25-05k)?% = |1
(3.25 — 0.5)% + (3.25 — 0.5k) 18 byiT(a )
Subtracting the equations, we get:
1 2 1 2
25— 0.5k)2 — (125 - 0.5k)? = |log ————| — |log ——
(325 0507 (125 05K = |l oy |~ |8 gy |
9-2k = |1 ! i 1 ! :
= |®PMT(2, 1) & PMT(1,1)| °

Similarly, an estimate of k£ can be obtained from PMT(1,2) and PMT(2,2) as:

| e e i

Averaging the above two estimates of k, we get:

1 1 2 1 2 1 2 1 2
k=45—->{ [log———"| — |log—— log ————| — |log————1| .
4 { [ 8 PMT(2, 1)] {Og PMT(1, 1)] + {Og PMT(2, 2)} [Og PMT(1, 2)} }
Similarly, an estimate of [ can be obtained as:

2

=45 (ot mrg] - et * [t - [ ) |

(d) The worst-case scenario occurs when the event occurs very close to the boundary between two PMTs, for
example, if an event occurs very close to the boundary between C(2,4) and C(2,5) but occurs in crystal
C(2,4), then under noiseless condition, PMT(1,1) will be slightly greater than PMT(1,2). However if a small
additive noise cause the signal PMT(1,2) > PMT(1, 1), then the event will be attributed to C(2,5).

Solution 9.7

(a) Since the detectors are designed to stop 75% of the photons, we have 0.75 = e~#¢ where d is the detector
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Figure S9.1 See Problem 9.8(c).

thickness. Hence we have

forNal(T): d = In0.75/(—pu)
= (In0.75)/(—0.343)
= 0.8387cm,
forBGO: d = In0.75/(—p)
= (In0.75)/(—0.964)
= 0.2984 cm.

(b) The gamma rays photon burst is a random phenomena and can be modeled as a Poisson process. Let the
average gamma ray photons arriving at the detector be A. Let k be the fraction of these gamma ray photons
converted into light photons by Nal(Tl). Since, BGO is 13% efficient, the fraction of gamma rays converted
into light photons by BGO is 0.13k. Hence the intrinsic SNRs are:

SNRNa1(t1) VALK,
SNRpco = VO.13Mk.

The ratio of intrinsic SNR’s is 4/1/0.13.

Solution 9.8

(a) No collimators. In a PET scanner, one must be able to detect coincidences at diverse angles.
(b) You would have to add a coincidence detector.

(¢) Coincidence detections would be localized on each camera face using their X and Y pulses as shown in
Figure S9.1. The line between the two detections would be calculated to show where the decay took place.
The Z-pulse will be used in the calculation of the X and Y pulses. It could also be used for energy discrim-
ination, as in a conventional PET scanner.

(d) From the geometry in Figure S9.2,

~10.15m

=11.31°.
0.75 m 3

a = tan

(e) Consider reconstruction on a “central plane.” There are many gamma rays that are “lost” between the two
detectors in this geometry. In a conventional PET scanner, the plane is completely surrounded by detectors.
Therefore, on this basis alone, we can expect that the total number of coincidence detections in a given time
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| 1.5m | 30cm=0.3m
| o

Figure S9.2 See Problem 9.8(d).

frame will be smaller given the same dose. Therefore, for the same quality, we would have to increase the
dose. In addition to this argument, there is the fact that PET detectors are more efficient at stopping 511 keV
photons. Therefore, the Anger-based camera will also be less efficient and also require a higher dose.

Solution 9.9

(a) Removing the constants in Eq. 9.6 but keeping the attenuation gives

gspecT(£,0) = /_Oo f(x(S)yy(S))exp{—/Oo p(z(s"), y(s")ds" }ds .

In this problem,

fa y):{ 0.3mCi/em® if0<z<1,-3<y<3,

’ 0 otherwise .

And,
02cm™' if —3<2<0,-3<y<3,
0.3cm™! if0<z<1,-3<y<3,
0lecm™ ifl1<z<3,-3<y<3,
0 otherwise .

u(a:,y) =

When 6§ = 90°, z(s) = £cosf — ssinf = —s, and y(s) = £sinf + scos§ = £. Hence,

1 1 3
gspecT(£,90°) = /0.3exp{—/ 0.3dx’—/ 0.1dx' }dx
0 x

1
1
o—0-1x2 / 0.3¢-0-300=2) 7.
0

— 6_0'5(60'3 _ 60)

~ 0.2122 mCi/cm?,

for =3 cm < £ < 3 em. gspror(4,90°) = 0if £ < —3 cm, or £ > 3 cm. Similarly,
. 1
gspect((,270°) = 6702”/ f(z,0)e 3% dg
0

1
e—O.2><3/ 0.36—0.3.”1:dx
0

_ 6_0'6(—6_0'3 + 60)
0.1422 mCi/cm?,
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for —3cm < ¢ < 3cm. gsprcor(¥¢,270°) = 0if £ < —3 cm, or £ > 3 cm. Note that gsprcT (¢, 90°) #
gspect (£, 270°).

‘We have

1
gPET(£,9OO) — 6—0.2><36—0.1><2/ f(x,é)e_o'?’“da;
0

1
_ 670.2><370.1><270.3><1 / 0.3dzx
0

= 03e !
0.0999 mCi/cm?,

Q

for —3cm < ¢ < 3cm. gprr(4,90°) = 0if £ < —3 cm, or £ > 3 cm. By the principle of PET imaging,
greT(¢,270°) = gprT (¢, 90°).

It is clear that in PET imaging the attenuation factor does not depend on the location of the activity along the
imaging line. Thus, to compensate for the attenuation effect of the object, one can image the object using a
separate source to acquire the line integrals of u(x, y). Then, the data can be corrected using

gpeT (£, 0)

g E,H - =3 ’
gper (£, 0) exp{— [~ p(fcos® — ssinf,{sinf — scosf)ds}

The standard CT reconstruction method can then be applied on girr(¢, ) to correctly reconstruct the ra-
dioactivity distribution. This compensation approach is not applicable for the SPECT scan.

Solution 9.10

(a)

(b)

(0

The perimeter of the circle is
D =151 ~4.712m.

The approximate detector width is thus
4.712m/1,000 = 4.712 mm.

Shallow detectors are less efficient to stop the gamma photons, but incoming gamma photons from all direc-
tions can be equally detected. Deep detectors are more efficient, but they are more direction selective.

Coincidence detection in PET is used to determine the direction of travel of the two back-to-back gamma
photons, and hence to decide on which line the radioactivity occurs. Coincidence is assumed if two events
occur within 2—-12 ns in typical PET scanners. Since the radioactivity is not always occur at the center of the
PET scanner, the traveling times of the two back-to-back gamma photons are not the same.

(i) If the time interval is too small, off-the-center radioactivities will not be detected.
(ii) If the time interval is too large, scattered photons will still be counted. Also, two or more distinct positron

decays might be mixed together, and the line of coincidence can no longer be correctly determined.

In the center of the scanner, 1,000/2 = 500 detectors cover a range of D = 1.5m. Hence, the sampling
interval is

T = D/500 = 1,500 mm/500 = 3 mm.
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By the “rule of thumb”, the number of pixels on one side of the image should be approximately equal to
the number of samples for each projection angle. Since the number of samples is 1,000/2 = 500 for the
PET scanner, the PET image should have at least 500% = 250, 000 pixels. A “wobbling” motion of the PET
gantry can reduce the effective spacing of the detectors and thus increase the resolution of the system.

(d) “Parallax errors” cause degradation of resolution farther away from the center. This is because events can be
detected from oblique angles within the detector body (instead of end-on) which creates uncertainty about
the actual line on which the event occurred.

Solution 9.11

(a) Suppose s represents the center of the circle.

R +
R R
exp{= [ nlals). (s s E)ASy = T

The number of coincidence events N, arising from positron annihilations at the center of the circle that will
be detected is

R S0
NaGso) = Noexp{= [ uals). (s EYas Yexp(— [ uals).u(s)s E)as)
S0 —R
_ _N*N- N*N-
*No No No
(b) Carry out the following steps
o 2 (o]
g(41,0 ) = gg(0,0 )
6 6
/ f(ély y)e—6usquare — f(o7 y)e_4ﬂsquare_2ucircle ,
0 0
2
_6,usquarc - _4quuarc - 2/14circ1c + lng 9
1. 3
Hsquare — Mcircle = 51115 .
(c) Carry out the following steps
9(627 00) _ fOG f(£27 y)e_5usquare_u/circlc
g(o, OO f06 f(o’ y)6_4,u'square_2llicircle
— e_,“'square"l‘ltcircle
e_%ln%
_ 2
V3

= 0.8165.



(d) The local contrast is

Jt = Jo
fo

9(0,0°) — g(¢1,0°)
g(£1,0°)

9(0,0°) — £4(0,0°)
29(0,0°))

1/3

2/3

1

175
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The Physics of Ultrasound

THE WAVE EQUATION
Solution 10.1
By taking the derivatives of w1 (2, t) with respect to z and ¢, we have

82101 " ale 241
5.2 =¢&"(z — ct), W:cf(z—ct).
It is obvious that
821111 - 1 82w1
022 2 o2’

which is Equation (10.6). For wy(z,t) = £(z — ct) + £(z + ct), we have:
0%ws 0*ws

022 ot?
So, wa(z,t) = £(z—ct) +&(z+ct) is also a solution to the wave equation (10.6). wa(z,t) = {(z—ct)+&(z+ct) is

the general solution to (10.6). It has two components, a forward-traveling wave £(z — ct) and a backward-traveling
wave {(z + ct).

:§”(z—ct)+§”(z+ct), :szll(z—ct)+c2f/’(z—|—ct).

Solution 10.2

A sinusoidal plane wave is given as
p(z,t) = coslk(z — ct)].

The wavelength is the spacing between crest. Suppose z1, and zo are positions of two adjacent crests for a given
time ¢, we have:
k(z1 —ct) =2nm, k(zo —ct) =2(n+ D)7,

where n is an arbitrary integer. Then it is obvious

A=120— 21 =271/k.
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Solution 10.3
(a) The acoustic pulse is
o(t) = (1 —e M)t/

It reaches a peak when its derivative goes to zero; that is,

%it) — e—t/‘l’g(_ _ (t/Tl)e—t/‘rl) + (1 _ e—t/‘rl)(_t/TQ)e—t/m =0.

This leads to

(1—e ™) (1/m) (1/m)e ™,

1—e /= (ry/m)e V™,
1 = (Tg/Tl—i—l)e_t/Tl.
Solving for ¢ yields the time delay
1
tag=—-1ln ——.
d n 7'2/7'1 +1

Plugging in 79 = 71 = 5 ps yields {4 = 3.5 us. Therefore, the peak pressure will return to the transducer at
3.5+ 64.9 = 68.4 us.

(b) The “generic” backward traveling wave is

dp(2,t) = (1 — e*(t+Z/C)/T1)ef(t+z/c)/7—2 .

At time ¢ = 64.9 us, this wave will be (begin) at position z = 0.1 m heading in the —z direction. Incorpo-
rating both the temporal and spatial shift yields

(bb(za t) — (1 _ e—(t—64.9 pus+(z—0.1 m)/c)/‘rl)e—(t—64.9 pus+(z—0.1mz) /c) /T2 ]

(¢) It will take twice the time that it took to arrive at that range:

2 x64.9 us =129.8 us.

Solution 10.4
The 3-D wave equation is

19%p Pp 0% %
vVi=Z-2 here V?=_—% + —— 4+ —=
coz " ox? * ox3 t 52
‘We have that
r? :x%+x§+x§7
SO J J
oL = 9z, )

r = —,
dx; dx; r
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The new pressure function is p = p(r,t). We have

Op OpOr  Opuxy

81‘2‘ o E(’)ml o 577

and
9%p o0 (Opux;
dx? " Ou (67’r>
g [(opl lap
" Ow; (87“7“) Tt ror
o0 (10p\ Or 190p
- 37‘(7"67‘) ﬁxixi—i—rar
Jc 0 (10p 190p
T or (rf}'r) ror

Therefore, using the fact that % = 23 + 2% + 23, we have

V2 = 38p+rg (18p>

r or or \ r Or
Now
O gy =24
ar )T T, TP
and 9?2 0? 0 0 82 0
D T T p op
oD =T gE gt e T et 2y,
So,
L0 (Lop\ _ [ 1op 19%p] _ —10p
or\ror) r20r  ror2|  r or
Therefore,

v §@_}@+82 20p 0% 1 06?
p= ror ror oz ror oz ror?

This is the spherical wave equation.

Solution 10.5
Taking the derivatives of w(r,t) = {(r — ct)/r with respect to ¢, we have:
ow §'(r —ct)
ot r ’
0w 2 &' (r — ct)

a2~ € r

0%p

5(rp) -
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Taking the derivatives of rw(r,t) with respect to r, we have:

orw)
ar - 5 (T - Ct) b
O (rw) ”
W = 5 (’I" — Ct) .
It can be seen that
1 i2 1 9w

rar "= 25

Solution 10.6
Substitute p(r, t) into Equation 10.13, we have:

52 1., 1 1, .
5P = St =)+ g (t+ M),
and .
p 1 . 1 .
@~—;f”(t—c 7")+;g”(t+c r).
So . ;
1 1 —1 1 1 1 p
;ﬁ(rp):@(f”(tfc r)+;g"(t+c T»:c?@’

and p(r,t) = L f(t — c™'r) + Lg(t + ¢~'r) is a solution to Equation 10.13.

WAVE PROPAGATION
Solution 10.7
I(x,t) = v(z,t)p(z,t) and 1(0,t) = Re{Vel“}Re{ Pe/*t}. Let V = V,,e/? and P = P,,e’?. Then

I1(0,t) =V, cos(wt + ¢)Pp, cos(wt + 0)
Vin P

= " eos(é — 0) + cos(2wt + ¢ + 0)]

Therefore, since high frequency oscillations disappear,

_ VP

Iav
2

cos(¢ — 0) .

But VP* = Vumej(‘zs*e). Therefore,
%TLPT",

%Re{VP*} = cos(¢p —0) = Ly
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Solution 10.8

(a) Equations (10.25) and (10.26) are repeated here for convenience:

cos 0; cos 0, cos 0;
Pt Pr = Di,
Z9 z1 z1
Pt = Pr = Di -

From these two equations, we can form a matrix equation as:

cos 0¢ cos 0, cos 0;
z2 21 { Dt ] _ z1 i
= i -
1 —1 Dr 1
cos F)t cos 9 -1 cos 0;
z1
pi

1

__cosf, 0
cos Gt ‘|

l

Then we have

29 cos 6;+2zo cos b,
21 cos 0y +2z2 cos 0,
pi -
29 cos 0;—z1 cos 04
21 COS 9t +2zo cos 6,

Since 0, = 6;, we have

225 cos 0;
Dt z1 cos 01422 cos 0;
= p .
Pr 22 cos 0; —z1 cos 0 ‘

z1 cos Oy +2z5 cos 0;

The pressure reflectivity R and pressure transmittivity 7" are given by

R pr  zpcosb; — z cos b,

i 21 cos 0y + z9 cos0;

T o— Pe _ 225 cos 0;
p;  z1c080; + z9cos0;

(b) We write

2
R :szg/zl P2 29 cos 0; — z1 cos O,
'~ p?/z1 p? 21 €080y + z9c080; )

which is Equation (10.29). Also,
I, pllza  2p? 219 42129 cos? b;

! I pilzr zp? 2z (22 cos6; + z1 cos 6;)?

which is Equation (10.30).
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Solution 10.9

(a) We have

1 -1

P=—f(t—c ),
]
1 -1

Py=—f(t—c re),
T2

where

=22 +y? + (2 +d)?,
r2:\/x2+y2+(2—d)2.

From the geometry, we see that for large r, 71 ~ r + dcos @ and ry =~ r — d cos 6, where 6 is the angle off
the z-axis to the line connecting the origin with (z,y, z), and r is the length of that line. But cos§ = z/r.

Therefore,
1 d 1 d
P=P+P~—f (t—c_1 (r+z)> ——f (t—c_l <r— Z)) .
T1 T ) T

f(t) = Re{n(t)e’*m"},

and 71 =~ ro (for amplitude). Hence, the complete waveform is

But

ﬁ(t _ C—l,r)ej27rfo(t—cflr)(e—jk% _ 6+jkd—f)’

1
P~ -
T

where we have used the steady-state approximation for n.
But e/® — ¢77® = 2jsin @, so
o ds o dz dz
eI e tIRE = _9jgink— .
T
As d gets very small, sin(kdz/r) ~ kdz/r, therefore, since —j = e~77/2,
P.~ dee*j”ﬂ%ﬁ(t - cflr)eﬂ”fo(t*c_lr) .
r
One can see that the new pressure is given by
z _
P = T—an(t—c Iry,

where | | B
fult — ¢ 'r) = Re{2kde 7™ 27 (t — ¢ tr)el?mfolt=cT

(b) See Figure S10.1.
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DA

Figure S10.1 Field pattern. See Problem 10.9(b).

Solution 10.10

(a)

(b)

(0

The acoustic pressure of an outward propagating spherical wave is expressed as:
p(r 1) = 200t — M),
where r = \/m . When there is attenuation, the expression becomes:
p(r,t) = e‘”“’%qﬁo(t —c ).

Let

d= /12 + y2 + 22
be the distance between the wave source and the scatter. Assume the reflection coefficient of the scatter is
R. The scatter acts like a new point source. So the scattered wave can be expressed as

Re_ﬂarl _ B B
ps(2' Yy 2 t) = TAOe radgo(t — ¢~ lr — ¢ 1d),

where 7’ = \/(2/ — x)2 + (v — y)2 + (' — 2)? is the distance between the scatter and any point (z',y’, z')
in space.

For a point source located at (zg, yo, 20 ), the acoustic pressure is:

Ao _
pa',y 2 t)=e ““T7¢o(tfc Iy,

where 7 = \/(2/ — 20)2 + (¥ — y0)? + (2’ — 20)2. The scattered wave by a scatter at (z,y, z) is

e—/LaT‘,

Po(@'y 2, 8) = T Ape gt — <y — 1),

where 7’ = /(2 — )2+ (v —y)2 + (2 — 2)2and d = /(w0 — )2 + (yo — )% + (20 — 2)? is the dis-
tance between the wave source and the scatter.
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Solution 10.11

(a) The acoustic intensity is related to the acoustic pressure by
I=9p*/7.

So the acoustic intensity for the incident wave, the reflected wave, and the transmitted wave are:

I; = p?/Zu
IT' = pg/Zlv
I, = p2)Zs.

The intensity reflectivity and intensity transmittivity are:

I, p27Z, <Z2 cosf; — Zy cos 9t>2
RI = - = - 3

I pZy ~ \Zycosb; + Zy cos b;
T — I, P 7o B 474 75 cos? 0;
! I, p?Z, (Zy cosb; + Zy cos (‘)t)z .

(b) Carry out the following steps:

T_-R — 275 cosb; — (Zz cosb; — Zy cos by)
Zocosb; + Z1 cos b

Zycost; + Zycosty

Zycosb; + Zycosh,

(¢) The pressure must be continuous across the interface

Pt —Pr = Di -

Therefore, T' — R = 1. But the relationship between acoustic pressure and acoustic intensity is a nonlinear
relationship and Zs # Z1. So Tt # 1 + Ry in general. From the above derivation, we have:

Ry =R? T;=T°%Z/Zy, and T=R+1.

So the relationship between T and Ry is

TI=%(@+1)2.

DOPPLER EFFECT
Solution 10.12

The frequency fr of the sound received by the moving receiver can be derived by considering the time it takes for
the receiver to observe two successive crests. If the source is producing a sinusoid with frequency fo, the distance
separating two adjacent crests is A = ¢/ fo. Since the receiver is moving towards the source, the time it takes for
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the receiver to observe two successive crests is 7' = A/(c + v) = ¢/(c + v) fo, which is the observed period. So the
frequency observed is fr = (¢ +v) fo/c.
When the receiver moves away from the source with speed v, the frequency observed is fr = (¢ — v) fo/c.

Solution 10.13

(a) The observed frequency will be fr = (¢ + v) fo/cand fr = (¢ — v) fo/c for receivers moving towards and
away from the source, respectively.

(b) When the receivers moves towards the source, the observed frequency will be fr = 2 fy. When the receivers
moves away from the source, the observed frequency is 0. In this situation, the receiver will sit on a point
with constant phase, therefore will not observe the wave.

(c) When the receivers moves towards the source, the observed frequency will be fr = (¢ + v) fo/c. When the
receivers moves away from the source, the observed frequency is fr = (¢ — v) fo/c < 0. In this situation,
the receiver will observe a wave from the opposite direction with frequency fr = |c — v|fo/c.

ULTRASOUND FIELD PATTERN
Solution 10.14
By using the properties of Fourier transform, we have:

F{a(t)} = e’ Ne(w),

1

Re{(t)e 7"} = o [a(t)e ™" + 7" ()e™ '] ,

where * denotes complex conjugate. The Fourier transform of n(t) is:

F{n(t)} = % [€7? Ne(w + wo) + e 7PN (—w + wo)] -

Solution 10.15

(a) We have

as MHz = 8.7Tuq = 8.7 x0.04 ecm™'- MHz ! x 5MHz = 1.74dB - cm ™! ,
QoMb = 8.7pe =8.7x0.04cm™ ! MHz ! x 12MHz =4.176 dB - cm™!.

(b) It is considered as far field when range is greater than D? /A. The speed of sound is 1,560 m/s. At 5 MHz,
the wavelength is A5 yg, = 0.312 mm. At 12 MHz, the wavelength is A12 v, = 0.13 mm.

For the 5 MHz transducer, when range is greater than % = 128.2 cm, it is considered as far field. For

the 12 MHz transducer, the range is (MOC%M =123 cm.
. min
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Solution 10.16

(a) The time it takes to travel from (xg, Yo, 0) to d and back is

2
t==y\/xd+y2+d>.
c
Therefore, the time delay is
2 2 2 5 2 2 2 2
T:E\/zm+yer+d -2 x5 +yg +d*.

In this way, the scattering from d will be integrated over the (flat) transducer face at the same time upon
reception. Using the binomial approximation,

d\/1+ 22, + 42, _d\/1+ o3 + Y5

\‘
I
\

—_

d? d?
2 o + Y 5+ Y5
~ - |dl+ 2" —d[1
2 o Zo ot in) - gy 00
2 2 2 2
~ % [Tm - (xO + yO)]

(b) The narrowband assumption is _
n(t) = Re{n(t)e 72 foty

When shifted in time, and using the steady-state approximation:

n(t—7)

Re{n(t — T)efj%fo(tfﬂ}
Re{n(t)e 72 folt=m)1

Q

Therefore, after some simplification

n(t—71—c trg—ctry)

~ Re{fi(t — 2 2)ed d7me T d(@H10) gk(ro=2) gik(ro=2)y

eI drm is just a fixed phase, which can be “thrown” into 7(t — 2¢~12). Now split up terms:

¢~ 923 (@5 +U0) pik(ro—2) o=izg (¥5+u5) L3k(ro—2)

transmitpattern receivepattern

which leads to the field pattern
q(z,y, 2) ~ // Lz(;’ yO)e*jﬁ(wgﬂ/g)ejﬁ[($710)2+(y*yo)2] dzo dyo

where the the paraxial approximation was also used. Expanding the terms as follows

(x —20)®> =2° — 2zz0 + 25 and (y —yo)® =y* — 2yyo + ¥ »
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and setting z = d, yields

q(z,y,d) // 43(560’yo)ej%(w2+y2)e—j§(wwo+yyo) dzo dyo
z

which is the desired result.
(c) The far-field pattern exists at d now. When d is made smaller, the pattern gets tighter; therefore, we can

increase our resolution at the focal point over that of a flat transducer. The spread, after the focal point,
however, will increase. Therefore, we need to choose the focal distance carefully.

Solution 10.17
(a) We have
1 . 2 2 x Yy
— S pik@+y?)/(22) g~ T
Q()(xayvz) Ze S(/\Z’/\Z)
And . y
= rect(—) rect(=
s ) = rect () rect(2),
S(u,v) = F{s(z,y)} = whsinc(wu) sinc(hv) .
Thus,
h . h
q(z,y,2) = wje]k@zﬂﬁ)/@z) Sinc(%) sinc()\—i{).
(b) We have
. sin v
sinc(v) = )
TV
and the first zero is when v = 1. Hence, % =1,z = Az/w = s, and thus
sw
zZ0 — T .

(©) zo > D? /A, where D is maximum dimension of the transducer. Since h > w, D =~ h, and 2z > h? /A, or
sw/A > h?/\. Hence,
h2
s> —.

w
If one says D = v/h2 + w?, then s > (w? + h?) /w.

(d) The field pattern simply shifts in = for each of the five elements and adds (since everything is linear).

+2
q(x,y,2) = Y qole—ns,y,z2)
n=—2
+2

= Z wfhej%((%"s)%ry%sinc w sinc hy .
z Az Az

n=-—2
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(e) Because the central pattern goes to zero at +s, it also goes to zero at £ns for n # 0. Hence beam-width in
the x direction is 6s. In the y direction, sinc(hy/\z) gives the pattern. The first zero is at

hy
-7 1
Az ’

which gives y = Az/h. The beam-width is twice that, and hence the beam-width in y direction is

2Xzg 2 sw 2sw

h  h A h
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Ultrasound Imaging Systems

ULTRASOUND IMAGE FORMATION AND IMAGING MODES
Solution 11.1

(a) From Table 10.1, we know that Z; = 1.52x 1076 kgm 257! and Z5 = 1.35x 107% kgm 25~ 1. Assume z
is far away. Therefore the only return is from point (0, 0, zo) on the interface. Therefore, 6, = 0; = 6; = 0;
cosf, = cosf; = cosf; = 1.

-7
T Zo + 724

We can neglect the minus sign because of envelope detection. When transducer axis is in direction 6, the
strength of P; at (0,0, zo) depends on the field pattern. The transducer face in the x-z plane is s(z) =
rect( 7). Therefore,

P, ~ —0.06P; .

S(u) = Lsinc(Lu),

zpsinf \ tanf\ . Ltan6
5 (en) = (57) =P (55)

describes off-axis field pattern. Pulse-echo squares this; hence, the strength of the return is

and

tan 6

2
3@20%&¢ﬂ ﬂ:o%%ﬁmﬁ@mwﬁy

(b) The signal P, is above threshold when

064 sinc?(L tan 6/
ZOk%u)(OOG °$n;é an 6/ )> > _80dB,

188




Transducer
H—» Motion X
= Pulse
—— Patient  —
z v

Figure S11.1 B-mode image. See Problem 11.1(b).

or sinc®(L tan/)) > 0.001667. Letting u = 21222 we get

Sidelobe  u = sinc?(u) =
Mainlobe 0 1
Ist 1.5 0.045
2nd 2.5 0.0162
3 3.5 0.00827
4 4.5 0.005004
5 5.5 0.0033
6 6.5 0.0023
7 7.5 0.0018
8 8.5 0.0014
9 9.5 0.0011
10 10.5 0.0009

Thus, the system will “see” 7 sidelobes on each side. Since

Ltan®  Lzptand
A o )\Zo

2Lz’

)\Zo ’

the sidelobe separation is z’ = % See Figure S11.1 for a sketch of the B-mode image.

Solution 11.2

(a) The echo is received at
2z _ 2x 10 cm

¢ 1,500 m/s

The round trip distance is 20 cm. Since o = 1 dB/cm, there is a loss of 20 dB:

t= ~1.33x107%s.

A,
0

Thus, A, = 0.14¢ = 1.225 N/cm?. See Figure S11.2 for a sketch of the A-mode signal.

(b) See Figure S11.3 for a sketch of the M-mode signal.

189



190 CHAPTER 11: ULTRASOUND IMAGING SYSTEMS

A-mode
12.25 N/cm?

1.225 N/cm? fL

=

| 1333x104s ¢

Figure S11.2 A-mode signal. See Problem 11.2(a).

x(t
1\
o NN
VARV

T
I 2 3 4
T T T T T =I’lT, seconds
2 —
4 +
6 |-
~—-t-nT=18/c
t-nT=22/c

2 v
(XZ) t-nTseconds

Figure S11.3 M-mode image. See Problem 11.2(b).

(c) See Figure S11.4 for a sketch of the B-mode image and Figure S11.5 for a sketch of the peak-height of the
returning signal.

10 cm

Figure S11.4 B-mode image. See Problem 11.2(c).
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Peak height of return
1.225 N/cm?
-1 cm lem Y

Figure S11.5 Peak-height plot. See Problem 11.2(c).
Solution 11.3

(a) See Figure S11.6.

Figure S11.6  z(t). See Problem 11.3(a).

—t/T

(b) The pulse will be at range z = ct at time . The valve will be at range z = 16 + 0.5¢ at time t. At time

t = %o, they coincide. So we have:

ct = 16+0.5¢7Y7,
154,000t = 16+ 0.5¢ /001,
Ignore the motion effect, we have ¢y ~ % = 0.104 ms. See Figure S11.7.

Transmit burst

v

0.208 ms t

Figure S11.7 A-mode signal. See Problem 11.3(b).

(c) See Figure S11.8.

(d) Each scan line takes about 0.208 ms and ten scan lines take about 2.08 ms. Since the time constant is 10 ms,
there will be five images in this time. So the time is adequate to make a B-mode image. (However, we won’t
be able to see this real time.)
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Slow time, ¢

16 .......... ?—Kq?.
16.5 Bright

Range, cm curve

Figure S11.8 M-mode signal. See Problem 11.3(c).

Solution 11.4

Ignore the field pattern in x and y directions and assume the scatterers are ideal point scatterers, R(z,y, z) =
d(z — z1) + 0(z — 2z2). In Fraunhofer field, the approximation of the received field is given by (11.20):

R(z,y,2) = |R(x,y, 2)e? 2 xxx {S (%, %)}27% (;2>‘ .

Ignoring S (%, £ ), we have

R — IR 2%z =
(z,y,2) (x,y,2)e KKk M (C/2

= [5(2 —z1)ed?*H L 5(2 — zz)ej%z2] *%% rect (/Z\ + ;) ’

— 1 ) N 1 _
= rect (Z )\21 + 2) 6J2kz1 + rect (Z )\22 1 2> eﬂkzl’ '

(a) Since 25 — 21 = \/2, we have

rect (Z — A + 1) eI2k21 4 et (Z — 22 n 1) eI2k(z1+2/2)
A 2

R(z,y,z) =

A 2

, - 1 — 1\ .
eIk {rect <Z )\Zl + 2) + rect (z )\ZQ + 2) eJk)‘}

¢ z—zl+1 4 rect 27224_
rec — rec
A 2 A

1
5 )

(b) If 20 — 21 = \/8, we have

A A

_ Z— 2 1 22—z 1 JkA/4
= roct( h +2) +rcct< h\ +2>e
¢ z—z1+1 4 rect z—z2+1
= T — I - .
ec X > jrec 3 5

The estimated reflectivities are shown in Figure S11.9.

; - 1\ i - 1\ .
R(z,y,z) = |rect (Z 1 +2) eI2k21 | rect (Z 22 +2) eI2k(z1+X/8)
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1 1 1.414
| | z,+A

z

L%zt zth 2 5 z+h

(@)z,—z,=1/2 (b)z,—z =18

Figure S11.9 Estimated reflectivities. See Problem 11.4.

ULTRASOUND TRANSDUCER ARRAY
Solution 11.5

(a) From the geometry in Figure 10.5, the widest angle (from the axis) at which an ultrasound transducer will
generate sound is defined by

d/2

d2/\°

Using the relation A = ¢/ f and the fact that 6 = 30° yields

tanf =

1,540 m/s
f0.2mm °
1,540 m/s

0.5773502 x 0.0002 m
13.336 MHz .

tanf = 0.5773502 =

f o=

Any frequency higher than this will be more directive and incapable of generating a wave at § = 30°.
(b) The zeroth transducer fires at time 0. The first transducer fires at

dsinf

c
0.0002 m x sin 30°

1,540 m/s
= 64.9x107?s.

1 =

This is the same time delay between each pair of transducers. Since there are 100 delays needed to fire 101
transducers the total time is

time to fire array = 100 x 64.9 x 1077 s = 6.49 x 10 ¢ 5.
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Solution 11.6
(a) We have
idsin 6

c

0.6 mm in
= isin
1,540 x 103 mm/s

= (0.39 us)isinf.

(b) The time it takes for one pulse to go to range R and back is the pulse repetition interval:

0.40 m

Th=———
r 1,540 m/s

= 260 us .

The total angle of the sector is 90°, and given Af = 1°, we require 90 pulses in order to cover the field.
Therefore, the total time it takes to acquire a frame is

Tp =90 x T = 23.4 x 107 3s.

The frame rate is therefore 42.8 frames/s, which will be flicker-free.

Solution 11.7
A diagram of the described transducer is given in Figure S11.10(a).

15 cm
100 ™
/ transducers // 2.1em
N N N I
a
transducer (@)
D O [TTTTT11]
roundtrip="7cm  group of 14 group of 14
14 cm
(b) (c)

Figure S11.10  See Problem 11.7.

(a) Ranges > D? /. Evaluate as follows

D = 14 x 1.5 mm = 21 mm (same as width of transducer) ,
c 1,500 m/s
)\ = —_ = s = 1 —6 = .
7~ 30 x 10051 500 x 107° m = 0.5 mm,
D? 212 mm?
— = — =882 .
A 0.5 mm 882 mm

Therefore,
Ranges > 0.882m.
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(b) As shown in Figure S11.10(b), the total travel is 14 cm = 0.14 m. Therefore,

0.14m

At= —
1, 500m/s

= 93.3us.

(c) The situation is depicted in Figure S11.10(c). The total number of distinct groups (which is therefore the
number of lines of acquisition) is 100 — 14 4+ 1 = 87. One A-mode burst takes this long:

40 cm 0.4 m

At = =
1,500 m/s 1,500 m/s

= 266.7 pus.

Therefore, the total time to acquire one image is
87 x 266.7 us = 23.2 ms/frame ,

and the frame rate is

Frame Rate = = 43.1 frames/s .

23.2 ms

(d) One can increase the frequency of the transducer or acquire fewer lines—e.g., just acquire 40 lines from the
center of the transducer.

Solution 11.8

(a) The transmit pulse is shown in Figure S11.11(a). An echo from a silicone-skin interface assuming normal
incidence is shown in Figure S11.11(b). The amplitude of this echo is

Zgin — Zsiticone 1.5 x 106 — 1.4 x 10°

Amplitude = - —0.0345 .
e = Ziteome 1.5 x 106 + 1.4 x 106

The time of echo is:

2x2x1073
Ti fEcho = =~~~ "~ —9. 107 %s=2. )
ime of Echo 1,500 666 x 107" s 6 ps

Figure S11.11(c) shows the superposition of these two signal envelopes on the same graph. The A-mode
signal is not simply the sum of the two A-mode signals since the underlying signals are sinusoidal. In
general, there will be constructive or destructive interference. In the region of overlap, the actual signal is:

cos(2m ft) + 0.0345 cos(2w f(t — t1)) ,

where f = 2.0 x 10 Hz and ¢; = 2.666 x 10~ s. Using the complex representation of sinusoids (phasors),
it can be shown that the amplitude of this signal is 1.011. The corresponding A-mode signal is shown in
Figure S11.11(d).

(b) C(gel) = C(skin) = 1,550 m/s for no refraction at the gel-skin interface.

(c) The pressure transmittivity at the silicone-gel interface assuming normal incidence is

27 (gel)
Z(gel) + Z(silicone) ’

T =
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4 Transmit 4 Echo
1| Pulse
A
. T 1 ,
T usecs Jisecs
(a) (b)
4 Transmit 4
1 Pulse 1 1.0111
|A E|C ho 0.0345
| Jisecs 5 4 5 4 [isecs
-2.334 7.666
(c) (d)
A 1.0111 1.02683
Echo from
Gel-Skin 0.04817
Interface
L 0.0172
5 4 ; n S5 o4l 5 4 JLsecs
-5 5 JLSecs
_2'37‘34 7.626 -2.334 7.666
(e (H

Figure S11.11 See Problem 11.8.

where
Z(gel) = 10°v/1.5 x 1.4 = 1.4491 x 10°.

This wave gets reflected at the gel-skin interface, where the pressure reflectivity is

Z(skin) — Z(gel)
Z(skin) + Z(gel) -

5 =

The above reflected wave gets transmitted back through the gel-silicone interface where the pressure trans-
mittivity is

27 (silicone)
Z(gel) + Z(silicone) -

The amplitude of the echo from the gel-skin interface (and incident on the transducer) is

3 =

1 xT; x Ry x T3 =0.0172.

The time of this echo is 9 9
S g
ty = = 6.537 pus.
> ((silicone) * c(gel) pe

This echo is superposed on the previous composite signal in Figure S11.11(e). The A-mode signal magnitude



(d)

(e)

®
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for two new overlapping intervals needs to be worked out. The first interval has three overlapping signals:
cos(2m ft) + 0.0345 cos(27w f (t — t1)) + 0.0172 cos (27 f (t — t2)),

where t, is given above. The magnitude of this wave is 1.02683. In the second overlapping region, the wave
is given by
0.0345 cos(2m f(t — t1)) + 0.0172 cos(2m f (¢t — t2)) ,

and the resulting magnitude is 0.04817.

The amplitude of the echo from the skin is 0.0172, while the initial amplitude is 1. Therefore,

L = 20log;,0.0172
—35.280 dB .

The sign of L is negative because it is an attenuation or loss. Normally, we say that the system is sensitive
to L = 35.289 dB loss.

c= fA So,
_c(skin) 1,550 m/s
 2MHz 2 x 106s—1

=7.75x 107" m.
Then, )
D? (3 x107% m)?
A 775 %1074 m
Therefore, point F is in the far field because 5 cm > 1.16 cm.

=0.0116 m=1.16 cm.

There are three relevant distances, dy,, dc, and dg, corresponding to the distances from point F to the left,
center, and right transducers, respectively. These are:

dp = /(5x107248x1073)2 4 (10 x 10-2)2,
de = +/(5x102)2 (10 x 10-2)2,
drp = /(5x 1072 =8 x 10-3)2 4 (10 x 10-2)2.
Now define:

do —dp 01118 —0.1156
T c(skin) 1,550 1S
TC = Oa

do —dr  0.1118 — 0.1085

— = = 2.129 us.

TR c(skin) 1,550 pe

Since we can’t have negative times, add —7, to all values, yielding

TL = 0 ,
TC 2.45 ps,
TR = 4.579pus.
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ULTRASOUND IMAGING SYSTEM DESIGN AND IMAGE QUALITY
Solution 11.9

(a) Assuming the reflection coefficient of the line object is Iy, the mathematical expression for the scatter is

R(z,y,z) = Rod(x,z—5).

(b) The wavelength in the media at f = 2.5 MHz is
A=c¢/f =0.062cm.
The range at which the beam changes from geometric/Fresnel to far field is
20 =D?/\=16.2cm.

Since the transducer face is a square, the transition between geometric field and the Fresnel field occurs at
D?/2) = 8.1 cm. The scatter is located at a range of z = 5 cm. So the geometric assumption applies here.
The estimated reflectivity is:

f?(a:,y,z) = K‘R05(x,z5)ej2kz***s x,y)n < )‘ (S11.1)
= ‘Roeﬂ%é(az z —5) * % x rect(x ( 7 ) ‘ (S11.2)
= KRy |§(x,z—5)*xxrect(z,y)n ( )‘ (S11.3)
= KRy |rect(x)n 25 (S11.4)
- 0 e 6/2 .

where §(x,y) = s(—z, —y) = rect(z,y) is the transducer face indicator function and n. (c/iz) is the
envelop of the narrowband pulse.

(c) From above, we see that at range z = 5 cm, in order to distinguish two line scatters at same range that are
parallel to the y-axis, we need to have them separated by at least 1 cm, which is the width of the transducer.

(d) Atrange z = 20 cm, the scatter is in the far field, we need to use Fraunhofer assumption. The estimated
reflectivity is:

: _ 2k KA e
R(z,y,2) = ’R(nw)ef [ (5)] ne (C/Qﬂ (S11.5)
= |Rod(z, 2 — 20)ei?* « [S(/\Z AZ < >’ (S11.6)

xr z
= Ry 5(ac,z—2o)*[s(A AZ <0/2 (S11.7)

where S(u, v) is the Fourier transform of the face shape indicator function s(z, y) = rect(z, y):

S(u,v) = sinc(u) sinc(v) .



199
We have:

From the above, for a fixed z, the term that determines the minimal separation of two parallel line scatters at

same range is
sinc? _r
Az —20)) "

In order to resolve two line scatters, they must be separated by at least a distance 2d, such that

d
.92
sinc (/\(Z — 20)) <0.5.

The resolution depends on the depth.

Solution 11.10

Issues: Depth of penetration, Azimuth resolution, Speckle. First,

L 100dB 50
P 2af  2x1xf  f(MHz)

If f =5MHz, d, = 10 cm. Hence f = 5 MHz is ruled out. Let dg denote the depth for geometric imaging. Then
dg = D?/\.
Let BW denote the beamwidth at 20 cm. In particular, BW denotes the beamwidth from the geometric

approximation, BG g beamwidth when using a square transducer, and BG¢ is the beamwidth if using a circular
transducer. Then,

D ifz< D?/A
BWG{ Az if2 > D%/
D ifz < D?/2)
BWS_{ 22 if2 > D?/2.
D ifz < D?/4\
BWC‘{ Az if 2 > D?/4N.

Put these results into a chart:
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f=1MHz f=2MHz
D=1cm d,=50cm dp, = 25cm
A=0.15cm A=0.075cm
dg = 6.67 cm de = 13.33 cm
BWg=3.0cm BWg=15cm
BWg=30cm BWg=1.5cm
BWe=30cm BWgo=15cm
D=2cm d,=50cm dp, = 25cm
A=0.15cm A=0.075cm
dg =26.67cm  dg = 53.33 cm
BWg=20cm BWg=2.0cm
BWg=15cm BWg=2.0cm
BWe=15cm BWgo=0.75cm

There can be several choices:

e To get the best resolution for geometric imaging, one should choose D = 1 cm, f = 2 MHz;

o To get the best resolution if using circular transducer, one should choose D = 2 cm, f = 2 MHz;

o To get the best resolution if using square transducer, one should choose D = 1 cm, f = 2 MHz.

Solution 11.11

(a) Given an L x L transducer, we have:

s(z,y) = rect (%) rect (%) .

For, the first point scatter, we have,
R(x,y,2) = 6(x)d(y)d(z — 20).

Hence, in the region, where geometric assumptions hold, we have

R(z,y,2) = K {R(Ly’z)ea‘%z w0k s(2,y)ne (0/22)]

2mz

= KR {6(1‘) * rect (%)} [5(y) * rect (%)} {ej%ch(z — 2p) * sinc (cAT

= K ReI?k*0 rect (%) rect (%) sinc (W) .

Similarly, for the second scatter we have:

cAT

' 2m(z — 20 — AZ
R'(2,y,2) = KRe’"* rect (%) rect (%) sinc ( m(z — 0 )) _

)
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(b) This part involves computing FWHM of a sinc function, which cannot be solved analytically. It involves
transcendental equations, which require numerical solutions. But, note that the FWHM of the sinc can be
approximated by the distance from the origin to the first zero the sinc.

(c¢) If S(u,v) is the Fourier transform of s(x, ), we have
S(u,v) = L?sinc(Lu) sinc(Ly) .

Using the far field approximation, we have:

Y cAT

RO(z — 2)ei?* {S (%’ %)} ’ sinc (fg;)

. . . . 27(z — 2g)
_ [ 4p32kz0 2<L$) 2<Ly) -
RL"e sinc " sinc " sinc AT

R(z,y,z) = R(x)5(y)6(z — 20)e? % % x {S ( LY )}QSiHC ( 2n >

(d) This part involves computing FWHM of a sinc function.

Solution 11.12

(a) From the absorption coefficients in part (a) of Problem 10.15, we have

Lsviiz, = 40cm x 1.74dB-cm™! = 69.6 dB,
Liovi, = 40cm x 4.176dB-cm™! = 167.04 dB.

(b) From the results of part (b) in Problem 10.15, range z = 20 cm is in the geometric region for the 5 MHz
transducer, while it is in the far field for the 12 MHz transducer. So for the 5 MHz transducer, the beamwidth
at 20-cm range equals the dimension of the transducer face, which is w = 2 cm. For the 12 MHz transducer,
the beam width is w = 43 = 203 emx20.em — ( 65 ¢,

(¢) The depth of penetration is 20 cm, the speed of sound is 1,560 m/s, so the pulse repetition rate T >

#ﬁ?ﬁ/s = 256us. Therefore the maximal repetition rate is Wlus = 3,906 Hz.

d F==%

1 1 _
TaN = 35675%128 — 30 frames/s.

(e) This will cause geometric distortion since the estimated ranges are wrong due to the poor uniform speed
assumption.

Solution 11.13

(a) The depth of penetration in oil is

L 65dB
dy= - =— > ~342cm.
»~ 20 " 2x0.95dB/cm o
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(b) The wavelength of sound in oil is

Coil 1, 500m/s

— — -3, —

Therefore,

D? 12

— = —— ~6.67cm.

X 015 o
Since zg = 20 cm > 6.67 cm, the interface lies in the far-field. The beamwidth is approximately

A 0.15 x 20
w(zo) = %:% =3cm

(¢) Z = pc. Hence, the characteristic impedances of oil and fat are
Zoil = PoilCoit = 950 x 1,500 kg m?s™1 = 1.425 x 106 kgm 257!,
and
Ziat = PratCrar = 920 x 1,450 kgm 2571 = 1.334 x 10 kg m 257!,
respectively. Thus, the pressure reflectivity at the interface is

1.334 — 1.425
T 1.334+1.425 —0-033.

We can ignore the negative sign since it only indicates a phase change. The amplitude attenuation coefficient
inside oil is

B o _ 0.95dB/cm
- 8.686dB  8.686 dB

Thus, the amplitude of the returned pulse is

La ~ 0.1094 cm~!.

p, = Rpje™2%0Ma = (.033 x 20 x ¢~ 2*20%0-1094 ~ ( 0083(N/cm?) .

The amplitude gain is
Dr 0.0083
201 — =201 —_—
0810 Di 0810 20
Since the amplitude loss, which is 67.6 dB, is beyond the sensitivity of the system, the returning echo is
undetectable by the system. This does not conflict with (a), since the depth-of-penetration is computed by

assuming a perfect reflection from a target.

~ —67.639(dB) .

(d) The interface position is oscillating between 15 cm and 25 cm, with a period of f; 1= 0.01s = 10 ms. The
time needed for the sound to travel 25 cm is

25 cm

_SoeMm 0167
1,500m/s ms;

which is negligible compared to the slow motion of the interface.
cos(2m x 100Hz x 0.167 x 1073s) ~ 0.9945 ~ 1.

Hence, the pulse at ¢ = 0 will hit the interface at z; = 20 — 5 = 15cm. The amplitude loss for a return at
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15 cm will be
0.95 x 2+ 20log,, R =~ —58.1(dB).

Hence, there will be signal shown on the A-mode scan, with a time of return about

72><15cm

2 X0 9 ms.
1,500m/s s

r

(e) The transducer fires with the same period as the oscillation of the interface. Hence, each pulse hits the
interface at the same depth. The M-mode signal is a horizontal line at approximately 15 cm parallel to the
time axis.

Solution 11.14
(a) The speed of sound in the media is

Z  1.35x 10 kg/m? - s
C= — =

= 1,500 m/s.
p 920 kg/m?*

At frequency of f = 2.5 MHz, the wavelength is:
A=c¢/f=0.06cm.
The far field begins at range of

z=D?/\=0.5cm x 0.5cm/0.06 cm = 4.17 cm.

(b) Assume the transmitter/preamplifier can handle at most an 80 dB loss (this is typical in ultrasound systems),

then we have
2ad, = L.

So,a = L/2d, =80dB/2 x 20 cm = 2 dBcm ™! .

(c) Atarange z = 10 cm, the far field approximation holds. From the derivations in Problem 11.9 part (d), we
see that the lateral resolution of the transducer is related to

so2 (TN 2 x )
Se (Az) = sme (0.6cm2 '

FWHM = 0.88 x 0.6 = 0.53 cm.

The FWHM is

(d) With the depth of penetration of 20 cm, the time it takes for the ultrasound wave to make a round trip is:
Tr = 2 x 20cm/1,500m/s = 2.67 x 10™%s.
There are N =12 cm/1 mm = 120 scans in one frame. So the maximum frame rate is

F =1/TrN = 31frames/s.

(e) Because the interface is perpendicular to the transducer axis, the incident wave, the reflected wave, and the
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transmitted wave all travel in the direction of transducer axis. So 6; = 6, = 6; = 7/2. The pressure
reflectivity is:
Zo — 71 1.7-1.35

R = = — =0.11.
Zo+ 2y 174135

The amplitude of the reflected acoustic pressure is

20x1.5

A=0.11x Agl0~ 20~ = 0.00354,.

Solution 11.15

(a) All quantities are in the appropriate units to apply the following equation d,, = ﬁ = 28% =20 cm.

(b) The pulse repitition rate is given by f,. = T—lR =57 = 595 = % = 3,700 per second. Remember to
P

convert from m/s into cm/s. So the frame rate is given by F' = f,./256 = 14.4 frames per second.

(¢) The distance between elements is d = L= cm. The delays are given by

128
ro—7T;
Ty — ———————
C
VB2 4+102 — /(id — 5) + 102
- 148, 000 '
For ¢ = 64 we get
_ 11.18 — /(64/128 — 5)2 4 102
764 = 148,000
~ 11.18 — /20.25 + 100
148,000
1118 —10.96
~ 148,000

= 0.00015s.

(d) We can now use the pulse repetition rate, 3, 700 frames per second. The heart has frequency 500 cycles per
min = 8.3333 Hz. In M-mode we can sample a signal up to 3,700/2 = 1, 850 per second without aliasing.
So there is no aliasing here. However, there is aliasing in the B-mode image, because we cannot sample a
signal with frequency higher than 14.4/2 = 7.2 per second without introducing aliasing.
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(a) Carry out the following math:

L
d, = —
P 2af’
90 dB
d s = = 15cm
P MH (2—9B__)(3 MHz)
90 dB
d z = = 75 cm.
7,6 MH (2—3B ) (6M Hz)

(b) Focusing at a depth of z = 5 cm and § = 20° gives us 2y = 5tan(20°) = 1.82 and zy = 5.

If we set the transducer distance to be 2d, then we find the firing time for each ¢ as follows:

\/:c? + 27— \/(z(2d) —ay)?+ 27

=
C
~ /(1.82cem)? + (5 em)? — /(i(2(0.04 cm)) — 1.82 cm)? + (5 cm)?
N 154,000 cm/s
9 = 174pus
tmin = ) = —.369 us
7—1',(6) = tEG) — tmin
Ti(6) = t§6) + .369 s
70— s43us

205

(¢) The solution is the same as (b) except ¢ is shifted over left one detector if ¢ is positive, and right one detector
if 4 is negative. Also, we are focusing at a depth of z = 10 cm. So xy = 10tan(20°) = 3.64 and z; = 10.

\/x§ +22 — \/((2i — sign(i))(d) — xy)? + 22

t&
C
~ /(3.64cm)? + (10 cm)? — /((2i — sign(1))(0.04 cm) — 3.64 cm)? + (10 cm)?
- 154,000 cm/s
9 = 262us
TZ‘(3) = t53) tmin
7= 4 4 369 us
¥ = 631 us

(d) Since the two transducer types are identical outside of the frequency. The main value we will be comparing
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is when the amplitude of the traveling wave is larger for the 3MHz than for the 6Mhz. This amplitude is
described by the decay function (Equation 10.32), A, = Age™#a?,

We know that the attenuation coefficient, y,, is directly related to frequency in our case by p, = /8.7 =
af/8.7. Hence:

pdMHz - — 3B /ecm = % = 0.345 np/cm
pS Mz — % dB/cm = 0.69 np/cm
so the switchover range is:
QZswiteh = 30dB =3 dB/cm X 2z4yiten = 5 cm

(e) Knowing zgwitch We can solve for the ratio:

_ 3 MHz_ _ 6 MHz_
Ag MHz ,—p, Zswitch Ag MHz ,—p, Zswitch
A3 MH2670.345 (np/cm)5cm e0.69 (np/cm)5cm
0 =

A3 MHz
(6) T _ 670.69 (np/cm)5cm—(—0.345 (np/cm)5cm)

A VA
0

= 0.178.

HARMONIC IMAGING
Solution 11.17

(a) A; = Aoe_”“d = Aoe_f0/8'7d.

(b) Use linearity: G(t) = A1 2 377 (=1)" 55 (3(f — nfo) — 6(f +nfo)).

(C) A2 _ Al% :Aoe—fg/8.7d%. Then A3 — Aoe_f0/8‘7d%e_2f0/8‘7d — A06_3f0/8'7d%.
(d) We observe that —20 log ﬁ—g = L. So

L = —20log efgfo/s'ml
™

1
= —20 1ne*3f0/8~7d;/1n(10)

=20 - 3f0/8.7d/ In(10) + 20 In 7/ In(10) ,
80 = 3fod +9.94,

d=23.35/f
=23.35/2.5
=934 cm.
(e) We can use the simple formula d,, = % = ﬁ = ﬁ = % = 8 cm. This is a 16% increase in depth of

penetration.
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(f) In the Fourier domain we can write our filter as a difference of two rect functions.

H(f) = rect(f/12MHz) — rect(f/SMHz)
= rect(f/12 x 10°%) — rect(f/8 x 10°).

The filter in the time domain is then

h(t) = 12 x 10%inc(12 x 10°¢) — 8 x 10%sinc(8 x 10°¢) .
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Physics of Magnetic Resonance

MAGNETIZATION
Solution 12.1
The magnetic field Batz =0and 2z = 1 cm is

B(0) =1Tesla and B(1)=1.5Tesla.
The Larmor frequencies at these positions are
f(0) =42.58 MHz and f(1) = 63.87 MHz.

The next time when the magnetization vectors on two planes have same phase is when |27 f(0)¢t — 27 f(1)t| = 27.
Solve for ¢, we have

t=0.047 s .

Solution 12.2

The static magnetic filed is oriented in z-direction, B(t) = ByZ. By substituting the equations (12.12) into
(12.7), we have on the left hand side:

dM, ()
dt
dM,(t)
dt
dM, (1)

dt

= 2myyMysin asin (-2t + @),

= —2mypMysin a cos (—2mvot + @),
= 0.
On the right hand side:

YM(t) x B(t) = YM(t) x Boz = vBo My sin asin (—27vot + ¢)& — v By My sin « cos (—27vot + @),
208
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where Z, ¢, and 2 are the unit vectors in z, y, and z directions. Since vy = By, we have 271y = 7Bj. It is easy to
see that equations (12.12) are solutions to (12.7).

Solution 12.3
The transverse magnetization is

N
May(t) = 37 Aget/Tesg=iemvit—00)

i=1

The Fourier transform of this time domain signal yields the NMR spectrum of the sample. This multispectral
character of the signal must be included as a constraint when designing appropriate imaging protocols when fat is
present; this includes most tissues other than brain.

RF EXCITATION AND RELAXATION
Solution 12.4

(a) The tip angle is given by

In the range 0 < ¢t < T, we have

I
2
O\“
Sl
~~
NI
~—
QU
\]

In the range 7' < t < 2T, we have

T t
1 /7 1 =T
- —(Z)a —(1- d
“ 7/0 i (7) T+7/T10< T>T

T t
= L+l (2,1>d7-

20 10 Jp T
_oat ot AT
5 20T 10
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To make By (t) a w/2 pulse, we have

~T o

2= .
m/ 10 ¥

Solution 12.5

Both equations are first-order, ordinary differential equations and are therefore governed by a simple exponential
growth or decay. The initial value of M, (t) is M (0) and the final value M, (c0) satisfies

- MZ(OO) M()
0=t

s0 M, (00) = Mj. The solution is therefore given by

M,(t) = (M,(0)— My)e VT 4+ M,
= My(l—e M)+ M, (0)e /™.

The initial value of My, (t) is My, (0) and the final value is 0. Therefore,

My (t) = My, (0)e=t/ 11,

Solution 12.6

Use the equation
M, (t) = My(1 — e~ /"t) 4 My cos ae /11,

The last term of the above equation denotes the initial magnetization after an « pulse. Let
MI(t) = Mo(1 — e /Ty + M55 cos ae /11, (S12.1)
where M2 is the steady-state magnetization defined by
M™(Tg) = M55, (S12.2)

From (S12.1) and (S12.2), we have
1 — e Tr/T

M55 = M, .
# 1 — cosae=Tr/T1

Solution 12.7

(a) Itis given in the problem statement that the transverse magnetization is gone before the next imaging pulse
occurs; therefore,
M, (07)=0.

The longitudinal magnetization recovery follows [see Equation (12.40)]

M, (t) = My(1 — e /T2y 4 M, (0F)e™ /T,
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So, in the steady state, just before the next imaging pulse (at time ¢ = T’r) the z-magnetization is
M, (07) = My(1 — e~ Tr/Tr) 4 M, (0F)e~Tr/T1
But M, (07) and M, (07) are also related by the flip angle « as follows
M, (0") = M,(07)cos ..

Substitution yields
M. (07) = My(1 — e~ TrR/Tv) 4 M, (07) cos e Tr/T1 |

which is solved as follows

MA0-) = Mo(l _ e_TR/Tl)
07) = 1 —cosaeTr/T1 "

(b) M. (07) is the effective longitudinal magnetization just prior to an imaging pulse. With reference to (12.39),
the transverse magnetization after the imaging pulse (ignoring the arbitrary phase and assuming demodula-
tion at the Larmor frequency) is

M, (07 ) sin ce™TE/T2

Mo(l — eiTR/Tl) .
= sin ae
1 — cos ae=TrR/Th

sz(TE)

7TE/T2 .

(¢) Simplify the above expression as follows:

sz (TE) )

My,
e~ Tr/T: 7

e~ Te/T

SRV
|

Then

= EM(1 - R)sina
~  1—Rcosa
To maximize this with respect to «, take the derivative of A

dA  EM(1-R)

e _ B ) B .
do 1— Rcosa cosa+ (-1)EM(1 — R)sina(l — Reosa) "Rsina,

set it to zero, and solve for «, as follows

EM(1-R) Rsin? o
_— s — ————— = 0
1 - Rcosw 1 - Rcosa
Rsin® a
cosq¢ = ————
1— Rcosa
cosa — Recos’a = Rsin®a
cosa = R(cos’a+sin?a)

R
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Therefore,
a=cos ! (e*TR/n) ,

which is known as the Ernst angle.

Solution 12.8

(a)

(b)

Assume the sample is in equilibrium with magnetizations of M;(0~) = M, (0~) = 0 and M, (0~ ) = M.
After the 7-pulse applied at ¢ = 0, the magnetizations are

M:c(OJr) = 0,
My(0+) = 0,
ML(O0T) = —My.

M(77) 0,
My(T_) = 0,
M.(r) = M, (1—26*7/7“1).

In the time interval (0, 7), since there is no precession about the B field, there is no FID signal. After the
m/2-pulse, the bulk magnetization is tilted into z-y plane. Assume the 7/2-pulse is applied along the y-axis,
we have:

My(rt) = My (1-2e77/T)

)

The bulk magnetization then precess around the By field to generate FID signal:

My, (t) = Mo (1 — 2€_T/T1> et/ Tag=2mvolt=7) = ¢ 5 o

From the above derivation, we can see that the strength of the FID signal depends on the delay 7. If we can
take a measure right after the 7 /2-pulse, the signal strength is M (1 —2e~ /T ) Therefore we can use two
different values for the delay 7 = 71 and 7 = 7. The signal strength measured right after the 7 /2-pulse are:

MQEL)(Tl) M() (1—26_71/T1) 5
Mm(z)(’rg) = MQ (1 — 2€7T2/T1> .

Solve the above equations, we can determine 77 .
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BLOCH EQUATIONS AND SPIN ECHOES
Solution 12.9

The Bloch equation is given as

dM

E:WMXB—R[M—MO]. (S12.3)
M x B and R[M — Mjy] apply in any frame. Assume that the rotating frame rotates with angular frequency §2
with respect to the lab frame and that M’ is the magnetization vector in the rotating frame (B’ is B in the rotating
frame). From classical mechanics, we have

dM_dM’+Q>< aM’

dt — dt dt -

(S12.4)

Using Equations S12.3 and S12.4, we get

dM’ dM’
=M’ x B' — R[M' — M) — Q .
a [ o = x =

Solution 12.10

(a) Different isochromats in a sample precess in different frequencies around the By filed. The difference in
precession frequency causes the progressive defocusing of the isochromats after their magnetization vectors
are rotated to the z-y plane (see Figure 12.8). After the 7-pulse applied at time ¢ = 7, the magnetization
vectors are flipped in the transverse plane and the faster precessing vectors are lagging behind the slower
ones. The time it takes to rephase (for the faster precessing vectors to catch the slower ones) equals 7. A
phase coherence will be recreated at time ¢ = 27 to generate an echo. Therefore, the 7m-pulse should be
applied at t = T5/2 in order to generate an echo att = Tg.

(b) Suppose the sample is in equilibrium with magnetization M, (0~) = M. The 7/2-pulse is applied at ¢t = 0.
This pulse rotates the bulk magnetization vector into the x-y plane:

M, (07) = M.

The series of 7-pulses will flip the magnetization in the transverse plane and form echoes at t = (k+1/2)Tg,
k =1,2,---. The magnitude of the transverse magnetization decays with constant 75. So

M, (KTg) = Moe™*Te/T2

Solution 12.11

15° x 27 =271 x 42.6 x 105 Hz/T x A x 107°s = A = 9.78 x 10~°T..

Solution 12.12

(a) Just before applying the 7 pulse, the phase angle is given by

¢(r,77) = —y(Bo + AB(r))7.
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The 7 pulse will cause the magnetization vectors to rotate about the y axis by 180-degrees. The vector on
the +x axis goes to the —z axis (a phase difference of 7) and vectors that were leading are now lagging (by
the same amount). Therefore, the phases are given by

é(r, 7)) =71 +v(Bo + AB(r))T.

(b) Magnetization vectors that were leading at 7~ are lagging at 7+, and since they will continue to precess
faster they will be in phase after the second time interval of 7. Therefore, at time T = 27, the phase will
be 7.

(¢) An echo will form at Tz throughout the image plane, regardless of the presence of a spatially varying
gradient.

CONTRAST MECHANISM
Solution 12.13

In Pp-weighted images, the image intensity should be proportional to the number of hydrogen nuclei in the
sample. We start with the sample in equilibrium, apply an excitation RF pulse, and image quickly, before the signal
has a chance to decay from 75 effects. Thus, a Pp-weighted contrast can be obtained by using a long T’r, which
allows the tissues to be in equilibrium, and either no echo or a short 7. The preferred tip angle is 7/2, in order to
get the maximum signal. Large T’r cannot be used because it will introduce large 75 decay.

Solution 12.14

(a) The magnitude of the transverse magnetization is given as:

IMay(t)] = |Msggsinaei®et/T|

1—e Tr/Ti
= M sin e

o 7t/T2
1 — cosae=Tr/T1

Now, o« = /2, also the signal is measured just after excitation, so ¢ = 0. Hence,
[May| = Mo (1= e~ T#/T).

The local contrast between GM and CSF can be written as:

e_TR/TICSF B e_TR/TlGM

C = |M:1:y‘CSF - |Mry|GM o

|Mwy|CSF B 1-— G_TR/TFSF

This function is a monotonically decreasing function of Tr. Thus, lower the T’r, better the contrast. How-
ever, we cannot have an arbitrarily low Tr. It has to be approximately in the range of 77, to allow a

reasonable decay. A good contrast can be obtained by using T = T°M = 760 ms.

(b) The contrasts can be obtained by plugging in values in the above equation.
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Solution 12.15

(a) This is not a T5-weighted contrast. In order to obtain a 7»-weighted contrast we need to include spin echoes
in the pulse sequence.

(b) We would need to use spin echoes as in Figure 12.9.

(c) Reasonable values for the parameters:

7. The sampling should be done at twice the pulse period Tz, since at that time, the dephasing due to 7% is
completely removed and the signal truly represents 75.

Tr. In order to bring the tissue back to equilibrium, in between the pulses, Tr should be as long as possible.
In practice, however, 6,000 ms is an unusually long repetition time and is impractical.

Tg. The echo time should be approximately equal to the 75 values of the tissue being imaged.
. The tip angle should be 7/2 to obtain the maximum signal.

Flip angle: During the echo, the transverse vector should be shifted by a phase angle of 7.
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Magnetic Resonance Imaging

MR IMAGING INSTRUMENTATION
Solution 13.1

The magnetic field is still oriented in the z direction. But the strength of the field is not uniform. At points
with same x-coordinates, the magnetic fields have the same strength. At points with different z-coordinates, the
magnetic field have different strength. The difference depends on the difference in z-coordinates and the magnitude
of the gradient.

Solution 13.2

The functions of RF coils are twofold. (1) During radio frequency excitation, a relatively large amount of current
is generated in the coil using an RF amplifier (with a power requirement of approximately 2 kW for human imaging).
Ideally, this coil then produces a relatively uniform B; field throughout the entire imaging volume in order that the
same tip angle is generated in each isochromat in the volume. (2) On reception, an RF coil must pick up very
low-amplitude magnetic fields, which produce very small currents in the coil. Transmission and receiver RF coils
can be the same coil but are different when high SNR or fast imaging is required.

ENCODING SPATIAL POSITION AND MR IMAGING EQUATION
Solution 13.3

(a) We have
Av =59G,Az = 4.258 kHz x 1 G/mm x 10 mm = 42.58 kHz .

(b) We have N
Bi(t) = AAvsinc(Avt)e?> ™t

where v = Z5G, + 3By = 212.9 kHz + 4 Bj. Therefore, we have:
Bi(t) = A x 42.58 sinc 42.58t el 22129t 32wy Bot |

In rotating frame, |
B, (t) = A x 42.58 sinc 42.58t€j27r212'9t 7

216
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where A depends on the tip angle.

Solution 13.4

(a) Start with the Fourier transform pair
]:{e—‘n'tQ} — e—ﬂ-u2

Agexp{—t2/o2} = Agexp {w (&J)Q} :

we can use the Fourier scaling theorem to get

F{Agexp{—t*/o°}} = Agv/moexp {—m°cu’} .

The FWHM is found as follows:

Then since

1/2 = exp {—7F202u2} ,
In(1/2) = —n?0?u?,
u? = 71_2102 In2,
1
u = 1/7T2621n2:265HZ7
FWHM = 2 x 265Hz=530Hz.

This defines the frequency interval that is excited Av = 530 Hz, and using Equation (13.12) gives

_ 530 Hz .
"~ 42.58 x 106 HZ/T10—4 T

Az m=1.2mm.

(b) The new gradient strength is G, = 0.5G . So, the new slice thickness is

Av
¥G
Av
50.5G,
= 2xAz.

Az =

Halving the gradient strength doubles the slice thickness. Now suppose that o/ = 0.50. Starting from the
original (without using G”,), we have from previous work that
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Therefore, the new frequency range Av’ is double what it was before, which doubles the slice thickness. If
used in combination, the slice thickness would be four times thicker.

(¢) In this case, only the RF pulse is changed, so the slice thickness is doubled: Az’ = 2.4 mm.

(d) Doubling the slice thickness improves the SNR by a factor of two. The overall imaging time is slightly
smaller (although this will not affect SNR since the actual ADC time is unaffected). Image resolution will
be degraded in the through-plane direction.

Solution 13.5

The RF signal is given by o
s(t) = AAvsinc(Avt)e? >t

For isochromats whose Larmor frequency is v, the excitation signal in the rotating coordinate system is
B{(t) = s(t)e 72™*

The duration of the above signal is from —oo to co. So the tip angle is:

oo
a(v) v / BS(t)dt
= 7/ AAZ/SiIlC(AZ/t)ej2'”Dte—j2‘fthdt
= fyAAz// SiIlC(Ayt)e*jQﬂ'(ufﬂ)tdt

—0o0

o0 _
= 'yA/ sine(r)e ™2™ & Tdr,  letT = Avt
— o0

= ~Arect (VA_VV> .

The slice location z and the Larmor frequency v are related by the following equation:

v — By
o aGs
Therefore,
_ v — ’%‘BO
z = - A~
¥G
Ay —
A, - BV ¥Bo ’
¥G.

which lead us to

So, the tip angle is
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Solution 13.6

Slice selection uses a narrowband RF excitation during a constant gradient (taken to be in the z direction without
loss of generality). Spins on the high-frequency side of the slice accumulate transverse phase faster than spins on
the low-frequency side. When the slice selection pulse ends, all spins rotate at the Larmor frequency, but are out
of phase across the slice, and may add destructively during imaging. From Section 13.2.2, we know that the ideal
slice selection excitation signal is (Equation 13.14)

s(t) = Alwsine(Avt)e?>™t

In addition to required truncation, which we ignore in this derivation, this pulse must be shifted to a positive time,
Tp/2, where T, is the duration of the slice selection gradient. This shift in time implies a phase shift of its frequency
content, that is,

S(v) = Arect (”A”> (2D /2
14

This frequency spectrum forms the following spatial excitation

2=z . =
S —A t J2nyG . (z—2)7p /2 ]
(2) rec ( s )e

Application of a z gradient with strength —G, for a duration 7,,/2 will exactly cancel this phase accumulation.

Solution 13.7
The reconstruction process will presume the following frequencies

= #th )
= g4,.

A Fourier transform function (a discrete matrix, in practice) will be formed as follows

u v
Flu,v) = sog|—,—1,
(1) 0<#Ga; #)

Ae_“/qG’Tz/m/ M(x,y;0+)e_j2”“e_j2”y” dx dy .

Thus, F'(u,v) is a product of the Fourier transform of M (z,y; 0") with another Fourier function. This implies that
the inverse transform of F'(u,v) will be M (z,y; 07) convolved with a spatial kernel that depends only on z. At the
very least, the magnetization will be blurred to some extent in the = direction because of this term.

To find a mathematical description of this impulse response function requires an understanding of the pulse
sequence used. If the readout gradient is large, then the readout time T will be short, and the effect of the 75 decay
will be minimized. In this case, the Fourier resolution of the scan adequately describes the effect of this term. If the
readout is long, however, then 75 could have a significant effect.

Given the pulse sequence shown in Figure 13.10, we can assume that frequencies in the range 0 < u < G, T
are acquired for all v. The complete Fourier transform is reassembled by conjugate symmetry. In this case, the
function actually multiplying the Fourier transform of M (z,y;0%") is given by

H{(u,v) = exp{—|ul /G, T2} ,
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which is separable as follows:
Hi(u) = exp{—|ul/3G.T>} ,
H. 2(’[)) = 1.

From tables or direct calculation, we have the Fourier transform pair

2
Flell - ——.
N 1+ (27u)?
Therefore, we have

2:)1GxT2
14 2myG,Tox)?’
ha(y) = 6(y).

Ignoring all constant amplitude terms, the reconstructed image is

hl(l‘) =

1

—_ . +
fa,y) = M(,y;07) * o (215G, Trx)?

5(y),

hi(x) is a “Gaussian-like” function that gets wider as the product G, T5 gets smaller. Thus, this demonstrates that
slower readouts or faster 75’s will cause blurring in the readout direction because of transverse relaxation.

It is worth noting that if the pulse sequence scans across the v axis, acquiring both positive and negative u
frequencies, then conjugate symmetry will not hold because of this term. In this case, the reconstruction will be
both blurred, and will be a complex-valued image.

Solution 13.8

(a) The phase that is accumulated during a time-varying x gradient pulse is
t
o0 = [ Galrlatr)dr.
0
Therefore, the phase accumulation for the given gradient waveform and x trajectory is
T
o(T) = 7/ G(r)(xo +vr)dr
0
T

T
= ’y/ G(T).IodTJr’}// G(r)vrdr
0 0

T/2 T
O—i-v/ (—G)vr dT—i—*y/ (Gyvrdr
0

T/2
T/2 o T

I
|
$
|

(b) Intuitively, we see that the final phase should be zero. This is because (1) the pulse has zero area, so the term
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related to xy will cancel out and (2) starting at t = T', the pulse is symmetric in comparison to the first half,
starting at ¢ = 0, so the accumulated phase due to velocity in the second half should be the negative of that
of the first half. We now go through the calculations:

oT 2T
9(2T) = G(1)(xo +vr)dr
v 0
T/2 3T/2 2T
= / (—G)(xo +vr)dr + / G(zo + v7)dT + / (=G) (o + vT)dT
0 T/2 3T/2
/2 T/2 3T/2 3T/2
= / (—G)modT—i-/ (—G)UTdT+/ Gl’odT+/ Gurdr
0 0 T/2 T/2
2T 2T
+/ (—G)il’odT+/ (=Q)vrdr
3T/2 3T/2
T N 2 T/2 2 3T/2 T N 22T
_ Grek O G4 G b (=G L 4 VT
2 2 2 ps2 2 2 lsry2
~Gu(T/2)?>  Gu(3T/2)? Gu(T/2)? —Gv(2T)> —Gv(3T/2)?
+ - + -
2 2 2 2 2
—GuT? . 9GvT? _ GuT? n —4GuT? B 9(—G)vT?
8 8 8 2 8
GuvT?

= (-149-1-16+09)
= 0.

(c) Integrals are linear operators, so we can use the results of previous parts. (In fact, we should have done this
in part (b), but it was a good check to do it out anyway.) Using past results we can find the phase for the first
waveform as follows:

T T2 T/2 1 T 1
¢1(T) = 0+GU -l-/ (—G)=ar?dr + G-ar?dr

v 4 0 2 T/2

_ Gur? | Gar*|"? | Gar?|

4 2 3, 2 3|7,
_ GuI?  —Ga(T/2)®  GaT® Ga(T/2)°
N 4 2 3 2 3 2 3
GvT?  GaT?

4 6
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(d)

(e)

CHAPTER 13: MAGNETIC RESONANCE IMAGING

For the second waveform, we get

LZ(QT) = 0+0+ /T/Q(—G)la7'2d7 + /3T/2 G1a72 dr + /2T (—G)laT2 dr
Y 0 2 T/2 2 37/2 2
3T/2 2T
_ ZGaI® | Ga 3" —Ga,,
48 2 T/2 2 3T/2
~ —GaT? N Ga(3T/2)°  Ga(T/2)? N —Ga(2T)*  —Ga(3T/2)
48 6 6 6 6
_ —GaT?® 27GaT?® GaT? 64GaT?® 27GaT®
S T T TR B T
GaT?
= (F1427-1-64427)
 —GaT?
= YR

We see that the first gradient waveform has phase effects from both velocity and acceleration, while the
second only has phase effects from acceleration.

We use the same “trick” that took us from part (a) to part (b). We invert the pulse sequence in part (b) and
replay it, as shown in Figure S13.1. The static position term and the velocity is still nulled because the
integrals evaluated in the second phase are still zero. The acceleration term is now nulled as well, since the
integral will be negated.

o[ v | [ o []
<L L a0

Figure S13.1 See Problem 13.8.

It is possible. Now we need to show it. Consider the general gradient pulse of height A and duration T’
starting at to. Suppose a particle has the position r(t) = x + vt + at?/2. What is the phase accumulation
after this pulse? We have gone through this exercise above, but in not quite this general way. Here we do it
again.

to+T 2
aT
p)jiA = ‘/f (.’B +uT + 7)d7’
= aT+ (T2 +247T) + %(3th + 2T + T,

where the second equation follows after some algebra. Now consider a sequence of three pulses starting
at t = 0, with heights A, B, and C, and each of duration 7. What is the phase accumulation after this
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sequence? We apply the previous result three times and add the result.

¢ Av, o Aa, 4
S = TAT + = (T%) + = (T7)

+BxT + %(3#’) + %
%(5T2) - %(19T3) :

(1T°%)
+CxT +

where the second equation follows after some algebra. Now the sequence should be independent of position,
which implies
A+B+C=0.

And the phase should be dependent on velocity, so the sum of the coefficients multiplying v should not be
zero, for convenience, we make that sum equal to T2 /2, which implies

A+3B+5C=1.
And finally, there should be no dependence on acceleration, which implies
A+7B+19C =0.

Solving these equations for A, B, and C yields

A = -1,
B = 15,
C = -05.

The implied pulse sequence is shown in Figure S13.2.

B=1.5
0 T o7 3T

A=-1 C=-05] | 4

Figure S13.2  See Problem 13.8.

Solution 13.9

(a) The sampling interval is

10 ms
= =39.1
256 oHs

The FOV in the x-direction is

1
=6cm

FOV, = =
42.58 MHz/T x 1 G/cm x 39.1 ps
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(b) The (nominal) pixel size is
_ FOV,

256
The spatial extent of the cube is 5 cm, so the number of pixels across the object is 50 mm/0.234 mm =
213.3.

= 0.234 mm

(c) Halving the gradient, doubles the FOV. Doubling the readout time, while keeping the number of samples
the same doubles 7', which in turn halves the FOV. Thus, there is no net effect on the FOV by making these
collective changes.

(d) This pulse sequence will require reassembling Fourier space by conjugate symmetry. It will scan higher
spatial frequencies than the previous pulse sequence. Nevertheless, the answers to (a) to (c) are the same.

Solution 13.10

(a) Use the following algebraic manipulation:

1—e Tr/T
— AMysinae-Te/T:
f 0 SHLare 1 —cosaeTr/T1
f(1 —cos ae‘TR/Tl) = AM;sin ae_TE/T2(1 _ e—TR/Tl)
—TR/T
f — fcosaeTr/T —  AMye TE/T2(1 — ¢~Tr/Tr)
sin «
fo_ e‘TR/TlL + AMye Te/T2 (1 — ¢~ Tr/T1)
sin o tan o

(b) Let
f
r = )
tan «
~f
Yy = :
sin o

Then the equation proven in part (a) becomes
y=e Tr/Tig 4 AMOe_TE/T2(1 — e_TR/Tl) ,

which is the equation of a line with slope

m=e Tr/T

and y-intercept
b= AMOe_TE/T2(1 — e_TR/Tl) .

Since only x and y will vary when we change «, the computed points from the three acquisitions will form
different points on the same line.
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(c) The slope of a line is found as follows:

Y2 — 1

T2 — 1
fa/sinag — f1/sinag
fo/tanas — fi/tanay

Since m = e~ Tr/T1_ we have

N —Tr
Inm

—Tr
In ( fo/sinas—f1/sina; )

fo/tan as— f1/ tan oy

Tr
In(fo/tanas — f1/tanay) — In(fo/sinas — f1/sinay)

SAMPLING THE FREQUENCY SPACE
Solution 13.11
The basic relationship between the pulse sequence parameters and the Fourier frequencies is

u = gG,t,
= g4,.

There are four regions to consider.

(1) 0 £t <1 ms: The u component is given by

u = Gyt
= 4,258 Hz/G x 10 G/em t
= 4,258 mm ls7l¢.

The v component requires a determination of the area of the y gradient as a function of time. Since

10 G/cm
G,t) = ———t
y(t) T
= 1x103£s_1t.
mm
the area is
t
A0 = [ Gmdr
0

L
-

1x 1033 s
mm
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Therefore,

v o= 5A4,()
2

G t
4,258 Hz/G x 1 x 10> — sec™! —
mm 2

= 2.129 x 10 mm~! sec2¢2.

Writing v in terms of u yields:
v=0.117u?,

both in units of mm~*. Thus, the first segment of the Fourier trajectory is a parabola, starting at u = v = 0
and ending at (u,v) = (4.258,2.129) mm ™.

(2) 1ms <t < 2ms: In this interval, u is the same as in the previous interval. However, although v continues to
increase, its rate of increase is decreasing. We have

10 G/
G,(t) = 20Glem — 220fm,
ms
G G
= 2— —1x10°— s 't.
mm mm
t
Ay(t) = Gy(r)dr
1 ms
T2t
= 2r—1x10°—
0.001 S

= —500t% 4+ 2¢t — 0.001.

The vertical spatial frequency is then

vo= gA,()
= 4,258(—500t% + 2t — 0.001)
= —2.129 x 10°¢% + 8,516t — 4.258..

This is a quadratic function that peaks at t = 2 ms. The final value (at 2 ms) is v = 4.258 mm ™!,

(3) 2ms < t < 3 ms: This range can be worked out in a fashion similar to the work in intervals (1) and (2).
However, it is not necessary to do this since there is symmetry in the gradient pulses. Since both gradients
are negative in this range, their Fourier trajectories will be decreasing. Since GG, is constant, u will decrease
with uniform speed. Since G|, is a linear function with negative slope, it will cause the v component of the
trajectory to behave parabolically, as in intervals (1) and (2). For a given increment in time (and equivalently
a decrement in u), the drop in area in this time interval starts off small and gets larger over time. Therefore,
by appealing to symmetry, we see that the trajectory will trace over that of interval (2).

4) 3ms <t < 4ms: Using a similar argument to that in interval (3), we see that this trajectory is identical to that
in interval (1), only traveling toward the origin.

A sketch of the resulting Fourier trajectory is shown in Figure S13.3. Since the net area of the two gradients is zero,
this pulse sequence ends exactly where it starts—at the origin.
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v, mm-!

4.258

Intervals (2) and (3)

2.129
Intervals (1){and (4)

4.258 8.516 u, mm-!

Figure S13.3  [Problem 13.11]

Solution 13.12
(a) In this interval, the Fourier trajectory goes from the origin to the point (—0.25, —0.5) mm~!. Using the
relations:
u = 5Gt,
= gGyt,
leads to
u —0.25 mm~!
G, = —= = —0.587 G/mm.
~1 4,258 Hz/G 0.0001 s mm
—0.5 -1
G, = — mm — —1.174 G/mm.

5t 4,258 Hz/G 0.0001 s

(b) A similar argument as in (a) leads to

-1
G, = A = 05 mmn =11.7 mG/mm,

8Ty 4,258 Hz/G0.01 s

M 1.0 mm~!
G, = = = 23.5 mG/mm .
v ~T, 4,258 HZ/G0.01 s mm
The sampling rate is
128

Solution 13.13
The required timing diagram is shown in Figure S13.4. The timings and the amplitudes of the gradients:

kgc:qz/Gxdt, ky:qz/Gydt

are determined by

T-
—Imm!'=-1,000m ! =426 x 10° x (=G1) xt; = Gyxt; =235x10"° ( ms)

T.
0.5mm ' =500m 1 =426 x10x Gy xt; = Goxt;=11.7x10"° ( ms)
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w [

G
G, !
_G[
i ) h Iy
Gy G,
¢
G;

e [ [

Figure S13.4 See Problem 13.13.

T.
omm~t =2000m ! =42.6 x 105 x Gy x tg = GlXtQMXlOG( ms)

T-
0.1mm ' =100m ' =426 x 10° x Gy xt3 = Ggxt3=23x10"° ( mSCC)

T.
—2mm ' =-2,000m ! =426 x 10° x (=Gy) xty = Gyxty=47x10"° ( s)
m

Now, let G1 = 10 mT/m, G5 = 5 mT/m, and G3 = 1 mT/m. Then, t; = 2.3 ms, t; = 4.7 ms, t3 = 2.3 ms, and
ts = 4.7 ms.

Solution 13.14

Suppose the objects are at positions y, and y;. Also, let’s suppose that the amplitude of the signal from the point
samples is Ag and A; respectively. If we acquire data from a pulse sequence, such as that shown in Figure 13.15,
with Gy = Gg, we can apply a Fourier transform to the signal to yield a profile S°(z). Because the two point objects
are at the same x coordinate, we are only interested in the value of the profile at S°(z,). We can write the equation
for the amplitude and phase of this value as

S%(z,) = Age PV (Cutvve) 4 A e~ 11(Gytyn) (S13.1)

In a separate acquisition, if we acquire data with G,, = Gzlz’ the amplitude and phase of this point in the profile
becomes

S (z,) = Age(Cutuve) 4 Ay e~ (Gytyyn) (813.2)

Because the S° (z,) are complex, the above equations represent four equations in four unknowns (A,, A1, Yo, ¥1);
therefore, if A,, Ay are real numbers, we can determine the y coordinates of the objects exactly.

Solution 13.15

All three pulses are concerned with the phase of the precessing transverse magnetization. The refocusing lobe is
correcting the linear phase that is produced by the slice selection pulse. This is done by applying a negative gradient
to that of the slice selection for a duration half of that of the slice selection gradient. The phase-encoding gradient
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is deliberately applying a linear phase in the phase encode (y) direction, so that Fourier space position is encoded.
The gradient echo formation lobe can be called a prefocusing lobe, since it essentially corrects the phase prior to
the readout gradient so that the spins are in phase at the center of the readout gradient.

Since all these phase corrections are accomplished by either increasing or decreasing the Larmor frequency in a
spatially encoded fashion, they can all be combined. The net effect will be that the overall phase of each point will
arrive at its correct final value faster than if each of these corrections had been done sequentially.

MR IMAGE RECONSTRUCTION
Solution 13.16

(a) The baseband signal is given by

so(t)

SIS ) )
/ , f(x, y)e—g27r:mezt€—j27r:ynyt dx dy
— —o0
_ / , f(l,’y)efj%rqucosBa:t67]27rqusm9yt dr dy
— —o0
0o

/o;/ f(SL’, y)e—jQTrqut(:c cos 9+ysin0) dr dy )
— —00

(b) The Fourier transform of f(x,y) is
F(u,v) = Ae™ 2™ 4 Beti2m
The baseband signal is sampling the Fourier transform according to the following formulas

u = =~xGtcosl,
= 2zGtsind.

When 6 = 0, we have

u = ~Gt,
= 0,

and therefore |
So(t)|9:00 = F(#GLO) — Aefj27rﬁ/Gt +B.

This is a complex signal having two components, as shown in Figure S13.5(a). Similar reasoning yields the
following baseband signal for = 90°

50(t)|g_gpe = F(0,4Gt) = A+ Beti2mGt
which is shown in Figure S13.5(b).
(¢) This is a polar scanning technique. In order to image the cross section (rather than just a projection of

the cross section), one needs to apply this basic pulse sequence for different values of 6 ranging over 180
degrees, say 0 < 6 < . This will cover half of Fourier space. The remainder is filled in using conjugate
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Figure S13.5 Baseband signals. See Problem 13.16.
symmetry:
F(u,v) = F*(—u, —v).

Since data are acquired along rays passing through the origin (and conjugate symmetry assures us that the
data are defined in both directions), we can use convolution backprojection to do the reconstruction.

Solution 13.17

First, it is useful to see what happens during standard rectilinear scanning. All aspects of imaging are linear. So,
the object can be decomposed and analyzed separately:

f(xay) = f1(x,y) +f2(x,y),

where f2(x,y) corresponds to the point object in the perturbed field. By linearity, the resultant baseband signal is
the sum

so(t) = s1(2,y) + s2(2,y) .-

During phase encoding, a phase equal to 2n5ABT),, where T}, is the duration of the phase encode pulse, is added
to the signal arising from f2(x,y). During readout, a phase equal to —273ABt accumulates. Putting both terms
together yields the baseband signal equation for f>(x,y)

(o] o0
S5 (t) — / ' f2 (37, y)ej27r:yABTpe—jQﬂqABte—]27r:yGT,gcte—]27rquypr dr dy )

— 00

Using the usual equivalences

u = 5G,t,
= %G, Tp,

yields
ﬁ'(u, 1}) _ ejQﬁqABTpe—jQﬂ-(AB/Gm)u / J fg(.l?, y)e—jZﬂ(uz—i-vy) dr dy )
The inverse Fourier transform of F'(u,v) is
fla,y) = ™8T f(z — (AB/G.),y).

The leading phase term is irrelevant, since the complex modulus is typically displayed. The second phase term,
since it was a linear phase term in the x-direction causes a shift of f5 in the z-direction by AB/G,. Thus, the



231

relative positions of f; (x,y) (which will be reconstructed correctly) and f»(x,y) will be altered in the x-direction,
but otherwise, the two point functions will be reconstructed correctly as point functions.

Reconstruction using the 2-D projection (polar scanning) method leads to a different—Iless desirable—result,
primarily because the readout direction is different with each excitation pulse. With no phase encoding in this pulse
sequence, there is no leading phase constant. However, both = and y gradients are on at the same time, in general.
This gives the baseband signal for f5(z,y) as follows

52 (t) = / J f2 (-ra y)eijQﬂ-qABteij2ﬂq(sz+Gyy)t dz dy )

— 00

Let the gradients be given by

G, = Gcoso,
G, = Gsind,
and make the spatial frequency associations
= gG,t,
= oGyt.

Then it follows that -
0= Vu?+v?=9G,

and the observed signal becomes

A 4

G(p,0 —

(0,0) So (qu)

/i/oo f2($’ y)e_jQﬂ(AB/é)ge—j2ﬂ(xQcosS/@—i—stin 0/G) dr dy
eijW(AB/é)g /Z/OO f2(x7y)ef‘]—Qﬂ'(IQCOSG/GerQSin9/@) dx dy

= ¢ 12m(BB/Gep, (pcos0/G, psinb/G) .

The inverse Fourier transform of this gives a projection of fo(x, ) shifted by AB/G. Each projection is shifted by
the same amount on the ¢ axis. For example, if f3(z,y) = d(x,y), whose Radon transform is g(¢,6) = 6(¢), the
observed “projection” would be § = §(¢ — AB/G).

Unfortunately, ¢ is not a Radon transform, which can be proven by showing that there is no object whose center
of mass agrees with the centers of mass of the collection of projections. This makes it difficult to determine the
precise effect that this term will have on the resulting reconstruction. It should be apparent, however, that shifting
each projection of an impulse function by AB/G creates a disk with radius AB/G in the object domain. Thus,
although the precise details are not developed here, we can conclude that rather than being shifted, as in the case of
rectilinear scanning, 2-D projection imaging will blur objects when the Larmor frequency varies across the FOV.

Solution 13.18
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‘We have

) = [ swyereortaay

o |
/ / AMyy(z,y; 0T )e t/T2ei2mxGat o gy
—o0J —oc0

eft/TQ/ / AMwy($,y;O+)€7j27wamt dxdy

The inverse Fourier transform of s (¢) is

So(v) = F Yso(t)}
— f_l{e_t/TQ}*]-'_l {/ / AMmy(:r,y;0+)e_j2mG”tdxdy}

= F e TYx / / / Moy (0, y)e™ 7o 720 dt da dy

— _Ffl{e*t/n} * / / My (x,y)0(2n(v — ¥Gyx)) dx dy .

Therefore, the amplitude of the function Sy () at a specific frequency v will be proportional to the line integral
of My, (z,y;0") along the y direction at the x position g = v,/3G,; hence, S(v) is a projection of the ob-
ject My, (x,y;07%) onto the z axis. This data, however, will be convolved with F~{e~*/72}, which is called a
Lorentzian function. If the data are acquired fast enough, this convolution can be ignored.

MR IMAGE QUALITY
Solution 13.19

(a)

(b)

With reference to Figure 13.6, we see that the through-plane direction coincides with the x axis, which is
therefore the slice selection gradient direction as well. There is no choice in this matter.

In a standard (axial) image, it is customary to make the +y direction be the phase encode direction. Although
this is arbitrary, provided that the direction is within the y-z plane, it makes sense to retain the 4y direction
as the phase encode direction [see part (b)].

The standard (axial) image uses the 4z direction as the frequency encode direction. The frequency encode
direction should be orthogonal to the phase encode direction, so it could be either the —z or 4z direction.
For simplicity, we choose the 4z direction to be the readout direction.

Aliasing in the phase encode direction is prevented by making sure that the object being imaged is confined

to the FOV in the phase encode direction,
1
FOV, = —,
Y Aw
where Av are the phase encode increments in the frequency domain.

With reference to Figure 13.6, it becomes a bit more clear, why the phase encode direction should be in the
y direction. In this figure, the extent of the patient in the y direction is given by distance from the back to the
chest, whereas the extent in the z direction is the entire height of the patient. It is usually the case that the
thinnest section of the patient is chosen as the phase-encode direction in an arbitrary scan.
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Aliasing is prevented in the frequency encode direction by using an anti-aliasing filter prior to sampling, as
usual.

Solution 13.20
(a) The spatial extent is defined by the field-of-view in the y (phase encode) direction, which is given by
1
FOV, = .
Y qAA,

(b)

()]

(d)

Since « is fixed, it is the change in the area of the phase encode gradient, AA,, between imaging pulses
that determines the spatial extent in the y direction. This parameter is independent of the number of phase
encodes—that is, 256 in the problem statement—that are acquired.

The spatial extent in the readout direction is defined by the field-of-view in the x (readout) direction, which
is given by
FOV, = s .
¥Gz

Thus, the sampling rate f, and the readout gradient strength G, determine the spatial extent in the readout
direction. If that is the case, it must be assumed that the readout gradient is left on for a duration that is
long enough to collect 256 samples. It is also possible to view the duration of the readout interval T as a
parameter. In this case, the sampling rate is determined by the number of samples acquired over the interval,
fs = 256/T;. Then the spatial extent can be written as

256

FOV, = .
¥T,G

Spatial resolution is not determined by the pixel size but rather by the amount of Fourier space that is
acquired. From Section 13.4.2, we have
FWHM,, = L
Y NaAA,

Here, N, = 256, so the only parameter actually affecting resolution is AA,. Increasing AA, reduces
FWHM,,, improving the resolution. But given the result in part (a), we see that this can only be done
provided that the spatial extent covers the object (otherwise wraparound will occur).

In the readout direction, we have
1
N, TG, "
Here, N, = 256, so we can change either 7" or G, in order to change the spatial resolution in the readout
direction. Since the readout time is T, = N, T, it is more fundamental to write

FWHM,, =

1

FWHM, = ——.
¥T,G

Now we see that the readout resolution is actually inversely proportional to the product 75G . and increasing
either T or GG, will improve this resolution.
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Solution 13.21

(a) The spatial extent in the diagonal direction is
D =2 x 25.6cm = 36.2cm.

There are 256 samples.

(b) The sampling rate in the = and y directions are

fu=1/Av = FOV, =25.6cm,
fo=1/Au = FOV, = 25.6cm,

But the sampling rate in the diagonal direction is lower, equal to

_ 25.6 cm

V2

fa =18.1cm.

Solution 13.22
(a) The average power dissipated in the object is:

1t
Pue= = | I2(t)Rdt,
T/O (R

where T is the period of the current and R is the effective electrical resistance. Substitute I(t) = cos(2mvyt)
into the above equation, we have

1 T
Pwe = = cos? (2muvot) Rdt

T Jo
R 27

= — cos?(u)du, letu = 2ot
2T 0

_ B

= 5

Since the current in the coil is I(t) = cos(2myyt), the magnetic flux density is By (t) = poNI(t). And the
induced voltage in a cylindrical shell of radius r is given by

_d¢ _ d(ABh)
Codtdt

V(t,r) = 21%vyr? o N sin(2mvt),

where ¢ is the magnetic flux and A = 772 is the area subtended by the cylindrical shell.

(b) Given the differential conductance in a thin shell of radius r, the average power dissipated in the shell is:

(27%vor2ugN)?L

1
= dr.
2 2mrp "

1 T
dPave = — / V2(t,r)dGdt =
T 0



The average power dissipated in the object can also be expressed using the voltage as:

To
Pave:/ dPaveZE-
0 2

Therefore, the effective electrical resistance is:

R = 2P
B /”’ (27r21/01"2,u0]\7)2Ldr
0 2mrp
_ 2m3vE g N2 L /TO B
P 0
g ud N2 Lrd

2p

b

which is Equation (13.79).

Solution 13.23
Start with the imaging equation

1— e Tr/T:

1 — cos e Tr/T1

f(z,y) = AMysin e~ Te/T2(2:y)

b

Using Ty = 0 and o = 7/2, and setting the overall gain to unity, gives
f(z,y)=1—e Tr/T1
The two tissues have values
fao=1—eTo/T | andf, =1— e To/T7
so the image difference between these two tissues is

A = fa_fb
= (1—e Tr/Tiy _ (1 — ¢ Tn/Ti)

~Tr/TY _ o~Tr/Ti

e (&

Taking the derivative of this expression with respect to T yields

4 L(e—TR/Tf — e TR/TY)
dTr dTr
_ 1 —Tg/T? _16—TR/T1“

235



236 CHAPTER 13: MAGNETIC RESONANCE IMAGING

Now set this equal to zero and solve for Tr:

-1 —TRr/T} -1 ~Tr/T}
_ - = 0
e T ©
Tbef'fR/Tf' TU«e*TR/Tl
Tr Tr
InT? — = InT¢— =%
n iy I n iy D
2 1 1 a b
TR <1"1b — 1_’1a> lnTl — thl

. InT¢ — InT?
= I T

TP Ty

Whether this expression should yield a maximum or minimum depends on the relationship between 7 and 77,
and hence the sign of A. Suppose 7% < T?; then A > 0 and our goal is to maximize A. Otherwise, our goal is
to minimize A (making the difference more negative). It is readily verified by plotting A as a function of T that
these conditions are satisfied by the expression we have derived for Tr.

Solution 13.24

The conventional magnet strength of whole-body scanners today is 1.5 T. Therefore, Larmor frequency is

f = 9B
= 4258 MHz/T x 1.5 T
= 63.84 MHz.

In air, the wavelength of radio frequency waves at this frequency is

3 x 108 m/s

A= —
63.84 x 106 Hz
= 4.7m.

The Rayleigh limit is A\/2 = 2.35 meters. Clearly, MRI does not work according to conventional optical imaging
principles.

Solution 13.25
From Chapter 12, we know that the Larmor frequency of fat is

vo(fat) = yo(water)(1 —¢).
where ¢ = 3.35 x 1076, The frequency difference is
Avg = =3By,

which at 1.5 T is —214 Hz. But the above analysis is in a static field. When a readout gradient is turned on, the
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Larmor frequencies of water and fat will be

vo(water) = «(By+ G.x),
vo(fat) = «(Bo+ Guzx) — 3(Bo + Gx).

After demodulation to baseband (assuming that the Larmor frequency of water is used for demodulation), the
following frequencies are encoded during the readout interval

v(water) = 3Gz,
v(fat) = aG.x —¢y(By+ G.x).

Therefore, during frequency encoding (the readout interval), the fat signal will be slightly mispositioned in the
readout direction relative to that of water.

To suppress the fat signal, we can apply a 180-degree (so-called inversion) pulse and then wait for both compo-
nents of longitudinal magnetization to recover. Since the fat 7} is so much shorter than the water 77, it will recover
faster, passing the M, = 0 point at a predictable time. At that time, one can begin imaging with the application of
a standard 7/2 RF pulse. Because the fat signal has M, = 0 at that time, it will not contribute to the transverse
signal, and only water will be imaged. This type of sequence, called inversion recovery sequence, can be tuned to
suppress the water signal as well by waiting for the longitudinal magnetization recovery of water to cross zero.

Solution 13.26

(a) When G, — 0.5G,, the FOV doubles, that is, FOV,, — 2FOV,. Since image size remains unchanged, the
pixel size must double as well, that is, Vi, — 2Vj. Therefore, the SNR also doubles, that is,

SNR — 2SNR.

(b) N, — 2N, means to double the number of phase encodes. If everything else is to remain unchanged,
this implies that these phase encodes either repeat the first set of phase encodes or add on to those already
acquired but at a different v locations in Fourier space. In either case, the net effect is to double the scan
time; therefore, the SNR will improve, but only by a V2 factor. In other words,

SNR — v/2SNR.

(¢) Since f; — 2f, the sample period is halved, 7" — 0.57". Since T remains constant and N, — 2N,, the
total time has remained constant, that is, T4 — T4. The only possible remaining factor affecting SNR is
voxel size. If the image size is assumed to follow J = N,, then the image size has doubled, J — 2J.
But since FOV,, is inversely proportional to 7', we also have that FOV, — 2FOV,.. Under this assumption,
voxel size is constant and SNR is constant

SNR — SNR, assuming J = N, .

(d) It is reasonable to make the assumption from the problem statement that the image size should not change,
that is, J — J. In this case, since the FOV, has doubled, the voxel size would also double, V, — 2V, and

SNR — 2SNR, assuming J — J.
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Figure S13.6 See Problem 13.27(a).

APPLICATIONS, EXTENSIONS, AND ADVANCED TOPICS
Solution 13.27

(a) The 2D function f(z,y) is

_ rT—5 y—>5
f(a:,y)-rect( 0 10 )

It is sketched in Figure S13.6. The Fourier transform of f(z,y) is
F(u,v) = 10sinc(10u) x 10sinc(10v)e 7270w g =327 (50)

and
|F'(u,0)| = 100sinc(10u) .

(b) We have
3Gyt = 42.58 kHz/G - 0.5 G/mm - t = 0.4 cm ™!,

and after solving yields
t = 18.788 us.

(¢) The gradient echo will occur after 18.788 p s, because that is when the phases will be realigned.

(d) Perfect g(¢,0°) needs perfect G(u, 0). We collect only partial information of G (u, 0), since we do not collect
data outside of —0.4 cm™! < wu < 0.4 cm™!. Therefore, we cannot get a perfect reconstruction of g(¢, 0°).

Solution 13.28
(a) We have

wo = By =2m x 4,258 (rad/s)/G x 1.5 T x 10* G/T = 4.01 x 108 rad/s,
fo = 6.39x 107 Hz.

The tip angle can be computed as

1x1073 1x1073
a= 7/ B{(t)dt = 27 x 4, 258/ 2 x 4.258 x 10* sinc(4.258 x 10*t)dt .

—1x10-3 —1x10-3
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Figure S13.7 See Problem 13.28(b).
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Figure S13.8 See Problem 13.28(d).
(b) Carry out the following manipulations
Bi(t) = AAfsinc(Aft)ed«ot,
F{Bi(t)} = Arect <f _ fo) ,

Af
— 9rect (f —6.39 x 107)
4.258 x 104 )’
Aw = 27Af = 267,538 rad/s.

(¢) Carry out the following
we=7(Bo+ G, 2.) =wp=>2.=0
Aw 267,538

Aw =G, - Az = Az = =
w=7 TR NG, T 1m 4,258 2

=5cm

(d) We have
2l =z2.+Az=5cm,

W =~(Bo+ G, 2) =wo +G, - 2l = wo + 214,258 - 2- 5 = wy + 2.68 x 10° rad/s.

So in order to select the adjacent slice, we need

Bi(t) = AAf sinc(Aft)ej(wo-irw;)t '

(e) Carry out these steps:

wi = Y(Bo+G.z1),
%) = ’V(Bo + GZZQ) s
Aw = G, Az,

Ap = Aw-%:WGZAZ%:27T-4,258~2~5-1>< 1073 = 267.5 rad.

239
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t
-2G/em
0.5
G, s t
-1.5G/cm $
G 2.5G/em t
2ms
Figure S13.9 See Problem 13.28(f).
In order to rephase the spins, we need to use a refocussing lobe on G .
(f) We have
v M g
ky = — Gy(r)dr = =Gy - t
2m /0 (r)dr 2m !
v o[ v
ka
t1 = = 2ms
37 Ga
ta = Y —0.5ms
7 Gy
The pulse sequence is shown in Figure S13.9.
(g) We have
FOV, — 2m _ 2m _ 27 fs
Ak, G T G,
FOV, -+-G, 50cm-4,258-27-2.5
fo = T e 200 T 22 532 % 10° Hz.

2T 2

Solution 13.29

(a) We will use phase encoding in both the y and z directions. The pulse sequence shown in Figure S13.10, a
modification of Figure 13.16, shows the general idea (though this is not a realistic pulse sequence).

(b) The following baseband signal is the same as the standard 2D gradient echo pulse sequence, except that there
is a new term that depends on the z phase encoding:

SIS
S0 (t) _ / ' f(.’177 y)e—]27mszwte—]27wapre—jQTrquszz dr dy )

— 00
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Figure S13.10  See Problem 13.29.

(c) The image would be reconstructed using an inverse three-dimensional Fourier transform. Comparing the
above expression to the 3-D Fourier transform yields the following identifications:

v = gG,T1,,
w = G, T,.

Therefore, the 3D Fourier transform F'(u,v,w) of f(x,y,z) is built up by successive imaging pulses as
follows

F(u,¥GyT,,4G.Tp) = so ( ) 0<u<9G,T,s.

u
Gy

where G, and G, must take on a series of different values in order to cover 3D Fourier space.

Solution 13.30
In general, if we have N points, we can write the set of signal equations as

j=N

S™M(wo) = Y Ajem G ts) (S13.3)
j=0

which is 2N equations with 2N unknowns. Figure S13.11 shows one possible scheme for changing the value of the

phase-encoding gradient amplitudes. For each acquisition, we have G} = mAG,,.

It is important to note that while the data acquisition is similar to that used in spin-warp imaging, the procedure
described here for reconstructing the MR image is not what is usually done. Usually, the positions of the objects are
assumed to be known; that is, we reconstruct the signal amplitudes (and phases) of a set of decaying oscillators that
are sitting on a fixed coordinate grid by using the Fast Fourier Transform (FFT). This coordinate grid is the pixel
array in the image. If the assumption is not true (which in most cases it is not), image artifacts from Gibbs ringing
occur.
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Figure S13.11 Pulse sequence for phase encoding. See Problem 13.30.



