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CHAPTER 2:

Mathematics for Microeconomics

The problems in this chapter are primarily mathematical. They are intended to give students
some practice with the concepts introduced in Chapter 2, but the problems in themselves offer
few economic insights. Consequently, no commentary is provided. Results from some of the
analytical problems are used in later chapters, however, and in those cases the student will be
directed back to this chapter.

2.1

2.2

Solutions

f(x,y)=4)c2 +3y2.

](x :Sx, f;, = 6_)/

Constraining S, )=16 (reates an implicit function between the variables. The
dy _ f._—8x
1

slope of this function is given by 6y for combinations of x and y

that satisfy the constraint.

& 81

Since /(1:2)=16 e know that at this point & 6:2 3

The /) =16 contour line is an ellipse centered at the origin. The slope of the

line at any point is given by dy/dx =—8x/6y. Notice that this slope becomes
more negative as x increases and y decreases.

r=R-C=-2q"+40q

Profits are given by ~100. The maximum value is found

by setting the derivative equal to 0:

9T _4g+40=0

dq
implies 4 =10 and 7 =100.

d27z/dq2:—4<0

Since > this is a global maximum.
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.. MR =dR/dq=70-2qg. MC =dC/dg=2q +30. So, 4 = 10 obeys
MR = MC =50.
2.3 First, use the substitution method. Substituting ' ~ 1-x yields

- ; . B
f@)=fx1-x)=x(1-x)=x-x". Taking the first-order condition, /' (x)=1-2x=0,
and solving yields x =05, =05 , and Sx)=f(x,y)=025 gice

J"(x)=-2<0, tis is a local and global maximum.

Next, use the Lagrange method. The Lagrangian is L=xy+A(l-x-y). The
first-order conditions are

L.=y-4=0,
Lyzx—/1=O,
L,=1-x-y=0.

x =y =05 1=05

Solving simultaneously, * =" Using the constraint gives > and

x'y =0.25.

2.4 Setting up the Lagrangian, L=x+y+4(0.25-x). The first-order conditions are

L.=1-1y,
L, =1-2x,
L,=025-xy=0.

_ — 2 =
So ¥ =Y Using the constraint (7 =% =0.25) ojyeg ¥ =¥ =05 5n4 1=2. Note that
the solution is the same here as in Problem 2.3, but here the value for the Lagrangian
multiplier is the reciprocal of the value in Problem 2.3.

2
2.5 a. The height of the ball is given by J(#)=-0.5g1" + 40 Tpe value of 7 for which
df |dt=—gt+40=0

height is maximized is found by using the first-order condition: > implying
1 =40/g.
b. Substituting for ‘s
2
f(t)=-05g [@j + 4o(ﬂj _ 800
g g g
Hence,
dr() __800
dg g

c. Differentiation of the original function at its optimal value yields
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g _ —0.5(t")".
dg
Because the optimal value of ? depends on &>

SO o507y = —0.5[@j -2
dg 4

2 2

g
as was also shown in part (c).

d. 1f €327 =5/4 Maximum height is 800/32=25. 1p £ =32.1, aximum

height is 800/32.1=24.92, a reduction of 0.08. This could have been predicted
from the envelope theorem, since

dr(t’) = (_382()20)@ = [;—fj (0.01) ~ —0.08.

2.6 a. This is the volume of a rectangular solid made from a piece of metal, which is X
by 3% with the defined corner squares removed.

b. The first-order condition for maximum volume is given by

v _ 3x* —16xt+12¢* =0.
ot

Applying the quadratic formula to this expression yields

. 16x£v256x% —144x*  16x£10.6x
24

24

The second value given by the quadratic

=0.225x.

(1.11x) 1s obviously extraneous.

c 1£1=0225x, V' ~0.67x’ —0.04x’ +0.05x" ~ 0.68x".
So volume increases without limit.

d. This would require a solution using the Lagrangian method. The optimal solution
requires solving three nonlinear simultaneous equations, a task not undertaken
here. But it seems clear that the solution would involve a different relationship
between ! and * than in parts (a—c).

L =x+5nx, +A(k—x

2.7 a Set up the Lagrangian: %) The first-

order conditions are

L, =1-4=0,
5
L =—=-4=0,
X, xz
L, =k-x—x,=0.
Hence, A=1=5/x,. With k=10, the optimal solution is X =% =3.
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* *

b. with K=4 solving the first-order conditions yields ™ ~ 1 ang 2=

c. If all variables must be nonnegative, it is clear that any positive value

for “ reduces - Hence, the optimal solution is ™ ~ 0, x, =4, and ¥ =5In4.

d. if k=20, optimal solution is ™ ~ 15, %, =3, 4ng ¥ =15+5In5. gecayse

2 provides a diminishing marginal increment to ' as its value increases,
X . . . X
whereas ! does not, all optimal solutions require that once 2 reaches 5, any

extra amounts be devoted entirely to *1* In consumer theory, this function can be

used to illustrate how diminishing marginal usefulness can be modeled in a very
simple setting.

2.8 a. Because MC is the derivative of ¢, 1C is an antiderivative of
MC. By the fundamental theorem of calculus,

T MC(x)dx = TC(q) - TC(0),

where 7€(0)
Rearranging,

is the fixed cost, which we will denote rc)=K for short.
q
TC(q) = j MC(x)dx+K

(x+Ddx+K

q
!
x_
2
q’
=—+q+K.
> q

b. For profit maximization, ¥ = MC(q)=q+1, implying 9~ 7 “Logy P=15

=14 profit are

implies 7
TR-TC = pqg—-TC(q)
2

:15-14—(%+14+KJ

=98-K.
If the firm is just breaking even, profit equals 0, implying fixed cost is K =98.
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c. When 2 =20 and =19 follow the same steps as in part (b), substituting fixed
cost K =98. profit are
TR-TC=pq—TC(q)

2
:20~19—{%+19+Kj

=180.5-98
=82.5.
d. Assuming profit maximization, we have
n(p)=pq—TC(q)
—1)?
=p<p—1)—{(p2 ) +<p—1>+98}
12
_ (=D g
e.
i. Using the above equation, #(p=20)-n(p=15)=825-0=82.5.
ii. The envelope theorem states that dz/dp=q (p). That is, the derivative of
the profit function yields this firm’s supply function. Integrating over ¥ shows
the change in profits by the fundamental theorem of calculus:
20
7(20)-7(15) = | 9z
is dp
20
= f (p—Ddp
15
2 p=20
(5
p=15
=180-97.5
=82.5.
Analytical Problems

2.9 Concave and quasi-concave functions

The proof is most easily accomplished through the use of the matrix algebra of quadratic forms.
See, for example, Mas Colell et al.,1995, pp. 937-939. Intuitively, because concave functions lie
below any tangent plane, their level curves must also be convex. But the converse is not true.
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Quasi-concave functions may exhibit “increasing returns to scale”; even though their level
curves are convex, they may rise above the tangent plane when all variables are increased

together.
A counter example would be the Cobb—Douglas function, which is always quasi-
concave, but convex when ¢ +p>1.

2.10 The Cobb—Douglas function

2.11

_ a-1_p
fi=ax x) >0,

fr=Bxx " >0,
fii=ala-)x"7x" <0,
foo = BB=Dx{x) 7 <0,
fio=fo =afx’ x> 0.

a.
Clearly, all the terms in Equation 2.114 are negative.
.. : . y=c=x"x/
b. A contour line is found by setting the function equal to a constant: 12
. . ox.=cYByls
implying 2 I " Hence,
d
2 <o,
dx,
Further,
d2
122 <0,
dx;
implying the countour line is convex.
_ g2 — _ _ 2002 _2p5-2 . . .
c. Using Equation 2.98, Jufo=ho=ep(=F-a)x™ "x," 7, which is negative for

a+pf>1.

The power function

a. Since ¥ ~ 0 and V < 0, the function is concave.

b. Because S Jor <0 and Jio =1 =0, Equation 2.98 is satisfied, and the function

is concave. Because S 12> 0, Equation 2.114 is also satisfied, so the function is
quasi-concave.

C. Y is quasi-concave as is 2 - However, 7 is not concave for 0> 1. This can be
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Y
shown most easily by J(2x,22,) =27 1 (%, %,)-

2.12 Proof of envelope theorem

a. The Lagrangian for this problem is
L (x;,x,,0) = f(x,x,,a) + Ag(x,, x,, a).
The first-order conditions are

L =/ +4g =0,
L, =/ +1g, =0,
L,=g=0.

b., c. Multiplication of each first-order condition by the appropriate deriviative yields

dx dx dx
f1 fz 2+ (1dc;+g2dch=O.

d. The optimal value of I s given by S (x(@).x,(a),a). Differentiation of this
with respect to 4 shows how this optimal value changes with 4 :

dj dx
R
e. Differentiation of the constraint & (3 (@), x, (a), a) = 0 yields
dg dx dx
_© - 0 — -1 + 2 +
da b4 da &2 da 8ar

f. Multiplying the results from part (¢) by 4 and using parts (b) and (c) yields
i=fa +Ag,=L,.
da

This proves the envelope theorem.

g. In Example 2.8, we showed that A=P[8. This shows how much an extra unit of
perimeter would raise the enclosed area. Direct differentiation of the original
Lagrangian shows also that

*

SRS

dP
This shows that the Lagrange multiplier does indeed show this incremental gain in
this problem.

2.13 Taylor approximations
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a. A function in one variable is concave if / ) <0- Using the quadratic Taylor
formula to approximate this function at point < :

f) = fla)+ f'(a)(x—a)+0.5f"(a)(x~a)’
< f(a)+ f(a)(x—a).
The inequality holds because J"(a)<0. But the right-hand side of this equation is

the equation for the tangent to the function at point 4- So we have shown that any
concave function must lie on or below the tangent to the function at that point.

2
b. A function in two variables is concave if Jitn =12 >0.

2 2
Hence, the quadratic form (fudx” +2 frpdxdy + fndly”) will also be
negative. But this says that the final portion of the Taylor expansion will be

dy=y-b

negative (by setting 94X =X—a and ), and hence the function will be

below its tangent plane.

2.14 More on expected value

a. The tangent to & () at the point © (*) will have the form €792 &(X) for a11
values of ¥ and ¢ dE(x) = g(E(x))- But, because the line ¢+ dx is above the

function & (x) , we know
E(g(x)) L E(c+dx)=c+dE(x)=g(E(x)).
This proves Jensen’s inequality.

b. Use the same procedure as in part (a), but reverse the inequalities.

c. Letu=l—F(x), du=—f(x), x=v, and dx = dv.

0
00

[[1=F@0)]ebx =[(1= Fe)x] ', = [~ £ ()]t

=0+ E(x)
= E(x).

d. Use the hint to break up the integral defining expected value:
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£ = ﬁxf(x)dx + Txf(x)dx}

4 0 t

> xf (x)dbx
> ef (x)dx

- [f e

= P(x>1).

e. 1. Show that this function integrates to 1:

x=00

Tf(x)dx = TZx3dx =—x"

x=1

2. Calculate the cumulative distribution function:
F(x)=[207dt =7 ’j =1-x2
1
3. Using the result from part (c):
E()=[[1-F()]dr =[x dv=—x"[ " =1.
1 1 =
4. To show Markov’s inequality use
o EX)
P(x>2t)=1-F(t)=t" <t = o
f. 1. Show that the PDF integrates to 1:
) 3]%=2
1
[Ca=® :ﬁ_(__jzl.
Y3 9, 9 9
2. Calculate the expected value:
2 3 4 =2
15 5
E(x)zfx—dx:x— i
53 12] 1 4
3. Calculate P(-l=x< O):
0 2 3 [¥=0
I =2 =2
-1 3 9 x=-1 9
4. All we must do is adjust the PDF so that it now sums to 1 over the new,
smaller interval. Since £(4) =8/9,
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fx) =L 3

? definedon 0< x<2.

8/9
5. The expected value is again found through integration:
243 4 =2
E(x|A)=j3idx=3i _3
8 32|, 2

Eliminating the lowest values of x increases the expected value of the
remaining values.

2.15 More on variances

This is just an application of the definition of variance:
Var(x) = E[x— E(x)]

— B[ = 2xE(0) +[ET ]

= E(x*) - 2E(x)] +[Ex)T
= E(x")-[EX)T.

Here, we let 7~ * 7 # and apply Markov’s inequality to 2 and remember that X
can only take on positive values.

E(') o}
P(y2k)=P(y* 2 k%)< iyz ) 3

Let *i» 1=L--27 pe 1 independent random variables each with expected value
) 2
H and variance O -

E(inj:,u+-~-+,u:n,u.

i=l

Var(Zx,):o-z ++0’ =no’.
i=1

Now, let x= Z’i‘(xi/n)'

_ n
E@)="H-
n
2 2
Var(x) = no; =9
n

Let X =hn+(1=k)x, |4 E(X)=kp+(1—k)u=p.
Var(X)=k’c’ +(1-k)’ 0’ = (k> =2k +1)o”.
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dVar(X)
dk
Hence, variance is minimized for k=0.5. In this case,

_ _ 2
k=0.7, Var(X) =0.580 (not much of an increase).

= (4k -2)c” =0.

_ 2
Var(X)=0.50". ¢

Var(x,) = o’ and Var(x,)=rc". N

e. Suppose that ow
Var(X)=k’c” +(1-k)'ro” = (1+7)k” = 2kr +r |0,
Na) 14 k- 2] 0% =0.
dk
=—".
1+7

For example, if 7 = 2, then k= 2/3 , and optimal diversification requires that the
lower risk asset constitute two-thirds of the portfolio. Note, however, that it is still
optimal to have some of the higher risk asset because asset returns are
independent.

2.16 More on covariances

a. This is a direct result of the definition of covariance:
Cov(x,y) = E[(x— E(x))(y — E(»))]
= E[xy —xE(y) - yE(x)+ E(x)E(y)]
= E(xy)—E(x)E(y) - E(V)E(x)+ E(x)E(y)
= E(xy) - E(X)E(y).

Var(ax +by) = E[(ax £ by)* |- [E(ax £ by)]
=a’E(x*) 2 2abE(xy)+b*E(y*) - a’[E(x)]
+2abE(x)E(y) - b [E()T
= g’ Var(x)+b*Var(y) £ 2abCov(x, ).
The final line is a result of Problems 2.15a and 2.16a.

C. The presence of the covariance term in the result of Problem 2.16b suggests that
the results would differ. In the two-variable case, however, this is not necessarily
the situation. For example, suppose that x and y are identically distributed and that

o
Cov(x,¥) =70". sing the prior notation,

Var(X)=k’c” +(1-k)’c” +2k(1-k)ro’.
The first-order condition for a minimum is

(4k —2+2r—4rk)o’ =0,
implying
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k* _ 2_ 2]" _
4—-4r
Regardless of the value of 7~ With more than two random variables, however,
covariances may indeed affect optimal weightings.

0.5.

If N~ fory the correlation coefficient will be either +1 (if & is positive) or —1 (if
k is negative), since X will factor out of the definition leaving only the ratio of
the common variance of the two variables. With less than a perfect linear

relationship | Covix, y)I< [Var(x)Var(y )]OAS '
If y=a+ ﬂx:
Cov(x,y)=E [(X —Ex)(y— E()’))]
= E[(x— E(x))(a + Bx —a — BE(x))]
= BVar(x).

Hence,
_ Cov(x,y)

Var(x)



