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Chapter 1
Basic Concepts of Medical Instrumentation

Walter H. Olson

1.1 The following table shows % reading and % full scale for each data point. There 
is no need to do a least squares fit.

Inputs 0.50 1.50 2.00 5.00 10.00
Outputs 0.90 3.05 4.00 9.90 20.50
Ideal Output 1.00 3.00 4.00 10.00 20.00
Difference – 0.10 +0.05 0.0 – 0.10 +0.50
% Reading  11.1 1.6 % 0% – 1.0% +2.4 % = Difference/Output × 100
Full Scale – 0.5% 0.25% 0% – 0.50% + 2.5% = Difference/20 × 100

Inspection of these data reveals that all data points are within the "funnel" (Fig. 
1.4b) given by the following independent nonlinearity = ±2.4% reading or ±0.5% of full scale, 
whichever is greater. Signs are not important because a symmetrical result is required. Note that  
simple % reading = ±11.1% and simple % full scale = 2.5%.

1.2 The following table shows calculations using equation (1.8).
Inputs Xi 0.50 1.50 2.00 5.00 10.00 X  = 3.8
Outputs Yi 0.90 3.05 4.00 9.90 20.50 Y  = 7.6

Xi – X – 3.3 – 2.3 – 1.8 1.2 6.2

Yi – Y – 6.7 – 4.55 – 3.6 2.3 12.9

(Xi – X )(Yi – Y ) 22.11 10.465 6.48 2.76 79.98 

(Xi – X )2 10.89 5.29 3.24 1.44 38.44 

(Yi – Y )2 44.89 20.7 12.96 5.29 166.41 


r = = 0.9997

1.3 The simple RC high-pass filter:

The first order differential equation is:



;where 1/RC is the corner frequency in rad/s.

1.4 For sinusoidal wing motion the low-pass sinusoidal transfer function is

For 5% error the magnitude must not drop below 0.95 K or

Solve for  with  = 2f = 2(100)

Phase angle  = tan–1 (–) at 50z

at 100 Hz



1.5 The static  sensitivity  will  be  the  increase  in  volume of  the  mercury per  C 
divided by the cross-sectional area of the thin stem

where

Vb = unknown volume of the bulb
Ac = cross-sectional area of the column

Ac = π(0.1 mm)2 = π × 10–4 cm2

Thus

     

1.6 Find the spring scale (Fig. 1.11a) transfer function when the mass is negligible. 
Equation 1.24 becomes

When M = 0. This is a first order system with
K = static sensitivity = 
 = time constant = 
Thus the operational transfer function is

and the sinusoidal transfer function becomes

1.7

This has the same form as equation 1.15 if g = c.
(D + 1)y = Kx

Thus  = 



1.8 For a first order instrument

1.9

 = 0.4; fn = 85 Hz

= 12.31 = 10.15

1.10. At the maxima yn, yn+2, yn+4:  sin (  ) = –1 at  ,  ,  

at the minima yn+1, yn+3 …:  sin ( ) = + 1 at  ,  …

then form the ratio



Solve for 

Chapter 2
Basic Sensors and Principles

Robert A. Peura and John G. Webster

2.1 Let the wiper fraction F = xi/xt

vo/vi  =  
Rm||F Rp

Rm||F RP + (1–F)RP

=  

Rm F Rp

Rm + F Rp

Rm F RP

Rm + F Rp
 + (1–F)RP

=  
1

1  +  
Rm F Rp

Rm + F Rp
  (1–F)RP

=  
1

RmF + Rm + F Rp – F Rm – FFRp

RmF

=  
1

1  +  F Rp/Rm –  FFRP/Rm

F

=  
1

1
F

 + 
Rp

Rm
  (1–F)

Let  = Rp/Rm

error = F – vo/vi
= F – 
= F – 



= F – (F) (1 + F – F2)–1

d/dF(error) = 0 = 1–(1) (1+F–F2)–1 – (F) (–1) (1+F–F2)–2(–2F) 
multiply by (1+F–F2)2

0 = (1+F–F2)2 – (1+F–F2) + (F) ( – 2F)
expand, ignoring terms of 2, 3, ...
0 = 1 + 2F – 2F2 – 1 – F + eF2 + F – 2F2

0 = –3F2 + 2F = () (F) (2–3F)
F = 0, 2/3

error = 0.67 – 
= 0.67 – 

= ≈ 0.15= 0.15 Rp/Rm

2.2 The resolution of the translational potentiometer is 0.05 to 0.025 mm. The angular 
resolution  is  a  function  of  the  diameter,  D,  of  the  wiper  arm  and  would  =  (translational  
resolution/πD) × 360. In this case the resolution is 2.87/D to 5.73/D degrees where D is in mm.

A multiturn  potentiometer  may be  used  to  increase  the  resolution  of  a  rotational 
potentiometer.  The increased resolution is  achieved by the gearing between the shaft  whose 
motion is measured and the potentiometer shaft.

2.3. The elastic-resistance strain gage is nonlinear for large extensions (30%), has a dead 
band linearity due to slackness and is subject to long-term creep. Continuity in the mercury 
column  and  between  the  column  and  electrodes  may  be  a  problem.  The  gage  has  a  high 
temperature drift coefficient. The dynamic response and finite mechanical resistance may cause 
distortion. These problems may be minimized by carefully selecting the proper size gage for the 
extremity.  The gage should be slightly  extended at  minimum displacement  when applied to 
eliminate the slackness problem. Mercury continuity checks may be made using an ohmmeter. 



The temperature  drift  problems may be  minimized  with  continual  calibration  or  by  making 
measurements in a controlled temperature environment.

2.4 From (2.21)
E = 38.7T + (0.082/2)T2 = 38.7T + 0.041T2

 T
C

38.7T
µV

0.41T2

µV

E
µV

0 0 0 0
10 387 4 391
20 774 16 790
30 1161 37 1196
40 1548 66 1614
50 1935 102 2037

The second term is small. The curve is almost linear but slightly concave upward.

2.5 From (2.22)
α = dE/dT = a + bt = 38.7 + 0.082T µV/˚C 
  = 38.7 + 0.082(37) = 41.7 µV/˚C

2.6 From (2.24)
 = – /T2 = = –4.4%/K

2.7 There  is  always  a  voltage  induced  in  each  secondary,  because  it  acts  as  the 
secondary of an air-core transformer. This voltage increases when the core is inside it.

2.8 In Example 2.3 C = 500 pF for the piezoelectric transducer. The amplifier input 
impedance = 5 MΩ.

F = 0.05 Hz  =  
Thus Cequivalent = 0.637 × 10–6 = Cpiezoelectric + Cshunt

Cshunt = 0.636 µF = 636 nF
Q = CV, where charge Q is fixed, capacitance C increases by 636 nF/0.5 nF = 

1272 times. Voltage V (sensitivity) decreases by 1/1272.



The  sensitivity  will  be  decreased  by  a  factor  of  1272  due  to  increase  in  the 
equivalent capacitance.

2.9 Select a feedback Cf = 100 nF (much larger than 500 pF). To achieve low corner 
frequency, add Rf = 1/(2πfcCf) = 1/(2π·0.05·100 nF) = 32 MΩ. To achieve high corner frequency 
add separate passive filter or active filter with Ro = 10 kΩ and Co = 1/(2πfcRo) = 1/(2π·100·10 
kΩ) = 160 nF.

2.10 Typical thermistor V–i characteristics with and without a heat sink are shown 
below.

For low currents Ohm's law applies and the current is directly proportional to the 
applied voltage in both cases. The thermistor temperature is that of its surroundings. The system 
with a heat sink can reach higher current levels and still remain in a linear portion of the v–i  
curve  since  the  heat  sink  keeps  the  thermistor  at  approximately  the  ambient  temperature. 
Eventually  the  thermistor–heat  sink  combination  will  self  heat  and  a  negative-resistance 
relationship will result. 

2.11 Assume  = 1.0 and use (2.25).

W = 37400/[5(exp(14400/300) – 1)]

W = 37400/[5(exp(48/) – 1)]

W2 = 37400/[(32)(225 × 106)] = 0.000005
W5 = 37400/[3125)(15000] = 0.0008
W10 = 37400/[100000)(120)] = 0.003

W20 = 37400/[3.2 × 106)(11 – 1)] = 0.001



2.12 Infrared and ultraviolet are passed better by mirrors because the absorption in the 
glass lenses is eliminated.

2.13 See section 2.16, photojunction devices. For small currents, beta, the current gain, 
increases  with  collector  current.  This  produces  the  concave  nonlinearity  shown.  Both 
nonlinearity  and  response  time increase  in  the  photo-Darlington  because  two transistors  are 
involved.



2.14 Try several load resistors as shown by the dashed load lines following. The maximum 
power is 2.5 µW. The load resistor, R = V/I = (0.5 V)/(5 µA) = 100 kΩ.

2.15 (a) shows the problem—the RC product is too high. (b) shows the simplest solution—
the transistor input resistance is much lower than R. (c) shows that an op amp provides a virtual 
ground that provides a low input resistance. (d) shows that if R is divided by 10, the gain may be 
achieved by a noninverting amplifier. Active components must have adequate speed.


